1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_ecc_evp.h"
#include "api/s2n.h"
#include "crypto/s2n_fips.h"
#include "crypto/s2n_libcrypto.h"
#include "s2n_test.h"
#include "stuffer/s2n_stuffer.h"
#include "testlib/s2n_testlib.h"
#include "tls/s2n_connection.h"
#include "tls/s2n_security_policies.h"
#include "utils/s2n_mem.h"
#define ECDHE_PARAMS_LEGACY_FORM 4
extern const struct s2n_ecc_named_curve s2n_unsupported_curve;
DEFINE_POINTER_CLEANUP_FUNC(EC_KEY*, EC_KEY_free);
DEFINE_POINTER_CLEANUP_FUNC(EC_POINT*, EC_POINT_free);
int main(int argc, char** argv)
{
BEGIN_TEST();
EXPECT_SUCCESS(s2n_disable_tls13_in_test());
/* Test the EC_KEY_CHECK_FIPS feature probe. AWS-LC is a libcrypto known to support this feature. */
if (s2n_libcrypto_is_awslc()) {
EXPECT_TRUE(s2n_ecc_evp_supports_fips_check());
}
{
/* Test generate ephemeral keys for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params evp_params = { 0 };
/* Server generates a key */
evp_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&evp_params));
EXPECT_NOT_NULL(evp_params.evp_pkey);
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&evp_params));
}
};
{
/* Test failure case for generate ephemeral key when the negotiated curve is not set */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params evp_params = { 0 };
/* Server generates a key */
evp_params.negotiated_curve = NULL;
EXPECT_FAILURE(s2n_ecc_evp_generate_ephemeral_key(&evp_params));
EXPECT_NULL(evp_params.evp_pkey);
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&evp_params));
}
};
{
/* Test generate ephemeral key and compute shared key for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params server_params = { 0 };
struct s2n_ecc_evp_params client_params = { 0 };
struct s2n_blob server_shared = { 0 };
struct s2n_blob client_shared = { 0 };
/* Server generates a key */
server_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Client generates a key */
client_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&client_params));
EXPECT_NOT_NULL(client_params.evp_pkey);
/* Compute shared secret for server */
EXPECT_SUCCESS(
s2n_ecc_evp_compute_shared_secret_from_params(&server_params, &client_params, &server_shared));
/* Compute shared secret for client */
EXPECT_SUCCESS(
s2n_ecc_evp_compute_shared_secret_from_params(&client_params, &server_params, &client_shared));
/* Check if the shared secret computed is the same for the client
* and the server */
EXPECT_EQUAL(client_shared.size, server_shared.size);
EXPECT_BYTEARRAY_EQUAL(client_shared.data, server_shared.data, client_shared.size);
/* Clean up */
EXPECT_SUCCESS(s2n_free(&server_shared));
EXPECT_SUCCESS(s2n_free(&client_shared));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&server_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&client_params));
}
};
{
/* Test failure case for computing shared key for all supported curves when the server
and client curves do not match */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
for (size_t j = 0; j < s2n_all_supported_curves_list_len; j++) {
struct s2n_ecc_evp_params server_params = { 0 };
struct s2n_ecc_evp_params client_params = { 0 };
struct s2n_blob server_shared = { 0 };
struct s2n_blob client_shared = { 0 };
if (i == j) {
continue;
}
/* Server generates a key */
server_params.negotiated_curve = s2n_all_supported_curves_list[j];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Client generates a key */
client_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&client_params));
EXPECT_NOT_NULL(client_params.evp_pkey);
/* Compute shared secret for server */
EXPECT_FAILURE(
s2n_ecc_evp_compute_shared_secret_from_params(&server_params, &client_params, &server_shared));
/* Compute shared secret for client */
EXPECT_FAILURE(
s2n_ecc_evp_compute_shared_secret_from_params(&client_params, &server_params, &client_shared));
/* Clean up */
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&server_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&client_params));
