File: dispatch_queue_event_loop.c

package info (click to toggle)
aws-crt-python 0.28.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,428 kB
  • sloc: ansic: 437,955; python: 27,657; makefile: 5,855; sh: 4,289; ruby: 208; java: 82; perl: 73; cpp: 25; xml: 11
file content (757 lines) | stat: -rw-r--r-- 32,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/io/event_loop.h>
#include <aws/io/private/event_loop_impl.h>

#include <aws/common/clock.h>
#include <aws/common/mutex.h>
#include <aws/common/task_scheduler.h>
#include <aws/common/uuid.h>

#include <aws/io/logging.h>

#include <unistd.h>

#include "./dispatch_queue_event_loop_private.h" // private header
#include <dispatch/dispatch.h>
#include <dispatch/queue.h>

// Maximum amount of time we schedule event loop service tasks out into the future.  This bounds the maximum
// amount of time we have to wait for those scheduled tasks to resolve during shutdown, which in turn bounds
// how long shutdown can take.
//
// Start with a second for now.
#define AWS_DISPATCH_QUEUE_MAX_FUTURE_SERVICE_INTERVAL (AWS_TIMESTAMP_NANOS)

static void s_start_destroy(struct aws_event_loop *event_loop);
static void s_complete_destroy(struct aws_event_loop *event_loop);
static int s_run(struct aws_event_loop *event_loop);
static int s_stop(struct aws_event_loop *event_loop);
static int s_wait_for_stop_completion(struct aws_event_loop *event_loop);
static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task);
static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos);
static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task);
static int s_connect_to_io_completion_port(struct aws_event_loop *event_loop, struct aws_io_handle *handle);
static int s_subscribe_to_io_events(
    struct aws_event_loop *event_loop,
    struct aws_io_handle *handle,
    int events,
    aws_event_loop_on_event_fn *on_event,
    void *user_data) {
    (void)event_loop;
    (void)handle;
    (void)events;
    (void)on_event;
    (void)user_data;
    AWS_LOGF_ERROR(
        AWS_LS_IO_EVENT_LOOP,
        "id=%p: subscribe_to_io_events() is not supported using Dispatch Queue Event Loops",
        (void *)event_loop);
    return aws_raise_error(AWS_ERROR_PLATFORM_NOT_SUPPORTED);
}
static int s_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
    (void)handle;
    AWS_LOGF_ERROR(
        AWS_LS_IO_EVENT_LOOP,
        "id=%p: unsubscribe_from_io_events() is not supported using Dispatch Queue Event Loops",
        (void *)event_loop);
    return aws_raise_error(AWS_ERROR_PLATFORM_NOT_SUPPORTED);
}
static void s_free_io_event_resources(void *user_data) {
    /* No io event resources to free */
    (void)user_data;
}
static bool s_is_on_callers_thread(struct aws_event_loop *event_loop);

static struct aws_event_loop_vtable s_vtable = {
    .start_destroy = s_start_destroy,
    .complete_destroy = s_complete_destroy,
    .run = s_run,
    .stop = s_stop,
    .wait_for_stop_completion = s_wait_for_stop_completion,
    .schedule_task_now = s_schedule_task_now,
    /* dispatch queue event loop impl does not have any short-circuiting, so just use the base scheduling logic */
    .schedule_task_now_serialized = s_schedule_task_now,
    .schedule_task_future = s_schedule_task_future,
    .cancel_task = s_cancel_task,
    .connect_to_io_completion_port = s_connect_to_io_completion_port,
    .subscribe_to_io_events = s_subscribe_to_io_events,
    .unsubscribe_from_io_events = s_unsubscribe_from_io_events,
    .free_io_event_resources = s_free_io_event_resources,
    .is_on_callers_thread = s_is_on_callers_thread,
};

