File: bookvol0.pamphlet

package info (click to toggle)
axiom 20170501-6
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 1,050,164 kB
  • sloc: javascript: 8,042; lisp: 3,600; makefile: 505; cpp: 223; ansic: 181; sh: 96
file content (89374 lines) | stat: -rw-r--r-- 2,738,661 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
46341
46342
46343
46344
46345
46346
46347
46348
46349
46350
46351
46352
46353
46354
46355
46356
46357
46358
46359
46360
46361
46362
46363
46364
46365
46366
46367
46368
46369
46370
46371
46372
46373
46374
46375
46376
46377
46378
46379
46380
46381
46382
46383
46384
46385
46386
46387
46388
46389
46390
46391
46392
46393
46394
46395
46396
46397
46398
46399
46400
46401
46402
46403
46404
46405
46406
46407
46408
46409
46410
46411
46412
46413
46414
46415
46416
46417
46418
46419
46420
46421
46422
46423
46424
46425
46426
46427
46428
46429
46430
46431
46432
46433
46434
46435
46436
46437
46438
46439
46440
46441
46442
46443
46444
46445
46446
46447
46448
46449
46450
46451
46452
46453
46454
46455
46456
46457
46458
46459
46460
46461
46462
46463
46464
46465
46466
46467
46468
46469
46470
46471
46472
46473
46474
46475
46476
46477
46478
46479
46480
46481
46482
46483
46484
46485
46486
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510
46511
46512
46513
46514
46515
46516
46517
46518
46519
46520
46521
46522
46523
46524
46525
46526
46527
46528
46529
46530
46531
46532
46533
46534
46535
46536
46537
46538
46539
46540
46541
46542
46543
46544
46545
46546
46547
46548
46549
46550
46551
46552
46553
46554
46555
46556
46557
46558
46559
46560
46561
46562
46563
46564
46565
46566
46567
46568
46569
46570
46571
46572
46573
46574
46575
46576
46577
46578
46579
46580
46581
46582
46583
46584
46585
46586
46587
46588
46589
46590
46591
46592
46593
46594
46595
46596
46597
46598
46599
46600
46601
46602
46603
46604
46605
46606
46607
46608
46609
46610
46611
46612
46613
46614
46615
46616
46617
46618
46619
46620
46621
46622
46623
46624
46625
46626
46627
46628
46629
46630
46631
46632
46633
46634
46635
46636
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
46652
46653
46654
46655
46656
46657
46658
46659
46660
46661
46662
46663
46664
46665
46666
46667
46668
46669
46670
46671
46672
46673
46674
46675
46676
46677
46678
46679
46680
46681
46682
46683
46684
46685
46686
46687
46688
46689
46690
46691
46692
46693
46694
46695
46696
46697
46698
46699
46700
46701
46702
46703
46704
46705
46706
46707
46708
46709
46710
46711
46712
46713
46714
46715
46716
46717
46718
46719
46720
46721
46722
46723
46724
46725
46726
46727
46728
46729
46730
46731
46732
46733
46734
46735
46736
46737
46738
46739
46740
46741
46742
46743
46744
46745
46746
46747
46748
46749
46750
46751
46752
46753
46754
46755
46756
46757
46758
46759
46760
46761
46762
46763
46764
46765
46766
46767
46768
46769
46770
46771
46772
46773
46774
46775
46776
46777
46778
46779
46780
46781
46782
46783
46784
46785
46786
46787
46788
46789
46790
46791
46792
46793
46794
46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
46823
46824
46825
46826
46827
46828
46829
46830
46831
46832
46833
46834
46835
46836
46837
46838
46839
46840
46841
46842
46843
46844
46845
46846
46847
46848
46849
46850
46851
46852
46853
46854
46855
46856
46857
46858
46859
46860
46861
46862
46863
46864
46865
46866
46867
46868
46869
46870
46871
46872
46873
46874
46875
46876
46877
46878
46879
46880
46881
46882
46883
46884
46885
46886
46887
46888
46889
46890
46891
46892
46893
46894
46895
46896
46897
46898
46899
46900
46901
46902
46903
46904
46905
46906
46907
46908
46909
46910
46911
46912
46913
46914
46915
46916
46917
46918
46919
46920
46921
46922
46923
46924
46925
46926
46927
46928
46929
46930
46931
46932
46933
46934
46935
46936
46937
46938
46939
46940
46941
46942
46943
46944
46945
46946
46947
46948
46949
46950
46951
46952
46953
46954
46955
46956
46957
46958
46959
46960
46961
46962
46963
46964
46965
46966
46967
46968
46969
46970
46971
46972
46973
46974
46975
46976
46977
46978
46979
46980
46981
46982
46983
46984
46985
46986
46987
46988
46989
46990
46991
46992
46993
46994
46995
46996
46997
46998
46999
47000
47001
47002
47003
47004
47005
47006
47007
47008
47009
47010
47011
47012
47013
47014
47015
47016
47017
47018
47019
47020
47021
47022
47023
47024
47025
47026
47027
47028
47029
47030
47031
47032
47033
47034
47035
47036
47037
47038
47039
47040
47041
47042
47043
47044
47045
47046
47047
47048
47049
47050
47051
47052
47053
47054
47055
47056
47057
47058
47059
47060
47061
47062
47063
47064
47065
47066
47067
47068
47069
47070
47071
47072
47073
47074
47075
47076
47077
47078
47079
47080
47081
47082
47083
47084
47085
47086
47087
47088
47089
47090
47091
47092
47093
47094
47095
47096
47097
47098
47099
47100
47101
47102
47103
47104
47105
47106
47107
47108
47109
47110
47111
47112
47113
47114
47115
47116
47117
47118
47119
47120
47121
47122
47123
47124
47125
47126
47127
47128
47129
47130
47131
47132
47133
47134
47135
47136
47137
47138
47139
47140
47141
47142
47143
47144
47145
47146
47147
47148
47149
47150
47151
47152
47153
47154
47155
47156
47157
47158
47159
47160
47161
47162
47163
47164
47165
47166
47167
47168
47169
47170
47171
47172
47173
47174
47175
47176
47177
47178
47179
47180
47181
47182
47183
47184
47185
47186
47187
47188
47189
47190
47191
47192
47193
47194
47195
47196
47197
47198
47199
47200
47201
47202
47203
47204
47205
47206
47207
47208
47209
47210
47211
47212
47213
47214
47215
47216
47217
47218
47219
47220
47221
47222
47223
47224
47225
47226
47227
47228
47229
47230
47231
47232
47233
47234
47235
47236
47237
47238
47239
47240
47241
47242
47243
47244
47245
47246
47247
47248
47249
47250
47251
47252
47253
47254
47255
47256
47257
47258
47259
47260
47261
47262
47263
47264
47265
47266
47267
47268
47269
47270
47271
47272
47273
47274
47275
47276
47277
47278
47279
47280
47281
47282
47283
47284
47285
47286
47287
47288
47289
47290
47291
47292
47293
47294
47295
47296
47297
47298
47299
47300
47301
47302
47303
47304
47305
47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
47321
47322
47323
47324
47325
47326
47327
47328
47329
47330
47331
47332
47333
47334
47335
47336
47337
47338
47339
47340
47341
47342
47343
47344
47345
47346
47347
47348
47349
47350
47351
47352
47353
47354
47355
47356
47357
47358
47359
47360
47361
47362
47363
47364
47365
47366
47367
47368
47369
47370
47371
47372
47373
47374
47375
47376
47377
47378
47379
47380
47381
47382
47383
47384
47385
47386
47387
47388
47389
47390
47391
47392
47393
47394
47395
47396
47397
47398
47399
47400
47401
47402
47403
47404
47405
47406
47407
47408
47409
47410
47411
47412
47413
47414
47415
47416
47417
47418
47419
47420
47421
47422
47423
47424
47425
47426
47427
47428
47429
47430
47431
47432
47433
47434
47435
47436
47437
47438
47439
47440
47441
47442
47443
47444
47445
47446
47447
47448
47449
47450
47451
47452
47453
47454
47455
47456
47457
47458
47459
47460
47461
47462
47463
47464
47465
47466
47467
47468
47469
47470
47471
47472
47473
47474
47475
47476
47477
47478
47479
47480
47481
47482
47483
47484
47485
47486
47487
47488
47489
47490
47491
47492
47493
47494
47495
47496
47497
47498
47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
47519
47520
47521
47522
47523
47524
47525
47526
47527
47528
47529
47530
47531
47532
47533
47534
47535
47536
47537
47538
47539
47540
47541
47542
47543
47544
47545
47546
47547
47548
47549
47550
47551
47552
47553
47554
47555
47556
47557
47558
47559
47560
47561
47562
47563
47564
47565
47566
47567
47568
47569
47570
47571
47572
47573
47574
47575
47576
47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
47592
47593
47594
47595
47596
47597
47598
47599
47600
47601
47602
47603
47604
47605
47606
47607
47608
47609
47610
47611
47612
47613
47614
47615
47616
47617
47618
47619
47620
47621
47622
47623
47624
47625
47626
47627
47628
47629
47630
47631
47632
47633
47634
47635
47636
47637
47638
47639
47640
47641
47642
47643
47644
47645
47646
47647
47648
47649
47650
47651
47652
47653
47654
47655
47656
47657
47658
47659
47660
47661
47662
47663
47664
47665
47666
47667
47668
47669
47670
47671
47672
47673
47674
47675
47676
47677
47678
47679
47680
47681
47682
47683
47684
47685
47686
47687
47688
47689
47690
47691
47692
47693
47694
47695
47696
47697
47698
47699
47700
47701
47702
47703
47704
47705
47706
47707
47708
47709
47710
47711
47712
47713
47714
47715
47716
47717
47718
47719
47720
47721
47722
47723
47724
47725
47726
47727
47728
47729
47730
47731
47732
47733
47734
47735
47736
47737
47738
47739
47740
47741
47742
47743
47744
47745
47746
47747
47748
47749
47750
47751
47752
47753
47754
47755
47756
47757
47758
47759
47760
47761
47762
47763
47764
47765
47766
47767
47768
47769
47770
47771
47772
47773
47774
47775
47776
47777
47778
47779
47780
47781
47782
47783
47784
47785
47786
47787
47788
47789
47790
47791
47792
47793
47794
47795
47796
47797
47798
47799
47800
47801
47802
47803
47804
47805
47806
47807
47808
47809
47810
47811
47812
47813
47814
47815
47816
47817
47818
47819
47820
47821
47822
47823
47824
47825
47826
47827
47828
47829
47830
47831
47832
47833
47834
47835
47836
47837
47838
47839
47840
47841
47842
47843
47844
47845
47846
47847
47848
47849
47850
47851
47852
47853
47854
47855
47856
47857
47858
47859
47860
47861
47862
47863
47864
47865
47866
47867
47868
47869
47870
47871
47872
47873
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
47918
47919
47920
47921
47922
47923
47924
47925
47926
47927
47928
47929
47930
47931
47932
47933
47934
47935
47936
47937
47938
47939
47940
47941
47942
47943
47944
47945
47946
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
47962
47963
47964
47965
47966
47967
47968
47969
47970
47971
47972
47973
47974
47975
47976
47977
47978
47979
47980
47981
47982
47983
47984
47985
47986
47987
47988
47989
47990
47991
47992
47993
47994
47995
47996
47997
47998
47999
48000
48001
48002
48003
48004
48005
48006
48007
48008
48009
48010
48011
48012
48013
48014
48015
48016
48017
48018
48019
48020
48021
48022
48023
48024
48025
48026
48027
48028
48029
48030
48031
48032
48033
48034
48035
48036
48037
48038
48039
48040
48041
48042
48043
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
48070
48071
48072
48073
48074
48075
48076
48077
48078
48079
48080
48081
48082
48083
48084
48085
48086
48087
48088
48089
48090
48091
48092
48093
48094
48095
48096
48097
48098
48099
48100
48101
48102
48103
48104
48105
48106
48107
48108
48109
48110
48111
48112
48113
48114
48115
48116
48117
48118
48119
48120
48121
48122
48123
48124
48125
48126
48127
48128
48129
48130
48131
48132
48133
48134
48135
48136
48137
48138
48139
48140
48141
48142
48143
48144
48145
48146
48147
48148
48149
48150
48151
48152
48153
48154
48155
48156
48157
48158
48159
48160
48161
48162
48163
48164
48165
48166
48167
48168
48169
48170
48171
48172
48173
48174
48175
48176
48177
48178
48179
48180
48181
48182
48183
48184
48185
48186
48187
48188
48189
48190
48191
48192
48193
48194
48195
48196
48197
48198
48199
48200
48201
48202
48203
48204
48205
48206
48207
48208
48209
48210
48211
48212
48213
48214
48215
48216
48217
48218
48219
48220
48221
48222
48223
48224
48225
48226
48227
48228
48229
48230
48231
48232
48233
48234
48235
48236
48237
48238
48239
48240
48241
48242
48243
48244
48245
48246
48247
48248
48249
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
48265
48266
48267
48268
48269
48270
48271
48272
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
48289
48290
48291
48292
48293
48294
48295
48296
48297
48298
48299
48300
48301
48302
48303
48304
48305
48306
48307
48308
48309
48310
48311
48312
48313
48314
48315
48316
48317
48318
48319
48320
48321
48322
48323
48324
48325
48326
48327
48328
48329
48330
48331
48332
48333
48334
48335
48336
48337
48338
48339
48340
48341
48342
48343
48344
48345
48346
48347
48348
48349
48350
48351
48352
48353
48354
48355
48356
48357
48358
48359
48360
48361
48362
48363
48364
48365
48366
48367
48368
48369
48370
48371
48372
48373
48374
48375
48376
48377
48378
48379
48380
48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
48396
48397
48398
48399
48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
48423
48424
48425
48426
48427
48428
48429
48430
48431
48432
48433
48434
48435
48436
48437
48438
48439
48440
48441
48442
48443
48444
48445
48446
48447
48448
48449
48450
48451
48452
48453
48454
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
48470
48471
48472
48473
48474
48475
48476
48477
48478
48479
48480
48481
48482
48483
48484
48485
48486
48487
48488
48489
48490
48491
48492
48493
48494
48495
48496
48497
48498
48499
48500
48501
48502
48503
48504
48505
48506
48507
48508
48509
48510
48511
48512
48513
48514
48515
48516
48517
48518
48519
48520
48521
48522
48523
48524
48525
48526
48527
48528
48529
48530
48531
48532
48533
48534
48535
48536
48537
48538
48539
48540
48541
48542
48543
48544
48545
48546
48547
48548
48549
48550
48551
48552
48553
48554
48555
48556
48557
48558
48559
48560
48561
48562
48563
48564
48565
48566
48567
48568
48569
48570
48571
48572
48573
48574
48575
48576
48577
48578
48579
48580
48581
48582
48583
48584
48585
48586
48587
48588
48589
48590
48591
48592
48593
48594
48595
48596
48597
48598
48599
48600
48601
48602
48603
48604
48605
48606
48607
48608
48609
48610
48611
48612
48613
48614
48615
48616
48617
48618
48619
48620
48621
48622
48623
48624
48625
48626
48627
48628
48629
48630
48631
48632
48633
48634
48635
48636
48637
48638
48639
48640
48641
48642
48643
48644
48645
48646
48647
48648
48649
48650
48651
48652
48653
48654
48655
48656
48657
48658
48659
48660
48661
48662
48663
48664
48665
48666
48667
48668
48669
48670
48671
48672
48673
48674
48675
48676
48677
48678
48679
48680
48681
48682
48683
48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
48699
48700
48701
48702
48703
48704
48705
48706
48707
48708
48709
48710
48711
48712
48713
48714
48715
48716
48717
48718
48719
48720
48721
48722
48723
48724
48725
48726
48727
48728
48729
48730
48731
48732
48733
48734
48735
48736
48737
48738
48739
48740
48741
48742
48743
48744
48745
48746
48747
48748
48749
48750
48751
48752
48753
48754
48755
48756
48757
48758
48759
48760
48761
48762
48763
48764
48765
48766
48767
48768
48769
48770
48771
48772
48773
48774
48775
48776
48777
48778
48779
48780
48781
48782
48783
48784
48785
48786
48787
48788
48789
48790
48791
48792
48793
48794
48795
48796
48797
48798
48799
48800
48801
48802
48803
48804
48805
48806
48807
48808
48809
48810
48811
48812
48813
48814
48815
48816
48817
48818
48819
48820
48821
48822
48823
48824
48825
48826
48827
48828
48829
48830
48831
48832
48833
48834
48835
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
48851
48852
48853
48854
48855
48856
48857
48858
48859
48860
48861
48862
48863
48864
48865
48866
48867
48868
48869
48870
48871
48872
48873
48874
48875
48876
48877
48878
48879
48880
48881
48882
48883
48884
48885
48886
48887
48888
48889
48890
48891
48892
48893
48894
48895
48896
48897
48898
48899
48900
48901
48902
48903
48904
48905
48906
48907
48908
48909
48910
48911
48912
48913
48914
48915
48916
48917
48918
48919
48920
48921
48922
48923
48924
48925
48926
48927
48928
48929
48930
48931
48932
48933
48934
48935
48936
48937
48938
48939
48940
48941
48942
48943
48944
48945
48946
48947
48948
48949
48950
48951
48952
48953
48954
48955
48956
48957
48958
48959
48960
48961
48962
48963
48964
48965
48966
48967
48968
48969
48970
48971
48972
48973
48974
48975
48976
48977
48978
48979
48980
48981
48982
48983
48984
48985
48986
48987
48988
48989
48990
48991
48992
48993
48994
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009
49010
49011
49012
49013
49014
49015
49016
49017
49018
49019
49020
49021
49022
49023
49024
49025
49026
49027
49028
49029
49030
49031
49032
49033
49034
49035
49036
49037
49038
49039
49040
49041
49042
49043
49044
49045
49046
49047
49048
49049
49050
49051
49052
49053
49054
49055
49056
49057
49058
49059
49060
49061
49062
49063
49064
49065
49066
49067
49068
49069
49070
49071
49072
49073
49074
49075
49076
49077
49078
49079
49080
49081
49082
49083
49084
49085
49086
49087
49088
49089
49090
49091
49092
49093
49094
49095
49096
49097
49098
49099
49100
49101
49102
49103
49104
49105
49106
49107
49108
49109
49110
49111
49112
49113
49114
49115
49116
49117
49118
49119
49120
49121
49122
49123
49124
49125
49126
49127
49128
49129
49130
49131
49132
49133
49134
49135
49136
49137
49138
49139
49140
49141
49142
49143
49144
49145
49146
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
49162
49163
49164
49165
49166
49167
49168
49169
49170
49171
49172
49173
49174
49175
49176
49177
49178
49179
49180
49181
49182
49183
49184
49185
49186
49187
49188
49189
49190
49191
49192
49193
49194
49195
49196
49197
49198
49199
49200
49201
49202
49203
49204
49205
49206
49207
49208
49209
49210
49211
49212
49213
49214
49215
49216
49217
49218
49219
49220
49221
49222
49223
49224
49225
49226
49227
49228
49229
49230
49231
49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255
49256
49257
49258
49259
49260
49261
49262
49263
49264
49265
49266
49267
49268
49269
49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
49285
49286
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296
49297
49298
49299
49300
49301
49302
49303
49304
49305
49306
49307
49308
49309
49310
49311
49312
49313
49314
49315
49316
49317
49318
49319
49320
49321
49322
49323
49324
49325
49326
49327
49328
49329
49330
49331
49332
49333
49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
49345
49346
49347
49348
49349
49350
49351
49352
49353
49354
49355
49356
49357
49358
49359
49360
49361
49362
49363
49364
49365
49366
49367
49368
49369
49370
49371
49372
49373
49374
49375
49376
49377
49378
49379
49380
49381
49382
49383
49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
49399
49400
49401
49402
49403
49404
49405
49406
49407
49408
49409
49410
49411
49412
49413
49414
49415
49416
49417
49418
49419
49420
49421
49422
49423
49424
49425
49426
49427
49428
49429
49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444
49445
49446
49447
49448
49449
49450
49451
49452
49453
49454
49455
49456
49457
49458
49459
49460
49461
49462
49463
49464
49465
49466
49467
49468
49469
49470
49471
49472
49473
49474
49475
49476
49477
49478
49479
49480
49481
49482
49483
49484
49485
49486
49487
49488
49489
49490
49491
49492
49493
49494
49495
49496
49497
49498
49499
49500
49501
49502
49503
49504
49505
49506
49507
49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
49533
49534
49535
49536
49537
49538
49539
49540
49541
49542
49543
49544
49545
49546
49547
49548
49549
49550
49551
49552
49553
49554
49555
49556
49557
49558
49559
49560
49561
49562
49563
49564
49565
49566
49567
49568
49569
49570
49571
49572
49573
49574
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
49600
49601
49602
49603
49604
49605
49606
49607
49608
49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
49631
49632
49633
49634
49635
49636
49637
49638
49639
49640
49641
49642
49643
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
49676
49677
49678
49679
49680
49681
49682
49683
49684
49685
49686
49687
49688
49689
49690
49691
49692
49693
49694
49695
49696
49697
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
49713
49714
49715
49716
49717
49718
49719
49720
49721
49722
49723
49724
49725
49726
49727
49728
49729
49730
49731
49732
49733
49734
49735
49736
49737
49738
49739
49740
49741
49742
49743
49744
49745
49746
49747
49748
49749
49750
49751
49752
49753
49754
49755
49756
49757
49758
49759
49760
49761
49762
49763
49764
49765
49766
49767
49768
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
49798
49799
49800
49801
49802
49803
49804
49805
49806
49807
49808
49809
49810
49811
49812
49813
49814
49815
49816
49817
49818
49819
49820
49821
49822
49823
49824
49825
49826
49827
49828
49829
49830
49831
49832
49833
49834
49835
49836
49837
49838
49839
49840
49841
49842
49843
49844
49845
49846
49847
49848
49849
49850
49851
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
49867
49868
49869
49870
49871
49872
49873
49874
49875
49876
49877
49878
49879
49880
49881
49882
49883
49884
49885
49886
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
49913
49914
49915
49916
49917
49918
49919
49920
49921
49922
49923
49924
49925
49926
49927
49928
49929
49930
49931
49932
49933
49934
49935
49936
49937
49938
49939
49940
49941
49942
49943
49944
49945
49946
49947
49948
49949
49950
49951
49952
49953
49954
49955
49956
49957
49958
49959
49960
49961
49962
49963
49964
49965
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
49981
49982
49983
49984
49985
49986
49987
49988
49989
49990
49991
49992
49993
49994
49995
49996
49997
49998
49999
50000
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
50026
50027
50028
50029
50030
50031
50032
50033
50034
50035
50036
50037
50038
50039
50040
50041
50042
50043
50044
50045
50046
50047
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
50063
50064
50065
50066
50067
50068
50069
50070
50071
50072
50073
50074
50075
50076
50077
50078
50079
50080
50081
50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
51000
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
51016
51017
51018
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067
51068
51069
51070
51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
51107
51108
51109
51110
51111
51112
51113
51114
51115
51116
51117
51118
51119
51120
51121
51122
51123
51124
51125
51126
51127
51128
51129
51130
51131
51132
51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160
51161
51162
51163
51164
51165
51166
51167
51168
51169
51170
51171
51172
51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195
51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
51222
51223
51224
51225
51226
51227
51228
51229
51230
51231
51232
51233
51234
51235
51236
51237
51238
51239
51240
51241
51242
51243
51244
51245
51246
51247
51248
51249
51250
51251
51252
51253
51254
51255
51256
51257
51258
51259
51260
51261
51262
51263
51264
51265
51266
51267
51268
51269
51270
51271
51272
51273
51274
51275
51276
51277
51278
51279
51280
51281
51282
51283
51284
51285
51286
51287
51288
51289
51290
51291
51292
51293
51294
51295
51296
51297
51298
51299
51300
51301
51302
51303
51304
51305
51306
51307
51308
51309
51310
51311
51312
51313
51314
51315
51316
51317
51318
51319
51320
51321
51322
51323
51324
51325
51326
51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
51342
51343
51344
51345
51346
51347
51348
51349
51350
51351
51352
51353
51354
51355
51356
51357
51358
51359
51360
51361
51362
51363
51364
51365
51366
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
51382
51383
51384
51385
51386
51387
51388
51389
51390
51391
51392
51393
51394
51395
51396
51397
51398
51399
51400
51401
51402
51403
51404
51405
51406
51407
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442
51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
51496
51497
51498
51499
51500
51501
51502
51503
51504
51505
51506
51507
51508
51509
51510
51511
51512
51513
51514
51515
51516
51517
51518
51519
51520
51521
51522
51523
51524
51525
51526
51527
51528
51529
51530
51531
51532
51533
51534
51535
51536
51537
51538
51539
51540
51541
51542
51543
51544
51545
51546
51547
51548
51549
51550
51551
51552
51553
51554
51555
51556
51557
51558
51559
51560
51561
51562
51563
51564
51565
51566
51567
51568
51569
51570
51571
51572
51573
51574
51575
51576
51577
51578
51579
51580
51581
51582
51583
51584
51585
51586
51587
51588
51589
51590
51591
51592
51593
51594
51595
51596
51597
51598
51599
51600
51601
51602
51603
51604
51605
51606
51607
51608
51609
51610
51611
51612
51613
51614
51615
51616
51617
51618
51619
51620
51621
51622
51623
51624
51625
51626
51627
51628
51629
51630
51631
51632
51633
51634
51635
51636
51637
51638
51639
51640
51641
51642
51643
51644
51645
51646
51647
51648
51649
51650
51651
51652
51653
51654
51655
51656
51657
51658
51659
51660
51661
51662
51663
51664
51665
51666
51667
51668
51669
51670
51671
51672
51673
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
51689
51690
51691
51692
51693
51694
51695
51696
51697
51698
51699
51700
51701
51702
51703
51704
51705
51706
51707
51708
51709
51710
51711
51712
51713
51714
51715
51716
51717
51718
51719
51720
51721
51722
51723
51724
51725
51726
51727
51728
51729
51730
51731
51732
51733
51734
51735
51736
51737
51738
51739
51740
51741
51742
51743
51744
51745
51746
51747
51748
51749
51750
51751
51752
51753
51754
51755
51756
51757
51758
51759
51760
51761
51762
51763
51764
51765
51766
51767
51768
51769
51770
51771
51772
51773
51774
51775
51776
51777
51778
51779
51780
51781
51782
51783
51784
51785
51786
51787
51788
51789
51790
51791
51792
51793
51794
51795
51796
51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
51812
51813
51814
51815
51816
51817
51818
51819
51820
51821
51822
51823
51824
51825
51826
51827
51828
51829
51830
51831
51832
51833
51834
51835
51836
51837
51838
51839
51840
51841
51842
51843
51844
51845
51846
51847
51848
51849
51850
51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
51866
51867
51868
51869
51870
51871
51872
51873
51874
51875
51876
51877
51878
51879
51880
51881
51882
51883
51884
51885
51886
51887
51888
51889
51890
51891
51892
51893
51894
51895
51896
51897
51898
51899
51900
51901
51902
51903
51904
51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
51920
51921
51922
51923
51924
51925
51926
51927
51928
51929
51930
51931
51932
51933
51934
51935
51936
51937
51938
51939
51940
51941
51942
51943
51944
51945
51946
51947
51948
51949
51950
51951
51952
51953
51954
51955
51956
51957
51958
51959
51960
51961
51962
51963
51964
51965
51966
51967
51968
51969
51970
51971
51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
51995
51996
51997
51998
51999
52000
52001
52002
52003
52004
52005
52006
52007
52008
52009
52010
52011
52012
52013
52014
52015
52016
52017
52018
52019
52020
52021
52022
52023
52024
52025
52026
52027
52028
52029
52030
52031
52032
52033
52034
52035
52036
52037
52038
52039
52040
52041
52042
52043
52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062
52063
52064
52065
52066
52067
52068
52069
52070
52071
52072
52073
52074
52075
52076
52077
52078
52079
52080
52081
52082
52083
52084
52085
52086
52087
52088
52089
52090
52091
52092
52093
52094
52095
52096
52097
52098
52099
52100
52101
52102
52103
52104
52105
52106
52107
52108
52109
52110
52111
52112
52113
52114
52115
52116
52117
52118
52119
52120
52121
52122
52123
52124
52125
52126
52127
52128
52129
52130
52131
52132
52133
52134
52135
52136
52137
52138
52139
52140
52141
52142
52143
52144
52145
52146
52147
52148
52149
52150
52151
52152
52153
52154
52155
52156
52157
52158
52159
52160
52161
52162
52163
52164
52165
52166
52167
52168
52169
52170
52171
52172
52173
52174
52175
52176
52177
52178
52179
52180
52181
52182
52183
52184
52185
52186
52187
52188
52189
52190
52191
52192
52193
52194
52195
52196
52197
52198
52199
52200
52201
52202
52203
52204
52205
52206
52207
52208
52209
52210
52211
52212
52213
52214
52215
52216
52217
52218
52219
52220
52221
52222
52223
52224
52225
52226
52227
52228
52229
52230
52231
52232
52233
52234
52235
52236
52237
52238
52239
52240
52241
52242
52243
52244
52245
52246
52247
52248
52249
52250
52251
52252
52253
52254
52255
52256
52257
52258
52259
52260
52261
52262
52263
52264
52265
52266
52267
52268
52269
52270
52271
52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
52287
52288
52289
52290
52291
52292
52293
52294
52295
52296
52297
52298
52299
52300
52301
52302
52303
52304
52305
52306
52307
52308
52309
52310
52311
52312
52313
52314
52315
52316
52317
52318
52319
52320
52321
52322
52323
52324
52325
52326
52327
52328
52329
52330
52331
52332
52333
52334
52335
52336
52337
52338
52339
52340
52341
52342
52343
52344
52345
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
52361
52362
52363
52364
52365
52366
52367
52368
52369
52370
52371
52372
52373
52374
52375
52376
52377
52378
52379
52380
52381
52382
52383
52384
52385
52386
52387
52388
52389
52390
52391
52392
52393
52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
52409
52410
52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
52428
52429
52430
52431
52432
52433
52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
52449
52450
52451
52452
52453
52454
52455
52456
52457
52458
52459
52460
52461
52462
52463
52464
52465
52466
52467
52468
52469
52470
52471
52472
52473
52474
52475
52476
52477
52478
52479
52480
52481
52482
52483
52484
52485
52486
52487
52488
52489
52490
52491
52492
52493
52494
52495
52496
52497
52498
52499
52500
52501
52502
52503
52504
52505
52506
52507
52508
52509
52510
52511
52512
52513
52514
52515
52516
52517
52518
52519
52520
52521
52522
52523
52524
52525
52526
52527
52528
52529
52530
52531
52532
52533
52534
52535
52536
52537
52538
52539
52540
52541
52542
52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
52631
52632
52633
52634
52635
52636
52637
52638
52639
52640
52641
52642
52643
52644
52645
52646
52647
52648
52649
52650
52651
52652
52653
52654
52655
52656
52657
52658
52659
52660
52661
52662
52663
52664
52665
52666
52667
52668
52669
52670
52671
52672
52673
52674
52675
52676
52677
52678
52679
52680
52681
52682
52683
52684
52685
52686
52687
52688
52689
52690
52691
52692
52693
52694
52695
52696
52697
52698
52699
52700
52701
52702
52703
52704
52705
52706
52707
52708
52709
52710
52711
52712
52713
52714
52715
52716
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
52732
52733
52734
52735
52736
52737
52738
52739
52740
52741
52742
52743
52744
52745
52746
52747
52748
52749
52750
52751
52752
52753
52754
52755
52756
52757
52758
52759
52760
52761
52762
52763
52764
52765
52766
52767
52768
52769
52770
52771
52772
52773
52774
52775
52776
52777
52778
52779
52780
52781
52782
52783
52784
52785
52786
52787
52788
52789
52790
52791
52792
52793
52794
52795
52796
52797
52798
52799
52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
52815
52816
52817
52818
52819
52820
52821
52822
52823
52824
52825
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
52863
52864
52865
52866
52867
52868
52869
52870
52871
52872
52873
52874
52875
52876
52877
52878
52879
52880
52881
52882
52883
52884
52885
52886
52887
52888
52889
52890
52891
52892
52893
52894
52895
52896
52897
52898
52899
52900
52901
52902
52903
52904
52905
52906
52907
52908
52909
52910
52911
52912
52913
52914
52915
52916
52917
52918
52919
52920
52921
52922
52923
52924
52925
52926
52927
52928
52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
52944
52945
52946
52947
52948
52949
52950
52951
52952
52953
52954
52955
52956
52957
52958
52959
52960
52961
52962
52963
52964
52965
52966
52967
52968
52969
52970
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985
52986
52987
52988
52989
52990
52991
52992
52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
53013
53014
53015
53016
53017
53018
53019
53020
53021
53022
53023
53024
53025
53026
53027
53028
53029
53030
53031
53032
53033
53034
53035
53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124
53125
53126
53127
53128
53129
53130
53131
53132
53133
53134
53135
53136
53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235
53236
53237
53238
53239
53240
53241
53242
53243
53244
53245
53246
53247
53248
53249
53250
53251
53252
53253
53254
53255
53256
53257
53258
53259
53260
53261
53262
53263
53264
53265
53266
53267
53268
53269
53270
53271
53272
53273
53274
53275
53276
53277
53278
53279
53280
53281
53282
53283
53284
53285
53286
53287
53288
53289
53290
53291
53292
53293
53294
53295
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
53314
53315
53316
53317
53318
53319
53320
53321
53322
53323
53324
53325
53326
53327
53328
53329
53330
53331
53332
53333
53334
53335
53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347
53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
53373
53374
53375
53376
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412
53413
53414
53415
53416
53417
53418
53419
53420
53421
53422
53423
53424
53425
53426
53427
53428
53429
53430
53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487
53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
53508
53509
53510
53511
53512
53513
53514
53515
53516
53517
53518
53519
53520
53521
53522
53523
53524
53525
53526
53527
53528
53529
53530
53531
53532
53533
53534
53535
53536
53537
53538
53539
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
53555
53556
53557
53558
53559
53560
53561
53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
53585
53586
53587
53588
53589
53590
53591
53592
53593
53594
53595
53596
53597
53598
53599
53600
53601
53602
53603
53604
53605
53606
53607
53608
53609
53610
53611
53612
53613
53614
53615
53616
53617
53618
53619
53620
53621
53622
53623
53624
53625
53626
53627
53628
53629
53630
53631
53632
53633
53634
53635
53636
53637
53638
53639
53640
53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
53656
53657
53658
53659
53660
53661
53662
53663
53664
53665
53666
53667
53668
53669
53670
53671
53672
53673
53674
53675
53676
53677
53678
53679
53680
53681
53682
53683
53684
53685
53686
53687
53688
53689
53690
53691
53692
53693
53694
53695
53696
53697
53698
53699
53700
53701
53702
53703
53704
53705
53706
53707
53708
53709
53710
53711
53712
53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773
53774
53775
53776
53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805
53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
53899
53900
53901
53902
53903
53904
53905
53906
53907
53908
53909
53910
53911
53912
53913
53914
53915
53916
53917
53918
53919
53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942
53943
53944
53945
53946
53947
53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
53977
53978
53979
53980
53981
53982
53983
53984
53985
53986
53987
53988
53989
53990
53991
53992
53993
53994
53995
53996
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
54067
54068
54069
54070
54071
54072
54073
54074
54075
54076
54077
54078
54079
54080
54081
54082
54083
54084
54085
54086
54087
54088
54089
54090
54091
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
54132
54133
54134
54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
54152
54153
54154
54155
54156
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
54199
54200
54201
54202
54203
54204
54205
54206
54207
54208
54209
54210
54211
54212
54213
54214
54215
54216
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
54245
54246
54247
54248
54249
54250
54251
54252
54253
54254
54255
54256
54257
54258
54259
54260
54261
54262
54263
54264
54265
54266
54267
54268
54269
54270
54271
54272
54273
54274
54275
54276
54277
54278
54279
54280
54281
54282
54283
54284
54285
54286
54287
54288
54289
54290
54291
54292
54293
54294
54295
54296
54297
54298
54299
54300
54301
54302
54303
54304
54305
54306
54307
54308
54309
54310
54311
54312
54313
54314
54315
54316
54317
54318
54319
54320
54321
54322
54323
54324
54325
54326
54327
54328
54329
54330
54331
54332
54333
54334
54335
54336
54337
54338
54339
54340
54341
54342
54343
54344
54345
54346
54347
54348
54349
54350
54351
54352
54353
54354
54355
54356
54357
54358
54359
54360
54361
54362
54363
54364
54365
54366
54367
54368
54369
54370
54371
54372
54373
54374
54375
54376
54377
54378
54379
54380
54381
54382
54383
54384
54385
54386
54387
54388
54389
54390
54391
54392
54393
54394
54395
54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
54411
54412
54413
54414
54415
54416
54417
54418
54419
54420
54421
54422
54423
54424
54425
54426
54427
54428
54429
54430
54431
54432
54433
54434
54435
54436
54437
54438
54439
54440
54441
54442
54443
54444
54445
54446
54447
54448
54449
54450
54451
54452
54453
54454
54455
54456
54457
54458
54459
54460
54461
54462
54463
54464
54465
54466
54467
54468
54469
54470
54471
54472
54473
54474
54475
54476
54477
54478
54479
54480
54481
54482
54483
54484
54485
54486
54487
54488
54489
54490
54491
54492
54493
54494
54495
54496
54497
54498
54499
54500
54501
54502
54503
54504
54505
54506
54507
54508
54509
54510
54511
54512
54513
54514
54515
54516
54517
54518
54519
54520
54521
54522
54523
54524
54525
54526
54527
54528
54529
54530
54531
54532
54533
54534
54535
54536
54537
54538
54539
54540
54541
54542
54543
54544
54545
54546
54547
54548
54549
54550
54551
54552
54553
54554
54555
54556
54557
54558
54559
54560
54561
54562
54563
54564
54565
54566
54567
54568
54569
54570
54571
54572
54573
54574
54575
54576
54577
54578
54579
54580
54581
54582
54583
54584
54585
54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
54600
54601
54602
54603
54604
54605
54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
54621
54622
54623
54624
54625
54626
54627
54628
54629
54630
54631
54632
54633
54634
54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
54674
54675
54676
54677
54678
54679
54680
54681
54682
54683
54684
54685
54686
54687
54688
54689
54690
54691
54692
54693
54694
54695
54696
54697
54698
54699
54700
54701
54702
54703
54704
54705
54706
54707
54708
54709
54710
54711
54712
54713
54714
54715
54716
54717
54718
54719
54720
54721
54722
54723
54724
54725
54726
54727
54728
54729
54730
54731
54732
54733
54734
54735
54736
54737
54738
54739
54740
54741
54742
54743
54744
54745
54746
54747
54748
54749
54750
54751
54752
54753
54754
54755
54756
54757
54758
54759
54760
54761
54762
54763
54764
54765
54766
54767
54768
54769
54770
54771
54772
54773
54774
54775
54776
54777
54778
54779
54780
54781
54782
54783
54784
54785
54786
54787
54788
54789
54790
54791
54792
54793
54794
54795
54796
54797
54798
54799
54800
54801
54802
54803
54804
54805
54806
54807
54808
54809
54810
54811
54812
54813
54814
54815
54816
54817
54818
54819
54820
54821
54822
54823
54824
54825
54826
54827
54828
54829
54830
54831
54832
54833
54834
54835
54836
54837
54838
54839
54840
54841
54842
54843
54844
54845
54846
54847
54848
54849
54850
54851
54852
54853
54854
54855
54856
54857
54858
54859
54860
54861
54862
54863
54864
54865
54866
54867
54868
54869
54870
54871
54872
54873
54874
54875
54876
54877
54878
54879
54880
54881
54882
54883
54884
54885
54886
54887
54888
54889
54890
54891
54892
54893
54894
54895
54896
54897
54898
54899
54900
54901
54902
54903
54904
54905
54906
54907
54908
54909
54910
54911
54912
54913
54914
54915
54916
54917
54918
54919
54920
54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
54947
54948
54949
54950
54951
54952
54953
54954
54955
54956
54957
54958
54959
54960
54961
54962
54963
54964
54965
54966
54967
54968
54969
54970
54971
54972
54973
54974
54975
54976
54977
54978
54979
54980
54981
54982
54983
54984
54985
54986
54987
54988
54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
55005
55006
55007
55008
55009
55010
55011
55012
55013
55014
55015
55016
55017
55018
55019
55020
55021
55022
55023
55024
55025
55026
55027
55028
55029
55030
55031
55032
55033
55034
55035
55036
55037
55038
55039
55040
55041
55042
55043
55044
55045
55046
55047
55048
55049
55050
55051
55052
55053
55054
55055
55056
55057
55058
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078
55079
55080
55081
55082
55083
55084
55085
55086
55087
55088
55089
55090
55091
55092
55093
55094
55095
55096
55097
55098
55099
55100
55101
55102
55103
55104
55105
55106
55107
55108
55109
55110
55111
55112
55113
55114
55115
55116
55117
55118
55119
55120
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
55136
55137
55138
55139
55140
55141
55142
55143
55144
55145
55146
55147
55148
55149
55150
55151
55152
55153
55154
55155
55156
55157
55158
55159
55160
55161
55162
55163
55164
55165
55166
55167
55168
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
55186
55187
55188
55189
55190
55191
55192
55193
55194
55195
55196
55197
55198
55199
55200
55201
55202
55203
55204
55205
55206
55207
55208
55209
55210
55211
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
55255
55256
55257
55258
55259
55260
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
55278
55279
55280
55281
55282
55283
55284
55285
55286
55287
55288
55289
55290
55291
55292
55293
55294
55295
55296
55297
55298
55299
55300
55301
55302
55303
55304
55305
55306
55307
55308
55309
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
55400
55401
55402
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
55600
55601
55602
55603
55604
55605
55606
55607
55608
55609
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
55700
55701
55702
55703
55704
55705
55706
55707
55708
55709
55710
55711
55712
55713
55714
55715
55716
55717
55718
55719
55720
55721
55722
55723
55724
55725
55726
55727
55728
55729
55730
55731
55732
55733
55734
55735
55736
55737
55738
55739
55740
55741
55742
55743
55744
55745
55746
55747
55748
55749
55750
55751
55752
55753
55754
55755
55756
55757
55758
55759
55760
55761
55762
55763
55764
55765
55766
55767
55768
55769
55770
55771
55772
55773
55774
55775
55776
55777
55778
55779
55780
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
55797
55798
55799
55800
55801
55802
55803
55804
55805
55806
55807
55808
55809
55810
55811
55812
55813
55814
55815
55816
55817
55818
55819
55820
55821
55822
55823
55824
55825
55826
55827
55828
55829
55830
55831
55832
55833
55834
55835
55836
55837
55838
55839
55840
55841
55842
55843
55844
55845
55846
55847
55848
55849
55850
55851
55852
55853
55854
55855
55856
55857
55858
55859
55860
55861
55862
55863
55864
55865
55866
55867
55868
55869
55870
55871
55872
55873
55874
55875
55876
55877
55878
55879
55880
55881
55882
55883
55884
55885
55886
55887
55888
55889
55890
55891
55892
55893
55894
55895
55896
55897
55898
55899
55900
55901
55902
55903
55904
55905
55906
55907
55908
55909
55910
55911
55912
55913
55914
55915
55916
55917
55918
55919
55920
55921
55922
55923
55924
55925
55926
55927
55928
55929
55930
55931
55932
55933
55934
55935
55936
55937
55938
55939
55940
55941
55942
55943
55944
55945
55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
55980
55981
55982
55983
55984
55985
55986
55987
55988
55989
55990
55991
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
56007
56008
56009
56010
56011
56012
56013
56014
56015
56016
56017
56018
56019
56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034
56035
56036
56037
56038
56039
56040
56041
56042
56043
56044
56045
56046
56047
56048
56049
56050
56051
56052
56053
56054
56055
56056
56057
56058
56059
56060
56061
56062
56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
56078
56079
56080
56081
56082
56083
56084
56085
56086
56087
56088
56089
56090
56091
56092
56093
56094
56095
56096
56097
56098
56099
56100
56101
56102
56103
56104
56105
56106
56107
56108
56109
56110
56111
56112
56113
56114
56115
56116
56117
56118
56119
56120
56121
56122
56123
56124
56125
56126
56127
56128
56129
56130
56131
56132
56133
56134
56135
56136
56137
56138
56139
56140
56141
56142
56143
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
56159
56160
56161
56162
56163
56164
56165
56166
56167
56168
56169
56170
56171
56172
56173
56174
56175
56176
56177
56178
56179
56180
56181
56182
56183
56184
56185
56186
56187
56188
56189
56190
56191
56192
56193
56194
56195
56196
56197
56198
56199
56200
56201
56202
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212
56213
56214
56215
56216
56217
56218
56219
56220
56221
56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255
56256
56257
56258
56259
56260
56261
56262
56263
56264
56265
56266
56267
56268
56269
56270
56271
56272
56273
56274
56275
56276
56277
56278
56279
56280
56281
56282
56283
56284
56285
56286
56287
56288
56289
56290
56291
56292
56293
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
56320
56321
56322
56323
56324
56325
56326
56327
56328
56329
56330
56331
56332
56333
56334
56335
56336
56337
56338
56339
56340
56341
56342
56343
56344
56345
56346
56347
56348
56349
56350
56351
56352
56353
56354
56355
56356
56357
56358
56359
56360
56361
56362
56363
56364
56365
56366
56367
56368
56369
56370
56371
56372
56373
56374
56375
56376
56377
56378
56379
56380
56381
56382
56383
56384
56385
56386
56387
56388
56389
56390
56391
56392
56393
56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
56418
56419
56420
56421
56422
56423
56424
56425
56426
56427
56428
56429
56430
56431
56432
56433
56434
56435
56436
56437
56438
56439
56440
56441
56442
56443
56444
56445
56446
56447
56448
56449
56450
56451
56452
56453
56454
56455
56456
56457
56458
56459
56460
56461
56462
56463
56464
56465
56466
56467
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
56485
56486
56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
56500
56501
56502
56503
56504
56505
56506
56507
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
56523
56524
56525
56526
56527
56528
56529
56530
56531
56532
56533
56534
56535
56536
56537
56538
56539
56540
56541
56542
56543
56544
56545
56546
56547
56548
56549
56550
56551
56552
56553
