File: index.html

package info (click to toggle)
axiom 20170501-4
  • links: PTS
  • area: main
  • in suites: buster
  • size: 1,048,504 kB
  • sloc: lisp: 3,600; makefile: 505; cpp: 223; ansic: 138; sh: 96
file content (2847 lines) | stat: -rw-r--r-- 88,449 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
<html>

<!----------------------------------------------------------------------------
   Authors:
      M. Dunstan   (mnd@uk.ac.st-andrews)
      {enter_new_authors_here}

   History:
       2nd December 1995:
         Original version from LaTeX.  (mnd)
       2nd May, 1996:
         Alterations of my own and from suggestions by Mike Dewar (NAG). (mnd)
      {enter_major_changes_here}
  ---------------------------------------------------------------------------->


<head>
   <title>A Tutorial Introduction To AXIOM</title>
   <link rev="made" href="mailto:mnd@dcs.st-andrews.ac.uk (Martin Dunstan)">
</head>

<body>

<hr>
   <center>
      <h1>An Introduction To Programming In</h1>
      <h1><img align=middle alt="AXIOM" src="images/axiom_logo.gif"></h1>
   </center>
   <hr>
   <center>
      <h1>By Martin N. Dunstan</h1>
      May 2, 1996
   </center>
<hr>



      <!------------------------------------------------------>
      <!-- Table of contents: use hyperlinks where possible -->
      <!------------------------------------------------------>

<h2>Contents</h2>

<ol>
   <li><a href="#introduction">Introduction</a></li>
   <li><a href="#pocket">Using <b>AXIOM</b> As A Pocket Calculator</a></li>
   <ol>
      <li><a href="#basicArith">Basic Arithmetic</a></li>
      <li><a href="#typeConversionA">Type Conversion</a></li>
      <li><a href="#usefulFunctions">Useful Functions</a></li>
   </ol>
   <li><a href="#symbolic">Using <b>AXIOM</b> As A Symbolic Calculator</a></li>
   <ol>
      <li><a href="#exprSymbols">Expressions Involving Symbols</a></li>
      <li><a href="#complexNumbers">Complex Numbers</a></li>
      <li><a href="#numberReps">Number Representations</a></li>
      <li><a href="#modularArith">Modular Arithmetic</a></li>
   </ol>
   <li><a href="#generalPoints">General Points About <b>AXIOM</b></a></li>
   <ol>
      <li><a href="#compNoOutput">Computation Without Output</a></li>
      <li><a href="#earlierResults">Accessing Earlier Result</a></li>
      <li><a href="#splittingExprs">Splitting Expressions Over Several Lines</a></li>
      <li><a href="#comments">Comments And Descriptions</a></li>
      <li><a href="#typeConversionB">Control Of Result Types</a></li>
   </ol>
   <li><a href="#data">Data Structures In <b>AXIOM</b></a></li>
   <ol>
      <li><a href="#lists">Lists</a></li>
      <li><a href="#segLists">Segmented Lists</a></li>
      <li><a href="#Streams">Streams</a></li>
      <li><a href="#arraysEtc">Arrays, Vectors, Strings and Bits</a></li>
      <li><a href="#flexibleArrays">Flexible Arrays</a></li>
   </ol>
   <li><a href="#functionsEtc">Functions, Choices And Loops</a></li>
   <ol>
      <li><a href="#readFromFile">Reading Code From A File</a></li>
      <li><a href="#Blocks">Blocks</a></li>
      <li><a href="#functions">Functions</a></li>
      <li><a href="#choices">Choices</a></li>
      <li><a href="#loops">Loops</a></li>
      <ol>
         <li><a href="#repeat">The repeat Loop</a></li>
         <li><a href="#while">The while Loop</a></li>
         <li><a href="#for">The for Loop</a></li>
      </ol>
   </ol>
</ol>
<hr>

<!------------------------------------------------------------------------>



      <!------------------------------------------------------>
      <!-- List of figures: use hyperlinks where possible   -->
      <!------------------------------------------------------>

<h2>List Of Figures</h2>

<blockquote>
   <dl compact>
      <dt>2.1</dt>
      <dd><a href="#figure2point1">Table of simple <b>AXIOM</b> functions.</a></dd>

      <dt>2.2</dt>
      <dd><a href="#figure2point2">Table of simple <b>AXIOM</b> operators.</a></dd>

      <dt>2.3</dt>
      <dd><a href="#figure2point3">Table of some useful <b>AXIOM</b> macros.</a></dd>

      <xmp></xmp>

      <dt>5.1</dt>
      <dd><a href="#figure5point1">List <em>u</em> before <tt>setrest(endOfu,partOfu)</tt>.</a></dd>

      <dt>5.2</dt>
      <dd><a href="#figure5point2">List <em>u</em> after <tt>setrest(endOfu,partOfu)</tt>.</a></dd>
   </dl>
</blockquote>
<hr>

<!------------------------------------------------------------------------>

<p></p>
<a name="introduction">
<h2>Chapter 1</h2>
<h2>Introduction</h2>
</a>

<p>
   This document is intended to be a tutorial introduction to the <b>AXIOM</b>
   (Release 2.0) system and its language. Initially the examples and
   discussion will relate to the interactive system and the use of input
   files will be touched on later.
</p>

<p>
   Although
   <a href="#jenks1992">[jenks1992]</a>
   is an extremely useful book for those wanting to use the <b>AXIOM</b>
   system it is not quite so helpful for learning to program in <b>AXIOM</b>.
   Generally one learns a new programming language by writing short programs
   (&quot;one-liners&quot;) before learning about the various flow-control
   instructions such as <tt>if</tt> and <tt>while</tt>. However, learning to
   use a large system such as <b>AXIOM</b> requires a text that covers a
   significant part of the available features while keeping the number of
   pages to a minimum as
   <a href="#jenks1992">[jenks1992]</a>
   does. This is not to say that
   <a href="#jenks1992">[jenks1992]</a>
   does not explain how to program in <b>AXIOM</b> since this is how the
   author learned!
</p>

<p>
   As a result the author has decided to produce this text as an introduction to
   the <b>AXIOM</b> language for readers who are already familiar with at least
   one programming language. Knowledge of a functional programming language
   would be a benefit since many of the concepts found in functional languages
   are present in <b>AXIOM</b> but is by no means essential. <b>AXIOM</b> is
   <em>not</em> a functional language since it has a notion of state and
   functions can (and sometimes do) have side-effects.
</p>

<p>
   This document has been compiled by working through
   <a href="#jenks1992">[jenks1992]</a>
   in parallel with interactive sessions of <b>AXIOM</b> (a new session is
   started for each chapter). The structure of the text is the author's but
   the majority of the information has come from
   <a href="#jenks1992">[jenks1992]</a>
   in some form or another since this appears to be the
   only large body of information on <b>AXIOM</b> (apart from the HyperDoc
   program). However, the examples are mostly of the author's own design
   and are all extracted directly from the output produced by <b>AXIOM</b> - the
   code for each example was copied from the <b>LaTeX</b> version of this document
   into the <b>AXIOM</b> interpreter and the results copied back. As a result
   there shouldn't be any mistakes.
</p>
<hr>

<blockquote>
   Please let me
   (<b><tt><a href="mailto:mnd@dcs.st-andrews.ac.uk">mnd@dcs.st-andrews.ac.uk</a></tt></b>)
   know of any errors or any comments/criticisms you have regarding this
   document as I would like to make it as useful as possible.
</blockquote>
<hr>



<!------------------------------------------------------------------------>

<p></p>
<a name="pocket">
<h2>Chapter 2</h2>
<h2>Using <b>AXIOM</b> As A Pocket Calculator</h2>
</a>

<p>
   At the simplest level <b>AXIOM</b> can be used as a pocket calculator where
   expressions involving numbers and operators are entered directly in infix
   notation. In this sense the more advanced features of the calculator can
   be regarded as operators (e.g. <b>sin</b>, <b>cos</b> etc.).
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="basicArith">
<h3>2.1  Basic Arithmetic</h3>
</a>

<p>
   An example of this might be to calculate the cosine of 2.45 (in radians).
   To do this one would type:
</p>

<xmp>

      (1) -> cos 2.45
      (1)    -0.7702312540 473073417
                                                           Type: Float
</xmp>

<p>
   Before proceeding any further it would be best to explain the previous
   three lines. Firstly the text ``<tt>(1) -> </tt>'' is part of the prompt
   that the <b>AXIOM</b> system provides when in interactive mode. The full prompt
   probably has other text preceding this but it is not relevent here. The
   number in parenthesis is the step number of the input which may be used
   to refer to the <em>results</em> of previous calculations. The step number
   appears at the start of the second line to tell you which step the result
   belongs to. Since the interpreter probably loaded numerous libraries to
   calculate the result given above and listed each one in the process, there
   could easily be several pages of text between your input and the answer.
</p>

<p>
   The last line contains the type of the result. The type <b>Float</b>
   is used to represent real numbers of arbitrary size and precision (where
   the user is able to define how big arbitrary is - the default is 20 digits
   but can be as large as your computer system can handle). The type of the
   result can help track down mistakes in your input if you don't get the
   answer you expected.
</p>

<p>
   Other arithmetic operations such as addition, subtraction, multiplication
   behave as expected:
</p>

<xmp>

      (2) -> 6.93 * 4.1328
      (2)    28.640304
                                                           Type: Float

      (3) -> 6.93 / 4.1328
      (3)    1.6768292682 926829268
                                                           Type: Float
</xmp>

<p>
   but integer division isn't quite so obvious. For example, if one types:
</p>

<xmp>

      (4) -> 4/6

             2
      (4)    -
             3
                                                Type: Fraction Integer
</xmp>

<p>
   a fractional result is obtained. The function used to display fractions
   attempts to produce the most readable answer. In the example:
</p>

<xmp>

      (5) -> 4/2
      (5)    2
                                                Type: Fraction Integer
</xmp>