/**
 * DISPATCH QUEUE
 *
 * Event loop is responsible for processing events and tasks by launching an execution loop on a single thread. Each
 * iteration of this loop performs three primary jobs:
 * 1. Process I/O events.
 * 2. Process cross-thread tasks.
 * 3. Execute all runnable tasks.
 *
 * Apple Dispatch queues can be given a concurrent or serial attribute on creation. We use Serial Dispatch Queues that
 * are FIFO queues to which the application can submit tasks in the form of block objects. The block objects will be
 * executed on a system defined thread pool. Instead of executing the loop on a single thread, we recurrently run
 * iterations of the execution loop as dispatch queue block objects. aws-c-io library uses a serial dispatch
 * queue to insure the tasks scheduled on the event loop task scheduler are executed in the correct order.
 *
 * Data Structures ******
 * `scheduled_iteration_entry `: Each entry maps to an execution block submitted to Apple's dispatch queue. Since Apple
 * ensures the dispatch queue remains active until all scheduled blocks have been executed, it is necessary to keep the
 * aws_dispatch_loop alive accordingly. This is achieved by holding a reference to aws_dispatch_loop within each entry.
 * An entry is created upon block submission and is destroyed once the block has been executed, preventing premature
 * deallocation of the dispatch loop.
 *
 * `dispatch_loop`: Implementation of the event loop for dispatch queue.
 *
 * Functions ************
 * `s_run_iteration`: This function represents the block scheduled in `scheduled_iteration_entry`'s
 */

/* Help functions to lock status */

/* The synced_data_lock is held when any member of `aws_dispatch_loop`'s `synced_data` is accessed or modified */
static int s_lock_synced_data(struct aws_dispatch_loop *dispatch_loop) {
    return aws_mutex_lock(&dispatch_loop->synced_data.synced_data_lock);
}

static int s_unlock_synced_data(struct aws_dispatch_loop *dispatch_loop) {
    return aws_mutex_unlock(&dispatch_loop->synced_data.synced_data_lock);
}

static struct aws_dispatch_loop *s_dispatch_loop_acquire(struct aws_dispatch_loop *dispatch_loop) {
    if (dispatch_loop) {
        aws_ref_count_acquire(&dispatch_loop->ref_count);
    }

    return dispatch_loop;
}

static void s_dispatch_loop_release(struct aws_dispatch_loop *dispatch_loop) {
    if (dispatch_loop) {
        aws_ref_count_release(&dispatch_loop->ref_count);
    }
}

/*
 * The data structure used to track the dispatch queue execution iteration (block). Each entry is associated with
 * a block scheduled on Apple Dispatch Queue that runs a service iteration.
 */
struct scheduled_iteration_entry {
    struct aws_allocator *allocator;
    uint64_t timestamp;
    struct aws_linked_list_node scheduled_entry_node;
    struct aws_dispatch_loop *dispatch_loop;
};

/*
 * Allocates and returns a new memory alocated `scheduled_iteration_entry` struct
 * All scheduled_iteration_entry structs must have `s_scheduled_iteration_entry_destroy()` called on them.
 */
static struct scheduled_iteration_entry *s_scheduled_iteration_entry_new(
    struct aws_dispatch_loop *dispatch_loop,
    uint64_t timestamp) {
    struct scheduled_iteration_entry *entry =
        aws_mem_calloc(dispatch_loop->allocator, 1, sizeof(struct scheduled_iteration_entry));

    entry->allocator = dispatch_loop->allocator;
    entry->timestamp = timestamp;
    entry->dispatch_loop = s_dispatch_loop_acquire(dispatch_loop);

    return entry;
}

/*
 * Cleans up the memory allocated for a `scheduled_iteration_entry`.
 */
static void s_scheduled_iteration_entry_destroy(struct scheduled_iteration_entry *entry) {
    if (!entry) {
        return;
    }

    struct aws_dispatch_loop *dispatch_loop_for_release = entry->dispatch_loop;
    aws_mem_release(entry->allocator, entry);
    s_dispatch_loop_release(dispatch_loop_for_release);
}

/* Manually called to destroy an aws_event_loop */
static void s_dispatch_event_loop_final_destroy(struct aws_event_loop *event_loop) {
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    if (aws_task_scheduler_is_valid(&dispatch_loop->scheduler)) {
        aws_task_scheduler_clean_up(&dispatch_loop->scheduler);
    }

    dispatch_release(dispatch_loop->dispatch_queue);
    aws_mutex_clean_up(&dispatch_loop->synced_data.synced_data_lock);
    aws_condition_variable_clean_up(&dispatch_loop->synced_data.signal);
    // We don't need to clean up the dispatch_loop->synced_data.scheduled_iterations, as all scheduling entries should
    // have cleaned up before destroy call.
    aws_mem_release(dispatch_loop->allocator, dispatch_loop);
    aws_event_loop_clean_up_base(event_loop);
    aws_mem_release(event_loop->alloc, event_loop);

    aws_thread_decrement_unjoined_count();