56554
56555
56556
56557
56558
56559
56560
56561
56562
56563
56564
56565
56566
56567
56568
56569
56570
56571
56572
56573
56574
56575
56576
56577
56578
56579
56580
56581
56582
56583
56584
56585
56586
56587
56588
56589
56590
56591
56592
56593
56594
56595
56596
56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611
56612
56613
56614
56615
56616
56617
56618
56619
56620
56621
56622
56623
56624
56625
56626
56627
56628
56629
56630
56631
56632
56633
56634
56635
56636
56637
56638
56639
56640
56641
56642
56643
56644
56645
56646
56647
56648
56649
56650
56651
56652
56653
56654
56655
56656
56657
56658
56659
56660
56661
56662
56663
56664
56665
56666
56667
56668
56669
56670
56671
56672
56673
56674
56675
56676
56677
56678
56679
56680
56681
56682
56683
56684
56685
56686
56687
56688
56689
56690
56691
56692
56693
56694
56695
56696
56697
56698
56699
56700
56701
56702
56703
56704
56705
56706
56707
56708
56709
56710
56711
56712
56713
56714
56715
56716
56717
56718
56719
56720
56721
56722
56723
56724
56725
56726
56727
56728
56729
56730
56731
56732
56733
56734
56735
56736
56737
56738
56739
56740
56741
56742
56743
56744
56745
56746
56747
56748
56749
56750
56751
56752
56753
56754
56755
56756
56757
56758
56759
56760
56761
56762
56763
56764
56765
56766
56767
56768
56769
56770
56771
56772
56773
56774
56775
56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790
56791
56792
56793
56794
56795
56796
56797
56798
56799
56800
56801
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
56837
56838
56839
56840
56841
56842
56843
56844
56845
56846
56847
56848
56849
56850
56851
56852
56853
56854
56855
56856
56857
56858
56859
56860
56861
56862
56863
56864
56865
56866
56867
56868
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
56884
56885
56886
56887
56888
56889
56890
56891
56892
56893
56894
56895
56896
56897
56898
56899
56900
56901
56902
56903
56904
56905
56906
56907
56908
56909
56910
56911
56912
56913
56914
56915
56916
56917
56918
56919
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
56935
56936
56937
56938
56939
56940
56941
56942
56943
56944
56945
56946
56947
56948
56949
56950
56951
56952
56953
56954
56955
56956
56957
56958
56959
56960
56961
56962
56963
56964
56965
56966
56967
56968
56969
56970
56971
56972
56973
56974
56975
56976
56977
56978
56979
56980
56981
56982
56983
56984
56985
56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052
57053
57054
57055
57056
57057
57058
57059
57060
57061
57062
57063
57064
57065
57066
57067
57068
57069
57070
57071
57072
57073
57074
57075
57076
57077
57078
57079
57080
57081
57082
57083
57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108
57109
57110
57111
57112
57113
57114
57115
57116
57117
57118
57119
57120
57121
57122
57123
57124
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140
57141
57142
57143
57144
57145
57146
57147
57148
57149
57150
57151
57152
57153
57154
57155
57156
57157
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
57185
57186
57187
57188
57189
57190
57191
57192
57193
57194
57195
57196
57197
57198
57199
57200
57201
57202
57203
57204
57205
57206
57207
57208
57209
57210
57211
57212
57213
57214
57215
57216
57217
57218
57219
57220
57221
57222
57223
57224
57225
57226
57227
57228
57229
57230
57231
57232
57233
57234
57235
57236
57237
57238
57239
57240
57241
57242
57243
57244
57245
57246
57247
57248
57249
57250
57251
57252
57253
57254
57255
57256
57257
57258
57259
57260
57261
57262
57263
57264
57265
57266
57267
57268
57269
57270
57271
57272
57273
57274
57275
57276
57277
57278
57279
57280
57281
57282
57283
57284
57285
57286
57287
57288
57289
57290
57291
57292
57293
57294
57295
57296
57297
57298
57299
57300
57301
57302
57303
57304
57305
57306
57307
57308
57309
57310
57311
57312
57313
57314
57315
57316
57317
57318
57319
57320
57321
57322
57323
57324
57325
57326
57327
57328
57329
57330
57331
57332
57333
57334
57335
57336
57337
57338
57339
57340
57341
57342
57343
57344
57345
57346
57347
57348
57349
57350
57351
57352
57353
57354
57355
57356
57357
57358
57359
57360
57361
57362
57363
57364
57365
57366
57367
57368
57369
57370
57371
57372
57373
57374
57375
57376
57377
57378
57379
57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
57395
57396
57397
57398
57399
57400
57401
57402
57403
57404
57405
57406
57407
57408
57409
57410
57411
57412
57413
57414
57415
57416
57417
57418
57419
57420
57421
57422
57423
57424
57425
57426
57427
57428
57429
57430
57431
57432
57433
57434
57435
57436
57437
57438
57439
57440
57441
57442
57443
57444
57445
57446
57447
57448
57449
57450
57451
57452
57453
57454
57455
57456
57457
57458
57459
57460
57461
57462
57463
57464
57465
57466
57467
57468
57469
57470
57471
57472
57473
57474
57475
57476
57477
57478
57479
57480
57481
57482
57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
57508
57509
57510
57511
57512
57513
57514
57515
57516
57517
57518
57519
57520
57521
57522
57523
57524
57525
57526
57527
57528
57529
57530
57531
57532
57533
57534
57535
57536
57537
57538
57539
57540
57541
57542
57543
57544
57545
57546
57547
57548
57549
57550
57551
57552
57553
57554
57555
57556
57557
57558
57559
57560
57561
57562
57563
57564
57565
57566
57567
57568
57569
57570
57571
57572
57573
57574
57575
57576
57577
57578
57579
57580
57581
57582
57583
57584
57585
57586
57587
57588
57589
57590
57591
57592
57593
57594
57595
57596
57597
57598
57599
57600
57601
57602
57603
57604
57605
57606
57607
57608
57609
57610
57611
57612
57613
57614
57615
57616
57617
57618
57619
57620
57621
57622
57623
57624
57625
57626
57627
57628
57629
57630
57631
57632
57633
57634
57635
57636
57637
57638
57639
57640
57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651
57652
57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
57689
57690
57691
57692
57693
57694
57695
57696
57697
57698
57699
57700
57701
57702
57703
57704
57705
57706
57707
57708
57709
57710
57711
57712
57713
57714
57715
57716
57717
57718
57719
57720
57721
57722
57723
57724
57725
57726
57727
57728
57729
57730
57731
57732
57733
57734
57735
57736
57737
57738
57739
57740
57741
57742
57743
57744
57745
57746
57747
57748
57749
57750
57751
57752
57753
57754
57755
57756
57757
57758
57759
57760
57761
57762
57763
57764
57765
57766
57767
57768
57769
57770
57771
57772
57773
57774
57775
57776
57777
57778
57779
57780
57781
57782
57783
57784
57785
57786
57787
57788
57789
57790
57791
57792
57793
57794
57795
57796
57797
57798
57799
57800
57801
57802
57803
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
57823
57824
57825
57826
57827
57828
57829
57830
57831
57832
57833
57834
57835
57836
57837
57838
57839
57840
57841
57842
57843
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
57860
57861
57862
57863
57864
57865
57866
57867
57868
57869
57870
57871
57872
57873
57874
57875
57876
57877
57878
57879
57880
57881
57882
57883
57884
57885
57886
57887
57888
57889
57890
57891
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
57931
57932
57933
57934
57935
57936
57937
57938
57939
57940
57941
57942
57943
57944
57945
57946
57947
57948
57949
57950
57951
57952
57953
57954
57955
57956
57957
57958
57959
57960
57961
57962
57963
57964
57965
57966
57967
57968
57969
57970
57971
57972
57973
57974
57975
57976
57977
57978
57979
57980
57981
57982
57983
57984
57985
57986
57987
57988
57989
57990
57991
57992
57993
57994
57995
57996
57997
57998
57999
58000
58001
58002
58003
58004
58005
58006
58007
58008
58009
58010
58011
58012
58013
58014
58015
58016
58017
58018
58019
58020
58021
58022
58023
58024
58025
58026
58027
58028
58029
58030
58031
58032
58033
58034
58035
58036
58037
58038
58039
58040
58041
58042
58043
58044
58045
58046
58047
58048
58049
58050
58051
58052
58053
58054
58055
58056
58057
58058
58059
58060
58061
58062
58063
58064
58065
58066
58067
58068
58069
58070
58071
58072
58073
58074
58075
58076
58077
58078
58079
58080
58081
58082
58083
58084
58085
58086
58087
58088
58089
58090
58091
58092
58093
58094
58095
58096
58097
58098
58099
58100
58101
58102
58103
58104
58105
58106
58107
58108
58109
58110
58111
58112
58113
58114
58115
58116
58117
58118
58119
58120
58121
58122
58123
58124
58125
58126
58127
58128
58129
58130
58131
58132
58133
58134
58135
58136
58137
58138
58139
58140
58141
58142
58143
58144
58145
58146
58147
58148
58149
58150
58151
58152
58153
58154
58155
58156
58157
58158
58159
58160
58161
58162
58163
58164
58165
58166
58167
58168
58169
58170
58171
58172
58173
58174
58175
58176
58177
58178
58179
58180
58181
58182
58183
58184
58185
58186
58187
58188
58189
58190
58191
58192
58193
58194
58195
58196
58197
58198
58199
58200
58201
58202
58203
58204
58205
58206
58207
58208
58209
58210
58211
58212
58213
58214
58215
58216
58217
58218
58219
58220
58221
58222
58223
58224
58225
58226
58227
58228
58229
58230
58231
58232
58233
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
58262
58263
58264
58265
58266
58267
58268
58269
58270
58271
58272
58273
58274
58275
58276
58277
58278
58279
58280
58281
58282
58283
58284
58285
58286
58287
58288
58289
58290
58291
58292
58293
58294
58295
58296
58297
58298
58299
58300
58301
58302
58303
58304
58305
58306
58307
58308
58309
58310
58311
58312
58313
58314
58315
58316
58317
58318
58319
58320
58321
58322
58323
58324
58325
58326
58327
58328
58329
58330
58331
58332
58333
58334
58335
58336
58337
58338
58339
58340
58341
58342
58343
58344
58345
58346
58347
58348
58349
58350
58351
58352
58353
58354
58355
58356
58357
58358
58359
58360
58361
58362
58363
58364
58365
58366
58367
58368
58369
58370
58371
58372
58373
58374
58375
58376
58377
58378
58379
58380
58381
58382
58383
58384
58385
58386
58387
58388
58389
58390
58391
58392
58393
58394
58395
58396
58397
58398
58399
58400
58401
58402
58403
58404
58405
58406
58407
58408
58409
58410
58411
58412
58413
58414
58415
58416
58417
58418
58419
58420
58421
58422
58423
58424
58425
58426
58427
58428
58429
58430
58431
58432
58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
58452
58453
58454
58455
58456
58457
58458
58459
58460
58461
58462
58463
58464
58465
58466
58467
58468
58469
58470
58471
58472
58473
58474
58475
58476
58477
58478
58479
58480
58481
58482
58483
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495
58496
58497
58498
58499
58500
58501
58502
58503
58504
58505
58506
58507
58508
58509
58510
58511
58512
58513
58514
58515
58516
58517
58518
58519
58520
58521
58522
58523
58524
58525
58526
58527
58528
58529
58530
58531
58532
58533
58534
58535
58536
58537
58538
58539
58540
58541
58542
58543
58544
58545
58546
58547
58548
58549
58550
58551
58552
58553
58554
58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
58568
58569
58570
58571
58572
58573
58574
58575
58576
58577
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615
58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
58637
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
58661
58662
58663
58664
58665
58666
58667
58668
58669
58670
58671
58672
58673
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714
58715
58716
58717
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747
58748
58749
58750
58751
58752
58753
58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885
58886
58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010
59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
59047
59048
59049
59050
59051
59052
59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081
59082
59083
59084
59085
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109
59110
59111
59112
59113
59114
59115
59116
59117
59118
59119
59120
59121
59122
59123
59124
59125
59126
59127
59128
59129
59130
59131
59132
59133
59134
59135
59136
59137
59138
59139
59140
59141
59142
59143
59144
59145
59146
59147
59148
59149
59150
59151
59152
59153
59154
59155
59156
59157
59158
59159
59160
59161
59162
59163
59164
59165
59166
59167
59168
59169
59170
59171
59172
59173
59174
59175
59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
59200
59201
59202
59203
59204
59205
59206
59207
59208
59209
59210
59211
59212
59213
59214
59215
59216
59217
59218
59219
59220
59221
59222
59223
59224
59225
59226
59227
59228
59229
59230
59231
59232
59233
59234
59235
59236
59237
59238
59239
59240
59241
59242
59243
59244
59245
59246
59247
59248
59249
59250
59251
59252
59253
59254
59255
59256
59257
59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
59281
59282
59283
59284
59285
59286
59287
59288
59289
59290
59291
59292
59293
59294
59295
59296
59297
59298
59299
59300
59301
59302
59303
59304
59305
59306
59307
59308
59309
59310
59311
59312
59313
59314
59315
59316
59317
59318
59319
59320
59321
59322
59323
59324
59325
59326
59327
59328
59329
59330
59331
59332
59333
59334
59335
59336
59337
59338
59339
59340
59341
59342
59343
59344
59345
59346
59347
59348
59349
59350
59351
59352
59353
59354
59355
59356
59357
59358
59359
59360
59361
59362
59363
59364
59365
59366
59367
59368
59369
59370
59371
59372
59373
59374
59375
59376
59377
59378
59379
59380
59381
59382
59383
59384
59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
59411
59412
59413
59414
59415
59416
59417
59418
59419
59420
59421
59422
59423
59424
59425
59426
59427
59428
59429
59430
59431
59432
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
59448
59449
59450
59451
59452
59453
59454
59455
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
59475
59476
59477
59478
59479
59480
59481
59482
59483
59484
59485
59486
59487
59488
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
59521
59522
59523
59524
59525
59526
59527
59528
59529
59530
59531
59532
59533
59534
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546
59547
59548
59549
59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
59561
59562
59563
59564
59565
59566
59567
59568
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590
59591
59592
59593
59594
59595
59596
59597
59598
59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616
59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664
59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675
59676
59677
59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767
59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801
59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831
59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858
59859
59860
59861
59862
59863
59864
59865
59866
59867
59868
59869
59870
59871
59872
59873
59874
59875
59876
59877
59878
59879
59880
59881
59882
59883
59884
59885
59886
59887
59888
59889
59890
59891
59892
59893
59894
59895
59896
59897
59898
59899
59900
59901
59902
59903
59904
59905
59906
59907
59908
59909
59910
59911
59912
59913
59914
59915
59916
59917
59918
59919
59920
59921
59922
59923
59924
59925
59926
59927
59928
59929
59930
59931
59932
59933
59934
59935
59936
59937
59938
59939
59940
59941
59942
59943
59944
59945
59946
59947
59948
59949
59950
59951
59952
59953
59954
59955
59956
59957
59958
59959
59960
59961
59962
59963
59964
59965
59966
59967
59968
59969
59970
59971
59972
59973
59974
59975
59976
59977
59978
59979
59980
59981
59982
59983
59984
59985
59986
59987
59988
59989
59990
59991
59992
59993
59994
59995
59996
59997
59998
59999
60000
60001
60002
60003
60004
60005
60006
60007
60008
60009
60010
60011
60012
60013
60014
60015
60016
60017
60018
60019
60020
60021
60022
60023
60024
60025
60026
60027
60028
60029
60030
60031
60032
60033
60034
60035
60036
60037
60038
60039
60040
60041
60042
60043
60044
60045
60046
60047
60048
60049
60050
60051
60052
60053
60054
60055
60056
60057
60058
60059
60060
60061
60062
60063
60064
60065
60066
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
60082
60083
60084
60085
60086
60087
60088
60089
60090
60091
60092
60093
60094
60095
60096
60097
60098
60099
60100
60101
60102
60103
60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123
60124
60125
60126
60127
60128
60129
60130
60131
60132
60133
60134
60135
60136
60137
60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
60154
60155
60156
60157
60158
60159
60160
60161
60162
60163
60164
60165
60166
60167
60168
60169
60170
60171
60172
60173
60174
60175
60176
60177
60178
60179
60180
60181
60182
60183
60184
60185
60186
60187
60188
60189
60190
60191
60192
60193
60194
60195
60196
60197
60198
60199
60200
60201
60202
60203
60204
60205
60206
60207
60208
60209
60210
60211
60212
60213
60214
60215
60216
60217
60218
60219
60220
60221
60222
60223
60224
60225
60226
60227
60228
60229
60230
60231
60232
60233
60234
60235
60236
60237
60238
60239
60240
60241
60242
60243
60244
60245
60246
60247
60248
60249
60250
60251
60252
60253
60254
60255
60256
60257
60258
60259
60260
60261
60262
60263
60264
60265
60266
60267
60268
60269
60270
60271
60272
60273
60274
60275
60276
60277
60278
60279
60280
60281
60282
60283
60284
60285
60286
60287
60288
60289
60290
60291
60292
60293
60294
60295
60296
60297
60298
60299
60300
60301
60302
60303
60304
60305
60306
60307
60308
60309
60310
60311
60312
60313
60314
60315
60316
60317
60318
60319
60320
60321
60322
60323
60324
60325
60326
60327
60328
60329
60330
60331
60332
60333
60334
60335
60336
60337
60338
60339
60340
60341
60342
60343
60344
60345
60346
60347
60348
60349
60350
60351
60352
60353
60354
60355
60356
60357
60358
60359
60360
60361
60362
60363
60364
60365
60366
60367
60368
60369
60370
60371
60372
60373
60374
60375
60376
60377
60378
60379
60380
60381
60382
60383
60384
60385
60386
60387
60388
60389
60390
60391
60392
60393
60394
60395
60396
60397
60398
60399
60400
60401
60402
60403
60404
60405
60406
60407
60408
60409
60410
60411
60412
60413
60414
60415
60416
60417
60418
60419
60420
60421
60422
60423
60424
60425
60426
60427
60428
60429
60430
60431
60432
60433
60434
60435
60436
60437
60438
60439
60440
60441
60442
60443
60444
60445
60446
60447
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
60465
60466
60467
60468
60469
60470
60471
60472
60473
60474
60475
60476
60477
60478
60479
60480
60481
60482
60483
60484
60485
60486
60487
60488
60489
60490
60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503
60504
60505
60506
60507
60508
60509
60510
60511
60512
60513
60514
60515
60516
60517
60518
60519
60520
60521
60522
60523
60524
60525
60526
60527
60528
60529
60530
60531
60532
60533
60534
60535
60536
60537
60538
60539
60540
60541
60542
60543
60544
60545
60546
60547
60548
60549
60550
60551
60552
60553
60554
60555
60556
60557
60558
60559
60560
60561
60562
60563
60564
60565
60566
60567
60568
60569
60570
60571
60572
60573
60574
60575
60576
60577
60578
60579
60580
60581
60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
60614
60615
60616
60617
60618
60619
60620
60621
60622
60623
60624
60625
60626
60627
60628
60629
60630
60631
60632
60633
60634
60635
60636
60637
60638
60639
60640
60641
60642
60643
60644
60645
60646
60647
60648
60649
60650
60651
60652
60653
60654
60655
60656
60657
60658
60659
60660
60661
60662
60663
60664
60665
60666
60667
60668
60669
60670
60671
60672
60673
60674
60675
60676
60677
60678
60679
60680
60681
60682
60683
60684
60685
60686
60687
60688
60689
60690
60691
60692
60693
60694
60695
60696
60697
60698
60699
60700
60701
60702
60703
60704
60705
60706
60707
60708
60709
60710
60711
60712
60713
60714
60715
60716
60717
60718
60719
60720
60721
60722
60723
60724
60725
60726
60727
60728
60729
60730
60731
60732
60733
60734
60735
60736
60737
60738
60739
60740
60741
60742
60743
60744
60745
60746
60747
60748
60749
60750
60751
60752
60753
60754
60755
60756
60757
60758
60759
60760
60761
60762
60763
60764
60765
60766
60767
60768
60769
60770
60771
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
60797
60798
60799
60800
60801
60802
60803
60804
60805
60806
60807
60808
60809
60810
60811
60812
60813
60814
60815
60816
60817
60818
60819
60820
60821
60822
60823
60824
60825
60826
60827
60828
60829
60830
60831
60832
60833
60834
60835
60836
60837
60838
60839
60840
60841
60842
60843
60844
60845
60846
60847
60848
60849
60850
60851
60852
60853
60854
60855
60856
60857
60858
60859
60860
60861
60862
60863
60864
60865
60866
60867
60868
60869
60870
60871
60872
60873
60874
60875
60876
60877
60878
60879
60880
60881
60882
60883
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
60899
60900
60901
60902
60903
60904
60905
60906
60907
60908
60909
60910
60911
60912
60913
60914
60915
60916
60917
60918
60919
60920
60921
60922
60923
60924
60925
60926
60927
60928
60929
60930
60931
60932
60933
60934
60935
60936
60937
60938
60939
60940
60941
60942
60943
60944
60945
60946
60947
60948
60949
60950
60951
60952
60953
60954
60955
60956
60957
60958
60959
60960
60961
60962
60963
60964
60965
60966
60967
60968
60969
60970
60971
60972
60973
60974
60975
60976
60977
60978
60979
60980
60981
60982
60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
60993
60994
60995
60996
60997
60998
60999
61000
61001
61002
61003
61004
61005
61006
61007
61008
61009
61010
61011
61012
61013
61014
61015
61016
61017
61018
61019
61020
61021
61022
61023
61024
61025
61026
61027
61028
61029
61030
61031
61032
61033
61034
61035
61036
61037
61038
61039
61040
61041
61042
61043
61044
61045
61046
61047
61048
61049
61050
61051
61052
61053
61054
61055
61056
61057
61058
61059
61060
61061
61062
61063
61064
61065
61066
61067
61068
61069
61070
61071
61072
61073
61074
61075
61076
61077
61078
61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
61097
61098
61099
61100
61101
61102
61103
61104
61105
61106
61107
61108
61109
61110
61111
61112
61113
61114
61115
61116
61117
61118
61119
61120
61121
61122
61123
61124
61125
61126
61127
61128
61129
61130
61131
61132
61133
61134
61135
61136
61137
61138
61139
61140
61141
61142
61143
61144
61145
61146
61147
61148
61149
61150
61151
61152
61153
61154
61155
61156
61157
61158
61159
61160
61161
61162
61163
61164
61165
61166
61167
61168
61169
61170
61171
61172
61173
61174
61175
61176
61177
61178
61179
61180
61181
61182
61183
61184
61185
61186
61187
61188
61189
61190
61191
61192
61193
61194
61195
61196
61197
61198
61199
61200
61201
61202
61203
61204
61205
61206
61207
61208
61209
61210
61211
61212
61213
61214
61215
61216
61217
61218
61219
61220
61221
61222
61223
61224
61225
61226
61227
61228
61229
61230
61231
61232
61233
61234
61235
61236
61237
61238
61239
61240
61241
61242
61243
61244
61245
61246
61247
61248
61249
61250
61251
61252
61253
61254
61255
61256
61257
61258
61259
61260
61261
61262
61263
61264
61265
61266
61267
61268
61269
61270
61271
61272
61273
61274
61275
61276
61277
61278
61279
61280
61281
61282
61283
61284
61285
61286
61287
61288
61289
61290
61291
61292
61293
61294
61295
61296
61297
61298
61299
61300
61301
61302
61303
61304
61305
61306
61307
61308
61309
61310
61311
61312
61313
61314
61315
61316
61317
61318
61319
61320
61321
61322
61323
61324
61325
61326
61327
61328
61329
61330
61331
61332
61333
61334
61335
61336
61337
61338
61339
61340
61341
61342
61343
61344
61345
61346
61347
61348
61349
61350
61351
61352
61353
61354
61355
61356
61357
61358
61359
61360
61361
61362
61363
61364
61365
61366
61367
61368
61369
61370
61371
61372
61373
61374
61375
61376
61377
61378
61379
61380
61381
61382
61383
61384
61385
61386
61387
61388
61389
61390
61391
61392
61393
61394
61395
61396
61397
61398
61399
61400
61401
61402
61403
61404
61405
61406
61407
61408
61409
61410
61411
61412
61413
61414
61415
61416
61417
61418
61419
61420
61421
61422
61423
61424
61425
61426
61427
61428
61429
61430
61431
61432
61433
61434
61435
61436
61437
61438
61439
61440
61441
61442
61443
61444
61445
61446
61447
61448
61449
61450
61451
61452
61453
61454
61455
61456
61457
61458
61459
61460
61461
61462
61463
61464
61465
61466
61467
61468
61469
61470
61471
61472
61473
61474
61475
61476
61477
61478
61479
61480
61481
61482
61483
61484
61485
61486
61487
61488
61489
61490
61491
61492
61493
61494
61495
61496
61497
61498
61499
61500
61501
61502
61503
61504
61505
61506
61507
61508
61509
61510
61511
61512
61513
61514
61515
61516
61517
61518
61519
61520
61521
61522
61523
61524
61525
61526
61527
61528
61529
61530
61531
61532
61533
61534
61535
61536
61537
61538
61539
61540
61541
61542
61543
61544
61545
61546
61547
61548
61549
61550
61551
61552
61553
61554
61555
61556
61557
61558
61559
61560
61561
61562
61563
61564
61565
61566
61567
61568
61569
61570
61571
61572
61573
61574
61575
61576
61577
61578
61579
61580
61581
61582
61583
61584
61585
61586
61587
61588
61589
61590
61591
61592
61593
61594
61595
61596
61597
61598
61599
61600
61601
61602
61603
61604
61605
61606
61607
61608
61609
61610
61611
61612
61613
61614
61615
61616
61617
61618
61619
61620
61621
61622
61623
61624
61625
61626
61627
61628
61629
61630
61631
61632
61633
61634
61635
61636
61637
61638
61639
61640
61641
61642
61643
61644
61645
61646
61647
61648
61649
61650
61651
61652
61653
61654
61655
61656
61657
61658
61659
61660
61661
61662
61663
61664
61665
61666
61667
61668
61669
61670
61671
61672
61673
61674
61675
61676
61677
61678
61679
61680
61681
61682
61683
61684
61685
61686
61687
61688
61689
61690
61691
61692
61693
61694
61695
61696
61697
61698
61699
61700
61701
61702
61703
61704
61705
61706
61707
61708
61709
61710
61711
61712
61713
61714
61715
61716
61717
61718
61719
61720
61721
61722
61723
61724
61725
61726
61727
61728
61729
61730
61731
61732
61733
61734
61735
61736
61737
61738
61739
61740
61741
61742
61743
61744
61745
61746
61747
61748
61749
61750
61751
61752
61753
61754
61755
61756
61757
61758
61759
61760
61761
61762
61763
61764
61765
61766
61767
61768
61769
61770
61771
61772
61773
61774
61775
61776
61777
61778
61779
61780
61781
61782
61783
61784
61785
61786
61787
61788
61789
61790
61791
61792
61793
61794
61795
61796
61797
61798
61799
61800
61801
61802
61803
61804
61805
61806
61807
61808
61809
61810
61811
61812
61813
61814
61815
61816
61817
61818
61819
61820
61821
61822
61823
61824
61825
61826
61827
61828
61829
61830
61831
61832
61833
61834
61835
61836
61837
61838
61839
61840
61841
61842
61843
61844
61845
61846
61847
61848
61849
61850
61851
61852
61853
61854
61855
61856
61857
61858
61859
61860
61861
61862
61863
61864
61865
61866
61867
61868
61869
61870
61871
61872
61873
61874
61875
61876
61877
61878
61879
61880
61881
61882
61883
61884
61885
61886
61887
61888
61889
61890
61891
61892
61893
61894
61895
61896
61897
61898
61899
61900
61901
61902
61903
61904
61905
61906
61907
61908
61909
61910
61911
61912
61913
61914
61915
61916
61917
61918
61919
61920
61921
61922
61923
61924
61925
61926
61927
61928
61929
61930
61931
61932
61933
61934
61935
61936
61937
61938
61939
61940
61941
61942
61943
61944
61945
61946
61947
61948
61949
61950
61951
61952
61953
61954
61955
61956
61957
61958
61959
61960
61961
61962
61963
61964
61965
61966
61967
61968
61969
61970
61971
61972
61973
61974
61975
61976
61977
61978
61979
61980
61981
61982
61983
61984
61985
61986
61987
61988
61989
61990
61991
61992
61993
61994
61995
61996
61997
61998
61999
62000
62001
62002
62003
62004
62005
62006
62007
62008
62009
62010
62011
62012
62013
62014
62015
62016
62017
62018
62019
62020
62021
62022
62023
62024
62025
62026
62027
62028
62029
62030
62031
62032
62033
62034
62035
62036
62037
62038
62039
62040
62041
62042
62043
62044
62045
62046
62047
62048
62049
62050
62051
62052
62053
62054
62055
62056
62057
62058
62059
62060
62061
62062
62063
62064
62065
62066
62067
62068
62069
62070
62071
62072
62073
62074
62075
62076
62077
62078
62079
62080
62081
62082
62083
62084
62085
62086
62087
62088
62089
62090
62091
62092
62093
62094
62095
62096
62097
62098
62099
62100
62101
62102
62103
62104
62105
62106
62107
62108
62109
62110
62111
62112
62113
62114
62115
62116
62117
62118
62119
62120
62121
62122
62123
62124
62125
62126
62127
62128
62129
62130
62131
62132
62133
62134
62135
62136
62137
62138
62139
62140
62141
62142
62143
62144
62145
62146
62147
62148
62149
62150
62151
62152
62153
62154
62155
62156
62157
62158
62159
62160
62161
62162
62163
62164
62165
62166
62167
62168
62169
62170
62171
62172
62173
62174
62175
62176
62177
62178
62179
62180
62181
62182
62183
62184
62185
62186
62187
62188
62189
62190
62191
62192
62193
62194
62195
62196
62197
62198
62199
62200
62201
62202
62203
62204
62205
62206
62207
62208
62209
62210
62211
62212
62213
62214
62215
62216
62217
62218
62219
62220
62221
62222
62223
62224
62225
62226
62227
62228
62229
62230
62231
62232
62233
62234
62235
62236
62237
62238
62239
62240
62241
62242
62243
62244
62245
62246
62247
62248
62249
62250
62251
62252
62253
62254
62255
62256
62257
62258
62259
62260
62261
62262
62263
62264
62265
62266
62267
62268
62269
62270
62271
62272
62273
62274
62275
62276
62277
62278
62279
62280
62281
62282
62283
62284
62285
62286
62287
62288
62289
62290
62291
62292
62293
62294
62295
62296
62297
62298
62299
62300
62301
62302
62303
62304
62305
62306
62307
62308
62309
62310
62311
62312
62313
62314
62315
62316
62317
62318
62319
62320
62321
62322
62323
62324
62325
62326
62327
62328
62329
62330
62331
62332
62333
62334
62335
62336
62337
62338
62339
62340
62341
62342
62343
62344
62345
62346
62347
62348
62349
62350
62351
62352
62353
62354
62355
62356
62357
62358
62359
62360
62361
62362
62363
62364
62365
62366
62367
62368
62369
62370
62371
62372
62373
62374
62375
62376
62377
62378
62379
62380
62381
62382
62383
62384
62385
62386
62387
62388
62389
62390
62391
62392
62393
62394
62395
62396
62397
62398
62399
62400
62401
62402
62403
62404
62405
62406
62407
62408
62409
62410
62411
62412
62413
62414
62415
62416
62417
62418
62419
62420
62421
62422
62423
62424
62425
62426
62427
62428
62429
62430
62431
62432
62433
62434
62435
62436
62437
62438
62439
62440
62441
62442
62443
62444
62445
62446
62447
62448
62449
62450
62451
62452
62453
62454
62455
62456
62457
62458
62459
62460
62461
62462
62463
62464
62465
62466
62467
62468
62469
62470
62471
62472
62473
62474
62475
62476
62477
62478
62479
62480
62481
62482
62483
62484
62485
62486
62487
62488
62489
62490
62491
62492
62493
62494
62495
62496
62497
62498
62499
62500
62501
62502
62503
62504
62505
62506
62507
62508
62509
62510
62511
62512
62513
62514
62515
62516
62517
62518
62519
62520
62521
62522
62523
62524
62525
62526
62527
62528
62529
62530
62531
62532
62533
62534
62535
62536
62537
62538
62539
62540
62541
62542
62543
62544
62545
62546
62547
62548
62549
62550
62551
62552
62553
62554
62555
62556
62557
62558
62559
62560
62561
62562
62563
62564
62565
62566
62567
62568
62569
62570
62571
62572
62573
62574
62575
62576
62577
62578
62579
62580
62581
62582
62583
62584
62585
62586
62587
62588
62589
62590
62591
62592
62593
62594
62595
62596
62597
62598
62599
62600
62601
62602
62603
62604
62605
62606
62607
62608
62609
62610
62611
62612
62613
62614
62615
62616
62617
62618
62619
62620
62621
62622
62623
62624
62625
62626
62627
62628
62629
62630
62631
62632
62633
62634
62635
62636
62637
62638
62639
62640
62641
62642
62643
62644
62645
62646
62647
62648
62649
62650
62651
62652
62653
62654
62655
62656
62657
62658
62659
62660
62661
62662
62663
62664
62665
62666
62667
62668
62669
62670
62671
62672
62673
62674
62675
62676
62677
62678
62679
62680
62681
62682
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
62696
62697
62698
62699
62700
62701
62702
62703
62704
62705
62706
62707
62708
62709
62710
62711
62712
62713
62714
62715
62716
62717
62718
62719
62720
62721
62722
62723
62724
62725
62726
62727
62728
62729
62730
62731
62732
62733
62734
62735
62736
62737
62738
62739
62740
62741
62742
62743
62744
62745
62746
62747
62748
62749
62750
62751
62752
62753
62754
62755
62756
62757
62758
62759
62760
62761
62762
62763
62764
62765
62766
62767
62768
62769
62770
62771
62772
62773
62774
62775
62776
62777
62778
62779
62780
62781
62782
62783
62784
62785
62786
62787
62788
62789
62790
62791
62792
62793
62794
62795
62796
62797
62798
62799
62800
62801
62802
62803
62804
62805
62806
62807
62808
62809
62810
62811
62812
62813
62814
62815
62816
62817
62818
62819
62820
62821
62822
62823
62824
62825
62826
62827
62828
62829
62830
62831
62832
62833
62834
62835
62836
62837
62838
62839
62840
62841
62842
62843
62844
62845
62846
62847
62848
62849
62850
62851
62852
62853
62854
62855
62856
62857
62858
62859
62860
62861
62862
62863
62864
62865
62866
62867
62868
62869
62870
62871
62872
62873
62874
62875
62876
62877
62878
62879
62880
62881
62882
62883
62884
62885
62886
62887
62888
62889
62890
62891
62892
62893
62894
62895
62896
62897
62898
62899
62900
62901
62902
62903
62904
62905
62906
62907
62908
62909
62910
62911
62912
62913
62914
62915
62916
62917
62918
62919
62920
62921
62922
62923
62924
62925
62926
62927
62928
62929
62930
62931
62932
62933
62934
62935
62936
62937
62938
62939
62940
62941
62942
62943
62944
62945
62946
62947
62948
62949
62950
62951
62952
62953
62954
62955
62956
62957
62958
62959
62960
62961
62962
62963
62964
62965
62966
62967
62968
62969
62970
62971
62972
62973
62974
62975
62976
62977
62978
62979
62980
62981
62982
62983
62984
62985
62986
62987
62988
62989
62990
62991
62992
62993
62994
62995
62996
62997
62998
62999
63000
63001
63002
63003
63004
63005
63006
63007
63008
63009
63010
63011
63012
63013
63014
63015
63016
63017
63018
63019
63020
63021
63022
63023
63024
63025
63026
63027
63028
63029
63030
63031
63032
63033
63034
63035
63036
63037
63038
63039
63040
63041
63042
63043
63044
63045
63046
63047
63048
63049
63050
63051
63052
63053
63054
63055
63056
63057
63058
63059
63060
63061
63062
63063
63064
63065
63066
63067
63068
63069
63070
63071
63072
63073
63074
63075
63076
63077
63078
63079
63080
63081
63082
63083
63084
63085
63086
63087
63088
63089
63090
63091
63092
63093
63094
63095
63096
63097
63098
63099
63100
63101
63102
63103
63104
63105
63106
63107
63108
63109
63110
63111
63112
63113
63114
63115
63116
63117
63118
63119
63120
63121
63122
63123
63124
63125
63126
63127
63128
63129
63130
63131
63132
63133
63134
63135
63136
63137
63138
63139
63140
63141
63142
63143
63144
63145
63146
63147
63148
63149
63150
63151
63152
63153
63154
63155
63156
63157
63158
63159
63160
63161
63162
63163
63164
63165
63166
63167
63168
63169
63170
63171
63172
63173
63174
63175
63176
63177
63178
63179
63180
63181
63182
63183
63184
63185
63186
63187
63188
63189
63190
63191
63192
63193
63194
63195
63196
63197
63198
63199
63200
63201
63202
63203
63204
63205
63206
63207
63208
63209
63210
63211
63212
63213
63214
63215
63216
63217
63218
63219
63220
63221
63222
63223
63224
63225
63226
63227
63228
63229
63230
63231
63232
63233
63234
63235
63236
63237
63238
63239
63240
63241
63242
63243
63244
63245
63246
63247
63248
63249
63250
63251
63252
63253
63254
63255
63256
63257
63258
63259
63260
63261
63262
63263
63264
63265
63266
63267
63268
63269
63270
63271
63272
63273
63274
63275
63276
63277
63278
63279
63280
63281
63282
63283
63284
63285
63286
63287
63288
63289
63290
63291
63292
63293
63294
63295
63296
63297
63298
63299
63300
63301
63302
63303
63304
63305
63306
63307
63308
63309
63310
63311
63312
63313
63314
63315
63316
63317
63318
63319
63320
63321
63322
63323
63324
63325
63326
63327
63328
63329
63330
63331
63332
63333
63334
63335
63336
63337
63338
63339
63340
63341
63342
63343
63344
63345
63346
63347
63348
63349
63350
63351
63352
63353
63354
63355
63356
63357
63358
63359
63360
63361
63362
63363
63364
63365
63366
63367
63368
63369
63370
63371
63372
63373
63374
63375
63376
63377
63378
63379
63380
63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
63392
63393
63394
63395
63396
63397
63398
63399
63400
63401
63402
63403
63404
63405
63406
63407
63408
63409
63410
63411
63412
63413
63414
63415
63416
63417
63418
63419
63420
63421
63422
63423
63424
63425
63426
63427
63428
63429
63430
63431
63432
63433
63434
63435
63436
63437
63438
63439
63440
63441
63442
63443
63444
63445
63446
63447
63448
63449
63450
63451
63452
63453
63454
63455
63456
63457
63458
63459
63460
63461
63462
63463
63464
63465
63466
63467
63468
63469
63470
63471
63472
63473
63474
63475
63476
63477
63478
63479
63480
63481
63482
63483
63484
63485
63486
63487
63488
63489
63490
63491
63492
63493
63494
63495
63496
63497
63498
63499
63500
63501
63502
63503
63504
63505
63506
63507
63508
63509
63510
63511
63512
63513
63514
63515
63516
63517
63518
63519
63520
63521
63522
63523
63524
63525
63526
63527
63528
63529
63530
63531
63532
63533
63534
63535
63536
63537
63538
63539
63540
63541
63542
63543
63544
63545
63546
63547
63548
63549
63550
63551
63552
63553
63554
63555
63556
63557
63558
63559
63560
63561
63562
63563
63564
63565
63566
63567
63568
63569
63570
63571
63572
63573
63574
63575
63576
63577
63578
63579
63580
63581
63582
63583
63584
63585
63586
63587
63588
63589
63590
63591
63592
63593
63594
63595
63596
63597
63598
63599
63600
63601
63602
63603
63604
63605
63606
63607
63608
63609
63610
63611
63612
63613
63614
63615
63616
63617
63618
63619
63620
63621
63622
63623
63624
63625
63626
63627
63628
63629
63630
63631
63632
63633
63634
63635
63636
63637
63638
63639
63640
63641
63642
63643
63644
63645
63646
63647
63648
63649
63650
63651
63652
63653
63654
63655
63656
63657
63658
63659
63660
63661
63662
63663
63664
63665
63666
63667
63668
63669
63670
63671
63672
63673
63674
63675
63676
63677
63678
63679
63680
63681
63682
63683
63684
63685
63686
63687
63688
63689
63690
63691
63692
63693
63694
63695
63696
63697
63698
63699
63700
63701
63702
63703
63704
63705
63706
63707
63708
63709
63710
63711
63712
63713
63714
63715
63716
63717
63718
63719
63720
63721
63722
63723
63724
63725
63726
63727
63728
63729
63730
63731
63732
63733
63734
63735
63736
63737
63738
63739
63740
63741
63742
63743
63744
63745
63746
63747
63748
63749
63750
63751
63752
63753
63754
63755
63756
63757
63758
63759
63760
63761
63762
63763
63764
63765
63766
63767
63768
63769
63770
63771
63772
63773
63774
63775
63776
63777
63778
63779
63780
63781
63782
63783
63784
63785
63786
63787
63788
63789
63790
63791
63792
63793
63794
63795
63796
63797
63798
63799
63800
63801
63802
63803
63804
63805
63806
63807
63808
63809
63810
63811
63812
63813
63814
63815
63816
63817
63818
63819
63820
63821
63822
63823
63824
63825
63826
63827
63828
63829
63830
63831
63832
63833
63834
63835
63836
63837
63838
63839
63840
63841
63842
63843
63844
63845
63846
63847
63848
63849
63850
63851
63852
63853
63854
63855
63856
63857
63858
63859
63860
63861
63862
63863
63864
63865
63866
63867
63868
63869
63870
63871
63872
63873
63874
63875
63876
63877
63878
63879
63880
63881
63882
63883
63884
63885
63886
63887
63888
63889
63890
63891
63892
63893
63894
63895
63896
63897
63898
63899
63900
63901
63902
63903
63904
63905
63906
63907
63908
63909
63910
63911
63912
63913
63914
63915
63916
63917
63918
63919
63920
63921
63922
63923
63924
63925
63926
63927
63928
63929
63930
63931
63932
63933
63934
63935
63936
63937
63938
63939
63940
63941
63942
63943
63944
63945
63946
63947
63948
63949
63950
63951
63952
63953
63954
63955
63956
63957
63958
63959
63960
63961
63962
63963
63964
63965
63966
63967
63968
63969
63970
63971
63972
63973
63974
63975
63976
63977
63978
63979
63980
63981
63982
63983
63984
63985
63986
63987
63988
63989
63990
63991
63992
63993
63994
63995
63996
63997
63998
63999
64000
64001
64002
64003
64004
64005
64006
64007
64008
64009
64010
64011
64012
64013
64014
64015
64016
64017
64018
64019
64020
64021
64022
64023
64024
64025
64026
64027
64028
64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
64042
64043
64044
64045
64046
64047
64048
64049
64050
64051
64052
64053
64054
64055
64056
64057
64058
64059
64060
64061
64062
64063
64064
64065
64066
64067
64068
64069
64070
64071
64072
64073
64074
64075
64076
64077
64078
64079
64080
64081
64082
64083
64084
64085
64086
64087
64088
64089
64090
64091
64092
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
64192
64193
64194
64195
64196
64197
64198
64199
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
64210
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225
64226
64227
64228
64229
64230
64231
64232
64233
64234
64235
64236
64237
64238
64239
64240
64241
64242
64243
64244
64245
64246
64247
64248
64249
64250
64251
64252
64253
64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
64267
64268
64269
64270
64271
64272
64273
64274
64275
64276
64277
64278
64279
64280
64281
64282
64283
64284
64285
64286
64287
64288
64289
64290
64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
64311
64312
64313
64314
64315
64316
64317
64318
64319
64320
64321
64322
64323
64324
64325
64326
64327
64328
64329
64330
64331
64332
64333
64334
64335
64336
64337
64338
64339
64340
64341
64342
64343
64344
64345
64346
64347
64348
64349
64350
64351
64352
64353
64354
64355
64356
64357
64358
64359
64360
64361
64362
64363
64364
64365
64366
64367
64368
64369
64370
64371
64372
64373
64374
64375
64376
64377
64378
64379
64380
64381
64382
64383
64384
64385
64386
64387
64388
64389
64390
64391
64392
64393
64394
64395
64396
64397
64398
64399
64400
64401
64402
64403
64404
64405
64406
64407
64408
64409
64410
64411
64412
64413
64414
64415
64416
64417
64418
64419
64420
64421
64422
64423
64424
64425
64426
64427
64428
64429
64430
64431
64432
64433
64434
64435
64436
64437
64438
64439
64440
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
64456
64457
64458
64459
64460
64461
64462
64463
64464
64465
64466
64467
64468
64469
64470
64471
64472
64473
64474
64475
64476
64477
64478
64479
64480
64481
64482
64483
64484
64485
64486
64487
64488
64489
64490
64491
64492
64493
64494
64495
64496
64497
64498
64499
64500
64501
64502
64503
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
64518
64519
64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
64547
64548
64549
64550
64551
64552
64553
64554
64555
64556
64557
64558
64559
64560
64561
64562
64563
64564
64565
64566
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
64579
64580
64581
64582
64583
64584
64585
64586
64587
64588
64589
64590
64591
64592
64593
64594
64595
64596
64597
64598
64599
64600
64601
64602
64603
64604
64605
64606
64607
64608
64609
64610
64611
64612
64613
64614
64615
64616
64617
64618
64619
64620
64621
64622
64623
64624
64625
64626
64627
64628
64629
64630
64631
64632
64633
64634
64635
64636
64637
64638
64639
64640
64641
64642
64643
64644
64645
64646
64647
64648
64649
64650
64651
64652
64653
64654
64655
64656
64657
64658
64659
64660
64661
64662
64663
64664
64665
64666
64667
64668
64669
64670
64671
64672
64673
64674
64675
64676
64677
64678
64679
64680
64681
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
64702
64703
64704
64705
64706
64707
64708
64709
64710
64711
64712
64713
64714
64715
64716
64717
64718
64719
64720
64721
64722
64723
64724
64725
64726
64727
64728
64729
64730
64731
64732
64733
64734
64735
64736
64737
64738
64739
64740
64741
64742
64743
64744
64745
64746
64747
64748
64749
64750
64751
64752
64753
64754
64755
64756
64757
64758
64759
64760
64761
64762
64763
64764
64765
64766
64767
64768
64769
64770
64771
64772
64773
64774
64775
64776
64777
64778
64779
64780
64781
64782
64783
64784
64785
64786
64787
64788
64789
64790
64791
64792
64793
64794
64795
64796
64797
64798
64799
64800
64801
64802
64803
64804
64805
64806
64807
64808
64809
64810
64811
64812
64813
64814
64815
64816
64817
64818
64819
64820
64821
64822
64823
64824
64825
64826
64827
64828
64829
64830
64831
64832
64833
64834
64835
64836
64837
64838
64839
64840
64841
64842
64843
64844
64845
64846
64847
64848
64849
64850
64851
64852
64853
64854
64855
64856
64857
64858
64859
64860
64861
64862
64863
64864
64865
64866
64867
64868
64869
64870
64871
64872
64873
64874
64875
64876
64877
64878
64879
64880
64881
64882
64883
64884
64885
64886
64887
64888
64889
64890
64891
64892
64893
64894
64895
64896
64897
64898
64899
64900
64901
64902
64903
64904
64905
64906
64907
64908
64909
64910
64911
64912
64913
64914
64915
64916
64917
64918
64919
64920
64921
64922
64923
64924
64925
64926
64927
64928
64929
64930
64931
64932
64933
64934
64935
64936
64937
64938
64939
64940
64941
64942
64943
64944
64945
64946
64947
64948
64949
64950
64951
64952
64953
64954
64955
64956
64957
64958
64959
64960
64961
64962
64963
64964
64965
64966
64967
64968
64969
64970
64971
64972
64973
64974
64975
64976
64977
64978
64979
64980
64981
64982
64983
64984
64985
64986
64987
64988
64989
64990
64991
64992
64993
64994
64995
64996
64997
64998
64999
65000
65001
65002
65003
65004
65005
65006
65007
65008
65009
65010
65011
65012
65013
65014
65015
65016
65017
65018
65019
65020
65021
65022
65023
65024
65025
65026
65027
65028
65029
65030
65031
65032
65033
65034
65035
65036
65037
65038
65039
65040
65041
65042
65043
65044
65045
65046
65047
65048
65049
65050
65051
65052
65053
65054
65055
65056
65057
65058
65059
65060
65061
65062
65063
65064
65065
65066
65067
65068
65069
65070
65071
65072
65073
65074
65075
65076
65077
65078
65079
65080
65081
65082
65083
65084
65085
65086
65087
65088
65089
65090
65091
65092
65093
65094
65095
65096
65097
65098
65099
65100
