File: s3_buffer_pool.c

package info (click to toggle)
aws-crt-python 0.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 75,932 kB
  • sloc: ansic: 418,984; python: 23,626; makefile: 6,035; sh: 4,075; ruby: 208; java: 82; perl: 73; cpp: 25; xml: 11
file content (517 lines) | stat: -rw-r--r-- 19,041 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/s3/private/s3_buffer_pool.h>

#include <aws/common/array_list.h>
#include <aws/common/mutex.h>
#include <aws/s3/private/s3_util.h>

/*
 * S3 Buffer Pool.
 * Fairly trivial implementation of "arena" style allocator.
 * Note: current implementation is not optimized and instead tries to be
 * as straightforward as possible. Given that pool manages a small number
 * of big allocations, performance impact is not that bad, but something we need
 * to look into on the next iteration.
 *
 * Basic approach is to divide acquires into primary and secondary.
 * User provides chunk size during construction. Acquires below 4 * chunks_size
 * are done from primary and the rest are from secondary.
 *
 * Primary storage consists of blocks that are each s_chunks_per_block *
 * chunk_size in size. blocks are created on demand as needed.
 * Acquire operation from primary basically works by determining how many chunks
 * are needed and then finding available space in existing blocks or creating a
 * new block. Acquire will always take over the whole chunk, so some space is
 * likely wasted.
 * Ex. say chunk_size is 8mb and s_chunks_per_block is 16, which makes block size 128mb.
 * acquires up to 32mb will be done from primary. So 1 block can hold 4 buffers
 * of 32mb (4 chunks) or 16 buffers of 8mb (1 chunk). If requested buffer size
 * is 12mb, 2 chunks are used for acquire and 4mb will be wasted.
 * Secondary storage delegates directly to system allocator.
 *
 * One complication is "forced" buffers. A forced buffer is one that
 * comes from primary or secondary storage as usual, but it is allowed to exceed
 * the memory limit. This is only used when we want to use memory from
 * the pool, but waiting for a normal ticket reservation could cause deadlock.
 */

struct aws_s3_buffer_pool_ticket {
    size_t size;
    uint8_t *ptr;
    size_t chunks_used;
    bool forced;
};

/* Default size for blocks array. Note: this is just for meta info, blocks
 * themselves are not preallocated. */
static size_t s_block_list_initial_capacity = 5;

/* Amount of mem reserved for use outside of buffer pool.
 * This is an optimistic upper bound on mem used as we dont track it.
 * Covers both usage outside of pool, i.e. all allocations done as part of s3
 * client as well as any allocations overruns due to memory waste in the pool. */
static const size_t s_buffer_pool_reserved_mem = MB_TO_BYTES(128);

/*
 * How many chunks make up a block in primary storage.
 */
static const size_t s_chunks_per_block = 16;

/*
 * Max size of chunks in primary.
 * Effectively if client part size is above the following number, primary
 * storage along with buffer reuse is disabled and all buffers are allocated
 * directly using allocator.
 */
static const size_t s_max_chunk_size_for_buffer_reuse = MB_TO_BYTES(64);

/* Forced buffers only count against the memory limit up to a certain percent.
 * For example: if mem_limit is 10GiB, and forced_use is 11GiB, and THIS number is 90(%),
 * we still consider 1GiB available for normal buffer usage. */
static const size_t s_max_impact_of_forced_buffers_on_memory_limit_as_percentage = 80;

struct aws_s3_buffer_pool {
    struct aws_allocator *base_allocator;
    struct aws_mutex mutex;

    size_t block_size;
    size_t chunk_size;
    /* size at which allocations should go to secondary */
    size_t primary_size_cutoff;

    /* NOTE: See aws_s3_buffer_pool_usage_stats for descriptions of most fields */

    size_t mem_limit;

    bool has_reservation_hold;

    size_t primary_allocated;
    size_t primary_reserved;
    size_t primary_used;

    size_t secondary_reserved;
    size_t secondary_used;

    size_t forced_used;

    struct aws_array_list blocks;
};

struct s3_buffer_pool_block {
    size_t block_size;
    uint8_t *block_ptr;
    uint16_t alloc_bit_mask;
};