    AWS_LOGF_DEBUG(AWS_LS_IO_EVENT_LOOP, "id=%p: Destroyed Dispatch Queue Event Loop.", (void *)event_loop);
}

static const char AWS_LITERAL_APPLE_DISPATCH_QUEUE_ID_PREFIX[] = "com.amazonaws.commonruntime.eventloop.";
static const size_t AWS_IO_APPLE_DISPATCH_QUEUE_ID_PREFIX_LENGTH =
    AWS_ARRAY_SIZE(AWS_LITERAL_APPLE_DISPATCH_QUEUE_ID_PREFIX) - 1; // remove string terminator
static const size_t AWS_IO_APPLE_DISPATCH_QUEUE_ID_LENGTH =
    AWS_IO_APPLE_DISPATCH_QUEUE_ID_PREFIX_LENGTH + AWS_UUID_STR_LEN;
/**
 * Generates a unique identifier for a dispatch queue in the format "com.amazonaws.commonruntime.eventloop.<UUID>".
 * This identifier will be stored in the provided `result` buffer.
 */
static void s_get_unique_dispatch_queue_id(char result[AWS_IO_APPLE_DISPATCH_QUEUE_ID_LENGTH]) {
    struct aws_uuid uuid;
    AWS_FATAL_ASSERT(aws_uuid_init(&uuid) == AWS_OP_SUCCESS);
    char uuid_str[AWS_UUID_STR_LEN] = {0};
    struct aws_byte_buf uuid_buf = aws_byte_buf_from_array(uuid_str, sizeof(uuid_str));
    uuid_buf.len = 0;
    aws_uuid_to_str(&uuid, &uuid_buf);

    memcpy(result, AWS_LITERAL_APPLE_DISPATCH_QUEUE_ID_PREFIX, AWS_IO_APPLE_DISPATCH_QUEUE_ID_PREFIX_LENGTH);
    memcpy(result + AWS_IO_APPLE_DISPATCH_QUEUE_ID_PREFIX_LENGTH, uuid_buf.buffer, uuid_buf.len);
}

static void s_dispatch_event_loop_on_zero_ref_count(void *user_data) {
    struct aws_dispatch_loop *dispatch_loop = user_data;
    if (dispatch_loop == NULL) {
        return;
    }

    s_lock_synced_data(dispatch_loop);
    AWS_FATAL_ASSERT(dispatch_loop->synced_data.execution_state == AWS_DLES_SHUTTING_DOWN);
    dispatch_loop->synced_data.execution_state = AWS_DLES_TERMINATED;
    s_unlock_synced_data(dispatch_loop);

    aws_condition_variable_notify_all(&dispatch_loop->synced_data.signal);
}

/* Setup a dispatch_queue with a scheduler. */
struct aws_event_loop *aws_event_loop_new_with_dispatch_queue(
    struct aws_allocator *alloc,
    const struct aws_event_loop_options *options) {
    AWS_PRECONDITION(options);
    AWS_PRECONDITION(options->clock);

    struct aws_dispatch_loop *dispatch_loop = NULL;
    struct aws_event_loop *loop = aws_mem_calloc(alloc, 1, sizeof(struct aws_event_loop));

    AWS_LOGF_DEBUG(AWS_LS_IO_EVENT_LOOP, "id=%p: Initializing Dispatch Queue Event Loop", (void *)loop);
    if (aws_event_loop_init_base(loop, alloc, options->clock)) {
        goto clean_up;
    }

    loop->vtable = &s_vtable;
    loop->base_elg = options->parent_elg;

    dispatch_loop = aws_mem_calloc(alloc, 1, sizeof(struct aws_dispatch_loop));
    dispatch_loop->allocator = alloc;
    loop->impl_data = dispatch_loop;
    dispatch_loop->base_loop = loop;
    dispatch_loop->synced_data.execution_state = AWS_DLES_SUSPENDED;
    aws_ref_count_init(&dispatch_loop->ref_count, dispatch_loop, s_dispatch_event_loop_on_zero_ref_count);

    if (aws_condition_variable_init(&dispatch_loop->synced_data.signal)) {
        goto clean_up;
    }

    if (aws_mutex_init(&dispatch_loop->synced_data.synced_data_lock)) {
        goto clean_up;
    }

    aws_thread_increment_unjoined_count();

    char dispatch_queue_id[AWS_IO_APPLE_DISPATCH_QUEUE_ID_LENGTH] = {0};
    s_get_unique_dispatch_queue_id(dispatch_queue_id);

