1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_ecdsa.h"
#include "crypto/s2n_fips.h"
#include "crypto/s2n_rsa_pss.h"
#include "error/s2n_errno.h"
#include "s2n_test.h"
#include "testlib/s2n_testlib.h"
#include "tls/s2n_cipher_suites.h"
#include "tls/s2n_tls.h"
#include "tls/s2n_tls13.h"
#include "tls/s2n_tls13_certificate_verify.c"
uint8_t hello[] = "Hello, World!\n";
uint8_t goodbye[] = "Goodbye, World!\n";
struct s2n_tls13_cert_verify_test {
const char *const cert_file;
const char *const key_file;
const struct s2n_signature_scheme *sig_scheme;
const struct s2n_signature_scheme *with_wrong_hash;
};
const struct s2n_tls13_cert_verify_test test_cases[] = {
{
.cert_file = S2N_ECDSA_P256_PKCS1_CERT_CHAIN,
.key_file = S2N_ECDSA_P256_PKCS1_KEY,
.sig_scheme = &s2n_ecdsa_sha256,
.with_wrong_hash = &s2n_ecdsa_sha384,
},
#if RSA_PSS_CERTS_SUPPORTED
{
.cert_file = S2N_RSA_PSS_2048_SHA256_LEAF_CERT,
.key_file = S2N_RSA_PSS_2048_SHA256_LEAF_KEY,
.sig_scheme = &s2n_rsa_pss_pss_sha256,
.with_wrong_hash = &s2n_rsa_pss_pss_sha384,
},
#endif
};
S2N_RESULT s2n_cert_verify_connection_setup_and_send(
struct s2n_connection *sending_conn, struct s2n_connection *verifying_conn,
struct s2n_config *config, struct s2n_cert_chain_and_key *cert_chain,
struct s2n_signature_scheme *sig_scheme, struct s2n_blob *cert)
{
sending_conn->handshake_params.our_chain_and_key = cert_chain;
sending_conn->handshake_params.server_cert_sig_scheme = sig_scheme;
sending_conn->handshake_params.client_cert_sig_scheme = sig_scheme;
sending_conn->secure->cipher_suite = &s2n_tls13_aes_128_gcm_sha256;
sending_conn->actual_protocol_version = S2N_TLS13;
EXPECT_SUCCESS(s2n_connection_set_config(sending_conn, config));
verifying_conn->secure->cipher_suite = &s2n_tls13_aes_128_gcm_sha256;
verifying_conn->actual_protocol_version = S2N_TLS13;
EXPECT_SUCCESS(s2n_connection_set_config(verifying_conn, config));
/* Extract public key from certificate and set it for verifying connection */
s2n_pkey_type pkey_type = { 0 };
if (verifying_conn->mode == S2N_CLIENT) {
EXPECT_OK(s2n_asn1der_to_public_key_and_type(&verifying_conn->handshake_params.server_public_key, &pkey_type, cert));
EXPECT_SUCCESS(s2n_pkey_match(&verifying_conn->handshake_params.server_public_key, sending_conn->handshake_params.our_chain_and_key->private_key));
} else {
EXPECT_OK(s2n_asn1der_to_public_key_and_type(&verifying_conn->handshake_params.client_public_key, &pkey_type, cert));
EXPECT_SUCCESS(s2n_pkey_match(&verifying_conn->handshake_params.client_public_key, sending_conn->handshake_params.our_chain_and_key->private_key));
}
/* Hash initialization */
EXPECT_SUCCESS(s2n_hash_init(&sending_conn->handshake.hashes->sha256, S2N_HASH_SHA256));
EXPECT_SUCCESS(s2n_hash_update(&sending_conn->handshake.hashes->sha256, hello, sizeof(hello)));
EXPECT_SUCCESS(s2n_hash_init(&verifying_conn->handshake.hashes->sha256, S2N_HASH_SHA256));
EXPECT_SUCCESS(s2n_hash_update(&verifying_conn->handshake.hashes->sha256, hello, sizeof(hello)));
/* Send cert verify */
EXPECT_SUCCESS(s2n_tls13_cert_verify_send(sending_conn));
EXPECT_SUCCESS(s2n_stuffer_copy(&sending_conn->handshake.io, &verifying_conn->handshake.io,
s2n_stuffer_data_available(&sending_conn->handshake.io)));
return S2N_RESULT_OK;
}
int run_tests(const struct s2n_tls13_cert_verify_test *test_case, s2n_mode verifier_mode)
{
const char *cert_file = test_case->cert_file;
const char *key_file = test_case->key_file;
struct s2n_signature_scheme sig_scheme = *test_case->sig_scheme;
char cert_chain_pem[S2N_MAX_TEST_PEM_SIZE] = { 0 };
char private_key_pem[S2N_MAX_TEST_PEM_SIZE] = { 0 };
EXPECT_SUCCESS(s2n_read_test_pem(cert_file, &cert_chain_pem[0], S2N_MAX_TEST_PEM_SIZE));
EXPECT_SUCCESS(s2n_read_test_pem(key_file, &private_key_pem[0], S2N_MAX_TEST_PEM_SIZE));
