1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_hkdf.h"
#include "crypto/s2n_fips.h"
#include "crypto/s2n_hmac.h"
#include "error/s2n_errno.h"
#include "stuffer/s2n_stuffer.h"
#include "utils/s2n_blob.h"
#include "utils/s2n_mem.h"
#include "utils/s2n_safety.h"
#ifdef S2N_LIBCRYPTO_SUPPORTS_HKDF
#include <openssl/hkdf.h>
#endif
#define MAX_DIGEST_SIZE 64 /* Current highest is SHA512 */
#define MAX_HKDF_ROUNDS 255
/* Reference: RFC 5869 */
struct s2n_hkdf_impl {
int (*hkdf)(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output);
int (*hkdf_extract)(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key);
int (*hkdf_expand)(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *pseudo_rand_key,
const struct s2n_blob *info, struct s2n_blob *output);
};
static int s2n_custom_hkdf_extract(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key)
{
uint8_t hmac_size = 0;
POSIX_GUARD(s2n_hmac_digest_size(alg, &hmac_size));
POSIX_ENSURE(hmac_size <= pseudo_rand_key->size, S2N_ERR_HKDF_OUTPUT_SIZE);
pseudo_rand_key->size = hmac_size;
POSIX_GUARD(s2n_hmac_init(hmac, alg, salt->data, salt->size));
POSIX_GUARD(s2n_hmac_update(hmac, key->data, key->size));
POSIX_GUARD(s2n_hmac_digest(hmac, pseudo_rand_key->data, pseudo_rand_key->size));
POSIX_GUARD(s2n_hmac_reset(hmac));
return S2N_SUCCESS;
}
static int s2n_custom_hkdf_expand(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *pseudo_rand_key, const struct s2n_blob *info, struct s2n_blob *output)
{
uint8_t prev[MAX_DIGEST_SIZE] = { 0 };
uint32_t done_len = 0;
uint8_t hash_len = 0;
POSIX_GUARD(s2n_hmac_digest_size(alg, &hash_len));
POSIX_ENSURE_GT(hash_len, 0);
uint32_t total_rounds = output->size / hash_len;
if (output->size % hash_len) {
total_rounds++;
}
POSIX_ENSURE(total_rounds > 0, S2N_ERR_HKDF_OUTPUT_SIZE);
POSIX_ENSURE(total_rounds <= MAX_HKDF_ROUNDS, S2N_ERR_HKDF_OUTPUT_SIZE);
for (uint32_t curr_round = 1; curr_round <= total_rounds; curr_round++) {
uint32_t cat_len = 0;
POSIX_GUARD(s2n_hmac_init(hmac, alg, pseudo_rand_key->data, pseudo_rand_key->size));
if (curr_round != 1) {
POSIX_GUARD(s2n_hmac_update(hmac, prev, hash_len));
}
POSIX_GUARD(s2n_hmac_update(hmac, info->data, info->size));
uint8_t curr_round_byte = curr_round;
POSIX_GUARD(s2n_hmac_update(hmac, &curr_round_byte, 1));
POSIX_GUARD(s2n_hmac_digest(hmac, prev, hash_len));
cat_len = hash_len;
if (done_len + hash_len > output->size) {
cat_len = output->size - done_len;
}
POSIX_CHECKED_MEMCPY(output->data + done_len, prev, cat_len);
done_len += cat_len;
POSIX_GUARD(s2n_hmac_reset(hmac));
}
return S2N_SUCCESS;
}
static int s2n_custom_hkdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output)
{
uint8_t prk_pad[MAX_DIGEST_SIZE] = { 0 };
struct s2n_blob pseudo_rand_key = { 0 };
POSIX_GUARD(s2n_blob_init(&pseudo_rand_key, prk_pad, sizeof(prk_pad)));
POSIX_GUARD(s2n_custom_hkdf_extract(hmac, alg, salt, key, &pseudo_rand_key));
POSIX_GUARD(s2n_custom_hkdf_expand(hmac, alg, &pseudo_rand_key, info, output));
return S2N_SUCCESS;
}
const struct s2n_hkdf_impl s2n_custom_hkdf_impl = {
.hkdf = &s2n_custom_hkdf,
.hkdf_extract = &s2n_custom_hkdf_extract,
.hkdf_expand = &s2n_custom_hkdf_expand,
};
#ifdef S2N_LIBCRYPTO_SUPPORTS_HKDF
static int s2n_libcrypto_hkdf_extract(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key)
{
const EVP_MD *digest = NULL;
POSIX_GUARD_RESULT(s2n_hmac_md_from_alg(alg, &digest));
/* The out_len argument of HKDF_extract is set to the number of bytes written to out_key, and
* is not used to ensure that out_key is large enough to contain the PRK. Ensure that the PRK
* output will fit in the blob.