}
}
};
{
/* Test s2n_ecc_evp_write_params_point for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params test_params = { 0 };
struct s2n_stuffer wire = { 0 };
uint8_t legacy_form = 0;
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 0));
/* Server generates a key for a given curve */
test_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&test_params));
EXPECT_NOT_NULL(test_params.evp_pkey);
EXPECT_SUCCESS(s2n_ecc_evp_write_params_point(&test_params, &wire));
/* Verify output is of the right length */
uint32_t avail = s2n_stuffer_data_available(&wire);
EXPECT_EQUAL(avail, s2n_all_supported_curves_list[i]->share_size);
/* Verify output starts with the known legacy form for curves secp256r1
* and secp384r1*/
if (s2n_all_supported_curves_list[i]->iana_id == TLS_EC_CURVE_SECP_256_R1 || s2n_all_supported_curves_list[i]->iana_id == TLS_EC_CURVE_SECP_384_R1) {
EXPECT_SUCCESS(s2n_stuffer_read_uint8(&wire, &legacy_form));
EXPECT_EQUAL(legacy_form, ECDHE_PARAMS_LEGACY_FORM);
}
/* Clean up */
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&test_params));
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
}
};
{
/* TEST s2n_ecc_evp_read_params_point for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params write_params = { 0 };
struct s2n_blob point_blob = { 0 };
struct s2n_stuffer wire = { 0 };
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 0));
/* Server generates a key for a given curve */
write_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&write_params));
EXPECT_NOT_NULL(write_params.evp_pkey);
EXPECT_SUCCESS(s2n_ecc_evp_write_params_point(&write_params, &wire));
/* Read point back in */
EXPECT_SUCCESS(
s2n_ecc_evp_read_params_point(&wire, s2n_all_supported_curves_list[i]->share_size, &point_blob));
/* Check that the blob looks generally correct. */
EXPECT_EQUAL(point_blob.size, s2n_all_supported_curves_list[i]->share_size);
EXPECT_NOT_NULL(point_blob.data);
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&write_params));
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
}
};
{
/* TEST s2n_ecc_evp_parse_params_point for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params write_params = { 0 };
struct s2n_ecc_evp_params read_params = { 0 };
struct s2n_blob point_blob = { 0 };
struct s2n_stuffer wire = { 0 };
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 0));
write_params.negotiated_curve = s2n_all_supported_curves_list[i];
read_params.negotiated_curve = s2n_all_supported_curves_list[i];
/* Server generates a key for a given curve */
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&write_params));
EXPECT_NOT_NULL(write_params.evp_pkey);
EXPECT_SUCCESS(s2n_ecc_evp_write_params_point(&write_params, &wire));
/* Read point back in */
EXPECT_SUCCESS(
s2n_ecc_evp_read_params_point(&wire, s2n_all_supported_curves_list[i]->share_size, &point_blob));
EXPECT_SUCCESS(s2n_ecc_evp_parse_params_point(&point_blob, &read_params));
/* Check that the point we read is the same we wrote */
EXPECT_TRUE(EVP_PKEY_cmp(write_params.evp_pkey, read_params.evp_pkey));
/* Clean up */
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&write_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&read_params));
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
}
};
{
DEFER_CLEANUP(struct s2n_connection* conn = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(conn);
EXPECT_SUCCESS(s2n_connection_set_cipher_preferences(conn, "test_all"));
/* Test read/write/parse params for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params write_params = { 0 };
struct s2n_ecc_evp_params read_params = { 0 };
struct s2n_stuffer wire = { 0 };
struct s2n_blob ecdh_params_sent, ecdh_params_received;
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 1024));
write_params.negotiated_curve = s2n_all_supported_curves_list[i];
read_params.negotiated_curve = s2n_all_supported_curves_list[i];
/* Server generates a key for a given curve */