DEFER_CLEANUP(struct s2n_cert_chain_and_key *cert_chain = s2n_cert_chain_and_key_new(),
s2n_cert_chain_and_key_ptr_free);
EXPECT_NOT_NULL(cert_chain);
EXPECT_SUCCESS(s2n_cert_chain_and_key_load_pem(cert_chain, cert_chain_pem, private_key_pem));
DEFER_CLEANUP(struct s2n_config *config = s2n_config_new(), s2n_config_ptr_free);
EXPECT_NOT_NULL(config);
EXPECT_SUCCESS(s2n_config_set_cipher_preferences(config, "20200207"));
EXPECT_SUCCESS(s2n_config_add_cert_chain_and_key_to_store(config, cert_chain));
/* Initialize a certificate */
DEFER_CLEANUP(struct s2n_stuffer certificate_in = { 0 }, s2n_stuffer_free);
DEFER_CLEANUP(struct s2n_stuffer certificate_out = { 0 }, s2n_stuffer_free);
EXPECT_SUCCESS(s2n_stuffer_alloc(&certificate_in, S2N_MAX_TEST_PEM_SIZE));
EXPECT_SUCCESS(s2n_stuffer_alloc(&certificate_out, S2N_MAX_TEST_PEM_SIZE));
EXPECT_SUCCESS(s2n_stuffer_write_bytes(&certificate_in, (uint8_t *) cert_chain_pem, sizeof(cert_chain_pem)));
EXPECT_SUCCESS(s2n_stuffer_certificate_from_pem(&certificate_in, &certificate_out));
uint32_t available_size = s2n_stuffer_data_available(&certificate_out);
struct s2n_blob cert = { 0 };
EXPECT_SUCCESS(s2n_blob_init(&cert, s2n_stuffer_raw_read(&certificate_out, available_size), available_size));
/* Successfully send and receive certificate verify */
{
DEFER_CLEANUP(struct s2n_connection *sending_conn = s2n_connection_new(S2N_PEER_MODE(verifier_mode)),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(sending_conn);
DEFER_CLEANUP(struct s2n_connection *verifying_conn = s2n_connection_new(verifier_mode),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(verifying_conn);
EXPECT_OK(s2n_cert_verify_connection_setup_and_send(sending_conn, verifying_conn, config, cert_chain, &sig_scheme, &cert));
/* Receive and verify cert */
EXPECT_SUCCESS(s2n_tls13_cert_verify_recv(verifying_conn));
/* Repeat the above test successfully */
EXPECT_SUCCESS(s2n_tls13_cert_verify_send(sending_conn));
EXPECT_SUCCESS(s2n_stuffer_copy(&sending_conn->handshake.io, &verifying_conn->handshake.io,
s2n_stuffer_data_available(&sending_conn->handshake.io)));
EXPECT_SUCCESS(s2n_tls13_cert_verify_recv(verifying_conn));
/* Test fails if cipher suites hash is configured incorrectly */
verifying_conn->secure->cipher_suite = &s2n_tls13_aes_256_gcm_sha384;
EXPECT_SUCCESS(s2n_tls13_cert_verify_send(sending_conn));
EXPECT_SUCCESS(s2n_stuffer_copy(&sending_conn->handshake.io, &verifying_conn->handshake.io,
s2n_stuffer_data_available(&sending_conn->handshake.io)));
EXPECT_FAILURE_WITH_ERRNO(s2n_tls13_cert_verify_recv(verifying_conn), S2N_ERR_VERIFY_SIGNATURE);
};
/* Verifying connection errors with incorrect signed content */
{
DEFER_CLEANUP(struct s2n_connection *sending_conn = s2n_connection_new(S2N_PEER_MODE(verifier_mode)),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(sending_conn);
DEFER_CLEANUP(struct s2n_connection *verifying_conn = s2n_connection_new(verifier_mode),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(verifying_conn);
EXPECT_OK(s2n_cert_verify_connection_setup_and_send(sending_conn, verifying_conn, config, cert_chain, &sig_scheme, &cert));
/* Update receive hash with goodbye */
EXPECT_SUCCESS(s2n_hash_update(&verifying_conn->handshake.hashes->sha256, goodbye, sizeof(goodbye)));
uint64_t verifying_bytes = 0;
uint64_t sending_bytes = 0;
EXPECT_SUCCESS(s2n_hash_get_currently_in_hash_total(&verifying_conn->handshake.hashes->sha256, &verifying_bytes));
EXPECT_SUCCESS(s2n_hash_get_currently_in_hash_total(&sending_conn->handshake.hashes->sha256, &sending_bytes));
EXPECT_NOT_EQUAL(sending_bytes, verifying_bytes);
EXPECT_FAILURE_WITH_ERRNO(s2n_tls13_cert_verify_recv(verifying_conn), S2N_ERR_VERIFY_SIGNATURE);
};
/* Verifying connection errors with even 1 bit incorrect */