*/
uint8_t hmac_size = 0;
POSIX_GUARD(s2n_hmac_digest_size(alg, &hmac_size));
POSIX_ENSURE(hmac_size <= pseudo_rand_key->size, S2N_ERR_HKDF_OUTPUT_SIZE);
size_t bytes_written = 0;
POSIX_GUARD_OSSL(HKDF_extract(pseudo_rand_key->data, &bytes_written, digest, key->data, key->size,
salt->data, salt->size),
S2N_ERR_HKDF);
/* HKDF_extract updates the out_len argument based on the digest size. Update the blob's size based on this. */
POSIX_ENSURE_LTE(bytes_written, pseudo_rand_key->size);
pseudo_rand_key->size = bytes_written;
return S2N_SUCCESS;
}
static int s2n_libcrypto_hkdf_expand(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *pseudo_rand_key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_ENSURE(output->size > 0, S2N_ERR_HKDF_OUTPUT_SIZE);
const EVP_MD *digest = NULL;
POSIX_GUARD_RESULT(s2n_hmac_md_from_alg(alg, &digest));
POSIX_GUARD_OSSL(HKDF_expand(output->data, output->size, digest, pseudo_rand_key->data, pseudo_rand_key->size,
info->data, info->size),
S2N_ERR_HKDF);
return S2N_SUCCESS;
}
static int s2n_libcrypto_hkdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_ENSURE(output->size > 0, S2N_ERR_HKDF_OUTPUT_SIZE);
const EVP_MD *digest = NULL;
POSIX_GUARD_RESULT(s2n_hmac_md_from_alg(alg, &digest));
POSIX_GUARD_OSSL(HKDF(output->data, output->size, digest, key->data, key->size, salt->data, salt->size,
info->data, info->size),
S2N_ERR_HKDF);
return S2N_SUCCESS;
}
bool s2n_libcrypto_supports_hkdf()
{
return true;
}
#elif S2N_OPENSSL_VERSION_AT_LEAST(3, 0, 0)
#include "crypto/s2n_kdf.h"
static S2N_RESULT s2n_hkdf_kdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *salt, const struct s2n_blob *key, const struct s2n_blob *info,
struct s2n_blob *output, int mode)
{
/* As an optimization, we should be able to fetch and cache this EVP_KDF*
* once when s2n_init is called.
*/
DEFER_CLEANUP(EVP_KDF *hkdf_impl = EVP_KDF_fetch(NULL, "HKDF", NULL),
EVP_KDF_free_pointer);
RESULT_ENSURE(hkdf_impl, S2N_ERR_PRF_INVALID_ALGORITHM);
DEFER_CLEANUP(EVP_KDF_CTX *hkdf_ctx = EVP_KDF_CTX_new(hkdf_impl),
EVP_KDF_CTX_free_pointer);
RESULT_ENSURE_REF(hkdf_ctx);
const EVP_MD *digest = NULL;
RESULT_GUARD(s2n_hmac_md_from_alg(alg, &digest));
RESULT_ENSURE_REF(digest);
const char *digest_name = EVP_MD_get0_name(digest);
RESULT_ENSURE_REF(digest_name);
OSSL_PARAM params[] = {
S2N_OSSL_PARAM_INT(OSSL_KDF_PARAM_MODE, mode),
S2N_OSSL_PARAM_BLOB(OSSL_KDF_PARAM_KEY, key),
S2N_OSSL_PARAM_BLOB(OSSL_KDF_PARAM_INFO, info),
S2N_OSSL_PARAM_BLOB(OSSL_KDF_PARAM_SALT, salt),
/* Casting away the const is safe because providers are forbidden from
* modifying any OSSL_PARAM value other than return_size.