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&write_params));
EXPECT_NOT_NULL(write_params.evp_pkey);
/* Write params points to wire */
EXPECT_SUCCESS(s2n_ecc_evp_write_params(&write_params, &wire, &ecdh_params_sent));
struct s2n_ecdhe_raw_server_params ecdhe_data = { 0 };
/* Read params points from the wire */
EXPECT_SUCCESS(s2n_ecc_evp_read_params(&wire, &ecdh_params_received, &ecdhe_data));
EXPECT_SUCCESS(s2n_ecc_evp_parse_params(conn, &ecdhe_data, &read_params));
/* Check that the point we read is the same we wrote */
EXPECT_TRUE(EVP_PKEY_cmp(write_params.evp_pkey, read_params.evp_pkey));
/* Clean up */
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&write_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&read_params));
}
};
{
DEFER_CLEANUP(struct s2n_connection* conn = s2n_connection_new(S2N_CLIENT), s2n_connection_ptr_free);
EXPECT_NOT_NULL(conn);
EXPECT_SUCCESS(s2n_connection_set_cipher_preferences(conn, "test_all"));
/* Test generate/read/write/parse and compute shared secrets for all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params server_params = { 0 };
struct s2n_ecc_evp_params read_params = { 0 };
struct s2n_ecc_evp_params client_params = { 0 };
struct s2n_stuffer wire = { 0 };
struct s2n_blob ecdh_params_sent, ecdh_params_received;
struct s2n_blob server_shared_secret, client_shared_secret;
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 1024));
server_params.negotiated_curve = s2n_all_supported_curves_list[i];
read_params.negotiated_curve = s2n_all_supported_curves_list[i];
/* Server generates a key for a given curve */
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Server sends the public */
EXPECT_SUCCESS(s2n_ecc_evp_write_params(&server_params, &wire, &ecdh_params_sent));
/* Client reads the public */
struct s2n_ecdhe_raw_server_params ecdhe_data = { 0 };
EXPECT_SUCCESS(s2n_ecc_evp_read_params(&wire, &ecdh_params_received, &ecdhe_data));
EXPECT_SUCCESS(s2n_ecc_evp_parse_params(conn, &ecdhe_data, &read_params));
/* Verify if the client correctly read the server public */
EXPECT_TRUE(EVP_PKEY_cmp(server_params.evp_pkey, read_params.evp_pkey));
/* Client generates its key for the given curve */
client_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&client_params));
EXPECT_NOT_NULL(client_params.evp_pkey);
/* Compute shared secret for the server */
EXPECT_SUCCESS(
s2n_ecc_evp_compute_shared_secret_from_params(&server_params, &client_params, &server_shared_secret));
/* Compute shared secret for the client */
EXPECT_SUCCESS(
s2n_ecc_evp_compute_shared_secret_from_params(&client_params, &read_params, &client_shared_secret));
/* Verify that shared is the same for the client and the server */
EXPECT_EQUAL(client_shared_secret.size, server_shared_secret.size);
EXPECT_BYTEARRAY_EQUAL(client_shared_secret.data, server_shared_secret.data, client_shared_secret.size);
/* Clean up */
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
EXPECT_SUCCESS(s2n_free(&server_shared_secret));
EXPECT_SUCCESS(s2n_free(&client_shared_secret));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&server_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&read_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&client_params));
}
};
{
DEFER_CLEANUP(struct s2n_connection* conn = s2n_connection_new(S2N_CLIENT), s2n_connection_ptr_free);
EXPECT_NOT_NULL(conn);
EXPECT_SUCCESS(s2n_connection_set_cipher_preferences(conn, "test_all"));
/* Test generate->write->read->compute_shared with all supported curves */
for (size_t i = 0; i < s2n_all_supported_curves_list_len; i++) {
struct s2n_ecc_evp_params server_params = { 0 }, client_params = { 0 };
struct s2n_stuffer wire = { 0 };
struct s2n_blob server_shared, client_shared, ecdh_params_sent, ecdh_params_received;
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 1024));
/* Server generates a key for a given curve */
server_params.negotiated_curve = s2n_all_supported_curves_list[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Server sends the public */
