1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/s3/private/s3_buffer_pool.h>
#include <aws/common/array_list.h>
#include <aws/common/mutex.h>
#include <aws/s3/private/s3_util.h>
/*
* S3 Buffer Pool.
* Fairly trivial implementation of "arena" style allocator.
* Note: current implementation is not optimized and instead tries to be
* as straightforward as possible. Given that pool manages a small number
* of big allocations, performance impact is not that bad, but something we need
* to look into on the next iteration.
*
* Basic approach is to divide acquires into primary and secondary.
* User provides chunk size during construction. Acquires below 4 * chunks_size
* are done from primary and the rest are from secondary.
*
* Primary storage consists of blocks that are each s_chunks_per_block *
* chunk_size in size. blocks are created on demand as needed.
* Acquire operation from primary basically works by determining how many chunks
* are needed and then finding available space in existing blocks or creating a
* new block. Acquire will always take over the whole chunk, so some space is
* likely wasted.
* Ex. say chunk_size is 8mb and s_chunks_per_block is 16, which makes block size 128mb.
* acquires up to 32mb will be done from primary. So 1 block can hold 4 buffers
* of 32mb (4 chunks) or 16 buffers of 8mb (1 chunk). If requested buffer size
* is 12mb, 2 chunks are used for acquire and 4mb will be wasted.
* Secondary storage delegates directly to system allocator.
*
* One complication is "forced" buffers. A forced buffer is one that
* comes from primary or secondary storage as usual, but it is allowed to exceed
* the memory limit. This is only used when we want to use memory from
* the pool, but waiting for a normal ticket reservation could cause deadlock.
*/
struct aws_s3_buffer_pool_ticket {
size_t size;
uint8_t *ptr;
size_t chunks_used;
bool forced;
};
/* Default size for blocks array. Note: this is just for meta info, blocks
* themselves are not preallocated. */
static size_t s_block_list_initial_capacity = 5;
/* Amount of mem reserved for use outside of buffer pool.
* This is an optimistic upper bound on mem used as we dont track it.
* Covers both usage outside of pool, i.e. all allocations done as part of s3
* client as well as any allocations overruns due to memory waste in the pool. */
static const size_t s_buffer_pool_reserved_mem = MB_TO_BYTES(128);
/*
* How many chunks make up a block in primary storage.
*/
static const size_t s_chunks_per_block = 16;
/*
* Max size of chunks in primary.
* Effectively if client part size is above the following number, primary
* storage along with buffer reuse is disabled and all buffers are allocated
* directly using allocator.
*/
static const size_t s_max_chunk_size_for_buffer_reuse = MB_TO_BYTES(64);
/* Forced buffers only count against the memory limit up to a certain percent.
* For example: if mem_limit is 10GiB, and forced_use is 11GiB, and THIS number is 90(%),
* we still consider 1GiB available for normal buffer usage. */
static const size_t s_max_impact_of_forced_buffers_on_memory_limit_as_percentage = 80;
struct aws_s3_buffer_pool {
struct aws_allocator *base_allocator;
struct aws_mutex mutex;
size_t block_size;
size_t chunk_size;
/* size at which allocations should go to secondary */
size_t primary_size_cutoff;
/* NOTE: See aws_s3_buffer_pool_usage_stats for descriptions of most fields */
size_t mem_limit;
bool has_reservation_hold;
size_t primary_allocated;
size_t primary_reserved;
size_t primary_used;
size_t secondary_reserved;
size_t secondary_used;
size_t forced_used;
struct aws_array_list blocks;
};
struct s3_buffer_pool_block {
size_t block_size;
uint8_t *block_ptr;
uint16_t alloc_bit_mask;
};
/*
* Sets n bits at position starting with LSB.
* Note: n must be at most 8, but in practice will always be at most 4.
