1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_pkey_evp.h"
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include "crypto/s2n_evp.h"
#include "crypto/s2n_libcrypto.h"
#include "crypto/s2n_pkey.h"
#include "crypto/s2n_rsa_pss.h"
#include "error/s2n_errno.h"
#include "tls/s2n_signature_algorithms.h"
#include "utils/s2n_random.h"
#include "utils/s2n_safety.h"
DEFINE_POINTER_CLEANUP_FUNC(EVP_PKEY_CTX *, EVP_PKEY_CTX_free);
static S2N_RESULT s2n_evp_md_ctx_set_pkey_ctx(EVP_MD_CTX *ctx, EVP_PKEY_CTX *pctx)
{
#ifdef S2N_LIBCRYPTO_SUPPORTS_EVP_MD_CTX_SET_PKEY_CTX
EVP_MD_CTX_set_pkey_ctx(ctx, pctx);
return S2N_RESULT_OK;
#else
RESULT_BAIL(S2N_ERR_UNIMPLEMENTED);
#endif
}
static S2N_RESULT s2n_evp_pkey_set_rsa_pss_saltlen(EVP_PKEY_CTX *pctx)
{
#if defined(S2N_LIBCRYPTO_SUPPORTS_RSA_PSS_SIGNING)
RESULT_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, RSA_PSS_SALTLEN_DIGEST), S2N_ERR_PKEY_CTX_INIT);
return S2N_RESULT_OK;
#else
RESULT_BAIL(S2N_ERR_RSA_PSS_NOT_SUPPORTED);
#endif
}
static S2N_RESULT s2n_pkey_evp_validate_sig_alg(const struct s2n_pkey *key, s2n_signature_algorithm sig_alg)
{
RESULT_ENSURE_REF(key);
/* Ensure that the signature algorithm type matches the key type. */
s2n_pkey_type pkey_type = S2N_PKEY_TYPE_UNKNOWN;
RESULT_GUARD(s2n_pkey_get_type(key->pkey, &pkey_type));
s2n_pkey_type sig_alg_type = S2N_PKEY_TYPE_UNKNOWN;
RESULT_GUARD(s2n_signature_algorithm_get_pkey_type(sig_alg, &sig_alg_type));
RESULT_ENSURE(pkey_type == sig_alg_type, S2N_ERR_INVALID_SIGNATURE_ALGORITHM);
return S2N_RESULT_OK;
}
static EVP_PKEY_CTX *s2n_evp_pkey_ctx_new(EVP_PKEY *pkey, s2n_hash_algorithm hash_alg)
{
PTR_ENSURE_REF(pkey);
switch (hash_alg) {
#if S2N_LIBCRYPTO_SUPPORTS_PROVIDERS
/* For openssl-3.0, pkey methods will do an implicit fetch for the signing
* algorithm, which includes the hash algorithm. If using a legacy hash
* algorithm, specify the non-fips version.
*/
case S2N_HASH_MD5:
case S2N_HASH_MD5_SHA1:
case S2N_HASH_SHA1:
return EVP_PKEY_CTX_new_from_pkey(NULL, pkey, "-fips");
#endif
default:
return EVP_PKEY_CTX_new(pkey, NULL);
}
}
/* Our "digest-and-sign" EVP signing logic is intended to support FIPS 140-3.
* FIPS 140-3 does not allow signing or verifying externally calculated digests
* for RSA and ECDSA verify.
* See https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/Digital-Signatures,
* and note that "component" tests only exist for ECDSA sign.
*
* In order to avoid signing externally calculated digests, we naively would
* need access to the full message to be signed at the time of signing. That's
* a problem for TLS1.2, where the client cert verify message requires signing
* every handshake message sent or received before the client cert verify message.
* To avoid storing every single handshake message in its entirety, we instead
* keep a running hash of the messages in an EVP hash state. Then, instead of
* digesting that hash state, we pass it unmodified to EVP_DigestSignFinal.
* That would normally not be allowed, since the hash state was initialized without
* a key using EVP_DigestInit instead of with a key using EVP_DigestSignInit.
* We make it work by using the EVP_MD_CTX_set_pkey_ctx method to attach a key
* to an existing hash state.
*
* All that means that "digest-and-sign" requires two things:
* - A single EVP hash state to sign. So we must not use a custom MD5_SHA1 hash,
* which doesn't produce a single hash state.
