1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
|
\documentclass[dvipdfmx]{book}
\newcommand{\VolumeName}{Volume 13: Proving Axiom Correct}
\usepackage{bbold}
\usepackage{amsmath}
\input{bookheader.tex}
\mainmatter
\setcounter{chapter}{0} % Chapter 1
Ultimately we would like Axiom to be able to prove that an
algorithm generates correct results. There are many steps
between here and that goal, including proving one Axiom
algorithm correct through all of the levels from Spad code,
to the Lisp code, to the C code, to the machine code; a
daunting task of its own.
The proof of a single Axiom algorithm is done with an eye toward
automating the process. Automated machine proofs are not possible
in general but will exist for known algorithms.
\begin{quote}
{\bf Writing is nature's way of letting you know how sloppy your
thinking is
} -- Guindon\cite{Lamp02}
\end{quote}
\begin{quote}
{\bf Mathematics is nature's way of letting you know how sloppy
your writing is.
} -- Leslie Lamport\cite{Lamp02}
\end{quote}
\begin{quote}
{\bf
The existence of the computer is giving impetus to the discovery of
algorithms that generate proofs. I can still hear the echos of the
collective sigh of relief that greeted the announcement in 1970 that
there is no general algorithm to test for integer solutions to
polynomial Diophantine equations; Hilbert's tenth problem has no
solution. Yet, as I look at my own field, I see that creating
algorithms that generate proofs constitutes some of the most important
mathematics being done. The all-purpose proof machine may be dead, but
tightly targeted machines are thriving.}
-- Dave Bressoud \cite{Bres93}
\end{quote}
\begin{quote}
{\bf In contrast to humans, computers are good at performing formal
processes. There are people working hard on the project of actually
formalizing parts of mathematics by computer, with actual formally
correct formal deductions. I think this is a very big but very
worthwhile project, and I am confident that we will learn a lot from
it. The process will help simplify and clarify mathematics. In not too
many years, I expect that we will have interactive computer programs
that can help people compile significant chunks of formally complete
and correct mathematics (based on a few perhaps shaky but at least
explicit assumptions) and that they will become part of the standard
mathematicians's working environment.}
-- William P. Thurston \cite{Thur94}
\end{quote}
\begin{quote}
{\bf Our basic premise is that the ability to construct and modify programs
will not improve without a new and comprehensive look at the entire
programming process. Past theoretical research, say, in the logic of
programs, has tended to focus on methods for reasoning about
individual programs; little has been done, it seems to us, to develop
a sound understanding of the process of programming -- the process by
which programs evolve in concept and in practice. At present, we lack
the means to describe the techniques of program construction and
improvement in ways that properly link verification, documentation and
adaptability.}
-- Scherlis and Scott (1983) in \cite{Maso86}
\end{quote}
\begin{quote}
{\bf ...constructive mathematics provides a way of viewing the language of
logical propositions as a {\sl specification} language for
programs. An ongoing thrust of work in computer science has been to
develop program specification languages and formalisms for
systematically deriving programs from specifications. For constructive
mathematics to provide such a methodology, techniques are needed for
systematically extracting programs from constructive proofs. Early work
in this field includes that of Bishop and Constable. What
distinguished Martin-L\"of's '82 type theory was that the method it
suggested for program synthesis was exceptionally simple: a direct
correspondence was set up between the constructs of mathematical
logic, and the constructs of a functional programming
language. Specifically, every proposition was considered to be
isomorphic to a type expression, and the proof of a proposition would
suggest precisely how to construct an inhabitant of the type, which
would be a term in a functional programming language. The term that
inhabits the type corresponding to a proposition is often referred to as
the {\sl computational content} of the proposition.}
-- Paul Bernard Jackson\cite{Jack95}
\end{quote}
\begin{quote}
Q: Why bother doing proofs about programming languages? They are almost
always boring if the definitions are right.
A: The definitions are almost always wrong.
\end{quote}
\begin{quote}
Type theory is nothin short of a grand unified theory of computation
unified with mathematics so ultimately there is no difference between
math and the code.
-- Robert Harper\cite{Harp13}
\end{quote}
\chapter{Here is a problem}
Proving programs correct involves working with a second programming
language, the proof language, that is well-founded on some theory.
Proofs (programs), can be reduced (compiled) in this new language
to the primitive constructs (machine language).
The ideal case would be that the programming language used, such as
Spad, can be iosmorphic, or better yet, syntactically the same as
the proof language. Unfortunately that is not (yet?) the case with Spad.
The COQ system language, Gallina, is the closest match to Spad.
\section{Setting up the problem}
The GCD function will be our first example of a proof.
The goal is to prove that Axiom's implementation of
the Euclidean GCD algorithm is correct.
We need to be clear about what is to be proven. In this case, we
need to show that, given GCD(a,b),
\begin{enumerate}
\item {\bf GCD} is a function from $a\times b \Rightarrow c$
\item {\bf a} and {\bf b} are elements of the correct type
\item {\bf c}, the resullt, is the correct type
\item the meaning of {\bf divisor}
\item the meaning of a {\bf common divisor}
\item {\bf GCD} terminates
\end{enumerate}
We next need to set up the things we know in "the global environment",
generally referred to as {\bf E} in Coq.
Axiom's GCD is categorically defined to work over any Euclidean domain.
This means that the axioms of a Euclidean domain are globally available.
In fact, this is stronger than we need since
\begin{itemize}
\item commutative rings $\subset$ integral domains
\item integral domains $\subset$ integrally closed domains
\item integrally closed domains $\subset$ GCD domains
\item GCD domains $\subset$ unique factorization domains
\item unique factorization domains $\subset$ principlal ideal domains
\item principlal ideal domains $\subset$ Euclidean domains
\end{itemize}
A Euclidean function on $R$ is a function $f$ from $\mathbb{R}\\\{0\}$
to the non-negative integers satisfying the following fundamental
division-with-remainder property\cite{WikiED}:
$D(a,b)$ = set of common divisors of $a$ and $b$.
$\gcd(a,b) = \max{D(a,b)}$
\section{Axiom NNI GCD}
NonNegativeInteger inherits {\tt gcd} from {\tt Integer} up the ``add chain''
since it is a subtype of {\tt Integer}. {\tt Integer} has {\tt EuclideanDomain}
as an ancestor\cite{Book103}:
\begin{verbatim}
(1) -> getAncestors "Integer"
(1)
{AbelianGroup, AbelianMonoid, AbelianSemiGroup, Algebra, BasicType,
BiModule, CancellationAbelianMonoid, CharacteristicZero, CoercibleTo,
CombinatorialFunctionCategory, CommutativeRing, ConvertibleTo,
DifferentialRing, EntireRing, EuclideanDomain, GcdDomain,
IntegerNumberSystem, IntegralDomain, LeftModule, LeftOreRing,
LinearlyExplicitRingOver, Module, Monoid, OpenMath, OrderedAbelianGroup,
OrderedAbelianMonoid, OrderedAbelianSemiGroup,
OrderedCancellationAbelianMonoid, OrderedIntegralDomain, OrderedRing,
OrderedSet, PatternMatchable, PrincipalIdealDomain, RealConstant,
RetractableTo, RightModule, Ring, Rng, SemiGroup, SetCategory, StepThrough,
UniqueFactorizationDomain}
Type: Set(Symbol)
\end{verbatim}
From category {\tt EuclideanDomain} (EUCDOM) we find the implementation of
the Euclidean GCD algorithm\cite{Book102}:
\begin{verbatim}
gcd(x,y) == --Euclidean Algorithm
x:=unitCanonical x
y:=unitCanonical y
while not zero? y repeat
(x,y):= (y,x rem y)
y:=unitCanonical y -- this doesn't affect the
-- correctness of Euclid's algorithm,
-- but
-- a) may improve performance
-- b) ensures gcd(x,y)=gcd(y,x)
-- if canonicalUnitNormal
x
\end{verbatim}
The {\tt unitCanonical} function comes from the category
{\tt IntegralDomain} (INTDOM) where we find:
\begin{verbatim}
unitNormal: % -> Record(unit:%,canonical:%,associate:%)
++ unitNormal(x) tries to choose a canonical element
++ from the associate class of x.
++ The attribute canonicalUnitNormal, if asserted, means that
++ the "canonical" element is the same across all associates of x
++ if \spad{unitNormal(x) = [u,c,a]} then
++ \spad{u*c = x}, \spad{a*u = 1}.
unitCanonical: % -> %
++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.
\end{verbatim}
implemented as
\begin{verbatim}
UCA ==> Record(unit:%,canonical:%,associate:%)
if not (% has Field) then
unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition
unitCanonical(x) == unitNormal(x).canonical -- always true
recip(x) == if zero? x then "failed" else _exquo(1$%,x)
unit?(x) == (recip x case "failed" => false; true)
if % has canonicalUnitNormal then
associates?(x,y) ==
(unitNormal x).canonical = (unitNormal y).canonical
else
associates?(x,y) ==
zero? x => zero? y
zero? y => false
x exquo y case "failed" => false
y exquo x case "failed" => false
true
\end{verbatim}
Coq proves the following GCD function:
\begin{verbatim}
Fixpoint gcd a b :=
match a with
| 0 => b
| S a' => gcd (b mod (S a')) (S a')
end.
\end{verbatim}
This can be translated directly to working Spad code:
\begin{verbatim}
GCD(x:NNI,y:NNI):NNI ==
zero? x => y
GCD(y rem x,x)
\end{verbatim}
with the test case results of:
\begin{verbatim}
(1) -> GCD(2415,945)
Compiling function mygcd2 with type (NonNegativeInteger,
NonNegativeInteger) -> NonNegativeInteger
(1) 105
Type: PositiveInteger
(2) -> GCD(0,945)
(2) 945
Type: PositiveInteger
(3) -> GCD(2415,0)
(3) 2415
Type: PositiveInteger
(4) -> GCD(17,15)
(4) 1
Type: PositiveInteger
\end{verbatim}
\section{Mathematics}
From Buchberger\cite{Buch97},
Define ``divides''
\[ t\vert a \Longleftrightarrow \exists u (t \cdot u = a)\]
Define ``greatest common divisor''
\[ {\rm GCD}(a,b) = \forall t\ max(t\vert a \land t\vert b)\]
Theorem:
\[ (t\vert a \land t\vert b) \Longleftrightarrow t\vert (a-b) \land t\vert b\]
Euclids' Algorithm
\[ a > b \Rightarrow {\rm GCD}(a,b) = {\rm GCD}(a-b,b)\]
By the definition of GCD we need to show that
\[\forall t\ max(t\vert a \land t\vert b) =
\forall t\ max(t\vert (a-b) \land t\vert b)\]
Thus we need to show that
\[(t\vert a \land t\vert b) \Longleftrightarrow (t\vert (a-b) \land t\vert b)\]
Let $t$ be arbitrary but fixed and assume
\begin{equation}\label{eq1}(t\vert a \land t\vert b)\end{equation}
We have to show
\begin{equation}\label{eq2}t\vert (a-b)\end{equation}
and
\begin{equation}\label{eq3}t\vert b\end{equation}
Equation \ref{eq3} follows propositionally. For equation \ref{eq2},
by definition of ``divides'', we have to find a $w$ such that
\begin{equation}\label{eq4}t \cdot w = a-b\end{equation}
From \ref{eq1}, by definition of ``divides'', we know that for certain
$u$ and $v$
\[t \cdot u = a\]
and
\[t \cdot v - b\]
Hence,
\[ a-b = t \cdot u - t \cdot v\]
But
\[t \cdot u - t \cdot v = t \cdot (u - v)\]
So we need to find
\[w = u - v\]
and
\[\textrm{Find w such that }t \cdot u - t \cdot v = t \cdot w\]
\section{Approaches}
There are several systems that could be applied to approach the proof.
The plan is to initially look at Coq and ACL2. Coq seems to be
applicable at the Spad level. ACL2 seems to be applicable at the Lisp
level. Both levels are necessary for a proper proof.
Coq is very close to Spad in spirit so we can use it for the
high-level proofs.
ACL2 is a Lisp-level proof technology which can be used to prove
the Spad-to-Lisp level.
There is an LLVM to ACL2 translator which can be used to move from
the GCL Lisp level to the hardware since GCL compiles to C.
In particular, the "Vellvm: Verifying the LLVM" \cite{Zdan14}
project is important.
Quoting from Hardin \cite{Hard14}
\begin{quote}
LLVM is a register-based intermediate in Static Single Assignment
(SSA) form. As such, LLVM supports any number of registers, each of
which is only assigned once, statically (dynamically, of course, a
given register can be assigned any number of times). Appel has
observed that ``SSA form is a kind of functional programming''; this
observation, in turn, inspired us to build a translator from LLVM to
the applicative subset of Common Lisp accepted by the ACL2 theorem
prover. Our translator produces an executable ACL2 specification that
is able to efficiently support validation via testing, as the
generated ACL2 code features tail recursion, as well as in-place
updates via ACL2's single-threaded object (stobj) mechanism. In order
to ease the process of proving properties about these translated
functions, we have also developed a technique for reasoning about
tail-recursive ACL2 functions that execute in-place, utilizing a
formally proven ``bridge'' to primitive-recursive versions of those
functions operating on lists.
