File: s2n_stuffer_hex_test.c

package info (click to toggle)
aws-crt-python 0.24.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 75,932 kB
  • sloc: ansic: 418,984; python: 23,626; makefile: 6,035; sh: 4,075; ruby: 208; java: 82; perl: 73; cpp: 25; xml: 11
file content (571 lines) | stat: -rw-r--r-- 24,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#include "s2n_test.h"
#include "stuffer/s2n_stuffer.h"
#include "testlib/s2n_testlib.h"

int main(int argc, char **argv)
{
    BEGIN_TEST();

    /* Test: Safety */
    {
        struct s2n_stuffer stuffer = { 0 };
        struct s2n_blob blob = { 0 };

        /* s2n_stuffer_read_hex */
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_hex(&stuffer, NULL), S2N_ERR_NULL);
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_hex(NULL, &blob), S2N_ERR_NULL);

        /* s2n_stuffer_write_hex */
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_write_hex(&stuffer, NULL), S2N_ERR_NULL);
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_write_hex(NULL, &blob), S2N_ERR_NULL);

        /* s2n_stuffer_read_uint8_hex */
        uint8_t value_u8 = 0;
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_uint8_hex(&stuffer, NULL), S2N_ERR_NULL);
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_uint8_hex(NULL, &value_u8), S2N_ERR_NULL);

        /* s2n_stuffer_write_uint8_hex */
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_write_uint8_hex(NULL, 0), S2N_ERR_NULL);

        /* s2n_stuffer_read_uint16_hex */
        uint16_t value_u16 = 0;
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_uint16_hex(&stuffer, NULL), S2N_ERR_NULL);
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_read_uint16_hex(NULL, &value_u16), S2N_ERR_NULL);

        /* s2n_stuffer_write_uint16_hex */
        EXPECT_ERROR_WITH_ERRNO(s2n_stuffer_write_uint16_hex(NULL, 0), S2N_ERR_NULL);
    }

    /* Test hex with uint8 */
    {
        const size_t expected_size = 2;
        struct {
            const uint8_t num;
            const char *hex;
        } test_cases[] = {
            /* Test first digit */
            { .num = 0, .hex = "00" },
            { .num = 1, .hex = "01" },
            { .num = 5, .hex = "05" },
            { .num = 15, .hex = "0f" },
            /* Test second digit */
            { .num = 0x10, .hex = "10" },
            { .num = 0x50, .hex = "50" },
            { .num = 0xf0, .hex = "f0" },
            /* Test all numbers */
            { .num = 0x12, .hex = "12" },
            { .num = 0x34, .hex = "34" },
            { .num = 0x56, .hex = "56" },
            { .num = 0x78, .hex = "78" },
            { .num = 0x90, .hex = "90" },
            /* Test all letters */
            { .num = 0xab, .hex = "ab" },
            { .num = 0xcd, .hex = "cd" },
            { .num = 0xef, .hex = "ef" },
            /* Test mix of numbers and letters */
            { .num = 0x1a, .hex = "1a" },
            { .num = 0x9f, .hex = "9f" },
            /* Test high values */
            { .num = UINT8_MAX - 1, .hex = "fe" },
            { .num = UINT8_MAX, .hex = "ff" },
        };
        for (size_t i = 0; i < s2n_array_len(test_cases); i++) {
            /* Test s2n_stuffer_write_uint8_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex, 0));
                EXPECT_OK(s2n_stuffer_write_uint8_hex(&hex, test_cases[i].num));

                size_t actual_size = s2n_stuffer_data_available(&hex);
                EXPECT_EQUAL(actual_size, expected_size);
                EXPECT_EQUAL(strlen(test_cases[i].hex), expected_size);

                const char *actual_hex = s2n_stuffer_raw_read(&hex, actual_size);
                EXPECT_BYTEARRAY_EQUAL(actual_hex, test_cases[i].hex, actual_size);
            };

            /* Test s2n_stuffer_read_uint8_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, expected_size));
                EXPECT_SUCCESS(s2n_stuffer_write_text(&hex, test_cases[i].hex, expected_size));

                uint8_t actual_num = 0;
                EXPECT_OK(s2n_stuffer_read_uint8_hex(&hex, &actual_num));
                EXPECT_EQUAL(actual_num, test_cases[i].num);
                EXPECT_FALSE(s2n_stuffer_data_available(&hex));
            };

            /* Test s2n_stuffer_write_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer num_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&num_in, sizeof(uint8_t)));
                EXPECT_SUCCESS(s2n_stuffer_write_uint8(&num_in, test_cases[i].num));