* position + n should at most be 16
*/
static inline uint16_t s_set_bits(uint16_t num, size_t position, size_t n) {
AWS_PRECONDITION(n <= 8);
AWS_PRECONDITION(position + n <= 16);
uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
return num | (mask << position);
}
/*
* Clears n bits at position starting with LSB.
* Note: n must be at most 8, but in practice will always be at most 4.
* position + n should at most be 16
*/
static inline uint16_t s_clear_bits(uint16_t num, size_t position, size_t n) {
AWS_PRECONDITION(n <= 8);
AWS_PRECONDITION(position + n <= 16);
uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
return num & ~(mask << position);
}
/*
* Checks whether n bits are set at position starting with LSB.
* Note: n must be at most 8, but in practice will always be at most 4.
* position + n should at most be 16
*/
static inline bool s_check_bits(uint16_t num, size_t position, size_t n) {
AWS_PRECONDITION(n <= 8);
AWS_PRECONDITION(position + n <= 16);
uint16_t mask = ((uint16_t)0x00FF) >> (8 - n);
return (num >> position) & mask;
}
struct aws_s3_buffer_pool *aws_s3_buffer_pool_new(
struct aws_allocator *allocator,
size_t chunk_size,
size_t mem_limit) {
if (mem_limit < GB_TO_BYTES(1)) {
AWS_LOGF_ERROR(
AWS_LS_S3_CLIENT,
"Failed to initialize buffer pool. "
"Minimum supported value for Memory Limit is 1GB.");
aws_raise_error(AWS_ERROR_S3_INVALID_MEMORY_LIMIT_CONFIG);
return NULL;
}
if (chunk_size < (1024) || chunk_size % (4 * 1024) != 0) {
AWS_LOGF_WARN(
AWS_LS_S3_CLIENT,
"Part size specified on the client can lead to suboptimal performance. "
"Consider specifying size in multiples of 4KiB. Ideal part size for most transfers is "
"1MiB multiple between 8MiB and 16MiB. Note: the client will automatically scale part size "
"if its not sufficient to transfer data within the maximum number of parts");
}
size_t adjusted_mem_lim = mem_limit - s_buffer_pool_reserved_mem;
/*
* TODO: There is several things we can consider tweaking here:
* - if chunk size is a weird number of bytes, force it to the closest page size?
* - grow chunk size max based on overall mem lim (ex. for 4gb it might be
* 64mb, but for 8gb it can be 128mb)
* - align chunk size to better fill available mem? some chunk sizes can
* result in memory being wasted because overall limit does not divide
* nicely into chunks
*/
if (chunk_size > s_max_chunk_size_for_buffer_reuse || chunk_size * s_chunks_per_block > adjusted_mem_lim) {
AWS_LOGF_WARN(
AWS_LS_S3_CLIENT,
"Part size specified on the client is too large for automatic buffer reuse. "
"Consider specifying a smaller part size to improve performance and memory utilization");
chunk_size = 0;
}
struct aws_s3_buffer_pool *buffer_pool = aws_mem_calloc(allocator, 1, sizeof(struct aws_s3_buffer_pool));
AWS_FATAL_ASSERT(buffer_pool != NULL);
buffer_pool->base_allocator = allocator;
buffer_pool->chunk_size = chunk_size;
buffer_pool->block_size = s_chunks_per_block * chunk_size;
/* Somewhat arbitrary number.