\end{quote}
{\center{\includegraphics{ps/v13llvmtoacl2.eps}}}
Hardin \cite{Hard13} describes the toolchain thus:
\begin{quote}
Our translation toolchain architecture is shown in Figure 1. The left
side of tthe figure depicts a typical compiler frontend producing LLVM
intermediate code. LLVM output can be produced either as a binary
``bitcode'' (.bc) file, or as text (.ll file). We chose to parse the
text form, producing an abstract syntax tree (AST) representation of
the LLVM program. Our translator then converts the AST to ACL2
source. The ACL2 source file can then be admitted into an ACL2
session, along with conjectures that one wishes to prove about the
code, which ACL2 processes mostly automatically. In addition to
proving theorems about the translated LLVM code, ACL2 can also be used
to execute test vectors at reasonable speed.
\end{quote}
Note that you can see the intermediate form from clang with
\begin{verbatim}
clang -O4 -S -emit-llvm foo.c
\end{verbatim}
Both Coq and the Hardin translator use OCAML \cite{OCAM14} so we will have to
learn that language.
\chapter{Theory}
The proof of the Euclidean algorithm has been known since Euclid.
We need to study an existing proof and use it to guide our use of
Coq along the same lines, if possible. Some of the ``obvious''
natural language statements may require Coq lemmas.
From WikiProof \cite{Wiki14a} we quote:
Let \[a, b \in \Z\] and $a \ne 0$ or $b \ne 0$.
The steps of the algorithm are:
\begin{enumerate}
\item Start with $(a,b)$ such that $\abs{a} \ge \abs{b}$.
If $b = 0$ then the task is complete and the GCD is $a$.
\item if $b \ne 0$ then you take the remainder $r$ of $a/b$.
\item set $a \leftarrow b$, $b \leftarrow r$ (and thus
$\abs{a} \ge \abs{b}$ again).
\item repeat these steps until $b = 0$
\end{enumerate}
Thus the GCD of $a$ and $b$ is the value of the variable $a$
at the end of the algorithm.
The proof is:
Suppose \[a, b \in \Z\] and $a or b \ne 0$.
From the {\bf division theorem}, $a = qb + r$
where $0 \le r \le \abs{b}$
From {\bf GCD with Remainder}, the GCD of $a$ and $b$ is also the GCD
of $b$ and $r$.
Therefore we may search instead for the $gcd(b,r)$.
Since $\abs{r} \ge \abs{b}$ and \[b \in \Z\],
we will reach $r = 0$ after finitely many steps.
At this point, $gcd(r,0) = r$ from {\bf GCD with Zero}.
We quote the {\bf Division Theorem} proof \cite{Wiki14b}:
For every pair of integers $a$, $b$ where $b \ne 0$, there exist unique
integers $q,r$ such that $a = qb + r$ and $0 \le r \le \abs{b}$.
\subsection{Hoare's axioms and gcd proof}
From Hoare\cite{Hoar69}
\begin{tabular}{rll}
A1 & $x+y = y+x$ & addition is commutative\\
A2 & $x\times y = y\times x$ & multiplication is commutative\\
A3 & $(x+y)+z = x+(y+z)$ & addition is associative\\
A4 & $(x\times y)\times z = x\times (y\times z)$ &
multiplication is associative\\
A5 & $x\times (y+z) = x\times y + x\times z$ &
multiplication distributes through addition\\
A6 & $y \le x \to (x-y) + y = x$ & addition cancels subtraction\\
A7 & $x + 0 = x$ &\\
A8 & $x\times 0 = 0$ &\\
A9 & $x\times 1 = x$ &\\
\end{tabular}
{\bf D0 Axiom of Assignment}
\[\vdash P_0 \{x:=f\} P\]
where
\begin{itemize}
\item $x$ is a variable identifer
\item $f$ is an expression
\item $P_0$ is obtained from $P$ by substituting $f$ for all
occurences of $x$
\end{itemize}
\section{The Division Algorithm}
From Judson \cite{Juds15},
An Application of the Principle of Well-Ordering that we will use
often is the division algorithm.
{\bf Theorem 2.9 Division Algorithm} Let $a$ and $b$ be integers, with
$b > 0$. Then there exists unique integers $q$ and $r$ such that
\[a=bq+r\]
where $0 \le r < b$.
{\bf Proof}
Let $a$ and $b$ be integers. If $b = ak$ for some integer $k$, we write
$a \vert b$. An integer $d$ is called a {\sl common divisor} of $a$ and
\index{common divisor}
$b$ if $d \vert a$ and $d \vert b$. The {\sl greatest common divisor}
\index{greatest common divisor}
of integers $a$ and $b$ is a positive integer $d$ such that $d$ is
a common divisor of $a$ and $b$ and if $d^{'}$ is any other common
divisor of $a$ and $b$, then $d^{'} \vert d$. We write $d=gcd(a,b)$;
for example, $gcd(24,36)=12$ and $gcd(120,102)=6$. We say that two
integers $a$ and $b$ are {\sl relatively prime} if $gcd(a,b)=1$.
\index{relatively prime}
{\bf Theorem 2.10} Let $a$ and $b$ be nonzero integers. Then there
exist integers $r$ and $s$ such that
\[gcd(a,b)=ar+bs\]
Furthermore, the greatest common divisor of $a$ and $b$ is unique.
{\bf Proof}
{\bf Collary 2.11} Let $a$ and $b$ be two integers that are relatively
prime. Then there exist integers $r$ and $s$ such that
\[ar+bs=1\]
{\bf The Euclidean Algorithm}
\index{The Euclidean Algorithm}
Among other things, Theorem 2.10 allows us to compute the greatest
common divisor of two integers.
{\bf Example 2.1.2} Let us compute the greatest common divisor of 945 and
2415. First observe that
\[
\begin{array}{rcl}
2415 & = & 945 \cdot 2 + 525\\
945 & = & 525 \cdot 1 + 420\\
525 & = & 420 \cdot 1 + 105\\
420 & = & 105 \cdot 4 + 0\\
\end{array}
\]
Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945,
and 105 divides 2415. Hence, 105 divides both 945 and 2415. If $d$ were
another common divisor of 945 and 2415, then $d$ would also have to
divide 105. Therefore, $gcd(945,2415)=105$.
If we work backward through the above sequence of equations, we can also
obtain numbers $r$ and $s$ such that
\[945r + 2415s = 105\]
\[
\begin{array}{rcl}
105 & = & 525 + (-1)\cdot 420\\
105 & = & 525 + (-1)\cdot [945+(-1)\cdot 525]\\
105 & = & 2\cdot 525+(-1)\cdot 945\\
105 & = & 2\cdot[2415+(-2)\cdot 945]+(-1)\cdot 945\\
105 & = & 2*2415+(-5)\cdot 945
\end{array}
\]
So $r=-5$ and $s-2$. Notice the $r$ and $s$ are not unique, since
$r=41$ and $s=-16$ would also work.
To compute $gcd(a,b)=d$, we are using repeated divisions to obtain
a decreasing sequence of positive integers
$r_1 > r_2 > \ldots > r_n = d$; that is
\[
\begin{array}{rcl}
b & = & aq_1+r_1\\
a & = & r_1q_2+r_2\\
r_1 & = & r_2q_3+r_3\\
\vdots\\
r_{n-2} & = & r_{n-1}q_n+r_n\\
r_{n-1} & = & r_nq_{n+1}
\end{array}
\]
To find $r$ and $s$ such that $ar+bs=d$, we begin with the last equation
and substitute results obtained from the previous equations:
\[
\begin{array}{rcl}
d & = & r_n\\
d & = & r_{n-2} - r_{n-1}q_n\\
d & = & r_{n-2} - q_n(r_{n-3}-q_{n-1}r_{n-2}\\
d & = & -q_nr_{n-3}+(1+q_nq_{n-1})r_{n-2}\\
\vdots\\
d & = & ra+sb
\end{array}
\]
\chapter{Software Details}
\section{Installed Software}
Install CLANG, LLVM
\begin{verbatim}
http://llvm.org/releases/download.html
\end{verbatim}
Install OCAML
\begin{verbatim}
sudo apt-get install ocaml
\end{verbatim}
An OCAML version of gcd would be written
\begin{verbatim}
let rec gcd a b = if b = 0 then a else gcd b (a mod b)
val gcd : int -> int -> int = <fun>
\end{verbatim}
\chapter{Temporal Logic of Actions (TLA)}
\begin{quote}
{\bf Sloppiness is easier than precision and rigor}
-- Leslie Lamport\cite{Lamp14a}
\end{quote}
Leslie Lamport\cite{Lamp14}\cite{Lamp16} on $21^{st}$ Century Proofs.
A method of writing proofs is described that makes it harder to prove
things that are not true. The method, based on hierarchical
structuring, is simple and practical. The author's twenty years of
experience writing such proofs is discussed.
Lamport points out that proofs need rigor and precision.
Structure and Naming are important. Every step of the proof
names the facts it uses.
Quoting from \cite{Lamp16}:
Broadly speaking, a TLA+ proof is a collection of {\sl claims},
arranged in a hierarchical structure which we describe below, where
each claim has an {\sl assertion} tht is either {\sl unjustified} or
justified by a collection of {\sl cited facts}. The purpose of TLAPS
is to check the user-provided proofs of theorems, that is, to check
that the hierarchy of claims indeed establishes the truth of the theorem
if the claims were true, and then to check that the assertion of every
justified claim indeed is implied {\sl by} its cited facts. If a TLA+
theorem has a proof with no unjustified claims, then, as a result of
checking the proof, TLAPS verifies the truth of the theorem.
\section{The algorithm}
The well-known Euclidean algorithm can be written in the PlusCal
language as follows:
\begin{verbatim}
--algorithm Euclid {
variables x \in 1..M, y \in 1..N, x0 = x, y0 = y;
{
while (x # y) {
if (x < y) { y := y - x; }
else { x := x-y; }
};
assert x = GCD(x0, y0) /\ y = GCD(x0, y0)
}
\end{verbatim}
The PlusCal translator translates this algorithm into a TLA+ specification
that we could prove correct. However, in this tutorial, we shall write a
somewhat simpler specification of Euclid's algorithm directly in TLA+.
\subsection{Creating a new TLA+ module}
In order to get the definitions of arithmetic operators ($+$, $-$, etc.),
we shall make this specification {\sl extend} the {\tt Integers}
standard module.
\begin{verbatim}
--------------------- Module Euclid ----------------------
EXTENDS Integers
\end{verbatim}
\subsection{Definitions}
We shall then define the GCD of two integers. For that purpose, let us
define the predicate ``p divides q'' as follows: p divides q iff there
exists some integer d in the interval 1..q such that q is equal to p
times d.
\begin{verbatim}
p | q == \E d \in 1..q : q = p * d
\end{verbatim}
We then define the set of divisors of an integer q as the sets of integers
which both belong to the interval 1..q and divide q:
\begin{verbatim}
Divisors(q) == {d \in 1..q : d | q}
\end{verbatim}
We define the maximum of a set S as one of the elements of this set which
is greater than or equal to all the other elements:
\begin{verbatim}
Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y
\end{verbatim}
And finally, we define the GCD of two integers p and q to be the maximum
of the intersection of Divisors(p) and Divisors(a):
\begin{verbatim}
GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))
\end{verbatim}
For convenience, we shall also define the set of all positive integers as:
\begin{verbatim}
Number = Nat \ {0}
\end{verbatim}
\subsection{Constants and variables}
We then define the two constants and two variables needed to describe
the Euclidean algorithm, where M and N are the values whose GCD is to
be computed:
\begin{verbatim}
CONSTANTS M, N
VARIABLES x, y
\end{verbatim}
\subsection{The specification}
We define the initial state of the Euclidean algorithm as follows:
\begin{verbatim}
Init == (x = M) /\ (y = N)
\end{verbatim}
In the Euclidean algorithm, two actions can be performed:
\begin{itemize}
\item set the value of y to y - x if x $<$ y
\item set the value of x to x - y if x $>$ y
\end{itemize}
These actions are again written as a definition of {\tt Next}, which
specifies the next-state relation. In TLA+, a primed variable refers
to its value at the next state of the algorithm.
\begin{verbatim}
Next == \/ /\ x < y
/\ y' = y - x
/\ x' = x
\/ /\ y < x
/\ x' = x-y
/\ y' = y
\end{verbatim}
The specification of the algorithm asserts that the variables have the
correct initial values and, in each execution step, either a {\tt Next}
action is performed or x and y keep the same values:
\begin{verbatim}
Spec == Init /\ [][Next]_<<x,y>>
\end{verbatim}
(For reasons that are irrelevant to this algorithm, TLA specifications
always allow {\sl stuttering steps} that leave all the variables
unchanged.)