<p>
   the result is stored as the faction 2/1 but is displayed as
   the integer 2. This fraction could be converted to type
   <b>Integer</b> with no loss of information <b>AXIOM</b> will not
   do so automatically.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="typeConversionA">
<h3>2.2  Type Conversion</h3>
</a>

<p>
   To obtain the floating point value of a fraction one must convert
   (according to the documentation, <em>coercions</em> are conversions that
   are automatically applied by the kernel) it to type <b>Float</b>
   using the ``<tt>::</tt>'' operator (see
   <a href="#typeConversionB">Section 4.5</a>)
   as follows (the parentheses are required due to the relative
   precedences of ``<tt>::</tt>'' and ``<tt>/</tt>''):
</p>

<xmp>

      (6) -> (4/6) :: Float
      (6)    0.6666666666 6666666667
                                                           Type: Float
</xmp>

<p>
   Although <b>AXIOM</b> can convert this back to a fraction it might
   not be the same fraction it started as due to rounding errors. For
   example, the following conversion appears to be without error but
   others might not:
</p>

<xmp>

      (7) -> % :: Fraction Integer

             2
      (7)    -
             3
                                                Type: Fraction Integer
</xmp>

<p>
   where ``<tt>%</tt>'' represents the previous <em>result</em> (not the
   calculation).
</p>

<p>
   Although <b>AXIOM</b> has the ability to work with floating-point numbers
   to very high precision it must be remembered that calculations
   with these numbers are <em>not</em> exact. Since <b>AXIOM</b> is a computer
   algebra package and not a numerical solutions package this should
   not create too many problems. The idea is that the user should
   use <b>AXIOM</b> to do all the necessary symbolic manipulation and only
   at the end should actual numerical results be extracted.
</p>

<p>
   If you bear in mind that <b>AXIOM</b> appears to store expressions just as
   you have typed them and does not perform any evaluation of them unless
   forced to then programming in the system will be much easier. It means
   that anything you ask <b>AXIOM</b> to do (within reason) will be carried
   with complete accuracy.
</p>

<p>
   In the previous examples the ``<tt>::</tt>'' operator was used to
   convert values from one type to another. This type conversion is
   not possible for all values for instance, it is not possible to
   convert the number 3.4 to an integer type since it can't be
   represented as an integer. The number 4.0 however can be converted
   to an integer type since it has no fractional part. Refer to
   <a href="#typeConversionB">Section 4.5</a>)
   for more details on type conversion.
</p>

<p>
   Conversion from floating point values to integers is performed using
   the functions <b>round</b> and <b>truncate</b>.
   The first of these rounds a floating point number to the nearest
   integer while the other truncates i.e. removes the fractional part.
   Both functions return the result as a <em>floating point</em> number.
   To extract the fractional part of a floating point number use the
   function <b>fractionPart</b> but note that the sign of
   the result depends on the sign of the argument (<b>AXIOM</b> obtains
   the fractional part of ``<tt>x</tt>'' using ``<tt>x - truncate x</tt>''):
</p>

<xmp>

      (8) -> round(3.77623)
      (8)    4.0
                                                           Type: Float

      (9) -> round(-3.77623)
      (9)    -4.0
                                                           Type: Float

     (10) -> truncate(9.235)
     (10)    9.0
                                                           Type: Float

     (11) -> truncate(-9.654)
     (11)    -9.0
                                                           Type: Float

     (12) -> fractionPart(-3.77623)
     (12)    -0.77623
                                                           Type: Float
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="usefulFunctions">
<h3>2.3  Useful Functions</h3>
</a>

<p>
   To obtain the absolute value of a number the <b>abs</b> function
   can be used. This takes a single argument which is usually an integer or
   a floating point value but doesn't necessarily have to be. The sign of
   a value can be obtained via the <b>sign</b> function which
   returns -1, 0, or 1 depending on the sign of the argument:
</p>

<xmp>

     (13) -> abs(4)
     (13)    4
                                                 Type: PositiveInteger

     (14) -> abs(-3)
     (14)    3
                                                 Type: PositiveInteger

     (15) -> abs(-34254.12314)
     (15)    34254.12314
                                                           Type: Float

     (16) -> sign(-49543.2345346)
     (16)    -1
                                                         Type: Integer

     (17) -> sign(0)
     (17)    0
                                              Type: NonNegativeInteger

     (18) -> sign(234235.42354)
     (18)    1
                                                 Type: PositiveInteger
</xmp>

<p>
   Tests on values can be done using using various functions which
   are generally more efficient than using relational operators such as
   ``<tt>=</tt>'' particularly if the value is a matrix. Examples
   of some of these functions are:
</p>

<xmp>

     (19) -> positive?(-234)
     (19)    false
                                                         Type: Boolean

     (20) -> negative?(-234)
     (20)    true
                                                         Type: Boolean

     (21) -> zero?(42)
     (21)    false
                                                         Type: Boolean

     (22) -> one?(1)
     (22)    true
                                                         Type: Boolean

     (23) -> odd?(23)
     (23)    true
                                                         Type: Boolean

     (24) -> odd?(9.435)
     (24)    false
                                                         Type: Boolean

     (25) -> even?(-42)
     (25)    true
                                                         Type: Boolean

     (26) -> prime?(37)
     (26)    true
                                                         Type: Boolean

     (27) -> prime?(-37)
     (27)    false
                                                         Type: Boolean
</xmp>

<p>
   Some other functions that are quite useful for manipulating numerical
   values are shown in
   <a href="#figure2point1">Figure 2.1</a>
   while
   <a href="#figure2point2">Figure 2.2</a>
   contains a table of simple infix and prefix operators.
   <a href="#figure2point3">Figure 2.3</a>
    is a table of predefined macros that can be used
   in various situations.
</p>

<a name="figure2point1">
<xmp>

     +---------------+------------------------------------+
     | Function      | Operation                          |
     +---------------+------------------------------------+
     | sin(x)        | Sine of x                          |
     | cos(x)        | Cosine of x                        |
     | tan(x)        | Tangent of x                       |
     | asin(x)       | Arcsin of x                        |
     | acos(x)       | Arccos of x                        |
     | atan(x)       | Arctangent of x                    |
     | gcd(x,y)      | Greatest common divisor of x and y |
     | lcm(x,y)      | Lowest common multiple of x and y  |
     | max(x,y)      | Maximum of x and y                 |
     | min(x,y)      | Minimum of x and y                 |
     | factorial(x)  | Factorial of x                     |
     | factor(x)     | Prime factors of x                 |
     | divide(x,y)   | Quotient and remainder of x/y      |
     +---------------+------------------------------------+

            Figure 2.1: Table of simple AXIOM functions.

</xmp>
</a>

<a name="figure2point2">
<xmp>

     +--------+--------------------+--------+------------------+
     | Symbol | Operation          | Symbol | Operation        |
     +--------+--------------------+--------+------------------+
     |  +     | Addition           |  -     | Subtraction      |
     |  -     | Numerical Negation |  ~     | Logical Negation |
     |  /\    | Conjunction (AND)  |  \/    | Disjunction (OR) |
     |  and   | Logical AND (/\)   |  or    | Logical OR (\/)  |
     |  not   | Logical Negation   |  **    | Exponentiation   |
     |  *     | Multiplication     |  /     | Division         |
     |  quo   | Quotient           |  rem   | Remainder        |
     |  <     | Less than          |  >     | Greater than     |
     |  <=    | Less or equal      |  >=    | Greater or equal |
     +--------+--------------------+--------+------------------+

            Figure 2.2: Table of simple AXIOM operators.

</xmp>
</a>

<a name="figure2point3">
<xmp>

     +----------------+------------------------------------+
     | Macro          | Value                              |
     +----------------+------------------------------------+
     | %i             | The square root of -1.             |
     | %e             | The base of the natural logarithm. |
     | %pi            | Pi.                                |
     | %infinity      | Infinity.                          |
     | %plusInfinity  | Positive Infinity.                 |
     | %minusInfinity | Negative Infinity.                 |
     +----------------+------------------------------------+

           Figure 2.3: Table of some useful AXIOM macros.

</xmp>
</a>

<hr>



<!------------------------------------------------------------------------>

<p></p>
<a name="symbolic">
<h2>Chapter 3</h2>
<h2>Using <b>AXIOM</b> As A Symbolic Calculator</h2>
</a>

<p>
   In the previous section all the examples involved numbers and simple
   functions. Also none of the expressions entered were assigned to anything.
   In this section we will move on to simple algebra i.e. expressions
   involving symbols and other features available on more sophisticated
   calculators. 
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="exprSymbols">
<h3>3.1  Expressions Involving Symbols</h3>
</a>

<p>
   Expressions involving symbols are entered just as they
   are written down, for example:
</p>

<xmp>
      (1) -> xSquared := x**2

              2
      (1)    x
                                              Type: Polynomial Integer
</xmp>

<p>
   where the assignment operator ``<tt>:=</tt>'' represents
   immediate assignment. Later it will be seen that this form of assignment
   is not always desirable and the use of the delayed assignment operator
   ``<tt>==</tt>'' will be introduced. The type of the result is
   <b>Polynomial Integer</b> which is used to represent polynomials
   with integer coefficients. Some other examples along similar lines are:
</p>

<xmp>
      (2) -> xDummy := 3.21*x**2

                   2
      (2)    3.21 x
                                                Type: Polynomial Float

      (3) -> xDummy := x**2.5

              2 +-+
      (3)    x \|x
                                                Type: Expression Float

      (4) -> xDummy := x**3.3

              3 10+-+3
      (4)    x   \|x
                                                Type: Expression Float

      (5) -> xyDummy := x**2 - y**2

               2   2
      (5)    -y + x
                                              Type: Polynomial Integer
</xmp>

<p>
   Given that we can define expressions involving symbols, how do we actually
   compute the result when the symbols are assigned values? The answer is to
   use the <b>eval</b> function which takes an expression as it's
   first argument followed by a list of assignments. For example, to evaluate
   the expressions <b>xDummy</b> and <b>xyDummy</b> resulting
   from their respective assignments above we type:
</p>

