1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/encoding.h>
#include <ctype.h>
#include <stdlib.h>
#ifdef USE_SIMD_ENCODING
size_t aws_common_private_base64_decode_sse41(const unsigned char *in, unsigned char *out, size_t len);
void aws_common_private_base64_encode_sse41(const unsigned char *in, unsigned char *out, size_t len);
bool aws_common_private_has_avx2(void);
#else
/*
* When AVX2 compilation is unavailable, we use these stubs to fall back to the pure-C decoder.
* Since we force aws_common_private_has_avx2 to return false, the encode and decode functions should
* not be called - but we must provide them anyway to avoid link errors.
*/
static inline size_t aws_common_private_base64_decode_sse41(const unsigned char *in, unsigned char *out, size_t len) {
(void)in;
(void)out;
(void)len;
AWS_ASSERT(false);
return SIZE_MAX; /* unreachable */
}
static inline void aws_common_private_base64_encode_sse41(const unsigned char *in, unsigned char *out, size_t len) {
(void)in;
(void)out;
(void)len;
AWS_ASSERT(false);
}
static inline bool aws_common_private_has_avx2(void) {
return false;
}
#endif
static const uint8_t *HEX_CHARS = (const uint8_t *)"0123456789abcdef";
static const uint8_t BASE64_SENTINEL_VALUE = 0xff;
static const uint8_t BASE64_ENCODING_TABLE[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/* in this table, 0xDD is an invalid decoded value, if you have to do byte counting for any reason, there's 16 bytes
* per row. Reformatting is turned off to make sure this stays as 16 bytes per line. */
/* clang-format off */
static const uint8_t BASE64_DECODING_TABLE[256] = {
64, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 62, 0xDD, 0xDD, 0xDD, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0xDD, 0xDD, 0xDD, 255, 0xDD, 0xDD,
0xDD, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD};
/* clang-format on */
int aws_hex_compute_encoded_len(size_t to_encode_len, size_t *encoded_length) {
AWS_ASSERT(encoded_length);
size_t temp = (to_encode_len << 1) + 1;
if (AWS_UNLIKELY(temp < to_encode_len)) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
*encoded_length = temp;
return AWS_OP_SUCCESS;
}
int aws_hex_encode(const struct aws_byte_cursor *AWS_RESTRICT to_encode, struct aws_byte_buf *AWS_RESTRICT output) {
AWS_PRECONDITION(aws_byte_cursor_is_valid(to_encode));
AWS_PRECONDITION(aws_byte_buf_is_valid(output));
size_t encoded_len = 0;
if (AWS_UNLIKELY(aws_hex_compute_encoded_len(to_encode->len, &encoded_len))) {
return AWS_OP_ERR;
}
if (AWS_UNLIKELY(output->capacity < encoded_len)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
size_t written = 0;
for (size_t i = 0; i < to_encode->len; ++i) {
output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] >> 4 & 0x0f];
output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] & 0x0f];
}
output->buffer[written] = '\0';
output->len = encoded_len;
return AWS_OP_SUCCESS;
}
int aws_hex_encode_append_dynamic(
const struct aws_byte_cursor *AWS_RESTRICT to_encode,
struct aws_byte_buf *AWS_RESTRICT output) {
AWS_ASSERT(to_encode->ptr);
AWS_ASSERT(aws_byte_buf_is_valid(output));
size_t encoded_len = 0;
if (AWS_UNLIKELY(aws_add_size_checked(to_encode->len, to_encode->len, &encoded_len))) {
return AWS_OP_ERR;
}
if (AWS_UNLIKELY(aws_byte_buf_reserve_relative(output, encoded_len))) {
return AWS_OP_ERR;
}
size_t written = output->len;
for (size_t i = 0; i < to_encode->len; ++i) {
output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] >> 4 & 0x0f];
output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] & 0x0f];
}
output->len += encoded_len;
return AWS_OP_SUCCESS;
}
static int s_hex_decode_char_to_int(char character, uint8_t *int_val) {
if (character >= 'a' && character <= 'f') {
*int_val = (uint8_t)(10 + (character - 'a'));