We want to prove that the algorithm always satisfies the following
property:
\begin{verbatim}
ResultCorrect == (x = y) => x = GCD(M, N)
\end{verbatim}
Hence we want to prove the following theorem named Correctness:
\begin{verbatim}
THEOREM Correctness == Spec => []ResultCorrect
\end{verbatim}
\subsection{Summary}
\begin{verbatim}
--------------------- Module Euclid ----------------------
EXTENDS Integers
p | q == \E d \in 1..q : q = p * d
Divisors(q) == {d \in 1..q : d | q}
Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y
GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))
Number == Nat \ {0}
CONSTANTS M, N
VARIABLES x, y
Init == (x = M) /\ (y = N)
Next == \/ /\ x < y
/\ y' = y - x
/\ x' = x
\/ /\ y < x
/\ x' = x-y
/\ y' = y
Spec == Init /\ [][Next]_<<x,y>>
ResultCorrect == (x = y) => x = GCD(M,N)
THEOREM Correctness == Spec => []ResultCorrect
\end{verbatim}
\section{A simple proof}
\subsection{The invariant}
Intuitively, the theorem Correctness holds because the implementation
guarantees the following {\sl invariant}
\begin{verbatim}
InductiveInvariant == /\ x \in Number
/\ y \in Number
/\ GCD(x, y) = GCD(M, N)
\end{verbatim}
That is, {\tt InductiveInvariant} holds for the initial state (i.e.,
the state specified by {\tt Init}) and is preserved by the
next-state relation {\tt [Next]\_}$<<x,y>>$
\subsection{Checking proofs}
First we need to assume that constants M and N are not equal to zero
\begin{verbatim}
ASSUME NumberAssumption == M \in Number /\ N \in Number
\end{verbatim}
Let us then prove that {\tt InductiveInvariant} holds for the initial state.
\begin{verbatim}
THEOREM InitProperty == Init => InductiveInvariant
\end{verbatim}
To check whether TLAPS can prove that theorem by itself, we declare
its proof obvious.
\begin{verbatim}
THEOREM InitProperty == Init => InductiveInvariant
OBVIOUS
\end{verbatim}
We now ask TLAPS to prove that theorem. But TLAPS does not know how to
prove the proof obligation corresponding to that proof. It prints
that obligation and reports failures to three backends, Zenon, Isabelle,
and SMT. The default behavior of TLAPS is to send obligations first to
an SMT solver (by default CVC3), then if that fails to the automatic
prover Zenon, then if Zenon fails to Isabelle (with the tactic ``auto'').
\subsection{Using facts and definitions}
The obligation cannot be proved because TLAPS treats the symbols
{\tt Init} and {\tt InductiveInvariant} as opaque identifiers unless
it is explicitly instructed to expand their definitions using the
directive {\tt DEF}. The main purpose of this treantment of definitions
is to make proof-checking tractable, because expanding definitions can
arbitrarily increase the size of expressions. Explicit use of definitions
is also a good hint to the (human) reader to look only at the listed
definitions to understand a proof step. In tha precise case, we can ask
TLAPS to expand definitions of {\tt Init} and {\tt InductiveInvariant},
by replacing the proof {\tt OBVIOUS} by the proof\\
{\tt BY DEF Init, InductiveInvariant}. In the obligations sent to the
backends, the definitions of {\tt Init} and {\tt InductiveInvariant}
have been expanded.
Unfortunately, none of the back-ends could prove that obligation. As with
{\tt definitions}, we have to specify which facts are {\sl usable}. In this
case, we have to make the fact {\tt NumberAssumption} usable by changing
the proof to
\begin{verbatim}
THEOREM InitProperty == Init => InductiveInvariant
BY NumberAssumption DEF Init, InductiveInvariant
\end{verbatim}
The general form of a {\tt BY} proof is:
\[ {\tt BY\ } e_1,\ldots,e_m {\tt \ DEF\ } d_1,\ldots,d_n\]
which claims that the assertion follows by assuming $e_1,\ldots,e_m$
and expanding the definitions $d_1,\ldots,d_n$. It is the job of TLAPS
to then check this claim, and also to check that the cited facts
$e_1,\ldots,e_m$ are indeed true.
Finally, SMT succeeds in proving that obligation.
\begin{verbatim}
--------------------- Module Euclid ----------------------
EXTENDS Integers
p | q == \E d \in 1..q : q = p * d
Divisors(q) == {d \in 1..q : d | q}
Maximum(S) == CHOOSE x \in S : \A y \in S : x >= y
GCD(p,q) == Maximum(Divisors(p) \cap Divisors(q))
Number == Nat \ {0}
CONSTANTS M, N
VARIABLES x, y
Init == (x = M) /\ (y = N)
Next == \/ /\ x < y
/\ y' = y - x
/\ x' = x
\/ /\ y < x
/\ x' = x-y
/\ y' = y
Spec == Init /\ [][Next]_<<x,y>>
ResultCorrect == (x = y) => x = GCD(M,N)
InductiveInvariant == /\ x \in Number
/\ y \in Number
/\ GCD(x, y) = GCD(M, N)
ASSUME NumberAssumption == M \in Number /\ N \in Number
THEOREM InitProperty == Init => InductiveInvariant
BY NumberAssumption DEF Init, InductiveInvariant
THEOREM Correctness == Spec => []ResultCorrect
\end{verbatim}
\section{Divisibility Definition}
In Shoup\cite{Sho08} we find the divisibility definition.
Given the integers, $a$ and $b$
\[ a {\rm \ divides\ } b \implies az = b {\rm \ for\ some\ } z\]
so or all $a$,$b$, and $c$
\[ a | a,\quad 1 | a,\quad and \quad a | 0\]
because $a\cdot 1 = a$, $1\cdot a = a$, and $a\cdot 0 = 0$
\[ 0 | a \iff a = 0\]
\[a | b \iff -a | b \iff a | -b\]
\[ a | b {\rm \ and\ } a | c \implies a | (b+c)\]
\[a | b {\rm \ and\ } b | c \implies a | c\]
\[a | b {\rm \ and\ } b \ne 0 \implies 1 \le |a| \le |b|\]
\[az = b \ne 0 {\rm \ and\ } a \ne 0 {\rm \ and\ }z \ne 0
\implies |a| \ge 1 {\rm \ and\ } |z| \ge 1\]
\[ a | b {\rm \ and\ } b | a \implies a = \pm b\]
proof: \[ a | b \implies |a| \le |b|; b | a \implies |b| \le |a|;
{\rm \ therefore\ } |a|=|b| \implies a = \pm b\]
\[ a | 1 \iff a = \pm 1\]
\chapter{COQ proof of GCD}
\section{Basics of the Calculus of Constructions}
Coquend\cite{Coqu86}\cite{Wiki17}
defines the Calculus of Constructions which can
be considered an extension of the Curry-Howard Isomorphism. The components
are
\subsection{Terms}
A {\sl term} in the calculus of constructions is constructed using the
following rules:
\begin{itemize}
\item {\bf T} is a term (also called {\sl Type})
\item {\bf P} is a term (also called {\sl Prop}, the type of all propositions)
\item Variables ($x,y,\ldots$) are terms
\item if {\bf A} and {\bf B} are terms, then so are
\begin{itemize}
\item {\bf $(A,B)$}
\item {\bf $(\lambda x: A,B)$}
\item {\bf $(\forall x: A,B)$}
\end{itemize}
\end{itemize}
The calculus of constructions has five kinds of objects:
\begin{enumerate}
\item {\sl proofs}, which are terms whose types are {\sl propositions}
\item {\sl propositions}, which are also known as {\sl small types}
\item {\sl predicates}, which are functions that return propositions
\item {\sl large types}, which are the types of predicates. {\bf P} is
an example of a large type)
\item {\bf T} itself, which is the type of large types.
\end{enumerate}
\subsection{Judgements}
The calculus of constructions allows proving {\bf typing judgements}
\[x_1:A_1, x_2:A_2, \ldots \vdash t:B\]
which can be read as the implication
\[{\rm\ if\ variables\ }x_1, x_2, \ldots,
{\rm\ have\ types\ }A_1, A_2,\ldots,
{\rm\ then\ term\ }t{\rm\ has\ type\ }B\]
The valid judgements for the calculus of constructions are derivable
from a set of inference rules. In the following, we use $\Gamma$
to mean a sequence of type assignments
$x_1:A_1$, $x_2:A_2,\ldots$,
and we use {\bf K} to mean either {\bf P} or {\bf T}.
We shall write {\bf $A:B:C$} to mean
"{\bf $A$} has type {\bf $B$}, and {\bf $B$} has type {\bf $C$}".
We shall write {\bf $B(x:=N)$} to mean the result of substituting
the term {\bf $N$} for the variable {\bf $x$} in the term {\bf $B$}.
An inference rule is written in the form
\[\frac{{\bf \Gamma} \vdash {\bf A : B}}
{{\bf \Gamma^\prime} \vdash {\bf C : D}}\]
which means
\[{\rm\ if\ }{\bf \Gamma} \vdash {\bf A : B}
{\rm\ is\ a\ valid\ judgement,\ then\ so\ is\ }
{\bf \Gamma^\prime} \vdash {\bf C : D}\]
\subsection{Inference Rules}
In Frade\cite{Frad08} we find:
\[\begin{array}{lcl}
({\rm axiom}) &
() \vdash s_1 : s_2
& {\rm\ if\ }(s_1,s_2)\in A\\
&&\\
({\rm start}) &
\displaystyle{\frac{\Gamma \vdash A : s}{\Gamma,x : A \vdash x : A}}
& {\rm\ if\ }x\notin {\rm\ dom}(\Gamma) \\
&&\\
({\rm weakening}) &
\displaystyle{\frac{\Gamma \vdash M : A\quad\quad\Gamma\vdash B : s}
{\Gamma,x : B \vdash M : A}}
& {\rm\ if\ }x\notin {\rm\ dom}(\Gamma) \\
&&\\
({\rm product}) &
\displaystyle{\frac{\Gamma\vdash A : s_1\quad\quad\Gamma,x : A\vdash B : s_2}
{\Gamma\vdash(\prod x:A. B) : s_3}}
& {\rm\ if\ }(s_1,s_2,s_3) \in \mathbb{R}\\
&&\\
({\rm application}) &
\displaystyle{\frac{\Gamma\vdash M:(\prod x : A. B)\quad\quad\Gamma \vdash N:A}
{\Gamma \vdash MN : B[x:=N]}} & \\
&&\\
({\rm abstraction}) &
\displaystyle{\frac{\Gamma,x:A\vdash M:B\quad\quad\Gamma\vdash(\prod x:A. B):s}
{\Gamma\vdash\lambda x : A.M : (\prod x:A.B)}} & \\
&&\\
({\rm conversion}) &
\displaystyle{\frac{\Gamma\vdash M : A\quad\quad\Gamma\vdash B : s}
{\Gamma\vdash M : B}}
& {\rm\ if\ }A =_\beta B\\
\end{array}\]
\subsection{Defining Logical Operators}
\[\begin{array}{cccc}
A\Rightarrow B & \equiv & \forall x:A.B & (x\notin B)\\
A\wedge B & \equiv & \forall C:P.(A\Rightarrow B\Rightarrow C)\Rightarrow C &\\
A\vee B & \equiv & \forall C:P.(A\Rightarrow C)\Rightarrow(B\Rightarrow C)
\Rightarrow C &\\
\neg A & \equiv & \forall C : P.(A\Rightarrow C) &\\
\exists x : A. B & \equiv & \forall C : P.(\forall x : A.(B\Rightarrow C))
\Rightarrow C &\\
\end{array}\]
\subsection{Defining Types}
The basic data types used in computer science can be defined within the
Calculus of Constructions:
{\bf Booleans}
\[\forall A : P.A \Rightarrow A \Rightarrow A\]
{\bf Naturals}
\[\forall A : P.(A \Rightarrow A) \Rightarrow (A \Rightarrow A)\]
{\bf Product} $A\times B$
\[A \wedge B\]
{\bf Disjoint Union} $A + B$
\[A \vee B\]
Note that Booleans and Naturals are defined in the same way as in
Church encoding. However additional problems raise from propositional
extensionality and proof irrelevance.
\section{Why does COQ have Prop?}
From a stackexchange post\cite{Stac17} we find the question:
"Coq has a type {\tt Prop} of proof irrelevant propositions which are discarded
during extraction. What are the reasons for having this if we use Coq only
for proofs? Prop is impredicative, however, Coq automatically infers
universe indexes and we can use {\tt Type(i)} instead everywhere.
It seems {\tt Prop} complicates everything a lot."
Prop is very useful for program extraction because it allows us to
delete parts of code that are useless. For example, to extract a sorting
algorithm we would prove the statement ``for every list $l$ there
is a list $k$ such that $k$ is ordered and $k$ is a permutation of $l$''.
If we write this down in Coq and extract without using Prop, we will get:
\begin{enumerate}
\item ``for all $l$ there is a $k$'' which gives us a map {\bf sort} which
takes lists to lists,
\item ``such that $k$ is ordered'' will give a function {\bf verify} which
runs through $k$ and checks that it is sorted, and
\item ``$k$ is a permutation of $l$ will give a permutation {\bf p1} which
takes $l$ to $k$. Note that {\bf p1} is not just a mapping, but also the
inverse mapping together with programs verifying that the two maps really
are inverses.
\end{enumerate}
While the extra stuff is not totally useless, in many applications we want
to get ride of it and keep just {\bf sort}. This can be accomplished if we
use {\tt Prop} to state ``$k$ is ordered'' and ``$k$ is a permutation of $l$'',
but {\sl not} ``for all $l$ there is $k$''.
In general, a common way to extract code is to consider a statement of the
form
\[\forall x : A. \exists y : B. \phi(x,y)\]
where $x$ is input, $y$ is output, and $\phi(x,y)$ explains what it means
for $y$ to be a correct output. (In the above example $A$ and $B$ are the
types of lists and $\phi(l,k)$ is ''$k$ is ordered and $k$ is a permutation
of $l$.'') if $\phi$ is in {\tt Prop} then extraction gives a map
$f : A\Rightarrow B$ such that $\phi(x,f(x))$ holds for all $x\in A$.