* Tries to balance between how many allocations use buffer and buffer space
* being wasted. */
buffer_pool->primary_size_cutoff = chunk_size * 4;
buffer_pool->mem_limit = adjusted_mem_lim;
int mutex_error = aws_mutex_init(&buffer_pool->mutex);
AWS_FATAL_ASSERT(mutex_error == AWS_OP_SUCCESS);
aws_array_list_init_dynamic(
&buffer_pool->blocks, allocator, s_block_list_initial_capacity, sizeof(struct s3_buffer_pool_block));
return buffer_pool;
}
void aws_s3_buffer_pool_destroy(struct aws_s3_buffer_pool *buffer_pool) {
if (buffer_pool == NULL) {
return;
}
for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
struct s3_buffer_pool_block *block;
aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);
AWS_FATAL_ASSERT(block->alloc_bit_mask == 0 && "Allocator still has outstanding blocks");
aws_mem_release(buffer_pool->base_allocator, block->block_ptr);
}
aws_array_list_clean_up(&buffer_pool->blocks);
aws_mutex_clean_up(&buffer_pool->mutex);
struct aws_allocator *base = buffer_pool->base_allocator;
aws_mem_release(base, buffer_pool);
}
void s_buffer_pool_trim_synced(struct aws_s3_buffer_pool *buffer_pool) {
for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks);) {
struct s3_buffer_pool_block *block;
aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);
if (block->alloc_bit_mask == 0) {
buffer_pool->primary_allocated -= block->block_size;
aws_mem_release(buffer_pool->base_allocator, block->block_ptr);
aws_array_list_erase(&buffer_pool->blocks, i);
/* do not increment since we just released element */
} else {
++i;
}
}
}
void aws_s3_buffer_pool_trim(struct aws_s3_buffer_pool *buffer_pool) {
aws_mutex_lock(&buffer_pool->mutex);
s_buffer_pool_trim_synced(buffer_pool);
aws_mutex_unlock(&buffer_pool->mutex);
}
struct aws_s3_buffer_pool_ticket *aws_s3_buffer_pool_reserve(struct aws_s3_buffer_pool *buffer_pool, size_t size) {
AWS_PRECONDITION(buffer_pool);
if (buffer_pool->has_reservation_hold) {
return NULL;
}
AWS_FATAL_ASSERT(size != 0);
AWS_FATAL_ASSERT(size <= buffer_pool->mem_limit);
struct aws_s3_buffer_pool_ticket *ticket = NULL;
aws_mutex_lock(&buffer_pool->mutex);
size_t overall_taken = buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->secondary_used +
buffer_pool->secondary_reserved;
/*
* If we are allocating from secondary and there is unused space in
* primary, trim the primary in hopes we can free up enough memory.
* TODO: something smarter, like partial trim?
*/
if (size > buffer_pool->primary_size_cutoff && (size + overall_taken) > buffer_pool->mem_limit &&
(buffer_pool->primary_allocated >
(buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->block_size))) {
s_buffer_pool_trim_synced(buffer_pool);
overall_taken = buffer_pool->primary_used + buffer_pool->primary_reserved + buffer_pool->secondary_used +
buffer_pool->secondary_reserved;
}
/* Don't let forced buffers account for 100% of the memory limit */
const size_t max_impact_of_forced_on_limit =
(size_t)(buffer_pool->mem_limit * (s_max_impact_of_forced_buffers_on_memory_limit_as_percentage / 100.0));
if (buffer_pool->forced_used > max_impact_of_forced_on_limit) {
overall_taken -= buffer_pool->forced_used - max_impact_of_forced_on_limit;
}
if ((size + overall_taken) <= buffer_pool->mem_limit) {
ticket = aws_mem_calloc(buffer_pool->base_allocator, 1, sizeof(struct aws_s3_buffer_pool_ticket));