                DEFER_CLEANUP(struct s2n_stuffer hex_out = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex_out, 0));
                EXPECT_OK(s2n_stuffer_write_hex(&hex_out, &num_in.blob));

                size_t actual_size = s2n_stuffer_data_available(&hex_out);
                EXPECT_EQUAL(actual_size, expected_size);
                EXPECT_EQUAL(strlen(test_cases[i].hex), expected_size);

                const char *actual_hex = s2n_stuffer_raw_read(&hex_out, actual_size);
                EXPECT_BYTEARRAY_EQUAL(actual_hex, test_cases[i].hex, actual_size);
            };

            /* Test s2n_stuffer_read_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&hex_in, expected_size));
                EXPECT_SUCCESS(s2n_stuffer_write_text(&hex_in, test_cases[i].hex, expected_size));

                uint8_t actual_num = 0;
                struct s2n_blob num_out = { 0 };
                EXPECT_SUCCESS(s2n_blob_init(&num_out, &actual_num, 1));
                EXPECT_OK(s2n_stuffer_read_hex(&hex_in, &num_out));
                EXPECT_EQUAL(actual_num, test_cases[i].num);
                EXPECT_FALSE(s2n_stuffer_data_available(&hex_in));
            };
        }
    };

    /* Test hex with uint16 */
    {
        const size_t expected_size = 4;
        struct {
            uint16_t num;
            const char *hex;
        } test_cases[] = {
            /* Test first digit */
            { .num = 0, .hex = "0000" },
            { .num = 1, .hex = "0001" },
            { .num = 5, .hex = "0005" },
            { .num = 15, .hex = "000f" },
            /* Test second digit */
            { .num = 0x10, .hex = "0010" },
            { .num = 0x50, .hex = "0050" },
            { .num = 0xf0, .hex = "00f0" },
            /* Test third digit */
            { .num = 0x0100, .hex = "0100" },
            { .num = 0x0500, .hex = "0500" },
            { .num = 0x0f00, .hex = "0f00" },
            /* Test fourth digit */
            { .num = 0x1000, .hex = "1000" },
            { .num = 0x5000, .hex = "5000" },
            { .num = 0xf000, .hex = "f000" },
            /* Test all numbers */
            { .num = 0x1234, .hex = "1234" },
            { .num = 0x5678, .hex = "5678" },
            { .num = 0x9012, .hex = "9012" },
            /* Test all letters */
            { .num = 0xabcd, .hex = "abcd" },
            { .num = 0xefab, .hex = "efab" },
            /* Test mix of numbers and letters */
            { .num = 0x1a2b, .hex = "1a2b" },
            { .num = 0x8e9f, .hex = "8e9f" },
            /* Test high values */
            { .num = UINT16_MAX - 1, .hex = "fffe" },
            { .num = UINT16_MAX, .hex = "ffff" },
        };
        for (size_t i = 0; i < s2n_array_len(test_cases); i++) {
            /* Test s2n_stuffer_write_uint16_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex, 0));
                EXPECT_OK(s2n_stuffer_write_uint16_hex(&hex, test_cases[i].num));

                size_t actual_size = s2n_stuffer_data_available(&hex);
                EXPECT_EQUAL(actual_size, expected_size);
                EXPECT_EQUAL(strlen(test_cases[i].hex), expected_size);

                const char *actual_hex = s2n_stuffer_raw_read(&hex, actual_size);
                EXPECT_BYTEARRAY_EQUAL(actual_hex, test_cases[i].hex, actual_size);
            };

            /* Test s2n_stuffer_read_uint16_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, expected_size));
                EXPECT_SUCCESS(s2n_stuffer_write_text(&hex, test_cases[i].hex, expected_size));

                uint16_t actual_num = 0;
                EXPECT_OK(s2n_stuffer_read_uint16_hex(&hex, &actual_num));
                EXPECT_EQUAL(actual_num, test_cases[i].num);
                EXPECT_FALSE(s2n_stuffer_data_available(&hex));
            };

            /* Test s2n_stuffer_write_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer num_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&num_in, sizeof(uint16_t)));
                EXPECT_SUCCESS(s2n_stuffer_write_uint16(&num_in, test_cases[i].num));

                DEFER_CLEANUP(struct s2n_stuffer hex_out = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex_out, 0));
                EXPECT_OK(s2n_stuffer_write_hex(&hex_out, &num_in.blob));

                size_t actual_size = s2n_stuffer_data_available(&hex_out);
                EXPECT_EQUAL(actual_size, expected_size);
                EXPECT_EQUAL(strlen(test_cases[i].hex), expected_size);

                const char *actual_hex = s2n_stuffer_raw_read(&hex_out, actual_size);
                EXPECT_BYTEARRAY_EQUAL(actual_hex, test_cases[i].hex, actual_size);
            };