* Even the examples in the Openssl documentation cast const strings to
* non-const void pointers when setting up OSSL_PARAMs.
*/
S2N_OSSL_PARAM_STR(OSSL_KDF_PARAM_DIGEST, (void *) (uintptr_t) digest_name),
OSSL_PARAM_END,
};
/* From the HKDF docs (https://docs.openssl.org/3.1/man7/EVP_KDF-HKDF/):
* > When using EVP_KDF_HKDF_MODE_EXTRACT_ONLY the keylen parameter must equal
* > the size of the intermediate fixed-length pseudorandom key otherwise an
* > error will occur.
*/
if (mode == EVP_KDF_HKDF_MODE_EXTRACT_ONLY) {
RESULT_GUARD_OSSL(EVP_KDF_CTX_set_params(hkdf_ctx, params), S2N_ERR_HKDF);
size_t key_size = EVP_KDF_CTX_get_kdf_size(hkdf_ctx);
RESULT_ENSURE(key_size > 0, S2N_ERR_HKDF_OUTPUT_SIZE);
RESULT_ENSURE(key_size <= output->size, S2N_ERR_HKDF_OUTPUT_SIZE);
output->size = key_size;
}
RESULT_GUARD_OSSL(EVP_KDF_derive(hkdf_ctx, output->data, output->size, params),
S2N_ERR_HKDF);
return S2N_RESULT_OK;
}
static int s2n_libcrypto_hkdf_extract(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *salt, const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key)
{
struct s2n_blob empty_info = { 0 };
POSIX_GUARD_RESULT(s2n_hkdf_kdf(hmac, alg, salt, key, &empty_info, pseudo_rand_key,
EVP_KDF_HKDF_MODE_EXTRACT_ONLY));
return S2N_SUCCESS;
}
static int s2n_libcrypto_hkdf_expand(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *pseudo_rand_key, const struct s2n_blob *info, struct s2n_blob *output)
{
struct s2n_blob empty_salt = { 0 };
POSIX_GUARD_RESULT(s2n_hkdf_kdf(hmac, alg, &empty_salt, pseudo_rand_key, info, output,
EVP_KDF_HKDF_MODE_EXPAND_ONLY));
return S2N_SUCCESS;
}
static int s2n_libcrypto_hkdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_GUARD_RESULT(s2n_hkdf_kdf(hmac, alg, salt, key, info, output,
EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND));
return S2N_SUCCESS;
}
bool s2n_libcrypto_supports_hkdf()
{
return true;
}
#else
static int s2n_libcrypto_hkdf_extract(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key)
{
POSIX_BAIL(S2N_ERR_UNIMPLEMENTED);
}
static int s2n_libcrypto_hkdf_expand(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg,
const struct s2n_blob *pseudo_rand_key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_BAIL(S2N_ERR_UNIMPLEMENTED);
}
static int s2n_libcrypto_hkdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_BAIL(S2N_ERR_UNIMPLEMENTED);
}
bool s2n_libcrypto_supports_hkdf()
{
return false;
}
#endif /* S2N_LIBCRYPTO_SUPPORTS_HKDF */
const struct s2n_hkdf_impl s2n_libcrypto_hkdf_impl = {
.hkdf = &s2n_libcrypto_hkdf,
.hkdf_extract = &s2n_libcrypto_hkdf_extract,
.hkdf_expand = &s2n_libcrypto_hkdf_expand,
};
static const struct s2n_hkdf_impl *s2n_get_hkdf_implementation()
{
/* By default, s2n-tls uses a custom HKDF implementation. When operating in FIPS mode, the
* FIPS-validated libcrypto implementation is used instead, if an implementation is provided.