<xmp>
      (6) -> eval(xDummy, x=3)
      (6)    37.5405075985 29552193
                                                Type: Expression Float

      (7) -> eval(xyDummy, [x=3, y=2.1])
      (7)    4.59
                                                Type: Polynomial Float
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="complexNumbers">
<h3>3.2  Complex Numbers</h3>
</a>

<p>
   For many scientific calculations real numbers aren't sufficient and
   support for complex numbers is also required. Complex numbers are
   handled in an intuitive manner by <b>AXIOM</b> which uses the <tt>%i</tt>
   macro to represent <em>i</em>, the square root of -1. Thus expressions
   involving complex numbers are entered just like other expressions:
</p>

<xmp>
      (8) -> (2/3 + %i)**3

               46   1
      (8)    - -- + - %i
               27   3
                                        Type: Complex Fraction Integer
</xmp>

<p>
The real and imaginary parts of a complex number can be extracted using
the <b>real</b> and <b>imag</b> functions and the
complex conjugate of a number can be obtained using <b>conjugate</b>:
</p>

<xmp>
      (9) -> real(3 + 2*%i)
      (9)    3
                                                 Type: PositiveInteger

     (10) -> imag(3 + 2*%i)
     (10)    2
                                                 Type: PositiveInteger

     (11) -> conjugate(3 + 2*%i)
     (11)    3 - 2%i
                                                 Type: Complex Integer
</xmp>

<p>
   The function <b>factor</b> can also be applied to complex
   numbers but the results aren't quite so obvious as for factoring integers:
</p>

<xmp>
     (12) -> factor(144 + 24*%i)

                        6
     (12)    %i (1 + %i)  3 (6 + %i)
                                        Type: Factored Complex Integer
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="numberReps">
<h3>3.3  Number Representations</h3>
</a>

<p>
   By default all numerical results are displayed in decimal with real
   numbers shown to 20 significant figures. If the integer part of a
   number is longer than 20 digits then nothing after the decimal point
   is shown and the integer part is given in full. To alter the number
   of digits shown the function <b>digits</b> can be called. The result
   returned by this function is the previous setting. For example, to
   find the value of <i>pi</i> to 40 digits we type:
</p>

<xmp>
     (13) -> digits(40)
     (13)    20
                                                 Type: PositiveInteger

     (14) -> %pi :: Float
     (14)    3.1415926535 8979323846 2643383279 502884197
                                                           Type: Float
</xmp>

<p>
   As can be seen in the example above, there is a gap after every ten
   digits. This can be changed using the <b>outputSpacing</b>
   function where the argument is the number of digits to be displayed
   before a space is inserted. If no spaces are desired then use the
   value 0. Two other functions controlling the appearance of real
   numbers are <b>outputFloating</b> and
   <b>outputFixed</b>. The former causes <b>AXIOM</b> to display
   floating-point values in exponent notation and the latter causes
   it to use fixed point notation. For example:
</p>

<xmp>
     (15) -> outputFloating(); %
     (15)    0.3141592653 5897932384 6264338327 9502884197 E 1
                                                           Type: Float

     (16) -> outputFloating(3); 0.00345
     (16)    0.345 E -2
                                                           Type: Float

     (17) -> outputFixed(); %
     (17)    0.00345
                                                           Type: Float

     (18) -> outputFixed(3); %
     (18)    0.003
                                                           Type: Float

     (19) -> outputGeneral(); %
     (19)    0.00345
                                                           Type: Float
</xmp>

<p>
   Note that the semicolon ``<tt>;</tt>'' in the examples above allows several
   expressions to be entered on one line. The result of the last expression
   is displayed. Remember also that the percent symbol ``<tt>%</tt>'' is used
   to represent the result of a previous calculation.
</p>

<p>
   To display rational numbers in a base other than 10 the function
   <b>radix</b> is used. The first argument of this function is
   the expression to be displayed and the second is the base to be used:
</p>

<xmp>
     (20) -> radix(10**10,32)
     (20)    9A0NP00
                                               Type: RadixExpansion 32

     (21) -> radix(3/21,5)
               ______
     (21)    0.032412
                                                Type: RadixExpansion 5
</xmp>

<p>
   Rational numbers can be represented as a repeated decimal expansion
   using the <b>decimal</b> function or as a continued fraction
   using <b>continuedFraction</b>. Any attempt to call these
   functions with irrational values will fail.
</p>

<xmp>
     (22) -> decimal(22/7)
               ______
     (22)    3.142857
                                                Type: DecimalExpansion

     (23) -> continuedFraction(6543/210)

                    1 |     1 |     1 |     1 |
     (23)    31 + +---+ + +---+ + +---+ + +---+
                  | 6     | 2     | 1     | 3
                                       Type: ContinuedFraction Integer
</xmp>

<p>
   Finally, partial fractions in compact and expanded form are available
   via the functions <b>partialFraction</b> and
   <b>padicFraction</b> respectively. The former takes two
   arguments, the first being the numerator of the fraction and the second
   being the denominator. The latter function takes a fraction and
   expands it further while the function <b>compactFraction</b>
   does the reverse:
</p>

<xmp>
     (24) -> partialFraction(234,40)

                 3    3
     (24)    6 - -- + -
                  2   5
                 2
                                         Type: PartialFraction Integer

     (25) -> padicFraction(%)

                 1   1    3
     (25)    6 - - - -- + -
                 2    2   5
                     2
                                         Type: PartialFraction Integer

     (26) -> compactFraction(%)

                 3    3
     (26)    6 - -- + -
                  2   5
                 2
                                         Type: PartialFraction Integer

     (27) -> padicFraction(234/40)

             117
     (27)    ---
             20
                                Type: PartialFraction Fraction Integer
</xmp>

<p>
   To extract parts of a partial fraction the function
   <b>nthFractionalTerm</b> is available and returns a partial
   fraction of one term. To decompose this further the numerator can
   be obtained using <b>firstNumer</b> and the denominator with
   <b>firstDenom</b>. The whole part of a partial fraction can
   be retrieved using <b>wholePart</b> and the number of fractional
   parts can be found using the function
   <b>numberOfFractionalTerms</b>:
</p>

<xmp>
     (28) -> t := partialFraction(234,40)

                 3    3
     (28)    6 - -- + -
                  2   5
                 2
                                         Type: PartialFraction Integer

     (29) -> wholePart(t)
     (29)    6
                                                 Type: PositiveInteger

     (30) -> numberOfFractionalTerms(t)
     (30)    2
                                                 Type: PositiveInteger

     (31) -> p := nthFractionalTerm(t,1)

               3
     (31)    - --
                2
               2
                                         Type: PartialFraction Integer

     (32) -> firstNumer(p)
     (32)    -3
                                                         Type: Integer

     (33) -> firstDenom(p)

              2
     (33)    2
                                                Type: Factored Integer
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="modularArith">
<h3>3.4  Modular Arithmetic</h3>
</a>

<p>
   By using the type constructor <b>PrimeField</b> it is possible
   to do arithmetic modulo some prime number. For example, arithmetic
   modulo 7 can be performed as follows:
</p>

<xmp>
     (34) -> x : PrimeField 7 := 5
     (34)    5
                                                    Type: PrimeField 7

     (35) -> x**5 + 6
     (35)    2
                                                    Type: PrimeField 7

     (36) -> 1/x
     (36)    3
                                                    Type: PrimeField 7
</xmp>

<p>
   The first example should be read as
</p>

<blockquote>
   ``Let <i>x</i> be of type <b>PrimeField 7</b> and
   assign to it the value 5.''
</blockquote>

<p>
   Note that it is only possible to invert non-zero values if the
   arithmetic is performed modulo a prime number. Thus arithmetic
   modulo a non-prime integer is possible but the reciprocal operation
   is undefined and will generate an error. Attempting to use the
   <b>PrimeField</b> type constructor with a non-prime
   argument will generate an error. An example of non-prime
   modulo arithmetic is:
</p>

<xmp>
     (37) -> y : IntegerMod 8 := 11
     (37)    3
                                                    Type: IntegerMod 8

     (38) -> y*4 + 27
     (38)    7
                                                    Type: IntegerMod 8
</xmp>

<p>
   Note that polynomials can be constructed in a similar way:

<xmp>
     (39) -> (3*a**4 + 27*a - 36)::Polynomial PrimeField 7

               4
     (39)    3a  + 6a + 6
                                         Type: Polynomial PrimeField 7
</xmp>
<hr>



<!------------------------------------------------------------------------>

<p></p>
<a name="generalPoints">
<h2>Chapter 4</h2>
<h2>General Points About <b>AXIOM</b></h2>
</a>

<p>
   This chapter contains a jumble of various points about <b>AXIOM</b>.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="compNoOutput">
<h3>4.1  Computation Without Output</h3>
</a>

<p>
   It is sometimes desirable to enter an expression and prevent <b>AXIOM</b>
   from displaying the result. To do this the expression should be
   terminated with a semicolon ``<tt>;</tt>''. In
   <a href="#numberReps">Section 3.3</a>
   it was mentioned that a set of expressions separated by semicolons
   would be evaluated and the result of the last one displayed. Thus
   if a single expression is followed by a semicolon no output will
   be produced (except for its type):
</p>

<xmp>
      (1) -> 2 + 4*5;
                                                 Type: PositiveInteger
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="earlierResults">
<h3>4.2  Accessing Earlier Results</h3>
</a>

<p>
   As mentioned in previous sections the ``<tt>%</tt>'' macro
   represents the result of the previous computation and some other
   macros were given in
   <a href="#figure2point3">Figure 2.3</a>.
   To refer to earlier calculations
   the ``<tt>%%</tt>'' macro is available which takes a single
   integer argument. If the argument is positive then it refers to
   the step number of the calculation where the numbering begins
   from one and can be seen at the end of each prompt (the number in
   parentheses).  If the argument is negative then it refers to
   previous results counting backwards from the last result
   i.e. ``<tt>%%(-1)</tt>'' is the same as ``<tt>%</tt>''. The value
   of ``<tt>%%(0)</tt>'' is not defined and will generate an error
   if requested.
</p>