* - EVP_MD_CTX_set_pkey_ctx to exist and to behave as expected. Existence
* alone is not sufficient: the method exists in openssl-3.0-fips, but
* it cannot be used to setup a hash state for EVP_DigestSignFinal.
*
* Currently only awslc-fips meets both these requirements. New libcryptos
* should be assumed not to meet these requirements until proven otherwise.
*/
static int s2n_pkey_evp_digest_and_sign(EVP_PKEY_CTX *pctx, s2n_signature_algorithm sig_alg,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(pctx);
POSIX_ENSURE_REF(hash_state);
POSIX_ENSURE_REF(signature);
/* Custom MD5_SHA1 involves combining separate MD5 and SHA1 hashes.
* That involves two hash states instead of the single hash state this
* method requires.
*/
POSIX_ENSURE(!s2n_hash_use_custom_md5_sha1(), S2N_ERR_SAFETY);
/* Not all implementations of EVP_MD_CTX_set_pkey_ctx behave as required
* by this method. Using EVP_MD_CTX_set_pkey_ctx to convert a hash initialized
* with EVP_DigestInit to one that can be finalized with EVP_DigestSignFinal
* is not entirely standard.
*
* However, this behavior is known to work with awslc-fips.
*/
POSIX_ENSURE(s2n_libcrypto_is_awslc_fips(), S2N_ERR_SAFETY);
EVP_MD_CTX *ctx = hash_state->digest.high_level.evp.ctx;
POSIX_ENSURE_REF(ctx);
POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, pctx));
size_t signature_size = signature->size;
POSIX_GUARD_OSSL(EVP_DigestSignFinal(ctx, signature->data, &signature_size), S2N_ERR_SIGN);
POSIX_ENSURE(signature_size <= signature->size, S2N_ERR_SIZE_MISMATCH);
signature->size = signature_size;
POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, NULL));
return S2N_SUCCESS;
}
/* See s2n_evp_digest_and_sign for more information */
static bool s2n_pkey_evp_digest_and_sign_is_required(s2n_signature_algorithm sig_alg)
{
if (sig_alg == S2N_SIGNATURE_MLDSA) {
/* The FIPS restrictions do not apply to ML-DSA */
return false;
}
return s2n_libcrypto_is_awslc_fips();
}
/* "digest-then-sign" means that we calculate the digest for a hash state,
* then sign the digest bytes. That is not allowed by FIPS 140-3, but is allowed
* in all other cases.
*/
static int s2n_pkey_evp_digest_then_sign(EVP_PKEY_CTX *pctx,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(pctx);
POSIX_ENSURE_REF(hash_state);
POSIX_ENSURE_REF(signature);
uint8_t digest_length = 0;
POSIX_GUARD(s2n_hash_digest_size(hash_state->alg, &digest_length));
POSIX_ENSURE_LTE(digest_length, S2N_MAX_DIGEST_LEN);
uint8_t digest_out[S2N_MAX_DIGEST_LEN] = { 0 };
POSIX_GUARD(s2n_hash_digest(hash_state, digest_out, digest_length));
size_t signature_size = signature->size;
POSIX_GUARD_OSSL(EVP_PKEY_sign(pctx, signature->data, &signature_size,
digest_out, digest_length),
S2N_ERR_SIGN);
POSIX_ENSURE(signature_size <= signature->size, S2N_ERR_SIZE_MISMATCH);
signature->size = signature_size;
return S2N_SUCCESS;
}
int s2n_pkey_evp_sign(const struct s2n_pkey *priv, s2n_signature_algorithm sig_alg,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(priv);
POSIX_ENSURE_REF(hash_state);
DEFER_CLEANUP(EVP_PKEY_CTX *pctx = s2n_evp_pkey_ctx_new(priv->pkey, hash_state->alg), EVP_PKEY_CTX_free_pointer);
POSIX_ENSURE_REF(pctx);
POSIX_GUARD_OSSL(EVP_PKEY_sign_init(pctx), S2N_ERR_PKEY_CTX_INIT);
