1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <stdint.h>
#include "api/s2n.h"
#include "s2n_test.h"
#include "testlib/s2n_testlib.h"
#include "tls/s2n_kex.h"
#include "utils/s2n_random.h"
DEFINE_POINTER_CLEANUP_FUNC(struct s2n_async_pkey_op *, s2n_async_pkey_op_free);
struct s2n_test_rsa_client_key_send_ctx {
bool override_premaster_secret_size;
uint32_t size;
bool invalidate_padded_premaster_secret;
uint32_t invalidate_index;
bool override_premaster_secret_version;
uint8_t version;
};
static S2N_RESULT s2n_test_rsa_pkcs1_v15_padding_encrypt(struct s2n_connection *conn, struct s2n_blob *in,
struct s2n_blob *out)
{
/* RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M) from https://www.rfc-editor.org/rfc/rfc8017#section-7.2.1 */
/* Input:
* (n, e) recipient's RSA public key (k denotes the length in
* octets of the modulus n)
*/
const s2n_rsa_public_key *n_e = &conn->handshake_params.server_public_key.key.rsa_key;
const int k = RSA_size(n_e->rsa);
RESULT_ENSURE_GT(k, 0);
/* M message to be encrypted, an octet string of length
* mLen, where mLen <= k - 11
*/
struct s2n_blob *M = in;
uint32_t mLen = M->size;
/* Output:
* C ciphertext, an octet string of length k
*/
struct s2n_blob *C = out;
RESULT_ENSURE_GTE(C->size, k);
/* Steps:
* 1. Length checking: If mLen > k - 11, output "message too long"
* and stop.
*/
RESULT_ENSURE_LTE(mLen, k - 11);
/* 2. EME-PKCS1-v1_5 encoding:
* a. Generate an octet string PS of length k - mLen - 3
* consisting of pseudo-randomly generated nonzero octets.
* The length of PS will be at least eight octets.
* b. Concatenate PS, the message M, and other padding to form
* an encoded message EM of length k octets as
* EM = 0x00 || 0x02 || PS || 0x00 || M.
*/
uint8_t EM_data[4096] = { 0 };
struct s2n_blob EM_blob = { 0 };
RESULT_GUARD_POSIX(s2n_blob_init(&EM_blob, EM_data, sizeof(EM_data)));
struct s2n_stuffer EM_stuffer = { 0 };
RESULT_GUARD_POSIX(s2n_stuffer_init(&EM_stuffer, &EM_blob));
/* 0x00 || 0x02 */
RESULT_GUARD_POSIX(s2n_stuffer_write_uint8(&EM_stuffer, 0x00));
RESULT_GUARD_POSIX(s2n_stuffer_write_uint8(&EM_stuffer, 0x02));
/* || PS */
struct s2n_blob PS_blob = { 0 };
uint32_t PS_len = k - mLen - 3;
uint8_t *PS_data = s2n_stuffer_raw_write(&EM_stuffer, PS_len);
RESULT_ENSURE_REF(PS_data);
RESULT_GUARD_POSIX(s2n_blob_init(&PS_blob, PS_data, PS_len));
RESULT_GUARD(s2n_get_public_random_data(&PS_blob));
/* Ensure random bytes are nonzero */
for (size_t i = 0; i < PS_len; i++) {
PS_data[i] = (PS_data[i] % (UINT8_MAX - 1)) + 1;
}
/* || 0x00 */
RESULT_GUARD_POSIX(s2n_stuffer_write_uint8(&EM_stuffer, 0x00));
/* || M */
RESULT_GUARD_POSIX(s2n_stuffer_write(&EM_stuffer, M));
uint8_t *EM = s2n_stuffer_raw_read(&EM_stuffer, k);
RESULT_ENSURE_REF(EM);
RESULT_ENSURE_EQ(s2n_stuffer_data_available(&EM_stuffer), 0);
struct s2n_test_rsa_client_key_send_ctx *ctx = s2n_connection_get_ctx(conn);
RESULT_ENSURE_REF(ctx);
if (ctx->invalidate_padded_premaster_secret) {
RESULT_ENSURE_LT(ctx->invalidate_index, k);
if (ctx->invalidate_index > 1 && ctx->invalidate_index < 2 + PS_len) {
/* PS bytes must not be 0. */
EM[ctx->invalidate_index] = 0;
} else {
/* Otherwise bytes can be invalidated by modifying them arbitrarily. */
EM[ctx->invalidate_index] += 1;
}
}
/* 3. RSA encryption:
* b. Apply the RSAEP encryption primitive (Section 5.1.1) to
* the RSA public key (n, e) and the message representative m
* to produce an integer ciphertext representative c:
* c = RSAEP ((n, e), m).