            /* Test s2n_stuffer_read_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&hex_in, expected_size));
                EXPECT_SUCCESS(s2n_stuffer_write_text(&hex_in, test_cases[i].hex, expected_size));

                DEFER_CLEANUP(struct s2n_stuffer num_out = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&num_out, sizeof(uint16_t)));
                EXPECT_OK(s2n_stuffer_read_hex(&hex_in, &num_out.blob));
                EXPECT_SUCCESS(s2n_stuffer_skip_write(&num_out, num_out.blob.size));
                EXPECT_FALSE(s2n_stuffer_data_available(&hex_in));

                uint16_t actual_num = 0;
                EXPECT_SUCCESS(s2n_stuffer_read_uint16(&num_out, &actual_num));
                EXPECT_EQUAL(actual_num, test_cases[i].num);
                EXPECT_FALSE(s2n_stuffer_data_available(&num_out));
            };
        }
    };

    /* Test longer series of bytes */
    {
        struct {
            uint8_t bytes[50];
            uint8_t bytes_size;
            const char *hex;
        } test_cases[] = {
            /* clang-format off */
            {
                .bytes = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef },
                .bytes_size = 8,
                .hex = "1234567890abcdef",
            },
            {
                .bytes = { 0 },
                .bytes_size = 4,
                .hex = "00000000",
            },
            {
                .bytes = { 0xff, 0x11, 0x22, 0x55, 0xaa },
                .bytes_size = 5,
                .hex = "ff112255aa",
            },
            {
                .bytes = { 0x10, 0x10, 0x10, 0x10 },
                .bytes_size = 4,
                .hex = "10101010",
            },
            {
                .bytes = { 0x00, 0x00, 0x01 },
                .bytes_size = 3,
                .hex = "000001",
            },
            {
                .bytes = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef },
                .bytes_size = 16,
                .hex = "1234567890abcdef"
                       "0000000000000000",
            },
            {
                .bytes = {
                    0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0xef,
                    0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0x01,
                    0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0x02,
                    0x12, 0x34, 0x56, 0x78, 0x90, 0xab, 0xcd, 0x03,
                },
                .bytes_size = 8 * 4,
                .hex =
                    "1234567890abcdef"
                    "1234567890abcd01"
                    "1234567890abcd02"
                    "1234567890abcd03",
            },
            /* clang-format on */
        };

        for (size_t i = 0; i < s2n_array_len(test_cases); i++) {
            size_t hex_size = strlen(test_cases[i].hex);
            EXPECT_EQUAL(test_cases[i].bytes_size * 2, hex_size);

            /* Test s2n_stuffer_write_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer num_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&num_in, test_cases[i].bytes_size));
                EXPECT_SUCCESS(s2n_stuffer_write_bytes(&num_in,
                        test_cases[i].bytes, test_cases[i].bytes_size));

                DEFER_CLEANUP(struct s2n_stuffer hex_out = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex_out, 0));
                EXPECT_OK(s2n_stuffer_write_hex(&hex_out, &num_in.blob));

                size_t actual_size = s2n_stuffer_data_available(&hex_out);
                EXPECT_EQUAL(actual_size, hex_size);

                const char *actual_hex = s2n_stuffer_raw_read(&hex_out, actual_size);
                EXPECT_BYTEARRAY_EQUAL(actual_hex, test_cases[i].hex, actual_size);
            };

            /* Test s2n_stuffer_read_hex */
            {
                DEFER_CLEANUP(struct s2n_stuffer hex_in = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_alloc(&hex_in, hex_size));
                EXPECT_SUCCESS(s2n_stuffer_write_text(&hex_in, test_cases[i].hex, hex_size));

                DEFER_CLEANUP(struct s2n_blob num_out = { 0 }, s2n_free);
                EXPECT_SUCCESS(s2n_alloc(&num_out, test_cases[i].bytes_size));
                EXPECT_OK(s2n_stuffer_read_hex(&hex_in, &num_out));
                EXPECT_BYTEARRAY_EQUAL(num_out.data, test_cases[i].bytes, test_cases[i].bytes_size);
                EXPECT_FALSE(s2n_stuffer_data_available(&hex_in));
            };
        }
    };