65101
65102
65103
65104
65105
65106
65107
65108
65109
65110
65111
65112
65113
65114
65115
65116
65117
65118
65119
65120
65121
65122
65123
65124
65125
65126
65127
65128
65129
65130
65131
65132
65133
65134
65135
65136
65137
65138
65139
65140
65141
65142
65143
65144
65145
65146
65147
65148
65149
65150
65151
65152
65153
65154
65155
65156
65157
65158
65159
65160
65161
65162
65163
65164
65165
65166
65167
65168
65169
65170
65171
65172
65173
65174
65175
65176
65177
65178
65179
65180
65181
65182
65183
65184
65185
65186
65187
65188
65189
65190
65191
65192
65193
65194
65195
65196
65197
65198
65199
65200
65201
65202
65203
65204
65205
65206
65207
65208
65209
65210
65211
65212
65213
65214
65215
65216
65217
65218
65219
65220
65221
65222
65223
65224
65225
65226
65227
65228
65229
65230
65231
65232
65233
65234
65235
65236
65237
65238
65239
65240
65241
65242
65243
65244
65245
65246
65247
65248
65249
65250
65251
65252
65253
65254
65255
65256
65257
65258
65259
65260
65261
65262
65263
65264
65265
65266
65267
65268
65269
65270
65271
65272
65273
65274
65275
65276
65277
65278
65279
65280
65281
65282
65283
65284
65285
65286
65287
65288
65289
65290
65291
65292
65293
65294
65295
65296
65297
65298
65299
65300
65301
65302
65303
65304
65305
65306
65307
65308
65309
65310
65311
65312
65313
65314
65315
65316
65317
65318
65319
65320
65321
65322
65323
65324
65325
65326
65327
65328
65329
65330
65331
65332
65333
65334
65335
65336
65337
65338
65339
65340
65341
65342
65343
65344
65345
65346
65347
65348
65349
65350
65351
65352
65353
65354
65355
65356
65357
65358
65359
65360
65361
65362
65363
65364
65365
65366
65367
65368
65369
65370
65371
65372
65373
65374
65375
65376
65377
65378
65379
65380
65381
65382
65383
65384
65385
65386
65387
65388
65389
65390
65391
65392
65393
65394
65395
65396
65397
65398
65399
65400
65401
65402
65403
65404
65405
65406
65407
65408
65409
65410
65411
65412
65413
65414
65415
65416
65417
65418
65419
65420
65421
65422
65423
65424
65425
65426
65427
65428
65429
65430
65431
65432
65433
65434
65435
65436
65437
65438
65439
65440
65441
65442
65443
65444
65445
65446
65447
65448
65449
65450
65451
65452
65453
65454
65455
65456
65457
65458
65459
65460
65461
65462
65463
65464
65465
65466
65467
65468
65469
65470
65471
65472
65473
65474
65475
65476
65477
65478
65479
65480
65481
65482
65483
65484
65485
65486
65487
65488
65489
65490
65491
65492
65493
65494
65495
65496
65497
65498
65499
65500
65501
65502
65503
65504
65505
65506
65507
65508
65509
65510
65511
65512
65513
65514
65515
65516
65517
65518
65519
65520
65521
65522
65523
65524
65525
65526
65527
65528
65529
65530
65531
65532
65533
65534
65535
65536
65537
65538
65539
65540
65541
65542
65543
65544
65545
65546
65547
65548
65549
65550
65551
65552
65553
65554
65555
65556
65557
65558
65559
65560
65561
65562
65563
65564
65565
65566
65567
65568
65569
65570
65571
65572
65573
65574
65575
65576
65577
65578
65579
65580
65581
65582
65583
65584
65585
65586
65587
65588
65589
65590
65591
65592
65593
65594
65595
65596
65597
65598
65599
65600
65601
65602
65603
65604
65605
65606
65607
65608
65609
65610
65611
65612
65613
65614
65615
65616
65617
65618
65619
65620
65621
65622
65623
65624
65625
65626
65627
65628
65629
65630
65631
65632
65633
65634
65635
65636
65637
65638
65639
65640
65641
65642
65643
65644
65645
65646
65647
65648
65649
65650
65651
65652
65653
65654
65655
65656
65657
65658
65659
65660
65661
65662
65663
65664
65665
65666
65667
65668
65669
65670
65671
65672
65673
65674
65675
65676
65677
65678
65679
65680
65681
65682
65683
65684
65685
65686
65687
65688
65689
65690
65691
65692
65693
65694
65695
65696
65697
65698
65699
65700
65701
65702
65703
65704
65705
65706
65707
65708
65709
65710
65711
65712
65713
65714
65715
65716
65717
65718
65719
65720
65721
65722
65723
65724
65725
65726
65727
65728
65729
65730
65731
65732
65733
65734
65735
65736
65737
65738
65739
65740
65741
65742
65743
65744
65745
65746
65747
65748
65749
65750
65751
65752
65753
65754
65755
65756
65757
65758
65759
65760
65761
65762
65763
65764
65765
65766
65767
65768
65769
65770
65771
65772
65773
65774
65775
65776
65777
65778
65779
65780
65781
65782
65783
65784
65785
65786
65787
65788
65789
65790
65791
65792
65793
65794
65795
65796
65797
65798
65799
65800
65801
65802
65803
65804
65805
65806
65807
65808
65809
65810
65811
65812
65813
65814
65815
65816
65817
65818
65819
65820
65821
65822
65823
65824
65825
65826
65827
65828
65829
65830
65831
65832
65833
65834
65835
65836
65837
65838
65839
65840
65841
65842
65843
65844
65845
65846
65847
65848
65849
65850
65851
65852
65853
65854
65855
65856
65857
65858
65859
65860
65861
65862
65863
65864
65865
65866
65867
65868
65869
65870
65871
65872
65873
65874
65875
65876
65877
65878
65879
65880
65881
65882
65883
65884
65885
65886
65887
65888
65889
65890
65891
65892
65893
65894
65895
65896
65897
65898
65899
65900
65901
65902
65903
65904
65905
65906
65907
65908
65909
65910
65911
65912
65913
65914
65915
65916
65917
65918
65919
65920
65921
65922
65923
65924
65925
65926
65927
65928
65929
65930
65931
65932
65933
65934
65935
65936
65937
65938
65939
65940
65941
65942
65943
65944
65945
65946
65947
65948
65949
65950
65951
65952
65953
65954
65955
65956
65957
65958
65959
65960
65961
65962
65963
65964
65965
65966
65967
65968
65969
65970
65971
65972
65973
65974
65975
65976
65977
65978
65979
65980
65981
65982
65983
65984
65985
65986
65987
65988
65989
65990
65991
65992
65993
65994
65995
65996
65997
65998
65999
66000
66001
66002
66003
66004
66005
66006
66007
66008
66009
66010
66011
66012
66013
66014
66015
66016
66017
66018
66019
66020
66021
66022
66023
66024
66025
66026
66027
66028
66029
66030
66031
66032
66033
66034
66035
66036
66037
66038
66039
66040
66041
66042
66043
66044
66045
66046
66047
66048
66049
66050
66051
66052
66053
66054
66055
66056
66057
66058
66059
66060
66061
66062
66063
66064
66065
66066
66067
66068
66069
66070
66071
66072
66073
66074
66075
66076
66077
66078
66079
66080
66081
66082
66083
66084
66085
66086
66087
66088
66089
66090
66091
66092
66093
66094
66095
66096
66097
66098
66099
66100
66101
66102
66103
66104
66105
66106
66107
66108
66109
66110
66111
66112
66113
66114
66115
66116
66117
66118
66119
66120
66121
66122
66123
66124
66125
66126
66127
66128
66129
66130
66131
66132
66133
66134
66135
66136
66137
66138
66139
66140
66141
66142
66143
66144
66145
66146
66147
66148
66149
66150
66151
66152
66153
66154
66155
66156
66157
66158
66159
66160
66161
66162
66163
66164
66165
66166
66167
66168
66169
66170
66171
66172
66173
66174
66175
66176
66177
66178
66179
66180
66181
66182
66183
66184
66185
66186
66187
66188
66189
66190
66191
66192
66193
66194
66195
66196
66197
66198
66199
66200
66201
66202
66203
66204
66205
66206
66207
66208
66209
66210
66211
66212
66213
66214
66215
66216
66217
66218
66219
66220
66221
66222
66223
66224
66225
66226
66227
66228
66229
66230
66231
66232
66233
66234
66235
66236
66237
66238
66239
66240
66241
66242
66243
66244
66245
66246
66247
66248
66249
66250
66251
66252
66253
66254
66255
66256
66257
66258
66259
66260
66261
66262
66263
66264
66265
66266
66267
66268
66269
66270
66271
66272
66273
66274
66275
66276
66277
66278
66279
66280
66281
66282
66283
66284
66285
66286
66287
66288
66289
66290
66291
66292
66293
66294
66295
66296
66297
66298
66299
66300
66301
66302
66303
66304
66305
66306
66307
66308
66309
66310
66311
66312
66313
66314
66315
66316
66317
66318
66319
66320
66321
66322
66323
66324
66325
66326
66327
66328
66329
66330
66331
66332
66333
66334
66335
66336
66337
66338
66339
66340
66341
66342
66343
66344
66345
66346
66347
66348
66349
66350
66351
66352
66353
66354
66355
66356
66357
66358
66359
66360
66361
66362
66363
66364
66365
66366
66367
66368
66369
66370
66371
66372
66373
66374
66375
66376
66377
66378
66379
66380
66381
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
66397
66398
66399
66400
66401
66402
66403
66404
66405
66406
66407
66408
66409
66410
66411
66412
66413
66414
66415
66416
66417
66418
66419
66420
66421
66422
66423
66424
66425
66426
66427
66428
66429
66430
66431
66432
66433
66434
66435
66436
66437
66438
66439
66440
66441
66442
66443
66444
66445
66446
66447
66448
66449
66450
66451
66452
66453
66454
66455
66456
66457
66458
66459
66460
66461
66462
66463
66464
66465
66466
66467
66468
66469
66470
66471
66472
66473
66474
66475
66476
66477
66478
66479
66480
66481
66482
66483
66484
66485
66486
66487
66488
66489
66490
66491
66492
66493
66494
66495
66496
66497
66498
66499
66500
66501
66502
66503
66504
66505
66506
66507
66508
66509
66510
66511
66512
66513
66514
66515
66516
66517
66518
66519
66520
66521
66522
66523
66524
66525
66526
66527
66528
66529
66530
66531
66532
66533
66534
66535
66536
66537
66538
66539
66540
66541
66542
66543
66544
66545
66546
66547
66548
66549
66550
66551
66552
66553
66554
66555
66556
66557
66558
66559
66560
66561
66562
66563
66564
66565
66566
66567
66568
66569
66570
66571
66572
66573
66574
66575
66576
66577
66578
66579
66580
66581
66582
66583
66584
66585
66586
66587
66588
66589
66590
66591
66592
66593
66594
66595
66596
66597
66598
66599
66600
66601
66602
66603
66604
66605
66606
66607
66608
66609
66610
66611
66612
66613
66614
66615
66616
66617
66618
66619
66620
66621
66622
66623
66624
66625
66626
66627
66628
66629
66630
66631
66632
66633
66634
66635
66636
66637
66638
66639
66640
66641
66642
66643
66644
66645
66646
66647
66648
66649
66650
66651
66652
66653
66654
66655
66656
66657
66658
66659
66660
66661
66662
66663
66664
66665
66666
66667
66668
66669
66670
66671
66672
66673
66674
66675
66676
66677
66678
66679
66680
66681
66682
66683
66684
66685
66686
66687
66688
66689
66690
66691
66692
66693
66694
66695
66696
66697
66698
66699
66700
66701
66702
66703
66704
66705
66706
66707
66708
66709
66710
66711
66712
66713
66714
66715
66716
66717
66718
66719
66720
66721
66722
66723
66724
66725
66726
66727
66728
66729
66730
66731
66732
66733
66734
66735
66736
66737
66738
66739
66740
66741
66742
66743
66744
66745
66746
66747
66748
66749
66750
66751
66752
66753
66754
66755
66756
66757
66758
66759
66760
66761
66762
66763
66764
66765
66766
66767
66768
66769
66770
66771
66772
66773
66774
66775
66776
66777
66778
66779
66780
66781
66782
66783
66784
66785
66786
66787
66788
66789
66790
66791
66792
66793
66794
66795
66796
66797
66798
66799
66800
66801
66802
66803
66804
66805
66806
66807
66808
66809
66810
66811
66812
66813
66814
66815
66816
66817
66818
66819
66820
66821
66822
66823
66824
66825
66826
66827
66828
66829
66830
66831
66832
66833
66834
66835
66836
66837
66838
66839
66840
66841
66842
66843
66844
66845
66846
66847
66848
66849
66850
66851
66852
66853
66854
66855
66856
66857
66858
66859
66860
66861
66862
66863
66864
66865
66866
66867
66868
66869
66870
66871
66872
66873
66874
66875
66876
66877
66878
66879
66880
66881
66882
66883
66884
66885
66886
66887
66888
66889
66890
66891
66892
66893
66894
66895
66896
66897
66898
66899
66900
66901
66902
66903
66904
66905
66906
66907
66908
66909
66910
66911
66912
66913
66914
66915
66916
66917
66918
66919
66920
66921
66922
66923
66924
66925
66926
66927
66928
66929
66930
66931
66932
66933
66934
66935
66936
66937
66938
66939
66940
66941
66942
66943
66944
66945
66946
66947
66948
66949
66950
66951
66952
66953
66954
66955
66956
66957
66958
66959
66960
66961
66962
66963
66964
66965
66966
66967
66968
66969
66970
66971
66972
66973
66974
66975
66976
66977
66978
66979
66980
66981
66982
66983
66984
66985
66986
66987
66988
66989
66990
66991
66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
67008
67009
67010
67011
67012
67013
67014
67015
67016
67017
67018
67019
67020
67021
67022
67023
67024
67025
67026
67027
67028
67029
67030
67031
67032
67033
67034
67035
67036
67037
67038
67039
67040
67041
67042
67043
67044
67045
67046
67047
67048
67049
67050
67051
67052
67053
67054
67055
67056
67057
67058
67059
67060
67061
67062
67063
67064
67065
67066
67067
67068
67069
67070
67071
67072
67073
67074
67075
67076
67077
67078
67079
67080
67081
67082
67083
67084
67085
67086
67087
67088
67089
67090
67091
67092
67093
67094
67095
67096
67097
67098
67099
67100
67101
67102
67103
67104
67105
67106
67107
67108
67109
67110
67111
67112
67113
67114
67115
67116
67117
67118
67119
67120
67121
67122
67123
67124
67125
67126
67127
67128
67129
67130
67131
67132
67133
67134
67135
67136
67137
67138
67139
67140
67141
67142
67143
67144
67145
67146
67147
67148
67149
67150
67151
67152
67153
67154
67155
67156
67157
67158
67159
67160
67161
67162
67163
67164
67165
67166
67167
67168
67169
67170
67171
67172
67173
67174
67175
67176
67177
67178
67179
67180
67181
67182
67183
67184
67185
67186
67187
67188
67189
67190
67191
67192
67193
67194
67195
67196
67197
67198
67199
67200
67201
67202
67203
67204
67205
67206
67207
67208
67209
67210
67211
67212
67213
67214
67215
67216
67217
67218
67219
67220
67221
67222
67223
67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
67235
67236
67237
67238
67239
67240
67241
67242
67243
67244
67245
67246
67247
67248
67249
67250
67251
67252
67253
67254
67255
67256
67257
67258
67259
67260
67261
67262
67263
67264
67265
67266
67267
67268
67269
67270
67271
67272
67273
67274
67275
67276
67277
67278
67279
67280
67281
67282
67283
67284
67285
67286
67287
67288
67289
67290
67291
67292
67293
67294
67295
67296
67297
67298
67299
67300
67301
67302
67303
67304
67305
67306
67307
67308
67309
67310
67311
67312
67313
67314
67315
67316
67317
67318
67319
67320
67321
67322
67323
67324
67325
67326
67327
67328
67329
67330
67331
67332
67333
67334
67335
67336
67337
67338
67339
67340
67341
67342
67343
67344
67345
67346
67347
67348
67349
67350
67351
67352
67353
67354
67355
67356
67357
67358
67359
67360
67361
67362
67363
67364
67365
67366
67367
67368
67369
67370
67371
67372
67373
67374
67375
67376
67377
67378
67379
67380
67381
67382
67383
67384
67385
67386
67387
67388
67389
67390
67391
67392
67393
67394
67395
67396
67397
67398
67399
67400
67401
67402
67403
67404
67405
67406
67407
67408
67409
67410
67411
67412
67413
67414
67415
67416
67417
67418
67419
67420
67421
67422
67423
67424
67425
67426
67427
67428
67429
67430
67431
67432
67433
67434
67435
67436
67437
67438
67439
67440
67441
67442
67443
67444
67445
67446
67447
67448
67449
67450
67451
67452
67453
67454
67455
67456
67457
67458
67459
67460
67461
67462
67463
67464
67465
67466
67467
67468
67469
67470
67471
67472
67473
67474
67475
67476
67477
67478
67479
67480
67481
67482
67483
67484
67485
67486
67487
67488
67489
67490
67491
67492
67493
67494
67495
67496
67497
67498
67499
67500
67501
67502
67503
67504
67505
67506
67507
67508
67509
67510
67511
67512
67513
67514
67515
67516
67517
67518
67519
67520
67521
67522
67523
67524
67525
67526
67527
67528
67529
67530
67531
67532
67533
67534
67535
67536
67537
67538
67539
67540
67541
67542
67543
67544
67545
67546
67547
67548
67549
67550
67551
67552
67553
67554
67555
67556
67557
67558
67559
67560
67561
67562
67563
67564
67565
67566
67567
67568
67569
67570
67571
67572
67573
67574
67575
67576
67577
67578
67579
67580
67581
67582
67583
67584
67585
67586
67587
67588
67589
67590
67591
67592
67593
67594
67595
67596
67597
67598
67599
67600
67601
67602
67603
67604
67605
67606
67607
67608
67609
67610
67611
67612
67613
67614
67615
67616
67617
67618
67619
67620
67621
67622
67623
67624
67625
67626
67627
67628
67629
67630
67631
67632
67633
67634
67635
67636
67637
67638
67639
67640
67641
67642
67643
67644
67645
67646
67647
67648
67649
67650
67651
67652
67653
67654
67655
67656
67657
67658
67659
67660
67661
67662
67663
67664
67665
67666
67667
67668
67669
67670
67671
67672
67673
67674
67675
67676
67677
67678
67679
67680
67681
67682
67683
67684
67685
67686
67687
67688
67689
67690
67691
67692
67693
67694
67695
67696
67697
67698
67699
67700
67701
67702
67703
67704
67705
67706
67707
67708
67709
67710
67711
67712
67713
67714
67715
67716
67717
67718
67719
67720
67721
67722
67723
67724
67725
67726
67727
67728
67729
67730
67731
67732
67733
67734
67735
67736
67737
67738
67739
67740
67741
67742
67743
67744
67745
67746
67747
67748
67749
67750
67751
67752
67753
67754
67755
67756
67757
67758
67759
67760
67761
67762
67763
67764
67765
67766
67767
67768
67769
67770
67771
67772
67773
67774
67775
67776
67777
67778
67779
67780
67781
67782
67783
67784
67785
67786
67787
67788
67789
67790
67791
67792
67793
67794
67795
67796
67797
67798
67799
67800
67801
67802
67803
67804
67805
67806
67807
67808
67809
67810
67811
67812
67813
67814
67815
67816
67817
67818
67819
67820
67821
67822
67823
67824
67825
67826
67827
67828
67829
67830
67831
67832
67833
67834
67835
67836
67837
67838
67839
67840
67841
67842
67843
67844
67845
67846
67847
67848
67849
67850
67851
67852
67853
67854
67855
67856
67857
67858
67859
67860
67861
67862
67863
67864
67865
67866
67867
67868
67869
67870
67871
67872
67873
67874
67875
67876
67877
67878
67879
67880
67881
67882
67883
67884
67885
67886
67887
67888
67889
67890
67891
67892
67893
67894
67895
67896
67897
67898
67899
67900
67901
67902
67903
67904
67905
67906
67907
67908
67909
67910
67911
67912
67913
67914
67915
67916
67917
67918
67919
67920
67921
67922
67923
67924
67925
67926
67927
67928
67929
67930
67931
67932
67933
67934
67935
67936
67937
67938
67939
67940
67941
67942
67943
67944
67945
67946
67947
67948
67949
67950
67951
67952
67953
67954
67955
67956
67957
67958
67959
67960
67961
67962
67963
67964
67965
67966
67967
67968
67969
67970
67971
67972
67973
67974
67975
67976
67977
67978
67979
67980
67981
67982
67983
67984
67985
67986
67987
67988
67989
67990
67991
67992
67993
67994
67995
67996
67997
67998
67999
68000
68001
68002
68003
68004
68005
68006
68007
68008
68009
68010
68011
68012
68013
68014
68015
68016
68017
68018
68019
68020
68021
68022
68023
68024
68025
68026
68027
68028
68029
68030
68031
68032
68033
68034
68035
68036
68037
68038
68039
68040
68041
68042
68043
68044
68045
68046
68047
68048
68049
68050
68051
68052
68053
68054
68055
68056
68057
68058
68059
68060
68061
68062
68063
68064
68065
68066
68067
68068
68069
68070
68071
68072
68073
68074
68075
68076
68077
68078
68079
68080
68081
68082
68083
68084
68085
68086
68087
68088
68089
68090
68091
68092
68093
68094
68095
68096
68097
68098
68099
68100
68101
68102
68103
68104
68105
68106
68107
68108
68109
68110
68111
68112
68113
68114
68115
68116
68117
68118
68119
68120
68121
68122
68123
68124
68125
68126
68127
68128
68129
68130
68131
68132
68133
68134
68135
68136
68137
68138
68139
68140
68141
68142
68143
68144
68145
68146
68147
68148
68149
68150
68151
68152
68153
68154
68155
68156
68157
68158
68159
68160
68161
68162
68163
68164
68165
68166
68167
68168
68169
68170
68171
68172
68173
68174
68175
68176
68177
68178
68179
68180
68181
68182
68183
68184
68185
68186
68187
68188
68189
68190
68191
68192
68193
68194
68195
68196
68197
68198
68199
68200
68201
68202
68203
68204
68205
68206
68207
68208
68209
68210
68211
68212
68213
68214
68215
68216
68217
68218
68219
68220
68221
68222
68223
68224
68225
68226
68227
68228
68229
68230
68231
68232
68233
68234
68235
68236
68237
68238
68239
68240
68241
68242
68243
68244
68245
68246
68247
68248
68249
68250
68251
68252
68253
68254
68255
68256
68257
68258
68259
68260
68261
68262
68263
68264
68265
68266
68267
68268
68269
68270
68271
68272
68273
68274
68275
68276
68277
68278
68279
68280
68281
68282
68283
68284
68285
68286
68287
68288
68289
68290
68291
68292
68293
68294
68295
68296
68297
68298
68299
68300
68301
68302
68303
68304
68305
68306
68307
68308
68309
68310
68311
68312
68313
68314
68315
68316
68317
68318
68319
68320
68321
68322
68323
68324
68325
68326
68327
68328
68329
68330
68331
68332
68333
68334
68335
68336
68337
68338
68339
68340
68341
68342
68343
68344
68345
68346
68347
68348
68349
68350
68351
68352
68353
68354
68355
68356
68357
68358
68359
68360
68361
68362
68363
68364
68365
68366
68367
68368
68369
68370
68371
68372
68373
68374
68375
68376
68377
68378
68379
68380
68381
68382
68383
68384
68385
68386
68387
68388
68389
68390
68391
68392
68393
68394
68395
68396
68397
68398
68399
68400
68401
68402
68403
68404
68405
68406
68407
68408
68409
68410
68411
68412
68413
68414
68415
68416
68417
68418
68419
68420
68421
68422
68423
68424
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
68478
68479
68480
68481
68482
68483
68484
68485
68486
68487
68488
68489
68490
68491
68492
68493
68494
68495
68496
68497
68498
68499
68500
68501
68502
68503
68504
68505
68506
68507
68508
68509
68510
68511
68512
68513
68514
68515
68516
68517
68518
68519
68520
68521
68522
68523
68524
68525
68526
68527
68528
68529
68530
68531
68532
68533
68534
68535
68536
68537
68538
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
68555
68556
68557
68558
68559
68560
68561
68562
68563
68564
68565
68566
68567
68568
68569
68570
68571
68572
68573
68574
68575
68576
68577
68578
68579
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
68599
68600
68601
68602
68603
68604
68605
68606
68607
68608
68609
68610
68611
68612
68613
68614
68615
68616
68617
68618
68619
68620
68621
68622
68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
68647
68648
68649
68650
68651
68652
68653
68654
68655
68656
68657
68658
68659
68660
68661
68662
68663
68664
68665
68666
68667
68668
68669
68670
68671
68672
68673
68674
68675
68676
68677
68678
68679
68680
68681
68682
68683
68684
68685
68686
68687
68688
68689
68690
68691
68692
68693
68694
68695
68696
68697
68698
68699
68700
68701
68702
68703
68704
68705
68706
68707
68708
68709
68710
68711
68712
68713
68714
68715
68716
68717
68718
68719
68720
68721
68722
68723
68724
68725
68726
68727
68728
68729
68730
68731
68732
68733
68734
68735
68736
68737
68738
68739
68740
68741
68742
68743
68744
68745
68746
68747
68748
68749
68750
68751
68752
68753
68754
68755
68756
68757
68758
68759
68760
68761
68762
68763
68764
68765
68766
68767
68768
68769
68770
68771
68772
68773
68774
68775
68776
68777
68778
68779
68780
68781
68782
68783
68784
68785
68786
68787
68788
68789
68790
68791
68792
68793
68794
68795
68796
68797
68798
68799
68800
68801
68802
68803
68804
68805
68806
68807
68808
68809
68810
68811
68812
68813
68814
68815
68816
68817
68818
68819
68820
68821
68822
68823
68824
68825
68826
68827
68828
68829
68830
68831
68832
68833
68834
68835
68836
68837
68838
68839
68840
68841
68842
68843
68844
68845
68846
68847
68848
68849
68850
68851
68852
68853
68854
68855
68856
68857
68858
68859
68860
68861
68862
68863
68864
68865
68866
68867
68868
68869
68870
68871
68872
68873
68874
68875
68876
68877
68878
68879
68880
68881
68882
68883
68884
68885
68886
68887
68888
68889
68890
68891
68892
68893
68894
68895
68896
68897
68898
68899
68900
68901
68902
68903
68904
68905
68906
68907
68908
68909
68910
68911
68912
68913
68914
68915
68916
68917
68918
68919
68920
68921
68922
68923
68924
68925
68926
68927
68928
68929
68930
68931
68932
68933
68934
68935
68936
68937
68938
68939
68940
68941
68942
68943
68944
68945
68946
68947
68948
68949
68950
68951
68952
68953
68954
68955
68956
68957
68958
68959
68960
68961
68962
68963
68964
68965
68966
68967
68968
68969
68970
68971
68972
68973
68974
68975
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985
68986
68987
68988
68989
68990
68991
68992
68993
68994
68995
68996
68997
68998
68999
69000
69001
69002
69003
69004
69005
69006
69007
69008
69009
69010
69011
69012
69013
69014
69015
69016
69017
69018
69019
69020
69021
69022
69023
69024
69025
69026
69027
69028
69029
69030
69031
69032
69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
69047
69048
69049
69050
69051
69052
69053
69054
69055
69056
69057
69058
69059
69060
69061
69062
69063
69064
69065
69066
69067
69068
69069
69070
69071
69072
69073
69074
69075
69076
69077
69078
69079
69080
69081
69082
69083
69084
69085
69086
69087
69088
69089
69090
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
69115
69116
69117
69118
69119
69120
69121
69122
69123
69124
69125
69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
69136
69137
69138
69139
69140
69141
69142
69143
69144
69145
69146
69147
69148
69149
69150
69151
69152
69153
69154
69155
69156
69157
69158
69159
69160
69161
69162
69163
69164
69165
69166
69167
69168
69169
69170
69171
69172
69173
69174
69175
69176
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
69190
69191
69192
69193
69194
69195
69196
69197
69198
69199
69200
69201
69202
69203
69204
69205
69206
69207
69208
69209
69210
69211
69212
69213
69214
69215
69216
69217
69218
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
69240
69241
69242
69243
69244
69245
69246
69247
69248
69249
69250
69251
69252
69253
69254
69255
69256
69257
69258
69259
69260
69261
69262
69263
69264
69265
69266
69267
69268
69269
69270
69271
69272
69273
69274
69275
69276
69277
69278
69279
69280
69281
69282
69283
69284
69285
69286
69287
69288
69289
69290
69291
69292
69293
69294
69295
69296
69297
69298
69299
69300
69301
69302
69303
69304
69305
69306
69307
69308
69309
69310
69311
69312
69313
69314
69315
69316
69317
69318
69319
69320
69321
69322
69323
69324
69325
69326
69327
69328
69329
69330
69331
69332
69333
69334
69335
69336
69337
69338
69339
69340
69341
69342
69343
69344
69345
69346
69347
69348
69349
69350
69351
69352
69353
69354
69355
69356
69357
69358
69359
69360
69361
69362
69363
69364
69365
69366
69367
69368
69369
69370
69371
69372
69373
69374
69375
69376
69377
69378
69379
69380
69381
69382
69383
69384
69385
69386
69387
69388
69389
69390
69391
69392
69393
69394
69395
69396
69397
69398
69399
69400
69401
69402
69403
69404
69405
69406
69407
69408
69409
69410
69411
69412
69413
69414
69415
69416
69417
69418
69419
69420
69421
69422
69423
69424
69425
69426
69427
69428
69429
69430
69431
69432
69433
69434
69435
69436
69437
69438
69439
69440
69441
69442
69443
69444
69445
69446
69447
69448
69449
69450
69451
69452
69453
69454
69455
69456
69457
69458
69459
69460
69461
69462
69463
69464
69465
69466
69467
69468
69469
69470
69471
69472
69473
69474
69475
69476
69477
69478
69479
69480
69481
69482
69483
69484
69485
69486
69487
69488
69489
69490
69491
69492
69493
69494
69495
69496
69497
69498
69499
69500
69501
69502
69503
69504
69505
69506
69507
69508
69509
69510
69511
69512
69513
69514
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543
69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
69569
69570
69571
69572
69573
69574
69575
69576
69577
69578
69579
69580
69581
69582
69583
69584
69585
69586
69587
69588
69589
69590
69591
69592
69593
69594
69595
69596
69597
69598
69599
69600
69601
69602
69603
69604
69605
69606
69607
69608
69609
69610
69611
69612
69613
69614
69615
69616
69617
69618
69619
69620
69621
69622
69623
69624
69625
69626
69627
69628
69629
69630
69631
69632
69633
69634
69635
69636
69637
69638
69639
69640
69641
69642
69643
69644
69645
69646
69647
69648
69649
69650
69651
69652
69653
69654
69655
69656
69657
69658
69659
69660
69661
69662
69663
69664
69665
69666
69667
69668
69669
69670
69671
69672
69673
69674
69675
69676
69677
69678
69679
69680
69681
69682
69683
69684
69685
69686
69687
69688
69689
69690
69691
69692
69693
69694
69695
69696
69697
69698
69699
69700
69701
69702
69703
69704
69705
69706
69707
69708
69709
69710
69711
69712
69713
69714
69715
69716
69717
69718
69719
69720
69721
69722
69723
69724
69725
69726
69727
69728
69729
69730
69731
69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
69776
69777
69778
69779
69780
69781
69782
69783
69784
69785
69786
69787
69788
69789
69790
69791
69792
69793
69794
69795
69796
69797
69798
69799
69800
69801
69802
69803
69804
69805
69806
69807
69808
69809
69810
69811
69812
69813
69814
69815
69816
69817
69818
69819
69820
69821
69822
69823
69824
69825
69826
69827
69828
69829
69830
69831
69832
69833
69834
69835
69836
69837
69838
69839
69840
69841
69842
69843
69844
69845
69846
69847
69848
69849
69850
69851
69852
69853
69854
69855
69856
69857
69858
69859
69860
69861
69862
69863
69864
69865
69866
69867
69868
69869
69870
69871
69872
69873
69874
69875
69876
69877
69878
69879
69880
69881
69882
69883
69884
69885
69886
69887
69888
69889
69890
69891
69892
69893
69894
69895
69896
69897
69898
69899
69900
69901
69902
69903
69904
69905
69906
69907
69908
69909
69910
69911
69912
69913
69914
69915
69916
69917
69918
69919
69920
69921
69922
69923
69924
69925
69926
69927
69928
69929
69930
69931
69932
69933
69934
69935
69936
69937
69938
69939
69940
69941
69942
69943
69944
69945
69946
69947
69948
69949
69950
69951
69952
69953
69954
69955
69956
69957
69958
69959
69960
69961
69962
69963
69964
69965
69966
69967
69968
69969
69970
69971
69972
69973
69974
69975
69976
69977
69978
69979
69980
69981
69982
69983
69984
69985
69986
69987
69988
69989
69990
69991
69992
69993
69994
69995
69996
69997
69998
69999
70000
70001
70002
70003
70004
70005
70006
70007
70008
70009
70010
70011
70012
70013
70014
70015
70016
70017
70018
70019
70020
70021
70022
70023
70024
70025
70026
70027
70028
70029
70030
70031
70032
70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
70049
70050
70051
70052
70053
70054
70055
70056
70057
70058
70059
70060
70061
70062
70063
70064
70065
70066
70067
70068
70069
70070
70071
70072
70073
70074
70075
70076
70077
70078
70079
70080
70081
70082
70083
70084
70085
70086
70087
70088
70089
70090
70091
70092
70093
70094
70095
70096
70097
70098
70099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
71105
71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
71147
71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
71167
71168
71169
71170
71171
71172
71173
71174
71175
71176
71177
71178
71179
71180
71181
71182
71183
71184
71185
71186
71187
71188
71189
71190
71191
71192
71193
71194
71195
71196
71197
71198
71199
71200
71201
71202
71203
71204
71205
71206
71207
71208
71209
71210
71211
71212
71213
71214
71215
71216
71217
71218
71219
71220
71221
71222
71223
71224
71225
71226
71227
71228
71229
71230
71231
71232
71233
71234
71235
71236
71237
71238
71239
71240
71241
71242
71243
71244
71245
71246
71247
71248
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
71264
71265
71266
71267
71268
71269
71270
71271
71272
71273
71274
71275
71276
71277
71278
71279
71280
71281
71282
71283
71284
71285
71286
71287
71288
71289
71290
71291
71292
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307
71308
71309
71310
71311
71312
71313
71314
71315
71316
71317
71318
71319
71320
71321
71322
71323
71324
71325
71326
71327
71328
71329
71330
71331
71332
71333
71334
71335
71336
71337
71338
71339
71340
71341
71342
71343
71344
71345
71346
71347
71348
71349
71350
71351
71352
71353
71354
71355
71356
71357
71358
71359
71360
71361
71362
71363
71364
71365
71366
71367
71368
71369
71370
71371
71372
71373
71374
71375
71376
71377
71378
71379
71380
71381
71382
71383
71384
71385
71386
71387
71388
71389
71390
71391
71392
71393
71394
71395
71396
71397
71398
71399
71400
71401
71402
71403
71404
71405
71406
71407
71408
71409
71410
71411
71412
71413
71414
71415
71416
71417
71418
71419
71420
71421
71422
71423
71424
71425
71426
71427
71428
71429
71430
71431
71432
71433
71434
71435
71436
71437
71438
71439
71440
71441
71442
71443
71444
71445
71446
71447
71448
71449
71450
71451
71452
71453
71454
71455
71456
71457
71458
71459
71460
71461
71462
71463
71464
71465
71466
71467
71468
71469
71470
71471
71472
71473
71474
71475
71476
71477
71478
71479
71480
71481
71482
71483
71484
71485
71486
71487
71488
71489
71490
71491
71492
71493
71494
71495
71496
71497
71498
71499
71500
71501
71502
71503
71504
71505
71506
71507
71508
71509
71510
71511
71512
71513
71514
71515
71516
71517
71518
71519
71520
71521
71522
71523
71524
71525
71526
71527
71528
71529
71530
71531
71532
71533
71534
71535
71536
71537
71538
71539
71540
71541
71542
71543
71544
71545
71546
71547
71548
71549
71550
71551
71552
71553
71554
71555
71556
71557
71558
71559
71560
71561
71562
71563
71564
71565
71566
71567
71568
71569
71570
71571
71572
71573
71574
71575
71576
71577
71578
71579
71580
71581
71582
71583
71584
71585
71586
71587
71588
71589
71590
71591
71592
71593
71594
71595
71596
71597
71598
71599
71600
71601
71602
71603
71604
71605
71606
71607
71608
71609
71610
71611
71612
71613
71614
71615
71616
71617
71618
71619
71620
71621
71622
71623
71624
71625
71626
71627
71628
71629
71630
71631
71632
71633
71634
71635
71636
71637
71638
71639
71640
71641
71642
71643
71644
71645
71646
71647
71648
71649
71650
71651
71652
71653
71654
71655
71656
71657
71658
71659
71660
71661
71662
71663
71664
71665
71666
71667
71668
71669
71670
71671
71672
71673
71674
71675
71676
71677
71678
71679
71680
71681
71682
71683
71684
71685
71686
71687
71688
71689
71690
71691
71692
71693
71694
71695
71696
71697
71698
71699
71700
71701
71702
71703
71704
71705
71706
71707
71708
71709
71710
71711
71712
71713
71714
71715
71716
71717
71718
71719
71720
71721
71722
71723
71724
71725
71726
71727
71728
71729
71730
71731
71732
71733
71734
71735
71736
71737
71738
71739
71740
71741
71742
71743
71744
71745
71746
71747
71748
71749
71750
71751
71752
71753
71754
71755
71756
71757
71758
71759
71760
71761
71762
71763
71764
71765
71766
71767
71768
71769
71770
71771
71772
71773
71774
71775
71776
71777
71778
71779
71780
71781
71782
71783
71784
71785
71786
71787
71788
71789
71790
71791
71792
71793
71794
71795
71796
71797
71798
71799
71800
71801
71802
71803
71804
71805
71806
71807
71808
71809
71810
71811
71812
71813
71814
71815
71816
71817
71818
71819
71820
71821
71822
71823
71824
71825
71826
71827
71828
71829
71830
71831
71832
71833
71834
71835
71836
71837
71838
71839
71840
71841
71842
71843
71844
71845
71846
71847
71848
71849
71850
71851
71852
71853
71854
71855
71856
71857
71858
71859
71860
71861
71862
71863
71864
71865
71866
71867
71868
71869
71870
71871
71872
71873
71874
71875
71876
71877
71878
71879
71880
71881
71882
71883
71884
71885
71886
71887
71888
71889
71890
71891
71892
71893
71894
71895
71896
71897
71898
71899
71900
71901
71902
71903
71904
71905
71906
71907
71908
71909
71910
71911
71912
71913
71914
71915
71916
71917
71918
71919
71920
71921
71922
71923
71924
71925
71926
71927
71928
71929
71930
71931
71932
71933
71934
71935
71936
71937
71938
71939
71940
71941
71942
71943
71944
71945
71946
71947
71948
71949
71950
71951
71952
71953
71954
71955
71956
71957
71958
71959
71960
71961
71962
71963
71964
71965
71966
71967
71968
71969
71970
71971
71972
71973
71974
71975
71976
71977
71978
71979
71980
71981
71982
71983
71984
71985
71986
71987
71988
71989
71990
71991
71992
71993
71994
71995
71996
71997
71998
71999
72000
72001
72002
72003
72004
72005
72006
72007
72008
72009
72010
72011
72012
72013
72014
72015
72016
72017
72018
72019
72020
72021
72022
72023
72024
72025
72026
72027
72028
72029
72030
72031
72032
72033
72034
72035
72036
72037
72038
72039
72040
72041
72042
72043
72044
72045
72046
72047
72048
72049
72050
72051
72052
72053
72054
72055
72056
72057
72058
72059
72060
72061
72062
72063
72064
72065
72066
72067
72068
72069
72070
72071
72072
72073
72074
72075
72076
72077
72078
72079
72080
72081
72082
72083
72084
72085
72086
72087
72088
72089
72090
72091
72092
72093
72094
72095
72096
72097
72098
72099
72100
72101
72102
72103
72104
72105
72106
72107
72108
72109
72110
72111
72112
72113
72114
72115
72116
72117
72118
72119
72120
72121
72122
72123
72124
72125
72126
72127
72128
72129
72130
72131
72132
72133
72134
72135
72136
72137
72138
72139
72140
72141
72142
72143
72144
72145
72146
72147
72148
72149
72150
72151
72152
72153
72154
72155
72156
72157
72158
72159
72160
72161
72162
72163
72164
72165
72166
72167
72168
72169
72170
72171
72172
72173
72174
72175
72176
72177
72178
72179
72180
72181
72182
72183
72184
72185
72186
72187
72188
72189
72190
72191
72192
72193
72194
72195
72196
72197
72198
72199
72200
72201
72202
72203
72204
72205
72206
72207
72208
72209
72210
72211
72212
72213
72214
72215
72216
72217
72218
72219
72220
72221
72222
72223
72224
72225
72226
72227
72228
72229
72230
72231
72232
72233
72234
72235
72236
72237
72238
72239
72240
72241
72242
72243
72244
72245
72246
72247
72248
72249
72250
72251
72252
72253
72254
72255
72256
72257
72258
72259
72260
72261
72262
72263
72264
72265
72266
72267
72268
72269
72270
72271
72272
72273
72274
72275
72276
72277
72278
72279
72280
72281
72282
72283
72284
72285
72286
72287
72288
72289
72290
72291
72292
72293
72294
72295
72296
72297
72298
72299
72300
72301
72302
72303
72304
72305
72306
72307
72308
72309
72310
72311
72312
72313
72314
72315
72316
72317
72318
72319
72320
72321
72322
72323
72324
72325
72326
72327
72328
72329
72330
72331
72332
72333
72334
72335
72336
72337
72338
72339
72340
72341
72342
72343
72344
72345
72346
72347
72348
72349
72350
72351
72352
72353
72354
72355
72356
72357
72358
72359
72360
72361
72362
72363
72364
72365
72366
72367
72368
72369
72370
72371
72372
72373
72374
72375
72376
72377
72378
72379
72380
72381
72382
72383
72384
72385
72386
72387
72388
72389
72390
72391
72392
72393
72394
72395
72396
72397
72398
72399
72400
72401
72402
72403
72404
72405
72406
72407
72408
72409
72410
72411
72412
72413
72414
72415
72416
72417
72418
72419
72420
72421
72422
72423
72424
72425
72426
72427
72428
72429
72430
72431
72432
72433
72434
72435
72436
72437
72438
72439
72440
72441
72442
72443
72444
72445
72446
72447
72448
72449
72450
72451
72452
72453
72454
72455
72456
72457
72458
72459
72460
72461
72462
72463
72464
72465
72466
72467
72468
72469
72470
72471
72472
72473
72474
72475
72476
72477
72478
72479
72480
72481
72482
72483
72484
72485
72486
72487
72488
72489
72490
72491
72492
72493
72494
72495
72496
72497
72498
72499
72500
72501
72502
72503
72504
72505
72506
72507
72508
72509
72510
72511
72512
72513
72514
72515
72516
72517
72518
72519
72520
72521
72522
72523
72524
72525
72526
72527
72528
72529
72530
72531
72532
72533
72534
72535
72536
72537
72538
72539
72540
72541
72542
72543
72544
72545
72546
72547
72548
72549
72550
72551
72552
72553
72554
72555
72556
72557
72558
72559
72560
72561
72562
72563
72564
72565
72566
72567
72568
72569
72570
72571
72572
72573
72574
72575
72576
72577
72578
72579
72580
72581
72582
72583
72584
72585
72586
72587
72588
72589
72590
72591
72592
72593
72594
72595
72596
72597
72598
72599
72600
72601
72602
72603
72604
72605
72606
72607
72608
72609
72610
72611
72612
72613
72614
72615
72616
72617
72618
72619
72620
72621
72622
72623
72624
72625
72626
72627
72628
72629
72630
72631
72632
72633
72634
72635
72636
72637
72638
72639
72640
72641
72642
72643
72644
72645
72646
72647
72648
72649
72650
72651
72652
72653
72654
72655
72656
72657
72658
72659
72660
72661
72662
72663
72664
72665
72666
72667
72668
72669
72670
72671
72672
72673
72674
72675
72676
72677
72678
72679
72680
72681
72682
72683
72684
72685
72686
72687
72688
72689
72690
72691
72692
72693
72694
72695
72696
72697
72698
72699
72700
72701
72702
72703
72704
72705
72706
72707
72708
72709
72710
72711
72712
72713
72714
72715
72716
72717
72718
72719
72720
72721
72722
72723
72724
72725
72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740
72741
72742
72743
72744
72745
72746
72747
72748
72749
72750
72751
72752
72753
72754
72755
72756
72757
72758
72759
72760
72761
72762
72763
72764
72765
72766
72767
72768
72769
72770
72771
72772
72773
72774
72775
72776
72777
72778
72779
72780
72781
72782
72783
72784
72785
72786
72787
72788
72789
72790
72791
72792
72793
72794
72795
72796
72797
72798
72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
72812
72813
72814
72815
72816
72817
72818
72819
72820
72821
72822
72823
72824
72825
72826
72827
72828
72829
72830
72831
72832
72833
72834
72835
72836
72837
72838
72839
72840
72841
72842
72843
72844
72845
72846
72847
72848
72849
72850
72851
72852
72853
72854
72855
72856
72857
72858
72859
72860
72861
72862
72863
72864
72865
72866
72867
72868
72869
72870
72871
72872
72873
72874
72875
72876
72877
72878
72879
72880
72881
72882
72883
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895
72896
72897
72898
72899
72900
72901
72902
72903
72904
72905
72906
72907
72908
72909
72910
72911
72912
72913
72914
72915
72916
72917
72918
72919
72920
72921
72922
72923
72924
72925
72926
72927
72928
72929
72930
72931
72932
72933
72934
72935
72936
72937
72938
72939
72940
72941
72942
72943
72944
72945
72946
72947
72948
72949
72950
72951
72952
72953
72954
72955
72956
72957
72958
72959
72960
72961
72962
72963
72964
72965
72966
72967
72968
72969
72970
72971
72972
72973
72974
72975
72976
72977
72978
72979
72980
72981
72982
72983
72984
72985
72986
72987
72988
72989
72990
72991
72992
72993
72994
72995
72996
72997
72998
72999
73000
73001
73002
73003
73004
73005
73006
73007
73008
73009
73010
73011
73012
73013
73014
73015
73016
73017
73018
73019
73020
73021
73022
73023
73024
73025
73026
73027
73028
73029
73030
73031
73032
73033
73034
73035
73036
73037
73038
73039
73040
73041
73042
73043
73044
73045
73046
73047
73048
73049
73050
73051
73052
73053
73054
73055
73056
73057
73058
73059
73060
73061
73062
73063
73064
73065
73066
73067
73068
73069
73070
73071
73072
73073
73074
73075
73076
73077
73078
73079
73080
73081
73082
73083
73084
73085
73086
73087
73088
73089
73090
73091
73092
73093
73094
73095
73096
73097
73098
73099
73100
73101
73102
73103
73104
73105
73106
73107
73108
73109
73110
73111
73112
73113
73114
73115
73116
73117
73118
73119
73120
73121
73122
73123
73124
73125
73126
73127
73128
73129
73130
73131
73132
73133
73134
73135
73136
73137
73138
73139
73140
73141
73142
73143
73144
73145
73146
73147
73148
73149
73150
73151
73152
73153
73154
73155
73156
73157
73158
73159
73160
73161
73162
73163
73164
73165
73166
73167
73168
73169
73170
73171
73172
73173
73174
73175
73176
73177
73178
73179
73180
73181
73182
73183
73184
73185
73186
73187
73188
73189
73190
73191
73192
73193
73194
73195
73196
73197
73198
73199
73200
73201
73202
73203
73204
73205
73206
73207
73208
73209
73210
73211
73212
73213
73214
73215
73216
73217
73218
73219
73220
73221
73222
73223
73224
73225
73226
73227
73228
73229
73230
73231
73232
73233
73234
73235
73236
73237
73238
73239
73240
73241
73242
73243
73244
73245
73246
73247
73248
73249
73250
73251
73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
73264
73265
73266
73267
73268
73269
73270
73271
73272
73273
73274
73275
73276
73277
73278
73279
73280
73281
73282
73283
73284
73285
73286
73287
73288
73289
73290
73291
73292
73293
73294
73295
73296
73297
73298
73299
73300
73301
73302
73303
73304
73305
73306
73307
73308
73309
73310
73311
73312
73313
73314
73315
73316
73317
73318
73319
73320
73321
73322
73323
73324
73325
73326
73327
73328
73329
73330
73331
73332
73333
73334
73335
73336
73337
73338
73339
73340
73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
73352
73353
73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364
73365
73366
73367
73368
73369
73370
73371
73372
73373
73374
73375
73376
73377
73378
73379
73380
73381
73382
73383
73384
73385
73386
73387
73388
73389
73390
73391
73392
73393
73394
73395
73396
73397
73398
73399
73400
73401
73402
73403
73404
73405
73406
73407
73408
73409
73410
73411
73412
73413
73414
73415
73416
73417
73418
73419
73420
73421
73422
73423
73424
73425
73426
73427
73428
73429
73430
73431
73432
73433
73434
73435
73436
73437
73438
73439
73440
73441
73442
73443
73444
73445
73446
73447
73448
73449
73450
73451
73452
73453
73454
73455
73456
73457
73458
73459
73460
73461
73462
73463
73464
73465
73466
73467
73468
73469
73470
73471
73472
73473
73474
73475
73476
73477
73478
73479
73480
73481
73482
73483
73484
73485
73486
73487
73488
73489
73490
73491
73492
73493
73494
73495
73496
73497
73498
73499
73500
73501
73502
73503
73504
73505
73506
73507
73508
73509
73510
73511
73512
73513
73514
73515
73516
73517
73518
73519
73520
73521
73522
73523
73524
73525
73526
73527
73528
73529
73530
73531
73532
73533
73534
73535
73536
73537
73538
73539
73540
73541
73542
73543
73544
73545
73546
73547
73548
73549
73550
73551
73552
73553
73554
73555
73556
73557
73558
73559
73560
73561
73562
73563
73564
73565
73566
73567
73568
73569
73570
73571
73572
73573
73574
73575
73576
73577
73578
73579
73580
73581
73582
73583
73584
73585
73586
73587
73588
73589
73590
73591
73592
73593
73594
73595
73596
73597
73598
73599
73600
73601
73602
73603
73604
73605
73606
73607
73608
73609
73610
73611
73612
73613
73614
73615
73616
73617
73618
73619
73620
73621
73622
73623
73624
73625
73626
73627
73628
73629
73630
73631
73632
73633
73634
73635
73636
73637
73638
73639
73640
73641
73642
73643
73644
73645
73646
73647
73648
73649
73650
73651
73652
73653
73654
73655
73656
73657
73658
73659
73660
73661
73662
73663
73664
73665
73666
73667
73668
73669
73670
73671
73672
73673
73674
73675
73676
73677
73678
73679
73680
73681
73682
73683
73684
73685
73686
73687
73688
73689
73690
73691
73692
73693
73694
73695
73696