    /*
     * Apple API dispatch_queue_create returns a dispatch_queue_t. This cannot fail and will crash if it does.
     * A reference to the dispatch queue is retained and must be released explicitly with dispatch_release().
     */
    dispatch_loop->dispatch_queue = dispatch_queue_create(dispatch_queue_id, DISPATCH_QUEUE_SERIAL);

    /*
     * Calling `dispatch_suspend()` on a dispatch queue instructs the dispatch queue to not run any further blocks.
     * Suspending a dispatch_queue will increase the dispatch queue's suspension count and Apple will not release the
     * dispatch_queue. A suspended dispatch queue must be resumed before it can be fully released. We suspend the newly
     * created Apple dispatch queue here to conform with other event loop types. A new event loop is expected to
     * be in a stopped state until run is called.
     *
     * We call `s_run()` during the destruction of the event loop to insure both the execution of the cleanup/destroy
     * task as well as to release the Apple suspension count.
     */
    dispatch_suspend(dispatch_loop->dispatch_queue);

    AWS_LOGF_INFO(
        AWS_LS_IO_EVENT_LOOP, "id=%p: Apple dispatch queue created with id: %s", (void *)loop, dispatch_queue_id);

    /* The dispatch queue is suspended at this point. */
    dispatch_loop->synced_data.is_executing = false;

    if (aws_task_scheduler_init(&dispatch_loop->scheduler, alloc)) {
        AWS_LOGF_ERROR(AWS_LS_IO_EVENT_LOOP, "id=%p: Initialization of task scheduler failed", (void *)loop);
        goto clean_up;
    }

    aws_linked_list_init(&dispatch_loop->synced_data.cross_thread_tasks);
    aws_linked_list_init(&dispatch_loop->synced_data.scheduled_iterations);

    return loop;

clean_up:
    if (dispatch_loop) {
        if (dispatch_loop->dispatch_queue) {
            /*
             * We resume the dispatch queue in the event it has been suspended to decrement the suspension count placed
             * on the dispatch queue by suspending it.
             */
            dispatch_resume(dispatch_loop->dispatch_queue);
        }

        /*
         * We intentionally bypass the ref-count-initiated destruction and go directly to the final destroy here.
         * The ref-counting mechanism is only for event loops that are successfully created (and thus get destroyed
         * by _start_destroy -> _complete_destroy)
         */
        s_dispatch_event_loop_final_destroy(loop);
    } else {
        aws_mem_release(alloc, loop);
    }
    return NULL;
}

static void s_dispatch_queue_purge_cross_thread_tasks(void *context) {
    struct aws_dispatch_loop *dispatch_loop = context;
    AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: Releasing Dispatch Queue.", (void *)dispatch_loop->base_loop);

    s_lock_synced_data(dispatch_loop);
    dispatch_loop->synced_data.current_thread_id = aws_thread_current_thread_id();
    dispatch_loop->synced_data.is_executing = true;
    s_unlock_synced_data(dispatch_loop);

    AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: Cancelling scheduled tasks.", (void *)dispatch_loop->base_loop);
    /* Cancel all tasks currently scheduled in the task scheduler. */
    aws_task_scheduler_clean_up(&dispatch_loop->scheduler);

    struct aws_linked_list local_cross_thread_tasks;
    aws_linked_list_init(&local_cross_thread_tasks);

    bool done = false;
    while (!done) {
        /* Swap tasks from cross_thread_tasks into local_cross_thread_tasks to cancel them. */
        s_lock_synced_data(dispatch_loop);
        aws_linked_list_swap_contents(&dispatch_loop->synced_data.cross_thread_tasks, &local_cross_thread_tasks);
        s_unlock_synced_data(dispatch_loop);

        if (aws_linked_list_empty(&local_cross_thread_tasks)) {
            done = true;
        }