*/
int r = RSA_public_encrypt(k, (unsigned char *) EM, (unsigned char *) C->data,
s2n_unsafe_rsa_get_non_const(n_e), RSA_NO_PADDING);
RESULT_ENSURE((int64_t) r == (int64_t) C->size, S2N_ERR_SIZE_MISMATCH);
return S2N_RESULT_OK;
}
/* More general version of s2n_rsa_client_key_send() that allows the premaster secret to be
* invalidated by configuring a s2n_test_rsa_client_key_send_ctx on the connection.
*/
static int s2n_test_rsa_client_key_send(struct s2n_connection *conn, struct s2n_blob *shared_key)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(shared_key);
struct s2n_test_rsa_client_key_send_ctx *ctx = s2n_connection_get_ctx(conn);
POSIX_ENSURE_REF(ctx);
uint8_t client_hello_version = s2n_connection_get_client_hello_version(conn);
if (ctx->override_premaster_secret_version) {
client_hello_version = ctx->version;
}
uint8_t client_hello_protocol_version[S2N_TLS_PROTOCOL_VERSION_LEN];
client_hello_protocol_version[0] = client_hello_version / 10;
client_hello_protocol_version[1] = client_hello_version % 10;
shared_key->data = conn->secrets.version.tls12.rsa_premaster_secret;
uint32_t secret_size = S2N_TLS_SECRET_LEN;
if (ctx->override_premaster_secret_size) {
secret_size = ctx->size;
}
POSIX_ENSURE_LTE(secret_size, sizeof(conn->secrets.version.tls12.rsa_premaster_secret));
shared_key->size = secret_size;
POSIX_GUARD_RESULT(s2n_get_private_random_data(shared_key));
/* The first two bytes of the premaster secret contain the client hello version. */
POSIX_CHECKED_MEMCPY(conn->secrets.version.tls12.rsa_premaster_secret, client_hello_protocol_version,
S2N_TLS_PROTOCOL_VERSION_LEN);
uint32_t encrypted_size = 0;
POSIX_GUARD_RESULT(s2n_pkey_size(&conn->handshake_params.server_public_key, &encrypted_size));
POSIX_ENSURE_LTE(encrypted_size, 0xffff);
/* Write the length. */
POSIX_GUARD(s2n_stuffer_write_uint16(&conn->handshake.io, encrypted_size));
struct s2n_blob encrypted = { 0 };
encrypted.data = s2n_stuffer_raw_write(&conn->handshake.io, encrypted_size);
encrypted.size = encrypted_size;
POSIX_ENSURE_REF(encrypted.data);
POSIX_GUARD_RESULT(s2n_test_rsa_pkcs1_v15_padding_encrypt(conn, shared_key, &encrypted));
POSIX_GUARD(s2n_pkey_free(&conn->handshake_params.server_public_key));
return S2N_SUCCESS;
}
struct s2n_test_async_pkey_cb_ctx {
uint32_t async_invoked_count;
uint32_t offload_invoked_count;
};
static int s2n_test_async_pkey_decrypt_callback(struct s2n_connection *conn, struct s2n_async_pkey_op *op_in)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(op_in);
DEFER_CLEANUP(struct s2n_async_pkey_op *op = op_in, s2n_async_pkey_op_free_pointer);
struct s2n_test_async_pkey_cb_ctx *ctx = s2n_connection_get_ctx(conn);
POSIX_ENSURE_REF(ctx);
ctx->async_invoked_count += 1;
s2n_async_pkey_op_type op_type = 0;
EXPECT_SUCCESS(s2n_async_pkey_op_get_op_type(op, &op_type));
EXPECT_EQUAL(op_type, S2N_ASYNC_DECRYPT);