<!------------------------------------------------------------------------>

<p></p>
<a name="splittingExprs">
<h3>4.3  Splitting Expressions Over Several Lines</h3>
</a>

<p>
   Although <b>AXIOM</b> will quite happily accept expressions that are
   longer than the width of the screen (just keep typing without
   pressing the <b>Return</b> key) it is often preferable to split the
   expression being entered at a point where it would result in
   more readable input. To do this the underscore ``_'' symbol
   is placed before the break point and then the <b>Return</b> key pressed.
   The rest of the expression is typed on the next line and can be
   preceded by any number of whitespace characters, for example:
</p>

<xmp>
      (2) -> 2_
             +_
             3
      (2)    5
                                                 Type: PositiveInteger
</xmp>

<p>
   The underscore symbol is an escape character and its presence alters
   the meaning of the characters that follow it. As mentioned above
   whitespace following an underscore is ignored (the <b>Return</b> key
   generates a whitespace character). Any other character following
   an underscore loses whatever special meaning it may have had. Thus
   one can create the identifier ``<tt>a+b</tt>'' by typing
   ``<tt>a_+b</tt>'' although this might lead to confusions. Also
   note the result of the following example:
</p>

<xmp>
      (3) -> ThisIsAVeryLong_
VariableName
      (3)    ThisIsAVeryLongVariableName
                            Type: Variable ThisIsAVeryLongVariableName
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="comments">
<h3>4.4  Comments And Descriptions</h3>
</a>

<p>
   Comments and descriptions are really only of use in files of <b>AXIOM</b>
   code but can be used when the output of an interactive session is
   being spooled to a file (via the system command <b><tt>)spool</tt></b>).
   A comment begins with two dashes ``<tt>--</tt>'' and continues until
   the end of the line. Multi-line comments are only possible if each
   individual line begins with two dashes.
</p>

<p>
   Descriptions are the same as comments except that the <b>AXIOM</b> compiler
   will include them in the object files produced and make them available
   to the user for documentation purposes. For more details on this refer
   to <a href="#watt1995">[watt1995]</a>.
</p>

<p>
   A description placed <em>before</em> a calculation begins with three plus
   symbols ``<tt>+++</tt>'' and a description placed after a calculation
   begins with two plus symbols ``<tt>++</tt>''.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="typeConversionB">
<h3>4.5  Control Of Result Types</h3>
</a>

<hr>
<b>
<blockquote>
<blockquote>
<blockquote>
   This section needs to be rewritten and extended to give a proper
   description of converting values from one type to another.
</blockquote>
</blockquote>
</blockquote>
</b>
<hr>

<p>
   In earlier sections the type of an expression was converted to another
   via the ``<tt>::</tt>'' operator. However, this is not the only method
   for converting between types and two other operators need to be
   introduced and explained.
</p>

<p>
   The first operator is ``<tt>$</tt>'' and is used to specify the
   package to be used to calculate the result. Thus:
</p>

<xmp>
      (4) -> (2/3)$Float
      (4)    0.6666666666 6666666667
                                                           Type: Float
</xmp>

<p>
   tells <b>AXIOM</b> to use the ``<tt>/</tt>'' operator from the
   <b>Float</b> package to evaluate the expression 2/3. This does not
   necessarily mean that the result will be of the same type as the
   domain from which the operator was taken. In the following example
   the <b>sign</b> operator is taken from the <b>Float</b> package
   but the result is of type <b>Integer</b>.
</p>

<xmp>
      (5) -> sign(2.3)$Float
      (5)    1
                                                         Type: Integer
</xmp>

<p>
   The other operator is ``<tt>@</tt>'' which is used to tell <b>AXIOM</b>
   what the desired type of the result of the calculation is. In most
   situations all three operators yield the same results but the example
   below should help to distinguish them.
</p>

<xmp>
      (6) -> (2 + 3)::String
      (6)    "5"
                                                          Type: String

      (7) -> (2 + 3)@String
      An expression involving @ String actually evaluated to
      one of type PositiveInteger . Perhaps you should use
      :: String .

      (7) -> (2 + 3)$@String
      The function + is not implemented in String .
</xmp>

<p>
   If an expression <i>X</i> is converted using one of the three operators to
   type <i>T</i> the interpretations are follows:
</p>

<blockquote>
   <dl compact>
      <dt><b><tt>::</tt></b></dt>
      <dd>means explicitly convert <i>X</i> to type <i>T</i> if possible.</dd>

      <dt><b><tt>$ </tt></b></dt>
      <dd>means use the available operators for type <i>T</i> to compute <i>X</i>.</dd>

      <dt><b><tt>@ </tt></b></dt>
      <dd>means choose operators to compute <i>X</i> so that the result
          is of type <i>T</i>.</dd>
   </dl>
</blockquote>

<hr>



<!------------------------------------------------------------------------>

<p></p>
<a name="data">
<h2>Chapter 5</h2>
<h2>Data Structures in <b>AXIOM</b></h2>
</a>

<p>
   This chapter is an overview of <em>some</em> of the data structures
   provided by <b>AXIOM</b>.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="lists">
<h3>5.1  Lists</h3>
</a>

<p>
   The <b>AXIOM</b> <b>List</b> type constructor is used to create
   homogenous lists of finite size. The notation for lists and the
   names of the functions that operate over them are similar to those
   found in functional languages such as ML.
</p>

<p>
   Lists can be created by placing a comma separated list of values
   inside square brackets or if a list with just one element is desired
   then the function <b>list</b> is available:
</p>

<xmp>
      (1) -> [4]
      (1)    [4]
                                            Type: List PositiveInteger

      (2) -> list(4)
      (2)    [4]
                                            Type: List PositiveInteger

      (3) -> [1,2,3,5,7,11]
      (3)    [1,2,3,5,7,11]
                                            Type: List PositiveInteger
</xmp>

<p>
   The function <b>append</b> takes two lists as arguments and
   returns the list consisting of the second argument appended to the first.
   A single element can be added to the front of a list using
   <b>cons</b>:
</p>

<xmp>
      (4) -> append([1,2,3,5],[7,11])
      (4)    [1,2,3,5,7,11]
                                            Type: List PositiveInteger

      (5) -> cons(23,[65,42,19])
      (5)    [23,65,42,19]
                                            Type: List PositiveInteger
</xmp>

<p>
   Lists are accessed sequentially so if <b>AXIOM</b> is asked for the value
   of the twentieth element in the list it will move from the start of the
   list over nineteen elements before it reaches the desired element. Each
   element of a list is stored as a node consisting of the value of the
   element and a pointer to the rest of the list. As a result the two main
   operations on a list are called <b>first</b> and
   <b>rest</b>. Both of these functions take a second optional
   argument which specifies the length of the first part of the list:
</p>

<xmp>
      (6) -> first([1,5,6,2,3]
      (6)    1
                                                 Type: PositiveInteger

      (7) -> first([1,5,6,2,3],2)
      (7)    [1,5]
                                            Type: List PositiveInteger

      (8) -> rest([1,5,6,2,3])
      (8)    [5,6,2,3]
                                            Type: List PositiveInteger

      (9) -> rest([1,5,6,2,3],2)
      (9)    [6,2,3]
                                            Type: List PositiveInteger
</xmp>

<p>
   Other functions are <b>empty?</b> which tests to see if a list
   contains no elements, <b>member?</b> which tests to see if the
   first argument is a member of the second, <b>reverse</b>
   which reverses the order of the list, <b>sort</b> which sorts
   a list and <b>removeDuplicates</b> which removes any duplicates.
   The length of a list can be obtained using the ``<tt>#</tt>'' operator.
</p>

<xmp>
     (10) -> empty?([7,2,-1,2])
     (10)    false
                                                         Type: Boolean

     (11) -> member?(-1,[7,2,-1,2])
     (11)    true
                                                         Type: Boolean

     (12) -> reverse([7,2,-1,2])
     (12)    [2,- 1,2,7]
                                                    Type: List Integer

     (13) -> sort([7,2,-1,2])
     (13)    [-1,2,2,7]
                                                    Type: List Integer

     (14) -> removeDuplicates([1,5,3,5,1,1,2])
     (14)    [1,5,3,2]
                                            Type: List PositiveInteger

     (15) -> #[7,2,-1,2]
     (15)    4
                                                 Type: PositiveInteger
</xmp>

<p>
   Lists in <b>AXIOM</b> are mutable and so their contents (the elements and
   the links) can be modified <i>in situ</i>. Functions that operate
   over lists in this way have names ending with the symbol ``<tt>!</tt>''.
   For example, <b>concat!</b> takes two lists as arguments
   and appends the second argument to the first (except when the first
   argument is an empty list) and <b>setrest!</b> changes the link emanating
   from the first argument to point to the second argument (see
   <a href="#figure5point1">Figure 5.1</a>
   and
   <a href="#figure5point2">Figure 5.2</a>
   for a graphical explanation of the following example of <b>setrest!</b>):
</p>

<xmp>
     (16) -> u := [9,2,4,7]
     (16)    [9,2,4,7]
                                            Type: List PositiveInteger

     (17) -> concat!(u,[1,5,42]); u
     (17)    [9,2,4,7,1,5,42]
                                            Type: List PositiveInteger

     (18) -> endOfu := rest(u,4)
     (18)    [1,5,42]
                                            Type: List PositiveInteger

     (19) -> partOfu := rest(u,2)
     (19)    [4,7,1,5,42]
                                            Type: List PositiveInteger

     (20) -> setrest!(endOfu,partOfu); u
                  -----
     (20)    [9,2,4,7,1]
                                            Type: List PositiveInteger
</xmp>


<p></p><br>
<a name="figure5point1">
<center>
   <img src="images/setrest.1.gif" alt="[Image]"><br><br>
   <b>Figure</b> 5.1: List <i>u</i> before <tt>setrest(endOfu,partOfu)</tt>.
</center>
</a>