EXPECT_SUCCESS(s2n_ecc_evp_write_params(&server_params, &wire, &ecdh_params_sent));
/* Client reads the public */
struct s2n_ecdhe_raw_server_params ecdhe_data = { 0 };
EXPECT_SUCCESS(s2n_ecc_evp_read_params(&wire, &ecdh_params_received, &ecdhe_data));
EXPECT_SUCCESS(s2n_ecc_evp_parse_params(conn, &ecdhe_data, &client_params));
/* The client got the curve */
EXPECT_EQUAL(client_params.negotiated_curve, server_params.negotiated_curve);
/* Client sends its public */
EXPECT_SUCCESS(s2n_ecc_evp_compute_shared_secret_as_client(&client_params, &wire, &client_shared));
/* Server receives it */
EXPECT_SUCCESS(s2n_ecc_evp_compute_shared_secret_as_server(&server_params, &wire, &server_shared));
/* Shared is the same for the client and the server */
EXPECT_EQUAL(client_shared.size, server_shared.size);
EXPECT_BYTEARRAY_EQUAL(client_shared.data, server_shared.data, client_shared.size);
/* Clean up */
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
EXPECT_SUCCESS(s2n_free(&server_shared));
EXPECT_SUCCESS(s2n_free(&client_shared));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&server_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&client_params));
}
};
/* Test that the client does not negotiate a group that was not
* offered in EC preferences */
{
const struct s2n_security_policy* security_policy = NULL;
DEFER_CLEANUP(struct s2n_connection* conn = s2n_connection_new(S2N_CLIENT), s2n_connection_ptr_free);
EXPECT_NOT_NULL(conn);
/* Version does not include the unsupported curve and secp521r1, which will be used by a malicious server */
EXPECT_SUCCESS(s2n_connection_set_cipher_preferences(conn, "20190802"));
EXPECT_SUCCESS(s2n_connection_get_security_policy(conn, &security_policy));
/* Setup & verify invalid curves, which will be selected by a malicious server */
const struct s2n_ecc_named_curve* const unrequested_curves[] = {
&s2n_unsupported_curve,
&s2n_ecc_curve_secp521r1,
};
/* Verify that the client errors when the server attempts to
* negotiate a curve that was never offered */
for (size_t i = 0; i < s2n_array_len(unrequested_curves); i++) {
struct s2n_ecc_evp_params server_params = { 0 };
struct s2n_ecc_evp_params client_params = { 0 };
struct s2n_stuffer wire = { 0 };
struct s2n_blob ecdh_params_sent = { 0 }, ecdh_params_received = { 0 };
EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&wire, 1024));
/* Server maliciously chooses an unsupported curve */
server_params.negotiated_curve = unrequested_curves[i];
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Server sends the public */
EXPECT_SUCCESS(s2n_ecc_evp_write_params(&server_params, &wire, &ecdh_params_sent));
/* Client reads the public */
struct s2n_ecdhe_raw_server_params ecdhe_data = { 0 };
EXPECT_SUCCESS(s2n_ecc_evp_read_params(&wire, &ecdh_params_received, &ecdhe_data));
EXPECT_FAILURE_WITH_ERRNO(
s2n_ecc_evp_parse_params(conn, &ecdhe_data, &client_params), S2N_ERR_ECDHE_UNSUPPORTED_CURVE);
/* The client didn't agree on a curve */
EXPECT_NULL(client_params.negotiated_curve);
/* Clean up */
EXPECT_SUCCESS(s2n_stuffer_free(&wire));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&server_params));
EXPECT_SUCCESS(s2n_ecc_evp_params_free(&client_params));
}
};
/**
*= https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2
*= type=test
*# For the curves secp256r1, secp384r1, and secp521r1, peers MUST
*# validate each other's public value Q by ensuring that the point is a
*# valid point on the elliptic curve. The appropriate validation
*# procedures are defined in Section 4.3.7 of [ECDSA] and alternatively
*# in Section 5.6.2.3 of [KEYAGREEMENT]. This process consists of three
*# steps: (1) verify that Q is not the point at infinity (O), (2) verify
*# that for Q = (x, y) both integers x and y are in the correct
*# interval, and (3) ensure that (x, y) is a correct solution to the
*# elliptic curve equation. For these curves, implementors do not need
*# to verify membership in the correct subgroup.