{
DEFER_CLEANUP(struct s2n_connection *sending_conn = s2n_connection_new(S2N_PEER_MODE(verifier_mode)),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(sending_conn);
DEFER_CLEANUP(struct s2n_connection *verifying_conn = s2n_connection_new(verifier_mode),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(verifying_conn);
EXPECT_OK(s2n_cert_verify_connection_setup_and_send(sending_conn, verifying_conn, config, cert_chain, &sig_scheme, &cert));
/* Flip one bit in verifying_conn io buffer */
EXPECT_TRUE(10 < s2n_stuffer_data_available(&verifying_conn->handshake.io));
verifying_conn->handshake.io.blob.data[10] ^= 1;
EXPECT_FAILURE_WITH_ERRNO(s2n_tls13_cert_verify_recv(verifying_conn), S2N_ERR_VERIFY_SIGNATURE);
};
/* Verifying connection errors with wrong hash algorithms */
{
DEFER_CLEANUP(struct s2n_connection *sending_conn = s2n_connection_new(S2N_PEER_MODE(verifier_mode)),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(sending_conn);
DEFER_CLEANUP(struct s2n_connection *verifying_conn = s2n_connection_new(verifier_mode),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(verifying_conn);
EXPECT_OK(s2n_cert_verify_connection_setup_and_send(sending_conn, verifying_conn, config, cert_chain, &sig_scheme, &cert));
/* Use a hash algorithm different from sender by prepending corresponding iana value */
struct s2n_stuffer rereader = verifying_conn->handshake.io;
EXPECT_SUCCESS(s2n_stuffer_rewrite(&rereader));
EXPECT_SUCCESS(s2n_stuffer_write_uint16(&rereader, test_case->with_wrong_hash->iana_value));
EXPECT_FAILURE_WITH_ERRNO(s2n_tls13_cert_verify_recv(verifying_conn), S2N_ERR_VERIFY_SIGNATURE);
};
return 0;
}
int main(int argc, char **argv)
{
BEGIN_TEST();
EXPECT_SUCCESS(s2n_enable_tls13_in_test());
for (size_t i = 0; i < s2n_array_len(test_cases); i++) {
/* Run all tests for server sending and client receiving/verifying cert_verify message */
run_tests(&test_cases[i], S2N_CLIENT);
/* Run all tests for client sending and server receiving/verifying cert_verify message */
run_tests(&test_cases[i], S2N_SERVER);
}
/* Self-talk: Ensure that the signature algorithm used to sign the CertificateVerify message
* is validated against the certificate type
*/
if (s2n_is_tls13_fully_supported()) {
struct s2n_tls13_cert_verify_test test_server_parameters[] = {
{
.cert_file = S2N_RSA_2048_PKCS1_CERT_CHAIN,
.key_file = S2N_RSA_2048_PKCS1_KEY,
.sig_scheme = &s2n_rsa_pss_rsae_sha256,
},
{
.cert_file = S2N_RSA_PSS_2048_SHA256_LEAF_CERT,
.key_file = S2N_RSA_PSS_2048_SHA256_LEAF_KEY,
.sig_scheme = &s2n_rsa_pss_pss_sha256,
},
{
.cert_file = S2N_ECDSA_P256_PKCS1_CERT_CHAIN,
.key_file = S2N_ECDSA_P256_PKCS1_KEY,
.sig_scheme = &s2n_ecdsa_sha256,
}
};
const struct s2n_signature_scheme *test_client_sig_schemes[] = {
&s2n_rsa_pss_rsae_sha256,
&s2n_rsa_pss_pss_sha256,
&s2n_ecdsa_sha256,
};
for (size_t param_idx = 0; param_idx < s2n_array_len(test_server_parameters); param_idx++) {
struct s2n_tls13_cert_verify_test server_parameters = test_server_parameters[param_idx];
DEFER_CLEANUP(struct s2n_cert_chain_and_key *cert_chain = NULL, s2n_cert_chain_and_key_ptr_free);
EXPECT_SUCCESS(s2n_test_cert_chain_and_key_new(&cert_chain, server_parameters.cert_file,
server_parameters.key_file));
DEFER_CLEANUP(struct s2n_config *config = s2n_config_new(), s2n_config_ptr_free);
EXPECT_NOT_NULL(config);
EXPECT_SUCCESS(s2n_config_set_cipher_preferences(config, "test_all_tls13"));
EXPECT_SUCCESS(s2n_config_disable_x509_verification(config));
/* The server only supports the single test certificate. Due to the fallback logic in
* the s2n-tls server, the signature algorithm corresponding with the test certificate
* will always be used to sign the CertificateVerify message, regardless of the
* client's advertised signature schemes.