If $\phi$ is in {\tt Set} then we also get a function $g$ such that $g(x)$
is the proof that $\phi(x,f(x))$ holds, for all $x\in A$. Often the proof
is computationally useless and we prefer to get rid of it, especially when
it is nested deeply inside some other statement. {\tt Prop} gives use the
possibility to do so.
There is a question whether we could avoid {\tt Prop} altogether by
automatically optimizing away ``useless extracted code''. To some extent
we can do that, for instance all code extracted from the negative fragment
of logic (stuff build from the empty type, unit type, products) is useless
as it just shuffles around the unit. But there are genuine design decisions
one has to make when using {\tt Prop}. Here is a simple example, where
$\sum$ means that we are in {\tt Type} and $\exists$ means we are in
{\tt Prop}. If we extract from
\[\prod_{n:N}\sum_{b:[0,1]}\sum_{k:N}\quad n=2\cdot k+b\]
we will gat a program which decomposes $n$ into its lowest bit $b$ and
the remaining bits $k$, i.e., it computes everything. If we extract from
\[\prod_{n:N}
\sum_{b:[0,1]}
\underset{k:N}{\scalebox{2}{\raisebox{-2pt}{\ensuremath{\exists}}}}
\quad n=2\cdot k+b\]
then the program will only compute the lowest bit $b$. The machine cannot
tell which is the correct one, the user has to tell it what he wants.
\section{Source code of COQ GCD Proof}
This is the proof of GCD\cite{Coqu16a} in the COQ\cite{Coqu16} sources:
\begin{verbatim}
Library Coq.ZArith.Znumtheory
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
Require Import Wf_nat.
For compatibility reasons, this Open Scope isn't local as it should
Open Scope Z_scope.
This file contains some notions of number theory upon Z numbers:
a divisibility predicate Z.divide
a gcd predicate gcd
Euclid algorithm euclid
a relatively prime predicate rel_prime
a prime predicate prime
properties of the efficient Z.gcd function
Notation Zgcd := Z.gcd (compat "8.3").
Notation Zggcd := Z.ggcd (compat "8.3").
Notation Zggcd_gcd := Z.ggcd_gcd (compat "8.3").
Notation Zggcd_correct_divisors := Z.ggcd_correct_divisors (compat "8.3").
Notation Zgcd_divide_l := Z.gcd_divide_l (compat "8.3").
Notation Zgcd_divide_r := Z.gcd_divide_r (compat "8.3").
Notation Zgcd_greatest := Z.gcd_greatest (compat "8.3").
Notation Zgcd_nonneg := Z.gcd_nonneg (compat "8.3").
Notation Zggcd_opp := Z.ggcd_opp (compat "8.3").
The former specialized inductive predicate Z.divide is now a generic existential predicate.
Notation Zdivide := Z.divide (compat "8.3").
Its former constructor is now a pseudo-constructor.
Definition Zdivide_intro a b q (H:b=q*a) : Z.divide a b := ex_intro _ q H.
Results concerning divisibility
Notation Zdivide_refl := Z.divide_refl (compat "8.3").
Notation Zone_divide := Z.divide_1_l (compat "8.3").
Notation Zdivide_0 := Z.divide_0_r (compat "8.3").
Notation Zmult_divide_compat_l := Z.mul_divide_mono_l (compat "8.3").
Notation Zmult_divide_compat_r := Z.mul_divide_mono_r (compat "8.3").
Notation Zdivide_plus_r := Z.divide_add_r (compat "8.3").
Notation Zdivide_minus_l := Z.divide_sub_r (compat "8.3").
Notation Zdivide_mult_l := Z.divide_mul_l (compat "8.3").
Notation Zdivide_mult_r := Z.divide_mul_r (compat "8.3").
Notation Zdivide_factor_r := Z.divide_factor_l (compat "8.3").
Notation Zdivide_factor_l := Z.divide_factor_r (compat "8.3").
Lemma Zdivide_opp_r a b : (a | b) -> (a | - b).
Lemma Zdivide_opp_r_rev a b : (a | - b) -> (a | b).
Lemma Zdivide_opp_l a b : (a | b) -> (- a | b).
Lemma Zdivide_opp_l_rev a b : (- a | b) -> (a | b).
Theorem Zdivide_Zabs_l a b : (Z.abs a | b) -> (a | b).
Theorem Zdivide_Zabs_inv_l a b : (a | b) -> (Z.abs a | b).
Hint Resolve Z.divide_refl Z.divide_1_l Z.divide_0_r: zarith.
Hint Resolve Z.mul_divide_mono_l Z.mul_divide_mono_r: zarith.
Hint Resolve Z.divide_add_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
Zdivide_opp_l_rev Z.divide_sub_r Z.divide_mul_l Z.divide_mul_r
Z.divide_factor_l Z.divide_factor_r: zarith.
Auxiliary result.
Lemma Zmult_one x y : x >= 0 -> x * y = 1 -> x = 1.
Only 1 and -1 divide 1.
Notation Zdivide_1 := Z.divide_1_r (compat "8.3").
If a divides b and b divides a then a is b or -b.
Notation Zdivide_antisym := Z.divide_antisym (compat "8.3").
Notation Zdivide_trans := Z.divide_trans (compat "8.3").
If a divides b and b<>0 then |a| <= |b|.
Lemma Zdivide_bounds a b : (a | b) -> b <> 0 -> Z.abs a <= Z.abs b.
Z.divide can be expressed using Z.modulo.
Lemma Zmod_divide : forall a b, b<>0 -> a mod b = 0 -> (b | a).
Lemma Zdivide_mod : forall a b, (b | a) -> a mod b = 0.
Z.divide is hence decidable
Lemma Zdivide_dec a b : {(a | b)} + {~ (a | b)}.
Theorem Zdivide_Zdiv_eq a b : 0 < a -> (a | b) -> b = a * (b / a).
Theorem Zdivide_Zdiv_eq_2 a b c :
0 < a -> (a | b) -> (c * b) / a = c * (b / a).
Theorem Zdivide_le: forall a b : Z,
0 <= a -> 0 < b -> (a | b) -> a <= b.
Theorem Zdivide_Zdiv_lt_pos a b :
1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .
Lemma Zmod_div_mod n m a:
0 < n -> 0 < m -> (n | m) -> a mod n = (a mod m) mod n.
Lemma Zmod_divide_minus a b c:
0 < b -> a mod b = c -> (b | a - c).
Lemma Zdivide_mod_minus a b c:
0 <= c < b -> (b | a - c) -> a mod b = c.
Greatest common divisor (gcd).
There is no unicity of the gcd; hence we define the predicate Zis_gcd a b g expressing that g is a gcd of a and b. (We show later that the gcd is actually unique if we discard its sign.)
Inductive Zis_gcd (a b g:Z) : Prop :=
Zis_gcd_intro :
(g | a) ->
(g | b) ->
(forall x, (x | a) -> (x | b) -> (x | g)) ->
Zis_gcd a b g.
Trivial properties of gcd
Lemma Zis_gcd_sym : forall a b d, Zis_gcd a b d -> Zis_gcd b a d.
Lemma Zis_gcd_0 : forall a, Zis_gcd a 0 a.
Lemma Zis_gcd_1 : forall a, Zis_gcd a 1 1.
Lemma Zis_gcd_refl : forall a, Zis_gcd a a a.
Lemma Zis_gcd_minus : forall a b d, Zis_gcd a (- b) d -> Zis_gcd b a d.
Lemma Zis_gcd_opp : forall a b d, Zis_gcd a b d -> Zis_gcd b a (- d).
Lemma Zis_gcd_0_abs a : Zis_gcd 0 a (Z.abs a).
Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
Theorem Zis_gcd_unique: forall a b c d : Z,
Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).
Extended Euclid algorithm.
Euclid's algorithm to compute the gcd mainly relies on the following property.
Lemma Zis_gcd_for_euclid :
forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.
Lemma Zis_gcd_for_euclid2 :
forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.
We implement the extended version of Euclid's algorithm, i.e. the one computing Bezout's coefficients as it computes the gcd. We follow the algorithm given in Knuth's "Art of Computer Programming", vol 2, page 325.
Section extended_euclid_algorithm.
Variables a b : Z.
The specification of Euclid's algorithm is the existence of u, v and d such that ua+vb=d and (gcd a b d).
Inductive Euclid : Set :=
Euclid_intro :
forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.
The recursive part of Euclid's algorithm uses well-founded recursion of non-negative integers. It maintains 6 integers u1,u2,u3,v1,v2,v3 such that the following invariant holds: u1*a+u2*b=u3 and v1*a+v2*b=v3 and gcd(u3,v3)=gcd(a,b).
Lemma euclid_rec :
forall v3:Z,
0 <= v3 ->
forall u1 u2 u3 v1 v2:Z,
u1 * a + u2 * b = u3 ->
v1 * a + v2 * b = v3 ->
(forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
We get Euclid's algorithm by applying euclid_rec on 1,0,a,0,1,b when b>=0 and 1,0,a,0,-1,-b when b<0.
Lemma euclid : Euclid.
End extended_euclid_algorithm.
Theorem Zis_gcd_uniqueness_apart_sign :
forall a b d d':Z, Zis_gcd a b d -> Zis_gcd a b d' -> d = d' \/ d = - d'.
Bezout's coefficients
Inductive Bezout (a b d:Z) : Prop :=
Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
Existence of Bezout's coefficients for the gcd of a and b
Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
gcd of ca and cb is c gcd(a,b).
Lemma Zis_gcd_mult :
forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
Relative primality
Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
Bezout's theorem: a and b are relatively prime if and only if there exist u and v such that ua+vb = 1.
Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.
Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.
Gauss's theorem: if a divides bc and if a and b are relatively prime, then a divides c.
Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).
If a is relatively prime to b and c, then it is to bc
Lemma rel_prime_mult :
forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).
Lemma rel_prime_cross_prod :
forall a b c d:Z,
rel_prime a b ->
rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
After factorization by a gcd, the original numbers are relatively prime.
Lemma Zis_gcd_rel_prime :
forall a b g:Z,
b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.
Theorem rel_prime_div: forall p q r,
rel_prime p q -> (r | p) -> rel_prime r q.
Theorem rel_prime_1: forall n, rel_prime 1 n.
Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n.
Theorem rel_prime_mod: forall p q, 0 < q ->
rel_prime p q -> rel_prime (p mod q) q.
Theorem rel_prime_mod_rev: forall p q, 0 < q ->
rel_prime (p mod q) q -> rel_prime p q.
Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.
Primality
Inductive prime (p:Z) : Prop :=
prime_intro :
1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.
The sole divisors of a prime number p are -1, 1, p and -p.
Lemma prime_divisors :
forall p:Z,
prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.
A prime number is relatively prime with any number it does not divide
Lemma prime_rel_prime :
forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
Hint Resolve prime_rel_prime: zarith.
As a consequence, a prime number is relatively prime with smaller numbers
Theorem rel_prime_le_prime:
forall a p, prime p -> 1 <= a < p -> rel_prime a p.
If a prime p divides ab then it divides either a or b
Lemma prime_mult :
forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).
Lemma not_prime_0: ~ prime 0.
Lemma not_prime_1: ~ prime 1.
Lemma prime_2: prime 2.
Theorem prime_3: prime 3.
Theorem prime_ge_2 p : prime p -> 2 <= p.
Definition prime' p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).
Lemma Z_0_1_more x : 0<=x -> x=0 \/ x=1 \/ 1<x.
Theorem prime_alt p : prime' p <-> prime p.
Theorem square_not_prime: forall a, ~ prime (a * a).
Theorem prime_div_prime: forall p q,
prime p -> prime q -> (p | q) -> p = q.
we now prove that Z.gcd is indeed a gcd in the sense of Zis_gcd.
Notation Zgcd_is_pos := Z.gcd_nonneg (compat "8.3").
Lemma Zgcd_is_gcd : forall a b, Zis_gcd a b (Z.gcd a b).
Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
Theorem Zdivide_Zgcd: forall p q r : Z,
(p | q) -> (p | r) -> (p | Z.gcd q r).
Theorem Zis_gcd_gcd: forall a b c : Z,
0 <= c -> Zis_gcd a b c -> Z.gcd a b = c.
Notation Zgcd_inv_0_l := Z.gcd_eq_0_l (compat "8.3").
Notation Zgcd_inv_0_r := Z.gcd_eq_0_r (compat "8.3").
Theorem Zgcd_div_swap0 : forall a b : Z,
0 < Z.gcd a b ->
0 < b ->
(a / Z.gcd a b) * b = a * (b/Z.gcd a b).
Theorem Zgcd_div_swap : forall a b c : Z,
0 < Z.gcd a b ->
0 < b ->
(c * a) / Z.gcd a b * b = c * a * (b/Z.gcd a b).
Notation Zgcd_comm := Z.gcd_comm (compat "8.3").
Lemma Zgcd_ass a b c : Z.gcd (Z.gcd a b) c = Z.gcd a (Z.gcd b c).
Notation Zgcd_Zabs := Z.gcd_abs_l (compat "8.3").
Notation Zgcd_0 := Z.gcd_0_r (compat "8.3").
Notation Zgcd_1 := Z.gcd_1_r (compat "8.3").
Hint Resolve Z.gcd_0_r Z.gcd_1_r : zarith.