/*
 * Sets n bits at position starting with LSB.
 * Note: n must be at most 8, but in practice will always be at most 4.
 * position + n should at most be 16
 */
static inline uint16_t s_set_bits(uint16_t num, size_t position, size_t n) {
    AWS_PRECONDITION(n <= 8);
    AWS_PRECONDITION(position + n <= 16);
    uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
    return num | (mask << position);
}

/*
 * Clears n bits at position starting with LSB.
 * Note: n must be at most 8, but in practice will always be at most 4.
 * position + n should at most be 16
 */
static inline uint16_t s_clear_bits(uint16_t num, size_t position, size_t n) {
    AWS_PRECONDITION(n <= 8);
    AWS_PRECONDITION(position + n <= 16);
    uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
    return num & ~(mask << position);
}

/*
 * Checks whether n bits are set at position starting with LSB.
 * Note: n must be at most 8, but in practice will always be at most 4.
 * position + n should at most be 16
 */
static inline bool s_check_bits(uint16_t num, size_t position, size_t n) {
    AWS_PRECONDITION(n <= 8);
    AWS_PRECONDITION(position + n <= 16);
    uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
    return (num >> position) & mask;
}

struct aws_s3_buffer_pool *aws_s3_buffer_pool_new(
    struct aws_allocator *allocator,
    size_t chunk_size,
    size_t mem_limit) {

    if (mem_limit < GB_TO_BYTES(1)) {
        AWS_LOGF_ERROR(
            AWS_LS_S3_CLIENT,
            "Failed to initialize buffer pool. "
            "Minimum supported value for Memory Limit is 1GB.");
        aws_raise_error(AWS_ERROR_S3_INVALID_MEMORY_LIMIT_CONFIG);
        return NULL;
    }

    if (chunk_size < (1024) || chunk_size % (4 * 1024) != 0) {
        AWS_LOGF_WARN(
            AWS_LS_S3_CLIENT,
            "Part size specified on the client can lead to suboptimal performance. "
            "Consider specifying size in multiples of 4KiB. Ideal part size for most transfers is "
            "1MiB multiple between 8MiB and 16MiB. Note: the client will automatically scale part size "
            "if its not sufficient to transfer data within the maximum number of parts");
    }

    size_t adjusted_mem_lim = mem_limit - s_buffer_pool_reserved_mem;

    /*
     * TODO: There is several things we can consider tweaking here:
     * - if chunk size is a weird number of bytes, force it to the closest page size?
     * - grow chunk size max based on overall mem lim (ex. for 4gb it might be
     *   64mb, but for 8gb it can be 128mb)
     * - align chunk size to better fill available mem? some chunk sizes can
     *   result in memory being wasted because overall limit does not divide
     *   nicely into chunks
     */
    if (chunk_size > s_max_chunk_size_for_buffer_reuse || chunk_size * s_chunks_per_block > adjusted_mem_lim) {
        AWS_LOGF_WARN(
            AWS_LS_S3_CLIENT,
            "Part size specified on the client is too large for automatic buffer reuse. "
            "Consider specifying a smaller part size to improve performance and memory utilization");
        chunk_size = 0;
    }

    struct aws_s3_buffer_pool *buffer_pool = aws_mem_calloc(allocator, 1, sizeof(struct aws_s3_buffer_pool));

    AWS_FATAL_ASSERT(buffer_pool != NULL);

    buffer_pool->base_allocator = allocator;
    buffer_pool->chunk_size = chunk_size;
    buffer_pool->block_size = s_chunks_per_block * chunk_size;
    /* Somewhat arbitrary number.
     * Tries to balance between how many allocations use buffer and buffer space
     * being wasted. */
    buffer_pool->primary_size_cutoff = chunk_size * 4;
    buffer_pool->mem_limit = adjusted_mem_lim;
    int mutex_error = aws_mutex_init(&buffer_pool->mutex);
    AWS_FATAL_ASSERT(mutex_error == AWS_OP_SUCCESS);

    aws_array_list_init_dynamic(
        &buffer_pool->blocks, allocator, s_block_list_initial_capacity, sizeof(struct s3_buffer_pool_block));

    return buffer_pool;
}

void aws_s3_buffer_pool_destroy(struct aws_s3_buffer_pool *buffer_pool) {
    if (buffer_pool == NULL) {
        return;
    }

    for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
        struct s3_buffer_pool_block *block;
        aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);