ticket->size = size;
if (size <= buffer_pool->primary_size_cutoff) {
buffer_pool->primary_reserved += size;
} else {
buffer_pool->secondary_reserved += size;
}
} else {
buffer_pool->has_reservation_hold = true;
}
aws_mutex_unlock(&buffer_pool->mutex);
if (ticket == NULL) {
AWS_LOGF_TRACE(
AWS_LS_S3_CLIENT,
"Memory limit reached while trying to allocate buffer of size %zu. "
"Putting new buffer reservations on hold...",
size);
aws_raise_error(AWS_ERROR_S3_EXCEEDS_MEMORY_LIMIT);
}
return ticket;
}
bool aws_s3_buffer_pool_has_reservation_hold(struct aws_s3_buffer_pool *buffer_pool) {
AWS_PRECONDITION(buffer_pool);
return buffer_pool->has_reservation_hold;
}
void aws_s3_buffer_pool_remove_reservation_hold(struct aws_s3_buffer_pool *buffer_pool) {
AWS_PRECONDITION(buffer_pool);
AWS_LOGF_TRACE(AWS_LS_S3_CLIENT, "Releasing buffer reservation hold.");
buffer_pool->has_reservation_hold = false;
}
static uint8_t *s_primary_acquire_synced(
struct aws_s3_buffer_pool *buffer_pool,
struct aws_s3_buffer_pool_ticket *ticket) {
uint8_t *alloc_ptr = NULL;
size_t chunks_needed = ticket->size / buffer_pool->chunk_size;
if (ticket->size % buffer_pool->chunk_size != 0) {
++chunks_needed; /* round up */
}
ticket->chunks_used = chunks_needed;
/* Look for space in existing blocks */
for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
struct s3_buffer_pool_block *block;
aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);
for (size_t chunk_i = 0; chunk_i < s_chunks_per_block - chunks_needed + 1; ++chunk_i) {
if (!s_check_bits(block->alloc_bit_mask, chunk_i, chunks_needed)) {
alloc_ptr = block->block_ptr + chunk_i * buffer_pool->chunk_size;
block->alloc_bit_mask = s_set_bits(block->alloc_bit_mask, chunk_i, chunks_needed);
goto on_allocated;
}
}
}
/* No space available. Allocate new block. */
struct s3_buffer_pool_block block;
block.alloc_bit_mask = s_set_bits(0, 0, chunks_needed);
block.block_ptr = aws_mem_acquire(buffer_pool->base_allocator, buffer_pool->block_size);
block.block_size = buffer_pool->block_size;
aws_array_list_push_back(&buffer_pool->blocks, &block);
alloc_ptr = block.block_ptr;
buffer_pool->primary_allocated += buffer_pool->block_size;
on_allocated:
buffer_pool->primary_used += ticket->size;
/* forced buffers acquire immediately, without reserving first */
if (ticket->forced == false) {
buffer_pool->primary_reserved -= ticket->size;
}
return alloc_ptr;
}
static struct aws_byte_buf s_acquire_buffer_synced(
struct aws_s3_buffer_pool *buffer_pool,
struct aws_s3_buffer_pool_ticket *ticket);
struct aws_byte_buf aws_s3_buffer_pool_acquire_buffer(
struct aws_s3_buffer_pool *buffer_pool,
struct aws_s3_buffer_pool_ticket *ticket) {
AWS_PRECONDITION(buffer_pool);
AWS_PRECONDITION(ticket);
if (ticket->ptr != NULL) {
return aws_byte_buf_from_empty_array(ticket->ptr, ticket->size);
}
aws_mutex_lock(&buffer_pool->mutex);
struct aws_byte_buf buf = s_acquire_buffer_synced(buffer_pool, ticket);
aws_mutex_unlock(&buffer_pool->mutex);
return buf;
}
static struct aws_byte_buf s_acquire_buffer_synced(
struct aws_s3_buffer_pool *buffer_pool,
struct aws_s3_buffer_pool_ticket *ticket) {
AWS_PRECONDITION(ticket->ptr == NULL);
if (ticket->size <= buffer_pool->primary_size_cutoff) {
ticket->ptr = s_primary_acquire_synced(buffer_pool, ticket);
} else {
ticket->ptr = aws_mem_acquire(buffer_pool->base_allocator, ticket->size);