Theorem Zgcd_1_rel_prime : forall a b,
Z.gcd a b = 1 <-> rel_prime a b.
Definition rel_prime_dec: forall a b,
{ rel_prime a b }+{ ~ rel_prime a b }.
Definition prime_dec_aux:
forall p m,
{ forall n, 1 < n < m -> rel_prime n p } +
{ exists n, 1 < n < m /\ ~ rel_prime n p }.
Definition prime_dec: forall p, { prime p }+{ ~ prime p }.
Theorem not_prime_divide:
forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p).
\end{verbatim}
\chapter{LEAN proof of GCD}
This is the proof of GCD\cite{Avig14} in the LEAN\cite{Avig16} sources:
\begin{verbatim}
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Definitions and properties of gcd, lcm, and coprime.
-/
import .div
open eq.ops well_founded decidable prod
namespace nat
/- gcd -/
private definition pair_nat.lt : nat × nat → nat × nat → Prop := measure pr₂
private definition pair_nat.lt.wf : well_founded pair_nat.lt :=
intro_k (measure.wf pr₂) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel
local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean
local infixl ` ≺ `:50 := pair_nat.lt
private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x % succ y₁) ≺ (x, succ y₁) :=
!mod_lt (succ_pos y₁)
definition gcd.F : Π (p₁ : nat × nat), (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat
| (x, 0) f := x
| (x, succ y) f := f (succ y, x % succ y) !gcd.lt.dec
definition gcd (x y : nat) := fix gcd.F (x, y)
theorem gcd_zero_right [simp] (x : nat) : gcd x 0 = x := rfl
theorem gcd_succ [simp] (x y : nat) : gcd x (succ y) = gcd (succ y) (x % succ y) :=
well_founded.fix_eq gcd.F (x, succ y)
theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 :=
calc gcd n 1 = gcd 1 (n % 1) : gcd_succ
... = gcd 1 0 : mod_one
theorem gcd_def (x : ℕ) : Π (y : ℕ), gcd x y = if y = 0 then x else gcd y (x % y)
| 0 := !gcd_zero_right
| (succ y) := !gcd_succ ⬝ (if_neg !succ_ne_zero)⁻¹
theorem gcd_self : Π (n : ℕ), gcd n n = n
| 0 := rfl
| (succ n₁) := calc
gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ % succ n₁) : gcd_succ
... = gcd (succ n₁) 0 : mod_self
theorem gcd_zero_left : Π (n : ℕ), gcd 0 n = n
| 0 := rfl
| (succ n₁) := calc
gcd 0 (succ n₁) = gcd (succ n₁) (0 % succ n₁) : gcd_succ
... = gcd (succ n₁) 0 : zero_mod
theorem gcd_of_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m % n) :=
gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
theorem gcd_rec (m n : ℕ) : gcd m n = gcd n (m % n) :=
by_cases_zero_pos n
(calc
m = gcd 0 m : gcd_zero_left
... = gcd 0 (m % 0) : mod_zero)
(take n, assume H : 0 < n, gcd_of_pos m H)
theorem gcd.induction {P : ℕ → ℕ → Prop}
(m n : ℕ)
(H0 : ∀m, P m 0)
(H1 : ∀m n, 0 < n → P n (m % n) → P m n) :
P m n :=
induction (m, n) (prod.rec (λm, nat.rec (λ IH, H0 m)
(λ n₁ v (IH : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
H1 m (succ n₁) !succ_pos (IH _ !gcd.lt.dec))))
theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) :=
gcd.induction m n
(take m, and.intro (!one_mul ▸ !dvd_mul_left) !dvd_zero)
(take m n (npos : 0 < n), and.rec
(assume (IH₁ : gcd n (m % n) ∣ n) (IH₂ : gcd n (m % n) ∣ (m % n)),
have H : (gcd n (m % n) ∣ (m / n * n + m % n)), from
dvd_add (dvd.trans IH₁ !dvd_mul_left) IH₂,
have H1 : (gcd n (m % n) ∣ m), from !eq_div_mul_add_mod⁻¹ ▸ H,
show (gcd m n ∣ m) ∧ (gcd m n ∣ n), from !gcd_rec⁻¹ ▸ (and.intro H1 IH₁)))
theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := and.left !gcd_dvd
theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := and.right !gcd_dvd
theorem dvd_gcd {m n k : ℕ} : k ∣ m → k ∣ n → k ∣ gcd m n :=
gcd.induction m n (take m, imp.intro)
(take m n (npos : n > 0)
(IH : k ∣ n → k ∣ m % n → k ∣ gcd n (m % n))
(H1 : k ∣ m) (H2 : k ∣ n),
have H3 : k ∣ m / n * n + m % n, from !eq_div_mul_add_mod ▸ H1,
have H4 : k ∣ m % n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left),
!gcd_rec⁻¹ ▸ IH H2 H4)
theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m :=
dvd.antisymm
(dvd_gcd !gcd_dvd_right !gcd_dvd_left)
(dvd_gcd !gcd_dvd_right !gcd_dvd_left)
theorem gcd.assoc (m n k : ℕ) : gcd (gcd m n) k = gcd m (gcd n k) :=
dvd.antisymm
(dvd_gcd
(dvd.trans !gcd_dvd_left !gcd_dvd_left)
(dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right))
(dvd_gcd
(dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left))
(dvd.trans !gcd_dvd_right !gcd_dvd_right))
theorem gcd_one_left (m : ℕ) : gcd 1 m = 1 :=
!gcd.comm ⬝ !gcd_one_right
theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k :=
gcd.induction n k
(take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero)
(take n k,
assume H : 0 < k,
assume IH : gcd (m * k) (m * (n % k)) = m * gcd k (n % k),
calc
gcd (m * n) (m * k) = gcd (m * k) (m * n % (m * k)) : !gcd_rec
... = gcd (m * k) (m * (n % k)) : mul_mod_mul_left
... = m * gcd k (n % k) : IH
... = m * gcd n k : !gcd_rec)
theorem gcd_mul_right (m n k : ℕ) : gcd (m * n) (k * n) = gcd m k * n :=
calc
gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm
... = gcd (n * m) (n * k) : mul.comm
... = n * gcd m k : gcd_mul_left
... = gcd m k * n : mul.comm
theorem gcd_pos_of_pos_left {m : ℕ} (n : ℕ) (mpos : m > 0) : gcd m n > 0 :=
pos_of_dvd_of_pos !gcd_dvd_left mpos
theorem gcd_pos_of_pos_right (m : ℕ) {n : ℕ} (npos : n > 0) : gcd m n > 0 :=
pos_of_dvd_of_pos !gcd_dvd_right npos
theorem eq_zero_of_gcd_eq_zero_left {m n : ℕ} (H : gcd m n = 0) : m = 0 :=
or.elim (eq_zero_or_pos m)
(assume H1, H1)
(assume H1 : m > 0, absurd H⁻¹ (ne_of_lt (!gcd_pos_of_pos_left H1)))
theorem eq_zero_of_gcd_eq_zero_right {m n : ℕ} (H : gcd m n = 0) : n = 0 :=
eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H)
theorem gcd_div {m n k : ℕ} (H1 : k ∣ m) (H2 : k ∣ n) :
gcd (m / k) (n / k) = gcd m n / k :=
or.elim (eq_zero_or_pos k)
(assume H3 : k = 0, by subst k; rewrite *nat.div_zero)
(assume H3 : k > 0, (nat.div_eq_of_eq_mul_left H3 (calc
gcd m n = gcd m (n / k * k) : nat.div_mul_cancel H2
... = gcd (m / k * k) (n / k * k) : nat.div_mul_cancel H1
... = gcd (m / k) (n / k) * k : gcd_mul_right))⁻¹)
theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : gcd m n ∣ gcd (k * m) n :=
dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right
theorem gcd_dvd_gcd_mul_right (m n k : ℕ) : gcd m n ∣ gcd (m * k) n :=
!mul.comm ▸ !gcd_dvd_gcd_mul_left
theorem gcd_dvd_gcd_mul_left_right (m n k : ℕ) : gcd m n ∣ gcd m (k * n) :=
dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left)
theorem gcd_dvd_gcd_mul_right_right (m n k : ℕ) : gcd m n ∣ gcd m (n * k) :=
!mul.comm ▸ !gcd_dvd_gcd_mul_left_right
/- lcm -/
definition lcm (m n : ℕ) : ℕ := m * n / (gcd m n)
theorem lcm.comm (m n : ℕ) : lcm m n = lcm n m :=
calc
lcm m n = m * n / gcd m n : rfl
... = n * m / gcd m n : mul.comm
... = n * m / gcd n m : gcd.comm
... = lcm n m : rfl
theorem lcm_zero_left (m : ℕ) : lcm 0 m = 0 :=
calc
lcm 0 m = 0 * m / gcd 0 m : rfl
... = 0 / gcd 0 m : zero_mul
... = 0 : nat.zero_div
theorem lcm_zero_right (m : ℕ) : lcm m 0 = 0 := !lcm.comm ▸ !lcm_zero_left
theorem lcm_one_left (m : ℕ) : lcm 1 m = m :=
calc
lcm 1 m = 1 * m / gcd 1 m : rfl
... = m / gcd 1 m : one_mul
... = m / 1 : gcd_one_left
... = m : nat.div_one
theorem lcm_one_right (m : ℕ) : lcm m 1 = m := !lcm.comm ▸ !lcm_one_left
theorem lcm_self (m : ℕ) : lcm m m = m :=
have H : m * m / m = m, from
by_cases_zero_pos m !nat.div_zero (take m, assume H1 : m > 0, !nat.mul_div_cancel H1),
calc
lcm m m = m * m / gcd m m : rfl
... = m * m / m : gcd_self
... = m : H
theorem dvd_lcm_left (m n : ℕ) : m ∣ lcm m n :=
have H : lcm m n = m * (n / gcd m n), from nat.mul_div_assoc _ !gcd_dvd_right,
dvd.intro H⁻¹
theorem dvd_lcm_right (m n : ℕ) : n ∣ lcm m n :=
!lcm.comm ▸ !dvd_lcm_left
theorem gcd_mul_lcm (m n : ℕ) : gcd m n * lcm m n = m * n :=
eq.symm (nat.eq_mul_of_div_eq_right (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl)
theorem lcm_dvd {m n k : ℕ} (H1 : m ∣ k) (H2 : n ∣ k) : lcm m n ∣ k :=
or.elim (eq_zero_or_pos k)
(assume kzero : k = 0, !kzero⁻¹ ▸ !dvd_zero)
(assume kpos : k > 0,
have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos,
have npos : n > 0, from pos_of_dvd_of_pos H2 kpos,
have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos,
obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1,
obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2,
have ppos : p > 0, from pos_of_mul_pos_left (km ▸ kpos),
have qpos : q > 0, from pos_of_mul_pos_left (kn ▸ kpos),
have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from
calc
p * q * (m * n * gcd p q)
= m * p * (n * q * gcd p q) : by rewrite [*mul.assoc, *mul.left_comm q,
mul.left_comm p]
... = k * (k * gcd p q) : by rewrite [-kn, -km]
... = k * gcd (k * p) (k * q) : by rewrite gcd_mul_left
... = k * gcd (n * q * p) (m * p * q) : by rewrite [-kn, -km]
... = k * (gcd n m * (p * q)) : by rewrite [*mul.assoc, mul.comm q, gcd_mul_right]
... = p * q * (gcd m n * k) : by rewrite [mul.comm, mul.comm (gcd n m), gcd.comm,
*mul.assoc],
have H4 : m * n * gcd p q = gcd m n * k,
from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3,
have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k,
from !mul.assoc ▸ !gcd_mul_lcm⁻¹ ▸ H4,
have H6 : lcm m n * gcd p q = k,
from !eq_of_mul_eq_mul_left gcd_pos H5,
dvd.intro H6)
theorem lcm.assoc (m n k : ℕ) : lcm (lcm m n) k = lcm m (lcm n k) :=
dvd.antisymm
(lcm_dvd
(lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right))
(dvd.trans !dvd_lcm_right !dvd_lcm_right))
(lcm_dvd
(dvd.trans !dvd_lcm_left !dvd_lcm_left)
(lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right))
/- coprime -/
definition coprime [reducible] (m n : ℕ) : Prop := gcd m n = 1
lemma gcd_eq_one_of_coprime {m n : ℕ} : coprime m n → gcd m n = 1 :=
λ h, h
theorem coprime_swap {m n : ℕ} (H : coprime n m) : coprime m n :=
!gcd.comm ▸ H
theorem dvd_of_coprime_of_dvd_mul_right {m n k : ℕ} (H1 : coprime k n) (H2 : k ∣ m * n) : k ∣ m :=
have H3 : gcd (m * k) (m * n) = m, from
calc
gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left
... = m * 1 : H1
... = m : mul_one,
have H4 : (k ∣ gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2,
H3 ▸ H4
theorem dvd_of_coprime_of_dvd_mul_left {m n k : ℕ} (H1 : coprime k m) (H2 : k ∣ m * n) : k ∣ n :=
dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm ▸ H2)
theorem gcd_mul_left_cancel_of_coprime {k : ℕ} (m : ℕ) {n : ℕ} (H : coprime k n) :
gcd (k * m) n = gcd m n :=
have H1 : coprime (gcd (k * m) n) k, from
calc
gcd (gcd (k * m) n) k
= gcd (k * gcd 1 m) n : by rewrite [-gcd_mul_left, mul_one, gcd.comm, gcd.assoc]
... = 1 : by rewrite [gcd_one_left, mul_one, ↑coprime at H, H],
dvd.antisymm
(dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right)
(dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right)
theorem gcd_mul_right_cancel_of_coprime (m : ℕ) {k n : ℕ} (H : coprime k n) :
gcd (m * k) n = gcd m n :=
!mul.comm ▸ !gcd_mul_left_cancel_of_coprime H
theorem gcd_mul_left_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) :
gcd m (k * n) = gcd m n :=
!gcd.comm ▸ !gcd.comm ▸ !gcd_mul_left_cancel_of_coprime H
theorem gcd_mul_right_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) :