struct s2n_cert_chain_and_key *chain_and_key = s2n_connection_get_selected_cert(conn);
EXPECT_NOT_NULL(chain_and_key);
s2n_cert_private_key *pkey = s2n_cert_chain_and_key_get_private_key(chain_and_key);
EXPECT_NOT_NULL(pkey);
EXPECT_SUCCESS(s2n_async_pkey_op_perform(op, pkey));
EXPECT_SUCCESS(s2n_async_pkey_op_apply(op, conn));
return S2N_SUCCESS;
}
static int s2n_test_offload_pkey_decrypt_callback(struct s2n_connection *conn, struct s2n_async_pkey_op *op_in)
{
POSIX_ENSURE_REF(conn);
POSIX_ENSURE_REF(op_in);
DEFER_CLEANUP(struct s2n_async_pkey_op *op = op_in, s2n_async_pkey_op_free_pointer);
struct s2n_test_async_pkey_cb_ctx *ctx = s2n_connection_get_ctx(conn);
POSIX_ENSURE_REF(ctx);
ctx->offload_invoked_count += 1;
s2n_async_pkey_op_type op_type = 0;
EXPECT_SUCCESS(s2n_async_pkey_op_get_op_type(op, &op_type));
EXPECT_EQUAL(op_type, S2N_ASYNC_DECRYPT);
struct s2n_cert_chain_and_key *chain_and_key = s2n_connection_get_selected_cert(conn);
EXPECT_NOT_NULL(chain_and_key);
s2n_cert_private_key *pkey = s2n_cert_chain_and_key_get_private_key(chain_and_key);
EXPECT_NOT_NULL(pkey);
uint8_t input_data[4096] = { 0 };
struct s2n_blob input_blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&input_blob, input_data, sizeof(input_data)));
uint32_t input_size = 0;
EXPECT_SUCCESS(s2n_async_pkey_op_get_input_size(op, &input_size));
EXPECT_TRUE(input_size <= input_blob.size);
EXPECT_SUCCESS(s2n_async_pkey_op_get_input(op, input_data, sizeof(input_data)));
input_blob.size = input_size;
uint8_t output_data[S2N_TLS_SECRET_LEN] = { 0 };
struct s2n_blob output_blob = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&output_blob, output_data, sizeof(output_data)));
EXPECT_SUCCESS(s2n_pkey_decrypt(pkey, &input_blob, &output_blob));
EXPECT_SUCCESS(s2n_async_pkey_op_set_output(op, output_blob.data, output_blob.size));
EXPECT_SUCCESS(s2n_async_pkey_op_apply(op, conn));
return S2N_SUCCESS;
}
typedef enum {
S2N_PKEY_TEST_DEFAULT,
S2N_PKEY_TEST_ASYNC,
S2N_PKEY_TEST_OFFLOAD,
S2N_PKEY_TEST_COUNT,
} s2n_pkey_test_mode;
static S2N_RESULT s2n_validate_test_async_pkey_ctx(struct s2n_test_async_pkey_cb_ctx *ctx, s2n_pkey_test_mode pkey_mode)
{
RESULT_ENSURE_REF(ctx);
switch (pkey_mode) {
case S2N_PKEY_TEST_DEFAULT:
RESULT_ENSURE_EQ(ctx->async_invoked_count, 0);
RESULT_ENSURE_EQ(ctx->offload_invoked_count, 0);
break;
case S2N_PKEY_TEST_ASYNC:
RESULT_ENSURE_EQ(ctx->async_invoked_count, 1);
RESULT_ENSURE_EQ(ctx->offload_invoked_count, 0);
break;
case S2N_PKEY_TEST_OFFLOAD:
RESULT_ENSURE_EQ(ctx->async_invoked_count, 0);
RESULT_ENSURE_EQ(ctx->offload_invoked_count, 1);
break;
default:
RESULT_BAIL(S2N_ERR_INVALID_ARGUMENT);
}
return S2N_RESULT_OK;
}
int main(int argc, char **argv)
{
BEGIN_TEST();
/* Test: same error + location for all Bleichenbacher attack cases.
*
* This doesn't prove safety, since Bleichenbacher is a timing side-channel attack. But if this
* test DOES fail, we likely have an issue.