if (sig_alg != S2N_SIGNATURE_MLDSA) {
POSIX_GUARD_OSSL(S2N_EVP_PKEY_CTX_set_signature_md(pctx, s2n_hash_alg_to_evp_md(hash_state->alg)), S2N_ERR_PKEY_CTX_INIT);
}
if (sig_alg == S2N_SIGNATURE_RSA_PSS_RSAE || sig_alg == S2N_SIGNATURE_RSA_PSS_PSS) {
POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING), S2N_ERR_PKEY_CTX_INIT);
POSIX_GUARD_RESULT(s2n_evp_pkey_set_rsa_pss_saltlen(pctx));
}
if (s2n_pkey_evp_digest_and_sign_is_required(sig_alg)) {
POSIX_GUARD(s2n_pkey_evp_digest_and_sign(pctx, sig_alg, hash_state, signature));
} else {
POSIX_GUARD(s2n_pkey_evp_digest_then_sign(pctx, hash_state, signature));
}
return S2N_SUCCESS;
}
/* See s2n_evp_digest_and_sign for more information */
static int s2n_pkey_evp_digest_and_verify(EVP_PKEY_CTX *pctx, s2n_signature_algorithm sig_alg,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(pctx);
POSIX_ENSURE_REF(hash_state);
POSIX_ENSURE_REF(signature);
/* See digest-and-sign requirements */
POSIX_ENSURE(!s2n_hash_use_custom_md5_sha1(), S2N_ERR_SAFETY);
POSIX_ENSURE(s2n_libcrypto_is_awslc_fips(), S2N_ERR_SAFETY);
EVP_MD_CTX *ctx = hash_state->digest.high_level.evp.ctx;
POSIX_ENSURE_REF(ctx);
POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, pctx));
POSIX_GUARD_OSSL(EVP_DigestVerifyFinal(ctx, signature->data, signature->size), S2N_ERR_VERIFY_SIGNATURE);
POSIX_GUARD_RESULT(s2n_evp_md_ctx_set_pkey_ctx(ctx, NULL));
return S2N_SUCCESS;
}
/* See s2n_evp_digest_then_sign for more information */
static int s2n_pkey_evp_digest_then_verify(EVP_PKEY_CTX *pctx,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(pctx);
POSIX_ENSURE_REF(hash_state);
POSIX_ENSURE_REF(signature);
uint8_t digest_length = 0;
POSIX_GUARD(s2n_hash_digest_size(hash_state->alg, &digest_length));
POSIX_ENSURE_LTE(digest_length, S2N_MAX_DIGEST_LEN);
uint8_t digest_out[S2N_MAX_DIGEST_LEN] = { 0 };
POSIX_GUARD(s2n_hash_digest(hash_state, digest_out, digest_length));
POSIX_GUARD_OSSL(EVP_PKEY_verify(pctx, signature->data, signature->size,
digest_out, digest_length),
S2N_ERR_VERIFY_SIGNATURE);
return S2N_SUCCESS;
}
int s2n_pkey_evp_verify(const struct s2n_pkey *pub, s2n_signature_algorithm sig_alg,
struct s2n_hash_state *hash_state, struct s2n_blob *signature)
{
POSIX_ENSURE_REF(pub);
POSIX_ENSURE_REF(hash_state);
POSIX_ENSURE_REF(signature);
POSIX_GUARD_RESULT(s2n_pkey_evp_validate_sig_alg(pub, sig_alg));
DEFER_CLEANUP(EVP_PKEY_CTX *pctx = s2n_evp_pkey_ctx_new(pub->pkey, hash_state->alg), EVP_PKEY_CTX_free_pointer);
POSIX_ENSURE_REF(pctx);
POSIX_GUARD_OSSL(EVP_PKEY_verify_init(pctx), S2N_ERR_PKEY_CTX_INIT);
if (sig_alg != S2N_SIGNATURE_MLDSA) {
POSIX_GUARD_OSSL(S2N_EVP_PKEY_CTX_set_signature_md(pctx, s2n_hash_alg_to_evp_md(hash_state->alg)), S2N_ERR_PKEY_CTX_INIT);
}
if (sig_alg == S2N_SIGNATURE_RSA_PSS_RSAE || sig_alg == S2N_SIGNATURE_RSA_PSS_PSS) {
POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING), S2N_ERR_PKEY_CTX_INIT);
POSIX_GUARD_RESULT(s2n_evp_pkey_set_rsa_pss_saltlen(pctx));
}
if (s2n_pkey_evp_digest_and_sign_is_required(sig_alg)) {
POSIX_GUARD(s2n_pkey_evp_digest_and_verify(pctx, sig_alg, hash_state, signature));
} else {
POSIX_GUARD(s2n_pkey_evp_digest_then_verify(pctx, hash_state, signature));