gcd m (n * k) = gcd m n :=
!gcd.comm ▸ !gcd.comm ▸ !gcd_mul_right_cancel_of_coprime H
theorem coprime_div_gcd_div_gcd {m n : ℕ} (H : gcd m n > 0) :
coprime (m / gcd m n) (n / gcd m n) :=
calc
gcd (m / gcd m n) (n / gcd m n) = gcd m n / gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right
... = 1 : nat.div_self H
theorem not_coprime_of_dvd_of_dvd {m n d : ℕ} (dgt1 : d > 1) (Hm : d ∣ m) (Hn : d ∣ n) :
¬ coprime m n :=
assume co : coprime m n,
have d ∣ gcd m n, from dvd_gcd Hm Hn,
have d ∣ 1, by rewrite [↑coprime at co, co at this]; apply this,
have d ≤ 1, from le_of_dvd dec_trivial this,
show false, from not_lt_of_ge `d ≤ 1` `d > 1`
theorem exists_coprime {m n : ℕ} (H : gcd m n > 0) :
exists m' n', coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n :=
have H1 : m = (m / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_left)⁻¹,
have H2 : n = (n / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_right)⁻¹,
exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2)))
theorem coprime_mul {m n k : ℕ} (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k :=
calc
gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1
... = 1 : H2
theorem coprime_mul_right {k m n : ℕ} (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) :=
coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2))
theorem coprime_of_coprime_mul_left {k m n : ℕ} (H : coprime (k * m) n) : coprime m n :=
have H1 : (gcd m n ∣ gcd (k * m) n), from !gcd_dvd_gcd_mul_left,
eq_one_of_dvd_one (H ▸ H1)
theorem coprime_of_coprime_mul_right {k m n : ℕ} (H : coprime (m * k) n) : coprime m n :=
coprime_of_coprime_mul_left (!mul.comm ▸ H)
theorem coprime_of_coprime_mul_left_right {k m n : ℕ} (H : coprime m (k * n)) : coprime m n :=
coprime_swap (coprime_of_coprime_mul_left (coprime_swap H))
theorem coprime_of_coprime_mul_right_right {k m n : ℕ} (H : coprime m (n * k)) : coprime m n :=
coprime_of_coprime_mul_left_right (!mul.comm ▸ H)
theorem comprime_one_left : ∀ n, coprime 1 n :=
λ n, !gcd_one_left
theorem comprime_one_right : ∀ n, coprime n 1 :=
λ n, !gcd_one_right
theorem exists_eq_prod_and_dvd_and_dvd {m n k : nat} (H : k ∣ m * n) :
∃ m' n', k = m' * n' ∧ m' ∣ m ∧ n' ∣ n :=
or.elim (eq_zero_or_pos (gcd k m))
(assume H1 : gcd k m = 0,
have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1,
have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1,
have H4 : k = 0 * n, from H2 ⬝ !zero_mul⁻¹,
have H5 : 0 ∣ m, from H3⁻¹ ▸ !dvd.refl,
have H6 : n ∣ n, from !dvd.refl,
exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6))))
(assume H1 : gcd k m > 0,
have H2 : gcd k m ∣ k, from !gcd_dvd_left,
have H3 : k / gcd k m ∣ (m * n) / gcd k m, from nat.div_dvd_div H2 H,
have H4 : (m * n) / gcd k m = (m / gcd k m) * n, from
calc
m * n / gcd k m = n * m / gcd k m : mul.comm
... = n * (m / gcd k m) : !nat.mul_div_assoc !gcd_dvd_right
... = m / gcd k m * n : mul.comm,
have H5 : k / gcd k m ∣ (m / gcd k m) * n, from H4 ▸ H3,
have H6 : coprime (k / gcd k m) (m / gcd k m), from coprime_div_gcd_div_gcd H1,
have H7 : k / gcd k m ∣ n, from dvd_of_coprime_of_dvd_mul_left H6 H5,
have H8 : k = gcd k m * (k / gcd k m), from (nat.mul_div_cancel' H2)⁻¹,
exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))
end nat
\end{verbatim}
\chapter{Formal Pre- and Post-conditions}
In Boldo\cite{Bold11} we find an effort to verify floating point software
using preconditions, postconditions, and assertions. Quoting:
``These conjectures can be described formally by annotations as follows.
\begin{verbatim}
/*@ requires \abs(x) <= 0x1p-5;
@ ensures \abs(\result - \cos(x)) <= 0x1p-23;
@*/
float my_cosine(float x) {
//@ assert \abs(1.0 - x*x*0.5 - \cos(x)) < 0x1p-24;
return 1.0f - x * x * 0.5f;
}
\end{verbatim}
The {\sl precondition}, introduced by {\bf requires}, states that we expect
argument {\sl x} in the interval [-1/32; 1/32]. The {\sl postcondition},
introduced by {\bf ensures}, states that the distance between the value
returned by the function, denoted by the keyword {\bf \verb|\result|}, and the
model of the program, which is here the true mathematical cosine function
denoted by {\bf \verb|\cos|} in ACSL, is not greater than $2^{-23}$. It is
important to notice that in annotations the operators like $+$ or $*$
denote operations on real numbers and not on floating-point numbers. In
particular, there is no rounding error and no overflow in annotations,
unlike in the early Leavens' proposal. The C variables of type {\tt float},
like {\tt x} and {\tt \verb|\result|} in this example, are interpreted as the
real number they represent. Thus, the last annotation, given as an
assertion inside the code, is a way to make explicit the reasoning we made
above, making the total error the sum of the method error and the rounding
error: it states that the method error is less than $2^{-24}$. Again, it
is thanks to the choice of having exact operations in the annotations that
we are able to state a property of the method error.''
In Boldo\cite{Bold07,Bold07a} we find 'search in an array' annotated:
\begin{verbatim}
/*@ requires \valid_range(t,0,n-1)
@ ensures
@ (0 <= \result < n => t[\result] == v) &&
@ (\result == n =>
@ \forall int i; 0 <= i < n => t[i] != v) */
int index(int t[], int n, int v) {
int i = 0;
/*@ invariant 0 <= i &&
@ \forall int k; 0 <= k <i => t[k] != v
@ variant n - i */
while (i < n) {
if (t[i] == v) break;
i++;
}
return i;
}
\end{verbatim}
\chapter{Types and Signatures}
We need to start from a base of the existing types in Common Lisp,
eventually providing Axiom combinations or specializations.
Common Lisp has these standard type specifier symbols.
\begin{center}
{\bf Common Lisp Type Hierarchy}\cite{Pfei12}\\
\includegraphics[scale=0.5]{ps/v13cltypehierarchy.eps}
\end{center}
Axiom adds these types:
\begin{itemize}
\item Command = String
\end{itemize}
\chapter{COQ nat vs Axiom NNI}
COQ's nat domain includes a proof of GCD.
We would like to show an isomorphism between types in Coq and
types in Axiom. Having such an isomorphism will make lemmas
available and simplify future proofs.
Note that Coq's {\tt nat} domain stops at O (a symbolic 0)
as does Axiom's NNI. The Axiom interpreter will promote a
subtraction to Integer whereas Coq will not.
COQ's nat domain\cite{COQnat} is
\subsection{Library Coq.Init.Nat}
\begin{verbatim}
Require Import Notations Logic Datatypes.
Local Open Scope nat_scope.
\end{verbatim}
{\bf Peano natural numbers, definitions of operations}
This file is meant to be used as a whole module, without importing it,
leading to qualified definitions (e.g. Nat.pred)
\begin{verbatim}
Definition t := nat.
\end{verbatim}
{\bf Constants}
\begin{verbatim}
Definition zero := 0.
Definition one := 1.
Definition two := 2.
\end{verbatim}
{\bf Basic operations}
\begin{verbatim}
Definition succ := S.
Definition pred n :=
match n with
| 0 => n
| S u => u
end.
Fixpoint add n m :=
match n with
| 0 => m
| S p => S (p + m)
end
where "n + m" := (add n m) : nat_scope.
Definition double n := n + n.
Fixpoint mul n m :=
match n with
| 0 => 0
| S p => m + p * m
end
where "n * m" := (mul n m) : nat_scope.
\end{verbatim}
Note that Axiom's NNI domain will be automatically promoted to Integer
when the subtraction result is negative. Coq returns O when this occurs.
\begin{verbatim}
Truncated subtraction: n-m is 0 if n<=m
Fixpoint sub n m :=
match n, m with
| S k, S l => k - l
| _, _ => n
end
where "n - m" := (sub n m) : nat_scope.
\end{verbatim}
{\bf Comparisons}
\begin{verbatim}
Fixpoint eqb n m : bool :=
match n, m with
| 0, 0 => true
| 0, S _ => false
| S _, 0 => false
| S n', S m' => eqb n' m'
end.
Fixpoint leb n m : bool :=
match n, m with
| 0, _ => true
| _, 0 => false
| S n', S m' => leb n' m'
end.
Definition ltb n m := leb (S n) m.
Infix "=?" := eqb (at level 70) : nat_scope.
Infix "<=?" := leb (at level 70) : nat_scope.
Infix "<?" := ltb (at level 70) : nat_scope.
Fixpoint compare n m : comparison :=
match n, m with
| 0, 0 => Eq
| 0, S _ => Lt
| S _, 0 => Gt
| S n', S m' => compare n' m'
end.
Infix "?=" := compare (at level 70) : nat_scope.
\end{verbatim}
{\bf Minimum, maximum}
\begin{verbatim}
Fixpoint max n m :=
match n, m with
| 0, _ => m
| S n', 0 => n
| S n', S m' => S (max n' m')
end.
Fixpoint min n m :=
match n, m with
| 0, _ => 0
| S n', 0 => 0
| S n', S m' => S (min n' m')
end.
\end{verbatim}
{\bf Parity tests}
\begin{verbatim}
Fixpoint even n : bool :=
match n with
| 0 => true
| 1 => false
| S (S n') => even n'
end.
Definition odd n := negb (even n).
\end{verbatim}
{\bf Power}
\begin{verbatim}
Fixpoint pow n m :=
match m with
| 0 => 1
| S m => n * (n^m)
end
where "n ^ m" := (pow n m) : nat_scope.
\end{verbatim}
{\bf Euclidean division}
\begin{verbatim}
This division is linear and tail-recursive. In divmod, y is the
predecessor of the actual divisor, and u is y minus the real remainder
Fixpoint divmod x y q u :=
match x with
| 0 => (q,u)
| S x' => match u with
| 0 => divmod x' y (S q) y
| S u' => divmod x' y q u'
end
end.
Definition div x y :=
match y with
| 0 => y
| S y' => fst (divmod x y' 0 y')
end.
Definition modulo x y :=
match y with
| 0 => y
| S y' => y' - snd (divmod x y' 0 y')
end.
Infix "/" := div : nat_scope.
Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
\end{verbatim}
{\bf Greatest common divisor}
\begin{verbatim}
We use Euclid algorithm, which is normally not structural, but Coq is
now clever enough to accept this (behind modulo there is a subtraction,
which now preserves being a subterm)
Fixpoint gcd a b :=
match a with
| O => b
| S a' => gcd (b mod (S a')) (S a')
end.
\end{verbatim}
{\bf Square}
\begin{verbatim}
Definition square n := n * n.
\end{verbatim}
{\bf Square root}
\begin{verbatim}
The following square root function is linear (and tail-recursive).
With Peano representation, we can't do better. For faster algorithm,
see Psqrt/Zsqrt/Nsqrt... We search the square root of
n = k + p^2 + (q - r) with q = 2p and 0<=r<=q. We start with
p=q=r=0, hence looking for the square root of n = k. Then we
progressively decrease k and r. When k = S k' and r=0, it means we can
use (S p) as new sqrt candidate, since (S k')+p^2+2p = k'+(S
p)^2. When k reaches 0, we have found the biggest p^2 square contained
in n, hence the square root of n is p.
Fixpoint sqrt_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => sqrt_iter k' (S p) (S (S q)) (S (S q))
| S r' => sqrt_iter k' p q r'
end
end.
Definition sqrt n := sqrt_iter n 0 0 0.
\end{verbatim}
{\bf Log2}
\begin{verbatim}
This base-2 logarithm is linear and tail-recursive. In
log2_iter, we maintain the logarithm p of the counter q, while r is
the distance between q and the next power of 2, more precisely q + S r
= 2^(S p) and r<2^p. At each recursive call, q goes up while r goes
down. When r is 0, we know that q has almost reached a power of 2, and
we increase p at the next call, while resetting r to q. Graphically
(numbers are q, stars are r) :
10
9
8
7 *
6 *
5 ...