    /* Test bad hex string */
    {
        /* Test bad uint8 hex */
        {
            const char *test_hexes[] = {
                /* clang-format off */
                /* one good hex as a control */
                "FFFFFF",
                /* too short */
                "", "0", "1",
                /* invalid characters: symbols <'0' */
                "0/", "!0",
                /* invalid characters: symbols >'9', <'A' */
                "0:", "@0",
                /* invalid characters: symbols >'Z', <'a' */
                "0[", "`0",
                /* invalid characters: symbols >'z' */
                "0{", "~0",
                /* invalid characters: non-hex letters */
                "0g", "z0", "0G", "Z0",
                /* clang-format on */
            };

            for (size_t i = 0; i < s2n_array_len(test_hexes); i++) {
                const char *test_hex = test_hexes[i];

                /* Test s2n_stuffer_read_uint8_hex */
                {
                    DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                    EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, strlen(test_hex)));
                    EXPECT_SUCCESS(s2n_stuffer_write_str(&hex, test_hex));

                    uint8_t actual_num = 0;
                    if (i == 0) {
                        EXPECT_OK(s2n_stuffer_read_uint8_hex(&hex, &actual_num));
                    } else {
                        EXPECT_ERROR_WITH_ERRNO(
                                s2n_stuffer_read_uint8_hex(&hex, &actual_num),
                                S2N_ERR_BAD_HEX);
                    }
                };

                /* Test s2n_stuffer_read_hex */
                {
                    DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                    EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, strlen(test_hex)));
                    EXPECT_SUCCESS(s2n_stuffer_write_str(&hex, test_hex));

                    DEFER_CLEANUP(struct s2n_blob out = { 0 }, s2n_free);
                    EXPECT_SUCCESS(s2n_alloc(&out, sizeof(uint8_t)));
                    if (i == 0) {
                        EXPECT_OK(s2n_stuffer_read_hex(&hex, &out));
                    } else {
                        EXPECT_ERROR_WITH_ERRNO(
                                s2n_stuffer_read_hex(&hex, &out),
                                S2N_ERR_BAD_HEX);
                    }
                };
            }
        };

        /* Test bad uint16 hex */
        {
            const char *test_hexes[] = {
                /* clang-format off */
                /* one good hex as a control */
                "FFFFFF",
                /* too short */
                "", "0", "1", "00", "01", "000", "001",
                /* invalid characters: symbols <'0' */
                "000/", "00!0", "0.00", "#000",
                /* invalid characters: symbols >'9', <'A' */
                "000:", "00@0", "0?00", ";000",
                /* invalid characters: symbols >'Z', <'a' */
                "000[", "00`0", "0_00", "^000",
                /* invalid characters: symbols >'z' */
                "000{", "00~0", "0}00", "|000",
                /* invalid characters: non-hex letters */
                "000g", "00z0", "000G", "00Z0", "0Y00", "S000",
                /* clang-format on */
            };

            for (size_t i = 0; i < s2n_array_len(test_hexes); i++) {
                const char *test_hex = test_hexes[i];

                /* Test s2n_stuffer_read_uint16_hex */
                {
                    DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                    EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, strlen(test_hex)));
                    EXPECT_SUCCESS(s2n_stuffer_write_str(&hex, test_hex));

                    uint16_t actual_num = 0;
                    if (i == 0) {
                        EXPECT_OK(s2n_stuffer_read_uint16_hex(&hex, &actual_num));
                    } else {
                        EXPECT_ERROR_WITH_ERRNO(
                                s2n_stuffer_read_uint16_hex(&hex, &actual_num),
                                S2N_ERR_BAD_HEX);
                    }
                };

                /* Test s2n_stuffer_read_hex */
                {
                    DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                    EXPECT_SUCCESS(s2n_stuffer_alloc(&hex, strlen(test_hex)));
                    EXPECT_SUCCESS(s2n_stuffer_write_str(&hex, test_hex));

                    DEFER_CLEANUP(struct s2n_blob out = { 0 }, s2n_free);
                    EXPECT_SUCCESS(s2n_alloc(&out, sizeof(uint16_t)));
                    if (i == 0) {
                        EXPECT_OK(s2n_stuffer_read_hex(&hex, &out));
                    } else {
                        EXPECT_ERROR_WITH_ERRNO(
                                s2n_stuffer_read_hex(&hex, &out),
                                S2N_ERR_BAD_HEX);
                    }
                };
            }
        };
    }

    /* Test converting to and from all uint8_t */
    for (size_t i = 0; i <= UINT8_MAX; i++) {
        DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
        EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex, 0));
        EXPECT_OK(s2n_stuffer_write_uint8_hex(&hex, i));

        uint8_t value = 0;
        EXPECT_OK(s2n_stuffer_read_uint8_hex(&hex, &value));
        EXPECT_EQUAL(value, i);
    }