73697
73698
73699
73700
73701
73702
73703
73704
73705
73706
73707
73708
73709
73710
73711
73712
73713
73714
73715
73716
73717
73718
73719
73720
73721
73722
73723
73724
73725
73726
73727
73728
73729
73730
73731
73732
73733
73734
73735
73736
73737
73738
73739
73740
73741
73742
73743
73744
73745
73746
73747
73748
73749
73750
73751
73752
73753
73754
73755
73756
73757
73758
73759
73760
73761
73762
73763
73764
73765
73766
73767
73768
73769
73770
73771
73772
73773
73774
73775
73776
73777
73778
73779
73780
73781
73782
73783
73784
73785
73786
73787
73788
73789
73790
73791
73792
73793
73794
73795
73796
73797
73798
73799
73800
73801
73802
73803
73804
73805
73806
73807
73808
73809
73810
73811
73812
73813
73814
73815
73816
73817
73818
73819
73820
73821
73822
73823
73824
73825
73826
73827
73828
73829
73830
73831
73832
73833
73834
73835
73836
73837
73838
73839
73840
73841
73842
73843
73844
73845
73846
73847
73848
73849
73850
73851
73852
73853
73854
73855
73856
73857
73858
73859
73860
73861
73862
73863
73864
73865
73866
73867
73868
73869
73870
73871
73872
73873
73874
73875
73876
73877
73878
73879
73880
73881
73882
73883
73884
73885
73886
73887
73888
73889
73890
73891
73892
73893
73894
73895
73896
73897
73898
73899
73900
73901
73902
73903
73904
73905
73906
73907
73908
73909
73910
73911
73912
73913
73914
73915
73916
73917
73918
73919
73920
73921
73922
73923
73924
73925
73926
73927
73928
73929
73930
73931
73932
73933
73934
73935
73936
73937
73938
73939
73940
73941
73942
73943
73944
73945
73946
73947
73948
73949
73950
73951
73952
73953
73954
73955
73956
73957
73958
73959
73960
73961
73962
73963
73964
73965
73966
73967
73968
73969
73970
73971
73972
73973
73974
73975
73976
73977
73978
73979
73980
73981
73982
73983
73984
73985
73986
73987
73988
73989
73990
73991
73992
73993
73994
73995
73996
73997
73998
73999
74000
74001
74002
74003
74004
74005
74006
74007
74008
74009
74010
74011
74012
74013
74014
74015
74016
74017
74018
74019
74020
74021
74022
74023
74024
74025
74026
74027
74028
74029
74030
74031
74032
74033
74034
74035
74036
74037
74038
74039
74040
74041
74042
74043
74044
74045
74046
74047
74048
74049
74050
74051
74052
74053
74054
74055
74056
74057
74058
74059
74060
74061
74062
74063
74064
74065
74066
74067
74068
74069
74070
74071
74072
74073
74074
74075
74076
74077
74078
74079
74080
74081
74082
74083
74084
74085
74086
74087
74088
74089
74090
74091
74092
74093
74094
74095
74096
74097
74098
74099
74100
74101
74102
74103
74104
74105
74106
74107
74108
74109
74110
74111
74112
74113
74114
74115
74116
74117
74118
74119
74120
74121
74122
74123
74124
74125
74126
74127
74128
74129
74130
74131
74132
74133
74134
74135
74136
74137
74138
74139
74140
74141
74142
74143
74144
74145
74146
74147
74148
74149
74150
74151
74152
74153
74154
74155
74156
74157
74158
74159
74160
74161
74162
74163
74164
74165
74166
74167
74168
74169
74170
74171
74172
74173
74174
74175
74176
74177
74178
74179
74180
74181
74182
74183
74184
74185
74186
74187
74188
74189
74190
74191
74192
74193
74194
74195
74196
74197
74198
74199
74200
74201
74202
74203
74204
74205
74206
74207
74208
74209
74210
74211
74212
74213
74214
74215
74216
74217
74218
74219
74220
74221
74222
74223
74224
74225
74226
74227
74228
74229
74230
74231
74232
74233
74234
74235
74236
74237
74238
74239
74240
74241
74242
74243
74244
74245
74246
74247
74248
74249
74250
74251
74252
74253
74254
74255
74256
74257
74258
74259
74260
74261
74262
74263
74264
74265
74266
74267
74268
74269
74270
74271
74272
74273
74274
74275
74276
74277
74278
74279
74280
74281
74282
74283
74284
74285
74286
74287
74288
74289
74290
74291
74292
74293
74294
74295
74296
74297
74298
74299
74300
74301
74302
74303
74304
74305
74306
74307
74308
74309
74310
74311
74312
74313
74314
74315
74316
74317
74318
74319
74320
74321
74322
74323
74324
74325
74326
74327
74328
74329
74330
74331
74332
74333
74334
74335
74336
74337
74338
74339
74340
74341
74342
74343
74344
74345
74346
74347
74348
74349
74350
74351
74352
74353
74354
74355
74356
74357
74358
74359
74360
74361
74362
74363
74364
74365
74366
74367
74368
74369
74370
74371
74372
74373
74374
74375
74376
74377
74378
74379
74380
74381
74382
74383
74384
74385
74386
74387
74388
74389
74390
74391
74392
74393
74394
74395
74396
74397
74398
74399
74400
74401
74402
74403
74404
74405
74406
74407
74408
74409
74410
74411
74412
74413
74414
74415
74416
74417
74418
74419
74420
74421
74422
74423
74424
74425
74426
74427
74428
74429
74430
74431
74432
74433
74434
74435
74436
74437
74438
74439
74440
74441
74442
74443
74444
74445
74446
74447
74448
74449
74450
74451
74452
74453
74454
74455
74456
74457
74458
74459
74460
74461
74462
74463
74464
74465
74466
74467
74468
74469
74470
74471
74472
74473
74474
74475
74476
74477
74478
74479
74480
74481
74482
74483
74484
74485
74486
74487
74488
74489
74490
74491
74492
74493
74494
74495
74496
74497
74498
74499
74500
74501
74502
74503
74504
74505
74506
74507
74508
74509
74510
74511
74512
74513
74514
74515
74516
74517
74518
74519
74520
74521
74522
74523
74524
74525
74526
74527
74528
74529
74530
74531
74532
74533
74534
74535
74536
74537
74538
74539
74540
74541
74542
74543
74544
74545
74546
74547
74548
74549
74550
74551
74552
74553
74554
74555
74556
74557
74558
74559
74560
74561
74562
74563
74564
74565
74566
74567
74568
74569
74570
74571
74572
74573
74574
74575
74576
74577
74578
74579
74580
74581
74582
74583
74584
74585
74586
74587
74588
74589
74590
74591
74592
74593
74594
74595
74596
74597
74598
74599
74600
74601
74602
74603
74604
74605
74606
74607
74608
74609
74610
74611
74612
74613
74614
74615
74616
74617
74618
74619
74620
74621
74622
74623
74624
74625
74626
74627
74628
74629
74630
74631
74632
74633
74634
74635
74636
74637
74638
74639
74640
74641
74642
74643
74644
74645
74646
74647
74648
74649
74650
74651
74652
74653
74654
74655
74656
74657
74658
74659
74660
74661
74662
74663
74664
74665
74666
74667
74668
74669
74670
74671
74672
74673
74674
74675
74676
74677
74678
74679
74680
74681
74682
74683
74684
74685
74686
74687
74688
74689
74690
74691
74692
74693
74694
74695
74696
74697
74698
74699
74700
74701
74702
74703
74704
74705
74706
74707
74708
74709
74710
74711
74712
74713
74714
74715
74716
74717
74718
74719
74720
74721
74722
74723
74724
74725
74726
74727
74728
74729
74730
74731
74732
74733
74734
74735
74736
74737
74738
74739
74740
74741
74742
74743
74744
74745
74746
74747
74748
74749
74750
74751
74752
74753
74754
74755
74756
74757
74758
74759
74760
74761
74762
74763
74764
74765
74766
74767
74768
74769
74770
74771
74772
74773
74774
74775
74776
74777
74778
74779
74780
74781
74782
74783
74784
74785
74786
74787
74788
74789
74790
74791
74792
74793
74794
74795
74796
74797
74798
74799
74800
74801
74802
74803
74804
74805
74806
74807
74808
74809
74810
74811
74812
74813
74814
74815
74816
74817
74818
74819
74820
74821
74822
74823
74824
74825
74826
74827
74828
74829
74830
74831
74832
74833
74834
74835
74836
74837
74838
74839
74840
74841
74842
74843
74844
74845
74846
74847
74848
74849
74850
74851
74852
74853
74854
74855
74856
74857
74858
74859
74860
74861
74862
74863
74864
74865
74866
74867
74868
74869
74870
74871
74872
74873
74874
74875
74876
74877
74878
74879
74880
74881
74882
74883
74884
74885
74886
74887
74888
74889
74890
74891
74892
74893
74894
74895
74896
74897
74898
74899
74900
74901
74902
74903
74904
74905
74906
74907
74908
74909
74910
74911
74912
74913
74914
74915
74916
74917
74918
74919
74920
74921
74922
74923
74924
74925
74926
74927
74928
74929
74930
74931
74932
74933
74934
74935
74936
74937
74938
74939
74940
74941
74942
74943
74944
74945
74946
74947
74948
74949
74950
74951
74952
74953
74954
74955
74956
74957
74958
74959
74960
74961
74962
74963
74964
74965
74966
74967
74968
74969
74970
74971
74972
74973
74974
74975
74976
74977
74978
74979
74980
74981
74982
74983
74984
74985
74986
74987
74988
74989
74990
74991
74992
74993
74994
74995
74996
74997
74998
74999
75000
75001
75002
75003
75004
75005
75006
75007
75008
75009
75010
75011
75012
75013
75014
75015
75016
75017
75018
75019
75020
75021
75022
75023
75024
75025
75026
75027
75028
75029
75030
75031
75032
75033
75034
75035
75036
75037
75038
75039
75040
75041
75042
75043
75044
75045
75046
75047
75048
75049
75050
75051
75052
75053
75054
75055
75056
75057
75058
75059
75060
75061
75062
75063
75064
75065
75066
75067
75068
75069
75070
75071
75072
75073
75074
75075
75076
75077
75078
75079
75080
75081
75082
75083
75084
75085
75086
75087
75088
75089
75090
75091
75092
75093
75094
75095
75096
75097
75098
75099
75100
75101
75102
75103
75104
75105
75106
75107
75108
75109
75110
75111
75112
75113
75114
75115
75116
75117
75118
75119
75120
75121
75122
75123
75124
75125
75126
75127
75128
75129
75130
75131
75132
75133
75134
75135
75136
75137
75138
75139
75140
75141
75142
75143
75144
75145
75146
75147
75148
75149
75150
75151
75152
75153
75154
75155
75156
75157
75158
75159
75160
75161
75162
75163
75164
75165
75166
75167
75168
75169
75170
75171
75172
75173
75174
75175
75176
75177
75178
75179
75180
75181
75182
75183
75184
75185
75186
75187
75188
75189
75190
75191
75192
75193
75194
75195
75196
75197
75198
75199
75200
75201
75202
75203
75204
75205
75206
75207
75208
75209
75210
75211
75212
75213
75214
75215
75216
75217
75218
75219
75220
75221
75222
75223
75224
75225
75226
75227
75228
75229
75230
75231
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277
75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
75290
75291
75292
75293
75294
75295
75296
75297
75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309
75310
75311
75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330
75331
75332
75333
75334
75335
75336
75337
75338
75339
75340
75341
75342
75343
75344
75345
75346
75347
75348
75349
75350
75351
75352
75353
75354
75355
75356
75357
75358
75359
75360
75361
75362
75363
75364
75365
75366
75367
75368
75369
75370
75371
75372
75373
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
75390
75391
75392
75393
75394
75395
75396
75397
75398
75399
75400
75401
75402
75403
75404
75405
75406
75407
75408
75409
75410
75411
75412
75413
75414
75415
75416
75417
75418
75419
75420
75421
75422
75423
75424
75425
75426
75427
75428
75429
75430
75431
75432
75433
75434
75435
75436
75437
75438
75439
75440
75441
75442
75443
75444
75445
75446
75447
75448
75449
75450
75451
75452
75453
75454
75455
75456
75457
75458
75459
75460
75461
75462
75463
75464
75465
75466
75467
75468
75469
75470
75471
75472
75473
75474
75475
75476
75477
75478
75479
75480
75481
75482
75483
75484
75485
75486
75487
75488
75489
75490
75491
75492
75493
75494
75495
75496
75497
75498
75499
75500
75501
75502
75503
75504
75505
75506
75507
75508
75509
75510
75511
75512
75513
75514
75515
75516
75517
75518
75519
75520
75521
75522
75523
75524
75525
75526
75527
75528
75529
75530
75531
75532
75533
75534
75535
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
75551
75552
75553
75554
75555
75556
75557
75558
75559
75560
75561
75562
75563
75564
75565
75566
75567
75568
75569
75570
75571
75572
75573
75574
75575
75576
75577
75578
75579
75580
75581
75582
75583
75584
75585
75586
75587
75588
75589
75590
75591
75592
75593
75594
75595
75596
75597
75598
75599
75600
75601
75602
75603
75604
75605
75606
75607
75608
75609
75610
75611
75612
75613
75614
75615
75616
75617
75618
75619
75620
75621
75622
75623
75624
75625
75626
75627
75628
75629
75630
75631
75632
75633
75634
75635
75636
75637
75638
75639
75640
75641
75642
75643
75644
75645
75646
75647
75648
75649
75650
75651
75652
75653
75654
75655
75656
75657
75658
75659
75660
75661
75662
75663
75664
75665
75666
75667
75668
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678
75679
75680
75681
75682
75683
75684
75685
75686
75687
75688
75689
75690
75691
75692
75693
75694
75695
75696
75697
75698
75699
75700
75701
75702
75703
75704
75705
75706
75707
75708
75709
75710
75711
75712
75713
75714
75715
75716
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728
75729
75730
75731
75732
75733
75734
75735
75736
75737
75738
75739
75740
75741
75742
75743
75744
75745
75746
75747
75748
75749
75750
75751
75752
75753
75754
75755
75756
75757
75758
75759
75760
75761
75762
75763
75764
75765
75766
75767
75768
75769
75770
75771
75772
75773
75774
75775
75776
75777
75778
75779
75780
75781
75782
75783
75784
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
75798
75799
75800
75801
75802
75803
75804
75805
75806
75807
75808
75809
75810
75811
75812
75813
75814
75815
75816
75817
75818
75819
75820
75821
75822
75823
75824
75825
75826
75827
75828
75829
75830
75831
75832
75833
75834
75835
75836
75837
75838
75839
75840
75841
75842
75843
75844
75845
75846
75847
75848
75849
75850
75851
75852
75853
75854
75855
75856
75857
75858
75859
75860
75861
75862
75863
75864
75865
75866
75867
75868
75869
75870
75871
75872
75873
75874
75875
75876
75877
75878
75879
75880
75881
75882
75883
75884
75885
75886
75887
75888
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
75904
75905
75906
75907
75908
75909
75910
75911
75912
75913
75914
75915
75916
75917
75918
75919
75920
75921
75922
75923
75924
75925
75926
75927
75928
75929
75930
75931
75932
75933
75934
75935
75936
75937
75938
75939
75940
75941
75942
75943
75944
75945
75946
75947
75948
75949
75950
75951
75952
75953
75954
75955
75956
75957
75958
75959
75960
75961
75962
75963
75964
75965
75966
75967
75968
75969
75970
75971
75972
75973
75974
75975
75976
75977
75978
75979
75980
75981
75982
75983
75984
75985
75986
75987
75988
75989
75990
75991
75992
75993
75994
75995
75996
75997
75998
75999
76000
76001
76002
76003
76004
76005
76006
76007
76008
76009
76010
76011
76012
76013
76014
76015
76016
76017
76018
76019
76020
76021
76022
76023
76024
76025
76026
76027
76028
76029
76030
76031
76032
76033
76034
76035
76036
76037
76038
76039
76040
76041
76042
76043
76044
76045
76046
76047
76048
76049
76050
76051
76052
76053
76054
76055
76056
76057
76058
76059
76060
76061
76062
76063
76064
76065
76066
76067
76068
76069
76070
76071
76072
76073
76074
76075
76076
76077
76078
76079
76080
76081
76082
76083
76084
76085
76086
76087
76088
76089
76090
76091
76092
76093
76094
76095
76096
76097
76098
76099
76100
76101
76102
76103
76104
76105
76106
76107
76108
76109
76110
76111
76112
76113
76114
76115
76116
76117
76118
76119
76120
76121
76122
76123
76124
76125
76126
76127
76128
76129
76130
76131
76132
76133
76134
76135
76136
76137
76138
76139
76140
76141
76142
76143
76144
76145
76146
76147
76148
76149
76150
76151
76152
76153
76154
76155
76156
76157
76158
76159
76160
76161
76162
76163
76164
76165
76166
76167
76168
76169
76170
76171
76172
76173
76174
76175
76176
76177
76178
76179
76180
76181
76182
76183
76184
76185
76186
76187
76188
76189
76190
76191
76192
76193
76194
76195
76196
76197
76198
76199
76200
76201
76202
76203
76204
76205
76206
76207
76208
76209
76210
76211
76212
76213
76214
76215
76216
76217
76218
76219
76220
76221
76222
76223
76224
76225
76226
76227
76228
76229
76230
76231
76232
76233
76234
76235
76236
76237
76238
76239
76240
76241
76242
76243
76244
76245
76246
76247
76248
76249
76250
76251
76252
76253
76254
76255
76256
76257
76258
76259
76260
76261
76262
76263
76264
76265
76266
76267
76268
76269
76270
76271
76272
76273
76274
76275
76276
76277
76278
76279
76280
76281
76282
76283
76284
76285
76286
76287
76288
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298
76299
76300
76301
76302
76303
76304
76305
76306
76307
76308
76309
76310
76311
76312
76313
76314
76315
76316
76317
76318
76319
76320
76321
76322
76323
76324
76325
76326
76327
76328
76329
76330
76331
76332
76333
76334
76335
76336
76337
76338
76339
76340
76341
76342
76343
76344
76345
76346
76347
76348
76349
76350
76351
76352
76353
76354
76355
76356
76357
76358
76359
76360
76361
76362
76363
76364
76365
76366
76367
76368
76369
76370
76371
76372
76373
76374
76375
76376
76377
76378
76379
76380
76381
76382
76383
76384
76385
76386
76387
76388
76389
76390
76391
76392
76393
76394
76395
76396
76397
76398
76399
76400
76401
76402
76403
76404
76405
76406
76407
76408
76409
76410
76411
76412
76413
76414
76415
76416
76417
76418
76419
76420
76421
76422
76423
76424
76425
76426
76427
76428
76429
76430
76431
76432
76433
76434
76435
76436
76437
76438
76439
76440
76441
76442
76443
76444
76445
76446
76447
76448
76449
76450
76451
76452
76453
76454
76455
76456
76457
76458
76459
76460
76461
76462
76463
76464
76465
76466
76467
76468
76469
76470
76471
76472
76473
76474
76475
76476
76477
76478
76479
76480
76481
76482
76483
76484
76485
76486
76487
76488
76489
76490
76491
76492
76493
76494
76495
76496
76497
76498
76499
76500
76501
76502
76503
76504
76505
76506
76507
76508
76509
76510
76511
76512
76513
76514
76515
76516
76517
76518
76519
76520
76521
76522
76523
76524
76525
76526
76527
76528
76529
76530
76531
76532
76533
76534
76535
76536
76537
76538
76539
76540
76541
76542
76543
76544
76545
76546
76547
76548
76549
76550
76551
76552
76553
76554
76555
76556
76557
76558
76559
76560
76561
76562
76563
76564
76565
76566
76567
76568
76569
76570
76571
76572
76573
76574
76575
76576
76577
76578
76579
76580
76581
76582
76583
76584
76585
76586
76587
76588
76589
76590
76591
76592
76593
76594
76595
76596
76597
76598
76599
76600
76601
76602
76603
76604
76605
76606
76607
76608
76609
76610
76611
76612
76613
76614
76615
76616
76617
76618
76619
76620
76621
76622
76623
76624
76625
76626
76627
76628
76629
76630
76631
76632
76633
76634
76635
76636
76637
76638
76639
76640
76641
76642
76643
76644
76645
76646
76647
76648
76649
76650
76651
76652
76653
76654
76655
76656
76657
76658
76659
76660
76661
76662
76663
76664
76665
76666
76667
76668
76669
76670
76671
76672
76673
76674
76675
76676
76677
76678
76679
76680
76681
76682
76683
76684
76685
76686
76687
76688
76689
76690
76691
76692
76693
76694
76695
76696
76697
76698
76699
76700
76701
76702
76703
76704
76705
76706
76707
76708
76709
76710
76711
76712
76713
76714
76715
76716
76717
76718
76719
76720
76721
76722
76723
76724
76725
76726
76727
76728
76729
76730
76731
76732
76733
76734
76735
76736
76737
76738
76739
76740
76741
76742
76743
76744
76745
76746
76747
76748
76749
76750
76751
76752
76753
76754
76755
76756
76757
76758
76759
76760
76761
76762
76763
76764
76765
76766
76767
76768
76769
76770
76771
76772
76773
76774
76775
76776
76777
76778
76779
76780
76781
76782
76783
76784
76785
76786
76787
76788
76789
76790
76791
76792
76793
76794
76795
76796
76797
76798
76799
76800
76801
76802
76803
76804
76805
76806
76807
76808
76809
76810
76811
76812
76813
76814
76815
76816
76817
76818
76819
76820
76821
76822
76823
76824
76825
76826
76827
76828
76829
76830
76831
76832
76833
76834
76835
76836
76837
76838
76839
76840
76841
76842
76843
76844
76845
76846
76847
76848
76849
76850
76851
76852
76853
76854
76855
76856
76857
76858
76859
76860
76861
76862
76863
76864
76865
76866
76867
76868
76869
76870
76871
76872
76873
76874
76875
76876
76877
76878
76879
76880
76881
76882
76883
76884
76885
76886
76887
76888
76889
76890
76891
76892
76893
76894
76895
76896
76897
76898
76899
76900
76901
76902
76903
76904
76905
76906
76907
76908
76909
76910
76911
76912
76913
76914
76915
76916
76917
76918
76919
76920
76921
76922
76923
76924
76925
76926
76927
76928
76929
76930
76931
76932
76933
76934
76935
76936
76937
76938
76939
76940
76941
76942
76943
76944
76945
76946
76947
76948
76949
76950
76951
76952
76953
76954
76955
76956
76957
76958
76959
76960
76961
76962
76963
76964
76965
76966
76967
76968
76969
76970
76971
76972
76973
76974
76975
76976
76977
76978
76979
76980
76981
76982
76983
76984
76985
76986
76987
76988
76989
76990
76991
76992
76993
76994
76995
76996
76997
76998
76999
77000
77001
77002
77003
77004
77005
77006
77007
77008
77009
77010
77011
77012
77013
77014
77015
77016
77017
77018
77019
77020
77021
77022
77023
77024
77025
77026
77027
77028
77029
77030
77031
77032
77033
77034
77035
77036
77037
77038
77039
77040
77041
77042
77043
77044
77045
77046
77047
77048
77049
77050
77051
77052
77053
77054
77055
77056
77057
77058
77059
77060
77061
77062
77063
77064
77065
77066
77067
77068
77069
77070
77071
77072
77073
77074
77075
77076
77077
77078
77079
77080
77081
77082
77083
77084
77085
77086
77087
77088
77089
77090
77091
77092
77093
77094
77095
77096
77097
77098
77099
77100
77101
77102
77103
77104
77105
77106
77107
77108
77109
77110
77111
77112
77113
77114
77115
77116
77117
77118
77119
77120
77121
77122
77123
77124
77125
77126
77127
77128
77129
77130
77131
77132
77133
77134
77135
77136
77137
77138
77139
77140
77141
77142
77143
77144
77145
77146
77147
77148
77149
77150
77151
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
77165
77166
77167
77168
77169
77170
77171
77172
77173
77174
77175
77176
77177
77178
77179
77180
77181
77182
77183
77184
77185
77186
77187
77188
77189
77190
77191
77192
77193
77194
77195
77196
77197
77198
77199
77200
77201
77202
77203
77204
77205
77206
77207
77208
77209
77210
77211
77212
77213
77214
77215
77216
77217
77218
77219
77220
77221
77222
77223
77224
77225
77226
77227
77228
77229
77230
77231
77232
77233
77234
77235
77236
77237
77238
77239
77240
77241
77242
77243
77244
77245
77246
77247
77248
77249
77250
77251
77252
77253
77254
77255
77256
77257
77258
77259
77260
77261
77262
77263
77264
77265
77266
77267
77268
77269
77270
77271
77272
77273
77274
77275
77276
77277
77278
77279
77280
77281
77282
77283
77284
77285
77286
77287
77288
77289
77290
77291
77292
77293
77294
77295
77296
77297
77298
77299
77300
77301
77302
77303
77304
77305
77306
77307
77308
77309
77310
77311
77312
77313
77314
77315
77316
77317
77318
77319
77320
77321
77322
77323
77324
77325
77326
77327
77328
77329
77330
77331
77332
77333
77334
77335
77336
77337
77338
77339
77340
77341
77342
77343
77344
77345
77346
77347
77348
77349
77350
77351
77352
77353
77354
77355
77356
77357
77358
77359
77360
77361
77362
77363
77364
77365
77366
77367
77368
77369
77370
77371
77372
77373
77374
77375
77376
77377
77378
77379
77380
77381
77382
77383
77384
77385
77386
77387
77388
77389
77390
77391
77392
77393
77394
77395
77396
77397
77398
77399
77400
77401
77402
77403
77404
77405
77406
77407
77408
77409
77410
77411
77412
77413
77414
77415
77416
77417
77418
77419
77420
77421
77422
77423
77424
77425
77426
77427
77428
77429
77430
77431
77432
77433
77434
77435
77436
77437
77438
77439
77440
77441
77442
77443
77444
77445
77446
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
77459
77460
77461
77462
77463
77464
77465
77466
77467
77468
77469
77470
77471
77472
77473
77474
77475
77476
77477
77478
77479
77480
77481
77482
77483
77484
77485
77486
77487
77488
77489
77490
77491
77492
77493
77494
77495
77496
77497
77498
77499
77500
77501
77502
77503
77504
77505
77506
77507
77508
77509
77510
77511
77512
77513
77514
77515
77516
77517
77518
77519
77520
77521
77522
77523
77524
77525
77526
77527
77528
77529
77530
77531
77532
77533
77534
77535
77536
77537
77538
77539
77540
77541
77542
77543
77544
77545
77546
77547
77548
77549
77550
77551
77552
77553
77554
77555
77556
77557
77558
77559
77560
77561
77562
77563
77564
77565
77566
77567
77568
77569
77570
77571
77572
77573
77574
77575
77576
77577
77578
77579
77580
77581
77582
77583
77584
77585
77586
77587
77588
77589
77590
77591
77592
77593
77594
77595
77596
77597
77598
77599
77600
77601
77602
77603
77604
77605
77606
77607
77608
77609
77610
77611
77612
77613
77614
77615
77616
77617
77618
77619
77620
77621
77622
77623
77624
77625
77626
77627
77628
77629
77630
77631
77632
77633
77634
77635
77636
77637
77638
77639
77640
77641
77642
77643
77644
77645
77646
77647
77648
77649
77650
77651
77652
77653
77654
77655
77656
77657
77658
77659
77660
77661
77662
77663
77664
77665
77666
77667
77668
77669
77670
77671
77672
77673
77674
77675
77676
77677
77678
77679
77680
77681
77682
77683
77684
77685
77686
77687
77688
77689
77690
77691
77692
77693
77694
77695
77696
77697
77698
77699
77700
77701
77702
77703
77704
77705
77706
77707
77708
77709
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
77789
77790
77791
77792
77793
77794
77795
77796
77797
77798
77799
77800
77801
77802
77803
77804
77805
77806
77807
77808
77809
77810
77811
77812
77813
77814
77815
77816
77817
77818
77819
77820
77821
77822
77823
77824
77825
77826
77827
77828
77829
77830
77831
77832
77833
77834
77835
77836
77837
77838
77839
77840
77841
77842
77843
77844
77845
77846
77847
77848
77849
77850
77851
77852
77853
77854
77855
77856
77857
77858
77859
77860
77861
77862
77863
77864
77865
77866
77867
77868
77869
77870
77871
77872
77873
77874
77875
77876
77877
77878
77879
77880
77881
77882
77883
77884
77885
77886
77887
77888
77889
77890
77891
77892
77893
77894
77895
77896
77897
77898
77899
77900
77901
77902
77903
77904
77905
77906
77907
77908
77909
77910
77911
77912
77913
77914
77915
77916
77917
77918
77919
77920
77921
77922
77923
77924
77925
77926
77927
77928
77929
77930
77931
77932
77933
77934
77935
77936
77937
77938
77939
77940
77941
77942
77943
77944
77945
77946
77947
77948
77949
77950
77951
77952
77953
77954
77955
77956
77957
77958
77959
77960
77961
77962
77963
77964
77965
77966
77967
77968
77969
77970
77971
77972
77973
77974
77975
77976
77977
77978
77979
77980
77981
77982
77983
77984
77985
77986
77987
77988
77989
77990
77991
77992
77993
77994
77995
77996
77997
77998
77999
78000
78001
78002
78003
78004
78005
78006
78007
78008
78009
78010
78011
78012
78013
78014
78015
78016
78017
78018
78019
78020
78021
78022
78023
78024
78025
78026
78027
78028
78029
78030
78031
78032
78033
78034
78035
78036
78037
78038
78039
78040
78041
78042
78043
78044
78045
78046
78047
78048
78049
78050
78051
78052
78053
78054
78055
78056
78057
78058
78059
78060
78061
78062
78063
78064
78065
78066
78067
78068
78069
78070
78071
78072
78073
78074
78075
78076
78077
78078
78079
78080
78081
78082
78083
78084
78085
78086
78087
78088
78089
78090
78091
78092
78093
78094
78095
78096
78097
78098
78099
78100
78101
78102
78103
78104
78105
78106
78107
78108
78109
78110
78111
78112
78113
78114
78115
78116
78117
78118
78119
78120
78121
78122
78123
78124
78125
78126
78127
78128
78129
78130
78131
78132
78133
78134
78135
78136
78137
78138
78139
78140
78141
78142
78143
78144
78145
78146
78147
78148
78149
78150
78151
78152
78153
78154
78155
78156
78157
78158
78159
78160
78161
78162
78163
78164
78165
78166
78167
78168
78169
78170
78171
78172
78173
78174
78175
78176
78177
78178
78179
78180
78181
78182
78183
78184
78185
78186
78187
78188
78189
78190
78191
78192
78193
78194
78195
78196
78197
78198
78199
78200
78201
78202
78203
78204
78205
78206
78207
78208
78209
78210
78211
78212
78213
78214
78215
78216
78217
78218
78219
78220
78221
78222
78223
78224
78225
78226
78227
78228
78229
78230
78231
78232
78233
78234
78235
78236
78237
78238
78239
78240
78241
78242
78243
78244
78245
78246
78247
78248
78249
78250
78251
78252
78253
78254
78255
78256
78257
78258
78259
78260
78261
78262
78263
78264
78265
78266
78267
78268
78269
78270
78271
78272
78273
78274
78275
78276
78277
78278
78279
78280
78281
78282
78283
78284
78285
78286
78287
78288
78289
78290
78291
78292
78293
78294
78295
78296
78297
78298
78299
78300
78301
78302
78303
78304
78305
78306
78307
78308
78309
78310
78311
78312
78313
78314
78315
78316
78317
78318
78319
78320
78321
78322
78323
78324
78325
78326
78327
78328
78329
78330
78331
78332
78333
78334
78335
78336
78337
78338
78339
78340
78341
78342
78343
78344
78345
78346
78347
78348
78349
78350
78351
78352
78353
78354
78355
78356
78357
78358
78359
78360
78361
78362
78363
78364
78365
78366
78367
78368
78369
78370
78371
78372
78373
78374
78375
78376
78377
78378
78379
78380
78381
78382
78383
78384
78385
78386
78387
78388
78389
78390
78391
78392
78393
78394
78395
78396
78397
78398
78399
78400
78401
78402
78403
78404
78405
78406
78407
78408
78409
78410
78411
78412
78413
78414
78415
78416
78417
78418
78419
78420
78421
78422
78423
78424
78425
78426
78427
78428
78429
78430
78431
78432
78433
78434
78435
78436
78437
78438
78439
78440
78441
78442
78443
78444
78445
78446
78447
78448
78449
78450
78451
78452
78453
78454
78455
78456
78457
78458
78459
78460
78461
78462
78463
78464
78465
78466
78467
78468
78469
78470
78471
78472
78473
78474
78475
78476
78477
78478
78479
78480
78481
78482
78483
78484
78485
78486
78487
78488
78489
78490
78491
78492
78493
78494
78495
78496
78497
78498
78499
78500
78501
78502
78503
78504
78505
78506
78507
78508
78509
78510
78511
78512
78513
78514
78515
78516
78517
78518
78519
78520
78521
78522
78523
78524
78525
78526
78527
78528
78529
78530
78531
78532
78533
78534
78535
78536
78537
78538
78539
78540
78541
78542
78543
78544
78545
78546
78547
78548
78549
78550
78551
78552
78553
78554
78555
78556
78557
78558
78559
78560
78561
78562
78563
78564
78565
78566
78567
78568
78569
78570
78571
78572
78573
78574
78575
78576
78577
78578
78579
78580
78581
78582
78583
78584
78585
78586
78587
78588
78589
78590
78591
78592
78593
78594
78595
78596
78597
78598
78599
78600
78601
78602
78603
78604
78605
78606
78607
78608
78609
78610
78611
78612
78613
78614
78615
78616
78617
78618
78619
78620
78621
78622
78623
78624
78625
78626
78627
78628
78629
78630
78631
78632
78633
78634
78635
78636
78637
78638
78639
78640
78641
78642
78643
78644
78645
78646
78647
78648
78649
78650
78651
78652
78653
78654
78655
78656
78657
78658
78659
78660
78661
78662
78663
78664
78665
78666
78667
78668
78669
78670
78671
78672
78673
78674
78675
78676
78677
78678
78679
78680
78681
78682
78683
78684
78685
78686
78687
78688
78689
78690
78691
78692
78693
78694
78695
78696
78697
78698
78699
78700
78701
78702
78703
78704
78705
78706
78707
78708
78709
78710
78711
78712
78713
78714
78715
78716
78717
78718
78719
78720
78721
78722
78723
78724
78725
78726
78727
78728
78729
78730
78731
78732
78733
78734
78735
78736
78737
78738
78739
78740
78741
78742
78743
78744
78745
78746
78747
78748
78749
78750
78751
78752
78753
78754
78755
78756
78757
78758
78759
78760
78761
78762
78763
78764
78765
78766
78767
78768
78769
78770
78771
78772
78773
78774
78775
78776
78777
78778
78779
78780
78781
78782
78783
78784
78785
78786
78787
78788
78789
78790
78791
78792
78793
78794
78795
78796
78797
78798
78799
78800
78801
78802
78803
78804
78805
78806
78807
78808
78809
78810
78811
78812
78813
78814
78815
78816
78817
78818
78819
78820
78821
78822
78823
78824
78825
78826
78827
78828
78829
78830
78831
78832
78833
78834
78835
78836
78837
78838
78839
78840
78841
78842
78843
78844
78845
78846
78847
78848
78849
78850
78851
78852
78853
78854
78855
78856
78857
78858
78859
78860
78861
78862
78863
78864
78865
78866
78867
78868
78869
78870
78871
78872
78873
78874
78875
78876
78877
78878
78879
78880
78881
78882
78883
78884
78885
78886
78887
78888
78889
78890
78891
78892
78893
78894
78895
78896
78897
78898
78899
78900
78901
78902
78903
78904
78905
78906
78907
78908
78909
78910
78911
78912
78913
78914
78915
78916
78917
78918
78919
78920
78921
78922
78923
78924
78925
78926
78927
78928
78929
78930
78931
78932
78933
78934
78935
78936
78937
78938
78939
78940
78941
78942
78943
78944
78945
78946
78947
78948
78949
78950
78951
78952
78953
78954
78955
78956
78957
78958
78959
78960
78961
78962
78963
78964
78965
78966
78967
78968
78969
78970
78971
78972
78973
78974
78975
78976
78977
78978
78979
78980
78981
78982
78983
78984
78985
78986
78987
78988
78989
78990
78991
78992
78993
78994
78995
78996
78997
78998
78999
79000
79001
79002
79003
79004
79005
79006
79007
79008
79009
79010
79011
79012
79013
79014
79015
79016
79017
79018
79019
79020
79021
79022
79023
79024
79025
79026
79027
79028
79029
79030
79031
79032
79033
79034
79035
79036
79037
79038
79039
79040
79041
79042
79043
79044
79045
79046
79047
79048
79049
79050
79051
79052
79053
79054
79055
79056
79057
79058
79059
79060
79061
79062
79063
79064
79065
79066
79067
79068
79069
79070
79071
79072
79073
79074
79075
79076
79077
79078
79079
79080
79081
79082
79083
79084
79085
79086
79087
79088
79089
79090
79091
79092
79093
79094
79095
79096
79097
79098
79099
79100
79101
79102
79103
79104
79105
79106
79107
79108
79109
79110
79111
79112
79113
79114
79115
79116
79117
79118
79119
79120
79121
79122
79123
79124
79125
79126
79127
79128
79129
79130
79131
79132
79133
79134
79135
79136
79137
79138
79139
79140
79141
79142
79143
79144
79145
79146
79147
79148
79149
79150
79151
79152
79153
79154
79155
79156
79157
79158
79159
79160
79161
79162
79163
79164
79165
79166
79167
79168
79169
79170
79171
79172
79173
79174
79175
79176
79177
79178
79179
79180
79181
79182
79183
79184
79185
79186
79187
79188
79189
79190
79191
79192
79193
79194
79195
79196
79197
79198
79199
79200
79201
79202
79203
79204
79205
79206
79207
79208
79209
79210
79211
79212
79213
79214
79215
79216
79217
79218
79219
79220
79221
79222
79223
79224
79225
79226
79227
79228
79229
79230
79231
79232
79233
79234
79235
79236
79237
79238
79239
79240
79241
79242
79243
79244
79245
79246
79247
79248
79249
79250
79251
79252
79253
79254
79255
79256
79257
79258
79259
79260
79261
79262
79263
79264
79265
79266
79267
79268
79269
79270
79271
79272
79273
79274
79275
79276
79277
79278
79279
79280
79281
79282
79283
79284
79285
79286
79287
79288
79289
79290
79291
79292
79293
79294
79295
79296
79297
79298
79299
79300
79301
79302
79303
79304
79305
79306
79307
79308
79309
79310
79311
79312
79313
79314
79315
79316
79317
79318
79319
79320
79321
79322
79323
79324
79325
79326
79327
79328
79329
79330
79331
79332
79333
79334
79335
79336
79337
79338
79339
79340
79341
79342
79343
79344
79345
79346
79347
79348
79349
79350
79351
79352
79353
79354
79355
79356
79357
79358
79359
79360
79361
79362
79363
79364
79365
79366
79367
79368
79369
79370
79371
79372
79373
79374
79375
79376
79377
79378
79379
79380
79381
79382
79383
79384
79385
79386
79387
79388
79389
79390
79391
79392
79393
79394
79395
79396
79397
79398
79399
79400
79401
79402
79403
79404
79405
79406
79407
79408
79409
79410
79411
79412
79413
79414
79415
79416
79417
79418
79419
79420
79421
79422
79423
79424
79425
79426
79427
79428
79429
79430
79431
79432
79433
79434
79435
79436
79437
79438
79439
79440
79441
79442
79443
79444
79445
79446
79447
79448
79449
79450
79451
79452
79453
79454
79455
79456
79457
79458
79459
79460
79461
79462
79463
79464
79465
79466
79467
79468
79469
79470
79471
79472
79473
79474
79475
79476
79477
79478
79479
79480
79481
79482
79483
79484
79485
79486
79487
79488
79489
79490
79491
79492
79493
79494
79495
79496
79497
79498
79499
79500
79501
79502
79503
79504
79505
79506
79507
79508
79509
79510
79511
79512
79513
79514
79515
79516
79517
79518
79519
79520
79521
79522
79523
79524
79525
79526
79527
79528
79529
79530
79531
79532
79533
79534
79535
79536
79537
79538
79539
79540
79541
79542
79543
79544
79545
79546
79547
79548
79549
79550
79551
79552
79553
79554
79555
79556
79557
79558
79559
79560
79561
79562
79563
79564
79565
79566
79567
79568
79569
79570
79571
79572
79573
79574
79575
79576
79577
79578
79579
79580
79581
79582
79583
79584
79585
79586
79587
79588
79589
79590
79591
79592
79593
79594
79595
79596
79597
79598
79599
79600
79601
79602
79603
79604
79605
79606
79607
79608
79609
79610
79611
79612
79613
79614
79615
79616
79617
79618
79619
79620
79621
79622
79623
79624
79625
79626
79627
79628
79629
79630
79631
79632
79633
79634
79635
79636
79637
79638
79639
79640
79641
79642
79643
79644
79645
79646
79647
79648
79649
79650
79651
79652
79653
79654
79655
79656
79657
79658
79659
79660
79661
79662
79663
79664
79665
79666
79667
79668
79669
79670
79671
79672
79673
79674
79675
79676
79677
79678
79679
79680
79681
79682
79683
79684
79685
79686
79687
79688
79689
79690
79691
79692
79693
79694
79695
79696
79697
79698
79699
79700
79701
79702
79703
79704
79705
79706
79707
79708
79709
79710
79711
79712
79713
79714
79715
79716
79717
79718
79719
79720
79721
79722
79723
79724
79725
79726
79727
79728
79729
79730
79731
79732
79733
79734
79735
79736
79737
79738
79739
79740
79741
79742
79743
79744
79745
79746
79747
79748
79749
79750
79751
79752
79753
79754
79755
79756
79757
79758
79759
79760
79761
79762
79763
79764
79765
79766
79767
79768
79769
79770
79771
79772
79773
79774
79775
79776
79777
79778
79779
79780
79781
79782
79783
79784
79785
79786
79787
79788
79789
79790
79791
79792
79793
79794
79795
79796
79797
79798
79799
79800
79801
79802
79803
79804
79805
79806
79807
79808
79809
79810
79811
79812
79813
79814
79815
79816
79817
79818
79819
79820
79821
79822
79823
79824
79825
79826
79827
79828
79829
79830
79831
79832
79833
79834
79835
79836
79837
79838
79839
79840
79841
79842
79843
79844
79845
79846
79847
79848
79849
79850
79851
79852
79853
79854
79855
79856
79857
79858
79859
79860
79861
79862
79863
79864
79865
79866
79867
79868
79869
79870
79871
79872
79873
79874
79875
79876
79877
79878
79879
79880
79881
79882
79883
79884
79885
79886
79887
79888
79889
79890
79891
79892
79893
79894
79895
79896
79897
79898
79899
79900
79901
79902
79903
79904
79905
79906
79907
79908
79909
79910
79911
79912
79913
79914
79915
79916
79917
79918
79919
79920
79921
79922
79923
79924
79925
79926
79927
79928
79929
79930
79931
79932
79933
79934
79935
79936
79937
79938
79939
79940
79941
79942
79943
79944
79945
79946
79947
79948
79949
79950
79951
79952
79953
79954
79955
79956
79957
79958
79959
79960
79961
79962
79963
79964
79965
79966
79967
79968
79969
79970
79971
79972
79973
79974
79975
79976
79977
79978
79979
79980
79981
79982
79983
79984
79985
79986
79987
79988
79989
79990
79991
79992
79993
79994
79995
79996
79997
79998
79999
80000
80001
80002
80003
80004
80005
80006
80007
80008
80009
80010
80011
80012
80013
80014
80015
80016
80017
80018
80019
80020
80021
80022
80023
80024
80025
80026
80027
80028
80029
80030
80031
80032
80033
80034
80035
80036
80037
80038
80039
80040
80041
80042
80043
80044
80045
80046
80047
80048
80049
80050
80051
80052
80053
80054
80055
80056
80057
80058
80059
80060
80061
80062
80063
80064
80065
80066
80067
80068
80069
80070
80071
80072
80073
80074
80075
80076
80077
80078
80079
80080
80081
80082
80083
80084
80085
80086
80087
80088
80089
80090
80091
80092
80093
80094
80095
80096
80097
80098
80099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
81000
81001
81002
81003
81004
81005
81006
81007
81008
81009
81010
81011
81012
81013
81014
81015
81016
81017
81018
81019
81020
81021
81022
81023
81024
81025
81026
81027
81028
81029
81030
81031
81032
81033
81034
81035
81036
81037
81038
81039
81040
81041
81042
81043
81044
81045
81046
81047
81048
81049
81050
81051
81052
81053
81054
81055
81056
81057
81058
81059
81060
81061
81062
81063
81064
81065
81066
81067
81068
81069
81070
81071
81072
81073
81074
81075
81076
81077
81078
81079
81080
81081
81082
81083
81084
81085
81086
81087
81088
81089
81090
81091
81092
81093
81094
81095
81096
81097
81098
81099
81100
81101
81102
81103
81104
81105
81106
81107
81108
81109
81110
81111
81112
81113
81114
81115
81116
81117
81118
81119
81120
81121
81122
81123
81124
81125
81126
81127
81128
81129
81130
81131
81132
81133
81134
81135
81136
81137
81138
81139
81140
81141
81142
81143
81144
81145
81146
81147
81148
81149
81150
81151
81152
81153
81154
81155
81156
81157
81158
81159
81160
81161
81162
81163
81164
81165
81166
81167
81168
81169
81170
81171
81172
81173
81174
81175
81176
81177
81178
81179
81180
81181
81182
81183
81184
81185
81186
81187
81188
81189
81190
81191
81192
81193
81194
81195
81196
81197
81198
81199
81200
81201
81202
81203
81204
81205
81206
81207
81208
81209
81210
81211
81212
81213
81214
81215
81216
81217
81218
81219
81220
81221
81222
81223
81224
81225
81226
81227
81228
81229
81230
81231
81232
81233
81234
81235
81236
81237
81238
81239
81240
81241
81242
81243
81244
81245
81246
81247
81248
81249
81250
81251
81252
81253
81254
81255
81256
81257
81258
81259
81260
81261
81262
81263
81264
81265
81266
81267
81268
81269
81270
81271
81272
81273
81274
81275
81276
81277
81278
81279
81280
81281
81282
81283
81284
81285
81286
81287
81288
81289
81290
81291
81292
81293
81294
81295
81296
81297
81298
81299
81300
81301
81302
81303
81304
81305
81306
81307
81308
81309
81310
81311
81312
81313
81314
81315
81316
81317
81318
81319
81320
81321
81322
81323
81324
81325
81326
81327
81328
81329
81330
81331
81332
81333
81334
81335
81336
81337
81338
81339
81340
81341
81342
81343
81344
81345
81346
81347
81348
81349
81350
81351
81352
81353
81354
81355
81356
81357
81358
81359
81360
81361
81362
81363
81364
81365
81366
81367
81368
81369
81370
81371
81372
81373
81374
81375
81376
81377
81378
81379
81380
81381
81382
81383
81384
81385
81386
81387
81388
81389
81390
81391
81392
81393
81394
81395
81396
81397
81398
81399
81400
81401
81402
81403
81404
81405
81406
81407
81408
81409
81410
81411
81412
81413
81414
81415
81416
81417
81418
81419
81420
81421
81422
81423
81424
81425
81426
81427
81428
81429
81430
81431
81432
81433
81434
81435
81436
81437
81438
81439
81440
81441
81442
81443
81444
81445
81446
81447
81448
81449
81450
81451
81452
81453
81454
81455
81456
81457
81458
81459
81460
81461
81462
81463
81464
81465
81466
81467
81468
81469
81470
81471
81472
81473
81474
81475
81476
81477
81478
81479
81480
81481
81482
81483
81484
81485
81486
81487
81488
81489
81490
81491
81492
81493
81494
81495
81496
81497
81498
81499
81500
81501
81502
81503
81504
81505
81506
81507
81508
81509
81510
81511
81512
81513
81514
81515
81516
81517
81518
81519
81520
81521
81522
81523
81524
81525
81526
81527
81528
81529
81530
81531
81532
81533
81534
81535
81536
81537
81538
81539
81540
81541
81542
81543
81544
81545
81546
81547
81548
81549
81550
81551
81552
81553
81554
81555
81556
81557
81558
81559
81560
81561
81562
81563
81564
81565
81566
81567
81568
81569
81570
81571
81572
81573
81574
81575
81576
81577
81578
81579
81580
81581
81582
81583
81584
81585
81586
81587
81588
81589
81590
81591
81592
81593
81594
81595
81596
81597
81598
81599
81600
81601
81602
81603
81604
81605
81606
81607
81608
81609
81610
81611
81612
81613
81614
81615
81616
81617
81618
81619
81620
81621
81622
81623
81624
81625
81626
81627
81628
81629
81630
81631
81632
81633
81634
81635
81636
81637
81638
81639
81640
81641
81642
81643
81644
81645
81646
81647
81648
81649
81650
81651
81652
81653
81654
81655
81656
81657
81658
81659
81660
81661
81662
81663
81664
81665
81666
81667
81668
81669
81670
81671
81672
81673
81674
81675
81676
81677
81678
81679
81680
81681
81682
81683
81684
81685
81686
81687
81688
81689
81690
81691
81692
81693
81694
81695
81696
81697
81698
81699
81700
81701
81702
81703
81704
81705
81706
81707
81708
81709
81710
81711
81712
81713
81714
81715
81716
81717
81718
81719
81720
81721
81722
81723
81724
81725
81726
81727
81728
81729
81730
81731
81732
81733
81734
81735
81736
81737
81738
81739
81740
81741
81742
81743
81744
81745
81746
81747
81748
81749
81750
81751
81752
81753
81754
81755
81756
81757
81758
81759
81760
81761
81762
81763
81764
81765
81766
81767
81768
81769
81770
81771
81772
81773
81774
81775
81776
81777
81778
81779
81780
81781
81782
81783
81784
81785
81786
81787
81788
81789
81790
81791
81792
81793
81794
81795
81796
81797
81798
81799
81800
81801
81802
81803
81804
81805
81806
81807
81808
81809
81810
81811
81812
81813
81814
81815
81816
81817
81818
81819
81820
81821
81822
81823
81824
81825
81826
81827
81828
81829
81830
81831
81832
81833
81834
81835
81836
81837
81838
81839
81840
81841
81842
81843
81844
81845
81846
81847
81848
81849
81850
81851
81852
81853
81854
81855
81856
81857
81858
81859
81860
81861
81862
81863
81864
81865
81866
81867
81868
81869
81870
81871
81872
81873
81874
81875
81876
81877
81878
81879
81880
81881
81882
81883
81884
81885
81886
81887
81888
81889
81890
81891
81892
81893
81894
81895
81896
81897
81898
81899
81900
81901
81902
81903
81904
81905
81906
81907
81908
81909
81910
81911
81912
81913
81914
81915
81916
81917
81918
81919
81920
81921
81922
81923
81924
81925
81926
81927
81928
81929
81930
81931
81932
81933
81934
81935
81936
81937
81938
81939
81940
81941
81942
81943
81944
81945
81946
81947
81948
81949
81950
81951
81952
81953
81954
81955
81956
81957
81958
81959
81960
81961
81962
81963
81964
81965
81966
81967
81968
81969
81970
81971
81972
81973
81974
81975
81976
81977
81978
81979
81980
81981
81982
81983
81984
81985
81986
81987
81988
81989
81990
81991
81992
81993
81994
81995
81996
81997
81998
81999
82000
82001
82002
82003
82004
82005
82006
82007
82008
82009
82010
82011
82012
82013
82014
82015
82016
82017
82018
82019
82020
82021
82022
82023
82024
82025
82026
82027
82028
82029
82030
82031
82032
82033
82034
82035
82036
82037
82038
82039
82040
82041
82042
82043
82044
82045
82046
82047
82048
82049
82050
82051
82052
82053
82054
82055
82056
82057
82058
82059
82060
82061
82062
82063
82064
82065
82066
82067
82068
82069