        /* Cancel all tasks that were in cross_thread_tasks */
        while (!aws_linked_list_empty(&local_cross_thread_tasks)) {
            struct aws_linked_list_node *node = aws_linked_list_pop_front(&local_cross_thread_tasks);
            struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
            task->fn(task, task->arg, AWS_TASK_STATUS_CANCELED);
        }
    }

    s_lock_synced_data(dispatch_loop);
    dispatch_loop->synced_data.is_executing = false;
    s_unlock_synced_data(dispatch_loop);
}

static void s_start_destroy(struct aws_event_loop *event_loop) {
    AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: Starting to destroy Dispatch Queue Event Loop", (void *)event_loop);
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    s_lock_synced_data(dispatch_loop);
    enum aws_dispatch_loop_execution_state execution_state = dispatch_loop->synced_data.execution_state;
    AWS_FATAL_ASSERT(execution_state == AWS_DLES_RUNNING || execution_state == AWS_DLES_SUSPENDED);
    if (execution_state == AWS_DLES_SUSPENDED) {
        dispatch_resume(dispatch_loop->dispatch_queue);
    }
    dispatch_loop->synced_data.execution_state = AWS_DLES_SHUTTING_DOWN;
    s_unlock_synced_data(dispatch_loop);
}

static bool s_wait_for_terminated_state(void *user_data) {
    struct aws_dispatch_loop *dispatch_loop = user_data;

    return dispatch_loop->synced_data.execution_state == AWS_DLES_TERMINATED;
}

static void s_complete_destroy(struct aws_event_loop *event_loop) {
    AWS_LOGF_TRACE(
        AWS_LS_IO_EVENT_LOOP, "id=%p: Completing destruction of Dispatch Queue Event Loop", (void *)event_loop);
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    // This would be deadlock
    AWS_FATAL_ASSERT(!aws_event_loop_thread_is_callers_thread(event_loop));

    /*
     * This is the release of the initial ref count of 1 that the event loop was created with.
     */
    s_dispatch_loop_release(dispatch_loop);

    s_lock_synced_data(dispatch_loop);
    aws_condition_variable_wait_pred(
        &dispatch_loop->synced_data.signal,
        &dispatch_loop->synced_data.synced_data_lock,
        s_wait_for_terminated_state,
        dispatch_loop);
    s_unlock_synced_data(dispatch_loop);

    /*
     * There are no more references to the dispatch loop anywhere.  Purge any remaining cross thread tasks.
     */
    s_dispatch_queue_purge_cross_thread_tasks(dispatch_loop);

    /*
     * We know that all scheduling entries have cleaned up.  We can destroy ourselves now.  Upon return, the caller
     * is guaranteed that all memory related to the event loop has been released,
     */
    s_dispatch_event_loop_final_destroy(event_loop);
}

static int s_wait_for_stop_completion(struct aws_event_loop *event_loop) {
    (void)event_loop;
    /*
     * This is typically called as part of the destroy process to merge running threads during cleanup. The nature
     * of dispatch queue and Apple handling cleanup using its own reference counting system only requires us to
     * drop all references to the dispatch queue and to leave it in a resumed state with no further blocks
     * scheduled to run.
     *
     * We do not call `stop()` on the dispatch loop because a suspended dispatch queue retains a
     * refcount and Apple will not release the dispatch loop.
     */

    return AWS_OP_SUCCESS;
}

static void s_try_schedule_new_iteration(struct aws_dispatch_loop *dispatch_loop, uint64_t timestamp);

/*
 * Called to resume a suspended dispatch queue.
 */
static int s_run(struct aws_event_loop *event_loop) {
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    s_lock_synced_data(dispatch_loop);
    if (dispatch_loop->synced_data.execution_state == AWS_DLES_SUSPENDED) {
        AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: Starting event-loop thread.", (void *)event_loop);
        dispatch_loop->synced_data.execution_state = AWS_DLES_RUNNING;
        dispatch_resume(dispatch_loop->dispatch_queue);
        s_try_schedule_new_iteration(dispatch_loop, 0);
    }
    s_unlock_synced_data(dispatch_loop);

    return AWS_OP_SUCCESS;
}

/*
 * Called to suspend dispatch queue
 */
static int s_stop(struct aws_event_loop *event_loop) {
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    s_lock_synced_data(dispatch_loop);
    if (dispatch_loop->synced_data.execution_state == AWS_DLES_RUNNING) {
        dispatch_loop->synced_data.execution_state = AWS_DLES_SUSPENDED;
        AWS_LOGF_INFO(
            AWS_LS_IO_EVENT_LOOP, "id=%p: Suspending event loop's dispatch queue thread.", (void *)event_loop);