<p></p><br><br>
<a name="figure5point2">
<center>
   <img src="images/setrest.2.gif" alt="[Image]"><br><br>
   <b>Figure</b> 5.2: List <i>u</i> after <tt>setrest(endOfu,partOfu)</tt>.
</center>
</a>


<p>
   From this it can be seen that the lists returned by <b>first</b>
   and <b>rest</b> are pointers to the original list and <em>not</em> a
   copy. Thus great care must be taken when dealing with lists in <b>AXIOM</b>.
</p>

<p>
   Although the <i>n</i>th element of a list <i>l</i> can be obtained by applying
   the <b>first</b> function to <i>n</i>-1 applications of
   <b>rest</b> to <i>l</i>, <b>AXIOM</b> provides a more useful access
   method in the form of the ``<tt>.</tt>'' operator:
</p>

<xmp>
     (21) -> u.3
     (21)    4
                                                 Type: PositiveInteger

     (22) -> u.5
     (22)    1
                                                 Type: PositiveInteger

     (23) -> u.6
     (23)    4
                                                 Type: PositiveInteger

     (24) -> first rest rest u   -- Same as u.3
     (24)    4
                                                 Type: PositiveInteger

     (25) -> u.first
     (25)    9
                                                 Type: PositiveInteger

     (26) -> u(3)
     (26)    4
                                                 Type: PositiveInteger
</xmp>

<p>
   The operation <i>u.i</i> is referred to as <em>indexing into <i>u</i></em> or
   <em>elting into <i>u</i></em>. The latter term comes from the <b>elt</b>
   function which is used to extract elements (the first element of the
   list is at index 1).
</p>

<xmp>
     (27) -> elt(u,4)   -- Same as u.4
     (27)    7
                                                 Type: PositiveInteger
</xmp>

<p>
   If a list has no cycles then any attempt to access an element beyond
   the end of the list will generate an error. However, in the example above
   there was a cycle starting at the third element so the access to the
   sixth element wrapped around to give the third element. Since lists are
   mutable it is possible to modify elements directly:
</p>

<xmp>
     (28) -> u.3 := 42; u
                  ------
     (28)    [9,2,42,7,1]
                                            Type: List PositiveInteger
</xmp>

<p>
   Other list operations are:
</p>

<xmp>
     (29) -> L := [9,3,4,7]; #L
     (29)    4
                                                 Type: PositiveInteger

     (30) -> last(L)
     (30)    7
                                                 Type: PositiveInteger

     (31) -> L.last
     (31)    7
                                                 Type: PositiveInteger

     (32) -> L.(#L - 1)
     (32)    4
                                                 Type: PositiveInteger
</xmp>

<p>
<hr>
<center>
   <img src="http://www-theory.dcs.st-andrews.ac.uk/~mnd/icons/warning.gif"
        align=center
        alt="WARNING: ">
   Using the ``<tt>#</tt>'' operator on a list with cycles causes
   <b>AXIOM</b> to enter an infinite loop.
   <img src="http://www-theory.dcs.st-andrews.ac.uk/~mnd/icons/warning.gif"
        align=center
        alt="WARNING: ">
</center>
<hr>
</p>


<p>
   Note that any operation on a list <i>L</i> that returns a list
   <i>L'</i> will, in general, be such that any changes to <i>L'</i> will have
   the side-effect of altering <i>L</i>. For example:
</p>

<xmp>
     (33) -> m := rest(L,2)
     (33)    [4,7]
                                            Type: List PositiveInteger

     (34) -> m.1 := 20; L
     (34)    [9,3,20,7]
                                            Type: List PositiveInteger

     (35) -> n := L
     (35)    [9,3,20,7]
                                            Type: List PositiveInteger

     (36) -> n.2 := 99; L
     (36)    [9,99,20,7]
                                            Type: List PositiveInteger

     (37) -> n
     (37)    [9,99,20,7]
                                            Type: List PositiveInteger
</xmp>

<p>
   Thus the only safe way of copying lists is to copy each
   element from one to another and not use the assignment operator:
</p>

<xmp>
     (38) -> p := [i for i in n]   -- Same as `p := copy(n)'
     (38)    [9,99,20,7]
                                            Type: List PositiveInteger

     (39) -> p.2 := 5; p
     (39)    [9,5,20,7]
                                            Type: List PositiveInteger

     (40) -> n
     (40)    [9,99,20,7]
                                            Type: List PositiveInteger
</xmp>

<p>
   In the previous example a new way of constructing lists was given.
   This is a powerful method which gives the reader more information
   about the contents of the list than before and which is extremely
   flexible. The example,
</p>

<xmp>
     (41) -> [i for i in 1..10]
     (41)    [1,2,3,4,5,6,7,8,9,10]
                                            Type: List PositiveInteger
</xmp>

<p>
   should be read as
</p>

<blockquote>
   ``Using the expression <i>i</i>, generate each element of the list by
   iterating the symbol <i>i</i> over the range of integers [1,10].''
</blockquote>

<p>
   To generate the list of the squares of the first ten elements we
   just use:
</p>

<xmp>
     (42) -> [i**2 for i in 1..10]
     (42)    [1,4,9,16,25,36,49,64,81,100]
                                            Type: List PositiveInteger
</xmp>

<p>
   For more complex lists we can apply a condition to the elements that
   are to be placed into the list thus to obtain a list of even numbers
   between 0 and 11:
</p>

<xmp>
     (43) -> [i for i in 1..10 | even?(i)]
     (43)    [2,4,6,8,10]
                                            Type: List PositiveInteger
</xmp>

<p>
   This example should be read as
</p>

<blockquote>
   ``Using the expression <i>i</i>, generate each element of the list by
   iterating the symbol <i>i</i> over the range of integers [1,10] such that
   <i>i</i> is even.''
</blockquote>

<p>
   The following achieves the same result:
</p>

<xmp>
     (44) -> [i for i in 2..10 by 2]
     (44)    [2,4,6,8,10]
                                            Type: List PositiveInteger
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="segLists">
<h3>5.2  Segmented Lists</h3>
</a>

<p>
   A segmented list is one in which some of the elements are ranges of
   values. The <b>expand</b> function converts lists of this
   type into ordinary lists:
</p>

<xmp>
     (45) -> [1..10]
     (45)    [1..10]
                                    Type: List Segment PositiveInteger

     (46) -> [1..3,5,6,8..10]
     (46)    [1..3,5..5,6..6,8..10]
                                    Type: List Segment PositiveInteger

     (47) -> expand(%)
     (47)    [1,2,3,5,6,8,9,10]
                                                    Type: List Integer
</xmp>

<p>
   If the upper bound of a segment is omitted then a different type of
   segmented list is obtained and expanding it will produce a stream (which
   will be considered in the next section):
</p>

<xmp>
     (48) -> [1..]
     (48)    [1..]
                           Type: List UniversalSegment PositiveInteger

     (49) -> expand(%)
     (49)    [1,2,3,4,5,6,7,8,9,10,...]
                                                  Type: Stream Integer
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="Streams">
<h3>5.3  Streams</h3>
</a>

<p>
   Streams are infinite lists which have the ability to calculate the
   next element should it be required. For example, a stream of positive
   integers and a list of prime numbers can be generated by:
</p>

<xmp>
     (50) -> [i for i in 1..]
     (50)    [1,2,3,4,5,6,7,8,9,10,...]
                                          Type: Stream PositiveInteger

     (51) -> [i for i in 1.. | prime?(i)]
     (51)    [2,3,5,7,11,13,17,19,23,29,...]
                                          Type: Stream PositiveInteger
</xmp>

<p>
   In each case the first few elements of the stream are calculated for
   display purposes but the rest of the stream remains unevaluated. The value
   of items in a stream are only calculated when they are needed which gives
   rise to their alternative name of ``lazy lists''.
</p>

<p>
   Another method of creating streams is to use the <b>generate(f,a)</b>
   function. This applies it's first argument repeatedly onto it's second to
   produce the stream [<i>a,f(a),f(f(a)),f(f(f(a))) ...</i>]. Given
   that the function <b>nextPrime</b> returns the lowest prime
   number greater than it's argument we can generate a stream of primes
   as follows:
</p>

<xmp>
     (52) -> generate(nextPrime,2)$Stream Integer
     (52)    [2,3,5,7,11,13,17,19,23,29,...]
                                                  Type: Stream Integer
</xmp>

<p>
   As a longer example a stream of Fibonacci numbers will be computed. The
   Fibobacci numbers start at 1 and each following number is the addition
   of the two numbers that precede it i.e. 1,1,2,3,5,8,... The idea
   behind this example is from
   <a href="#jenks1992">[jenks1992, page 457]</a>
   but the explanation and construction below is that of the author's.
</p>

<p>
   Since the generation of any Fibonacci number only relies on knowing the
   previous two numbers we can look at the series through a window of two
   elements. To create the series the window is placed at the start over
   the values [1,1] and their sum obtained. The window is now
   shifted to the right by one position and the sum placed into the empty
   slot of the window; the process is then repeated. To implement this we
   require a function that takes a list of two elements (the current view
   of the window), adds them and outputs the new window. The result is the
   function <i>[a,b] -> [b,a+b]</i>:
</p>

<xmp>
     (53) -> win : List Integer -> List Integer
                                                            Type: Void

     (54) -> win(x) == [x.2, x.1 + x.2]
                                                            Type: Void

     (55) -> win([1,1])
     (55)    [1,2]
                                                    Type: List Integer

     (56) -> win(%)
     (56)    [2,3]
                                                    Type: List Integer

     (57) -> win(%)
     (57)    [3,5]
                                                    Type: List Integer
</xmp>

<p>
   (For more details on functions definitions see
   <a href="#functions">Section 6.3</a>.)
</p>

<p>
   Thus it can be seen that repeatedly applying <b>win</b>
   to the results of the previous invocation, each element of the series
   is obtained. Clearly <b>win</b> is an ideal function to
   construct streams using the <b>generate</b> function:
</p>

<xmp>
     (58) -> fibs := [generate(win,[1,1])]
     (58)    [[1,1],[1,2],[2,3],[3,5],[5,8],[8,13],...]
                                             Type: Stream List Integer
</xmp>