4
3 *
2 *
1 * *
0 * * *
We stop when k, the global downward counter reaches 0. At that moment,
q is the number we're considering (since k+q is invariant), and p its
logarithm.
Fixpoint log2_iter k p q r :=
match k with
| O => p
| S k' => match r with
| O => log2_iter k' (S p) (S q) q
| S r' => log2_iter k' p (S q) r'
end
end.
Definition log2 n := log2_iter (pred n) 0 1 0.
Iterator on natural numbers
Definition iter (n:nat) {A} (f:A->A) (x:A) : A :=
nat_rect (fun _ => A) x (fun _ => f) n.
Bitwise operations We provide here some bitwise operations for unary
numbers. Some might be really naive, they are just there for
fullfiling the same interface as other for natural representations. As
soon as binary representations such as NArith are available, it is
clearly better to convert to/from them and use their ops.
Fixpoint div2 n :=
match n with
| 0 => 0
| S 0 => 0
| S (S n') => S (div2 n')
end.
Fixpoint testbit a n : bool :=
match n with
| 0 => odd a
| S n => testbit (div2 a) n
end.
Definition shiftl a := nat_rect _ a (fun _ => double).
Definition shiftr a := nat_rect _ a (fun _ => div2).
Fixpoint bitwise (op:bool->bool->bool) n a b :=
match n with
| 0 => 0
| S n' =>
(if op (odd a) (odd b) then 1 else 0) +
2*(bitwise op n' (div2 a) (div2 b))
end.
Definition land a b := bitwise andb a a b.
Definition lor a b := bitwise orb (max a b) a b.
Definition ldiff a b := bitwise (fun b b' => andb b (negb b')) a a b.
Definition lxor a b := bitwise xorb (max a b) a b.
\end{verbatim}
\chapter{Binary Power in COQ by Casteran and Sozeau}
From Casteran and Sozeau\cite{Cast16}:
\begin{verbatim}
(* About integer powers (monomorphic version) *)
Set Implicit Arguments.
Require Import ZArith.
Require Import Div2.
Require Import Program.
Open Scope Z_scope.
\end{verbatim}
Let us consider a simple arithmetic operation: raising some integer $x$
to the $n$-th power, where $n$ is a natural number. The following
function definition is a direct translation of the mathematical
concept:
\begin{verbatim}
Fixpoint power (a:Z)(n:nat) :=
match n with 0%nat => 1
| S p => a * power a p
end.
Eval vm_compute in power 2 40.
= 1099511627776 : Z
\end{verbatim}
This definition can be considered as a very naive way of programming,
since computing $x^n$ requires $n$ multiplications. Nevertheless, this
definition is very simple to read, and everyone can admit that it is
correct with respect to the mathematical definition. Thus, we can consider
it as a {\sl specification}: when we write more efficient but less readable
functions for exponentiation, we should be able to prove their correctness
by proving in Coq their equivalence with the naive power function.
The following function allows one to compute $x^n$, with a number of
multiplications proportional to $\log_2(n)$:
\begin{verbatim}
Program
Fixpoint binary_power_mult (acc x:Z) (n:nat) {measure (fun i=>i) n} : Z
(* acc * (power x n) *) :=
match n with
| 0%nat => acc
| _ => if Even.even_odd_dec n
then binary_power_mult acc (x * x) (div2 n)
else binary_power_mult (acc * x) (x * x) (div2 n)
end.
Solve Obligations with program_simpl; intros; apply lt_div2; auto with arith.
Definition binary_power (x:Z)(n:nat) := binary_power_mult 1 x n.
Eval vm_compute in binary_power 2 40.
= 1099511627776 : Z
Goal binary_power 2 234 = power 2 234.
reflexivity.
Qed.
\end{verbatim}
We want now to {\sl prove} {\tt binary\_power's} correctness, i.e. that
this function and the naive {\tt power} function are pointwise equivalent.
Proving this equivalence in Coq may require a lot of work. Thus it is not
worth at all writing a proof dedicated only to powers of integers. In fact,
the correctness of {\tt binary\_power} with respect to {\tt power} holds
in any structure composed of an associative binary operation on some domain,
that admits a neutral element. For instance, we can compute powers of square
matrices using the most efficient of both algorithms.
Thus, let us throw away our previous definition, and try to define them in
a more generic framework.
\section{On Monoids}
{\bf Definition 2.1} {\sl A monoid is a mathematical structure composed of}
\begin{itemize}
\item {\sl a carrier A}
\item {\sl a binary, associative operation} $\circ$ {\sl on A}
\item {\sl a neutral element} $1 \in A$ {\sl for} $\circ$
\end{itemize}
Such a mathematical structure can be defined in Coq as a type class.
\cite{Soze08}. In the following definition, parameterized by a type $A$
(implicit), a binary operation {\tt dot} and a neutral element {\tt unit},
three fields describe the properties that {\tt dot} and {\tt unit} must
satisfy.
\begin{verbatim}
Class Monoid {A:Type}(dot : A -> A -> A)(one : A) : Prop := {
dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;
unit_left : forall x, dot one x = x;
unit_right : forall x, dot x one = x }.
\end{verbatim}
Note that other definitions could have been given for representing this
mathematical structure.
From an implementational point of view, such a type class is just a record
type, i.e. an inductive type with a single construtor {\tt Build\_Monoid}
\begin{verbatim}
Print Monoid.
Record Monoid (A:Type)(dot : A -> A -> A)(one : A) : Prop := Build_Monoid
{ dot_assoc : forall x y z:A, dot x (dot y z) = dot (dot x y) z;
one_left : forall x, dot one x = x;
one_right : forall x, dot x one = x }
For Monoid: Argument A is implicit and maximally inserted
For Build_Monoid: Argument A is implicit
For Monoid: Argument scopes are [type_scope _ _]
For Build_Monoid: Argument scopes are [type_scope _ _ _ _ _]
\end{verbatim}
Nevertheless, implementation of type classes by M. Sozeau provides several
specific tools --- dedicated tactics for instance --, and we advise the
reader not to replace the {\tt Class} keyword with {\tt Record} or
{\tt Inductive}.
WIth the command {\tt About}, we can see the polymorphic type of the
fields of the class {\tt Monoid}:
\begin{verbatim}
About one_left
one_left:
forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> forall x : A, dot one x = x
Arguments A, dot, one, Monoid are implicit and maximally inserted
Argument scopes are [type_scope _ _ _ _]
one_left is transparent
\end{verbatim}
\subsection{Classes and Instances}
Members of a given class are called {\sl instances} of this class.
Instances are defined to the Coq system through the {\tt Instance}
keyword. Our first example is a definition of the monoid structure
on the set $\mathbb{Z}$ of integers, provided with integer multiplication,
with 1 as the neutral element. Thus we give these parameters to the
{\tt Monoid} class (note that $\mathbb{Z}$ is implicitly given).
\begin{verbatim}
Instance ZMult : Monoid Zmult 1
\end{verbatim}
For this instance to be created, we need to prove that the binary
operation {\tt Zmult} is associative and admits 1 as the neutral
element. Applying the constructor {\tt Build\_Monoid} -- for instance
with the tactic {\tt split} -- generates three subgoals.
\begin{verbatim}
split.
3 subgoals
=================================================
forall x y z : Z, x * (y * z) = x * y * z
subgoal 2 is:
forall x : Z, 1 * x = x
subgoal 3 is:
forall x : Z, x * 1 = x
\end{verbatim}
Each subgoal is easily solved by {\tt intros; ring}.
When the proof is finished, we register our instance with a simple {\tt Qed}.
Note that we used {\tt Qed} because we consider a class of sort {\tt Prop}.
In some cases where instances must store some information constants,
ending an instance construction with {\tt Defined} may be necessary.
\begin{verbatim}
Check Zmult.
ZMult : Monoid Zmult 1
\end{verbatim}
We explained on the preceding page why it is better to use the {\tt Class}
keyword than {\tt Record} or {\tt Inductive}. For the same reason, the
definition of an instance of some class should be written using
{\tt Instance} and not {\tt Lemma}, {\tt Theorem}, {\tt Example}, etc.
nor {\tt Definition}.
\subsection{A generic definition of {\tt power}}
We are now able to give a definition of the function {\tt power} than can
be applied with any instance of class {\tt Monoid}:
A first definition could be
\begin{verbatim}
Fixpoint power {A:Type}{dot:A->A->A}{one:A}{M: Monoid dot one}
(a:A)(n:nat) :=
match n with 0:nat => one
| S p => dot a (power a p)
end.
Compute power 2 10.
= 1024 : Z
\end{verbatim}
Happily, we can make the declaration of the three first arguments
implicit, by using the {\tt Generalizable Variables} command:
\begin{verbatim}
Reset power.
Generalizable Variables A dot one.
Fixpoint power `{M: Monoid A dot one}(a:A)(n:nat) :=
match n with 0%nat => one
| S p => dot a (power a p)
end.
Compute power 2 10.
= 1024 : Z
\end{verbatim}
The variables {\tt A dot one} appearing in the binder for {\tt M} are
implicitly bound before the binder for {\tt M} and their types are
inferred from the {\tt Monoid A dot one} type. This syntactic sugar
helps abbreviate bindings for classes with parameters. The resulting
internal Coq term is exactly the same as the first definition above.
\subsection{Instance Resolution}
The attentitive reader has certainly noticed that in the last
computation, the binary operation {\tt Zmult} and the neutral element 1
need not to be given explicitly. The mechanism that allows Coq to infer
all the arguments needed by the {\tt power} funtion to be applied is called
{\sl instance resolution}.
In order to understand how it operates, let's have a look at {\tt power}'s
type:
\begin{verbatim}
About power.
power :
forall (A : Type) (dot : A -> A -> A) (one : A),
Monoid dot one -> A -> nat -> A
Arguments A, dot, one, M are implicit and maximally inserted
Compute power 2 100.
= 1267650600228229401496703205376 : Z
Set Printing Implicit.
Check power 2 100.
@power Z Zmult 1 Zmult 2 100 : Z
Unset Printing Implicit.
\end{verbatim}
We see that the {\sl instance} {\tt ZMult} has been inferred from the
type of 2. We are in the simple case where only one monoid of carrier {\tt Z}
has been declared as an instance of the {\tt Monoid} class.
The implementation of type classes in Coq can retrieve the instance
{\tt ZMult} from the type {\tt Z}, then filling the arguments {\tt ZMult}
and 1 from {\tt ZMult}'s definition.
\section{More Monoids}
\subsection{Matrices over some ring}
We all know that multiplication of square matrices is associative and
admits identity matrices as neutral elements. For simplicity's sake let us
restrict our study to $2\times 2$ matrices over some ring.
We first load the {\tt Ring} library, then open a section with some useful
declarations and notations.
\begin{verbatim}
Require Import Ring.
Section matrices.
Variables (A:Type)
(zero one : A)
(plus mult minus : A -> A -> A)
(sym : A -> A).
Notation "0" := zero.
Notation "1" := one.
Notation "x + y" := (plus x y).
Notation "x * y" := (mult x y).
Variable rt : ring_theory zero one plus mult minus sym (@eq A).
Add Ring Aring : rt.
\end{verbatim}
We can now define a carrier type for $2\times 2$-matrices, as well as
matrix multiplication and the identiy matrix.
\begin{verbatim}
Structure M2 : Type := {c00 : A; c01 : A; c10 : A; c11 : A}.
Definition Id2 : M2 := Build_M2 1 0 0 1.
Definition M2_mult (m m':M2) : M2 :=
Build_M2 (c00 m * c00 m' + c01 m * c10 m')
(c00 m * c01 m' + c01 m * c11 m')
(c10 m * c00 m' + c11 m * c10 m')
(c10 m * c01 m' + c11 m * c11 m').
\end{verbatim}
As for multiplication of integers, we can now define an instance of
{\tt Monoid} for the type {\tt M2}.
\begin{verbatim}
Global Instance M2_Monoid : Monoid (M2_mult plus mult) (Id2 0 1).
split.
destruct x; destruct y; destruct z; simpl.
unfold M2_mult. apply M2_eq_intros; simpl; ring.
destruct x; simpl;
unfold M2_mult; apply M2_eq_intros; simpl; ring.
destruct x; simpl;
unfold M2_mult; apply M2_eq_intros; simpl; ring.
Qed.
End matrices.
\end{verbatim}
We want now to play with $2\times 2$ matrices over $\mathbb{Z}$.
We declare an instance {\bf M2Z} for this purpose, and can use directly
the function {\tt power}.
\begin{verbatim}
Instance M2Z : Monoid _ _ := M2_Monoid Zth.
Compute power (Build_M2 1 1 1 0) 40.
= {|
c00 := 165580141;
c01 := 102334155;
c10 := 102334155;
c11 := 63245986 |}
: M2 Z
Definition fibonacci (n:nat) :=
C00 (power (Build_M2 1 1 1 0) n).
Compute fibonacci 20.
= 10946
:Z
\end{verbatim}
\section{Reasoning within a Type Class}
We are now able to consider again the equivalence between two functions
for computing powers. Let use define the binary algorithm for any monoid.