82070
82071
82072
82073
82074
82075
82076
82077
82078
82079
82080
82081
82082
82083
82084
82085
82086
82087
82088
82089
82090
82091
82092
82093
82094
82095
82096
82097
82098
82099
82100
82101
82102
82103
82104
82105
82106
82107
82108
82109
82110
82111
82112
82113
82114
82115
82116
82117
82118
82119
82120
82121
82122
82123
82124
82125
82126
82127
82128
82129
82130
82131
82132
82133
82134
82135
82136
82137
82138
82139
82140
82141
82142
82143
82144
82145
82146
82147
82148
82149
82150
82151
82152
82153
82154
82155
82156
82157
82158
82159
82160
82161
82162
82163
82164
82165
82166
82167
82168
82169
82170
82171
82172
82173
82174
82175
82176
82177
82178
82179
82180
82181
82182
82183
82184
82185
82186
82187
82188
82189
82190
82191
82192
82193
82194
82195
82196
82197
82198
82199
82200
82201
82202
82203
82204
82205
82206
82207
82208
82209
82210
82211
82212
82213
82214
82215
82216
82217
82218
82219
82220
82221
82222
82223
82224
82225
82226
82227
82228
82229
82230
82231
82232
82233
82234
82235
82236
82237
82238
82239
82240
82241
82242
82243
82244
82245
82246
82247
82248
82249
82250
82251
82252
82253
82254
82255
82256
82257
82258
82259
82260
82261
82262
82263
82264
82265
82266
82267
82268
82269
82270
82271
82272
82273
82274
82275
82276
82277
82278
82279
82280
82281
82282
82283
82284
82285
82286
82287
82288
82289
82290
82291
82292
82293
82294
82295
82296
82297
82298
82299
82300
82301
82302
82303
82304
82305
82306
82307
82308
82309
82310
82311
82312
82313
82314
82315
82316
82317
82318
82319
82320
82321
82322
82323
82324
82325
82326
82327
82328
82329
82330
82331
82332
82333
82334
82335
82336
82337
82338
82339
82340
82341
82342
82343
82344
82345
82346
82347
82348
82349
82350
82351
82352
82353
82354
82355
82356
82357
82358
82359
82360
82361
82362
82363
82364
82365
82366
82367
82368
82369
82370
82371
82372
82373
82374
82375
82376
82377
82378
82379
82380
82381
82382
82383
82384
82385
82386
82387
82388
82389
82390
82391
82392
82393
82394
82395
82396
82397
82398
82399
82400
82401
82402
82403
82404
82405
82406
82407
82408
82409
82410
82411
82412
82413
82414
82415
82416
82417
82418
82419
82420
82421
82422
82423
82424
82425
82426
82427
82428
82429
82430
82431
82432
82433
82434
82435
82436
82437
82438
82439
82440
82441
82442
82443
82444
82445
82446
82447
82448
82449
82450
82451
82452
82453
82454
82455
82456
82457
82458
82459
82460
82461
82462
82463
82464
82465
82466
82467
82468
82469
82470
82471
82472
82473
82474
82475
82476
82477
82478
82479
82480
82481
82482
82483
82484
82485
82486
82487
82488
82489
82490
82491
82492
82493
82494
82495
82496
82497
82498
82499
82500
82501
82502
82503
82504
82505
82506
82507
82508
82509
82510
82511
82512
82513
82514
82515
82516
82517
82518
82519
82520
82521
82522
82523
82524
82525
82526
82527
82528
82529
82530
82531
82532
82533
82534
82535
82536
82537
82538
82539
82540
82541
82542
82543
82544
82545
82546
82547
82548
82549
82550
82551
82552
82553
82554
82555
82556
82557
82558
82559
82560
82561
82562
82563
82564
82565
82566
82567
82568
82569
82570
82571
82572
82573
82574
82575
82576
82577
82578
82579
82580
82581
82582
82583
82584
82585
82586
82587
82588
82589
82590
82591
82592
82593
82594
82595
82596
82597
82598
82599
82600
82601
82602
82603
82604
82605
82606
82607
82608
82609
82610
82611
82612
82613
82614
82615
82616
82617
82618
82619
82620
82621
82622
82623
82624
82625
82626
82627
82628
82629
82630
82631
82632
82633
82634
82635
82636
82637
82638
82639
82640
82641
82642
82643
82644
82645
82646
82647
82648
82649
82650
82651
82652
82653
82654
82655
82656
82657
82658
82659
82660
82661
82662
82663
82664
82665
82666
82667
82668
82669
82670
82671
82672
82673
82674
82675
82676
82677
82678
82679
82680
82681
82682
82683
82684
82685
82686
82687
82688
82689
82690
82691
82692
82693
82694
82695
82696
82697
82698
82699
82700
82701
82702
82703
82704
82705
82706
82707
82708
82709
82710
82711
82712
82713
82714
82715
82716
82717
82718
82719
82720
82721
82722
82723
82724
82725
82726
82727
82728
82729
82730
82731
82732
82733
82734
82735
82736
82737
82738
82739
82740
82741
82742
82743
82744
82745
82746
82747
82748
82749
82750
82751
82752
82753
82754
82755
82756
82757
82758
82759
82760
82761
82762
82763
82764
82765
82766
82767
82768
82769
82770
82771
82772
82773
82774
82775
82776
82777
82778
82779
82780
82781
82782
82783
82784
82785
82786
82787
82788
82789
82790
82791
82792
82793
82794
82795
82796
82797
82798
82799
82800
82801
82802
82803
82804
82805
82806
82807
82808
82809
82810
82811
82812
82813
82814
82815
82816
82817
82818
82819
82820
82821
82822
82823
82824
82825
82826
82827
82828
82829
82830
82831
82832
82833
82834
82835
82836
82837
82838
82839
82840
82841
82842
82843
82844
82845
82846
82847
82848
82849
82850
82851
82852
82853
82854
82855
82856
82857
82858
82859
82860
82861
82862
82863
82864
82865
82866
82867
82868
82869
82870
82871
82872
82873
82874
82875
82876
82877
82878
82879
82880
82881
82882
82883
82884
82885
82886
82887
82888
82889
82890
82891
82892
82893
82894
82895
82896
82897
82898
82899
82900
82901
82902
82903
82904
82905
82906
82907
82908
82909
82910
82911
82912
82913
82914
82915
82916
82917
82918
82919
82920
82921
82922
82923
82924
82925
82926
82927
82928
82929
82930
82931
82932
82933
82934
82935
82936
82937
82938
82939
82940
82941
82942
82943
82944
82945
82946
82947
82948
82949
82950
82951
82952
82953
82954
82955
82956
82957
82958
82959
82960
82961
82962
82963
82964
82965
82966
82967
82968
82969
82970
82971
82972
82973
82974
82975
82976
82977
82978
82979
82980
82981
82982
82983
82984
82985
82986
82987
82988
82989
82990
82991
82992
82993
82994
82995
82996
82997
82998
82999
83000
83001
83002
83003
83004
83005
83006
83007
83008
83009
83010
83011
83012
83013
83014
83015
83016
83017
83018
83019
83020
83021
83022
83023
83024
83025
83026
83027
83028
83029
83030
83031
83032
83033
83034
83035
83036
83037
83038
83039
83040
83041
83042
83043
83044
83045
83046
83047
83048
83049
83050
83051
83052
83053
83054
83055
83056
83057
83058
83059
83060
83061
83062
83063
83064
83065
83066
83067
83068
83069
83070
83071
83072
83073
83074
83075
83076
83077
83078
83079
83080
83081
83082
83083
83084
83085
83086
83087
83088
83089
83090
83091
83092
83093
83094
83095
83096
83097
83098
83099
83100
83101
83102
83103
83104
83105
83106
83107
83108
83109
83110
83111
83112
83113
83114
83115
83116
83117
83118
83119
83120
83121
83122
83123
83124
83125
83126
83127
83128
83129
83130
83131
83132
83133
83134
83135
83136
83137
83138
83139
83140
83141
83142
83143
83144
83145
83146
83147
83148
83149
83150
83151
83152
83153
83154
83155
83156
83157
83158
83159
83160
83161
83162
83163
83164
83165
83166
83167
83168
83169
83170
83171
83172
83173
83174
83175
83176
83177
83178
83179
83180
83181
83182
83183
83184
83185
83186
83187
83188
83189
83190
83191
83192
83193
83194
83195
83196
83197
83198
83199
83200
83201
83202
83203
83204
83205
83206
83207
83208
83209
83210
83211
83212
83213
83214
83215
83216
83217
83218
83219
83220
83221
83222
83223
83224
83225
83226
83227
83228
83229
83230
83231
83232
83233
83234
83235
83236
83237
83238
83239
83240
83241
83242
83243
83244
83245
83246
83247
83248
83249
83250
83251
83252
83253
83254
83255
83256
83257
83258
83259
83260
83261
83262
83263
83264
83265
83266
83267
83268
83269
83270
83271
83272
83273
83274
83275
83276
83277
83278
83279
83280
83281
83282
83283
83284
83285
83286
83287
83288
83289
83290
83291
83292
83293
83294
83295
83296
83297
83298
83299
83300
83301
83302
83303
83304
83305
83306
83307
83308
83309
83310
83311
83312
83313
83314
83315
83316
83317
83318
83319
83320
83321
83322
83323
83324
83325
83326
83327
83328
83329
83330
83331
83332
83333
83334
83335
83336
83337
83338
83339
83340
83341
83342
83343
83344
83345
83346
83347
83348
83349
83350
83351
83352
83353
83354
83355
83356
83357
83358
83359
83360
83361
83362
83363
83364
83365
83366
83367
83368
83369
83370
83371
83372
83373
83374
83375
83376
83377
83378
83379
83380
83381
83382
83383
83384
83385
83386
83387
83388
83389
83390
83391
83392
83393
83394
83395
83396
83397
83398
83399
83400
83401
83402
83403
83404
83405
83406
83407
83408
83409
83410
83411
83412
83413
83414
83415
83416
83417
83418
83419
83420
83421
83422
83423
83424
83425
83426
83427
83428
83429
83430
83431
83432
83433
83434
83435
83436
83437
83438
83439
83440
83441
83442
83443
83444
83445
83446
83447
83448
83449
83450
83451
83452
83453
83454
83455
83456
83457
83458
83459
83460
83461
83462
83463
83464
83465
83466
83467
83468
83469
83470
83471
83472
83473
83474
83475
83476
83477
83478
83479
83480
83481
83482
83483
83484
83485
83486
83487
83488
83489
83490
83491
83492
83493
83494
83495
83496
83497
83498
83499
83500
83501
83502
83503
83504
83505
83506
83507
83508
83509
83510
83511
83512
83513
83514
83515
83516
83517
83518
83519
83520
83521
83522
83523
83524
83525
83526
83527
83528
83529
83530
83531
83532
83533
83534
83535
83536
83537
83538
83539
83540
83541
83542
83543
83544
83545
83546
83547
83548
83549
83550
83551
83552
83553
83554
83555
83556
83557
83558
83559
83560
83561
83562
83563
83564
83565
83566
83567
83568
83569
83570
83571
83572
83573
83574
83575
83576
83577
83578
83579
83580
83581
83582
83583
83584
83585
83586
83587
83588
83589
83590
83591
83592
83593
83594
83595
83596
83597
83598
83599
83600
83601
83602
83603
83604
83605
83606
83607
83608
83609
83610
83611
83612
83613
83614
83615
83616
83617
83618
83619
83620
83621
83622
83623
83624
83625
83626
83627
83628
83629
83630
83631
83632
83633
83634
83635
83636
83637
83638
83639
83640
83641
83642
83643
83644
83645
83646
83647
83648
83649
83650
83651
83652
83653
83654
83655
83656
83657
83658
83659
83660
83661
83662
83663
83664
83665
83666
83667
83668
83669
83670
83671
83672
83673
83674
83675
83676
83677
83678
83679
83680
83681
83682
83683
83684
83685
83686
83687
83688
83689
83690
83691
83692
83693
83694
83695
83696
83697
83698
83699
83700
83701
83702
83703
83704
83705
83706
83707
83708
83709
83710
83711
83712
83713
83714
83715
83716
83717
83718
83719
83720
83721
83722
83723
83724
83725
83726
83727
83728
83729
83730
83731
83732
83733
83734
83735
83736
83737
83738
83739
83740
83741
83742
83743
83744
83745
83746
83747
83748
83749
83750
83751
83752
83753
83754
83755
83756
83757
83758
83759
83760
83761
83762
83763
83764
83765
83766
83767
83768
83769
83770
83771
83772
83773
83774
83775
83776
83777
83778
83779
83780
83781
83782
83783
83784
83785
83786
83787
83788
83789
83790
83791
83792
83793
83794
83795
83796
83797
83798
83799
83800
83801
83802
83803
83804
83805
83806
83807
83808
83809
83810
83811
83812
83813
83814
83815
83816
83817
83818
83819
83820
83821
83822
83823
83824
83825
83826
83827
83828
83829
83830
83831
83832
83833
83834
83835
83836
83837
83838
83839
83840
83841
83842
83843
83844
83845
83846
83847
83848
83849
83850
83851
83852
83853
83854
83855
83856
83857
83858
83859
83860
83861
83862
83863
83864
83865
83866
83867
83868
83869
83870
83871
83872
83873
83874
83875
83876
83877
83878
83879
83880
83881
83882
83883
83884
83885
83886
83887
83888
83889
83890
83891
83892
83893
83894
83895
83896
83897
83898
83899
83900
83901
83902
83903
83904
83905
83906
83907
83908
83909
83910
83911
83912
83913
83914
83915
83916
83917
83918
83919
83920
83921
83922
83923
83924
83925
83926
83927
83928
83929
83930
83931
83932
83933
83934
83935
83936
83937
83938
83939
83940
83941
83942
83943
83944
83945
83946
83947
83948
83949
83950
83951
83952
83953
83954
83955
83956
83957
83958
83959
83960
83961
83962
83963
83964
83965
83966
83967
83968
83969
83970
83971
83972
83973
83974
83975
83976
83977
83978
83979
83980
83981
83982
83983
83984
83985
83986
83987
83988
83989
83990
83991
83992
83993
83994
83995
83996
83997
83998
83999
84000
84001
84002
84003
84004
84005
84006
84007
84008
84009
84010
84011
84012
84013
84014
84015
84016
84017
84018
84019
84020
84021
84022
84023
84024
84025
84026
84027
84028
84029
84030
84031
84032
84033
84034
84035
84036
84037
84038
84039
84040
84041
84042
84043
84044
84045
84046
84047
84048
84049
84050
84051
84052
84053
84054
84055
84056
84057
84058
84059
84060
84061
84062
84063
84064
84065
84066
84067
84068
84069
84070
84071
84072
84073
84074
84075
84076
84077
84078
84079
84080
84081
84082
84083
84084
84085
84086
84087
84088
84089
84090
84091
84092
84093
84094
84095
84096
84097
84098
84099
84100
84101
84102
84103
84104
84105
84106
84107
84108
84109
84110
84111
84112
84113
84114
84115
84116
84117
84118
84119
84120
84121
84122
84123
84124
84125
84126
84127
84128
84129
84130
84131
84132
84133
84134
84135
84136
84137
84138
84139
84140
84141
84142
84143
84144
84145
84146
84147
84148
84149
84150
84151
84152
84153
84154
84155
84156
84157
84158
84159
84160
84161
84162
84163
84164
84165
84166
84167
84168
84169
84170
84171
84172
84173
84174
84175
84176
84177
84178
84179
84180
84181
84182
84183
84184
84185
84186
84187
84188
84189
84190
84191
84192
84193
84194
84195
84196
84197
84198
84199
84200
84201
84202
84203
84204
84205
84206
84207
84208
84209
84210
84211
84212
84213
84214
84215
84216
84217
84218
84219
84220
84221
84222
84223
84224
84225
84226
84227
84228
84229
84230
84231
84232
84233
84234
84235
84236
84237
84238
84239
84240
84241
84242
84243
84244
84245
84246
84247
84248
84249
84250
84251
84252
84253
84254
84255
84256
84257
84258
84259
84260
84261
84262
84263
84264
84265
84266
84267
84268
84269
84270
84271
84272
84273
84274
84275
84276
84277
84278
84279
84280
84281
84282
84283
84284
84285
84286
84287
84288
84289
84290
84291
84292
84293
84294
84295
84296
84297
84298
84299
84300
84301
84302
84303
84304
84305
84306
84307
84308
84309
84310
84311
84312
84313
84314
84315
84316
84317
84318
84319
84320
84321
84322
84323
84324
84325
84326
84327
84328
84329
84330
84331
84332
84333
84334
84335
84336
84337
84338
84339
84340
84341
84342
84343
84344
84345
84346
84347
84348
84349
84350
84351
84352
84353
84354
84355
84356
84357
84358
84359
84360
84361
84362
84363
84364
84365
84366
84367
84368
84369
84370
84371
84372
84373
84374
84375
84376
84377
84378
84379
84380
84381
84382
84383
84384
84385
84386
84387
84388
84389
84390
84391
84392
84393
84394
84395
84396
84397
84398
84399
84400
84401
84402
84403
84404
84405
84406
84407
84408
84409
84410
84411
84412
84413
84414
84415
84416
84417
84418
84419
84420
84421
84422
84423
84424
84425
84426
84427
84428
84429
84430
84431
84432
84433
84434
84435
84436
84437
84438
84439
84440
84441
84442
84443
84444
84445
84446
84447
84448
84449
84450
84451
84452
84453
84454
84455
84456
84457
84458
84459
84460
84461
84462
84463
84464
84465
84466
84467
84468
84469
84470
84471
84472
84473
84474
84475
84476
84477
84478
84479
84480
84481
84482
84483
84484
84485
84486
84487
84488
84489
84490
84491
84492
84493
84494
84495
84496
84497
84498
84499
84500
84501
84502
84503
84504
84505
84506
84507
84508
84509
84510
84511
84512
84513
84514
84515
84516
84517
84518
84519
84520
84521
84522
84523
84524
84525
84526
84527
84528
84529
84530
84531
84532
84533
84534
84535
84536
84537
84538
84539
84540
84541
84542
84543
84544
84545
84546
84547
84548
84549
84550
84551
84552
84553
84554
84555
84556
84557
84558
84559
84560
84561
84562
84563
84564
84565
84566
84567
84568
84569
84570
84571
84572
84573
84574
84575
84576
84577
84578
84579
84580
84581
84582
84583
84584
84585
84586
84587
84588
84589
84590
84591
84592
84593
84594
84595
84596
84597
84598
84599
84600
84601
84602
84603
84604
84605
84606
84607
84608
84609
84610
84611
84612
84613
84614
84615
84616
84617
84618
84619
84620
84621
84622
84623
84624
84625
84626
84627
84628
84629
84630
84631
84632
84633
84634
84635
84636
84637
84638
84639
84640
84641
84642
84643
84644
84645
84646
84647
84648
84649
84650
84651
84652
84653
84654
84655
84656
84657
84658
84659
84660
84661
84662
84663
84664
84665
84666
84667
84668
84669
84670
84671
84672
84673
84674
84675
84676
84677
84678
84679
84680
84681
84682
84683
84684
84685
84686
84687
84688
84689
84690
84691
84692
84693
84694
84695
84696
84697
84698
84699
84700
84701
84702
84703
84704
84705
84706
84707
84708
84709
84710
84711
84712
84713
84714
84715
84716
84717
84718
84719
84720
84721
84722
84723
84724
84725
84726
84727
84728
84729
84730
84731
84732
84733
84734
84735
84736
84737
84738
84739
84740
84741
84742
84743
84744
84745
84746
84747
84748
84749
84750
84751
84752
84753
84754
84755
84756
84757
84758
84759
84760
84761
84762
84763
84764
84765
84766
84767
84768
84769
84770
84771
84772
84773
84774
84775
84776
84777
84778
84779
84780
84781
84782
84783
84784
84785
84786
84787
84788
84789
84790
84791
84792
84793
84794
84795
84796
84797
84798
84799
84800
84801
84802
84803
84804
84805
84806
84807
84808
84809
84810
84811
84812
84813
84814
84815
84816
84817
84818
84819
84820
84821
84822
84823
84824
84825
84826
84827
84828
84829
84830
84831
84832
84833
84834
84835
84836
84837
84838
84839
84840
84841
84842
84843
84844
84845
84846
84847
84848
84849
84850
84851
84852
84853
84854
84855
84856
84857
84858
84859
84860
84861
84862
84863
84864
84865
84866
84867
84868
84869
84870
84871
84872
84873
84874
84875
84876
84877
84878
84879
84880
84881
84882
84883
84884
84885
84886
84887
84888
84889
84890
84891
84892
84893
84894
84895
84896
84897
84898
84899
84900
84901
84902
84903
84904
84905
84906
84907
84908
84909
84910
84911
84912
84913
84914
84915
84916
84917
84918
84919
84920
84921
84922
84923
84924
84925
84926
84927
84928
84929
84930
84931
84932
84933
84934
84935
84936
84937
84938
84939
84940
84941
84942
84943
84944
84945
84946
84947
84948
84949
84950
84951
84952
84953
84954
84955
84956
84957
84958
84959
84960
84961
84962
84963
84964
84965
84966
84967
84968
84969
84970
84971
84972
84973
84974
84975
84976
84977
84978
84979
84980
84981
84982
84983
84984
84985
84986
84987
84988
84989
84990
84991
84992
84993
84994
84995
84996
84997
84998
84999
85000
85001
85002
85003
85004
85005
85006
85007
85008
85009
85010
85011
85012
85013
85014
85015
85016
85017
85018
85019
85020
85021
85022
85023
85024
85025
85026
85027
85028
85029
85030
85031
85032
85033
85034
85035
85036
85037
85038
85039
85040
85041
85042
85043
85044
85045
85046
85047
85048
85049
85050
85051
85052
85053
85054
85055
85056
85057
85058
85059
85060
85061
85062
85063
85064
85065
85066
85067
85068
85069
85070
85071
85072
85073
85074
85075
85076
85077
85078
85079
85080
85081
85082
85083
85084
85085
85086
85087
85088
85089
85090
85091
85092
85093
85094
85095
85096
85097
85098
85099
85100
85101
85102
85103
85104
85105
85106
85107
85108
85109
85110
85111
85112
85113
85114
85115
85116
85117
85118
85119
85120
85121
85122
85123
85124
85125
85126
85127
85128
85129
85130
85131
85132
85133
85134
85135
85136
85137
85138
85139
85140
85141
85142
85143
85144
85145
85146
85147
85148
85149
85150
85151
85152
85153
85154
85155
85156
85157
85158
85159
85160
85161
85162
85163
85164
85165
85166
85167
85168
85169
85170
85171
85172
85173
85174
85175
85176
85177
85178
85179
85180
85181
85182
85183
85184
85185
85186
85187
85188
85189
85190
85191
85192
85193
85194
85195
85196
85197
85198
85199
85200
85201
85202
85203
85204
85205
85206
85207
85208
85209
85210
85211
85212
85213
85214
85215
85216
85217
85218
85219
85220
85221
85222
85223
85224
85225
85226
85227
85228
85229
85230
85231
85232
85233
85234
85235
85236
85237
85238
85239
85240
85241
85242
85243
85244
85245
85246
85247
85248
85249
85250
85251
85252
85253
85254
85255
85256
85257
85258
85259
85260
85261
85262
85263
85264
85265
85266
85267
85268
85269
85270
85271
85272
85273
85274
85275
85276
85277
85278
85279
85280
85281
85282
85283
85284
85285
85286
85287
85288
85289
85290
85291
85292
85293
85294
85295
85296
85297
85298
85299
85300
85301
85302
85303
85304
85305
85306
85307
85308
85309
85310
85311
85312
85313
85314
85315
85316
85317
85318
85319
85320
85321
85322
85323
85324
85325
85326
85327
85328
85329
85330
85331
85332
85333
85334
85335
85336
85337
85338
85339
85340
85341
85342
85343
85344
85345
85346
85347
85348
85349
85350
85351
85352
85353
85354
85355
85356
85357
85358
85359
85360
85361
85362
85363
85364
85365
85366
85367
85368
85369
85370
85371
85372
85373
85374
85375
85376
85377
85378
85379
85380
85381
85382
85383
85384
85385
85386
85387
85388
85389
85390
85391
85392
85393
85394
85395
85396
85397
85398
85399
85400
85401
85402
85403
85404
85405
85406
85407
85408
85409
85410
85411
85412
85413
85414
85415
85416
85417
85418
85419
85420
85421
85422
85423
85424
85425
85426
85427
85428
85429
85430
85431
85432
85433
85434
85435
85436
85437
85438
85439
85440
85441
85442
85443
85444
85445
85446
85447
85448
85449
85450
85451
85452
85453
85454
85455
85456
85457
85458
85459
85460
85461
85462
85463
85464
85465
85466
85467
85468
85469
85470
85471
85472
85473
85474
85475
85476
85477
85478
85479
85480
85481
85482
85483
85484
85485
85486
85487
85488
85489
85490
85491
85492
85493
85494
85495
85496
85497
85498
85499
85500
85501
85502
85503
85504
85505
85506
85507
85508
85509
85510
85511
85512
85513
85514
85515
85516
85517
85518
85519
85520
85521
85522
85523
85524
85525
85526
85527
85528
85529
85530
85531
85532
85533
85534
85535
85536
85537
85538
85539
85540
85541
85542
85543
85544
85545
85546
85547
85548
85549
85550
85551
85552
85553
85554
85555
85556
85557
85558
85559
85560
85561
85562
85563
85564
85565
85566
85567
85568
85569
85570
85571
85572
85573
85574
85575
85576
85577
85578
85579
85580
85581
85582
85583
85584
85585
85586
85587
85588
85589
85590
85591
85592
85593
85594
85595
85596
85597
85598
85599
85600
85601
85602
85603
85604
85605
85606
85607
85608
85609
85610
85611
85612
85613
85614
85615
85616
85617
85618
85619
85620
85621
85622
85623
85624
85625
85626
85627
85628
85629
85630
85631
85632
85633
85634
85635
85636
85637
85638
85639
85640
85641
85642
85643
85644
85645
85646
85647
85648
85649
85650
85651
85652
85653
85654
85655
85656
85657
85658
85659
85660
85661
85662
85663
85664
85665
85666
85667
85668
85669
85670
85671
85672
85673
85674
85675
85676
85677
85678
85679
85680
85681
85682
85683
85684
85685
85686
85687
85688
85689
85690
85691
85692
85693
85694
85695
85696
85697
85698
85699
85700
85701
85702
85703
85704
85705
85706
85707
85708
85709
85710
85711
85712
85713
85714
85715
85716
85717
85718
85719
85720
85721
85722
85723
85724
85725
85726
85727
85728
85729
85730
85731
85732
85733
85734
85735
85736
85737
85738
85739
85740
85741
85742
85743
85744
85745
85746
85747
85748
85749
85750
85751
85752
85753
85754
85755
85756
85757
85758
85759
85760
85761
85762
85763
85764
85765
85766
85767
85768
85769
85770
85771
85772
85773
85774
85775
85776
85777
85778
85779
85780
85781
85782
85783
85784
85785
85786
85787
85788
85789
85790
85791
85792
85793
85794
85795
85796
85797
85798
85799
85800
85801
85802
85803
85804
85805
85806
85807
85808
85809
85810
85811
85812
85813
85814
85815
85816
85817
85818
85819
85820
85821
85822
85823
85824
85825
85826
85827
85828
85829
85830
85831
85832
85833
85834
85835
85836
85837
85838
85839
85840
85841
85842
85843
85844
85845
85846
85847
85848
85849
85850
85851
85852
85853
85854
85855
85856
85857
85858
85859
85860
85861
85862
85863
85864
85865
85866
85867
85868
85869
85870
85871
85872
85873
85874
85875
85876
85877
85878
85879
85880
85881
85882
85883
85884
85885
85886
85887
85888
85889
85890
85891
85892
85893
85894
85895
85896
85897
85898
85899
85900
85901
85902
85903
85904
85905
85906
85907
85908
85909
85910
85911
85912
85913
85914
85915
85916
85917
85918
85919
85920
85921
85922
85923
85924
85925
85926
85927
85928
85929
85930
85931
85932
85933
85934
85935
85936
85937
85938
85939
85940
85941
85942
85943
85944
85945
85946
85947
85948
85949
85950
85951
85952
85953
85954
85955
85956
85957
85958
85959
85960
85961
85962
85963
85964
85965
85966
85967
85968
85969
85970
85971
85972
85973
85974
85975
85976
85977
85978
85979
85980
85981
85982
85983
85984
85985
85986
85987
85988
85989
85990
85991
85992
85993
85994
85995
85996
85997
85998
85999
86000
86001
86002
86003
86004
86005
86006
86007
86008
86009
86010
86011
86012
86013
86014
86015
86016
86017
86018
86019
86020
86021
86022
86023
86024
86025
86026
86027
86028
86029
86030
86031
86032
86033
86034
86035
86036
86037
86038
86039
86040
86041
86042
86043
86044
86045
86046
86047
86048
86049
86050
86051
86052
86053
86054
86055
86056
86057
86058
86059
86060
86061
86062
86063
86064
86065
86066
86067
86068
86069
86070
86071
86072
86073
86074
86075
86076
86077
86078
86079
86080
86081
86082
86083
86084
86085
86086
86087
86088
86089
86090
86091
86092
86093
86094
86095
86096
86097
86098
86099
86100
86101
86102
86103
86104
86105
86106
86107
86108
86109
86110
86111
86112
86113
86114
86115
86116
86117
86118
86119
86120
86121
86122
86123
86124
86125
86126
86127
86128
86129
86130
86131
86132
86133
86134
86135
86136
86137
86138
86139
86140
86141
86142
86143
86144
86145
86146
86147
86148
86149
86150
86151
86152
86153
86154
86155
86156
86157
86158
86159
86160
86161
86162
86163
86164
86165
86166
86167
86168
86169
86170
86171
86172
86173
86174
86175
86176
86177
86178
86179
86180
86181
86182
86183
86184
86185
86186
86187
86188
86189
86190
86191
86192
86193
86194
86195
86196
86197
86198
86199
86200
86201
86202
86203
86204
86205
86206
86207
86208
86209
86210
86211
86212
86213
86214
86215
86216
86217
86218
86219
86220
86221
86222
86223
86224
86225
86226
86227
86228
86229
86230
86231
86232
86233
86234
86235
86236
86237
86238
86239
86240
86241
86242
86243
86244
86245
86246
86247
86248
86249
86250
86251
86252
86253
86254
86255
86256
86257
86258
86259
86260
86261
86262
86263
86264
86265
86266
86267
86268
86269
86270
86271
86272
86273
86274
86275
86276
86277
86278
86279
86280
86281
86282
86283
86284
86285
86286
86287
86288
86289
86290
86291
86292
86293
86294
86295
86296
86297
86298
86299
86300
86301
86302
86303
86304
86305
86306
86307
86308
86309
86310
86311
86312
86313
86314
86315
86316
86317
86318
86319
86320
86321
86322
86323
86324
86325
86326
86327
86328
86329
86330
86331
86332
86333
86334
86335
86336
86337
86338
86339
86340
86341
86342
86343
86344
86345
86346
86347
86348
86349
86350
86351
86352
86353
86354
86355
86356
86357
86358
86359
86360
86361
86362
86363
86364
86365
86366
86367
86368
86369
86370
86371
86372
86373
86374
86375
86376
86377
86378
86379
86380
86381
86382
86383
86384
86385
86386
86387
86388
86389
86390
86391
86392
86393
86394
86395
86396
86397
86398
86399
86400
86401
86402
86403
86404
86405
86406
86407
86408
86409
86410
86411
86412
86413
86414
86415
86416
86417
86418
86419
86420
86421
86422
86423
86424
86425
86426
86427
86428
86429
86430
86431
86432
86433
86434
86435
86436
86437
86438
86439
86440
86441
86442
86443
86444
86445
86446
86447
86448
86449
86450
86451
86452
86453
86454
86455
86456
86457
86458
86459
86460
86461
86462
86463
86464
86465
86466
86467
86468
86469
86470
86471
86472
86473
86474
86475
86476
86477
86478
86479
86480
86481
86482
86483
86484
86485
86486
86487
86488
86489
86490
86491
86492
86493
86494
86495
86496
86497
86498
86499
86500
86501
86502
86503
86504
86505
86506
86507
86508
86509
86510
86511
86512
86513
86514
86515
86516
86517
86518
86519
86520
86521
86522
86523
86524
86525
86526
86527
86528
86529
86530
86531
86532
86533
86534
86535
86536
86537
86538
86539
86540
86541
86542
86543
86544
86545
86546
86547
86548
86549
86550
86551
86552
86553
86554
86555
86556
86557
86558
86559
86560
86561
86562
86563
86564
86565
86566
86567
86568
86569
86570
86571
86572
86573
86574
86575
86576
86577
86578
86579
86580
86581
86582
86583
86584
86585
86586
86587
86588
86589
86590
86591
86592
86593
86594
86595
86596
86597
86598
86599
86600
86601
86602
86603
86604
86605
86606
86607
86608
86609
86610
86611
86612
86613
86614
86615
86616
86617
86618
86619
86620
86621
86622
86623
86624
86625
86626
86627
86628
86629
86630
86631
86632
86633
86634
86635
86636
86637
86638
86639
86640
86641
86642
86643
86644
86645
86646
86647
86648
86649
86650
86651
86652
86653
86654
86655
86656
86657
86658
86659
86660
86661
86662
86663
86664
86665
86666
86667
86668
86669
86670
86671
86672
86673
86674
86675
86676
86677
86678
86679
86680
86681
86682
86683
86684
86685
86686
86687
86688
86689
86690
86691
86692
86693
86694
86695
86696
86697
86698
86699
86700
86701
86702
86703
86704
86705
86706
86707
86708
86709
86710
86711
86712
86713
86714
86715
86716
86717
86718
86719
86720
86721
86722
86723
86724
86725
86726
86727
86728
86729
86730
86731
86732
86733
86734
86735
86736
86737
86738
86739
86740
86741
86742
86743
86744
86745
86746
86747
86748
86749
86750
86751
86752
86753
86754
86755
86756
86757
86758
86759
86760
86761
86762
86763
86764
86765
86766
86767
86768
86769
86770
86771
86772
86773
86774
86775
86776
86777
86778
86779
86780
86781
86782
86783
86784
86785
86786
86787
86788
86789
86790
86791
86792
86793
86794
86795
86796
86797
86798
86799
86800
86801
86802
86803
86804
86805
86806
86807
86808
86809
86810
86811
86812
86813
86814
86815
86816
86817
86818
86819
86820
86821
86822
86823
86824
86825
86826
86827
86828
86829
86830
86831
86832
86833
86834
86835
86836
86837
86838
86839
86840
86841
86842
86843
86844
86845
86846
86847
86848
86849
86850
86851
86852
86853
86854
86855
86856
86857
86858
86859
86860
86861
86862
86863
86864
86865
86866
86867
86868
86869
86870
86871
86872
86873
86874
86875
86876
86877
86878
86879
86880
86881
86882
86883
86884
86885
86886
86887
86888
86889
86890
86891
86892
86893
86894
86895
86896
86897
86898
86899
86900
86901
86902
86903
86904
86905
86906
86907
86908
86909
86910
86911
86912
86913
86914
86915
86916
86917
86918
86919
86920
86921
86922
86923
86924
86925
86926
86927
86928
86929
86930
86931
86932
86933
86934
86935
86936
86937
86938
86939
86940
86941
86942
86943
86944
86945
86946
86947
86948
86949
86950
86951
86952
86953
86954
86955
86956
86957
86958
86959
86960
86961
86962
86963
86964
86965
86966
86967
86968
86969
86970
86971
86972
86973
86974
86975
86976
86977
86978
86979
86980
86981
86982
86983
86984
86985
86986
86987
86988
86989
86990
86991
86992
86993
86994
86995
86996
86997
86998
86999
87000
87001
87002
87003
87004
87005
87006
87007
87008
87009
87010
87011
87012
87013
87014
87015
87016
87017
87018
87019
87020
87021
87022
87023
87024
87025
87026
87027
87028
87029
87030
87031
87032
87033
87034
87035
87036
87037
87038
87039
87040
87041
87042
87043
87044
87045
87046
87047
87048
87049
87050
87051
87052
87053
87054
87055
87056
87057
87058
87059
87060
87061
87062
87063
87064
87065
87066
87067
87068
87069
87070
87071
87072
87073
87074
87075
87076
87077
87078
87079
87080
87081
87082
87083
87084
87085
87086
87087
87088
87089
87090
87091
87092
87093
87094
87095
87096
87097
87098
87099
87100
87101
87102
87103
87104
87105
87106
87107
87108
87109
87110
87111
87112
87113
87114
87115
87116
87117
87118
87119
87120
87121
87122
87123
87124
87125
87126
87127
87128
87129
87130
87131
87132
87133
87134
87135
87136
87137
87138
87139
87140
87141
87142
87143
87144
87145
87146
87147
87148
87149
87150
87151
87152
87153
87154
87155
87156
87157
87158
87159
87160
87161
87162
87163
87164
87165
87166
87167
87168
87169
87170
87171
87172
87173
87174
87175
87176
87177
87178
87179
87180
87181
87182
87183
87184
87185
87186
87187
87188
87189
87190
87191
87192
87193
87194
87195
87196
87197
87198
87199
87200
87201
87202
87203
87204
87205
87206
87207
87208
87209
87210
87211
87212
87213
87214
87215
87216
87217
87218
87219
87220
87221
87222
87223
87224
87225
87226
87227
87228
87229
87230
87231
87232
87233
87234
87235
87236
87237
87238
87239
87240
87241
87242
87243
87244
87245
87246
87247
87248
87249
87250
87251
87252
87253
87254
87255
87256
87257
87258
87259
87260
87261
87262
87263
87264
87265
87266
87267
87268
87269
87270
87271
87272
87273
87274
87275
87276
87277
87278
87279
87280
87281
87282
87283
87284
87285
87286
87287
87288
87289
87290
87291
87292
87293
87294
87295
87296
87297
87298
87299
87300
87301
87302
87303
87304
87305
87306
87307
87308
87309
87310
87311
87312
87313
87314
87315
87316
87317
87318
87319
87320
87321
87322
87323
87324
87325
87326
87327
87328
87329
87330
87331
87332
87333
87334
87335
87336
87337
87338
87339
87340
87341
87342
87343
87344
87345
87346
87347
87348
87349
87350
87351
87352
87353
87354
87355
87356
87357
87358
87359
87360
87361
87362
87363
87364
87365
87366
87367
87368
87369
87370
87371
87372
87373
87374
87375
87376
87377
87378
87379
87380
87381
87382
87383
87384
87385
87386
87387
87388
87389
87390
87391
87392
87393
87394
87395
87396
87397
87398
87399
87400
87401
87402
87403
87404
87405
87406
87407
87408
87409
87410
87411
87412
87413
87414
87415
87416
87417
87418
87419
87420
87421
87422
87423
87424
87425
87426
87427
87428
87429
87430
87431
87432
87433
87434
87435
87436
87437
87438
87439
87440
87441
87442
87443
87444
87445
87446
87447
87448
87449
87450
87451
87452
87453
87454
87455
87456
87457
87458
87459
87460
87461
87462
87463
87464
87465
87466
87467
87468
87469
87470
87471
87472
87473
87474
87475
87476
87477
87478
87479
87480
87481
87482
87483
87484
87485
87486
87487
87488
87489
87490
87491
87492
87493
87494
87495
87496
87497
87498
87499
87500
87501
87502
87503
87504
87505
87506
87507
87508
87509
87510
87511
87512
87513
87514
87515
87516
87517
87518
87519
87520
87521
87522
87523
87524
87525
87526
87527
87528
87529
87530
87531
87532
87533
87534
87535
87536
87537
87538
87539
87540
87541
87542
87543
87544
87545
87546
87547
87548
87549
87550
87551
87552
87553
87554
87555
87556
87557
87558
87559
87560
87561
87562
87563
87564
87565
87566
87567
87568
87569
87570
87571
87572
87573
87574
87575
87576
87577
87578
87579
87580
87581
87582
87583
87584
87585
87586
87587
87588
87589
87590
87591
87592
87593
87594
87595
87596
87597
87598
87599
87600
87601
87602
87603
87604
87605
87606
87607
87608
87609
87610
87611
87612
87613
87614
87615
87616
87617
87618
87619
87620
87621
87622
87623
87624
87625
87626
87627
87628
87629
87630
87631
87632
87633
87634
87635
87636
87637
87638
87639
87640
87641
87642
87643
87644
87645
87646
87647
87648
87649
87650
87651
87652
87653
87654
87655
87656
87657
87658
87659
87660
87661
87662
87663
87664
87665
87666
87667
87668
87669
87670
87671
87672
87673
87674
87675
87676
87677
87678
87679
87680
87681
87682
87683
87684
87685
87686
87687
87688
87689
87690
87691
87692
87693
87694
87695
87696
87697
87698
87699
87700
87701
87702
87703
87704
87705
87706
87707
87708
87709
87710
87711
87712
87713
87714
87715
87716
87717
87718
87719
87720
87721
87722
87723
87724
87725
87726
87727
87728
87729
87730
87731
87732
87733
87734
87735
87736
87737
87738
87739
87740
87741
87742
87743
87744
87745
87746
87747
87748
87749
87750
87751
87752
87753
87754
87755
87756
87757
87758
87759
87760
87761
87762
87763
87764
87765
87766
87767
87768
87769
87770
87771
87772
87773
87774
87775
87776
87777
87778
87779
87780
87781
87782
87783
87784
87785
87786
87787
87788
87789
87790
87791
87792
87793
87794
87795
87796
87797
87798
87799
87800
87801
87802
87803
87804
87805
87806
87807
87808
87809
87810
87811
87812
87813
87814
87815
87816
87817
87818
87819
87820
87821
87822
87823
87824
87825
87826
87827
87828
87829
87830
87831
87832
87833
87834
87835
87836
87837
87838
87839
87840
87841
87842
87843
87844
87845
87846
87847
87848
87849
87850
87851
87852
87853
87854
87855
87856
87857
87858
87859
87860
87861
87862
87863
87864
87865
87866
87867
87868
87869
87870
87871
87872
87873
87874
87875
87876
87877
87878
87879
87880
87881
87882
87883
87884
87885
87886
87887
87888
87889
87890
87891
87892
87893
87894
87895
87896
87897
87898
87899
87900
87901
87902
87903
87904
87905
87906
87907
87908
87909
87910
87911
87912
87913
87914
87915
87916
87917
87918
87919
87920
87921
87922
87923
87924
87925
87926
87927
87928
87929
87930
87931
87932
87933
87934
87935
87936
87937
87938
87939
87940
87941
87942
87943
87944
87945
87946
87947
87948
87949
87950
87951
87952
87953
87954
87955
87956
87957
87958
87959
87960
87961
87962
87963
87964
87965
87966
87967
87968
87969
87970
87971
87972
87973
87974
87975
87976
87977
87978
87979
87980
87981
87982
87983
87984
87985
87986
87987
87988
87989
87990
87991
87992
87993
87994
87995
87996
87997
87998
87999
88000
88001
88002
88003
88004
88005
88006
88007
88008
88009
88010
88011
88012
88013
88014
88015
88016
88017
88018
88019
88020
88021
88022
88023
88024
88025
88026
88027
88028
88029
88030
88031
88032
88033
88034
88035
88036
88037
88038
88039
88040
88041
88042
88043
88044
88045
88046
88047
88048
88049
88050
88051
88052
88053
88054
88055
88056
88057
88058
88059
88060
88061
88062
88063
88064
88065
88066
88067
88068
88069
88070
88071
88072
88073
88074
88075
88076
88077
88078
88079
88080
88081
88082
88083
88084
88085
88086
88087
88088
88089
88090
88091
88092
88093
88094
88095
88096
88097
88098
88099
88100
88101
88102
88103
88104
88105
88106
88107
88108
88109
88110
88111
88112
88113
88114
88115
88116
88117
88118
88119
88120
88121
88122
88123
88124
88125
88126
88127
88128
88129
88130
88131
88132
88133
88134
88135
88136
88137
88138
88139
88140
88141
88142
88143
88144
88145
88146
88147
88148
88149
88150
88151
88152
88153
88154
88155
88156
88157
88158
88159
88160
88161
88162
88163
88164
88165
88166
88167
88168
88169
88170
88171
88172
88173
88174
88175
88176
88177
88178
88179
88180
88181
88182
88183
88184
88185
88186
88187
88188
88189
88190
88191
88192
88193
88194
88195
88196
88197
88198
88199
88200
88201
88202
88203
88204
88205
88206
88207
88208
88209
88210
88211
88212
88213
88214
88215
88216
88217
88218
88219
88220
88221
88222
88223
88224
88225
88226
88227
88228
88229
88230
88231
88232
88233
88234
88235
88236
88237
88238
88239
88240
88241
88242
88243
88244
88245
88246
88247
88248
88249
88250
88251
88252
88253
88254
88255
88256
88257
88258
88259
88260
88261
88262
88263
88264
88265
88266
88267
88268
88269
88270
88271
88272
88273
88274
88275
88276
88277
88278
88279
88280
88281
88282
88283
88284
88285
88286
88287
88288
88289
88290
88291
88292
88293
88294
88295
88296
88297
88298
88299
88300
88301
88302
88303
88304
88305
88306
88307
88308
88309
88310
88311
88312
88313
88314
88315
88316
88317
88318
88319
88320
88321
88322
88323
88324
88325
88326
88327
88328
88329
88330
88331
88332
88333
88334
88335
88336
88337
88338
88339
88340
88341
88342
88343
88344
88345
88346
88347
88348
88349
88350
88351
88352
88353
88354
88355
88356
88357
88358
88359
88360
88361
88362
88363
88364
88365
88366
88367
88368
88369
88370
88371
88372
88373
88374
88375
88376
88377
88378
88379
88380
88381
88382
88383
88384
88385
88386
88387
88388
88389
88390
88391
88392
88393
88394
88395
88396
88397
88398
88399
88400
88401
88402
88403
88404
88405
88406
88407
88408
88409
88410
88411
88412
88413
88414
88415
88416
88417
88418
88419
88420
88421
88422
88423
88424
88425
88426
88427
88428
88429
88430
88431
88432
88433
88434
88435
88436
88437
88438
88439
88440
88441
88442
88443
88444
88445
88446
88447
88448
88449
88450
88451
88452
88453
88454
88455
88456
88457
88458
88459
88460
88461
88462
88463
88464
88465
88466
88467
88468
88469
88470
88471
88472
88473
88474
88475
88476
88477
88478
88479
88480
88481
88482
88483
88484
88485
88486
88487
88488
88489
88490
88491
88492
88493
88494
88495
88496
88497
88498
88499
88500
88501
88502
88503
88504
88505
88506
88507
88508
88509
88510
88511
88512
88513
88514
88515
88516
88517
88518
88519
88520
88521
88522
88523
88524
88525
88526
88527
88528
88529
88530
88531
88532
88533
88534
88535
88536
88537
88538
88539
88540
88541
88542
88543
88544
88545
88546
88547
88548
88549
88550
88551
88552
88553
88554
88555
88556
88557
88558
88559
88560
88561
88562
88563
88564
88565
88566
88567
88568
88569
88570
88571
88572
88573
88574
88575
88576
88577
88578
88579
88580
88581
88582
88583
88584
88585
88586
88587
88588
88589
88590
88591
88592
88593
88594
88595
88596
88597
88598
88599
88600
88601
88602
88603
88604
88605
88606
88607
88608
88609
88610
88611
88612
88613
88614
88615
88616
88617
88618
88619
88620
88621
88622
88623
88624
88625
88626
88627
88628
88629
88630
88631
88632
88633
88634
88635
88636
88637
88638
88639
88640
88641
88642
88643
88644
88645
88646
88647
88648
88649
88650
88651
88652
88653
88654
88655
88656
88657
88658
88659
88660
88661
88662
88663
88664
88665
88666
88667
88668
88669
88670
88671
88672
88673
88674
88675
88676
88677
88678
88679
88680
88681
88682
88683
88684
88685
88686
88687
88688
88689
88690
88691
88692
88693
88694
88695
88696
88697
88698
88699
88700
88701
88702
88703
88704
88705
88706
88707
88708
88709
88710
88711
88712
88713
88714
88715
88716
88717
88718
88719
88720
88721
88722
88723
88724
88725
88726
88727
88728
88729
88730
88731
88732
88733
88734
88735
88736
88737
88738
88739
88740
88741
88742
88743
88744
88745
88746
88747
88748
88749
88750
88751
88752
88753
88754
88755
88756
88757
88758
88759
88760
88761
88762
88763
88764
88765
88766
88767
88768
88769
88770
88771
88772
88773
88774
88775
88776
88777
88778
88779
88780
88781
88782
88783
88784
88785
88786
88787
88788
88789
88790
88791
88792
88793
88794
88795
88796
88797
88798
88799
88800
88801
88802
88803
88804
88805
88806
88807
88808
88809
88810
88811
88812
88813
88814
88815
88816
88817
88818
88819
88820
88821
88822
88823
88824
88825
88826
88827
88828
88829
88830
88831
88832
88833
88834
88835
88836
88837
88838
88839
88840
88841
88842
88843
88844
88845
88846
88847
88848
88849
88850
88851
88852
88853
88854
88855
88856
88857
88858
88859
88860
88861
88862
88863
88864
88865
88866
88867
88868
88869
88870
88871
88872
88873
88874
88875
88876
88877
88878
88879
88880
88881
88882
88883
88884
88885
88886
88887
88888
88889
88890
88891
88892
88893
88894
88895
88896
88897
88898
88899
88900
88901
88902
88903
88904
88905
88906
88907
88908
88909
88910
88911
88912
88913
88914
88915
88916
88917
88918
88919
88920
88921
88922
88923
88924
88925
88926
88927
88928
88929
88930
88931
88932
88933
88934
88935
88936
88937
88938
88939
88940
88941
88942
88943
88944
88945
88946
88947
88948
88949
88950
88951
88952
88953
88954
88955
88956
88957
88958
88959
88960
88961
88962
88963
88964
88965
88966
88967
88968
88969
88970
88971
88972
88973
88974
88975
88976
88977
88978
88979
88980
88981
88982
88983
88984
88985
88986
88987
88988
88989
88990
88991
88992
88993
88994
88995
88996
88997
88998
88999
89000
89001
89002
89003
89004
89005
89006
89007
89008
89009
89010
89011
89012
89013
89014
89015
89016
89017
89018
89019
89020
89021
89022
89023
89024
89025
89026
89027
89028
89029
89030
89031
89032
89033
89034
89035
89036
89037
89038
89039
89040
89041
89042
89043
89044
89045
89046
89047
89048
89049
89050
89051
89052
89053
89054
89055
89056
89057
89058
89059
89060
89061
89062
89063
89064
89065
89066
89067
89068
89069
89070
89071
89072
89073
89074
89075
89076
89077
89078
89079
89080
89081
89082
89083
89084
89085
89086
89087
89088
89089
89090
89091
89092
89093
89094
89095
89096
89097
89098
89099
89100
89101
89102
89103
89104
89105
89106
89107
89108
89109
89110
89111
89112
89113
89114
89115
89116
89117
89118
89119
89120
89121
89122
89123
89124
89125
89126
89127
89128
89129
89130
89131
89132
89133
89134
89135
89136
89137
89138
89139
89140
89141
89142
89143
89144
89145
89146
89147
89148
89149
89150
89151
89152
89153
89154
89155
89156
89157
89158
89159
89160
89161
89162
89163
89164
89165
89166
89167
89168
89169
89170
89171
89172
89173
89174
89175
89176
89177
89178
89179
89180
89181
89182
89183
89184
89185
89186
89187
89188
89189
89190
89191
89192
89193
89194
89195
89196
89197
89198
89199
89200
89201
89202
89203
89204
89205
89206
89207
89208
89209
89210
89211
89212
89213
89214
89215
89216
89217
89218
89219
89220
89221
89222
89223
89224
89225
89226
89227
89228
89229
89230
89231
89232
89233
89234
89235
89236
89237
89238
89239
89240
89241
89242
89243
89244
89245
89246
89247
89248
89249
89250
89251
89252
89253
89254
89255
89256
89257
89258
89259
89260
89261
89262
89263
89264
89265
89266
89267
89268
89269
89270
89271
89272
89273
89274
89275
89276
89277
89278
89279
89280
89281
89282
89283
89284
89285
89286
89287
89288
89289
89290
89291
89292
89293
89294
89295
89296
89297
89298
89299
89300
89301
89302
89303
89304
89305
89306
89307
89308
89309
89310
89311
89312
89313
89314
89315
89316
89317
89318
89319
89320
89321
89322
89323
89324
89325
89326
89327
89328
89329
89330
89331
89332
89333
89334
89335
89336
89337
89338
89339
89340
89341
89342
89343
89344
89345
89346
89347
89348
89349
89350
89351
89352
89353
89354
89355
89356
89357
89358
89359
89360
89361
89362
89363
89364
89365
89366
89367
89368
89369
89370
89371
89372
89373
89374
\documentclass[dvipdfmx]{book}
\newcommand{\VolumeName}{Volume 0: Axiom Jenks and Sutor}
\input{bookheader.tex}
%Original Page vii