    /* Test converting to and from all uint16_t */
    for (size_t i = 0; i <= UINT16_MAX; i++) {
        DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
        EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex, 0));
        EXPECT_OK(s2n_stuffer_write_uint16_hex(&hex, i));

        uint16_t value = 0;
        EXPECT_OK(s2n_stuffer_read_uint16_hex(&hex, &value));
        EXPECT_EQUAL(value, i);
    }

    /* Test reading and writing multiple values with different methods */
    {
        const uint8_t values_u8[] = {
            /* clang-format off */
            0x00, 0x01, 0x02, 0x03, 0x04, 0x00,
            0x12, 0x34, 0x56, 0x78, 0x90, 0x00,
            0xab, 0xbc, 0xcd, 0xde, 0xef, 0x00,
            /* clang-format on */
        };
        const uint16_t values_u16[] = {
            /* clang-format off */
            0x0001, 0x0203, 0x0400,
            0x1234, 0x5678, 0x9000,
            0xabbc, 0xcdde, 0xef00,
            /* clang-format on */
        };
        const size_t bytes_size = sizeof(values_u8);
        const char hex_str[] =
                "000102030400"
                "123456789000"
                "abbccddeef00";

        enum s2n_test_hex_method {
            S2N_TEST_U8 = 0,
            S2N_TEST_U16,
            S2N_TEST_N,
            S2N_TEST_HEX_METHOD_COUNT
        };

        for (size_t writer_i = 0; writer_i < S2N_TEST_HEX_METHOD_COUNT; writer_i++) {
            for (size_t reader_i = 0; reader_i < S2N_TEST_HEX_METHOD_COUNT; reader_i++) {
                DEFER_CLEANUP(struct s2n_stuffer hex = { 0 }, s2n_stuffer_free);
                EXPECT_SUCCESS(s2n_stuffer_growable_alloc(&hex, 0));

                if (writer_i == S2N_TEST_U8) {
                    for (size_t i = 0; i < sizeof(values_u8); i++) {
                        EXPECT_OK(s2n_stuffer_write_uint8_hex(&hex, values_u8[i]));
                    }
                } else if (writer_i == S2N_TEST_U16) {
                    for (size_t i = 0; i < s2n_array_len(values_u16); i++) {
                        EXPECT_OK(s2n_stuffer_write_uint16_hex(&hex, values_u16[i]));
                    }
                } else if (writer_i == S2N_TEST_N) {
                    DEFER_CLEANUP(struct s2n_stuffer input = { 0 }, s2n_stuffer_free);
                    EXPECT_SUCCESS(s2n_stuffer_alloc(&input, bytes_size));
                    EXPECT_SUCCESS(s2n_stuffer_write_bytes(&input, values_u8, bytes_size));

                    EXPECT_OK(s2n_stuffer_write_hex(&hex, &input.blob));
                } else {
                    FAIL_MSG("unknown hex method");
                }

                size_t written = s2n_stuffer_data_available(&hex);
                EXPECT_EQUAL(written, strlen(hex_str));
                EXPECT_BYTEARRAY_EQUAL(hex_str, hex.blob.data, written);

                if (reader_i == S2N_TEST_U8) {
                    for (size_t i = 0; i < sizeof(values_u8); i++) {
                        uint8_t byte = 0;
                        EXPECT_OK(s2n_stuffer_read_uint8_hex(&hex, &byte));
                        EXPECT_EQUAL(byte, values_u8[i]);
                    }
                    EXPECT_FALSE(s2n_stuffer_data_available(&hex));
                } else if (reader_i == S2N_TEST_U16) {
                    for (size_t i = 0; i < s2n_array_len(values_u16); i++) {
                        uint16_t value = 0;
                        EXPECT_OK(s2n_stuffer_read_uint16_hex(&hex, &value));
                        EXPECT_EQUAL(value, values_u16[i]);
                    }
                    EXPECT_FALSE(s2n_stuffer_data_available(&hex));
                } else if (reader_i == S2N_TEST_N) {
                    DEFER_CLEANUP(struct s2n_blob output = { 0 }, s2n_free);
                    EXPECT_SUCCESS(s2n_alloc(&output, sizeof(values_u8)));
                    EXPECT_OK(s2n_stuffer_read_hex(&hex, &output));
                    EXPECT_EQUAL(s2n_stuffer_data_available(&hex), 0);
                    EXPECT_BYTEARRAY_EQUAL(values_u8, output.data, output.size);
                } else {
                    FAIL_MSG("unknown hex method");
                }
            }
        }
    };

    END_TEST();
}