*
* s2n-tls performs this validation by invoking the libcrypto APIs: EC_KEY_check_key, and
* EC_KEY_check_fips. To ensure that these APIs are properly called, step (1) is invalidated.
*/
{
const struct s2n_ecc_named_curve* const nist_curves[] = {
&s2n_ecc_curve_secp256r1,
&s2n_ecc_curve_secp384r1,
&s2n_ecc_curve_secp521r1,
};
for (size_t i = 0; i < s2n_array_len(nist_curves); i++) {
const struct s2n_ecc_named_curve* curve = nist_curves[i];
DEFER_CLEANUP(struct s2n_ecc_evp_params server_params = { 0 }, s2n_ecc_evp_params_free);
DEFER_CLEANUP(struct s2n_ecc_evp_params client_params = { 0 }, s2n_ecc_evp_params_free);
DEFER_CLEANUP(struct s2n_blob shared_key = { 0 }, s2n_free);
/* Create a server key. */
server_params.negotiated_curve = curve;
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&server_params));
EXPECT_NOT_NULL(server_params.evp_pkey);
/* Create a client key. */
client_params.negotiated_curve = curve;
EXPECT_SUCCESS(s2n_ecc_evp_generate_ephemeral_key(&client_params));
EXPECT_NOT_NULL(client_params.evp_pkey);
/* Retrieve the existing client public key. */
DEFER_CLEANUP(EC_KEY* ec_key = EVP_PKEY_get1_EC_KEY(client_params.evp_pkey),
EC_KEY_free_pointer);
EXPECT_NOT_NULL(ec_key);
const EC_GROUP* group = EC_KEY_get0_group(ec_key);
EXPECT_NOT_NULL(group);
const EC_POINT* public_key = EC_KEY_get0_public_key(ec_key);
EXPECT_NOT_NULL(public_key);
/* Invalidate the public key by setting the coordinate to infinity. */
DEFER_CLEANUP(EC_POINT* invalid_public_key = EC_POINT_dup(public_key, group),
EC_POINT_free_pointer);
EXPECT_NOT_NULL(invalid_public_key);
EXPECT_EQUAL(EC_POINT_set_to_infinity(group, invalid_public_key), 1);
EXPECT_EQUAL(EC_KEY_set_public_key(ec_key, invalid_public_key), 1);
EXPECT_EQUAL(EVP_PKEY_set1_EC_KEY(client_params.evp_pkey, ec_key), 1);
/* Compute the server's shared secret. */
int ret = s2n_ecc_evp_compute_shared_secret_from_params(&server_params,
&client_params, &shared_key);
/* If s2n-tls is in FIPS mode and the libcrypto supports the EC_KEY_check_fips API,
* ensure that this API is called by checking for the correct error.
*/
if (s2n_is_in_fips_mode() && s2n_ecc_evp_supports_fips_check()) {
EXPECT_FAILURE_WITH_ERRNO(ret, S2N_ERR_ECDHE_INVALID_PUBLIC_KEY_FIPS);
} else {
EXPECT_FAILURE_WITH_ERRNO(ret, S2N_ERR_ECDHE_INVALID_PUBLIC_KEY);
}
}
}
END_TEST();
}
|