{\Large{\bf Foreword}}
\vskip .25in

You are holding in your hands an unusual book.  Winston Churchill once
said that the empires of the future will be empires of the mind.  This
book might hold an electronic key to such an empire.

When computers were young and slow, the emerging computer science
developed dreams of Artificial Intelligence and Automatic Theorem
Proving in which theorems can be proved by machines instead of
mathematicians.  Now, when computer hardware has matured and become
cheaper and faster, there is not too much talk of putting the burden
of formulating and proving theorems on the computer's shoulders.
Moreover, even in those cases when computer programs do prove
theorems, or establish counter-examples (for example, the solution of
the four color problem, the non-existence of projective planes of
order 10, the disproof of the Mertens conjecture), humans carry most
of the burden in the form of programming and verification.

It is the language of computer programming that has turned out to be
the crucial instrument of productivity in the evolution of scientific
computing.  The original Artificial Intelligence efforts gave birth to
the first symbolic manipulation systems based on LISP.  The first
complete symbolic manipulation or, as they are called now, computer
algebra packages tried to imbed the development programming and
execution of mathematical problems into a framework of familiar
symbolic notations, operations and conventions.  In the third decade
of symbolic computations, a couple of these early systems---REDUCE and
MACSYMA---still hold their own among faithful users.

%Original Page viii

Axiom was born in the mid-70's as a system called Scratchpad
developed by IBM researchers.  Scratchpad/Axiom was born big---its
original platform was an IBM mainframe 3081, and later a 3090.  The
system was growing and learning during the decade of the 80's, and its
development and progress influenced the field of computer algebra.
During this period, the first commercially available computer algebra
packages for mini and and microcomputers made their debut.  By now,
our readers are aware of Mathematica, Maple, Derive, and Macsyma.
These systems (as well as a few special purpose computer algebra
packages in academia) emphasize ease of operation and standard
scientific conventions, and come with a prepared set of mathematical
solutions for typical tasks confronting an applied scientist or an
engineer.  These features brought a recognition of the enormous
benefits of computer algebra to the widest circles of scientists and
engineers.

The Scratchpad system took its time to blossom into the beautiful
Axiom product.  There is no rival to this powerful environment in
its scope and, most importantly, in its structure and organization.
Axiom contains the basis for any comprehensive and elaborate
mathematical development.  It gives the user all Foundation and
Algebra instruments necessary to develop a computer realization of
sophisticated mathematical objects in exactly the way a mathematician
would do it.  Axiom is also the basis of a complete scientific
cyberspace---it provides an environment for mathematical objects used
in scientific computation, and the means of controlling and
communicating between these objects.  Knowledge of only a few Axiom
language features and operating principles is all that is required to
make impressive progress in a given domain of interest.  The system is
powerful.  It is not an interactive interpretive environment operating
only in response to one line commands---it is a complete language with
rich syntax and a full compiler.  Mathematics can be developed and
explored with ease by the user of Axiom.  In fact, during
Axiom's growth cycle, many detailed mathematical domains were
constructed.  Some of them are a part of Axiom's core and are
described in this book.  For a bird's eye view of the algebra
hierarchy of Axiom, glance inside the book cover.

The crucial strength of Axiom lies in its excellent structural
features and unlimited expandability---it is open, modular system
designed to support an ever growing number of facilities with minimal
increase in structural complexity.  Its design also supports the
integration of other computation tools such as numerical software
libraries written in FORTRAN and C.  While Axiom is already a
very powerful system, the prospect of scientists using the system to
develop their own fields of Science is truly exciting---the day is
still young for Axiom.

%Original Page ix

Over the last several years Scratchpad/Axiom has scored many
successes in theoretical mathematics, mathematical physics,
combinatorics, digital signal processing, cryptography and parallel
processing.  We have to confess that we enjoyed using
Scratchpad/Axiom.  It provided us with an excellent environment for
our research, and allowed us to solve problems intractable on other
systems.  We were able to prove new diophantine results for $\pi$;
establish the Grothendieck conjecture for certain classes of linear
differential equations; study the arithmetic properties of the
uniformization of hyperelliptic and other algebraic curves; construct
new factorization algorithms based on formal groups; within
Scratchpad/Axiom we were able to obtain new identities needed for
quantum field theory (elliptic genus formula and double scaling limit
for quantum gravity), and classify period relations for CM varieties
in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group
that is well known for its high quality software products for
numerical and statistical computations.  The development of Axiom
in IBM was conducted at IBM T.J. Watson Research Center at Yorktown,
New York by a symbolic computation group headed by Richard D. Jenks.
Shmuel Winograd of IBM was instrumental in the progress of symbolic
research at IBM.

This book opens the wonderful world of Axiom, guiding the reader
and user through Axiom's definitions, rules, applications and
interfaces.  A variety of fully developed areas of mathematics are
presented as packages, and the user is well advised to take advantage
of the sophisticated realization of familiar mathematics.  The
Axiom book is easy to read and the Axiom system is easy to use.
It possesses all the features required of a modern computer
environment (for example, windowing, integration of operating system
features, and interactive graphics).  Axiom comes with a detailed
hypertext interface (HyperDoc), an elaborate browser, and complete
on-line documentation.  The HyperDoc allows novices to solve their
problems in a straightforward way, by providing menus for step-by-step
interactive entry.

The appearance of Axiom in the scientific market moves symbolic
computing into a higher plane, where scientists can formulate their
statements in their own language and receive computer assistance in
their proofs.  Axiom's performance on workstations is truly
impressive, and users of Axiom will get more from them than we, the
early users, got from mainframes.  Axiom provides a powerful
scientific environment for easy construction of mathematical tools and
algorithms; it is a symbolic manipulation system, and a high
performance numerical system, with full graphics capabilities.  We
expect every (computer) power hungry scientist will want to take full
advantage of Axiom.

\vskip .25in
%\noindent
David V. Chudnovsky  \hfill             Gregory V. Chudnovsky
\vfill
\newpage
\addcontentsline{toc}{chapter}{Contributors}

The field of Computational Mathematics is here to stay as it is
the collision of computers and mathematics, both of which will
continue. As a field, we need to develop a sense of history.

Computational Mathematics is, historically speaking, quite a young
field dating as it does from the 1960s. We have access to some of the
source code from these systems. That source code forms the ``Newton's
notebooks'' of the field. Some of the source codes for these
influential systems disappeared with the company, such as Derive and
Macsyma. Some, like Maple and Mathematica, are commercial and it is
not clear if the source code will survive.  Others, like Reduce, were
publicly released but are no longer maintained. Axiom is, on all
counts, an exception.

Axiom is quite old, unlike most open source software. 
In fact, old enough to outlive the original IBM authors. 
So it is with this sense of history, made by real people,
that we record the obituaries of the original project members.

May they rest in peace.

\addcontentsline{toc}{section}{Obituary -- Richard Dimick Jenks}
\includegraphics[scale=0.75]{ps/jenks.eps}
\begin{verbatim}
+---------------------------------------------------------------------+
|                      Richard Dimick Jenks                           |
|           Axiom Developer and Computer Algebra Pioneer              |
|                                                                     |
| Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois,  |
| where he grew up. During his childhood he learned to play the       |
| organ and sang in the church choir thereby developing a life-long   |
| passion for music.                                                  |
|                                                                     |
| He received his PhD in mathematics from the University of Illinois  |
| at Urbana-Champaign in 1966. The title of his dissertation was      |
| ``Quadratic Differential Systems for Mathematical Models" and was   |
| written under the supervision of Donald Gilles. After completing    |
| his PhD, he was a post-doctoral fellow at Brookhaven National       |
| Laboratory on Long Island. In 1968 he joined IBM Research where he  |
| worked until his retirement in 2002.                                |
|                                                                     |
| At IBM he was a principal architect of the Scratchpad system, one   |
| of the earliest computer algebra systems(1971). Dick always         |
| believed that natural user interfaces were essential and developed  |
| a user-friendly rule-based system for Scratchpad. Although this     |
| rule-based approach was easy to use, as algorithms for computer     |
| algebra became more complicated, he began to understand that an     |
| abstract data type approach would give sophisticated algorithm      |
| development considerably more leverage. In 1977 he began the Axiom  |
| development (originally called Scratchpad II) with the design of    |
| MODLISP, a merger of Lisp with types (modes). In 1980, with the     |
| help of many others, he completed an initial prototype design       |
| based on categories and domains that were intended to be natural    |
| for mathematically sophisticated users.                             |
|                                                                     |
| During this period many researchers in computer algebra visited     |
| IBM Research in Yorktown Heights and contributed to the development |
| of the Axiom system. All this activity made the computer algebra    |
| group at IBM one of the leading centers for research in this area   |
| and Dick was always there to organize the visits and provide a      |
| stimulating and pleasant working environment for everyone. He had   |
| a good perspective on the most important research directions and    |
| worked to attract world-renowned experts to visit and interact      |
| with his group. He was an ideal manager for whom to work, one who   |
| always put the project and the needs of the group members first.    |
| It was a joy to work in such a vibrant and stimulating environment. |
|                                                                     |
| After many years of development, a decision was made to rename      |
| Scratchpad II to Axiom and to release it as a product. Dick and     |
| Robert Sutor were the primary authors of the book Axiom: The        |
| Scientific Computation System. In the foreword of the book,         |
| written by David and Gregory Chudnovsky, it is stated that ``The    |
| Scratchpad system took its time to blossom into the beautiful       |
| Axiom product. There is no rival to this powerful environment in    |
| its scope and, most importantly, in its structure and organization. |
| Axiom was recently made available as free software.                 |
| See http://axiom-developer.org                                      |
|                                                                     |
| Dick was active in service to the computer algebra community as     |
| well. Here are some highlights. He served as Chair of ACM SIGSAM    |
| (1979-81) and Conference Co-chair (with J. A. van Hulzen) of        |
| EUROSAM '84, a precursor of the ISSAC meetings. Dick also had a     |
| long period of service on the editorial board of the Journal of     |
| Symbolic Computation. At ISSAC '95 in Montreal, Dick was elected to |
| the initial ISSAC Steering Committee and was elected as the second  |
| Chair of the Committee in 1997. He, along with David Chudnovsky,    |
| organized the highly successful meetings on Computers and           |
| Mathematics that were held at Stanford in 1986 and MIT in 1989.     |
|                                                                     |
| Dick had many interests outside of his professional pursuits        |
| including reading, travel, physical fitness, and especially music.  |
| Dick was an accomplished pianist, organist, and vocalist. At one    |
| point he was the organist and choirmaster of the Church of the Holy | 
| Communion in Mahopac, NY. In the 1980s and 1990s, he sang in choral |
| groups under the direction of Dr. Dennis Keene that performed at    |
| Lincoln Center in New York city.                                    |
|                                                                     |
| Especially important to him was his family: his eldest son Doug and |
| his wife Patricia, his son Daniel and his wife Mercedes, a daughter |
| Susan, his brother Albert and his wife Barbara, his sister Diane    |
| Alabaster and her husband Harold, his grandchildren Douglas,        |
| Valerie, Ryan, and Daniel Richard, and step-granddaughter Danielle. |
| His longtime companion, Barbara Gatje, shared his love for music,   |
| traveling, Point O'Woods, and life in general.                      |
|                                                                     |
| On December 30, 2003, Dick Jenks died at the age of 66, after an    |
| extended and courageous battle with multiple system                 |
| atrophy. Personally, Dick was warm, generous, and outgoing with     |
| many friends. He will be missed for his technical accomplishments,  |
| his artist talents, and most of all for his positive, gentle,       |
| charming spirit.                                                    |
|                                                                     |
| Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with    |
| contributions from Barbara Gatje, James H. Griesmer, Tony Hearn,    |
| Manuel Bronstein, and Erich Kaltofen.                               |
+---------------------------------------------------------------------+
\end{verbatim}
\newpage
\addcontentsline{toc}{section}{Obituary -- Manuel Bronstein}
\includegraphics{ps/bronstein.eps}
\begin{verbatim}
+-------------------------------------------------------------------------+
|                        Manuel Bronstein                                 |
|                                                                         |
| On June 6, 2005, Manuel Bronstein -- a prominent scientist whose        |
| contribution to computer algebra and many other areas of mathematics    |
| and computer science can hardly be overestimated -- died of a heart     |
| attack. He was only forty-one.                                          |
|                                                                         |
| A truly talented man, who was endlessly devoted to science, has         |
| passed away. Manuel worked with all his strength, enthusiastically,     |
| and was always researching several difficult problems simultaneously.   |
| Everyone who knew him remembers that he was witty, extremely keen in    |
| intellect, and cheerful. When not working, he could take part in        |
| discussions on diverse topics, and his partners admired him for his     |
| sudden impromptus, jokes, felicitous remarks, and unexpected            |
| viewpoints on the many little nothings of life.                         |
|                                                                         |
| Manuel was born on August 28, 1963, near Paris. His father was a        |
| physician, and his mother was a sculptor. Having graduated from         |
| school in France, he entered Berkeley University (USA, California),     |
| where, in 1987, he defended his PhD thesis under the supervision of     |
| Professor M. Rosenlicht. For three years, he worked at the IBM          |
| Research Center, then, from 1990 to 1997, and since 1997, in France,    |
| in the French National Institute for Research in Informatics and        |
| Automation (INRIA) in Sophia Antipolis.                                 |
|                                                                         |
| The dissertation defended at Berkeley was devoted to a very difficult   |
| problem related to symbolic integration (or integration in finite       |
| terms). Although the theory of integration was developed by R. Risch    |
| (another Ph.D. student of Rosenlicht) who presented in 1968 an          |
| algorithm for integration of elementary functions, it turned out        |
| that this algorithm was far from effective. Manuel significantly        |
| improved it (in particular, by generalizing B. Trager's algorithm       |
| for algebraic functions to an algorithm for the mixed case of           |
| elementary functions). While working for IBM, he implemented the        |
| integration algorithm in the Axiom system. At that time, this was the   |
| most powerful program for integration of functions. Manuel presented    |
| results of his studies in a large article published in 1990 in the      |
| Journal of Symbolic Computation. Later, he intended to write a          |
| monograph in two volumes devoted to all aspects of symbolic             |
| integration. The first volume was written and went through two          |
| editions at the Springer publishing house in 1997 and 2004. The         |
| second volume remained uncompleted.                                     |
|                                                                         |
| It was typical of Manuel to concentrate on urgent difficult problems.   |
| After the problem of integration, he studied the problem of searching   |
| for closed-form solutions to ordinary linear differential equations.    |
| In particular, in 1992, he designed a rather general algorithm for      |
| finding solutions in the field generated by the coefficients of the     |
| equation. In construction of these solutions, one usually proceeds      |
| from a tower of extensions of the basic field. However, the key point   |
| is the possibility of finding solutions in the basic field, which       |
| contains the coefficients. This demonstrates the exceptional value      |
| of this result by Manuel. Many problems of differential algebra         |
| have analogues in the difference case. It is also well known that,      |
| as a rule, these difference analogues are much more difficult to        |
| solve. Nevertheless, in 2000, Manuel developed an algorithm for         |
| searching for solutions in the field of coefficients for the case of    |
| difference equations. Moreover, he constructed a universal general      |
| algorithm that covers differential, difference, and q-difference        |
| equations as special cases. This universality was attained by           |
| considering the problem on the level of noncommutative Ore polynomials. |
| At the same time, he significantly advanced in the development of the   |
| theory of unimonomial field extensions, whose foundations were laid     |
| by M. Karr in the early 1980s. These results allowed a number of        |
| well-known algorithms for searching for various solutions of linear     |
| ordinary equations with polynomial coefficients to be generalized to    |
| much more complicated situations.                                       |
|                                                                         |
| A for the Ore polynomials, it should be emphasized that the very idea   |
| of using them in computer algebra was first proposed by Manuel          |
| (together with M. Petrovsek) in a paper published in Programming and    |
| Computer Software in 1994. This idea was important not only from the    |
| theoretical standpoint: it also demonstrated the possibility of         |
| designing universal computer programs adjustable to the differential,   |
| difference, and some other cases. This approach is widely used          |
| nowadays by developers of computer algebra algorithms and systems.      |
|                                                                         |
| The aforementioned paper devoted to this universal approach is not      |
| the only publication by Manuel in Programming and Computer Software.    |
| In 1992, he published a survey of methods for solving ordinary          |
| differential equations and integration in this journal. With the        |
| help of this survey, many specialists actively working in related       |
| scientific areas managed to penetrate into this involved subject.       |
| In 1993, Manuel was a co-editor of a special issue of Programming       |
| and Computer Software devoted to computer algebra.                      |
|                                                                         |
| Far from intending to give here a complete survey of Manuel's results,  |
| we mention only that he obtained many profound and valuable results     |
| not only on integration and ordinary differential and difference        |
| equations, but also on special functions, partial differential          |
| equations, operator factorization, and reducibility of systems of       |
| equations to special forms. He also published nice works on linear      |
| algebra, algebraic geometry, etc.                                       |
|                                                                         |
| Manual was a brilliant programmer. He artistically implemented all      |
| his algorithms in a number of computer algebra systems. Recently, he    |
| actively worked on the Aldor system and wrote a family of computer      |
| algebraic libraries for it, namely, the libaldor and Algebra            |
| libraries (which provide the user with basic data structures and        |
| their operation procedures that are necessary for spplications of       |
| computer algebra) and the Sumit library (which contains efficient       |
| programs implementing complex modern algorithms for transforming and    |
| solving linear ordinary differential and difference equations. For      |
| the Sumit library, he also developed two interactive interfaces,        |
| bernina and shasta, which made the functions of this library            |
| available from other computer algebra systems. These libraries and      |
| interactive interfaces are high-quality tools that are widely used      |
| in many research centers.                                               |
|                                                                         |
| As noted earlier, since 1997, Manuel worked at INRIA. At this           |
| institute (his last place of work), he headed a research group          |
| consisting of first-rate specialists. Each of them worked on his or     |
| her particular scientific problem, and witnesses of his discussions     |
| with collaborators were amazed by a deep insight of Manuel into all     |
| these problems and by his ability to easily pass in these discussions   |
| from one problem to another. The intellectual virtuosity that he        |
| demonstrated in these discussions was magnificent.                      |
|                                                                         |
| Manuel was a member of Editorial Boards of some leading journals and    |
| scientific series, for instance, the Journal of Symbolic Computation    |
| and the series Algorithms and Computation in Mathematics. He was a      |
| member of the program and organizing committees of several respected    |
| conferences and often chaired these committees. This particularly       |
| relates to the annual international ISSAC conference. He was also a     |
| vice-president of SIGSAM, the international group on symbolic and       |
| algebraic manipulation. In this role, he proposed and realized many     |
| fruitful ideas. For instance, for the ISSAC'05 conference, which was    |
| held in July of 2005, he had prepared a CD that contained not only      |
| texts of all the talks given at the conference but also some new        |
| software and other information valuable for everone interested in       |
| computer algebra and its applications. Unfortunately, he was not to     |
| take part in that conference. That CD was distributed to all the        |
| participants of the conferene and will remind them of Manuel.           |
|                                                                         |
| He participated fruitfully in international research projects. For      |
| instance, in the 1990s, he was one of the leaders of the European       |
| projects Cathode 1 and Cathode 2 devoted to computer-algebraic          |
| methods for solving ordinary differential equations. During the last    |
| ten years, Manuel co-headed some projects involving Russina             |
| scientists, namely, "Computer algebra and linear functional             |
| equations" (RFBR-INTAS), Direct computer-algebraic methods for          |
| explicit solution of systems of linear functional equations"            |
| (French--Russian Lyapunov Center), and "Computer algebra and            |
| (q-)hypergeomtric terms" (Eco-Net program of the French Ministry of     |
| Foreign Affairs). His last voyage abroad was to Russia on May 15-19,    |
| 2005, within the framework of the Eco-Net program.                      |
|                                                                         |
| It should be noted that Manuel was particularly interested in Russia    |
| and events there. It is appropriate to mention that his father's        |
| family had Russian roots and Manuel himself had chosen Russian as the   |
| foreign language to study at high school (he told that, on the final    |
| exam, he had to read a passage from "Second Lieutenant Kizhe" by Yu.    |
| N. Tynyanov). Later, he read scientific journals in Russian and even    |
| translated some papers. And when he met his future wife Karola in       |
| Leipzig in 1990, the Russian language helped them to communicate,       |
| although it was not a native tongue to either.                          |
|                                                                         |
| Remembering the joint work with Manuel, we would like to mention his    |
| remarkable ability to grasp instantly mathematical ideas and the        |
| extraordinary mental agility, which followed from his acute analytical  |
| sense. If a problem that arose in a discussion at the blackboard or     |
| was proposed by somebody was of interest to Manuel, he, as a rule,      |
| immediately proposed several approaches to solving it, including        |
| quite unusual and promising ones. Having outlined these approaches,     |
| he immediately started to develop them in detail. He made some          |
| calculations on the blackboard so fast that, sometimes, it was hard     |
| to follow them. As a result of such improvisation, either the question  |
| was completely answered or real obstacles for further investigation     |
| were found. And Manuel often performed such analyses without any        |
| intention to be a coauthor of the work. He was a benevolent man and     |
| readily gave detailed answers to questions of people whom he scarcely   |
| knew, who asked him for a consultation or advice during a break of a    |
| conference.                                                             |
|                                                                         |
| Of course, Manuel's scientific interests were not restricted to only    |
| difficult classical problems. Computer algebra is known to have at      |
| its disposal complete algorithms for solving a number of such problems. |
| However, the computational complexity of these algorithms is very high, |
| and they are hard to implement. Manuel was interested in consideration  |
| of special cases of these problems and in simplifying and refining      |
| algorithms by using heuristics and other methods. The results of his    |
| work in this area included a new version of the algorithm of parallel   |
| integration (the first versions of the algorithms of parallel           |
| integraion were proposed in the late 1970s and early 1980s by A.        |
| Norman, P. Moore, and J. Davenport; here, the term "parallel" does      |
| not relate to multiprocessor execution, and Manuel suggested replacing  |
| this term with "flat integration"). In general, this algorithm is not   |
| as powerful as the complete version of the Risch--Bronstein algorithm   |
| for symbolic integration; however, it may be implemented in just a      |
| hundred lines of code. A note on the algorithm of parallel integration  |
| is published in this issue of Programming and Computer Software. This   |
| note is an extended abstract of Manuel's talk at the joint seminar on   |
| computer algebra of the MSU and JINR (Joint Institute for Nuclear       |
| Reserach) in Dubna on May 18, 2005. It as submitted for publication     |
| in Programming and Computer Software on June 3, three days before his   |
| death overtook him outside his hometown, in Montpellier. He went there  |
| for a few days to discuss with biologists the possibility of describing |
| some bilogical models by recurrence relations of a special form. Manuel |
| was going to try to solve these relations using an original approach    |
| he was working on in his last days. The stock of his ideas and          |
| intentions seemed to be endless...                                      |
|                                                                         |
| Providing for his large family (he was the father of six children),     |
| he was always ready to support his friends, colleagues, and associates, |
| and helped them any time when he felt that they needed his assistance   |
| or sympathy. He never stopped being friendly to people around him.      |
|                                                                         |
| Manuel was just as benevolent and kind as he was outstandingly          |
| talented. His name and his accomplishments in computer algebra have     |
| already found their place in sciences. His death is a grevious,         |
| irreplaceable loss for everyone who was lucky to work with him or       |
| just be acquainted with him.                                            |
+-------------------------------------------------------------------------+
\end{verbatim}
Reprinted with permission of S.A. Abramov, published in \cite{Abra06}

\newpage
\addcontentsline{toc}{section}{Obituary -- Christine Jeanne O'Connor}
\includegraphics{ps/chrisoconnor.eps}
\begin{verbatim}
+-------------------------------------------------------------------------+
|                        Christine Jeanne O'Connor                        |
|                                                                         |
| Christine O'Connor, born in Chicago, Illinois, on March 17, 1951,       |
| passed away peacefully on January 18, 2008, after a year-long battle    |
| with carcinoid cancer. She was 56. Her family was with her.             |
|                                                                         |
| Christine O'Connor is survived by her loving husband, Michael O'Connor, |
| her two sons, Ken Sundaresan and Eric O'Connor, her mother, Ruth Riemer,|
| and her sister, Susan Wright.                                           |
|                                                                         |
| Christine was reared by her parents, Ed and Ruth Riemer, in the Chicago |
| area until her adolescent years, when the family moved to Champaign-    |
| Urbana, Illinois. Chris graduated from high school there and then       |
| returned to the Chicago area to attend Northwestern University, from    |
| which she received baccalaureate and masters degrees in Psychology.     |
|                                                                         |
| After graduation, Christine worked in Chicage doing medical research    |
| and founding a support and care integration group for babies suffering  |
| from Spina Bifida. She met her first husband, Dr. N. Sundaresan, and    |
| Christine was blessed with the birth of her first son, Ken Sundaresan.  |
| The family moved to New York. Several years later, Christine and Dr.    |
| Sundaresan were divorced, although they remained friends.               |
|                                                                         |
| Chris then becamse fascinated by the PC revolution, obtained a master's |
| degree in Computer Science from The Courant School of Mathematics of    |
| NYU, and started work in computer research at IBM's T.J. Watson         |
| Research Center in Yorktown Heights, New York. She met Michael O'Connor |
| there. They fell in love and were married, and Christine was blessed    |
| by the birth of her second son, Eric O'Connor.                          |
|                                                                         |
| Christine was a member of the Scratchpad group under Richard Jenks.     |
| She wrote the original draft of the User Manual on which this book      |
| is based. Both she and her husband, Michael were active contributors    |
| to Axiom.                                                               |
|                                                                         |
| Chris moved to Mahopac. She was actively involved in local historical   |
| research and in work with The Town of Carmel Historical Society. She    |
| was an avid gardener, loved flowers, and belonge to The Lake Mahopac    |
| Garden Club. She was an active member and officer of the Mahopac Hills  |
| Association. She loved to sing and sang in the choir of First           |
| Presbyterian Church. She worked in charities like Eagle Eye Too that    |
| supports the local hospital.                                            |
+-------------------------------------------------------------------------+
\end{verbatim}
From \cite{OCon08}, with modifications by Tim Daly

\newpage
\addcontentsline{toc}{section}{Obituary -- William Frederick Schelter}
\includegraphics[scale=1.0]{ps/schelter.eps}
\begin{verbatim}
+---------------------------------------------------------------------+
|                    William Frederick Schelter                       |
|           Axiom Developer and GNU Common Lisp Author                |
|                                                                     |
| William F. Schelter was born in Canada in 1947. He received a Ph.D. |
| from McGill University in 1972. His training was in computational   |
| algebra and its applications, and he was one of the pioneers of     |
| non-commutative algebraic geometry. He also worked on symbolic      |
| computational systems, compilers, and algorithms. His theses was on |
| "Rings of Quotients" under Joachim Lambek.                          |
|                                                                     |
| William was a professor of mathematics at the University of Texas   |
| at Austin. He co-authored, with Shang-Ching Chou, a paper on        |
| "Proving geometry theorems with rewrite rules" in 1987.             |
|                                                                     |
| William started with Kyoto Common Lisp (KCL) and built Austin       |
| Kyoto Common Lisp (AKCL), partially under contract to IBM with      |
| the Scratchpad project. AKCL eventually became GNU Common Lisp      |
| (GCL). GCL is still Axiom's primary Common Lisp platorm.            |
|                                                                     |
| William spent many days sharing my (Tim Daly) office at IBM. At one |
| time he found an Emacs bug, fetched the source, fixed it, created   |
| a patch, sent it off, and continued working. As a side-effect he    |
| introduced me to free software and the ability to participate.      |
|                                                                     |
| On two separate visits I returned to my office to find that all of  |
| my several hundred carefully indexed technical papers in a large    |
| pile on the floor because the shelves had failed. Oddly this never  |
| happened when he wasn't there. It became a running joke between us. |
|                                                                     |
| William and I collaborated on various aspects of AKCL, including    |
| portions of the garbage collection and tail recursion elimiation.   |
| He was a brilliant programmer and exceptionally easy to work with.  |
| We spent many phone hours designing Axiom-specific optimizations.   |
|                                                                     |
| William rescued the early source code for Macsyma, prior to the     |
| Symbolics proprietary version. He created Maxima and continued to   |
| enhance it.                                                         |
|                                                                     |
| William was the first to port the GNU C Compiler to the PC, which   |
| was used in the original Linux kernel implementation.               |
|                                                                     |
| William died on July 30, 2001 at the age of 54.                     |
|                                                                     |
| My son (Tim Daly Jr.) called me with the news. I called Barry       |
| Trager, who already knew. Barry mentioned that Axiom was taken off  |
| the market by the Numerical Algorithms Group (NAG). I contacted NAG |
| and got the Axiom source code and permission to release it as free  |
| software. So, even in death, William managed to bring Axiom to the  |
| free software world.                                                |
|                                                                     |
| William was in Russia at the time of his death with his wife, Olga, |
| whom he had recently married. He is survived by his son, John, his  |
| daughter Karen Lewis and husband Mike, and a grandson Joshua Lewis. |
|                                                                     |
+---------------------------------------------------------------------+
\end{verbatim}

\newpage
%Original Page xxi

\pseudoChapter{\Huge Contributors}
The design and development of Axiom was led by the Symbolic Computation
Group of the Mathematical Sciences Department, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York. The current implemention
of Axiom is the product of many people. The primary contributors are:

{\bf Richard D. Jenks} (IBM, Yorktown) received a Ph.D. from the University
of Illinois and was a principal architect of the {\bf Scratchpad} computer
algebra system (1971). In 1977, Jenks initiated the Axiom effort with
the design of MODLISP, inspired by earlier work with R\"udiger Loos
(T\"ubingen), James Griesmer (IBM, Yorktown), and David Y. Y. Yun (Hawaii).
Joint work with David R. Barton (Berkeley, California) and James Davenport
led to the design and implementation of prototypes and the concept of
categories (1980). Mor recently, Jenks led the effort on user interface
software for Axiom.

{\bf Barry M. Trager} (IBM, Yorktown) received a Ph.D. from MIT while
working in the {\bf MACSYMA} computer algebra group. Trager's thesis
laid the groundwork for a complete theory for closed-form integration
of elementary functions and its implementation in Axiom. Trager and
Richrd Jenks are responsible for the original abstract datatype design
and implementation of the programming language with its current
MODLISP-based compiler and run-time system. Trager is also responsible
for the overall design of the current Axiom library and for the
implementation of many of its components.

{\bf Stephen M. Watt} (IBM, Yorktown) received a Ph.D. from the
University of Waterloo and is one of the original authors of the {\bf
Maple} computer algebra system. Since joining IBM in 1984, he has made
central contributions to the Axiom language and system design, as well
as numerous contributions to the library. He is the principal
architect of the new Axiom compiler, planned for Release 2.

%Original Page xxii


{\bf Robert S. Sutor} (IBM, Yorktown) received a Ph.D. in mathematics
from Princeton University and has been involved with the design and
implementation of the system interpreter, system commands, and
documentation since 1984. Sutor's contributions to the Axiom library
include factored objects, partial fractions, and the original
implementation of finite field extensions. Recently, he has devised
technology for producing automatic hard-copy and on-line documentation
from single source files.

{\bf Scott C. Morrison} (IBM, Yorktown) received an M.S. from the
University of California, Berkeley, and is a principal person
responsible for the design and implementation of the Axiom interface,
including the interpreter, HyperDoc, and applications of the computer
graphics system.

{\bf Manuel Bronstein} (ETH, Zurich) received a Ph.D. in mathematics
from the University of California, Berkeley, completing the
theoretical work on closed-form integration by Barry Trager. Bronstein
designed and implemented the algebraic structures and algorithms in
the Axiom library for integration, closed form solution of
differential equations, operator algebras, and manipulation of
top-level mathematical expressions. He also designed (with Richard
Jenks) and implemented the current pattern match facility for Axiom.

{\bf William H. Burge} (IBM, Yorktown) received a Ph.D. from Cambridge
University, implemented the Axiom parser, designed (with Stephen Watt)
and implemented the stream and power series structures, and numerous
algebraic facilities including those for data structures, power
series, and combinatorics.

{\bf Timothy P. Daly} (IBM, Yorktown) is pursuing a Ph.D. in computer
science at Brooklyn Polytechnic Institute and is responsible for
porting, testing, performance, and system support work for Axiom.

{\bf James Davenport} (Bath) received a Ph.D. from Cambridge
University, is the author of several computer algebra textbooks, and
has long recognized the need for Axiom's generality for computer
algebra. He was involved with the early prototype design of system
internals and the original category hierarchy for Axiom (with David
R. Barton). More recently, Davenport and Barry Trager designed the
algebraic category hierarchy currently used in Axiom. Davenport is
Hebron and Medlock Professor of Information Technology at Bath
University.

{\bf Michael Dewar} (Bath) received a Ph.D. from the University of
Bath for his work on the IRENA system (an interface between the {\bf
REDUCE} computer algebra system and the NAG Library of numerical
subprograms), and work on interfacing algebraic and numerical systems
in general. He has contributed code to produce FORTRAN output from
Axiom, and is currently developing a comprehensive foreign language
interface and a link to the NAG Library for release 2 of Axiom.

%Original Page xxiii


{\bf Albrecht Fortenbacher} (IBM Scientific Center, Heidelberg)
received a doctorate from the University of Karlsruhe and is a
designer and implementer of the type-inferencing code in the Axiom
interpreter. The result of research by Fortenbacher on type coercion
by rewrite rules will soon be incorporated into Axiom.

{\bf Patrizia Gianni} (Pisa) received a Laurea in mathematics from the
University of Pisa and is the prime author of the polynomial and
rational funtion component of the Axiom library. Her contributions
include algorithms for greatest common divisors, factorization,
ideals, Gr\"obner bases, solutions of polynomial systems, and linear
algebra. she is currently Associate Professor of Mathematics at the
University of Pisa.

{\bf Johannes Grabmeier} (IBM Scientific Center, Heidelberg) received a
Ph.D from University Bayreuth (Bavaria) and is responsible for many
Axiom packages, including those for representation theory (with Holger
Gollan (Essen)), permutation groups (with Gerhard Schneider (Essen)),
finite fields (with Alfred Scheerhorn), and non-associative algebra
(with Robert Wisbauer (D\"usseldorf)).

{\bf Larry Lambe} received a Ph.D. from the University of Illinois
(Chicago) and has been using Axiom for research in homological
algebra. Lambe contributed facilities for Lie ring and exterior
algebra calculations and has worked with Scott Morrison on various
graphics applications.

{\bf Michael Monagan} (ETH, Z\"urich) received a Ph.D. from the
University of Waterloo and is a principal contributor to the {\bf
Maple} computer algebra system. He designed and implemented the
category hierarchy and domains for data structures (with Stephen Watt),
multi-precision floating point arithmetic, code for polynomials modulo
a prime, and also worked on the new compiler.

{\bf William Sit} (CCNY) received a Ph.D. from Columbia University. He
has been using Axiom for research in differential algebra, and
contributed operations for differential polynomials (with Manuel
Bronstein).

{\bf Jonathan M. Steinbach} (IBM, Yorktown) received a B.A. degree
from Ohio State University and has responsibility for the Axiom
computer graphics facility. He has modified and extended this facility
from the original design by Jim Wen. Steinbach is currently involved
in the new compiler effort.

{\bf Jim Wen}, a graduate student in computer graphics at Brown
University designed and implemented the original computer graphics
system for Axiom with pop-up control panels for interactive
manipulation of graphic objects.


%Original Page xxiv


{\bf Clifton J. Williamson} (Cal Poly) received a Ph.D. in Mathematics
from the University of California, Berkeley. He implemented the power
series (with William Burge and Stephen Watt), matrix, and limit
facilities in the library and made numerous contributions to the
HyperDoc documentation and algebraic side of the computer graphics
facility. Williamson is currently an Assistant Professor of Mathematics
at California Polytechnic State University, San Luis Obispo.

Contributions to the current Axiom system were also made by: Yurig
Baransky (IBM Research, Yorktown), David R. Barton, Bruce Char
(Drexel), Korrinn Fu, R\"udiger Gebauer, Holger Gollan (Essen), Steven
J. Gortler, Michael Lucks, Victor Miller (IBM Research, Yorktown),
C. Andrew Neff (IBM Research, Yorktown), H. Michael M\"oller (Hagen),
Simon Robinson, Gerhard Schneider (Essen), Thorsten Werther (Bonn),
John M. Wiley, Waldermar Wiwianka (Paderborn), David Y. Y. Yun (Hawaii).

Other group members, visitors and contributors to Axiom include
Richard Anderson, George Andrews, Alexandre Bouyer, Martin Brock,
Florian Bundschuh, Cheekai Chin, David V. Chudnovsky, Gregory
V. Chudnovsky, Josh Cohen, Gary Cornell, Jean Della Dora, Clair Di
Cresendo, Domonique Duval, Lars Erickson, Timothy Freeman, Marc
Gaetano, Vladimir A. Grinberg, Oswald Gschnitzer, Klaus Kusche,
Bernhard Kutzler, Mohammed, Mobarak, Julian A. Padget, Michael
Rothstein, Alfred Scheerhorn, William F. Schelter, Marten Sch\"onert,
Fritz Schwarz, Christine J. Sundaresan, Moss E. Sweedler, Themos
T. Tsikas, Berhard Wall, Robert Wisbauer, and Knut Wolf.

This book has contributions from several people in addition to its
principal authors. Scott Morrison is responsible for the computer
graphics gallery and the programs in Appendix F. Jonathon Steinbach
wrote the original version of Chapter 7. Michael Dewar contributed
material on the FORTRAN interface in Chapter 4. Manuel Bronstein,
Clifton Williamson, Patricia Gianni, Johannes Grabmeier, Barry Trager,
and Stephen Watt contributed to Chapters 8 and 9 and Appendix
E. William Burge, Timothy Daly, Larry Lambe, and William Sit
contributed material to Chapter 9. The original version of the 
documentation was created and maintained by Christine Sundaresan.

The authors would like to thank the production staff at
Springer-Verlag for their guidance in the preparation of this book,
and Jean K. Rivlin of IBM Yorktown Heights for her assistance in
producing the camera-ready copy. Also, thanks to Robert F. Caviness,
James H. Davenport, Sam Dooley, Richard J. Fateman, Stuart I. Feldman,
Stephen J. Hague, John A. Nelder, Eugene J. Surowitz, Themos
T. Tsikas, James W. Thatcher, and Richard E. Zippel for their
constructive suggestions on drafts of this book.
\newpage
\pagenumbering{arabic}

%Original Page 1

\chapter{Introduction to Axiom}
%\addcontentsline{toc}{chapter}{Introduction to Axiom}
\label{ugNewIntro}
Welcome to the world of Axiom.
We call Axiom a scientific computation system:
a self-contained toolbox designed to meet
your scientific programming needs,
from symbolics, to numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

\subsection{Symbolic Computation}
Axiom provides a wide range of simple commands for symbolic
mathematical problem solving.  Do you need to solve an equation, to
expand a series, or to obtain an integral?  If so, just ask Axiom
to do it.

Given $$\int\left({{\frac{1}{(x^3 \  {(a+b x)}^{1/3})}}}\right)dx$$ 
we would enter this into Axiom as:

\spadcommand{integrate(1/(x**3 * (a+b*x)**(1/3)),x)}
which would give the result:
$$
\frac{\left(
\begin{array}{@{}l}
\displaystyle
-{2 \ {b^2}\ {x^2}\ {\sqrt{3}}\ {\log 
\left({{{\root{3}\of{a}}\ {{\root{3}\of{{b \  x}+ a}}^2}}
+{{{\root{3}\of{a}}^2}\ {\root{3}\of{{b \  x}+ a}}}+ a}\right)}}+ 
\\
\\
\displaystyle
{4 \ {b^2}\ {x^2}\ {\sqrt{3}}\ {\log \left({{{{\root{3}\of{a}}^
2}\ {\root{3}\of{{b \  x}+ a}}}- a}\right)}}+ 
\\
\\
\displaystyle
{{12}\ {b^2}\ {x^2}\ {\arctan \left({\frac{{2 \ {\sqrt{3}}\ {{\root{3}\of{a}}^
2}\ {\root{3}\of{{b \  x}+ a}}}+{a \ {\sqrt{3}}}}{3 \  a}}\right)}}+
\\
\\
\displaystyle
{{\left({{12}\  b \  x}-{9 \  a}\right)}
\ {\sqrt{3}}\ {\root{3}\of{a}}\ {{\root{3}\of{{b \  x}+ a}}^2}}
\end{array}
\right)}{{18}\ {a^2}\ {x^2}\ {\sqrt{3}}\ {\root{3}\of{a}}}
$$
\returnType{Type: Union(Expression Integer,...)}

%Original Page 2

Axiom provides state-of-the-art algebraic machinery to handle your
most advanced symbolic problems.  For example, Axiom's integrator
gives you the answer when an answer exists.  If one does not, it
provides a proof that there is no answer.  Integration is just one of
a multitude of symbolic operations that Axiom provides.

\subsection{Numeric Computation}
Axiom has a numerical library that includes operations for linear
algebra, solution of equations, and special functions.  For many of
these operations, you can select any number of floating point digits
to be carried out in the computation.

Solve $x^{49}-49x^4+9$ to 49 digits of accuracy.
First we need to change the default output length of numbers:

\spadcommand{digits(49)}
and then we execute the command:

\spadcommand{solve(x**49-49*x**4+9 = 0,1.e-49)}
$$
\begin{array}{@{}l}
\displaystyle
\left[{x = -{0.6546536706904271136718122105095984761851224331
556}},  \right.
\\
\\
\displaystyle
\left.{x ={1.086921395653859508493939035954893289009213388763}},
  \right.
\\
\\
\displaystyle
\left.{x ={0.654653670725527173969468606613676483536148760766
1}}\right] 
\end{array}
$$


\returnType{Type: List Equation Polynomial Float}
The output of a computation can be converted to FORTRAN to be used
in a later numerical computation.
Besides floating point numbers, Axiom provides literally
dozens of kinds of numbers to compute with.
These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented
with an arbitrary base.

What is $10$ to the $90$-th power in base $32$?

\spadcommand{radix(10**90,32)}
returns:

%\noindent
{\tt FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000 }
\returnType{Type: RadixExpansion 32}

The Axiom numerical library can be enhanced with a
substantial number of functions from the NAG library of numerical and
statistical algorithms. These functions will provide coverage of a wide
range of areas including roots of functions, Fourier transforms, quadrature,
differential equations, data approximation, non-linear optimization, linear
algebra, basic statistics, step-wise regression, analysis of variance,
time series analysis, mathematical programming, and special functions.
Contact the Numerical Algorithms Group Limited, Oxford, England.

\subsection{Graphics}
You may often want to visualize a symbolic formula or draw
a graph from a set of numerical values.
To do this, you can call upon the Axiom
graphics capability.

%Original Page 3

Draw $J_0(\sqrt{x^2+y^2})$ for $-20 \leq x,y \leq 20$.

\spadcommand{draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)}
\begin{figure}[htbp]
\includegraphics[bbllx=1, bblly=39, bburx=298, bbury=290]{ps/bessintr.ps}
\caption{$J_0(\sqrt{x^2+y^2})$ for $-20 \leq x,y \leq 20$}
\label{tpdhere}
\end{figure}

Graphs in Axiom are interactive objects you can manipulate with
your mouse.  Just click on the graph, and a control panel pops up.
Using this mouse and the control panel, you can translate, rotate,
zoom, change the coloring, lighting, shading, and perspective on the
picture.  You can also generate a PostScript copy of your graph to
produce hard-copy output.

\subsection{HyperDoc}

\begin{figure}[htbp]
%\includegraphics[bbllx=1, bblly=1, bburx=298, bbury=290]{ps/v0hroot.eps}
\includegraphics{ps/v0hroot.eps}
\caption{Hyperdoc opening menu}
\label{fig-intro-br}
\end{figure}

HyperDoc presents you windows on the world of Axiom,
offering on-line help, examples, tutorials, a browser, and reference
material.  HyperDoc gives you on-line access to this document in a
``hypertext'' format.  Words that appear in a different font (for
example, {\tt Matrix}, {\bf factor}, and
{\it category}) are generally mouse-active; if you click on one
with your mouse, HyperDoc shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to
compute the roots of $x^{49} - 49x^4 + 9$ to 49 digits (as in our
previous example) and you don't know how to tell Axiom to do this.
The ``basic command'' facility of HyperDoc leads the way.  Through the
series of HyperDoc windows shown in \figureref{fig-intro-br} 
and the specified mouse clicks, you and
HyperDoc generate the correct command to issue to compute the answer.

\subsection{Interactive Programming }
Axiom's interactive programming language lets you define your
own functions.  A simple example of a user-defined function is one
that computes the successive Legendre polynomials.  Axiom lets
you define these polynomials in a piece-wise way.

The first Legendre polynomial.

%Original Page 4

\spadcommand{p(0) == 1}
\returnType{Type: Void}
The second Legendre polynomial.

\spadcommand{p(1) == x}
\returnType{Type: Void}
The $n$-th Legendre polynomial for $(n > 1)$.

\spadcommand{p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n}
\returnType{Type: Void}

%Original Page 5

In addition to letting you define simple functions like this, the
interactive language can be used to create entire application
packages.  All the graphs in the Axiom images section were created by
programs written in the interactive language.

The above definitions for $p$ do no computation---they simply
tell Axiom how to compute $p(k)$ for some positive integer
$k$.

To actually get a value of a Legendre polynomial, you ask for it.
\index{Legendre polynomials}

What is the tenth Legendre polynomial?

\spadcommand{p(10)}
\begin{verbatim}
   Compiling function p with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function p as a recurrence relation.
\end{verbatim}
$$
{{\frac{46189}{256}} \  {x \sp {10}}} 
-{{\frac{109395}{256}} \  {x \sp 8}}
+{{\frac{45045}{128}} \  {x \sp 6}} 
-{{\frac{15015}{128}} \  {x \sp 4}}
+{{\frac{3465}{256}} \  {x \sp 2}} 
-{\frac{63}{256}} 
$$
\returnType{Type: Polynomial Fraction Integer}
Axiom applies the above pieces for $p$ to obtain the value
of $p(10)$.  But it does more: it creates an optimized, compiled
function for $p$.  The function is formed by putting the pieces
together into a single piece of code.  By {\it compiled}, we mean that
the function is translated into basic machine-code.  By {\it
optimized}, we mean that certain transformations are performed on that
code to make it run faster.  For $p$, Axiom actually
translates the original definition that is recursive (one that calls
itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of $x^{90}$ in $p(90)$?

\spadcommand{coefficient(p(90),x,90)}
$$
\frac{5688265542052017822223458237426581853561497449095175}
{77371252455336267181195264} 
$$
\returnType{Type: Polynomial Fraction Integer}

In general, a user function is type-analyzed and compiled on first use.
Later, if you use it with a different kind of object, the function
is recompiled if necessary.

\subsection{Data Structures}

A variety of data structures are available for interactive use.  These
include strings, lists, vectors, sets, multisets, and hash tables.  A
particularly useful structure for interactive use is the infinite
stream:

Create the infinite stream of derivatives of Legendre polynomials.