        /*
         * Suspend will increase the Apple's refcount on the dispatch queue. For Apple to fully release the dispatch
         * queue, `dispatch_resume()` must be called on the dispatch queue to release the acquired refcount. Manually
         * decreffing the dispatch queue will result in undetermined behavior.
         */
        dispatch_suspend(dispatch_loop->dispatch_queue);
    }
    s_unlock_synced_data(dispatch_loop);

    return AWS_OP_SUCCESS;
}

/*
 * This function is scheduled as a block to run on Apple's dispatch queue. It will only ever be executed on an Apple
 * dispatch queue and upon completion, will determine whether or not to schedule another iteration of itself on the
 * Apple dispatch queue.
 */
static void s_run_iteration(void *service_entry) {
    struct scheduled_iteration_entry *entry = service_entry;
    struct aws_dispatch_loop *dispatch_loop = entry->dispatch_loop;

    s_lock_synced_data(dispatch_loop);

    AWS_FATAL_ASSERT(aws_linked_list_node_is_in_list(&entry->scheduled_entry_node));
    aws_linked_list_remove(&entry->scheduled_entry_node);

    /*
     * If we're shutting down, then don't do anything.  The destroy task handles purging and canceling tasks.
     *
     * Note that is possible race-wise to end up with execution_state being SUSPENDED here.  In that case, just run
     * normally.
     */
    if (entry->dispatch_loop->synced_data.execution_state == AWS_DLES_SHUTTING_DOWN) {
        goto done;
    }

    dispatch_loop->synced_data.current_thread_id = aws_thread_current_thread_id();
    dispatch_loop->synced_data.is_executing = true;

    // swap the cross-thread tasks into task-local data
    struct aws_linked_list local_cross_thread_tasks;
    aws_linked_list_init(&local_cross_thread_tasks);
    aws_linked_list_swap_contents(&dispatch_loop->synced_data.cross_thread_tasks, &local_cross_thread_tasks);

    s_unlock_synced_data(dispatch_loop);

    // run the full iteration here: local cross-thread tasks
    while (!aws_linked_list_empty(&local_cross_thread_tasks)) {
        struct aws_linked_list_node *node = aws_linked_list_pop_front(&local_cross_thread_tasks);
        struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);

        /*
         * Timestamp 0 is used to denote "now" tasks
         *
         * Because is_executing is true, no additional entries will be scheduled by these invocations.
         */
        if (task->timestamp == 0) {
            aws_task_scheduler_schedule_now(&dispatch_loop->scheduler, task);
        } else {
            aws_task_scheduler_schedule_future(&dispatch_loop->scheduler, task, task->timestamp);
        }
    }

    aws_event_loop_register_tick_start(dispatch_loop->base_loop);
    // run all scheduled tasks
    uint64_t now_ns = 0;
    aws_event_loop_current_clock_time(dispatch_loop->base_loop, &now_ns);
    AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: running scheduled tasks.", (void *)dispatch_loop->base_loop);
    aws_task_scheduler_run_all(&dispatch_loop->scheduler, now_ns);
    aws_event_loop_register_tick_end(dispatch_loop->base_loop);

    /* end of iteration cleanup and rescheduling */

    s_lock_synced_data(dispatch_loop);

    dispatch_loop->synced_data.is_executing = false;

    bool should_schedule = false;
    uint64_t should_schedule_at_time = 0;
    /*
     * We first check if there were any cross thread tasks scheduled during the execution of the current
     * iteration. If there were, we schedule a new iteration to execute immediately during which cross thread tasks
     * will be migrated into the dispatch_loop->scheduler.
     */
    if (!aws_linked_list_empty(&dispatch_loop->synced_data.cross_thread_tasks)) {
        should_schedule = true;
    }
    /*
     * If we are not scheduling a new iteration for immediate executuion, we check whether there are any tasks scheduled
     * to execute now or in the future and scheudle the next iteration using that time.
     */
    else if (aws_task_scheduler_has_tasks(&dispatch_loop->scheduler, &should_schedule_at_time)) {
        should_schedule = true;
    }

    if (should_schedule) {
        s_try_schedule_new_iteration(dispatch_loop, should_schedule_at_time);
    }

done:

    s_unlock_synced_data(dispatch_loop);