return 0;
}
if (character >= 'A' && character <= 'F') {
*int_val = (uint8_t)(10 + (character - 'A'));
return 0;
}
if (character >= '0' && character <= '9') {
*int_val = (uint8_t)(character - '0');
return 0;
}
return AWS_OP_ERR;
}
int aws_hex_compute_decoded_len(size_t to_decode_len, size_t *decoded_len) {
AWS_ASSERT(decoded_len);
size_t temp = (to_decode_len + 1);
if (AWS_UNLIKELY(temp < to_decode_len)) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
*decoded_len = temp >> 1;
return AWS_OP_SUCCESS;
}
int aws_hex_decode(const struct aws_byte_cursor *AWS_RESTRICT to_decode, struct aws_byte_buf *AWS_RESTRICT output) {
AWS_PRECONDITION(aws_byte_cursor_is_valid(to_decode));
AWS_PRECONDITION(aws_byte_buf_is_valid(output));
size_t decoded_length = 0;
if (AWS_UNLIKELY(aws_hex_compute_decoded_len(to_decode->len, &decoded_length))) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
if (AWS_UNLIKELY(output->capacity < decoded_length)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
size_t written = 0;
size_t i = 0;
uint8_t high_value = 0;
uint8_t low_value = 0;
/* if the buffer isn't even, prepend a 0 to the buffer. */
if (AWS_UNLIKELY(to_decode->len & 0x01)) {
i = 1;
if (s_hex_decode_char_to_int((char)to_decode->ptr[0], &low_value)) {
return aws_raise_error(AWS_ERROR_INVALID_HEX_STR);
}
output->buffer[written++] = low_value;
}
for (; i < to_decode->len; i += 2) {
if (AWS_UNLIKELY(
s_hex_decode_char_to_int(to_decode->ptr[i], &high_value) ||
s_hex_decode_char_to_int(to_decode->ptr[i + 1], &low_value))) {
return aws_raise_error(AWS_ERROR_INVALID_HEX_STR);
}
uint8_t value = (uint8_t)(high_value << 4);
value |= low_value;
output->buffer[written++] = value;
}
output->len = decoded_length;
return AWS_OP_SUCCESS;
}
int aws_base64_compute_encoded_len(size_t to_encode_len, size_t *encoded_len) {
AWS_ASSERT(encoded_len);
size_t tmp = to_encode_len + 2;
if (AWS_UNLIKELY(tmp < to_encode_len)) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
tmp /= 3;
size_t overflow_check = tmp;
tmp = 4 * tmp + 1; /* plus one for the NULL terminator */
if (AWS_UNLIKELY(tmp < overflow_check)) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
*encoded_len = tmp;
return AWS_OP_SUCCESS;
}
int aws_base64_compute_decoded_len(const struct aws_byte_cursor *AWS_RESTRICT to_decode, size_t *decoded_len) {
AWS_ASSERT(to_decode);
AWS_ASSERT(decoded_len);
const size_t len = to_decode->len;
const uint8_t *input = to_decode->ptr;
if (len == 0) {
*decoded_len = 0;
return AWS_OP_SUCCESS;
}
if (AWS_UNLIKELY(len & 0x03)) {
return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
}
size_t tmp = len * 3;
if (AWS_UNLIKELY(tmp < len)) {
return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
}
size_t padding = 0;
if (len >= 2 && input[len - 1] == '=' && input[len - 2] == '=') { /*last two chars are = */
padding = 2;
} else if (input[len - 1] == '=') { /*last char is = */
padding = 1;
}
*decoded_len = (tmp / 4 - padding);
return AWS_OP_SUCCESS;
}
int aws_base64_encode(const struct aws_byte_cursor *AWS_RESTRICT to_encode, struct aws_byte_buf *AWS_RESTRICT output) {
AWS_ASSERT(to_encode->ptr);
AWS_ASSERT(output->buffer);
size_t terminated_length = 0;
size_t encoded_length = 0;
if (AWS_UNLIKELY(aws_base64_compute_encoded_len(to_encode->len, &terminated_length))) {
return AWS_OP_ERR;
}
size_t needed_capacity = 0;
if (AWS_UNLIKELY(aws_add_size_checked(output->len, terminated_length, &needed_capacity))) {
return AWS_OP_ERR;
}
if (AWS_UNLIKELY(output->capacity < needed_capacity)) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
/*
* For convenience to standard C functions expecting a null-terminated
* string, the output is terminated. As the encoding itself can be used in
* various ways, however, its length should never account for that byte.