\spadcommand{[D(p(i),x) for i in 1..]}
$$
\begin{array}{@{}l}
\displaystyle
\left[ 1, {3 \  x}, 
{{{\frac{15}{2}}\ {x^2}}-{\frac{3}{2}}},
{{{\frac{35}{2}}\ {x^3}}-{{\frac{15}{2}}\  x}}, 
{{{\frac{315}{8}}\ {x^4}}-{{\frac{105}{4}}\ {x^2}}+{\frac{15}{8}}},  \right.
\\
\\
\displaystyle
\left.{{{\frac{693}{8}}\ {x^5}}-{{\frac{315}{4}}\ {x^3}}
+{{\frac{105}{8}}\  x}}, 
{{{\frac{3003}{16}}\ {x^6}}-{{\frac{3465}{16}}\ {x^4}}
+{{\frac{945}{16}}\ {x^2}}-{\frac{35}{16}}},  \right.
\\
\\
\displaystyle
\left.{{{\frac{6435}{16}}\ {x^7}}-{{\frac{9009}{16}}\ {x^5}}+
{{\frac{3465}{16}}\ {x^3}}-{{\frac{315}{16}}\  x}},  \right.
\\
\\
\displaystyle
\left.{{{\frac{109395}{128}}\ {x^8}}-{{\frac{45045}{32}}\ {x^6}}
+{{\frac{45045}{64}}\ {x^4}}-{{\frac{3465}{32}}\ {x^2}}
+{\frac{315}{128}}},  \right.
\\
\\
\displaystyle
\left.{{{\frac{230945}{128}}\ {x^9}}-{{\frac{109395}{32}}\ {x^7}}
+{{\frac{135135}{64}}\ {x^5}}-{{\frac{15015}{32}}\ {x^3}}+
{{\frac{3465}{128}}\  x}},  \ldots \right] 
\end{array}
$$
\returnType{Type: Stream Polynomial Fraction Integer}


Streams display only a few of their initial elements.  Otherwise, they
are ``lazy'': they only compute elements when you ask for them.

%Original Page 6

Data structures are an important component for building application
software. Advanced users can represent data for applications in
optimal fashion.  In all, Axiom offers over forty kinds of
aggregate data structures, ranging from mutable structures (such as
cyclic lists and flexible arrays) to storage efficient structures
(such as bit vectors).  As an example, streams are used as the
internal data structure for power series.

What is the series expansion
of $\log(\cot(x))$
about $x=\pi/2$?
%NOTE: The book has a different answer (see p6)

\spadcommand{series(log(cot(x)),x = \%pi/2)}
$$
\begin{array}{@{}l}
\displaystyle
{\log \left({\frac{-{2 \  x}+ \pi}{2}}\right)}+
{{\frac{1}{3}}\ {{\left(x -{\frac{\pi}{2}}\right)}^2}}+
{{\frac{7}{90}}\ {{\left(x -{\frac{\pi}{2}}\right)}^4}}+ 
{{\frac{62}{2835}}\ {{\left(x -{\frac{\pi}{2}}\right)}^6}}+
\\
\\
\displaystyle
{{\frac{127}{18900}}\ {{\left(x -{\frac{\pi}{2}}\right)}^8}}+
{{\frac{146}{66825}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{10}}}+ 
{O \left({{\left(x -{\frac{\pi}{2}}\right)}^{11}}\right)}
\end{array}
$$
\returnType{Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)}

Series and streams make no attempt to compute {\it all} their
elements!  Rather, they stand ready to deliver elements on demand.

What is the coefficient of the $50$-th
term of this series?

\spadcommand{coefficient(\%,50)}
$$
\frac{44590788901016030052447242300856550965644}
{7131469286438669111584090881309360354581359130859375} 
$$
\returnType{Type: Expression Integer}

\subsection{Mathematical Structures}
Axiom also has many kinds of mathematical structures.  These
range from simple ones (like polynomials and matrices) to more
esoteric ones (like ideals and Clifford algebras).  Most structures
allow the construction of arbitrarily complicated ``types.''

Even a simple input expression can
result in a type with several levels.

\spadcommand{matrix [ [x + \%i,0], [1,-2] ]}
$$
\left[
\begin{array}{cc}
\displaystyle{}
{x+\%{\rm i}} & 0 \\ 
1 & -2 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Complex Integer}

The Axiom interpreter builds types in response to user input.
Often, the type of the result is changed in order to be applicable to
an operation.

The inverse operation requires that elements of the above matrices
are fractions.

\spadcommand{inverse(\%)}
$$
\left[
\begin{array}{cc}
\displaystyle{\frac{1}{x+\%{\rm i}}} & 0 \\ 
\displaystyle{\frac{1}{{2 \  x}+{2 \%{\rm i}}}} & -{\frac{1}{2}} 
\end{array}
\right]
$$
\returnType{Type: Union(Matrix Fraction Polynomial Complex Integer,...)}

\subsection{Pattern Matching}

%Original Page 7

A convenient facility for symbolic computation is ``pattern
matching.''  Suppose you have a trigonometric expression and you want
to transform it to some equivalent form.  Use a $rule$ command to
describe the transformation rules you \index{rule} need.  Then give
the rules a name and apply that name as a function to your
trigonometric expression.

Introduce two rewrite rules.

\spadcommand{sinCosExpandRules := rule\\
\ \ sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)\\
\ \  cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)\\
\ \  sin(2*x) == 2*sin(x)*cos(x)\\
\ \  cos(2*x) == cos(x)**2 - sin(x)**2
}

\begin{verbatim}
   {sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
    cos(y + x) == - sin(x)sin(y) + cos(x)cos(y), 
    sin(2x) == 2cos(x)sin(x),
                       2         2
    cos(2x) == - sin(x)  + cos(x) }
\end{verbatim}
\returnType{Type: Ruleset(Integer,Integer,Expression Integer)}

Apply the rules to a simple trigonometric expression.

\spadcommand{sinCosExpandRules(sin(a+2*b+c))}
$$
\begin{array}{@{}l}
\displaystyle
{{\left(-{{\cos \left({a}\right)}\ {{\sin \left({b}\right)}^2}}-
{2 \ {\cos \left({b}\right)}\ {\sin \left({a}\right)}\ {\sin 
\left({b}\right)}}+{{\cos \left({a}\right)}\ {{\cos \left({b}\right)}^
2}}\right)}\ {\sin \left({c}\right)}}- 
\\
\\
\displaystyle
{{\cos \left({c}\right)}\ {\sin \left({a}\right)}\ {{\sin \left({b}\right)}^
2}}+{2 \ {\cos \left({a}\right)}\ {\cos \left({b}\right)}\ {\cos 
\left({c}\right)}\ {\sin \left({b}\right)}}+ 
\\
\\
\displaystyle
{{{\cos \left({b}\right)}^2}\ {\cos \left({c}\right)}\ {\sin 
\left({a}\right)}}
\end{array}
$$
\returnType{Type: Expression Integer}


Using input files, you can create your own library of transformation
rules relevant to your applications, then selectively apply the rules
you need.

\subsection{Polymorphic Algorithms}
All components of the Axiom algebra library are written in the
Axiom library language.  This language is similar to the
interactive language except for protocols that authors are obliged to
follow.  The library language permits you to write ``polymorphic
algorithms,'' algorithms defined to work in their most natural
settings and over a variety of types.

Define a system of polynomial equations $S$.

\spadcommand{S := [3*x**3 + y + 1 = 0,y**2 = 4]}
$$
\left[
{{y+{3 \  {x \sp 3}}+1}=0},  {{y \sp 2}=4} 
\right]
$$
\returnType{Type: List Equation Polynomial Integer}

%Original Page 8

Solve the system $S$ using rational number arithmetic and
30 digits of accuracy.

\spadcommand{solve(S,1/10**30)}
$$
\left[
{\left[ {y=-2}, {x={
\frac{1757879671211184245283070414507}{2535301200456458802993406410752}}}
\right]},
 {\left[ {y=2},  {x=-1} 
\right]}
\right]
$$
\returnType{Type: List List Equation Polynomial Fraction Integer}

Solve $S$ with the solutions expressed in radicals.

\spadcommand{radicalSolve(S)}
$$
\begin{array}{@{}l}
\displaystyle
\left[{\left[{y = 2}, {x = - 1}\right]}, {\left[{y = 2}, 
{x ={\frac{-{\sqrt{- 3}}+ 1}{2}}}\right]},  \right.
\\
\\
\displaystyle
\left.{\left[{y = 2}, {x ={\frac{{\sqrt{- 3}}+ 1}{2}}}\right]},
 {\left[{y = - 2}, {x ={\frac{1}{\root{3}\of{3}}}}\right]},
  \right.
\\
\\
\displaystyle
\left.{\left[{y = - 2}, 
{x ={\frac{{{\sqrt{- 1}}\ {\sqrt{3}}}- 1}{2 \ {\root{3}\of{3}}}}}\right]}, 
{\left[{y = - 2}, 
{x ={\frac{-{{\sqrt{- 1}}\ {\sqrt{3}}}- 1}{2 \ {\root{3}\of{3}}}}}\right]}
\right] 
\end{array}
$$
\returnType{Type: List List Equation Expression Integer}

While these solutions look very different, the results were produced
by the same internal algorithm!  The internal algorithm actually works
with equations over any ``field.''  Examples of fields are the
rational numbers, floating point numbers, rational functions, power
series, and general expressions involving radicals.

\subsection{Extensibility}

Users and system developers alike can augment the Axiom library,
all using one common language.  Library code, like interpreter code,
is compiled into machine binary code for run-time efficiency.

Using this language, you can create new computational types and new
algorithmic packages.  All library code is polymorphic, described in
terms of a database of algebraic properties.  By following the
language protocols, there is an automatic, guaranteed interaction
between your code and that of colleagues and system implementers.
\vfill\eject

%Original Page 9

\pseudoChapter{\Huge A Technical Introduction}
\label{ugTechIntro}
Axiom has both an {\it interactive language} for user
interactions and a {\it programming language} for building library
modules.  Like Modula 2, \index{Modula 2} PASCAL, \index{PASCAL}
FORTRAN, \index{FORTRAN} and Ada, \index{Ada} the programming language
emphasizes strict type-checking.  Unlike these languages, types in
Axiom are dynamic objects: they are created at run-time in
response to user commands.

Here is the idea of the Axiom programming language in a
nutshell.  Axiom types range from algebraic ones (like
polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files).  Types combine in any
meaningful way.  You can build polynomials of matrices, matrices of
polynomials of power series, hash tables with symbolic keys and
rational function entries, and so on.

{\it Categories} define algebraic properties to ensure mathematical
correctness. They ensure, for example, that matrices of polynomials
are OK, but matrices of input files are not.  Through categories,
programs can discover that polynomials of continued fractions have a
commutative multiplication whereas polynomials of matrices do not.

%Original Page 10

Categories allow algorithms to be defined in their most natural
setting. For example, an algorithm can be defined to solve polynomial
equations over {\it any} field.  Likewise a greatest common divisor
can compute the ``gcd'' of two elements from {\it any} Euclidean
domain.  Categories foil attempts to compute meaningless ``gcds'', for
example, of two hashtables.  Categories also enable algorithms to be
compiled into machine code that can be run with arbitrary types.

The Axiom interactive language is oriented towards ease-of-use.
The Axiom interpreter uses type-inferencing to deduce the type
of an object from user input.  Type declarations can generally be
omitted for common types in the interactive language.

So much for the nutshell.
Here are these basic ideas described by ten design principles:

\chapter{A Technical Introduction to Axiom}
\section{Types are Defined by Abstract Datatype Programs}

Basic types are called {\it domains of computation}, or,
simply, {\it domains.}
\index{domain}
Domains are defined by Axiom programs of the form:

\begin{verbatim}
Name(...): Exports == Implementation
\end{verbatim}

Each domain has a capitalized {\tt Name} that is used to refer to the
class of its members.  For example, {\tt Integer} denotes ``the
class of integers,'' {\tt Float}, ``the class of floating point
numbers,'' and {\tt String}, ``the class of strings.''

The ``{\tt ...}'' part following {\tt Name} lists zero or more
parameters to the constructor. Some basic ones like {\tt Integer} take
no parameters.  Others, like {\tt Matrix}, {\tt Polynomial} and 
{\tt List}, take a single parameter that again must be a domain.  For
example, {\tt Matrix(Integer)} denotes ``matrices over the integers,''
{\tt Polynomial (Float)} denotes ``polynomial with floating point
coefficients,'' and {\tt List (Matrix (Polynomial (Integer)))} denotes
``lists of matrices of polynomials over the integers.''  There is no
restriction on the number or type of parameters of a domain
constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts
both a particular data value as well as an integer. In this case the
number 2 specifies the number of rows and columns the square matrix
will contain. Elements of the matricies are integers.

The {\tt Exports} part specifies operations for creating and
manipulating objects of the domain.  For example, type
{\tt Integer} exports constants $0$ and $1$, and
operations \spadopFrom{+}{Integer}, \spadopFrom{-}{Integer}, and
\spadopFrom{*}{Integer}.  While these operations are common, others
such as \spadfunFrom{odd?}{Integer} and \spadfunFrom{bit?}{Integer}
are not. In addition the Exports section can contain symbols that
represent properties that can be tested. For example, the Category
{\tt EntireRing} has the symbol {\tt noZeroDivisors} which asserts
that if a product is zero then one of the factors must be zero.

The {\tt Implementation} part defines functions that implement the
exported operations of the domain.  These functions are frequently
described in terms of another lower-level domain used to represent the
objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition
operation from {\tt Float}. 

\section{The Type of Basic Objects is a Domain or Subdomain}

%Original Page 11

Every Axiom object belongs to a {\it unique} domain.  The domain
of an object is also called its {\it type.}  Thus the integer $7$
has type {\tt Integer} and the string {\tt "daniel"} has type
{\tt String}.

The type of an object, however, is not unique.  The type of integer
$7$ is not only {\tt Integer} but {\tt NonNegativeInteger},
{\tt PositiveInteger}, and possibly, in general, any other
``subdomain'' of the domain {\tt Integer}.  A {\it subdomain}
\index{subdomain} is a domain with a ``membership predicate''.
{\tt PositiveInteger} is a subdomain of {\tt Integer} with the
predicate ``is the integer $> 0$?''.

Subdomains with names are defined by abstract datatype programs
similar to those for domains.  The {\it Export} part of a subdomain,
however, must list a subset of the exports of the domain.  The {\tt
Implementation} part optionally gives special definitions for
subdomain objects.

\section{Domains Have Types Called Categories}

Domains and subdomains in Axiom are themselves objects that have
types.  The type of a domain or subdomain is called a {\it category}.
\index{category} Categories are described by programs of the form:

\begin{verbatim}
Name(...): Category == Exports
\end{verbatim}
The type of every category is the distinguished symbol {\tt Category.}
The category {\tt Name} is used to designate the class of domains of
that type.  For example, category {\tt Ring} designates the class
of all rings.  Like domains, categories can take zero or more
parameters as indicated by the ``{\tt ...}'' part following {\tt
Name.}  Two examples are {\tt Module(R)} and
{\tt MatrixCategory(R,Row,Col)}.

The {\tt Exports} part defines a set of operations.  For example,
{\tt Ring} exports the operations \spadopFrom{0}{Ring},
\spadopFrom{1}{Ring}, \spadopFrom{+}{Ring}, \spadopFrom{-}{Ring}, and
\spadopFrom{*}{Ring}.  Many algebraic domains such as
{\tt Integer} and {\tt Polynomial (Float)} are rings.
{\tt String} and {\tt List (R)} (for any domain $R$)
are not.

Categories serve to ensure the type-correctness.  The definition of
matrices states {\tt Matrix(R: Ring)} requiring its single parameter
$R$ to be a ring.  Thus a ``matrix of polynomials'' is allowed,
but ``matrix of lists'' is not.

Categories say nothing about representation. Domains, which are
instances of category types, specify representations.

\section{Operations Can Refer To Abstract Types}

All operations have prescribed source and target types.  Types can be
denoted by symbols that stand for domains, called ``symbolic
domains.''  The following lines of Axiom code use a symbolic
domain $R$:

\begin{verbatim}
R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x ** n
\end{verbatim}

%Original Page 12

Line 1 declares the symbol $R$ to be a ring.  Line 2 declares the
type of $power$ in terms of $R$.  From the definition on
line 3, $power(3,2)$ produces 9 for $x = 3$ and $R =$
{\tt Integer}.  Also, $power(3.0,2)$ produces $9.0$ for
$x = 3.0$ and $R =$ {\tt Float}.
$power("oxford",2)$ however fails since $"oxford"$ has type
{\tt String} which is not a ring.

Using symbolic domains, algorithms can be defined in their most
natural or general setting.

\section{Categories Form Hierarchies}

Categories form hierarchies (technically, directed-acyclic graphs).  A
simplified hierarchical world of algebraic categories is shown below.
At the top of this world is {\tt SetCategory}, the class of
algebraic sets.  The notions of parents, ancestors, and descendants is
clear.  Thus ordered sets (domains of category {\tt OrderedSet})
and rings are also algebraic sets.  Likewise, fields and integral
domains are rings and algebraic sets.  However fields and integral
domains are not ordered sets.

\begin{verbatim}
SetCategory +---- Ring       ---- IntegralDomain ---- Field
            |
            +---- Finite     ---+
            |                    \
            +---- OrderedSet -----+ OrderedFinite
\end{verbatim}
\begin{center}
Figure 1.  A  simplified category hierarchy.
\end{center}

%Original Page 13

\section{Domains Belong to Categories by Assertion}

A category designates a class of domains.  Which domains?  You might
think that {\tt Ring} designates the class of all domains that
export $0$, $1$, \spadopFrom{+}{Integer},
\spadopFrom{-}{Integer}, and \spadopFrom{*}{Integer}.  But this is not
so.  Each domain must {\it assert} which categories it belongs to.

The {\tt Export} part of the definition for {\tt Integer} reads,
for example:

\begin{verbatim}
Join(OrderedSet, IntegralDomain,  ...) with ...
\end{verbatim}

This definition asserts that {\tt Integer} is both an ordered set
and an integral domain.  In fact, {\tt Integer} does not
explicitly export constants $0$ and $1$ and operations
\spadopFrom{+}{Ring}, \spadopFrom{-}{Ring} and \spadopFrom{*}{Ring} at
all: it inherits them all from $Ring$!  Since
{\tt IntegralDomain} is a descendant of $Ring$,
{\tt Integer} is therefore also a ring.

Assertions can be conditional.  For example, {\tt Complex(R)}
defines its exports by:

\begin{verbatim}
Ring with ... if R has Field then Field ...
\end{verbatim}
Thus {\tt Complex(Float)} is a field but {\tt Complex(Integer)}
is not since {\tt Integer} is not a field.

You may wonder: ``Why not simply let the set of operations determine
whether a domain belongs to a given category?''.  Axiom allows
operation names (for example, {\bf norm}) to have very different
meanings in different contexts.  The meaning of an operation in
Axiom is determined by context.  By associating operations with
categories, operation names can be reused whenever appropriate or
convenient to do so.  As a simple example, the operation {\tt <}
might be used to denote lexicographic-comparison in an algorithm.
However, it is wrong to use the same {\tt <} with this definition
of absolute-value: $$abs(x) == if\ x < 0\  then -x\ else\ x$$ Such a
definition for {\tt abs} in Axiom is protected by context:
argument $x$ is required to be a member of a domain of category
{\tt OrderedSet}.

\section{Packages Are Clusters of Polymorphic Operations}

In Axiom, facilities for symbolic integration, solution of
equations, and the like are placed in ``packages''.  A {\it package}
\index{package} is a special kind of domain: one whose exported
operations depend solely on the parameters of the constructor and/or
explicit domains. Packages, unlike Domains, do not specify the
representation.

If you want to use Axiom, for example, to define some algorithms
for solving equations of polynomials over an arbitrary field $F$,
you can do so with a package of the form:

\begin{verbatim}
MySolve(F: Field): Exports == Implementation
\end{verbatim}

%Original Page 14

where {\tt Exports} specifies the {\bf solve} operations
you wish to export from the domain and the {\tt Implementation}
defines functions for implementing your algorithms.  Once Axiom has
compiled your package, your algorithms can then be used for any {\tt F}:
floating-point numbers, rational numbers, complex rational functions,
and power series, to name a few.

\section{The Interpreter Builds Domains Dynamically}

The Axiom interpreter reads user input then builds whatever types
it needs to perform the indicated computations.
For example, to create the matrix
\[M=\left(\begin{array}{cc}
x^2+1 & 0\\
0 & x/2
\end{array}\right)\]
using the command:

\spadcommand{M = [ [x**2+1,0],[0,x / 2] ]::Matrix(POLY(FRAC(INT)))}
$$
M={\left[ 
\begin{array}{cc}
x^2+1 & 0 \\ 
0 & x/2
\end{array}
\right]}
$$
\returnType{Type: Matrix Polynomial Fraction Integer}
the interpreter first loads the modules {\tt Matrix},
{\tt Polynomial}, {\tt Fraction}, and {\tt Integer}
from the library, then builds the {\it domain tower} ``matrices of
polynomials of rational numbers (i.e. fractions of integers)''.

You can watch the loading process by first typing 

\spadcommand{)set message autoload on}
In addition to the named
domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency
reasons the most common domains are preloaded but most (there are
more than 1100 domains, categories, and packages) are not. Once these
domains are loaded they are immediately available to the interpreter.

Once a domain tower is built, it contains all the operations specific
to the type. Computation proceeds by calling operations that exist in
the tower.  For example, suppose that the user asks to square the
above matrix.  To do this, the function \spadopFrom{*}{Matrix} from
{\tt Matrix} is passed the matrix $M$ to compute $M * M$.  
The function is also passed an environment containing $R$
that, in this case, is {\tt Polynomial (Fraction (Integer))}.
This results in the successive calling of the \spadopFrom{*}{Fraction}
operations from {\tt Polynomial}, then from {\tt Fraction},
and then finally from {\tt Integer}.

Categories play a policing role in the building of domains.  Because
the argument of {\tt Matrix} is required to be a {\tt Ring},
Axiom will not build nonsensical types such as ``matrices of
input files''.

\section{Axiom Code is Compiled}

Axiom programs are statically compiled to machine code, then
placed into library modules.  Categories provide an important role in
obtaining efficient object code by enabling:
\begin{itemize}
\item static type-checking at compile time;
\item fast linkage to operations in domain-valued parameters;
\item optimization techniques to be used for partially specified types
(operations for ``vectors of $R$'', for instance, can be open-coded even
though {\tt R} is unknown).
\end{itemize}

\section{Axiom is Extensible}

Users and system implementers alike use the Axiom language to
add facilities to the Axiom library.  The entire Axiom
library is in fact written in the Axiom source code and
available for user modification and/or extension.

%Original Page 15

Axiom's use of abstract datatypes clearly separates the exports
of a domain (what operations are defined) from its implementation (how
the objects are represented and operations are defined).  Users of a
domain can thus only create and manipulate objects through these
exported operations.  This allows implementers to ``remove and
replace'' parts of the library safely by newly upgraded (and, we hope,
correct) implementations without consequence to its users.

Categories protect names by context, making the same names available
for use in other contexts.  Categories also provide for code-economy.
Algorithms can be parameterized categorically to characterize their
correct and most general context.  Once compiled, the same machine
code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction
between new and old code.  For example:
\begin{itemize}
\item if you write a new algorithm that requires a parameter to be a
field, then your algorithm will work automatically with every field
defined in the system; past, present, or future.
\item if you introduce a new domain constructor that produces a field,
then the objects of that domain can be used as parameters to any algorithm
using field objects defined in the system; past, present, or future.
\end{itemize}

These are the key ideas.  For further information, we particularly
recommend your reading chapters 11, 12, and 13, where these ideas are
explained in greater detail.

\section{Using Axiom as a Pocket Calculator}
At the simplest level Axiom can be used as a pocket calculator
where expressions involving numbers and operators are entered 
directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g 
{\bf sin}, {\bf cos}, etc).

\subsection{Basic Arithmetic}
An example of this might be to calculate the cosine of 2.45 (in radians).
To do this one would type:

\spadcommand{(1) -> cos 2.45}
$$
-{0.7702312540 473073417} 
$$
\returnType{Type: Float}

Before proceeding any further it would be best to explain the previous 
three lines. Firstly the text ``(1) {\tt ->} '' is part of the prompt that the
Axiom system provides when in interactive mode. The full prompt has other 
text preceding this but it is not relevant here. The number in parenthesis
is the step number of the input which may be used to refer to the 
{\sl results} of previous calculations. The step number appears at the start
of the second line to tell you which step the result belongs to. Since the
interpreter probably loaded numberous libraries to calculate the result given
above and listed each one in the prcess, there could easily be several pages
of text between your input and the answer.

The last line contains the type of the result. The type {\tt Float} is used
to represent real numbers of arbitrary size and precision (where the user is
able to define how big arbitrary is -- the default is 20 digits but can be
as large as your computer system can handle). The type of the result can help
track down mistakes in your input if you don't get the answer you expected.

Other arithmetic operations such as addition, subtraction, and multiplication
behave as expected:

\spadcommand{6.93 * 4.1328}
$$
28.640304 
$$
\returnType{Type: Float}

\spadcommand{6.93 / 4.1328}
$$
1.6768292682 926829268 
$$
\returnType{Type: Float}

but integer division isn't quite so obvious. For example, if one types:

\spadcommand{4/6}
$$
\frac{2}{3}
$$
\returnType{Type: Fraction Integer}

a fractional result is obtained. The function used to display fractions
attempts to produce the most readable answer. In the example:

\spadcommand{4/2}
$$
2 
$$
\returnType{Type: Fraction Integer}

the result is stored as the fraction 2/1 but is displayed as the integer 2.
This fraction could be converted to type {\tt Integer} with no loss of
information but Axiom will not do so automatically.

\subsection{Type Conversion}
To obtain the floating point value of a fraction one must convert 
({\bf conversions} are applied by the user and 
{\bf coercions} are applied automatically by the interpreter) the result
to type {\tt Float} using the ``::'' operator as follows: 

\spadcommand{(23/5)::Float}
$$
4.6 
$$
\returnType{Type: Float}

Although Axiom can convert this back to a fraction it might not be the
same fraction you started with as due to rounding errors. For example, the
following conversion appears to be without error but others might not:

\spadcommand{\%::Fraction Integer}
$$
\frac{23}{5}
$$
\returnType{Type: Fraction Integer}

where ``\%'' represents the previous {\it result} (not the calculation).

Although Axiom has the ability to work with floating-point numbers to
a very high precision it must be remembered that calculations with these
numbers are {\bf not} exact. Since Axiom is a computer algebra package and
not a numerical solutions package this should not create too many problems.
The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have
typed them and does not perform any evalutation of them unless forced to then
programming in the system will be much easier. It means that anything you
ask Axiom to do (within reason) will be carried out with complete accuracy.

In the previous examples the ``::'' operator was used to convert values from
one type to another. This type conversion is not possible for all values.
For instance, it is not possible to convert the number 3.4 to an integer
type since it can't be represented as an integer. The number 4.0 can be 
converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the 
functions {\bf round} and {\bf truncate}. The first of these rounds a 
floating point number to the nearest integer while the other truncates
(i.e. removes the fractional part). Both functions return the result as a
{\bf floating point} number. To extract the fractional part of a floating
point number use the function {\bf fractionPart} but note that the sign
of the result depends on the sign of the argument. Axiom obtains the
fractional part of $x$ using $x - truncate(x)$:

\spadcommand{round(3.77623)}
$$
4.0 
$$
\returnType{Type: Float}

\spadcommand{round(-3.77623)}
$$
-{4.0} 
$$
\returnType{Type: Float}

\spadcommand{truncate(9.235)}
$$
9.0 
$$
\returnType{Type: Float}

\spadcommand{truncate(-9.654)}
$$
-{9.0} 
$$
\returnType{Type: Float}

\spadcommand{fractionPart(-3.77623)}
$$
-{0.77623} 
$$
\returnType{Type: Float}

\subsection{Useful Functions}
To obtain the absolute value of a number the {\bf abs} function can be used.
This takes a single argument which is usually an integer or a floating point
value but doesn't necessarily have to be. The sign of a value can be obtained
via the {\bf sign} function which rturns $-1$, $0$, or $1$ depending on the 
sign of the argument.

\spadcommand{abs(4)}
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{abs(-3)}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{abs(-34254.12314)}
$$
34254.12314 
$$
\returnType{Type: Float}

\spadcommand{sign(-49543.2345346)}
$$
-1 
$$
\returnType{Type: Integer}

\spadcommand{sign(0)}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

\spadcommand{sign(234235.42354)}
$$
1 
$$
\returnType{Type: PositiveInteger}

Tests on values can be done using various functions which are generally more
efficient than using relational operators such as $=$ particularly if the 
value is a matrix. Examples of some of these functions are:

\spadcommand{positive?(-234)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{negative?(-234)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{zero?(42)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{one?(1)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{odd?(23)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{odd?(9.435)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{even?(-42)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{prime?(37)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{prime?(-37)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Some other functions that are quite useful for manipulating numerical values
are:

\begin{verbatim}
sin(x)         Sine of x
cos(x)         Cosine of x
tan(x)         Tangent of x
asin(x)        Arcsin of x
acos(x)        Arccos of x
atan(x)        Arctangent of x
gcd(x,y)       Greatest common divisor of x and y
lcm(x,y)       Lowest common multiple of x and y
max(x,y)       Maximum of x and y
min(x,y)       Minimum of x and y
factorial(x)   Factorial of x
factor(x)      Prime factors of x
divide(x,y)    Quotient and remainder of x/y
\end{verbatim}

Some simple infix and prefix operators:
\begin{verbatim}
+      Addition             -      Subtraction
-      Numerical Negation   ~      Logical Negation
/\     Conjunction (AND)    \/     Disjunction (OR)
and    Logical AND (/\)     or     Logical OR (\/)
not    Logical Negation     **     Exponentiation
*      Multiplication       /      Division
quo    Quotient             rem    Remainder
<      less than            >      greater than
<=     less than or equal   >=     greater than or equal
\end{verbatim}

Some useful Axiom macros:
\begin{verbatim}
%i              The square root of -1
%e              The base of the natural logarithm
%pi             Pi
%infinity       Infinity
%plusInfinity   Positive Infinity
%minusInfinity  Negative Infinity
\end{verbatim}

\section{Using Axiom as a Symbolic Calculator}
In the previous section all the examples involved numbers and simple
functions. Also none of the expressions entered were assigned to anything.
In this section we will move on to simple algebra (i.e. expressions involving
symbols and other features available on more sophisticated calculators).

\subsection{Expressions Involving Symbols}
Expressions involving symbols are entered just as they are written down,
for example:

\spadcommand{xSquared := x**2}
$$
x \sp 2 
$$
\returnType{Type: Polynomial Integer}

where the assignment operator ``:='' represents immediate assignment. Later
it will be seen that this form of assignment is not always desirable and
the use of the delayed assignment operator ``=='' will be introduced. The
type of the result is {\tt Polynomial Integer} which is used to represent
polynomials with integer coefficients. Some other examples along similar
lines are:

\spadcommand{xDummy := 3.21*x**2}
$$
{3.21} \  {x \sp 2} 
$$
\returnType{Type: Polynomial Float}

\spadcommand{xDummy := x**2.5}
$$
{x \sp 2} \  {\sqrt {x}} 
$$
\returnType{Type: Expression Float}

\spadcommand{xDummy := x**3.3}
$$
{x \sp 3} \  {{\root {{10}} \of {x}} \sp 3} 
$$
\returnType{Type: Expression Float}

\spadcommand{xyDummy := x**2 - y**2}
$$
-{y \sp 2}+{x \sp 2} 
$$
\returnType{Type: Polynomial Integer}

Given that we can define expressions involving symbols, how do we actually
compute the result when the symbols are assigned values? The answer is to
use the {\bf eval} function which takes an expression as its first argument
followed by a list of assignments. For example, to evaluate the expressions
{\bf xDummy} and {\bf xyDummy} resulting from their respective assignments 
above we type:

\spadcommand{eval(xDummy,x=3)}
$$
37.5405075985 29552193 
$$
\returnType{Type: Expression Float}

\spadcommand{eval(xyDummy, [x=3, y=2.1])}
$$
4.59 
$$
\returnType{Type: Polynomial Float}

\subsection{Complex Numbers}
For many scientific calculations real numbers aren't sufficient and support
for complex numbers is also required. Complex numbers are handled in an
intuitive manner and Axiom, which uses the {\bf \%i} macro to represent
the square root of $-1$. Thus expressions involving complex numbers are
entered just like other expressions.

\spadcommand{(2/3 + \%{\rm i})**3}
$$
-{\frac{46}{27}}+{{\frac{1}{3}} \%{\rm i}} 
$$
\returnType{Type: Complex Fraction Integer}

The real and imaginary parts of a complex number can be extracted using 
the {\bf real} and {\bf imag} functions and the complex conjugate of a
number can be obtained using {\bf conjugate}:

\spadcommand{real(3 + 2*\%{\rm i})}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{imag(3+ 2*\%{\rm i})}
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{conjugate(3 + 2*\%{\rm i})}
$$
3 -{2 \%{\rm i}} 
$$
\returnType{Type: Complex Integer}

The function {\bf factor} can also be applied to complex numbers but the
results aren't quite so obvious as for factoring integer:

\spadcommand{144 + 24*\%{\rm i}}
$$
{144}+{{24} \%{\rm i}} 
$$
\returnType{Type: Complex Integer}

\spadcommand{factor \%}
$$
\displaystyle \%{\rm i} (1 + \%{\rm i})^6\ \  3(6 + \%{\rm i})
$$
\returnType{Type: Factored Complex Integer}

We can see that this multiplies out to the original value by expanding
the factored expression:

\spadcommand{expand \%}
$$
{144}+{{24} \%{\rm i}} 
$$
\returnType{Type: Complex Integer}

\subsection{Number Representations}
By default all numerical results are displayed in decimal with real numbers
shown to 20 significant figures. If the integer part of a number is longer
than 20 digits then nothing after the decimal point is shown and the integer
part is given in full. To alter the number of digits shown the function
{\bf digits} can be called. The result returned by this function is the
previous setting. For example, to find the value of $\pi$ to 40 digits
we type:

\spadcommand{digits(40)}
$$
20 
$$
\returnType{Type: PositiveInteger}

\spadcommand{\%pi::Float}
$$
3.1415926535\ 8979323846\ 2643383279\ 502884197 
$$
\returnType{Type: Float}

As can be seen in the example above, there is a gap after every ten digits.
This can be changed using the {\bf outputSpacing} function where the argument
is the number of digits to be displayed before a space is inserted. If no
spaces are desired then use the value $0$. Two other functions controlling
the appearance of real numbers are {\bf outputFloating} and {\bf outputFixed}.
The former causes Axiom to display floating-point values in exponent notation
and the latter causes it to use fixed-point notation. For example:

\spadcommand{outputFloating(); \%}
$$
0.3141592653 5897932384 6264338327 9502884197 {\rm\ E\ } 1 
$$
\returnType{Type: Float}

\spadcommand{outputFloating(3); 0.00345}
$$
0.345 {\rm\ E\ } -2 
$$
\returnType{Type: Float}

\spadcommand{outputFixed(); \%}
$$
0.00345 
$$
\returnType{Type: Float}

\spadcommand{outputFixed(3); \%}
$$
0.003 
$$
\returnType{Type: Float}

\spadcommand{outputGeneral(); \%}
$$
0.00345 
$$
\returnType{Type: Float}

Note that the semicolon ``;'' in the examples above allows several
expressions to be entered on one line. The result of the last expression
is displayed. Remember also that the percent symbol ``\%'' is used to
represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function {\bf radix}
is used. The first argument of this function is the expression to be 
displayed and the second is the base to be used.

\spadcommand{radix(10**10,32)}
$$
{\rm 9A0NP00 }
$$
\returnType{Type: RadixExpansion 32}

\spadcommand{radix(3/21,5)}
$$
0.{\overline {032412}} 
$$
\returnType{Type: RadixExpansion 5}

Rational numbers can be represented as a repeated decimal expansion using
the {\bf decimal} function or as a continued fraction using 
{\bf continuedFraction}. Any attempt to call these functions with irrational
values will fail.

\spadcommand{decimal(22/7)}
$$
3.{\overline {142857}} 
$$
\returnType{Type: DecimalExpansion}

\spadcommand{continuedFraction(6543/210)}
$$
{31}+ \zag{1}{6}+ \zag{1}{2}+ \zag{1}{1}+ \zag{1}{3} 
$$
\returnType{Type: ContinuedFraction Integer}

Finally, partial fractions in compact and expanded form are available via the
functions {\bf partialFraction} and {\bf padicFraction} respectively. The
former takes two arguments, the first being the numerator of the fraction
and the second being the denominator. The latter function takes a fraction
and expands it further while the function {\bf compactFraction} does the
reverse:

\spadcommand{partialFraction(234,40)}
$$
6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} 
$$
\returnType{Type: PartialFraction Integer}

\spadcommand{padicFraction(\%)}
$$
6 -{\frac{1}{2}} -{\frac{1}{2 \sp 2}}+{\frac{3}{5}} 
$$
\returnType{Type: PartialFraction Integer}

\spadcommand{compactFraction(\%)}
$$
6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} 
$$
\returnType{Type: PartialFraction Integer}

\spadcommand{padicFraction(234/40)}
$$
\frac{117}{20} 
$$
\returnType{Type: PartialFraction Fraction Integer}

To extract parts of a partial fraction the function {\bf nthFractionalTerm}
is available and returns a partial fraction of one term. To decompose this
further the numerator can be obtained using {\bf firstNumer} and the 
denominator with {\bf firstDenom}. The whole part of a partial fraction can
be retrieved using {\bf wholePart} and the number of fractional parts can
be found using the function {\bf numberOfFractionalTerms}:

\spadcommand{t := partialFraction(234,40)}
$$
6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} 
$$
\returnType{Type: PartialFraction Integer}

\spadcommand{wholePart(t)}
$$
6 
$$
\returnType{Type: PositiveInteger}

\spadcommand{numberOfFractionalTerms(t)}
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{p := nthFractionalTerm(t,1)}
$$
-{\frac{3}{2 \sp 2}} 
$$
\returnType{Type: PartialFraction Integer}

\spadcommand{firstNumer(p)}
$$
-3 
$$
\returnType{Type: Integer}

\spadcommand{firstDenom(p)}
$$
2 \sp 2 
$$
\returnType{Type: Factored Integer}

\subsection{Modular Arithmetic}
By using the type constructor {\tt PrimeField} it is possible to do 
arithmetic modulo some prime number. For example, arithmetic module $7$
can be performed as follows:

\spadcommand{x : PrimeField 7 := 5}
$$
5 
$$
\returnType{Type: PrimeField 7}

\spadcommand{x**5 + 6}
$$
2 
$$
\returnType{Type: PrimeField 7}

\spadcommand{1/x}
$$
3 
$$
\returnType{Type: PrimeField 7}

The first example should be read as:
\begin{center}
{\tt Let $x$ be of type PrimeField(7) and assign to it the value $5$}
\end{center}

Note that it is only possible to invert non-zero values if the arithmetic
is performed modulo a prime number. Thus arithmetic modulo a non-prime
integer is possible but the reciprocal operation is undefined and will
generate an error. Attempting to use the {\tt PrimeField} type constructor
with a non-prime argument will generate an error. An example of non-prime
modulo arithmetic is:

\spadcommand{y : IntegerMod 8 := 11}
$$
3 
$$
\returnType{Type: IntegerMod 8}

\spadcommand{y*4 + 27}
$$
7 
$$
\returnType{Type: IntegerMod 8}

Note that polynomials can be constructed in a similar way:

\spadcommand{(3*a**4 + 27*a - 36)::Polynomial PrimeField 7}
$$
{3 \  {a \sp 4}}+{6 \  a}+6 
$$
\returnType{Type: Polynomial PrimeField 7}

\section{General Points about Axiom}
\subsection{Computation Without Output}
It is sometimes desirable to enter an expression and prevent Axiom from
displaying the result. To do this the expression should be terminated with
a semicolon ``;''. In a previous section it was mentioned that a set of 
expressions separated by semicolons would be evaluated and the result
of the last one displayed. Thus if a single expression is followed by a
semicolon no output will be produced (except for its type):

\spadcommand{2 + 4*5;}
\returnType{Type: PositiveInteger}

\subsection{Accessing Earlier Results}
The ``\%'' macro represents the result of the previous computation. The 
``\%\%'' macro is available which takes a single integer argument. If the
argument is positive then it refers to the step number of the calculation
where the numbering begins from one and can be seen at the end of each
prompt (the number in parentheses). If the argument is negative then it
refers to previous results counting backwards from the last result. That is,
``\%\%(-1)'' is the same as ``\%''. The value of ``\%\%(0)'' is not defined and
will generate an error if requested.

\subsection{Splitting Expressions Over Several Lines}
Although Axiom will quite happily accept expressions that are longer than
the width of the screen (just keep typing without pressing the {\bf Return}
key) it is often preferable to split the expression being entered at a point
where it would result in more readable input. To do this the underscore
``\_'' symbol is placed before the break point and then the {\bf Return}
key is pressed. The rest of the expression is typed on the next line,
can be preceeded by any number of whitespace chars, for example:
\begin{verbatim}
2_
+_
3
\end{verbatim}
$$
5 
$$
\returnType{Type: PositiveInteger}

The underscore symbol is an escape character and its presence alters the
meaning of the characters that follow it. As mentions above whitespace
following an underscore is ignored (the {\bf Return} key generates a
whitespace character). Any other character following an underscore loses
whatever special meaning it may have had. Thus one can create the
identifier ``a+b'' by typing ``a\_+b'' although this might lead to confusions.
Also note the result of the following example:

\spadcommand{ThisIsAVeryLong\_\\
VariableName}
$$
ThisIsAVeryLongVariableName 
$$
\returnType{Type: Variable ThisIsAVeryLongVariableName}

\subsection{Comments and Descriptions}
Comments and descriptions are really only of use in files of Axiom code but
can be used when the output of an interactive session is being spooled to
a file (via the system command {\bf )spool}). A comment begins with two
dashes ``- -'' and continues until the end of the line. Multi-line
comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will 
include them in the object files produced and make them availabe to the
end user for documentation purposes.

A description is placed {\bf before} a calculation begins with three
``+'' signs (i.e. ``+++'') and a description placed after a calculation
begins with two plus symbols (i.e.``++''). The so-called ``plus plus''
comments are used within the algebra files and are processed by the
compiler to add to the documentation. The so-called ``minus minus''
comments are ignored everywhere.

\subsection{Control of Result Types}
In earlier sections the type of an expression was converted to another
via the ``::'' operator. However, this is not the only method for
converting between types and two other operators need to be introduced
and explained. 

The first operator is ``\$'' and is used to specify the package to be
used to calculate the result. Thus:

\spadcommand{(2/3)\$Float}
$$
0.6666666666\ 6666666667 
$$
\returnType{Type: Float}

tells Axiom to use the ``/'' operator from the {\tt Float} package to
evaluate the expression $2/3$. This does not necessarily mean that the
result will be of the same type as the domain from which the operator
was taken. In the following example the {\bf sign} operator is taken
from the {\tt Float} package but the result is of type {\tt Integer}.

\spadcommand{sign(2.3)\$Float}
$$
1 
$$
\returnType{Type: Integer}

The other operator is ``@'' which is used to tell Axiom what the desired
type of the result of the calculation is. In most situations all three
operators yield the same results but the example below should help 
distinguish them.

\spadcommand{(2 + 3)::String}
$$
\mbox{\tt "5"} 
$$
\returnType{Type: String}

\spadcommand{(2 + 3)@String}
\begin{verbatim}
An expression involving @ String actually evaluated to one of 
   type PositiveInteger . Perhaps you should use :: String .
\end{verbatim}

\spadcommand{(2 + 3)\$String}
\begin{verbatim}
   The function + is not implemented in String .
\end{verbatim}

If an expression {\sl X} is converted using one of the three operators to 
type {\sl T} the interpretations are:

{\bf ::} means explicitly convert {\sl X} to type {\sl T} if possible.

{\bf \$} means use the available operators for type {\sl T} to compute {\sl X}.

{\bf @} means choose operators to compute {\sl X} so that the result is of
type {\sl T}.

\section{Data Structures in Axiom}
This chapter is an overview of {\sl some} of the data structures provided
by Axiom.
\subsection{Lists}
The Axiom {\tt List} type constructor is used to create homogenous lists of
finite size. The notation for lists and the names of the functions that 
operate over them are similar to those found in functional languages such
as ML.

Lists can be created by placing a comma separated list of values inside
square brackets or if a list with just one element is desired then the
function {\bf list} is available:

\spadcommand{[4]}
$$
\left[
4 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{list(4)}
$$
\left[
4 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{[1,2,3,5,7,11]}
$$
\left[
1,  2,  3,  5,  7,  {11} 
\right]
$$
\returnType{Type: List PositiveInteger}

The function {\bf append} takes two lists as arguments and returns the list
consisting of the second argument appended to the first. A single element
can be added to the front of a list using {\bf cons}:

\spadcommand{append([1,2,3,5],[7,11])}
$$
\left[
1,  2,  3,  5,  7,  {11} 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{cons(23,[65,42,19])}
$$
\left[
{23},  {65},  {42},  {19} 
\right]
$$
\returnType{Type: List PositiveInteger}

Lists are accessed sequentially so if Axiom is asked for the value of the
twentieth element in the list it will move from the start of the list over
nineteen elements before it reaches the desired element. Each element of a 
list is stored as a node consisting of the value of the element and a pointer
to the rest of the list. As a result the two main operations on a list are
called {\bf first} and {\bf rest}. Both of these functions take a second
optional argument which specifies the length of the first part of the list:

\spadcommand{first([1,5,6,2,3])}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{first([1,5,6,2,3],2)}
$$
\left[
1,  5 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{rest([1,5,6,2,3])}
$$
\left[
5,  6,  2,  3 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{rest([1,5,6,2,3],2)}
$$
\left[
6,  2,  3 
\right]
$$
\returnType{Type: List PositiveInteger}

Other functions are {\bf empty?} which tests to see if a list contains no
elements, {\bf member?} which tests to see if the first argument is a member
of the second, {\bf reverse} which reverses the order of the list, {\bf sort}
which sorts a list, and {\bf removeDuplicates} which removes any duplicates.
The length of a list can be obtained using the ``\#'' operator.

\spadcommand{empty?([7,2,-1,2])}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{member?(-1,[7,2,-1,2])}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{reverse([7,2,-1,2])}
$$
\left[
2,  -1,  2,  7 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{sort([7,2,-1,2])}
$$
\left[
-1,  2,  2,  7 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{removeDuplicates([1,5,3,5,1,1,2])}
$$
\left[
1,  5,  3,  2 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{\#[7,2,-1,2]}
$$
4 
$$
\returnType{Type: PositiveInteger}

Lists in Axiom are mutable and so their contents (the elements and the links)
can be modified in place. Functions that operate over lists in this way have
names ending in the symbol ``!''. For example, {\bf concat!} takes two lists
as arguments and appends the second argument to the first (except when the
first argument is an empty list) and {\bf setrest!} changes the link 
emanating from the first argument to point to the second argument:

\spadcommand{u := [9,2,4,7]}
$$
\left[
9,  2,  4,  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{concat!(u,[1,5,42]); u}
$$
\left[
9,  2,  4,  7,  1,  5,  {42} 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{endOfu := rest(u,4)}
$$
\left[
1,  5,  {42} 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{partOfu := rest(u,2)}
$$
\left[
4,  7,  1,  5,  {42} 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{setrest!(endOfu,partOfu); u}
$$
\left[
9,  2,  {\overline {4,  7,  1}} 
\right]
$$
\returnType{Type: List PositiveInteger}

From this it can be seen that the lists returned by {\bf first} and {\bf rest}
are pointers to the original list and {\sl not} a copy. Thus great care must
be taken when dealing with lists in Axiom.

Although the {\sl n}th element of the list {\sl l} can be obtained by 
applying the {\bf first} function to $n-1$ applications of {\bf rest}
to {\sl l}, Axiom provides a more useful access method in the form of
the ``.'' operator:

\spadcommand{u.3}
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{u.5}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{u.6}
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{first rest rest u -- Same as u.3}
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{u.first}
$$
9 
$$
\returnType{Type: PositiveInteger}

\spadcommand{u(3)}
$$
4 
$$
\returnType{Type: PositiveInteger}

The operation {\sl u.i} is referred to as {\sl indexing into u} or 
{\sl elting into u}. The latter term comes from the {\bf elt} function
which is used to extract elements (the first element of the list is at
index $1$).

\spadcommand{elt(u,4)}
$$
7 
$$
\returnType{Type: PositiveInteger}

If a list has no cycles then any attempt to access an element beyond the
end of the list will generate an error. However, in the example above there
was a cycle starting at the third element so the access to the sixth
element wrapped around to give the third element. Since lists are mutable it
is possible to modify elements directly:

\spadcommand{u.3 := 42; u}
$$
\left[
9,  2,  {\overline {{42},  7,  1}} 
\right]
$$
\returnType{Type: List PositiveInteger}

Other list operations are:
\spadcommand{L := [9,3,4,7]; \#L}
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{last(L)}
$$
7 
$$
\returnType{Type: PositiveInteger}

\spadcommand{L.last}
$$
7 
$$
\returnType{Type: PositiveInteger}

\spadcommand{L.(\#L - 1)}
$$
4 
$$
\returnType{Type: PositiveInteger}

Note that using the ``\#'' operator on a list with cycles causes Axiom to
enter an infinite loop.