    /* destroy the completed service entry. */
    s_scheduled_iteration_entry_destroy(entry);
}

/**
 * Helper function to check if another scheduled iteration already exists that will handle our needs.
 *
 * The function should be wrapped with the synced_data_lock to safely access the scheduled_iterations list
 */
static bool s_should_schedule_iteration(
    struct aws_linked_list *scheduled_iterations,
    uint64_t proposed_iteration_time) {
    if (aws_linked_list_empty(scheduled_iterations)) {
        return true;
    }

    struct aws_linked_list_node *entry_node = aws_linked_list_front(scheduled_iterations);
    AWS_FATAL_ASSERT(entry_node != NULL);
    struct scheduled_iteration_entry *entry =
        AWS_CONTAINER_OF(entry_node, struct scheduled_iteration_entry, scheduled_entry_node);
    AWS_FATAL_ASSERT(entry != NULL);

    /* is the next scheduled iteration later than what we require? */
    return entry->timestamp > proposed_iteration_time;
}

/**
 * Checks if a new iteration task needs to be scheduled, given a target timestamp. If so, submits an iteration task to
 * dispatch queue and registers the pending execution in the event loop's list of scheduled_services.
 *
 * If timestamp == 0, the function will always schedule a new iteration as long as the event loop is not suspended or
 * being destroyed.
 *
 * This function should be wrapped with the synced_data_lock as it reads and writes to and from
 * aws_dispatch_loop->sycned_data
 */
static void s_try_schedule_new_iteration(struct aws_dispatch_loop *dispatch_loop, uint64_t timestamp) {
    if (dispatch_loop->synced_data.execution_state != AWS_DLES_RUNNING || dispatch_loop->synced_data.is_executing) {
        return;
    }

    /**
     * Apple dispatch queue uses automatic reference counting (ARC). If an iteration is scheduled to run in the future,
     * the dispatch queue will persist until it is executed. Scheduling a block far into the future will keep the
     * dispatch queue alive unnecessarily long, which blocks event loop group shutdown from completion.
     * To mitigate this, we ensure an iteration is scheduled no longer than
     * AWS_DISPATCH_QUEUE_MAX_FUTURE_SERVICE_INTERVAL second in the future.
     */
    uint64_t now_ns = 0;
    aws_event_loop_current_clock_time(dispatch_loop->base_loop, &now_ns);
    uint64_t delta = timestamp > now_ns ? timestamp - now_ns : 0;
    delta = aws_min_u64(delta, AWS_DISPATCH_QUEUE_MAX_FUTURE_SERVICE_INTERVAL);
    uint64_t clamped_timestamp = now_ns + delta;

    if (!s_should_schedule_iteration(&dispatch_loop->synced_data.scheduled_iterations, clamped_timestamp)) {
        return;
    }

    struct scheduled_iteration_entry *entry = s_scheduled_iteration_entry_new(dispatch_loop, clamped_timestamp);
    aws_linked_list_push_front(&dispatch_loop->synced_data.scheduled_iterations, &entry->scheduled_entry_node);

    if (delta == 0) {
        /*
         * If the timestamp was set to execute immediately or in the past we schedule `s_run_iteration()` to run
         * immediately using `dispatch_async_f()` which schedules a block to run on the dispatch queue in a FIFO order.
         */
        dispatch_async_f(dispatch_loop->dispatch_queue, entry, s_run_iteration);
        AWS_LOGF_TRACE(
            AWS_LS_IO_EVENT_LOOP, "id=%p: Scheduling run iteration on event loop.", (void *)dispatch_loop->base_loop);
    } else {
        /*
         * If the timestamp is set to execute sometime in the future, we clamp the time based on a maximum delta,
         * convert the time to the format dispatch queue expects, and then schedule `s_run_iteration()` to run in the
         * future using `dispatch_after_f()`. `dispatch_after_f()` does not immediately place the block onto the
         * dispatch queue but instead obtains a refcount of Apple's dispatch queue and then schedules onto it at the
         * requested time. Any blocks scheduled using `dispatch_async_f()` or `dispatch_after_f()` with a closer
         * dispatch time will be placed on the dispatch queue and execute in order.
         */
        dispatch_time_t when = dispatch_time(DISPATCH_TIME_NOW, delta);
        dispatch_after_f(when, dispatch_loop->dispatch_queue, entry, s_run_iteration);
        AWS_LOGF_TRACE(
            AWS_LS_IO_EVENT_LOOP,
            "id=%p: Scheduling future run iteration on event loop with next occurring in %llu ns.",
            (void *)dispatch_loop->base_loop,
            delta);
    }
}

static void s_schedule_task_common(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;
    task->timestamp = run_at_nanos;