*/
encoded_length = (terminated_length - 1);
if (aws_common_private_has_avx2()) {
aws_common_private_base64_encode_sse41(to_encode->ptr, output->buffer + output->len, to_encode->len);
output->buffer[output->len + encoded_length] = 0;
output->len += encoded_length;
return AWS_OP_SUCCESS;
}
size_t buffer_length = to_encode->len;
size_t block_count = (buffer_length + 2) / 3;
size_t remainder_count = (buffer_length % 3);
size_t str_index = output->len;
for (size_t i = 0; i < to_encode->len; i += 3) {
uint32_t block = to_encode->ptr[i];
block <<= 8;
if (AWS_LIKELY(i + 1 < buffer_length)) {
block = block | to_encode->ptr[i + 1];
}
block <<= 8;
if (AWS_LIKELY(i + 2 < to_encode->len)) {
block = block | to_encode->ptr[i + 2];
}
output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 18) & 0x3F];
output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 12) & 0x3F];
output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 6) & 0x3F];
output->buffer[str_index++] = BASE64_ENCODING_TABLE[block & 0x3F];
}
if (remainder_count > 0) {
output->buffer[output->len + block_count * 4 - 1] = '=';
if (remainder_count == 1) {
output->buffer[output->len + block_count * 4 - 2] = '=';
}
}
/* it's a string add the null terminator. */
output->buffer[output->len + encoded_length] = 0;
output->len += encoded_length;
return AWS_OP_SUCCESS;
}
static inline int s_base64_get_decoded_value(unsigned char to_decode, uint8_t *value, int8_t allow_sentinel) {
uint8_t decode_value = BASE64_DECODING_TABLE[(size_t)to_decode];
if (decode_value != 0xDD && (decode_value != BASE64_SENTINEL_VALUE || allow_sentinel)) {
*value = decode_value;
return AWS_OP_SUCCESS;
}
return AWS_OP_ERR;
}
int aws_base64_decode(const struct aws_byte_cursor *AWS_RESTRICT to_decode, struct aws_byte_buf *AWS_RESTRICT output) {
size_t decoded_length = 0;
if (AWS_UNLIKELY(aws_base64_compute_decoded_len(to_decode, &decoded_length))) {
return AWS_OP_ERR;
}
if (output->capacity < decoded_length) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
if (aws_common_private_has_avx2()) {
size_t result = aws_common_private_base64_decode_sse41(to_decode->ptr, output->buffer, to_decode->len);
if (result == SIZE_MAX) {
return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
}
output->len = result;
return AWS_OP_SUCCESS;
}
int64_t block_count = (int64_t)to_decode->len / 4;
size_t string_index = 0;
uint8_t value1 = 0, value2 = 0, value3 = 0, value4 = 0;
int64_t buffer_index = 0;
for (int64_t i = 0; i < block_count - 1; ++i) {
if (AWS_UNLIKELY(
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value1, 0) ||
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value2, 0) ||
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value3, 0) ||
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value4, 0))) {
return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
}
buffer_index = i * 3;
output->buffer[buffer_index++] = (uint8_t)((value1 << 2) | ((value2 >> 4) & 0x03));
output->buffer[buffer_index++] = (uint8_t)(((value2 << 4) & 0xF0) | ((value3 >> 2) & 0x0F));
output->buffer[buffer_index] = (uint8_t)((value3 & 0x03) << 6 | value4);
}
buffer_index = (block_count - 1) * 3;
if (buffer_index >= 0) {
if (s_base64_get_decoded_value(to_decode->ptr[string_index++], &value1, 0) ||
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value2, 0) ||
s_base64_get_decoded_value(to_decode->ptr[string_index++], &value3, 1) ||
s_base64_get_decoded_value(to_decode->ptr[string_index], &value4, 1)) {
return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
}
output->buffer[buffer_index++] = (uint8_t)((value1 << 2) | ((value2 >> 4) & 0x03));
if (value3 != BASE64_SENTINEL_VALUE) {
output->buffer[buffer_index++] = (uint8_t)(((value2 << 4) & 0xF0) | ((value3 >> 2) & 0x0F));
if (value4 != BASE64_SENTINEL_VALUE) {
output->buffer[buffer_index] = (uint8_t)((value3 & 0x03) << 6 | value4);
}
}
}
output->len = decoded_length;
return AWS_OP_SUCCESS;
}
struct aws_utf8_decoder {
struct aws_allocator *alloc;
/* Value of current codepoint, updated as we read each byte */