*/
for (size_t pkey_test_mode = 0; pkey_test_mode < S2N_PKEY_TEST_COUNT; pkey_test_mode++) {
/* We must use an RSA cert so that we can test RSA kex */
DEFER_CLEANUP(struct s2n_cert_chain_and_key *rsa_cert_chain = NULL, s2n_cert_chain_and_key_ptr_free);
EXPECT_SUCCESS(s2n_test_cert_chain_and_key_new(&rsa_cert_chain,
S2N_DEFAULT_TEST_CERT_CHAIN, S2N_DEFAULT_TEST_PRIVATE_KEY));
struct s2n_pkey *rsa_private_key = s2n_cert_chain_and_key_get_private_key(rsa_cert_chain);
EXPECT_NOT_NULL(rsa_private_key);
uint32_t key_size = 0;
EXPECT_OK(s2n_pkey_size(rsa_private_key, &key_size));
EXPECT_TRUE(key_size > 0);
struct s2n_kex rsa_kex = s2n_rsa;
rsa_kex.client_key_send = s2n_test_rsa_client_key_send;
struct s2n_cipher_suite rsa_kex_cipher_suite = s2n_rsa_with_aes_128_gcm_sha256;
rsa_kex_cipher_suite.key_exchange_alg = &rsa_kex;
struct s2n_cipher_suite *rsa_kex_cipher_suites[1] = { &rsa_kex_cipher_suite };
struct s2n_cipher_preferences rsa_kex_cipher_pref = {
.suites = rsa_kex_cipher_suites,
.count = 1,
};
struct s2n_security_policy test_rsa_policy = security_policy_test_all;
test_rsa_policy.cipher_preferences = &rsa_kex_cipher_pref;
DEFER_CLEANUP(struct s2n_config *client_config = s2n_config_new(), s2n_config_ptr_free);
EXPECT_NOT_NULL(client_config);
EXPECT_SUCCESS(s2n_config_set_unsafe_for_testing(client_config));
client_config->security_policy = &test_rsa_policy;
DEFER_CLEANUP(struct s2n_config *server_config = s2n_config_new(), s2n_config_ptr_free);
EXPECT_NOT_NULL(server_config);
EXPECT_SUCCESS(s2n_config_add_cert_chain_and_key_to_store(server_config, rsa_cert_chain));
server_config->security_policy = &test_rsa_policy;
if (pkey_test_mode == S2N_PKEY_TEST_ASYNC) {
EXPECT_SUCCESS(s2n_config_set_async_pkey_callback(server_config, s2n_test_async_pkey_decrypt_callback));
} else if (pkey_test_mode == S2N_PKEY_TEST_OFFLOAD) {
EXPECT_SUCCESS(s2n_config_set_async_pkey_callback(server_config, s2n_test_offload_pkey_decrypt_callback));
}
/* Sanity check: ensure s2n_test_rsa_client_key_send sends a valid premaster secret by default */
for (size_t i = 0; i < 100; i++) {
struct s2n_test_rsa_client_key_send_ctx rsa_send_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *client = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client);
EXPECT_SUCCESS(s2n_connection_set_config(client, client_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(client, &rsa_send_ctx));
struct s2n_test_async_pkey_cb_ctx async_pkey_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *server = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server);
EXPECT_SUCCESS(s2n_connection_set_config(server, server_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(server, &async_pkey_ctx));
EXPECT_SUCCESS(s2n_connection_set_blinding(server, S2N_SELF_SERVICE_BLINDING));
DEFER_CLEANUP(struct s2n_test_io_pair io_pair, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client, server, &io_pair));
EXPECT_SUCCESS(s2n_negotiate_test_server_and_client(server, client));
EXPECT_OK(s2n_validate_test_async_pkey_ctx(&async_pkey_ctx, pkey_test_mode));
}
/* All the tests for the Bleichenbacher attack cases should result in the same error from
* s2n_aead_cipher_aes_gcm.c. However, the line number of the error can change depending on
* how s2n-tls is built. s2n_sterror_source() is called from the first test case to
* determine the expected error source for the remaining tests.