First, we define an auxiliary function. We use the {\tt Program}
extension to define an efficient version of exponentiation using an
accumulator. The function is defined by well-founded recursion on
the exponent $n$.
\begin{verbatim}
Function binary_power_mult (A:Type) (dot:A->A->A) (one:A)
(M: @Monoid A dot one) (acc x:A)(n:nat){measure (fun i=>i) n} : A
(* acc * (x ** n) *) :=
match n with
| 0%nat => acc
| _ => if Even.even_odd_dec n
then binary_power_mult _ acc (dot x x) (div2 n)
else binary_power_mult _ (dot acc x) (dot x x) (div2 n)
end.
intros; apply lt_div2; auto with arith.
intros; apply l2_div2; auto with arith.
Defined.
Definition binary_power `{M:Monoid} x n := binary_power_mult M one x n.
Compute binary_power 2 100.
= 1267650600228229401496703205376 : Z
\end{verbatim}
\subsection{The Equivalence Proof}
The proof of equivalence between {\tt power} and {\tt binary\_power}
is quite long, and can be split in several lemmas. Thus, it is useful
to open a section, in which we fix some arbitrary monoid M. Such a
declaration is made with the {\tt Context} command, which can be
considered as a version of {\tt Variables} for declaring arbitrary
instances of a given class.
\begin{verbatim}
Section About_power.
Require Import Arith.
Context `(M:Monoid A dot one ).
\end{verbatim}
It is good practice to define locally some specialized notations and
tactics.
\begin{verbatim}
Ltac monoid_rw :=
rewrite (@one_left A dot one M) ||
rewrite (@one_right A dot one M)||
rewrite (@dot_assoc A dot one M).
Ltac monoid_simpl := repeat monoid_rw.
Local Infix "*" := dot.
Local Infix "**" := power (at level 30, no associativity).
\end{verbatim}
\subsection{Some Useful Lemmas About {\tt power}}
We start by proving some well-known equalities about powers in a monoid.
Some of these equalities are integrated later in simplification tactics.
\begin{verbatim}
Lemma power_x_plus : forall x n p, x ** (n + p) = x ** n * x ** p.
Proof.
induction n as [| p IHp];simpl.
intros; monoid_simpl;trivial.
intro q;rewrite (IHp q); monoid_simpl;trivial.
Qed.
Ltac power_simpl := repeat (monoid_rw || rewrite <- power_x_plus).
Lemma power_commute : forall x n p,
x ** n * x ** p = x ** p * x ** n.
Proof.
intros x n p;power_simpl; rewrite (plus_comm n p);trivial.
Qed.
Lemma power_commute_with_x : forall x n ,
x * x ** n = x ** n * x.
Proof.
induction n;simpl;power_simpl;trivial.
repeat rewrite <- (@dot_assoc A dot one M); rewrite IHn; trivial.
Qed.
Lemma power_of_power : forall x n p, (x ** n) ** p = x ** (p * n).
Proof.
induction p;simpl;[| rewrite power_x_plus; rewrite IHp]; trivial.
Qed.
Lemma power_S : forall x n, x * x ** n = x ** S n.
Proof. intros;simpl;auto. Qed.
Lemma sqr : forall x, x ** 2 = x * x.
Proof.
simpl;intros;monoid_simpl;trivial.
Qed.
Ltac factorize := repeat (
rewrite <- power_commute_with_x ||
rewrite <- power_x_plus ||
rewrite <- sqr ||
rewrite power_S ||
rewrite power_of_power).
Lemma power_of_square : forall x n, (x * x) ** n = x ** n * x ** n.
induction n;simpl;monoid_simpl;trivial.
repeat rewrite dot_assoc;rewrite IHn; repeat rewrite dot_assoc.
factorize; simpl;trivial.
Qed.
\end{verbatim}
\subsection{Final Steps}
We are now able to prove that the auxilliary function
{\tt binary\_power\_mult} satisfies its intuitive meaning.
The proof uses well-founded induction and the lemmas proven in the
previous section.
\begin{verbatim}
Lemma binary_power_mult_ok :
forall n a x, binary_power_mult a x n = a * x ** n.
Proof.
intro n; pattern n;apply lt_wf_ind.
clear n; intros n Hn; destruct n.
intros;simpl; monoid_simpl; trivial.
intros; rewrite binary_power_mult_equation.
destruct (Even.even_odd_dec (S n)).
rewrite Hn. rewrite power_of_square; factorize.
pattern (S n) at 3;replace (S n) with (div2 (S n) + div2 (S n))%nat;auto.
generalize (even_double _ e);simpl;auto.
apply lt_div2;auto with arith.
rewrite Hn.
rewrite power_of_square ; factorize.
pattern (S n) at 3;replace (S n) with (S (div2 (S n) + div2 (S n)))%nat;auto.
rewrite <- dot_assoc; factorize;auto.
generalize (odd_double _ o);intro H;auto.
apply lt_div2;auto with arith.
Qed.
\end{verbatim}
Then the main theorem follows immediately:
\begin{verbatim}
Lemma binary_power_ok : forall (x:A) (n:nat), binary_power x n = x ** n.
Proof.
intros n x;unfold binary_power;rewrite binary_power_mult_ok;
monoid_simpl;auto.
Qed.
\end{verbatim}
\subsection{Discharging the Context}
It is time to close the section we opened for writing our proof of
equivalence. The theorem {\tt binary\_power\_ok} is now provided
with a universal quantification over all the parameters of any monoid.
\begin{verbatim}
End About_power.
About binary_power_ok.
binary_power_ok :
forall (A : Type) (dot : A -> A -> A) (one : A) (M : Monoid dot one)
(x : A) (n : nat), binary_power x n = power x n
Arguments A, dot, one M are implicit and maximally inserted
Argument scopes are [type_scope _ _ _ _ nat_scope]
binary_power_ok is opaque
Expands to Constant Top.binary_power_ok
Check binary_power_ok 2 20.
binary_power_ok 2 20
: binary_power 2 20 = power 2 20
Let Mfib := Build_M2 1 1 1 0.
Check binary_power_ok Mfib 56.
binary_power_ok Mfib 56
: binary_power Mfib 56 = power Mfib 56
\end{verbatim}
\subsection{Subclasses}
We could prove many useful equalities in the section {\tt about\_power}.
Nevertheless, we couldn't prove the equality $(xy)^n=x^ny^n$ because it
is false in general -- consider for instance the free monoid of strings,
or simply matrix multiplication. But this equality holds in every
commutative (a.k.a abelian) monoid.
Thus we say that abelian monoids form a {\sl subclass} of the class of
monoids, and prove this equality in a context declaring an arbitrary
instance of this subclass.
Structurally, we parameterize the new class {\tt Abelian\_Monoid} by an
arbitrary instance {\sl M} of {\tt Monoid}, and add a new field stating
the commutativity of {\tt dot}. Please keep in mind that we declared
{\tt A}, {\tt dot}, and {\tt one} as {\sl generalizable variables},
hence we can use the backquote symbol here.
\begin{verbatim}
Class Abelian_Monoid `(M:Monoid A dot one) := {
dot_comm : forall x y, dot x y = dot y x}.
\end{verbatim}
A quick look at the representation of {\sl Abelian\_Monoid} as a record
type helps us understand how this class is implemented.
\begin{verbatim}
Print Abelian_Monoid.
Record Abelian_Monoid (A : Type) (dot : A -> A -> A)
(one : A) (M : Monoid dot one) : Prop := Build_Abelian_Monoid
{dot_comm : forall x y : A, dot x y = dot y x }
For Abelian_Monoid: Arguments A, dot, one are implicit and maximally inserted
For Build_Abelian_Monoid: Arguments A, dot, one are implicit
For Abelian_Monoid: Arguemnt scopes are [type_scope _ _ _]
For Build_Abelian_Monoid: Argument scopes are [type_scope _ _ _ _]
\end{verbatim}
For building an instance of {\tt Abelian\_Monoid} we can start from
{\tt ZMult}, the monoid on {\tt Z}, adding a proof that integer
multiplication is commutative.
\begin{verbatim}
Instance ZMult_Abelian : Abelian_Monoid ZMult.
split.
exact Zmult_comm.
Qed.
\end{verbatim}
We can now prove our equality by building an appropriate context. Note
that we can specify just the parameters of the monoid here in the binder
of the abelian monoid, an instance of monoid on those same parameters is
automatically generalized. Superclass parameters are automatically
generalized inside quote binders. Again, this is siimply syntactic sugar.
\begin{verbatim}
Section Power_of_dot.
Context `{M: Monoid A} {AM:Abelian_Monoid M}.
Theorem power_of_mult : forall n x y,
power (dot x y) n = dot (power x n) (power y n).
Proof.
induction n;simpl.
rewrite one_left;auto.
intros; rewrite IHn; repeat rewrite dot_assoc.
rewrite <- (dot_assoc x y (power x n)); rewrite (dot_comm y (power x n)).
repeat rewrite dot_assoc;trivial.
Qed.
End Power_of_dot.
Check power_of_mult 3 4 5.
power_of_mult 3 4 5
: power (4 * 5) 3 = power 4 3 * power 5 3
\end{verbatim}
\chapter{Other Ideas to Explore}
Computerising Mathematical Text\cite{Kama15} explores various ways of
capturing mathematical reasoning.
Chlipala\cite{Chli15} gives a pragmatic approach to COQ.
Medina-Bulo et al.\cite{Bulo04} gives a formal verification of
Buchberger's algorithm using ACL2 and Common Lisp.
Th\'ery\cite{Ther01} used COQ to check an implementation of Buchberger's
algorithm.
Pierce\cite{Pier15} has a Software Foundations course in COQ with
downloaded files in Pier15.tgz.
Spitters\cite{Spit11} Type Classes for Mathematics in Coq. Also see
\verb|http://www.eelis.net/research/math-classes/|
Mahboubi\cite{Mahb16} Mathematical Components. This book contains a
proof of the Euclidean algorithm using COQ.
Aczel\cite{Acze13} Homotopy Type Theory
\appendix
\chapter{The Global Environment}
Let $S$ be a set. Let $\circ$ be a binary operation.
Let $+$ be an additive operation. Let $*$ be a multiplicative operation.
\begin{axiom}[Magma]
A {\bf Magma} is the
set $S$ with a {\bf closed binary operation}
$S \circ S \rightarrow S$ such that
\[\forall a,b \in S \Rightarrow a \circ b \in S\].
\end{axiom}
\begin{axiom}[Semigroup]
A {\bf Semigroup} is a
{\bf Magma} with the operation $\circ$ that is {\bf associative} such that
\[\forall a,b,c \in S \Rightarrow (a \circ b) \circ c = a \circ (b \circ c)\]
\end{axiom}
\begin{axiom}[Abelian Semigroup]
An {\bf Abelian Semigroup} is a {\bf Semigroup} with the operation
$\circ$ that is {\bf commutative} such that
\[\forall a,b \in S \Rightarrow a \circ b = b \circ a\]
\end{axiom}
\begin{axiom}[Monoid]
A {\bf Monoid} is a
{\bf Semigroup} with an {\bf identity element} $e \in S$ such that
\[\forall a \in S \Rightarrow e \circ a = a \circ e = a\]
\end{axiom}
\begin{axiom}[Group]
A {\bf Group} is a {\bf Monoid} with an {\bf inverse element} $b \in S$
and an identity element $i \in S$
such that
\[\forall a \in S~\exists b \in S \Rightarrow a \circ b = b \circ a = i\]
\end{axiom}
\begin{axiom}[Group Unique Identity]
A {\bf Group} has a {\bf unique identity element} $e \in S$ such that
\[\exists e \land \forall a,b \in S \land a \ne e \land b \ne e \Rightarrow
a \circ b \ne e\]
\end{axiom}
\begin{axiom}[Group Unique Inverse]
A {\bf Group} has a {\bf unique inverse element} $i \in S$ such that
\[\exists i \land \forall a,b \in S \land a \ne i \land b \ne i \Rightarrow
a \circ b \ne i\]
\end{axiom}
\begin{axiom}[Group Right Quotient]
A {\bf Group} has a {\bf Right Quotient} (right division) such that
\[x \circ a = b \Rightarrow x \circ a \circ a^{-1} = b \circ a^{-1}
\Rightarrow x = b \circ a^{-1}\]
\end{axiom}
\begin{axiom}[Group Left Quotient]
A {\bf Group} has a {\bf Left Quotient} (left division) such that
\[a \circ x = b \Rightarrow a^{-1} \circ a \circ x = a^{-1} \circ b
\Rightarrow x = a^{-1} \circ b\]
\end{axiom}
\begin{axiom}[Abelian Group]
An {\bf Abelian Group} is a {\bf Group} with the operation $\circ$ that is
{\bf commutative} such that
\[\forall a,b \in S \Rightarrow a \circ b = b \circ a\]
\end{axiom}
\begin{axiom}[Abelian Group Quotient]
An {\bf Abelian Group} has a {\bf Quotient} (division) such that
\[a^{-1} \circ a \circ x = a \circ a^{-1} \circ x\]
\end{axiom}
\begin{axiom}[Euclidean Domain]
Let $R$ be an integral domain. Let $f$ be a function from
$R\backslash \{0\}$ to the NonNegativeInteger domain.
If $a$ and $b$ are in $R$ and $b$ is nonzero, then there are
$q$ and $r$ in $R$ such that $a=bq+r$ and either $r=0$ or
$f(r)<f(b)$
\end{axiom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Bibliography}
\bibliographystyle{axiom}
\bibliography{axiom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}
\printindex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
|