uint32_t codepoint;
/* Minimum value that current codepoint is allowed to end up with
* (i.e. text cannot use 2 bytes to encode what would have fit in 1 byte) */
uint32_t min;
/* Number of bytes remaining the current codepoint */
uint8_t remaining;
/* Custom callback */
int (*on_codepoint)(uint32_t codepoint, void *user_data);
/* user_data for on_codepoint */
void *user_data;
};
struct aws_utf8_decoder *aws_utf8_decoder_new(
struct aws_allocator *allocator,
const struct aws_utf8_decoder_options *options) {
struct aws_utf8_decoder *decoder = aws_mem_calloc(allocator, 1, sizeof(struct aws_utf8_decoder));
decoder->alloc = allocator;
if (options) {
decoder->on_codepoint = options->on_codepoint;
decoder->user_data = options->user_data;
}
return decoder;
}
void aws_utf8_decoder_destroy(struct aws_utf8_decoder *decoder) {
if (decoder) {
aws_mem_release(decoder->alloc, decoder);
}
}
void aws_utf8_decoder_reset(struct aws_utf8_decoder *decoder) {
decoder->codepoint = 0;
decoder->min = 0;
decoder->remaining = 0;
}
/* Why yes, this could be optimized. */
int aws_utf8_decoder_update(struct aws_utf8_decoder *decoder, struct aws_byte_cursor bytes) {
/* We're respecting RFC-3629, which uses 1 to 4 byte sequences (never 5 or 6) */
for (size_t i = 0; i < bytes.len; ++i) {
uint8_t byte = bytes.ptr[i];
if (decoder->remaining == 0) {
/* Check first byte of the codepoint to determine how many more bytes remain */
if ((byte & 0x80) == 0x00) {
/* 1 byte codepoints start with 0xxxxxxx */
decoder->remaining = 0;
decoder->codepoint = byte;
decoder->min = 0;
} else if ((byte & 0xE0) == 0xC0) {
/* 2 byte codepoints start with 110xxxxx */
decoder->remaining = 1;
decoder->codepoint = byte & 0x1F;
decoder->min = 0x80;
} else if ((byte & 0xF0) == 0xE0) {
/* 3 byte codepoints start with 1110xxxx */
decoder->remaining = 2;
decoder->codepoint = byte & 0x0F;
decoder->min = 0x800;
} else if ((byte & 0xF8) == 0xF0) {
/* 4 byte codepoints start with 11110xxx */
decoder->remaining = 3;
decoder->codepoint = byte & 0x07;
decoder->min = 0x10000;
} else {
return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}
} else {
/* This is not the first byte of a codepoint.
* Ensure it starts with 10xxxxxx*/
if ((byte & 0xC0) != 0x80) {
return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}
/* Insert the 6 newly decoded bits:
* shifting left anything we've already decoded, and insert the new bits to the right */
decoder->codepoint = (decoder->codepoint << 6) | (byte & 0x3F);
/* If we've decoded the whole codepoint, check it for validity
* (don't need to do these particular checks on 1 byte codepoints) */
if (--decoder->remaining == 0) {
/* Check that it's not "overlong" (encoded using more bytes than necessary) */
if (decoder->codepoint < decoder->min) {
return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}
/* UTF-8 prohibits encoding character numbers between U+D800 and U+DFFF,
* which are reserved for use with the UTF-16 encoding form (as
* surrogate pairs) and do not directly represent characters */
if (decoder->codepoint >= 0xD800 && decoder->codepoint <= 0xDFFF) {
return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}
}
}
/* Invoke user's on_codepoint callback */
if (decoder->on_codepoint && decoder->remaining == 0) {
if (decoder->on_codepoint(decoder->codepoint, decoder->user_data)) {
return AWS_OP_ERR;
}
}
}
return AWS_OP_SUCCESS;
}
int aws_utf8_decoder_finalize(struct aws_utf8_decoder *decoder) {
bool valid = decoder->remaining == 0;
aws_utf8_decoder_reset(decoder);
if (AWS_LIKELY(valid)) {
return AWS_OP_SUCCESS;
}
return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}
int aws_decode_utf8(struct aws_byte_cursor bytes, const struct aws_utf8_decoder_options *options) {
struct aws_utf8_decoder decoder = {
.on_codepoint = options ? options->on_codepoint : NULL,
.user_data = options ? options->user_data : NULL,
};
if (aws_utf8_decoder_update(&decoder, bytes)) {
return AWS_OP_ERR;
}
if (aws_utf8_decoder_finalize(&decoder)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
|