}
return S2N_SUCCESS;
}
S2N_RESULT s2n_pkey_evp_size(const struct s2n_pkey *pkey, uint32_t *size_out)
{
RESULT_ENSURE_REF(pkey);
RESULT_ENSURE_REF(pkey->pkey);
RESULT_ENSURE_REF(size_out);
const int size = EVP_PKEY_size(pkey->pkey);
RESULT_ENSURE_GT(size, 0);
*size_out = size;
return S2N_RESULT_OK;
}
int s2n_pkey_evp_encrypt(const struct s2n_pkey *key, struct s2n_blob *in, struct s2n_blob *out)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_REF(out);
POSIX_ENSURE_REF(key->pkey);
s2n_pkey_type type = 0;
POSIX_GUARD_RESULT(s2n_pkey_get_type(key->pkey, &type));
POSIX_ENSURE(type == S2N_PKEY_TYPE_RSA, S2N_ERR_UNIMPLEMENTED);
DEFER_CLEANUP(EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(key->pkey, NULL), EVP_PKEY_CTX_free_pointer);
POSIX_ENSURE_REF(pctx);
POSIX_GUARD_OSSL(EVP_PKEY_encrypt_init(pctx), S2N_ERR_PKEY_CTX_INIT);
POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PADDING), S2N_ERR_PKEY_CTX_INIT);
size_t out_size = out->size;
POSIX_GUARD_OSSL(EVP_PKEY_encrypt(pctx, out->data, &out_size, in->data, in->size), S2N_ERR_ENCRYPT);
POSIX_ENSURE(out_size == out->size, S2N_ERR_SIZE_MISMATCH);
return S2N_SUCCESS;
}
int s2n_pkey_evp_decrypt(const struct s2n_pkey *key, struct s2n_blob *in, struct s2n_blob *out)
{
POSIX_ENSURE_REF(key);
POSIX_ENSURE_REF(in);
POSIX_ENSURE_REF(out);
POSIX_ENSURE_REF(key->pkey);
s2n_pkey_type type = 0;
POSIX_GUARD_RESULT(s2n_pkey_get_type(key->pkey, &type));
POSIX_ENSURE(type == S2N_PKEY_TYPE_RSA, S2N_ERR_UNIMPLEMENTED);
uint32_t expected_size = 0;
POSIX_GUARD_RESULT(s2n_pkey_size(key, &expected_size));
/* RSA decryption requires more output memory than the size of the final decrypted message */
struct s2n_blob buffer = { 0 };
uint8_t buffer_bytes[4096] = { 0 };
POSIX_GUARD(s2n_blob_init(&buffer, buffer_bytes, sizeof(buffer_bytes)));
POSIX_ENSURE(out->size <= buffer.size, S2N_ERR_NOMEM);
POSIX_ENSURE(expected_size <= buffer.size, S2N_ERR_NOMEM);
DEFER_CLEANUP(EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(key->pkey, NULL), EVP_PKEY_CTX_free_pointer);
POSIX_ENSURE_REF(pctx);
POSIX_GUARD_OSSL(EVP_PKEY_decrypt_init(pctx), S2N_ERR_PKEY_CTX_INIT);
/* The padding is actually RSA_PKCS1_PADDING, but we'll handle the padding later */
POSIX_GUARD_OSSL(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_NO_PADDING), S2N_ERR_PKEY_CTX_INIT);
size_t out_size = buffer.size;
POSIX_GUARD_OSSL(EVP_PKEY_decrypt(pctx, buffer.data, &out_size, in->data, in->size), S2N_ERR_DECRYPT);
POSIX_ENSURE(out_size == expected_size, S2N_ERR_SIZE_MISMATCH);
/* Handle padding in constant time to avoid Bleichenbacher oracles.
* If the padding is wrong, we return random output rather than failing.
* That ensures that padding failures are treated the same as wrong outputs.
*/
POSIX_GUARD_RESULT(s2n_get_public_random_data(out));
s2n_constant_time_pkcs1_unpad_or_dont(out->data, buffer.data, out_size, out->size);
return S2N_SUCCESS;
}
S2N_RESULT s2n_pkey_evp_init(struct s2n_pkey *pkey)
{
RESULT_ENSURE_REF(pkey);
pkey->size = &s2n_pkey_evp_size;
pkey->sign = &s2n_pkey_evp_sign;
pkey->verify = &s2n_pkey_evp_verify;
pkey->encrypt = s2n_pkey_evp_encrypt;
pkey->decrypt = s2n_pkey_evp_decrypt;
return S2N_RESULT_OK;
}
|