    AWS_LOGF_TRACE(
        AWS_LS_IO_EVENT_LOOP,
        "id=%p: Scheduling %s task %p cross-thread for timestamp %llu",
        (void *)event_loop,
        task->type_tag,
        (void *)task,
        (unsigned long long)run_at_nanos);

    s_lock_synced_data(dispatch_loop);
    /*
     * As we dont have sustained control of a specific thread when using Apple's dispatch queue. All tasks are treated
     * as cross thread tasks that will be added to the aws_dispatch_loop's task scheduler in `s_run_iteration()`.
     */
    aws_linked_list_push_back(&dispatch_loop->synced_data.cross_thread_tasks, &task->node);

    /*
     * `s_try_schedule_new_iteration()` will determine whether the addition of this task will require a new
     * scheduled_iteration_entry needs to be scheduled on the dispatch queue.
     */
    s_try_schedule_new_iteration(dispatch_loop, run_at_nanos);

    s_unlock_synced_data(dispatch_loop);
}

static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task) {
    s_schedule_task_common(event_loop, task, 0 /* zero denotes "now" task */);
}

static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
    s_schedule_task_common(event_loop, task, run_at_nanos);
}

static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task) {
    AWS_LOGF_TRACE(
        AWS_LS_IO_EVENT_LOOP, "id=%p: cancelling %s task %p", (void *)event_loop, task->type_tag, (void *)task);
    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;

    /* First we move all cross thread tasks into the scheduler in case the task to be cancelled hasn't moved yet. */
    struct aws_linked_list local_cross_thread_tasks;
    aws_linked_list_init(&local_cross_thread_tasks);
    s_lock_synced_data(dispatch_loop);
    aws_linked_list_swap_contents(&dispatch_loop->synced_data.cross_thread_tasks, &local_cross_thread_tasks);
    s_unlock_synced_data(dispatch_loop);
    while (!aws_linked_list_empty(&local_cross_thread_tasks)) {
        struct aws_linked_list_node *node = aws_linked_list_pop_front(&local_cross_thread_tasks);
        struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);

        /* Timestamp 0 is used to denote "now" tasks */
        if (task->timestamp == 0) {
            aws_task_scheduler_schedule_now(&dispatch_loop->scheduler, task);
        } else {
            aws_task_scheduler_schedule_future(&dispatch_loop->scheduler, task, task->timestamp);
        }
    }

    /* Then we attempt to cancel the task. */
    aws_task_scheduler_cancel_task(&dispatch_loop->scheduler, task);
}

/*
 * We use this to obtain a direct pointer to the underlying dispatch queue. This is required to perform various
 * operations in the socket, socket handler, and probably anything else that requires use of Apple API needing a
 * dispatch queue.
 */
static int s_connect_to_io_completion_port(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
    AWS_PRECONDITION(handle->set_queue);
    AWS_LOGF_TRACE(
        AWS_LS_IO_EVENT_LOOP,
        "id=%p: subscribing to events on handle %p",
        (void *)event_loop,
        (void *)handle->data.handle);

    struct aws_dispatch_loop *dispatch_loop = event_loop->impl_data;
    handle->set_queue(handle, dispatch_loop->dispatch_queue);

    return AWS_OP_SUCCESS;
}

/*
 * We use aws_thread_id_equal with syched_data.current_thread_id and synced_data.is_executing to determine
 * if operation is being executed on the same dispatch queue thread.
 */
static bool s_is_on_callers_thread(struct aws_event_loop *event_loop) {
    struct aws_dispatch_loop *dispatch_queue = event_loop->impl_data;
    s_lock_synced_data(dispatch_queue);
    bool result =
        dispatch_queue->synced_data.is_executing &&
        aws_thread_thread_id_equal(dispatch_queue->synced_data.current_thread_id, aws_thread_current_thread_id());
    s_unlock_synced_data(dispatch_queue);
    return result;
}