<p>
   This isn't quite what is wanted - we need to extract the first element of
   each list and place that in our series:
</p>

<xmp>
     (59) -> fibs := [i.1 for i in [generate(win,[1,1])]]
     (59)    [1,1,2,3,5,8,13,21,34,55,...]
                                                  Type: Stream Integer
</xmp>

<p>
   Obtaining the 200th Fibonacci number is trivial:
</p>

<xmp>
     (60) -> fibs.200
     (60)    280571172992510140037611932413038677189525
                                                 Type: PositiveInteger
</xmp>

<p>
   One other function of interest is <b>complete</b> which
   expands a finite stream derived from an infinite one (and thus
   was still stored as an infinite stream) to form a finite stream.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="arraysEtc">
<h3>5.4  Arrays, Vectors, Strings and Bits</h3>
</a>

<p>
   The simplest array data structure is the <em>one-dimensional array</em>
   which can be obtained by applying the <b>oneDimensionalArray</b>
   function to a list:
</p>

<xmp>
     (61) -> oneDimensionalArray([7,2,5,4,1,9])
     (61)    [7,2,5,4,1,9]
                             Type: OneDimensionalArray PositiveInteger
</xmp>

<p>
   One-dimensional arrays are homogenous (all the elements must have the
   same type) and mutable like lists but unlike lists they are constant in
   size and have uniform access time (it is just as quick to read the last
   element of a one-dimensional array as it is to read the first: this is
   not true for lists).
</p>

<p>
   Since these arrays are mutable all the warnings that apply to lists
   apply to arrays i.e. it is possible to modify an element in a copy
   of an array and change the original:
</p>

<xmp>
     (62) -> x := %
     (62)    [7,2,5,4,1,9]
                             Type: OneDimensionalArray PositiveInteger

     (63) -> y := x
     (63)    [7,2,5,4,1,9]
                             Type: OneDimensionalArray PositiveInteger

     (64) -> y.3 := 20; x
     (64)    [7,2,20,4,1,9]
                             Type: OneDimensionalArray PositiveInteger
</xmp>

<p>
   Note that because these arrays are of fixed size the <b>concat!</b>
   function cannot be applied to them without generating an error.
   If arrays of this type are required use the <b>FlexibleArray</b>
   type constructor (see
   <a href="#flexibleArrays">Section 5.5</a>).
</p>

<p>
   One-dimensional arrays can be created using <b>new</b>
   which specifies the size of the array and the initial value for each
   of the elements. Other operations that can be applied to one-dimensional
   arrays are <b>map!</b> which applies a mapping onto each
   element, <b>swap!</b> which swaps two elements and
   <b>copyInto!(a,b,c)</b> which copies the array <i>b</i> onto <i>a</i>
   starting at position <i>c</i>:
</p>

<xmp>
     (65) -> a : ARRAY1 PositiveInteger := new(10,3)
     (65)    [3,3,3,3,3,3,3,3,3,3]
                             Type: OneDimensionalArray PositiveInteger

     (66) -> map!(i +-> i+1,a); a
     (66)    [4,4,4,4,4,4,4,4,4,4]
                                     Type: OneDimensionalArray Integer

     (67) -> b := oneDimensionalArray([2,3,4,5,6])
     (67)    [2,3,4,5,6]
                             Type: OneDimensionalArray PositiveInteger

     (68) -> swap!(b,2,3); b
     (68)    [2,4,3,5,6]
                             Type: OneDimensionalArray PositiveInteger

     (69) -> copyInto!(a,b,3)
     (69)    [4,4,2,4,3,5,6,4,4,4]
                             Type: OneDimensionalArray PositiveInteger

     (70) -> a
     (70)    [4,4,2,4,3,5,6,4,4,4]
                             Type: OneDimensionalArray PositiveInteger
</xmp>

<p>
   (note that <b>ARRAY1</b> is an abbreviation for the type
   <b>OneDimensionalArray</b>.) Other types based on one-dimensional
   arrays are <b>Vector</b>, <b>String</b> and <b>Bits</b>:
</p>

<xmp>
     (71) -> vector([1/2,1/3,1/4])
              1 1 1
     (71)    [-,-,-]
              2 3 4
                                         Type: Vector Fraction Integer

     (72) -> "Hello World"
     (72)    "Hello World"
                                                          Type: String

     (73) -> bits(8,true)
     (73)    "11111111"
                                                            Type: Bits
</xmp>

<p>
   A vector is similar to a one-dimensional array except that if it's
   components belong to a ring then arithmetic operations are provided.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="flexibleArrays">
<h3>5.5  Flexible Arrays</h3>
</a>

<p>
   Flexible arrays are designed to provide the efficiency of one-dimensional
   arrays while retaining the flexibility of lists. They are implemented by
   allocating a fixed block of storage for the array. If the array needs to
   be expanded then a larger block of storage is allocated and the contents
   of the old block are copied into the new one.
</p>

<p>
   There are several operations that can be applied to this type, most
   of which modify the array <i>in situ</i>. As a result these functions
   all have names ending in ``<tt>!</tt>''. All the functions in the example
   below are fairly obvious. The <b>physicalLength</b> returns
   the actual length of the array as stored in memory while the
   <b>physicalLength!</b> allows this value to be changed by the
   user.
</p>

<xmp>
     (74) -> f : FARRAY INT := new(6,1)
     (74)    [1,1,1,1,1,1]
                                           Type: FlexibleArray Integer

     (75) -> f.1 := 4;f.2 := 3;f.3 := 8;f.5 := 2;f
     (75)    [4,3,8,1,2,1]
                                           Type: FlexibleArray Integer

     (76) -> insert!(42,f,3); f
     (76)    [4,3,42,8,1,2,1]
                                           Type: FlexibleArray Integer

     (77) -> insert!(28,f,8); f
     (77)    [4,3,42,8,1,2,1,28]
                                           Type: FlexibleArray Integer

     (78) -> removeDuplicates!(f)
     (78)    [4,3,42,8,1,2,28]
                                           Type: FlexibleArray Integer

     (79) -> delete!(f,5)
     (79)    [4,3,42,8,2,28]
                                           Type: FlexibleArray Integer

     (80) -> g := f(3..5)
     (80)    [42,8,2]
                                           Type: FlexibleArray Integer

     (81) -> g.2 := 7; f
     (81)    [4,3,42,8,2,28]
                                           Type: FlexibleArray Integer

     (82) -> insert!(g,f,1)
     (82)    [42,7,2,4,3,42,8,2,28]
                                           Type: FlexibleArray Integer

     (83) -> physicalLength(f)
     (83)    10
                                                 Type: PositiveInteger

     (84) -> physicalLength!(f,20)
     (84)    [42,7,2,4,3,42,8,2,28]
                                           Type: FlexibleArray Integer

     (85) -> merge!(sort!(f),sort!(g))
     (85)    [2,2,2,3,4,7,7,8,28,42,42,42]
                                           Type: FlexibleArray Integer

     (86) -> shrinkable(false)$FlexibleArray(Integer)
     (86)    true
                                                         Type: Boolean
</xmp>

<p>
   There are several things to point out concerning the previous examples.
   Firstly although flexible arrays are mutable, making copies of these
   arrays creates separate entities. This can be seen by the fact that the
   modification of element <i>b.2</i> above did not alter <i>a</i>. Secondly, the
   <b>merge!</b> function can take an extra argument before the
   two arrays being merged. The argument is a comparison function and
   defaults to <tt>&lt;=</tt> if omitted. Lastly, <b>shrinkable</b>
   tells the <b>AXIOM</b> system whether or not to let flexible arrays
   contract when elements are deleted from them. An explicit package
   reference must be given as in the example above.
</xmp>

<hr>
<b>
<blockquote>
<blockquote>
<blockquote>
   Although there are several other data structures that ought to
   be covered here such as sets and records, I want to move on to
   more important areas such as functions and iteration before finishing
   this chapter off.
</blockquote>
</blockquote>
</blockquote>
</b>
<hr>


<!------------------------------------------------------------------------>

<p></p>
<a name="functionsEtc">
<h2>Chapter 6</h2>
<h2>Functions, Choices And Loops</h3>
</a>

<p>
   By now the reader should be able to construct simple one-line
   expressions involving variables and different data structures. This
   chapter builds on this knowledge and shows how to use iteration,
   make choices and build functions in <b>AXIOM</b>. At the moment it is
   assumed that the reader has a rough idea of how types are specified
   and constructed so that they can follow the examples given. A more
   detailed coverage of types in <b>AXIOM</b> will be provided in a later
   chapter (sometime in the future!).
</p>

<p>
   From this point on most examples will be taken from input files.
   The prompt for such examples is faked and should actually contain
   a command such as ``<tt>)read eg01.input</tt>''. There may be jumps
   in the step numbers of the examples due to the way <b>AXIOM</b>
   calculates them and due to the editing done on the output. If the
   example code is free from bugs then a value and type for the code
   will be given otherwise just the code will be displayed
</p>

<p>
   Although the author has not covered this topic yet please make do
   with the following snippet until I write that section:
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="readFromFile">
<h3>6.1  Reading Code From A File</h3>
</a>

<ul>
   <li>The names of all input files in <b>AXIOM</b> should end in the suffix
       ``<tt>.input</tt>'' otherwise <b>AXIOM</b> will refuse to consult them.</li>
   <li>Use the command <b>)read fred.input</b> to read and
       interpret the contents of the file ``<tt>fred.input</tt>''.</li>
   <li>To start everything afresh before reading in an input file
       enter the command  <b>)clear all</b> or put it at the start of
       the file.</li>
</ul>

<!------------------------------------------------------------------------>

<p></p>
<a name="Blocks">
<h3>6.2  Blocks</h3>
</a>

<p>
   The <b>AXIOM</b> constructs that provide looping, choices and user-defined
   functions all rely on the notion of blocks. According to
   <a href="#jenks1992">[jenks1992, page 112]</a>
   a block is a sequence of expressions which are evaluated in the order that
   they appear except when it is modified by control expressions such as loops.
   To leave a block prematurely use the expression <i>BoolExpr =&gt; Expr</i>
   where <i>BoolExpr</i> is any <b>AXIOM</b> expression that has type
   <b>Boolean</b>. The value and type of <i>Expr</i> determines the value and
   type returned by the block.
</p>