*/
int expected_error = S2N_ERR_DECRYPT;
const char *expected_source_str = NULL;
/* Test: client sends invalid premaster secret */
{
struct s2n_test_rsa_client_key_send_ctx ctx = {
.invalidate_padded_premaster_secret = true,
.invalidate_index = key_size - 1,
};
DEFER_CLEANUP(struct s2n_connection *client = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client);
EXPECT_SUCCESS(s2n_connection_set_config(client, client_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(client, &ctx));
struct s2n_test_async_pkey_cb_ctx async_pkey_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *server = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server);
EXPECT_SUCCESS(s2n_connection_set_config(server, server_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(server, &async_pkey_ctx));
EXPECT_SUCCESS(s2n_connection_set_blinding(server, S2N_SELF_SERVICE_BLINDING));
DEFER_CLEANUP(struct s2n_test_io_pair io_pair, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client, server, &io_pair));
EXPECT_FAILURE_WITH_ERRNO_NO_RESET(s2n_negotiate_test_server_and_client(server, client), expected_error);
expected_source_str = s2n_strerror_source(s2n_errno);
/* Ensure that the error came from s2n_aead_cipher_aes_gcm.c. */
EXPECT_NOT_NULL(strstr(expected_source_str, "s2n_aead_cipher_aes_gcm.c"));
EXPECT_OK(s2n_validate_test_async_pkey_ctx(&async_pkey_ctx, pkey_test_mode));
}
/* Test: wrong version */
for (uint8_t version = 0; version < S2N_TLS13 + 10; version++) {
struct s2n_test_rsa_client_key_send_ctx rsa_send_ctx = {
.override_premaster_secret_version = true,
.version = version,
};
DEFER_CLEANUP(struct s2n_connection *client = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client);
EXPECT_SUCCESS(s2n_connection_set_config(client, client_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(client, &rsa_send_ctx));
struct s2n_test_async_pkey_cb_ctx async_pkey_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *server = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server);
EXPECT_SUCCESS(s2n_connection_set_config(server, server_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(server, &async_pkey_ctx));
EXPECT_SUCCESS(s2n_connection_set_blinding(server, S2N_SELF_SERVICE_BLINDING));
DEFER_CLEANUP(struct s2n_test_io_pair io_pair, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client, server, &io_pair));
if (version == S2N_TLS12) {
EXPECT_SUCCESS(s2n_negotiate_test_server_and_client(server, client));
} else {
EXPECT_FAILURE_WITH_ERRNO_NO_RESET(s2n_negotiate_test_server_and_client(server, client),
expected_error);
EXPECT_STRING_EQUAL(s2n_strerror_source(s2n_errno), expected_source_str);
}
EXPECT_OK(s2n_validate_test_async_pkey_ctx(&async_pkey_ctx, pkey_test_mode));
}
/* Test: wrong plaintext size */
for (uint32_t size = 0; size <= S2N_TLS_SECRET_LEN; size++) {
struct s2n_test_rsa_client_key_send_ctx ctx = {
.override_premaster_secret_size = true,
.size = size,
};
DEFER_CLEANUP(struct s2n_connection *client = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client);
EXPECT_SUCCESS(s2n_connection_set_config(client, client_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(client, &ctx));
struct s2n_test_async_pkey_cb_ctx async_pkey_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *server = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server);
EXPECT_SUCCESS(s2n_connection_set_config(server, server_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(server, &async_pkey_ctx));
EXPECT_SUCCESS(s2n_connection_set_blinding(server, S2N_SELF_SERVICE_BLINDING));
DEFER_CLEANUP(struct s2n_test_io_pair io_pair, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client, server, &io_pair));
if (size == S2N_TLS_SECRET_LEN) {
EXPECT_SUCCESS(s2n_negotiate_test_server_and_client(server, client));
} else {
EXPECT_FAILURE_WITH_ERRNO_NO_RESET(s2n_negotiate_test_server_and_client(server, client),
expected_error);
EXPECT_STRING_EQUAL(s2n_strerror_source(s2n_errno), expected_source_str);
}
EXPECT_OK(s2n_validate_test_async_pkey_ctx(&async_pkey_ctx, pkey_test_mode));
}
/* Test: wrong padding
*
* Each of the padding bytes are invalidated before encrypting, and the resulting
* ciphertext is sent to the server. PKCS1 v1.5 padding starts at 0 and ends before the
* plaintext.
*/
for (uint32_t invalidate_index = 0; invalidate_index < key_size - S2N_TLS_SECRET_LEN; invalidate_index++) {
struct s2n_test_rsa_client_key_send_ctx ctx = {
.invalidate_padded_premaster_secret = true,
.invalidate_index = invalidate_index,
};
DEFER_CLEANUP(struct s2n_connection *client = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client);
EXPECT_SUCCESS(s2n_connection_set_config(client, client_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(client, &ctx));
struct s2n_test_async_pkey_cb_ctx async_pkey_ctx = { 0 };
DEFER_CLEANUP(struct s2n_connection *server = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server);
EXPECT_SUCCESS(s2n_connection_set_config(server, server_config));
EXPECT_SUCCESS(s2n_connection_set_ctx(server, &async_pkey_ctx));
EXPECT_SUCCESS(s2n_connection_set_blinding(server, S2N_SELF_SERVICE_BLINDING));
DEFER_CLEANUP(struct s2n_test_io_pair io_pair, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client, server, &io_pair));
EXPECT_FAILURE_WITH_ERRNO_NO_RESET(s2n_negotiate_test_server_and_client(server, client), expected_error);
EXPECT_STRING_EQUAL(s2n_strerror_source(s2n_errno), expected_source_str);
EXPECT_OK(s2n_validate_test_async_pkey_ctx(&async_pkey_ctx, pkey_test_mode));
}
}
END_TEST();
}
|