1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
* Copyright (c) 2013-2016 Galois, Inc.
* Distributed under the terms of the BSD3 license (see LICENSE file)
*
* @tmd - 24 April 2015 - took Ian's SHA512, converted to SHA256
* @ian - 15 August 2015 - he lies, probably ment 2014.
*
* This is a very simple implementation of SHA256, designed to be as clearly
* mathced to the specification in NIST's FIPS-PUB-180-4 as possible
*
* * The output correctly matches on all test vectors from
* http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA256.pdf
*/
module SHA256 where
/*
* SHA256 Functions : Section 4.1.2
*/
Ch : [32] -> [32] -> [32] -> [32]
Ch x y z = (x && y) ^ (~x && z)
Maj : [32] -> [32] -> [32] -> [32]
Maj x y z = (x && y) ^ (x && z) ^ (y && z)
S0 : [32] -> [32]
S0 x = (x >>> 2) ^ (x >>> 13) ^ (x >>> 22)
S1 : [32] -> [32]
S1 x = (x >>> 6) ^ (x >>> 11) ^ (x >>> 25)
s0 : [32] -> [32]
s0 x = (x >>> 7) ^ (x >>> 18) ^ (x >> 3)
s1 : [32] -> [32]
s1 x = (x >>> 17) ^ (x >>> 19) ^ (x >> 10)
/*
* SHA256 Constants : Section 4.2.2
*/
K : [64][32]
K = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]
/*
* Preprocessing (padding and parsing) for SHA256 : Section 5.1.1 and 5.2.1
*/
preprocess : {msgLen,contentLen,chunks,padding}
( fin msgLen
, 64 >= width msgLen // message width fits in a word
, contentLen == msgLen + 65 // message + header
, chunks == (contentLen+511) / 512
, padding == (512 - contentLen % 512) % 512 // prettier if type #'s could be < 0
)
=> [msgLen] -> [chunks][512]
preprocess msg = split (msg # [True] # (zero:[padding]) # (`msgLen:[64]))
/*
* SHA256 Initial Hash Value : Section 5.3.3
*/
H0 : [8][32]
H0 = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19]
/*
* The SHA256 Hash computation : Section 6.2.2
*
* We have split the computation into a message scheduling function, corresponding
* to step 1 in the documents loop, and a compression function, corresponding to steps 2-4.
*/
SHA256MessageSchedule : [16][32] -> [64][32]
SHA256MessageSchedule M = W where
W = M # [ s1 (W@(j-2)) + (W@(j-7)) + s0 (W@(j-15)) + (W@(j-16)) | j <- [16 .. 63]:[_][8] ]
SHA256Compress : [8][32] -> [64][32] -> [8][32]
SHA256Compress H W = [as!0 + H@0, bs!0 + H@1, cs!0 + H@2, ds!0 + H@3, es!0 + H@4, fs!0 + H@5, gs!0 + H@6, hs!0 + H@7] where
T1 = [h + S1 e + Ch e f g + k + w | h <- hs | e <- es | f <- fs | g <- gs | k <- K | w <- W]
T2 = [S0 a + Maj a b c | a <- as | b <- bs | c <- cs]
hs = take `{65} ([H@7] # gs)
gs = take `{65} ([H@6] # fs)
fs = take `{65} ([H@5] # es)
es = take `{65} ([H@4] # [d + t1 | d <- ds | t1 <- T1])
ds = take `{65} ([H@3] # cs)
cs = take `{65} ([H@2] # bs)
bs = take `{65} ([H@1] # as)
as = take `{65} ([H@0] # [t1 + t2 | t1 <- T1 | t2 <- T2])
SHA256Block : [8][32] -> [16][32] -> [8][32]
SHA256Block H M = SHA256Compress H (SHA256MessageSchedule M)
//////// Functional/idiomatic top level ////////
/*
* The SHA256' function hashes a preprocessed sequence of blocks with the
* compression function. The SHA256 function hashes a sequence of bytes, and
* is more likely the function that will be similar to those seein in an
* implementation to be verified.
*/
SHA256' : {a} (fin a) => [a][16][32] -> [8][32]
SHA256' blocks = hash!0 where
hash = [H0] # [SHA256Block h b | h <- hash | b <- blocks]
SHA256 : {a} (fin a, 64 >= width (8*a)) => [a][8] -> [256]
SHA256 msg = join (SHA256' [ split x | x <- preprocess(join msg)])
property katsPass = ~zero == [test == kat | (test,kat) <- kats ]
kats = [ (SHA256 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
, 0x248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1)
, (SHA256 ""
,0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855)
, (SHA256 "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
, 0xcf5b16a778af8380036ce59e7b0492370b249b11e8f07a51afac45037afee9d1)
// , ([0x61 | i <- [1..1000000] : [_][32]]
// , 0xcdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0)
]
//////// Imperative top level ////////
type SHA256State = { h : [8][32]
, block : [64][8]
, n : [16]
, sz : [64]
}
SHA256Init : SHA256State
SHA256Init = { h = H0
, block = zero
, n = 0
, sz = 0
}
SHA256Update1 : SHA256State -> [8] -> SHA256State
SHA256Update1 s b =
if s.n == 64
then { h = SHA256Block s.h (split (join s.block))
, block = [b] # zero
, n = 1
, sz = s.sz + 8
}
else { h = s.h
, block = update s.block s.n b
, n = s.n + 1
, sz = s.sz + 8
}
SHA256Update : {n} (fin n) => SHA256State -> [n][8] -> SHA256State
SHA256Update sinit bs = ss!0
where ss = [sinit] # [ SHA256Update1 s b | s <- ss | b <- bs ]
// Add padding and size and process the final block.
SHA256Final : SHA256State -> [256]
SHA256Final s = join (SHA256Block h b')
// Because the message is always made up of bytes, and the size is a
// fixed number of bytes, the 1 pad will always be at least a byte.
where s' = SHA256Update1 s 0x80
// Don't need to add zeros. They're already there. Just update
// the count of bytes in this block. After adding the 1 pad, there
// are two possible cases: the size will fit in the current block,
// or it won't.
(h, b) = if s'.n <= 56 then (s'.h, s'.block)
else (SHA256Block s'.h (split (join s'.block)), zero)
b' = split (join b || (zero # s.sz))
SHA256Imp : {a} (64 >= width (8*a)) => [a][8] -> [256]
SHA256Imp msg = SHA256Final (SHA256Update SHA256Init msg)
property katsPassImp = ~zero == [test == kat | (test,kat) <- katsImp ]
katsImp = [ (SHA256Imp "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
, 0x248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1)
, (SHA256Imp ""
, 0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855)
, (SHA256Imp "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
, 0xcf5b16a778af8380036ce59e7b0492370b249b11e8f07a51afac45037afee9d1)
// , ([0x61 | i <- [1..1000000] : [_][32]]
// , 0xcdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0)
]
property imp_correct msg = SHA256 msg == SHA256Imp msg
|