<p>
   If blocks are entered at the keyboard (as opposed to reading code
   in from a text file) then there is only one way of creating them;
   the syntax is:
</p>

<blockquote>
   <tt>(</tt> <i>expression1</i> <tt>;</tt> <i>expression2</i> <tt>;</tt> ...
   <tt>;</tt> <i>expressionN</i> <tt>)</tt>
</blockquote>

<p>
   In an input file a block can be constructed as above or by placing
   all the statements at the same indentation level. In this situation
   the block is called a <em>pile</em>. As an example of a simple block a
   list of three integers can be constructed using parentheses
</p>

<xmp>
      (1) -> (a := 4;b := 1; c := 9; L := [a,b,c])
      (1)    [4,1,9]
                                            Type: List PositiveInteger
</xmp>

<p>
or using piles
</p>

<xmp>
      (2) -> L :=
                  a := 4
                  b := 1
                  c := 9
                  [a,b,c]

      (2)    [4,1,9]
                                            Type: List PositiveInteger
</xmp>

<p>
   Since blocks have a type and a value they can be used as arguments to
   functions or as part of other expressions. It should be pointed out
   that the following example is not recommended practice but helps to
   illustrate the idea of blocks and their ability to return values:
</p>

<xmp>
      (3) -> sqrt(4.0 +
                      a := 3.0
                      b := 1.0
                      c := a + b
                      c
                  )

      (3)    2.8284271247 461900976
                                                           Type: Float
</xmp>

<p>
   Note that indentation is <em>extremely</em> important. If the example
   given above had the pile starting at ``<tt>a :=</tt>'' moved left by
   two spaces so that the ``<tt>a</tt>'' was under the ``<tt>(</tt>'' of the
   first line then the interpreter would signal an error. Furthermore,
   if the closing bracket ``<tt>)</tt>'' is moved up to give:
</p>

<xmp>
      (4) -> sqrt(4.0 +
                   a := 3.0
                   b := 1.0
                   c := a + b
                   c)
</xmp>

<p>
   then the parser will generate errors and if the bracket is
   shifted right by several spaces so that it is in line with the ``<tt>c</tt>''
   similar errors will be raised. Finally, the ``<tt>)</tt>'' must be
   indented by at least one space otherwise more errors will be generated.
</p>

<p>
   Thus it can be seen that great care needs to be taken when
   constructing input files consisting of piles of expressions. It would
   seem prudent to add one pile at a time and check it is acceptable
   before adding more, particularly if piles are nested. However, it
   should be pointed out that the use of piles as values for functions
   is not very readable and so perhaps the delicate nature of their
   interpretation should deter programmers from using them in these
   situations. Using piles should really be restricted to constructing
   functions etc. and a small amount of rewriting can remove the
   need to use them as arguments. For example, the previous block could
   easily be implemented as:
</p>

<xmp>
      (4) -> a := 3.0
             b := 1.0
             c := a + b
             sqrt(4.0 + c)

      (4)    2.8284271247 461900976
                                                           Type: Float
</xmp>

<p>
   which achieves the same result and is easier to understand. Note
   that this is still a pile but it is not as fragile as the previous
   version.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="functions">
<h3>6.3  Functions</h3>
</a>

<p>
   Definitions of functions in <b>AXIOM</b> are quite simple providing two
   things are observed. Firstly the type of the function must either be
   completely specifed or completely unspecified and secondly the body
   of the function is assigned to the function identifier using the
   delayed assignment operator ``<tt>==</tt>''.
</p>

<p>
   To specify the type of something the ``<tt>:</tt>'' operator is
   used. Thus to define a variable <i>x</i> to be of type
   <b>Fraction Integer</b> we enter:
</p>

<xmp>
      (5) -> x : Fraction Integer
                                                            Type: Void
</xmp>

<p>
   For functions the method is the same except that the arguments to
   are placed in parentheses and the return type is placed after the
   symbol ``<tt>-&gt;</tt>''. More details on type definitions will be
   given later which will explain this more fully. For now an example
   of type definitions for functions taking zero, one, two and three
   integer arguments and returning a list of integers are given:
</p>

<xmp>
      (6) -> f : () -> List Integer
                                                            Type: Void
      (7) -> g : (Integer) -> List Integer
                                                            Type: Void
      (8) -> h : (Integer, Integer) -> List Integer
                                                            Type: Void
      (9) -> k : (Integer, Integer, Integer) -> List Integer
                                                            Type: Void
</xmp>

<p>
   Now the actual definition of the functions might be:
</p>

<xmp>
     (10) -> f() == []
                                                            Type: Void
     (11) -> g(a) == [a]
                                                            Type: Void
     (12) -> h(a,b) == [a,b]
                                                            Type: Void
     (13) -> k(a,b,c) == [a,b,c]
                                                            Type: Void
</xmp>

<p>
   with some invokations of these functions:
</p>

<xmp>
     (14) -> f()
     (14)    []
                                                    Type: List Integer
     (15) -> g(4)
     (15)    [4]
                                                    Type: List Integer
     (16) -> h(2,9)
     (16)    [2,9]
                                                    Type: List Integer
     (17) -> k(-3,42,100)
     (17)    [-3,42,100]
                                                    Type: List Integer
</xmp>

<p>
   The value returned by a function is either the value of the last
   expression evaluated or the result of a <b>return</b>
   statement. For example the following are effectively the same:
</p>

<xmp>
     (18) -> p : Integer -> Integer

             p x ==
                a := 1
                b := 2
                a + b + x
                                                            Type: Void

     (19) -> p : Integer -> Integer

             p x ==
                a := 1
                b := 2
                return a + b + x
                                                            Type: Void
</xmp>

<p>
   Note that a block (pile) is assigned to the function identifier
   <b>p</b> and thus all the rules about blocks apply to
   function definitions. Also there was only one argument so the
   parentheses were discarded.
</p>

<p>
   This is basically all that one needs to know about defining functions
   in <b>AXIOM</b> - first specify the complete type and then assign a block
   to the function. The rest of this chapter is concerned with defining
   more complex blocks than those in this section and as a result function
   definitions will crop up continually particularly since they are a
   good way of testing examples.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="choices">
<h3>6.4  Choices</h3>
</a>

<p>
   Apart from the ``<tt>=&gt;</tt>'' operator that allows a block to be
   left before the end <b>AXIOM</b> provides the standard <b>if-then-else</b>
   construct. The general syntax is:
</p>

<blockquote>
   <tt>if </tt><i>BooleanExpr</i> <tt>then </tt><i>Expr1</i> <tt>else </tt><i>Expr2</i>
</blockquote>

<p>
   where ``<tt>else </tt><i>Expr2</i>'' can be omitted. If the
   expression <i>BooleanExpr</i> evaluates to <i>true</i> then <i>Expr1</i> is
   executed otherwise <i>Expr2</i> (if present) will be. An example of
   piles and <b>if-then-else</b> in <b>AXIOM</b> from
   <a href="#jenks1992">[jenks1992, page 114]</a>
   is given below:
</p>

<xmp>
     (20) -> h := 2.0
             if h > 3.1 then
                   1.0
                else
                   z := cos(h)
                   max(z,0.5)

     (20)    0.5
                                                           Type: Float
</xmp>

<p>
   Note the indentation - the ``<tt>else</tt>'' must be indented relative to
   the ``<tt>if</tt>'' otherwise it will generate an error (<b>AXIOM</b> will think
   there are two piles, the second one beginning with ``<tt>else</tt>'').
</p>

<p>
   Any expression that has type <b>Boolean</b> can be used as
   <i>BooleanExpr</i> and the most common will be those involving the relational
   operators ``<tt>&gt;</tt>'', ``<tt>&lt;</tt>'' and ``<tt>=</tt>''. Usually
   the type of an expression involving the equality operator ``<tt>=</tt>'' will
   be <b>Boolean</b> but in those situations when it isn't you may need to use
   the ``<tt>@</tt>'' operator to ensure that it is.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="loops">
<h3>6.5  Loops</h3>
</a>

<p>
   Loops in <b>AXIOM</b> are regarded as expressions containing another expression
   called the <em>loop body</em>. The loop body is executed zero or more
   times depending on the type of the loop. Loops can be nested to any depth.
</p>

<!------------------------------------------------------------------------>

<p></p>
<a name="repeat">
<h4>6.5.1  The repeat Loop</h4>
</a>

<p>
   The simplest type of loop provided by <b>AXIOM</b> is the <b>repeat</b>
   loop. The general syntax of this is:
</p>

<blockquote>
   <tt>repeat </tt><i>loopBody</i>
</blockquote>

<p>
   This will cause <b>AXIOM</b> to execute <i>loopBody</i> repeatedly until
   either a <b>break</b> or
   <b>return</b> statement are encountered. If <i>loopBody</i>
   contains neither of these statements then it will loop forever. The
   following piece of code will display the numbers from 1 to 4:
</p>

<xmp>
     (21) -> i := 1
             repeat
                if i > 4 then break
                output(i)
                i := i + 1

             1
             2
             3
             4
                                                            Type: Void
</xmp>

<p>
   <b>Note:</b> In <b>AXIOM</b> Release 2.0 the
   <b>break</b> keyword replaces <b>leave</b> which was
   used in earlier versions. Use of <b>leave</b> will generate an
   error if it is used with <b>AXIOM</b> Release 2.0 or higher.
</p>

<p>
   It was mentioned that loops will only be left when either a
   <b>break</b> or <b>return</b> statement is
   encountered so why can't one use the ``<tt>=&gt;</tt>'' operator?
   The reason is that the ``<tt>=&gt;</tt>'' operator tells <b>AXIOM</b>
   to leave the current block whereas <b>break</b> and
   <b>return</b> tell <b>AXIOM</b> to leave the current loop
   (the latter actually tells <b>AXIOM</b> to leave the current function
   which could mean leaving several levels of loop if necessary).
   An example of this is given in
   <a href="#jenks1992">[jenks1992]</a>
   and is provided here for reference:
</p>

