1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <string.h>
#include "api/s2n.h"
#include "s2n_test.h"
#include "stuffer/s2n_stuffer.h"
#include "utils/s2n_random.h"
/* Generated with this python:
*
* b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
*
* for i in range(0, 256):
* if chr(i) in b64:
* print str(b64.index(chr(i))) + ", ",
* else:
* print "255, ",
*
* if (i + 1) % 16 == 0:
* print
*
* Note that '=' maps to 64.
*/
static const uint8_t b64_inverse[256] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 62, 255, 255, 255, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 64, 255, 255,
255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255,
255, 255, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 };
bool s2n_is_base64_char_alternate(unsigned char c)
{
return (b64_inverse[*((uint8_t *) (&c))] != 255);
}
int main(int argc, char **argv)
{
BEGIN_TEST();
/* s2n_is_base64_char */
for (uint8_t i = 0; i < 255; i++) {
EXPECT_EQUAL(s2n_is_base64_char(i), s2n_is_base64_char_alternate(i));
};
/* safety: s2n_stuffer_read/write_base64 */
{
struct s2n_stuffer a = { 0 };
struct s2n_stuffer b = { 0 };
EXPECT_SUCCESS(s2n_stuffer_write_base64(&a, &b));
EXPECT_SUCCESS(s2n_stuffer_read_base64(&a, &b));
}
/* known-value base64 read/write tests using byte strings of `0` */
struct {
uint8_t bytes;
const char *expected;
} test_cases[] = {
{
.bytes = 1,
.expected = "AA==",
},
{
.bytes = 2,
.expected = "AAA=",
},
{
.bytes = 3,
.expected = "AAAA",
},
{
.bytes = 4,
.expected = "AAAAAA==",
},
};
for (int i = 0; i < s2n_array_len(test_cases); i++) {
DEFER_CLEANUP(struct s2n_stuffer binary = { 0 }, s2n_stuffer_free);
DEFER_CLEANUP(struct s2n_stuffer base64 = { 0 }, s2n_stuffer_free);
DEFER_CLEANUP(struct s2n_stuffer mirror = { 0 }, s2n_stuffer_free);
uint32_t base64_groups = test_cases[i].bytes / 3;
if (test_cases[i].bytes % 3 != 0) {
base64_groups++;
}
EXPECT_SUCCESS(s2n_stuffer_alloc(&binary, test_cases[i].bytes));
/* +1 for null terminator */
EXPECT_SUCCESS(s2n_stuffer_alloc(&base64, base64_groups * 4 + 1));
EXPECT_SUCCESS(s2n_stuffer_alloc(&mirror, base64_groups * 3));
for (int b = 0; b < test_cases[i].bytes; b++) {
EXPECT_SUCCESS(s2n_stuffer_write_uint8(&binary, 0));
}
EXPECT_SUCCESS(s2n_stuffer_write_base64(&base64, &binary));
EXPECT_EQUAL(s2n_stuffer_data_available(&base64), strlen(test_cases[i].expected));
EXPECT_BYTEARRAY_EQUAL(base64.blob.data, test_cases[i].expected, strlen(test_cases[i].expected));
EXPECT_SUCCESS(s2n_stuffer_read_base64(&base64, &mirror));
EXPECT_EQUAL(s2n_stuffer_data_available(&mirror), test_cases[i].bytes);
EXPECT_BYTEARRAY_EQUAL(binary.blob.data, mirror.blob.data, test_cases[i].bytes);
};
char hello_world[] = "Hello world!";
uint8_t hello_world_base64[] = "SGVsbG8gd29ybGQhAA==";
struct s2n_stuffer stuffer = { 0 }, known_data = { 0 }, scratch = { 0 }, entropy = { 0 }, mirror = { 0 };
uint8_t pad[50];
struct s2n_blob r = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&r, pad, sizeof(pad)));
/* Create a 100 byte stuffer */
EXPECT_SUCCESS(s2n_stuffer_alloc(&stuffer, 1000));
/* Write our known data */
EXPECT_SUCCESS(s2n_stuffer_alloc_ro_from_string(&known_data, hello_world));
EXPECT_SUCCESS(s2n_stuffer_write_base64(&stuffer, &known_data));
EXPECT_SUCCESS(s2n_stuffer_free(&known_data));
/* Check it against the known output */
EXPECT_EQUAL(memcmp(stuffer.blob.data, hello_world_base64, strlen((char *) hello_world)), 0);
/* Check that we can read it again */
EXPECT_SUCCESS(s2n_stuffer_alloc(&scratch, 50));
EXPECT_SUCCESS(s2n_stuffer_read_base64(&stuffer, &scratch));
EXPECT_SUCCESS(memcmp(scratch.blob.data, hello_world, strlen(hello_world)));
/* Now try with some randomly generated data. Make sure we try each boundary case,
* where size % 3 == 0, 1, 2
*/
EXPECT_SUCCESS(s2n_stuffer_alloc(&entropy, 50));
/* +1 to give space for the null terminator written by EVP_EncodeBlock */
EXPECT_SUCCESS(s2n_stuffer_alloc(&mirror, 50 + 1));
for (size_t i = entropy.blob.size; i > 0; i--) {
EXPECT_SUCCESS(s2n_stuffer_wipe(&stuffer));
EXPECT_SUCCESS(s2n_stuffer_wipe(&entropy));
EXPECT_SUCCESS(s2n_stuffer_wipe(&mirror));
/* Get i bytes of random data */
r.size = i;
EXPECT_OK(s2n_get_public_random_data(&r));
EXPECT_SUCCESS(s2n_stuffer_write_bytes(&entropy, pad, i));
/* Write i bytes it, base64 encoded */
/* Read it back, decoded */
EXPECT_SUCCESS(s2n_stuffer_write_base64(&stuffer, &entropy));
/* s2n_is_base64_char: should be true for all bytes in the stuffer */
while (s2n_stuffer_data_available(&stuffer) > 0) {
uint8_t byte = 0;
EXPECT_SUCCESS(s2n_stuffer_read_uint8(&stuffer, &byte));
EXPECT_TRUE(s2n_is_base64_char(byte));
}
EXPECT_SUCCESS(s2n_stuffer_reread(&stuffer));
/* Should be (i / 3) * 4 + a carry */
EXPECT_EQUAL((i / 3) * 4 + ((i % 3) ? 4 : 0), s2n_stuffer_data_available(&stuffer));
/* Read it back, decoded */
EXPECT_SUCCESS(s2n_stuffer_read_base64(&stuffer, &mirror));
/* Verify it's the same */
EXPECT_EQUAL(memcmp(mirror.blob.data, entropy.blob.data, i), 0);
}
EXPECT_SUCCESS(s2n_stuffer_free(&stuffer));
EXPECT_SUCCESS(s2n_stuffer_free(&scratch));
EXPECT_SUCCESS(s2n_stuffer_free(&mirror));
EXPECT_SUCCESS(s2n_stuffer_free(&entropy));
END_TEST();
}
|