        AWS_FATAL_ASSERT(block->alloc_bit_mask == 0 && "Allocator still has outstanding blocks");
        aws_mem_release(buffer_pool->base_allocator, block->block_ptr);
    }

    aws_array_list_clean_up(&buffer_pool->blocks);

    aws_mutex_clean_up(&buffer_pool->mutex);
    struct aws_allocator *base = buffer_pool->base_allocator;
    aws_mem_release(base, buffer_pool);
}

void s_buffer_pool_trim_synced(struct aws_s3_buffer_pool *buffer_pool) {
    for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks);) {
        struct s3_buffer_pool_block *block;
        aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);

        if (block->alloc_bit_mask == 0) {
            buffer_pool->primary_allocated -= block->block_size;
            aws_mem_release(buffer_pool->base_allocator, block->block_ptr);
            aws_array_list_erase(&buffer_pool->blocks, i);
            /* do not increment since we just released element */
        } else {
            ++i;
        }
    }
}

void aws_s3_buffer_pool_trim(struct aws_s3_buffer_pool *buffer_pool) {
    aws_mutex_lock(&buffer_pool->mutex);
    s_buffer_pool_trim_synced(buffer_pool);
    aws_mutex_unlock(&buffer_pool->mutex);
}

struct aws_s3_buffer_pool_ticket *aws_s3_buffer_pool_reserve(struct aws_s3_buffer_pool *buffer_pool, size_t size) {
    AWS_PRECONDITION(buffer_pool);

    if (buffer_pool->has_reservation_hold) {
        return NULL;
    }

    AWS_FATAL_ASSERT(size != 0);
    AWS_FATAL_ASSERT(size <= buffer_pool->mem_limit);

    struct aws_s3_buffer_pool_ticket *ticket = NULL;
    aws_mutex_lock(&buffer_pool->mutex);

    size_t overall_taken = buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->secondary_used +
                           buffer_pool->secondary_reserved;

    /*
     * If we are allocating from secondary and there is unused space in
     * primary, trim the primary in hopes we can free up enough memory.
     * TODO: something smarter, like partial trim?
     */
    if (size > buffer_pool->primary_size_cutoff && (size + overall_taken) > buffer_pool->mem_limit &&
        (buffer_pool->primary_allocated >
         (buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->block_size))) {
        s_buffer_pool_trim_synced(buffer_pool);
        overall_taken = buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->secondary_used +
                        buffer_pool->secondary_reserved;
    }

    /* Don't let forced buffers account for 100% of the memory limit */
    const size_t max_impact_of_forced_on_limit =
        (size_t)(buffer_pool->mem_limit * (s_max_impact_of_forced_buffers_on_memory_limit_as_percentage / 100.0));
    if (buffer_pool->forced_used > max_impact_of_forced_on_limit) {
        overall_taken -= buffer_pool->forced_used - max_impact_of_forced_on_limit;
    }

    if ((size + overall_taken) <= buffer_pool->mem_limit) {
        ticket = aws_mem_calloc(buffer_pool->base_allocator, 1, sizeof(struct aws_s3_buffer_pool_ticket));
        ticket->size = size;
        if (size <= buffer_pool->primary_size_cutoff) {
            buffer_pool->primary_reserved += size;
        } else {
            buffer_pool->secondary_reserved += size;
        }
    } else {
        buffer_pool->has_reservation_hold = true;
    }

    aws_mutex_unlock(&buffer_pool->mutex);

    if (ticket == NULL) {
        AWS_LOGF_TRACE(
            AWS_LS_S3_CLIENT,
            "Memory limit reached while trying to allocate buffer of size %zu. "
            "Putting new buffer reservations on hold...",
            size);
        aws_raise_error(AWS_ERROR_S3_EXCEEDS_MEMORY_LIMIT);
    }
    return ticket;
}