<xmp>
     (22) -> i := 0
             repeat
                i := i + 1
                i > 3 => i
                output(i)

             1
             2
             3
^C
             >> Sytem error:
             Console interrupt.
</xmp>

<p>
   Here the ``<tt>=&gt;</tt>'' operator instructs <b>AXIOM</b> to leave
   the block when the value of <i>i</i> reaches 4 but then the loop continues
   to execute the first statement (increment <i>i</i>) forever (or until the
   user interrupts it). However, the <b>break</b> keyword can be used to
   represent a return value so we can combine the two previous examples as
   follows:
</p>

<xmp>
     (22) -> i := 0
             repeat
                i := i + 1
                i > 3 => break
                output(i)

             1
             2
             3
                                                            Type: Void
</xmp>

<p>
   To skip the rest of a loop body and begin the next iteration of
   the loop one uses the <b>iterate</b> keyword:
</p>

<xmp>
     (23) -> i := 0
             repeat
                i := i + 1
                if i > 6 then break
                -- Return to start if i is odd.
                if odd?(i) then iterate
                output(i)

             2
             4
             6
                                                            Type: Void
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="while">
<h4>6.5.2  The while Loop</h4>
</a>

<p>
   The <b>while</b> statement extends the basic
   <b>repeat</b> loop to place the control of leaving the
   loop at the start rather than have it buried in the middle. Since
   the body of the loop is still part of a <b>repeat</b> loop,
   <b>break</b> and ``<tt>=&gt;</tt>'' work in the same way as in the
   previous section. The general syntax of a <b>while</b> loop is:
</p>

<blockquote>
   <tt>while </tt><i>BoolExpr</i><tt> repeat </tt><i>loopBody</i>
</blockquote>

<p>
   As before, <i>BoolExpr</i> must be an expression of type <b>Boolean</b>.
   Before the body of the loop is executed <i>BoolExpr</i> is tested. If it
   evaluates to <b>true</b> then the loop body is entered otherwise the loop
   is terminated. Multiple conditions can be applied using the logical
   operators such as <b>and</b> or by using several
   <b>while</b> statements before the <b>repeat</b>.
   The following examples are from
   <a href="#jenks1992">[jenks1992, page 122]</a>:
</p>

<xmp>
     (24) -> x := 1; y := 1
             while x < 4 and y < 10 repeat
                output [x,y]
                x := x + 1
                y := y + 2

             [1,1]
             [2,3]
             [3,5]
                                                            Type: Void

     (25) -> x := 1; y := 1
             while x < 4 while y < 10 repeat
                output [x,y]
                x := x + 1
                y := y + 2

             [1,1]
             [2,3]
             [3,5]
                                                            Type: Void
</xmp>

<p>
   Note that the last example using two <b>while</b> statements
   is <em>not</em> a nested loop but the following one is:
</p>

<xmp>
     (26) -> x := 1; y := 1
             while x < 4 repeat
                while y < 10 repeat
                   output [x,y]
                   x := x + 1
                   y := y + 2

             [1,1]
             [2,3]
             [3,5]
             [4,7]
             [5,9]
                                                            Type: Void
</xmp>

<p>
   As a longer example the following is taken from
   <a href="#jenks1992">[jenks1992, page 123]</a>
   although the matrix used is different. Given a matrix of arbitrary size, find
   the position and value of the first negative element by examining the
   matrix in row-major order:
</p>

<xmp>
     (27) -> m := matrix [[21,37,53,14],_
                          [8,22,-24,16],_
                          [2,10,15,14],_
                          [26,33,55,-13]]

             +21  37   53    14 +
             |                  |
             |8   22  - 24   16 |
     (27)    |                  |
             |2   10   15    14 |
             |                  |
             +26  33   55   - 13+
                                                  Type: Matrix Integer

     (28) -> lastrow := nrows(m);  lastcol := ncols(m)
             r := 1

             while r <= lastrow repeat
                c := 1 -- Index of first column
                while c <= lastcol repeat
                   if elt(m,r,c) < 0 then
                      output [r,c,elt(m,r,c)]
                      r := lastrow
                      break -- Don't look any further
                   c := c + 1
                r := r + 1

             [2,3,-24]
                                                            Type: Void
</xmp>

<!------------------------------------------------------------------------>

<p></p>
<a name="for">
<h4>6.5.3  The for Loop</h4>
</a>

<p>
   The last loop of interest is the <b>for</b> loop. There are
   two ways of creating a <b>for</b> loop and the general syntax
   for both is as follows (with and without the ``such that'' predicates):
</p>

<blockquote>
   <tt>for </tt><i>var</i><tt> in </tt><i>seg</i><tt> repeat </tt><i>loopBody</i><br>
   <tt>for </tt><i>var</i><tt> in </tt><i>list</i><tt> repeat </tt><i>loopBody</i><br>
   <tt>for </tt><i>var</i><tt> in </tt><i>seg</i><tt> | </tt><i>BoolExpr</i><tt>
       repeat </tt><i>loopBody</i><br>
   <tt>for </tt><i>var</i><tt> in </tt><i>list</i><tt> | </tt><i>BoolExpr</i><tt>
       repeat </tt><i>loopBody</i><br>
</blockquote>

<p>
   where <i>var</i> is an index variable which is iterated over
   the values in <i>seg</i> or <i>list</i>. The value <i>seg</i> is
   a segment e.g.  <tt>1..10</tt> or <tt>1..</tt> and <i>list</i> is
   a list of some type. The last two types of <b>for</b> loop will
   only execute the statements in <i>loopBody</i> if <i>BoolExpr</i>
   evaluates to <b>true</b>. Some examples of this type of loop are
   given below:
</p>

<xmp>
     (29) -> for i in 1..10 repeat
                ~prime?(i) => iterate
                output(i)

             2
             3
             5
             7
                                                            Type: Void
</xmp>


<xmp>
     (30) -> for i in 1..10 | prime?(i) repeat
                output(i)

             2
             3
             5
             7
                                                            Type: Void
</xmp>


<xmp>
     (31) -> for w in ["This", "Is", "Your", "Life!"] repeat
                output(w)

             This
             Is
             Your
             Life
                                                            Type: Void
</xmp>


<xmp>
     (32) -> for i in 1.. repeat
                if even?(i) then output(i)
                if i < 7 then iterate
                break

             2
             4
             6
                                                            Type: Void
</xmp>

<p>
   The last example loop can be simplified by adding a
   <b>while</b> clause:
</p>

<xmp>
     (33) -> for i in 1.. while i < 7 repeat
                if even?(i) then output(i)

             2
             4
             6
                                                            Type: Void
</xmp>

<p>
   and by using the ``such that'' clause it becomes even
   simpler:
</p>

<xmp>
     (34) -> for i in 1.. | even?(i) while i < 7 repeat
                output(i)

             2
             4
             6
                                                            Type: Void
</xmp>

<p>
   Similarly it is possible to have multiple <b>for</b>
   clauses on a line to iterate over several symbols in parallel:
</p>

<xmp>
     (35) -> for a in 1..4  for b in 5..8 repeat
                output [a,b]

             [1,5]
             [2,6]
             [3,7]
             [4,8]
                                                            Type: Void
</xmp>

<p>
   As a general point it should be noted that any symbols referred
   to in the ``such that'' and <b>while</b> clauses must be
   pre-defined. This either means that the symbols must have been
   defined in an outer level (e.g. in an enclosing loop) or in a
   <b>for</b> clause appearing before the ``such that'' or
   <b>while</b>. For example,
</p>

<xmp>
     (36) -> for a in 1..4 repeat
                for j in 7..9 | prime?(a + b) repeat
                   output [a,b,a + b]

             [2,9,11]
             [3,8,11]
             [4,7,11]
             [4,9,13]
                                                            Type: Void
</xmp>

<p>
   is legal but
</p>

<xmp>
     (37) -> for b in 7..9 | prime?(a + b) repeat
                for a in 1..4 repeat
                   output [a,b,a + b]
</xmp>

<p>
   is not and will generate an error because <i></i> is not defined
   in the first line.
</p>

<p>
   Finally it is often useful to be able to use a segment in which the
   elements are in decreasing order. To do this the <b>by</b>
   keyword is used:
</p>

<xmp>
     (38) -> for a in 1..4 for b in 8..5 by -1 repeat
                output [a,b]

             [1,8]
             [2,7]
             [3,6]
             [4,5]
                                                            Type: Void
</xmp>

<p>
   Note that without ``<b>by -1</b>'' the loop body would never
   be executed (the segment 8..5 is empty so there is nothing to
   iterate over):
</p>

<xmp>
     (39) -> for a in 1..4 for b in 8..5 by -1 repeat
                output [a,b]
                                                            Type: Void
</xmp>

<hr>


<!------------------------------------------------------------------------>

<p></p>
<a name="biblio">
<h2>Bibliography</h2>
</a>

<dl>
   <dt><a name="jenks1992">[jenks1992]</a></dt>
   <dd>Richard D. Jenks and Robert S. Sutor.
       <i>AXIOM: the scientific computation system.</i>
       NAG Ltd., 1992.</dd>

   <dt><a name="watt1995">[watt1995]</a></dt>
   <dd>Stephen M. Watt, Peter A. Broadbery, Samuel S. Dooley, Pietro Iglio,
       Scott C. Morrison, Jonathon M. Steinbach, and Robert S. Sutor.
       <i>AXIOM Library Compiler User Guide.</i>
       NAG Ltd., first edition, March 1995. Reprinted with
       corrections from November 1994.</dd>
</dl>


      <hr>
      <address>
         <b>Martin Dunstan</b><tt> (mnd@dcs.st-andrews.ac.uk)</tt><br>
            Updated: 2nd May, 1996.
      </address>

   </body>
</html>