*/
EXPECT_SUCCESS(s2n_config_add_cert_chain_and_key_to_store(config, cert_chain));
for (size_t sig_idx = 0; sig_idx < s2n_array_len(test_client_sig_schemes); sig_idx++) {
DEFER_CLEANUP(struct s2n_connection *server_conn = s2n_connection_new(S2N_SERVER),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(server_conn);
EXPECT_SUCCESS(s2n_connection_set_blinding(server_conn, S2N_SELF_SERVICE_BLINDING));
EXPECT_SUCCESS(s2n_connection_set_config(server_conn, config));
DEFER_CLEANUP(struct s2n_connection *client_conn = s2n_connection_new(S2N_CLIENT),
s2n_connection_ptr_free);
EXPECT_NOT_NULL(client_conn);
EXPECT_SUCCESS(s2n_connection_set_blinding(client_conn, S2N_SELF_SERVICE_BLINDING));
EXPECT_SUCCESS(s2n_connection_set_config(client_conn, config));
/* The client only supports the single test signature scheme, which allows for the
* server to sign the CertificateVerify message with a signature algorithm that
* isn't supported by the client.
*/
const struct s2n_signature_scheme *client_advertised_sig_scheme = test_client_sig_schemes[sig_idx];
struct s2n_signature_preferences test_sig_preferences = {
.count = 1,
.signature_schemes = &client_advertised_sig_scheme,
};
struct s2n_security_policy client_policy = security_policy_test_all_tls13;
client_policy.signature_preferences = &test_sig_preferences;
client_conn->security_policy_override = &client_policy;
DEFER_CLEANUP(struct s2n_test_io_pair io_pair = { 0 }, s2n_io_pair_close);
EXPECT_SUCCESS(s2n_io_pair_init_non_blocking(&io_pair));
EXPECT_SUCCESS(s2n_connections_set_io_pair(client_conn, server_conn, &io_pair));
/* Send the CertificateVerify message. */
EXPECT_OK(s2n_negotiate_test_server_and_client_until_message(server_conn, client_conn,
SERVER_CERT_VERIFY));
EXPECT_SUCCESS(s2n_stuffer_rewrite(&server_conn->handshake.io));
EXPECT_SUCCESS(s2n_tls13_cert_verify_send(server_conn));
/* Check that the expected signature algorithm was used by the server. */
EXPECT_EQUAL(server_conn->handshake_params.server_cert_sig_scheme, server_parameters.sig_scheme);
/* Overwrite the SignatureScheme field of the CertificateVerify message to lie to the
* client about which signature algorithm was used to sign the signature content. This
* will trick the client into always thinking its advertised signature algorithm was
* used.
*/
struct s2n_stuffer cert_verify_stuffer = server_conn->handshake.io;
EXPECT_SUCCESS(s2n_stuffer_rewrite(&cert_verify_stuffer));
EXPECT_SUCCESS(s2n_stuffer_write_uint16(&cert_verify_stuffer,
client_advertised_sig_scheme->iana_value));
EXPECT_SUCCESS(s2n_stuffer_wipe(&client_conn->handshake.io));
EXPECT_SUCCESS(s2n_stuffer_copy(&server_conn->handshake.io, &client_conn->handshake.io,
s2n_stuffer_data_available(&server_conn->handshake.io)));
int ret = s2n_tls13_cert_verify_recv(client_conn);
if (client_advertised_sig_scheme == server_parameters.sig_scheme) {
/* If the client's advertised signature scheme matches what the server actually
* used to sign the CertificateVerify message, validation should succeed.
*/
EXPECT_SUCCESS(ret);
} else {
/* Otherwise, the client should observe that the indicated signature algorithm
* from the server doesn't match the certificate type, and the connection
* should fail.
*/
EXPECT_FAILURE_WITH_ERRNO(ret, S2N_ERR_INVALID_SIGNATURE_ALGORITHM);
}
}
}
}
END_TEST();
}
|