bool aws_s3_buffer_pool_has_reservation_hold(struct aws_s3_buffer_pool *buffer_pool) {
    AWS_PRECONDITION(buffer_pool);
    return buffer_pool->has_reservation_hold;
}

void aws_s3_buffer_pool_remove_reservation_hold(struct aws_s3_buffer_pool *buffer_pool) {
    AWS_PRECONDITION(buffer_pool);
    AWS_LOGF_TRACE(AWS_LS_S3_CLIENT, "Releasing buffer reservation hold.");
    buffer_pool->has_reservation_hold = false;
}

static uint8_t *s_primary_acquire_synced(
    struct aws_s3_buffer_pool *buffer_pool,
    struct aws_s3_buffer_pool_ticket *ticket) {

    uint8_t *alloc_ptr = NULL;

    size_t chunks_needed = ticket->size / buffer_pool->chunk_size;
    if (ticket->size % buffer_pool->chunk_size != 0) {
        ++chunks_needed; /* round up */
    }
    ticket->chunks_used = chunks_needed;

    /* Look for space in existing blocks */
    for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
        struct s3_buffer_pool_block *block;
        aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);

        for (size_t chunk_i = 0; chunk_i < s_chunks_per_block - chunks_needed + 1; ++chunk_i) {
            if (!s_check_bits(block->alloc_bit_mask, chunk_i, chunks_needed)) {
                alloc_ptr = block->block_ptr + chunk_i * buffer_pool->chunk_size;
                block->alloc_bit_mask = s_set_bits(block->alloc_bit_mask, chunk_i, chunks_needed);
                goto on_allocated;
            }
        }
    }

    /* No space available. Allocate new block. */
    struct s3_buffer_pool_block block;
    block.alloc_bit_mask = s_set_bits(0, 0, chunks_needed);
    block.block_ptr = aws_mem_acquire(buffer_pool->base_allocator, buffer_pool->block_size);
    block.block_size = buffer_pool->block_size;
    aws_array_list_push_back(&buffer_pool->blocks, &block);
    alloc_ptr = block.block_ptr;

    buffer_pool->primary_allocated += buffer_pool->block_size;

on_allocated:
    buffer_pool->primary_used += ticket->size;

    /* forced buffers acquire immediately, without reserving first */
    if (ticket->forced == false) {
        buffer_pool->primary_reserved -= ticket->size;
    }

    return alloc_ptr;
}

static struct aws_byte_buf s_acquire_buffer_synced(
    struct aws_s3_buffer_pool *buffer_pool,
    struct aws_s3_buffer_pool_ticket *ticket);

struct aws_byte_buf aws_s3_buffer_pool_acquire_buffer(
    struct aws_s3_buffer_pool *buffer_pool,
    struct aws_s3_buffer_pool_ticket *ticket) {

    AWS_PRECONDITION(buffer_pool);
    AWS_PRECONDITION(ticket);

    if (ticket->ptr != NULL) {
        return aws_byte_buf_from_empty_array(ticket->ptr, ticket->size);
    }

    aws_mutex_lock(&buffer_pool->mutex);
    struct aws_byte_buf buf = s_acquire_buffer_synced(buffer_pool, ticket);
    aws_mutex_unlock(&buffer_pool->mutex);

    return buf;
}

static struct aws_byte_buf s_acquire_buffer_synced(
    struct aws_s3_buffer_pool *buffer_pool,
    struct aws_s3_buffer_pool_ticket *ticket) {

    AWS_PRECONDITION(ticket->ptr == NULL);

    if (ticket->size <= buffer_pool->primary_size_cutoff) {
        ticket->ptr = s_primary_acquire_synced(buffer_pool, ticket);
    } else {
        ticket->ptr = aws_mem_acquire(buffer_pool->base_allocator, ticket->size);
        buffer_pool->secondary_used += ticket->size;