*/
if (s2n_is_in_fips_mode() && s2n_libcrypto_supports_hkdf()) {
return &s2n_libcrypto_hkdf_impl;
}
return &s2n_custom_hkdf_impl;
}
int s2n_hkdf_extract(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, struct s2n_blob *pseudo_rand_key)
{
POSIX_ENSURE_REF(hmac);
POSIX_ENSURE_REF(salt);
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(pseudo_rand_key);
const struct s2n_hkdf_impl *hkdf_implementation = s2n_get_hkdf_implementation();
POSIX_ENSURE_REF(hkdf_implementation);
POSIX_GUARD(hkdf_implementation->hkdf_extract(hmac, alg, salt, key, pseudo_rand_key));
return S2N_SUCCESS;
}
static int s2n_hkdf_expand(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *pseudo_rand_key,
const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_ENSURE_REF(hmac);
POSIX_ENSURE_REF(pseudo_rand_key);
POSIX_ENSURE_REF(info);
POSIX_ENSURE_REF(output);
const struct s2n_hkdf_impl *hkdf_implementation = s2n_get_hkdf_implementation();
POSIX_ENSURE_REF(hkdf_implementation);
POSIX_GUARD(hkdf_implementation->hkdf_expand(hmac, alg, pseudo_rand_key, info, output));
return S2N_SUCCESS;
}
int s2n_hkdf_expand_label(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *secret, const struct s2n_blob *label,
const struct s2n_blob *context, struct s2n_blob *output)
{
POSIX_ENSURE_REF(label);
POSIX_ENSURE_REF(context);
POSIX_ENSURE_REF(output);
/* Per RFC8446: 7.1, a HKDF label is a 2 byte length field, and two 1...255 byte arrays with a one byte length field each. */
uint8_t hkdf_label_buf[2 + 256 + 256];
struct s2n_blob hkdf_label_blob = { 0 };
struct s2n_stuffer hkdf_label = { 0 };
POSIX_ENSURE_LTE(label->size, S2N_MAX_HKDF_EXPAND_LABEL_LENGTH);
POSIX_GUARD(s2n_blob_init(&hkdf_label_blob, hkdf_label_buf, sizeof(hkdf_label_buf)));
POSIX_GUARD(s2n_stuffer_init(&hkdf_label, &hkdf_label_blob));
POSIX_GUARD(s2n_stuffer_write_uint16(&hkdf_label, output->size));
POSIX_GUARD(s2n_stuffer_write_uint8(&hkdf_label, label->size + sizeof("tls13 ") - 1));
POSIX_GUARD(s2n_stuffer_write_str(&hkdf_label, "tls13 "));
POSIX_GUARD(s2n_stuffer_write(&hkdf_label, label));
POSIX_GUARD(s2n_stuffer_write_uint8(&hkdf_label, context->size));
POSIX_GUARD(s2n_stuffer_write(&hkdf_label, context));
hkdf_label_blob.size = s2n_stuffer_data_available(&hkdf_label);
POSIX_GUARD(s2n_hkdf_expand(hmac, alg, secret, &hkdf_label_blob, output));
return S2N_SUCCESS;
}
int s2n_hkdf(struct s2n_hmac_state *hmac, s2n_hmac_algorithm alg, const struct s2n_blob *salt,
const struct s2n_blob *key, const struct s2n_blob *info, struct s2n_blob *output)
{
POSIX_ENSURE_REF(hmac);
POSIX_ENSURE_REF(salt);
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(info);
POSIX_ENSURE_REF(output);
const struct s2n_hkdf_impl *hkdf_implementation = s2n_get_hkdf_implementation();
POSIX_ENSURE_REF(hkdf_implementation);
POSIX_GUARD(hkdf_implementation->hkdf(hmac, alg, salt, key, info, output));
return S2N_SUCCESS;
}
|