buffer_pool->secondary_used += ticket->size;
/* forced buffers acquire immediately, without reserving first */
if (ticket->forced == false) {
buffer_pool->secondary_reserved -= ticket->size;
}
}
return aws_byte_buf_from_empty_array(ticket->ptr, ticket->size);
}
struct aws_byte_buf aws_s3_buffer_pool_acquire_forced_buffer(
struct aws_s3_buffer_pool *buffer_pool,
size_t size,
struct aws_s3_buffer_pool_ticket **out_new_ticket) {
AWS_PRECONDITION(buffer_pool);
AWS_PRECONDITION(out_new_ticket);
AWS_FATAL_ASSERT(size != 0);
aws_mutex_lock(&buffer_pool->mutex);
struct aws_s3_buffer_pool_ticket *ticket =
aws_mem_calloc(buffer_pool->base_allocator, 1, sizeof(struct aws_s3_buffer_pool_ticket));
ticket->size = size;
ticket->forced = true;
struct aws_byte_buf buf = s_acquire_buffer_synced(buffer_pool, ticket);
buffer_pool->forced_used += size;
aws_mutex_unlock(&buffer_pool->mutex);
*out_new_ticket = ticket;
return buf;
}
void aws_s3_buffer_pool_release_ticket(
struct aws_s3_buffer_pool *buffer_pool,
struct aws_s3_buffer_pool_ticket *ticket) {
if (buffer_pool == NULL || ticket == NULL) {
return;
}
if (ticket->ptr == NULL) {
/* Ticket was never used, make sure to clean up reserved count. */
aws_mutex_lock(&buffer_pool->mutex);
if (ticket->size <= buffer_pool->primary_size_cutoff) {
buffer_pool->primary_reserved -= ticket->size;
} else {
buffer_pool->secondary_reserved -= ticket->size;
}
aws_mutex_unlock(&buffer_pool->mutex);
aws_mem_release(buffer_pool->base_allocator, ticket);
return;
}
aws_mutex_lock(&buffer_pool->mutex);
if (ticket->size <= buffer_pool->primary_size_cutoff) {
size_t chunks_used = ticket->size / buffer_pool->chunk_size;
if (ticket->size % buffer_pool->chunk_size != 0) {
++chunks_used; /* round up */
}
bool found = false;
for (size_t i = 0; i < aws_array_list_length(&buffer_pool->blocks); ++i) {
struct s3_buffer_pool_block *block;
aws_array_list_get_at_ptr(&buffer_pool->blocks, (void **)&block, i);
if (block->block_ptr <= ticket->ptr && block->block_ptr + block->block_size > ticket->ptr) {
size_t alloc_i = (ticket->ptr - block->block_ptr) / buffer_pool->chunk_size;
block->alloc_bit_mask = s_clear_bits(block->alloc_bit_mask, alloc_i, chunks_used);
buffer_pool->primary_used -= ticket->size;
found = true;
break;
}
}
AWS_FATAL_ASSERT(found);
} else {
aws_mem_release(buffer_pool->base_allocator, ticket->ptr);
buffer_pool->secondary_used -= ticket->size;
}
if (ticket->forced) {
buffer_pool->forced_used -= ticket->size;
}
aws_mem_release(buffer_pool->base_allocator, ticket);
aws_mutex_unlock(&buffer_pool->mutex);
}
struct aws_s3_buffer_pool_usage_stats aws_s3_buffer_pool_get_usage(struct aws_s3_buffer_pool *buffer_pool) {
aws_mutex_lock(&buffer_pool->mutex);
struct aws_s3_buffer_pool_usage_stats ret = (struct aws_s3_buffer_pool_usage_stats){
.mem_limit = buffer_pool->mem_limit,
.primary_cutoff = buffer_pool->primary_size_cutoff,
.primary_allocated = buffer_pool->primary_allocated,
.primary_used = buffer_pool->primary_used,
.primary_reserved = buffer_pool->primary_reserved,
.primary_num_blocks = aws_array_list_length(&buffer_pool->blocks),
.secondary_used = buffer_pool->secondary_used,
.secondary_reserved = buffer_pool->secondary_reserved,
.forced_used = buffer_pool->forced_used,
};
aws_mutex_unlock(&buffer_pool->mutex);
return ret;
}
|