        /* forced buffers acquire immediately, without reserving first */
        if (ticket->forced == false) {
            buffer_pool->secondary_reserved -= ticket->size;
        }
    }

    return aws_byte_buf_from_empty_array(ticket->ptr, ticket->size);
}

struct aws_byte_buf aws_s3_buffer_pool_acquire_forced_buffer(
    struct aws_s3_buffer_pool *buffer_pool,
    size_t size,
    struct aws_s3_buffer_pool_ticket **out_new_ticket) {

    AWS_PRECONDITION(buffer_pool);
    AWS_PRECONDITION(out_new_ticket);

    AWS_FATAL_ASSERT(size != 0);

    aws_mutex_lock(&buffer_pool->mutex);

    struct aws_s3_buffer_pool_ticket *ticket =
        aws_mem_calloc(buffer_pool->base_allocator, 1, sizeof(struct aws_s3_buffer_pool_ticket));
    ticket->size = size;
    ticket->forced = true;

    struct aws_byte_buf buf = s_acquire_buffer_synced(buffer_pool, ticket);

    buffer_pool->forced_used += size;

    aws_mutex_unlock(&buffer_pool->mutex);

    *out_new_ticket = ticket;
    return buf;
}

void aws_s3_buffer_pool_release_ticket(
    struct aws_s3_buffer_pool *buffer_pool,
    struct aws_s3_buffer_pool_ticket *ticket) {

    if (buffer_pool == NULL || ticket == NULL) {
        return;
    }

    if (ticket->ptr == NULL) {
        /* Ticket was never used, make sure to clean up reserved count. */
        aws_mutex_lock(&buffer_pool->mutex);
        if (ticket->size <= buffer_pool->primary_size_cutoff) {
            buffer_pool->primary_reserved -= ticket->size;
        } else {
            buffer_pool->secondary_reserved -= ticket->size;
        }
        aws_mutex_unlock(&buffer_pool->mutex);
        aws_mem_release(buffer_pool->base_allocator, ticket);
        return;
    }

    aws_mutex_lock(&buffer_pool->mutex);
    if (ticket->size <= buffer_pool->primary_size_cutoff) {

        size_t chunks_used = ticket->size / buffer_pool->chunk_size;
        if (ticket->size % buffer_pool->chunk_size != 0) {
            ++chunks_used; /* round up */
        }

        bool found = false;
        for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
            struct s3_buffer_pool_block *block;
            aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);

            if (block->block_ptr <= ticket->ptr && block->block_ptr + block->block_size > ticket->ptr) {
                size_t alloc_i = (ticket->ptr - block->block_ptr) / buffer_pool->chunk_size;

                block->alloc_bit_mask = s_clear_bits(block->alloc_bit_mask, alloc_i, chunks_used);
                buffer_pool->primary_used -= ticket->size;

                found = true;
                break;
            }
        }

        AWS_FATAL_ASSERT(found);
    } else {
        aws_mem_release(buffer_pool->base_allocator, ticket->ptr);
        buffer_pool->secondary_used -= ticket->size;
    }

    if (ticket->forced) {
        buffer_pool->forced_used -= ticket->size;
    }

    aws_mem_release(buffer_pool->base_allocator, ticket);

    aws_mutex_unlock(&buffer_pool->mutex);
}

struct aws_s3_buffer_pool_usage_stats aws_s3_buffer_pool_get_usage(struct aws_s3_buffer_pool *buffer_pool) {
    aws_mutex_lock(&buffer_pool->mutex);

    struct aws_s3_buffer_pool_usage_stats ret = (struct aws_s3_buffer_pool_usage_stats){
        .mem_limit = buffer_pool->mem_limit,
        .primary_cutoff = buffer_pool->primary_size_cutoff,
        .primary_allocated = buffer_pool->primary_allocated,
        .primary_used = buffer_pool->primary_used,
        .primary_reserved = buffer_pool->primary_reserved,
        .primary_num_blocks = aws_array_list_length(&buffer_pool->blocks),
        .secondary_used = buffer_pool->secondary_used,
        .secondary_reserved = buffer_pool->secondary_reserved,
        .forced_used = buffer_pool->forced_used,
    };

    aws_mutex_unlock(&buffer_pool->mutex);
    return ret;
}