Note that any operation on a list {\sl L} that returns a list ${\sl L}L^{'}$
will, in general, be such that any changes to ${\sl L}L^{'}$ will have the
side-effect of altering {\sl L}. For example:

\spadcommand{m := rest(L,2)}
$$
\left[
4,  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{m.1 := 20; L}
$$
\left[
9,  3,  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{n := L}
$$
\left[
9,  3,  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{n.2 := 99; L}
$$
\left[
9,  {99},  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{n}
$$
\left[
9,  {99},  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

Thus the only safe way of copying lists is to copy each element from one to
another and not use the assignment operator:

\spadcommand{p := [i for i in n] -- Same as `p := copy(n)'}
$$
\left[
9,  {99},  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{p.2 := 5; p}
$$
\left[
9,  5,  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{n}
$$
\left[
9,  {99},  {20},  7 
\right]
$$
\returnType{Type: List PositiveInteger}

In the previous example a new way of constructing lists was given. This is
a powerful method which gives the reader more information about the contents
of the list than before and which is extremely flexible. The example

\spadcommand{[i for i in 1..10]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10} 
\right]
$$
\returnType{Type: List PositiveInteger}

should be read as

\begin{center}
``Using the expression {\sl i}, generate each element of the list by
iterating the symbol {\sl i} over the range of integers [1,10]''
\end{center}

To generate the list of the squares of the first ten elements we just use:

\spadcommand{[i**2 for i in 1..10]}
$$
\left[
1,  4,  9,  {16},  {25},  {36},  {49},  {64},  {81},  {100} 
\right]
$$
\returnType{Type: List PositiveInteger}

For more complex lists we can apply a condition to the elements that are to
be placed into the list to obtain a list of even numbers between 0 and 11:

\spadcommand{[i for i in 1..10 | even?(i)]}
$$
\left[
2,  4,  6,  8,  {10} 
\right]
$$
\returnType{Type: List PositiveInteger}

This example should be read as:
\begin{center}
``Using the expression {\sl i}, generate each element of the list
by iterating the symbol {\sl i} over the range of integers [1,10] such that 
{\sl i} is even''
\end{center}

The following achieves the same result:

\spadcommand{[i for i in 2..10 by 2]}
$$
\left[
2,  4,  6,  8,  {10} 
\right]
$$
\returnType{Type: List PositiveInteger}

\subsection{Segmented Lists}
A segmented list is one in which some of the elements are ranges of values.
The {\bf expand} function converts lists of this type into ordinary lists:

\spadcommand{[1..10]}
$$
\left[
{1..{10}} 
\right]
$$
\returnType{Type: List Segment PositiveInteger}

\spadcommand{[1..3,5,6,8..10]}
$$
\left[
{1..3},  {5..5},  {6..6},  {8..{10}} 
\right]
$$
\returnType{Type: List Segment PositiveInteger}

\spadcommand{expand(\%)}
$$
\left[
1,  2,  3,  5,  6,  8,  9,  {10} 
\right]
$$
\returnType{Type: List Integer}

If the upper bound of a segment is omitted then a different type of 
segmented list is obtained and expanding it will produce a stream (which
will be considered in the next section):

\spadcommand{[1..]}
$$
\left[
{1..} 
\right]
$$
\returnType{Type: List UniversalSegment PositiveInteger}

\spadcommand{expand(\%)}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

\subsection{Streams}
Streams are infinite lists which have the ability to calculate the next
element should it be required. For example, a stream of positive integers
and a list of prime numbers can be generated by:

\spadcommand{[i for i in 1..]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10},  \ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

\spadcommand{[i for i in 1.. | prime?(i)]}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
\ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

In each case the first few elements of the stream are calculated for display
purposes but the rest of the stream remains unevaluated. The value of items
in a stream are only calculated when they are needed which gives rise to
their alternative name of ``lazy lists''.

Another method of creating streams is to use the {\bf generate(f,a)} function.
This applies its first argument repeatedly onto its second to produce the
stream \\
$[a,f(a),f(f(a)),f(f(f(a)))\ldots]$. Given that the function
{\bf nextPrime} returns the lowest prime number greater than its argument we
can generate a stream of primes as follows:

\spadcommand{generate(nextPrime,2)\$Stream Integer}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

As a longer example a stream of Fibonacci numbers will be computed. The
Fibonacci numbers start at $1$ and each following number is the addition
of the two numbers that precede it so the Fibonacci sequence is:
$$1,1,2,3,5,8,\ldots$$. 

Since the generation of any Fibonacci number only relies on knowing the 
previous two numbers we can look at the series through a window of two
elements. To create the series the window is placed at the start over
the values $[1,1]$ and their sum obtained. The window is now shifted to 
the right by one position and the sum placed into the empty slot of the
window; the process is then repeated. To implement this we require a 
function that takes a list of two elements (the current view of the window),
adds them, and outputs the new window. The result is the function
$[a,b]$~{\tt ->}~$[b,a+b]$:
\spadcommand{win : List Integer -> List Integer}
\returnType{Type: Void}

\spadcommand{win(x) == [x.2, x.1 + x.2]}
\returnType{Type: Void}

\spadcommand{win([1,1])}
$$
\left[
1,  2 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{win(\%)}
$$
\left[
2,  3 
\right]
$$
\returnType{Type: List Integer}

Thus it can be seen that by repeatedly applying {\bf win} to the {\sl results}
of the previous invocation each element of the series is obtained. Clearly
{\bf win} is an ideal function to construct streams using the {\bf generate}
function:
\spadcommand{fibs := [generate(win,[1,1])]}
$$
\left[
{\left[ 1,  1 
\right]},
 {\left[ 1,  2 
\right]},
 {\left[ 2,  3 
\right]},
 {\left[ 3,  5 
\right]},
 {\left[ 5,  8 
\right]},
 {\left[ 8,  {13} 
\right]},
 {\left[ {13},  {21} 
\right]},
 {\left[ {21},  {34} 
\right]},
 {\left[ {34},  {55} 
\right]},
 {\left[ {55},  {89} 
\right]},
 \ldots 
\right]
$$
\returnType{Type: Stream List Integer}

This isn't quite what is wanted -- we need to extract the first element of
each list and place that in our series:
\spadcommand{fibs := [i.1 for i in [generate(win,[1,1])] ]}
$$
\left[
1,  1,  2,  3,  5,  8,  {13},  {21},  {34},  {55},  
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

Obtaining the 200th Fibonacci number is trivial:
\spadcommand{fibs.200}
$$
280571172992510140037611932413038677189525 
$$
\returnType{Type: PositiveInteger}

One other function of interest is {\bf complete} which expands a finite
stream derived from an infinite one (and thus was still stored as an
infinite stream) to form a finite stream.

\subsection{Arrays, Vectors, Strings, and Bits}
The simplest array data structure is the {\sl one-dimensional array} which
can be obtained by applying the {\bf oneDimensionalArray} function to a list:
\spadcommand{oneDimensionalArray([7,2,5,4,1,9])}
$$
\left[
7,  2,  5,  4,  1,  9 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

One-dimensional arrays are homogenous (all elements must have the same type)
and mutable (elements can be changed) like lists but unlike lists they are
constant in size and have uniform access times (it is just as quick to read
the last element of a one-dimensional array as it is to read the first; this
is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to
arrays. That is, it is possible to modify an element in a copy of an array
and change the original:
\spadcommand{x := oneDimensionalArray([7,2,5,4,1,9])}
$$
\left[
7,  2,  5,  4,  1,  9 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{y := x}
$$
\left[
7,  2,  5,  4,  1,  9 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{y.3 := 20 ; x}
$$
\left[
7,  2,  {20},  4,  1,  9 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

Note that because these arrays are of fixed size the {\bf concat!} function
cannot be applied to them without generating an error. If arrays of this 
type are required use the {\bf FlexibleArray} constructor.

One-dimensional arrays can be created using {\bf new} which specifies the size
of the array and the initial value for each of the elements. Other operations
that can be applied to one-dimensional arrays are {\bf map!} which applies
a mapping onto each element, {\bf swap!} which swaps two elements and
{\bf copyInto!(a,b,c)} which copies the array {\sl b} onto {\sl a} starting at
position {\sl c}.
\spadcommand{a : ARRAY1 PositiveInteger := new(10,3)}
$$
\left[
3,  3,  3,  3,  3,  3,  3,  3,  3,  3 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

(note that {\tt ARRAY1} is an abbreviation for the type 
{\tt OneDimensionalArray}.) Other types based on one-dimensional arrays are
{\tt Vector}, {\tt String}, and {\tt Bits}.

\spadcommand{map!(i +-> i+1,a); a}
$$
\left[
4,  4,  4,  4,  4,  4,  4,  4,  4,  4 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{b := oneDimensionalArray([2,3,4,5,6])}
$$
\left[
2,  3,  4,  5,  6 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{swap!(b,2,3); b}
$$
\left[
2,  4,  3,  5,  6 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{copyInto!(a,b,3)}
$$
\left[
4,  4,  2,  4,  3,  5,  6,  4,  4,  4 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{a}
$$
\left[
4,  4,  2,  4,  3,  5,  6,  4,  4,  4 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

\spadcommand{vector([1/2,1/3,1/14])}
$$
\left[
{\frac{1}{2}},  {\frac{1}{3}},  {\frac{1}{14}} 
\right]
$$
\returnType{Type: Vector Fraction Integer}

\spadcommand{"Hello, World"}
$$
\mbox{\tt "Hello, World"} 
$$
\returnType{Type: String}

\spadcommand{bits(8,true)}
$$
\mbox{\tt "11111111"} 
$$
\returnType{Type: Bits}

A vector is similar to a one-dimensional array except that if its 
components belong to a ring then arithmetic operations are provided.

\subsection{Flexible Arrays}
Flexible arrays are designed to provide the efficiency of one-dimensional
arrays while retaining the flexibility of lists. They are implemented by
allocating a fixed block of storage for the array. If the array needs to
be expanded then a larger block of storage is allocated and the contents
of the old block are copied into the new one.

There are several operations that can be applied to this type, most of
which modify the array in place. As a result these functions all have 
names ending in ``!''. The {\bf physicalLength} returns the actual length
of the array as stored in memory while the {\bf physicalLength!} allows this
value to be changed by the user.
\spadcommand{f : FARRAY INT := new(6,1)}
$$
\left[
1,  1,  1,  1,  1,  1 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f}
$$
\left[
4,  3,  8,  1,  2,  1 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{insert!(42,f,3); f}
$$
\left[
4,  3,  {42},  8,  1,  2,  1 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{insert!(28,f,8); f}
$$
\left[
4,  3,  {42},  8,  1,  2,  1,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{removeDuplicates!(f)}
$$
\left[
4,  3,  {42},  8,  1,  2,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{delete!(f,5)}
$$
\left[
4,  3,  {42},  8,  2,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{g:=f(3..5)}
$$
\left[
{42},  8,  2 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{g.2:=7; f}
$$
\left[
4,  3,  {42},  8,  2,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{insert!(g,f,1)}
$$
\left[
{42},  7,  2,  4,  3,  {42},  8,  2,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{physicalLength(f)}
$$
10 
$$
\returnType{Type: PositiveInteger}

\spadcommand{physicalLength!(f,20)}
$$
\left[
{42},  7,  2,  4,  3,  {42},  8,  2,  {28} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{merge!(sort!(f),sort!(g))}
$$
\left[
2,  2,  2,  3,  4,  7,  7,  8,  {28},  {42},  {42},  
{42} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

\spadcommand{shrinkable(false)\$FlexibleArray(Integer)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

There are several things to point out concerning these
examples. First, although flexible arrays are mutable, making copies
of these arrays creates separate entities. This can be seen by the
fact that the modification of element {\sl g.2} above did not alter
{\sl f}. Second, the {\bf merge!}  function can take an extra argument
before the two arrays are merged. The argument is a comparison
function and defaults to ``{\tt <=}'' if omitted. Lastly, 
{\bf shrinkable} tells the system whether or not to let flexible arrays
contract when elements are deleted from them. An explicit package
reference must be given as in the example above.

\section{Functions, Choices, and Loops}
By now the reader should be able to construct simple one-line expressions
involving variables and different data structures. This section builds on
this knowledge and shows how to use iteration, make choices, and build
functions in Axiom. At the moment it is assumed that the reader has a rough
idea of how types are specified and constructed so that they can follow
the examples given.

From this point on most examples will be taken from input files. 

\subsection{Reading Code from a File}
Input files contain code that will be fed to the command prompt. The 
primary difference between the command line and an input file is that
indentation matters. In an input file you can specify ``piles'' of code
by using indentation. 

The names of all input files in Axiom should end in ``.input'' otherwise
Axiom will refuse to read them. 

If an input file is named {\bf foo.input} you can feed the contents of
the file to the command prompt (as though you typed them) by writing:
{\bf )read foo.input}.

It is good practice to start each input file with the {\bf )clear all}
command so that all functions and variables in the current environment
are erased. 
\subsection{Blocks}
The Axiom constructs that provide looping, choices, and user-defined
functions all rely on the notion of blocks. A block is a sequence of
expressions which are evaluated in the order that they appear except
when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form:
{\sl BoolExpr}~{\tt =>}~{\sl Expr} 
where {\sl BoolExpr} is any Axiom expression that has type {\tt Boolean}. 
The value and type of {\sl Expr} determines the value and type returned 
by the block.

If blocks are entered at the keyboard (as opposed to reading them from
a text file) then there is only one way of creating them. The syntax is:
$$( expression1 ; expression2; \ldots ; expressionN )$$

In an input file a block can be constructed as above or by placing all the
statements at the same indentation level. When indentation is used to
indicate program structure the block is called a {\sl pile}. As an example
of a simple block a list of three integers can be constructed using
parentheses:
\spadcommand{( a:=4; b:=1; c:=9; L:=[a,b,c])}
$$
\left[
4,  1,  9 
\right]
$$
\returnType{Type: List PositiveInteger}

Doing the same thing using piles in an input file you could type:
\begin{verbatim}
L :=
  a:=4
  b:=1
  c:=9
  [a,b,c]
\end{verbatim}
$$
\left[
4, 1, 9 
\right]
$$
\returnType{Type: List PositiveInteger}

Since blocks have a type and a value they can be used as arguments to 
functions or as part of other expressions. It should be pointed out that
the following example is not recommended practice but helps to illustrate
the idea of blocks and their ability to return values:
\begin{verbatim}
sqrt(4.0 +
         a:=3.0
         b:=1.0
         c:=a + b
         c
    )
\end{verbatim}
$$
2.8284271247\ 461900976 
$$
\returnType{Type: Float}

Note that indentation is {\bf extremely} important. If the example above
had the pile starting at ``a:='' moved left by two spaces so that the
``a'' was under the ``('' of the first line then the interpreter would
signal an error. Furthermore if the closing parenthesis ``)'' is moved 
up to give
\begin{verbatim}
sqrt(4.0 +
         a:=3.0
         b:=1.0
         c:=a + b
         c)
\end{verbatim}
\begin{verbatim}
  Line   1: sqrt(4.0 +
           ....A
  Error  A: Missing mate.
  Line   2:          a:=3.0
  Line   3:          b:=1.0
  Line   4:          c:=a + b
  Line   5:          c)
           .........AB
  Error  A: (from A up to B) Ignored.
  Error  B: Improper syntax.
  Error  B: syntax error at top level
  Error  B: Possibly missing a ) 
   5 error(s) parsing 
\end{verbatim}
then the parser will generate errors. If the parenthesis is shifted right 
by several spaces so that it is in line with the ``c'' thus:
\begin{verbatim}
sqrt(4.0 +
         a:=3.0
         b:=1.0
         c:=a + b
         c
         )
\end{verbatim}
\begin{verbatim}
  Line   1: sqrt(4.0 +
           ....A
  Error  A: Missing mate.
  Line   2:          a:=3.0
  Line   3:          b:=1.0
  Line   4:          c:=a + b
  Line   5:          c
  Line   6:          )
           .........A
  Error  A: (from A up to A) Ignored.
  Error  A: Improper syntax.
  Error  A: syntax error at top level
  Error  A: Possibly missing a ) 
   5 error(s) parsing 
\end{verbatim}
a similar error will be raised. Finally, the ``)'' must be indented by 
at least one space relative to the sqrt thus:
\begin{verbatim}
sqrt(4.0 +
         a:=3.0
         b:=1.0
         c:=a + b
         c
 )
\end{verbatim}
$$
2.8284271247\ 461900976 
$$
\returnType{Type: Float}
or an error will be generated.

It can be seen that great care needs to be taken when constructing input
files consisting of piles of expressions. It would seem prudent to add
one pile at a time and check if it is acceptable before adding more,
particularly if piles are nested. However, it should be pointed out that
the use of piles as values for functions is not very readable and so
perhaps the delicate nature of their interpretation should deter programmers
from using them in these situations. Using piles should really be restricted
to constructing functions, etc. and a small amount of rewriting can remove
the need to use them as arguments. For example, the previous block could
easily be implemented as:
\begin{verbatim}
a:=3.0
b:=1.0
c:=a + b
sqrt(4.0 + c)
\end{verbatim}
\begin{verbatim}
a:=3.0
\end{verbatim}
$$
3.0
$$
\returnType{Type: Float}

\begin{verbatim}
b:=1.0
\end{verbatim}
$$
1.0
$$
\returnType{Type: Float}

\begin{verbatim}
c:=a + b
\end{verbatim}
$$
4.0
$$
\returnType{Type: Float}

\begin{verbatim}
sqrt(4.0 + c)
\end{verbatim}
$$
2.8284271247\ 461900976
$$
\returnType{Type: Float}

which achieves the same result and is easier to understand. Note that this
is still a pile but it is not as fragile as the previous version.
\subsection{Functions}
Definitions of functions in Axiom are quite simple providing two things
are observed. First, the type of the function must either be completely
specified or completely unspecified. Second, the body of the function is
assigned to the function identifier using the delayed assignment operator
``==''.

To specify the type of something the ``:'' operator is used. Thus to define
a variable {\sl x} to be of type {\tt Fraction Integer} we enter:
\spadcommand{x : Fraction Integer}
\returnType{Type: Void}

For functions the method is the same except that the arguments are
placed in parentheses and the return type is placed after the symbol
``{\tt ->}''.  Some examples of function definitions taking zero, one,
two, or three arguments and returning a list of integers are:

\spadcommand{f : () -> List Integer}
\returnType{Type: Void}

\spadcommand{g : (Integer) -> List Integer}
\returnType{Type: Void}

\spadcommand{h : (Integer, Integer) -> List Integer}
\returnType{Type: Void}

\spadcommand{k : (Integer, Integer, Integer) -> List Integer}
\returnType{Type: Void}

Now the actual function definitions might be:
\spadcommand{f() == [\ ]}
\returnType{Type: Void}

\spadcommand{g(a) == [a]}
\returnType{Type: Void}

\spadcommand{h(a,b) == [a,b]}
\returnType{Type: Void}

\spadcommand{k(a,b,c) == [a,b,c]}
\returnType{Type: Void}

with some invocations of these functions:
\spadcommand{f()}
\begin{verbatim}
   Compiling function f with type () -> List Integer 
\end{verbatim}
$$
\left[\ 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{g(4)}
\begin{verbatim}
   Compiling function g with type Integer -> List Integer 
\end{verbatim}
$$
\left[
4 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{h(2,9)}
\begin{verbatim}
   Compiling function h with type (Integer,Integer) -> List Integer 
\end{verbatim}
$$
\left[
2,  9 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{k(-3,42,100)}
\begin{verbatim}
   Compiling function k with type (Integer,Integer,Integer) -> List 
      Integer 
\end{verbatim}
$$
\left[
-3,  {42},  {100} 
\right]
$$
\returnType{Type: List Integer}

The value returned by a function is either the value of the last expression
evaluated or the result of a {\bf return} statement. For example, the
following are effectively the same:
\spadcommand{p : Integer -> Integer}
\returnType{Type: Void}

\spadcommand{p x == (a:=1; b:=2; a+b+x)}
\returnType{Type: Void}

\spadcommand{p x == (a:=1; b:=2; return(a+b+x))}
\returnType{Type: Void}

Note that a block (pile) is assigned to the function identifier {\bf p} and
thus all the rules about blocks apply to function definitions. Also there was
only one argument so the parenthese are not needed.

This is basically all that one needs to know about defining functions in 
Axiom -- first specify the complete type and then assign a block to the
function name. The rest of this section is concerned with defining more 
complex blocks than those in this section and as a result function definitions
will crop up continually particularly since they are a good way of testing
examples. Since the block structure is more complex we will use the {\bf pile}
notation and thus have to use input files to read the piles.

\subsection{Choices}
Apart from the ``{\tt =>}'' operator that allows a block to exit before the end
Axiom provides the standard {\bf if-then-else} construct. The general
syntax is:
{\center{if {\sl BooleanExpr} then {\sl Expr1} else {\sl Expr2}}}

where ``else {\sl Expr2}'' can be omitted. If the expression {\sl BooleanExpr}
evaluates to {\tt true} then {\sl Expr1} is executed otherwise {\sl Expr2}
(if present) will be executed. An example of piles and {\bf if-then-else} is:
(read from an input file)
\begin{verbatim}
h := 2.0
if h > 3.1 then
      1.0
   else
      z:= cos(h)
      max(x,0.5)
\end{verbatim}
\begin{verbatim}
h := 2.0
\end{verbatim}
$$
2.0
$$
\returnType{Type: Float}

\begin{verbatim}
if h > 3.1 then
      1.0
   else
      z:= cos(h)
      max(x,0.5)
\end{verbatim}
$$
x
$$
\returnType{Type: Polynomial Float}

Note the indentation -- the ``else'' must be indented relative to the ``if''
otherwise it will generate an error (Axiom will think there are two piles,
the second one beginning with ``else'').

Any expression that has type {\tt Boolean} can be used as {\tt BooleanExpr}
and the most common will be those involving the relational operators ``$>$'',
``$<$'', and ``=''. Usually the type of an expression involving the equality
operator ``='' will be {\bf Boolean} but in those situations when it isn't
you may need to use the ``@'' operator to ensure that it is.

\subsection{Loops}
Loops in Axiom are regarded as expressions containing another expression 
called the {\sl loop body}. The loop body is executed zero or more times
depending on the kind of loop. Loops can be nested to any depth.

\subsubsection{The {\tt repeat} loop}
The simplest kind of loop provided by Axiom is the {\bf repeat} loop. The 
general syntax of this is:
{\center{{\bf repeat} {\sl loopBody}}}

This will cause Axiom to execute {\sl loopBody} repeatedly until either a
{\bf break} or {\bf return} statement is encountered. If {\sl loopBody}
contains neither of these statements then it will loop forever. The 
following piece of code will display the numbers from $1$ to $4$:
\begin{verbatim}
i:=1
repeat
  if i > 4 then break
  output(i)
  i:=i+1
\end{verbatim}
\begin{verbatim}
i:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
repeat
  if i > 4 then break
  output(i)
  i:=i+1
 
   1
   2
   3
   4
\end{verbatim}
\returnType{Type: Void}

It was mentioned that loops will only be left when either a {\bf break} or
{\bf return} statement is encountered so why can't one use the ``{\tt =>}'' 
operator? The reason is that the ``{\tt =>}'' operator tells Axiom to leave the
current block whereas {\bf break} leaves the current loop. The {\bf return}
statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop
use the {\bf iterate} statement (the {\tt --} starts a comment in Axiom)
\begin{verbatim}
i := 0
repeat
  i := i + 1
  if i > 6 then break
  -- Return to start if i is odd
  if odd?(i) then iterate
  output(i)
\end{verbatim}
\begin{verbatim}
i := 0
\end{verbatim}
$$
0
$$
\returnType{Type: NonNegativeInteger}

\begin{verbatim}
repeat
  i := i + 1
  if i > 6 then break
  -- Return to start if i is odd
  if odd?(i) then iterate
  output(i)
 
   2
   4
   6
\end{verbatim}
\returnType{Type: Void}

\subsubsection{The {\tt while} loop}
The while statement extends the basic {\bf repeat} loop to place the control
of leaving the loop at the start rather than have it buried in the middle.
Since the body of the loop is still part of a {\bf repeat} loop, {\bf break}
and ``{\tt =>}'' work in the same way as in the previous section. The general
syntax of a {\bf while} loop is:
{\center{while {\sl BoolExpr} repeat {\sl loopBody}}}

As before, {\sl BoolExpr} must be an expression of type {\bf Boolean}. Before
the body of the loop is executed {\sl BoolExpr} is tested. If it evaluates to
{\tt true} then the loop body is entered otherwise the loop is terminated.
Multiple conditions can be applied using the logical operators such as 
{\bf and} or by using several {\bf while} statements before the {\bf repeat}.
\begin{verbatim}
x:=1
y:=1
while x < 4 and y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
\end{verbatim}
\begin{verbatim}
x:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
y:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
while x < 4 and y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
 
   [1,1]
   [2,3]
   [3,5]
\end{verbatim}
\returnType{Type: Void}

We could use two parallel whiles
\begin{verbatim}
x:=1
y:=1
while x < 4 while y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
\end{verbatim}
the {\bf )read} yields:
\begin{verbatim}
x:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
y:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
while x < 4 while y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
 
   [1,1]
   [2,3]
   [3,5]
\end{verbatim}
\returnType{Type: Void}

Note that the last example using two {\bf while} statements is {\sl not} a
nested loop but the following one is:
\begin{verbatim}
x:=1
y:=1
while x < 4 repeat
  while y < 10 repeat
    output [x,y]
    x := x + 1
    y := y + 2
\end{verbatim}
\begin{verbatim}
x:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
y:=1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
while x < 4 repeat
  while y < 10 repeat
    output [x,y]
    x := x + 1
    y := y + 2
 
   [1,1]
   [2,3]
   [3,5]
   [4,7]
   [5,9]
\end{verbatim}
\returnType{Type: Void}

Suppose we that, given a matrix of arbitrary size, find the position and
value of the first negative element by examining the matrix in row-major 
order:
\begin{verbatim}
m := matrix [ [ 21, 37, 53, 14 ],_
              [  8, 22,-24, 16 ],_
              [  2, 10, 15, 14 ],_
              [ 26, 33, 55,-13 ] ]

lastrow := nrows(m)
lastcol := ncols(m)
r := 1
while r <= lastrow repeat
  c := 1 -- Index of first column
  while c <= lastcol repeat
    if elt(m,r,c) < 0 then
      output [r,c,elt(m,r,c)]
      r := lastrow
      break -- Don't look any further
    c := c + 1
  r := r + 1
\end{verbatim}
\begin{verbatim}
m := matrix [ [ 21, 37, 53, 14 ],_
              [  8, 22,-24, 16 ],_
              [  2, 10, 15, 14 ],_
              [ 26, 33, 55,-13 ] ]
\end{verbatim} 
$$
\left[
\begin{array}{cccc}
{21} & {37} & {53} & {14} \\ 
8 & {22} & -{24} & {16} \\ 
2 & {10} & {15} & {14} \\ 
{26} & {33} & {55} & -{13} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

\begin{verbatim}
lastrow := nrows(m)
\end{verbatim}
$$
4
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
lastcol := ncols(m)
\end{verbatim}
$$
4
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
r := 1
\end{verbatim}
$$
1
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
while r <= lastrow repeat
  c := 1 -- Index of first column
  while c <= lastcol repeat
    if elt(m,r,c) < 0 then
      output [r,c,elt(m,r,c)]
      r := lastrow
      break -- Don't look any further
    c := c + 1
  r := r + 1
 
   [2,3,- 24]
\end{verbatim}
\returnType{Type: Void}

\subsubsection{The {\tt for} loop}
The last loop statement of interest is the {\bf for} loop. There are two
ways of creating a {\bf for} loop. The first way uses either a list or
a segment:
\begin{center}
for {\sl var} in {\sl seg} repeat {\sl loopBody}\\
for {\sl var} in {\sl list} repeat {\sl loopBody}
\end{center}
where {\sl var} is an index variable which is iterated over the values in
{\sl seg} or {\sl list}. The value {\sl seg} is a segment such as $1\ldots10$
or $1\ldots$ and {\sl list} is a list of some type. For example:
\begin{verbatim}
for i in 1..10 repeat
  ~prime?(i) => iterate
  output(i)
 
   2
   3
   5
   7
\end{verbatim}
\returnType{Type: Void}

\begin{verbatim}
for w in ["This", "is", "your", "life!"] repeat
  output(w)
 
   This
   is
   your
   life!
\end{verbatim}
\returnType{Type: Void}

The second form of the {\bf for} loop syntax includes a ``{\bf such that}''
clause which must be of type {\bf Boolean}:
\begin{center}
for {\sl var} in {\sl seg} \textbar\ {\sl BoolExpr} repeat {\sl loopBody}\\
for {\sl var} in {\sl list} \textbar\ {\sl BoolExpr} repeat {\sl loopBody}
\end{center}
Some examples are:
\begin{verbatim}
for i in 1..10 | prime?(i) repeat
  output(i)
 
   2
   3
   5
   7
\end{verbatim}
\returnType{Type: Void}

\begin{verbatim}
for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
  output(i)
 
   2
   3
   5
   7
\end{verbatim}
\returnType{Type: Void}

You can also use a {\bf while} clause:
\begin{verbatim}
for i in 1.. while i < 7 repeat
  if even?(i) then output(i)
 
   2
   4
   6
\end{verbatim}
\returnType{Type: Void}

Using the ``{\bf such that}'' clause makes this appear simpler:
\begin{verbatim}
for i in 1.. | even?(i) while i < 7 repeat
  output(i)
 
   2
   4
   6
\end{verbatim}
\returnType{Type: Void}

You can use multiple {\bf for} clauses to iterate over several sequences
in parallel:
\begin{verbatim}
for a in 1..4 for b in 5..8 repeat
  output [a,b]
 
   [1,5]
   [2,6]
   [3,7]
   [4,8]
\end{verbatim}
\returnType{Type: Void}

As a general point it should be noted that any symbols referred to in the
``{\bf such that}'' and {\bf while} clauses must be pre-defined. This 
either means that the symbols must have been defined in an outer level
(e.g. in an enclosing loop) or in a {\bf for} clause appearing before the
``{\bf such that}'' or {\bf while}. For example:
\begin{verbatim}
for a in 1..4 repeat
  for b in 7..9 | prime?(a+b) repeat
    output [a,b,a+b]
 
   [2,9,11]
   [3,8,11]
   [4,7,11]
   [4,9,13]
\end{verbatim}
\returnType{Type: Void}

Finally, the {\bf for} statement has a {\bf by} clause to specify the
step size. This makes it possible to iterate over the segment in
reverse order:
\begin{verbatim}
for a in 1..4 for b in 8..5 by -1 repeat
  output [a,b]
 
   [1,8]
   [2,7]
   [3,6]
   [4,5]
\end{verbatim}
\returnType{Type: Void}

Note that without the ``by -1'' the segment 8..5 is empty so there is
nothing to iterate over and the loop exits immediately.


\hyphenation{
multi-set
Uni-var-iate-Poly-nomial
Mul-ti-var-iate-Poly-nomial
Distributed-Mul-ti-var-iate-Poly-nomial
Homo-gen-eous-Distributed-Mul-ti-var-iate-Poly-nomial
New-Distributed-Mul-ti-var-iate-Poly-nomial
General-Distributed-Mul-ti-var-iate-Poly-nomial
}

\mainmatter
\setcounter{chapter}{0} % Chapter 1
\chapter{An Overview of Axiom}
\begin{quote}
When we start cataloging the gains in tools sitting on a computer, the 
benefits of software are amazing. But, if the benefits of software are
so great, why do we worry about making it easier -- don't the ends pay 
for the means? We worry because making such software is extraordinarily
hard and almost no one can do it -- the detail is exhausting, the 
creativity required is extreme, the hours of failure upon failure
requiring patience and persistence would tax anyone claiming to be
sane. Yet we require people with such characteristics be found and
employed and employed cheaply.

-- Christopher Alexander

(from Patterns of Software by Richard Gabriel)

\end{quote}
\label{ugIntro}

%Original Page 19

Welcome to the Axiom environment for interactive computation and
problem solving.  Consider this chapter a brief, whirlwind tour of the
Axiom world.  We introduce you to Axiom's graphics and the
Axiom language.  Then we give a sampling of the large variety of
facilities in the Axiom system, ranging from the various kinds
of numbers, to data types (like lists, arrays, and sets) and
mathematical objects (like matrices, integrals, and differential
equations).  We conclude with the discussion of system commands and an
interactive ``undo.''

Before embarking on the tour, we need to brief those readers working
interactively with Axiom on some details. 

\section{Starting Up and Winding Down}
\label{ugIntroStart}
You need to know how to start the Axiom system and how to stop it.
We assume that Axiom has been correctly installed on your
machine (as described in another Axiom document).

To begin using Axiom, issue the command {\bf axiom} to the
Axiom operating system shell.
\index{axiom @{\bf axiom}} There is a brief pause, some start-up
messages, and then one or more windows appear.

If you are not running Axiom under the X Window System, there is
only one window (the console).  At the lower left of the screen there
is a prompt that \index{prompt} looks like
\begin{verbatim}
(1) ->
\end{verbatim}

%Original Page 20

When you want to enter input to Axiom, you do so on the same
line after the prompt.  The ``1'' in ``(1)'', also called the equation
number, is the computation step number and is incremented 
\index{step number} after you enter Axiom statements.  
Note, however, that a system command such as {\tt )clear all} 
may change the step number in other ways.  We talk about step numbers 
more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be
two \index{X Window System} windows: the console window (as just
described) and the HyperDoc main menu.  \index{Hyper@{HyperDoc}} 
HyperDoc is a multiple-window hypertext system
that lets you \index{window} view Axiom documentation and
examples on-line, execute Axiom expressions, and generate
graphics.  If you are in a graphical windowing environment, it is
usually started automatically when Axiom begins.  If it is not
running, issue {\tt )hd} to start it.  We discuss the basics of
HyperDoc in \sectionref{ugHyper}.

To interrupt an Axiom computation, hold down the \index{interrupt} 
{\bf Ctrl} (control) key and press {\bf c}.  This brings you back to 
the Axiom prompt.

\boxer{4.6in}{
To exit from Axiom, move to the console window, \index{stopping
@{stopping Axiom}} type {\tt )quit} \index{exiting @{exiting
Axiom}} at the input prompt and press the {\bf Enter} key.
You will probably be prompted with the following
message:
\begin{center}
Please enter {\bf y} or {\bf yes} if you really want to leave the \\
interactive environment and return to the operating system
\end{center}
You should respond {\bf yes}, for example, to exit Axiom.\\
}

We are purposely vague in describing exactly what your screen looks
like or what messages Axiom displays.  Axiom runs on a number of
different machines, operating systems and window environments, and
these differences all affect the physical look of the system.  You can
also change the way that Axiom behaves via {\it system commands}
described later in this chapter and in Appendix A.
System commands are special commands, like {\tt )set}, that begin with
a closing parenthesis and are used to change your environment.  For
example, you can set a system variable so that you are not prompted
for confirmation when you want to leave Axiom.

%Original Page 21

\subsection{Clef}
\label{ugAvailCLEF}
If you are using Axiom under the X Window System, the
\index{Clef} \index{command line editor} Clef command
line editor is probably available and installed.  With this editor you
can recall previous lines with the up and down arrow keys.  To move
forward and backward on a line, use the right and left arrows.  You
can use the {\bf Insert} key to toggle insert mode on or off.  When
you are in insert mode, the cursor appears as a large block and if you
type anything, the characters are inserted into the line without
deleting the previous ones.

If you press the {\bf Home} key, the cursor moves to the beginning of
the line and if you press the {\bf End} key, the cursor moves to the
end of the line.  Pressing {\bf Ctrl-End} deletes all the text from
the cursor to the end of the line.

Clef also provides Axiom operation name completion for
\index{operation name completion} a limited set of operations.  If you
enter a few letters and then press the {\bf Tab} key, Clef tries to
use those letters as the prefix of an Axiom operation name.  If
a name appears and it is not what you want, press {\bf Tab} again to
see another name.

You are ready to begin your journey into the world of Axiom.

\section{Typographic Conventions}
\label{ugIntroTypo}
In this document we have followed these typographical conventions:
\begin{itemize}
%
\item Categories, domains and packages are displayed in this font:\\
{\tt Ring}, {\tt Integer}, {\tt DiophantineSolutionPackage}.
%
\item Prefix operators, infix operators, and punctuation symbols in 
the Axiom language are displayed in the text like this:
{\tt +}, {\tt \$}, {\tt +->}.
%
\item Axiom expressions or expression fragments are displayed in this font:\\
{\tt inc(x) == x + 1}.
%
\item For clarity of presentation, \TeX{} is often used to format expressions\\
$g(x)=x^2+1$.
%
\item Function names and HyperDoc button names are displayed in the text in
this font:
{\bf factor}, {\bf integrate},  {\bf Lighting}.
%
\item Italics are used for emphasis and for words defined in the glossary: \\
{\it category}.
\end{itemize}

This document contains over 2500 examples of Axiom input and output.  All
examples were run though Axiom and their output was created in \TeX{}
form by the Axiom {\tt TexFormat} package.  We have deleted system
messages from the example output if those messages are not important
for the discussions in which the examples appear.

%Original Page 22

\section{The Axiom Language}
\label{ugIntroExpressions}
The Axiom language is a rich language for performing interactive
computations and for building components of the Axiom library.
Here we present only some basic aspects of the language that you need
to know for the rest of this chapter.  Our discussion here is
intentionally informal, with details unveiled on an ``as needed''
basis.  For more information on a particular construct, we suggest you
consult the index.

\subsection{Arithmetic Expressions}
\label{ugIntroArithmetic}
For arithmetic expressions, use the ``{\tt +}'' and ``{\tt -}'' operator
as in mathematics.  Use ``{\tt *}'' for multiplication, and ``{\tt **}''
for exponentiation.  To create a fraction, use ``{\tt /}''.  When an
expression contains several operators, those of highest
{\it precedence} are evaluated first.  For arithmetic operators,
``{\tt **}'' has highest precedence, ``{\tt *}'' and ``{\tt /}'' have the
next highest precedence, and ``{\tt +}'' and ``{\tt -}'' have the lowest
precedence.

Axiom puts implicit parentheses around operations of higher
precedence, and groups those of equal precedence from left to right.
\spadcommand{1 + 2 - 3 / 4 * 3 ** 2 - 1}
$$
-{\frac{19}{4}} 
$$
\returnType{Type: Fraction Integer}

The above expression is equivalent to this.
\spadcommand{((1 + 2) - ((3 / 4) * (3 ** 2))) - 1}
$$
-{\frac{19}{4}} 
$$
\returnType{Type: Fraction Integer}

If an expression contains subexpressions enclosed in parentheses,
the parenthesized subexpressions are evaluated first (from left to
right, from inside out).
\spadcommand{1 + 2 - 3/ (4 * 3 ** (2 - 1))}
$$
\frac{11}{4}
$$
\returnType{Type: Fraction Integer}

\subsection{Previous Results}
\label{ugIntroPrevious}
Use the percent sign ``{\tt \%}'' to refer to the last result.
\index{result!previous} Also, use ``{\tt \%\%}' to refer to
previous results.  \index{percentpercent@{\%\%}} ``{\tt \%\%(-1)}'' is
equivalent to ``{\tt \%}'', ``{\tt \%\%(-2)}'' returns the next to
the last result, and so on.  ``{\tt \%\%(1)}'' returns the result from
step number 1, ``{\tt \%\%(2)}'' returns the result from step number 2,
and so on.  ``{\tt \%\%(0)}'' is not defined.

This is ten to the tenth power.
\spadcommand{10 ** 10}
$$
10000000000 
$$
\returnType{Type: PositiveInteger}

%Original Page 23

This is the last result minus one.
\spadcommand{\% - 1}
$$
9999999999 
$$
\returnType{Type: PositiveInteger}

This is the last result.
\spadcommand{\%\%(-1)}
$$
9999999999 
$$
\returnType{Type: PositiveInteger}

This is the result from step number 1.
\spadcommand{\%\%(1)}
$$
10000000000 
$$
\returnType{Type: PositiveInteger}

\subsection{Some Types}
\label{ugIntroTypes}
Everything in Axiom has a type.  The type determines what operations
you can perform on an object and how the object can be used.
The \sectionref{ugTypes} is dedicated to the
interactive use of types.  Several of the final chapters discuss how
types are built and how they are organized in the Axiom library.

Positive integers are given type {\bf PositiveInteger}.
\spadcommand{8}
$$
8 
$$
\returnType{Type: PositiveInteger}

Negative ones are given type {\bf Integer}.  This fine
distinction is helpful to the Axiom interpreter.

\spadcommand{-8}
$$
-8 
$$
\returnType{Type: Integer}

Here a positive integer exponent gives a polynomial result.
\spadcommand{x**8}
$$
x \sp 8 
$$
\returnType{Type: Polynomial Integer}

Here a negative integer exponent produces a fraction.
\spadcommand{x**(-8)}
$$
\frac{1}{x \sp 8} 
$$
\returnType{Type: Fraction Polynomial Integer}

\subsection{Symbols, Variables, Assignments, and Declarations}
\label{ugIntroAssign}
A {\it symbol} is a literal used for the input of things like
the ``variables'' in polynomials and power series.

%Original Page 24

We use the three symbols $x$, $y$, and $z$ in
entering this polynomial.
\spadcommand{(x - y*z)**2}
$$
{{y \sp 2} \  {z \sp 2}} -{2 \  x \  y \  z}+{x \sp 2} 
$$
\returnType{Type: Polynomial Integer}

A symbol has a name beginning with an uppercase or lowercase
alphabetic \index{symbol!naming} character, ``{\tt \%}'', or
``{\tt !}''.  Successive characters (if any) can be any of the
above, digits, or ``{\tt ?}''.  Case is distinguished: the symbol
{\tt points} is different from the symbol {\tt Points}.

A symbol can also be used in Axiom as a {\it variable}.  A variable
refers to a value.  To {\sl assign} a value to a variable,
\index{variable!naming} the operator ``{\tt :=}'' \index{assignment}
is used.\footnote{Axiom actually has two forms of assignment: 
{\it immediate} assignment, as discussed here, and {\it delayed
assignment}.  See \sectionref{ugLangAssign} for details.}  
A variable initially has no restrictions on the kinds
of \index{declaration} values to which it can refer.

This assignment gives the value $4$ (an integer) to
a variable named $x$.
\spadcommand{x := 4}
$$
4 
$$
\returnType{Type: PositiveInteger}

This gives the value $z + 3/5$ (a polynomial)  to $x$.
\spadcommand{x := z + 3/5}
$$
z+{\frac{3}{5}} 
$$
\returnType{Type: Polynomial Fraction Integer}

To restrict the types of objects that can be assigned to a variable,
use a {\it declaration}
\spadcommand{y : Integer}
\returnType{Type: Void}

After a variable is declared to be of some type, only values
of that type can be assigned to that variable.
\spadcommand{y := 89}
$$
89 
$$
\returnType{Type: Integer}

The declaration for $y$ forces values assigned to $y$ to
be converted to integer values.
\spadcommand{y := sin \%pi}
$$
0 
$$
\returnType{Type: Integer}

If no such conversion is possible,
Axiom refuses to assign a value to $y$.
\spadcommand{y := 2/3}
\begin{verbatim}
   Cannot convert right-hand side of assignment
   2
   -
   3

      to an object of the type Integer of the left-hand side.
\end{verbatim}

%Original Page 25

A type declaration can also be given together with an assignment.
The declaration can assist Axiom in choosing the correct
operations to apply.
\spadcommand{f : Float := 2/3}
$$
0.6666666666\ 6666666667 
$$
\returnType{Type: Float}

Any number of expressions can be given on input line.
Just separate them by semicolons.
Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as
the previous single expression.

\spadcommand{f : Float; f := 2/3}
$$
0.6666666666\ 6666666667 
$$
\returnType{Type: Float}

The type of a symbol is either {\tt Symbol}
or {\tt Variable({\it name})} where {\it name} is the name
of the symbol.

By default, the interpreter
gives this symbol the type {\tt Variable(q)}.

\spadcommand{q}
$$
q 
$$
\returnType{Type: Variable q}

When multiple symbols are involved, {\tt Symbol} is used.
\spadcommand{[q, r]}
$$
\left[
q,  r 
\right]
$$
\returnType{Type: List OrderedVariableList [q,r]}

What happens when you try to use a symbol that is the name of a variable?
\spadcommand{f}
$$
0.6666666666\ 6666666667 
$$
\returnType{Type: Float}

Use a single quote ``{\tt '}'' before \index{quote} the name to get the symbol.

\spadcommand{'f}
$$
f 
$$
\returnType{Type: Variable f}

Quoting a name creates a symbol by preventing evaluation of the name
as a variable.  Experience will teach you when you are most likely
going to need to use a quote.  We try to point out the location of
such trouble spots.

\subsection{Conversion}
\label{ugIntroConversion}
Objects of one type can usually be ``converted'' to objects of several
other types.  To {\sl convert} an object to a new type, use the ``{\tt ::}'' 
infix operator.\footnote{Conversion is discussed in detail in
\sectionref{ugTypesConvert}.}  For example,
to display an object, it is necessary to convert the object to type
{\tt OutputForm}.

%Original Page 26

This produces a polynomial with rational number coefficients.

\spadcommand{p := r**2 + 2/3}
$$
{r \sp 2}+{\frac{2}{3}} 
$$
\returnType{Type: Polynomial Fraction Integer}

Create a quotient of polynomials with integer coefficients
by using ``{\tt ::}''.

\spadcommand{p :: Fraction Polynomial Integer }
$$
\frac{{3 \  {r \sp 2}}+2}{3}
$$
\returnType{Type: Fraction Polynomial Integer}

Some conversions can be performed automatically when Axiom tries
to evaluate your input.  Others conversions must be explicitly
requested.

\subsection{Calling Functions}
\label{ugIntroCallFun}
As we saw earlier, when you want to add or subtract two values, you
place the arithmetic operator ``{\tt +}'' or ``{\tt -}'' between the two
arguments denoting the values.  To use most other Axiom
operations, however, you use another syntax: \index{function!calling}
write the name of the operation first, then an open parenthesis, then
each of the arguments separated by commas, and, finally, a closing
parenthesis.  If the operation takes only one argument and the
argument is a number or a symbol, you can omit the parentheses.

This calls the operation {\bf factor} with the single integer argument $120$.

\spadcommand{factor(120)}
$$
{2 \sp 3} \  3 \  5 
$$
\returnType{Type: Factored Integer}

This is a call to {\bf divide} with the two integer arguments
$125$ and $7$.
\spadcommand{divide(125,7)}
$$
\left[
{quotient={17}},  {remainder=6} 
\right]
$$
\returnType{Type: Record(quotient: Integer, remainder: Integer)}

This calls {\bf quatern} with four floating-point arguments.
\spadcommand{quatern(3.4,5.6,2.9,0.1)}
$$
{3.4}+{{5.6} \  i}+{{2.9} \  j}+{{0.1} \  k} 
$$
\returnType{Type: Quaternion Float}

This is the same as {\bf factorial}(10).
\spadcommand{factorial 10}
$$
3628800 
$$
\returnType{Type: PositiveInteger}

An operations that returns a {\tt Boolean} value (that is,
{\tt true} or {\tt false}) frequently has a name suffixed with
a question mark (``?'').  For example, the {\bf even?}
operation returns {\tt true} if its integer argument is an even
number, {\tt false} otherwise.

An operation that can be destructive on one or more arguments
usually has a name ending in a exclamation point (``!'').
This actually means that it is {\it allowed} to update its
arguments but it is not {\it required} to do so. For example,
the underlying representation of a collection type may not allow
the very last element to removed and so an empty object may be
returned instead. Therefore, it is important that you use the
object returned by the operation and not rely on a physical
change having occurred within the object. Usually, destructive
operations are provided for efficiency reasons.

%Original Page 27

\subsection{Some Predefined Macros}
\label{ugIntroMacros}
Axiom provides several macros for your convenience.\footnote{See
\sectionref{ugUserMacros} for a discussion on
how to write your own macros.}  Macros are names
\index{macro!predefined} (or forms) that expand to larger expressions
for commonly used values.

\begin{center}
\begin{tabular}{ll}
{\it \%i}             &  The square root of -1. \\
{\it \%e}             &  The base of the natural logarithm. \\
{\it \%pi}            &  $\pi$. \\
{\it \%infinity}      &  $\infty$. \\
{\it \%plusInfinity}  &  $+\infty$. \\
{\it \%minusInfinity} &  $-\infty$.
\end{tabular}
\end{center}
\index{\%i}
\index{\%e}
\index{\%pi}
\index{pi@{$\pi$ (= \%pi)}}
\index{\%infinity}
\index{infinity@{$\infty$ (= \%infinity)}}
\index{\%plusInfinity}
\index{\%minusInfinity}

To display all the macros (along with anything you have
defined in the workspace), issue the system command {\tt )display all}.

\subsection{Long Lines}
\label{ugIntroLong}
When you enter Axiom expressions from your keyboard, there will
be times when they are too long to fit on one line.  Axiom does
not care how long your lines are, so you can let them continue from
the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have
Axiom glue them together.  To get this glue, put an underscore
(\_) at the end of each line you wish to continue.

\begin{verbatim}
2_
+_
3
\end{verbatim}
is the same as if you had entered
\begin{verbatim}
2+3
\end{verbatim}

Axiom statements in an input file
(see \sectionref{ugInOutIn})
can use indentation to indicate the program structure.
(see \sectionref{ugLangBlocks}).

\subsection{Comments}
\label{ugIntroComments}
Comment statements begin with two consecutive hyphens or two
consecutive plus signs and continue until the end of the line.

The comment beginning with ``{\tt --}'' is ignored by Axiom.
\spadcommand{2 + 3   -- this is rather simple, no?}
$$
5 
$$
\returnType{Type: PositiveInteger}

There is no way to write long multi-line comments other than starting
each line with ``{\tt --}'' or ``{\tt ++}''.

%Original Page 29

\section{Numbers}
\label{ugIntroNumbers}
Axiom distinguishes very carefully between different kinds of
numbers, how they are represented and what their properties are.  Here
are a sampling of some of these kinds of numbers and some things you
can do with them.

Integer arithmetic is always exact.
\spadcommand{11**13 * 13**11 * 17**7 - 19**5 * 23**3}
$$
25387751112538918594666224484237298 
$$
\returnType{Type: PositiveInteger}

Integers can be represented in factored form.
\spadcommand{factor 643238070748569023720594412551704344145570763243}
$$
{{11} \sp {13}} \  {{13} \sp {11}} \  {{17} \sp 7} \  {{19} \sp 5} \  {{23} 
\sp 3} \  {{29} \sp 2} 
$$
\returnType{Type: Factored Integer}

Results stay factored when you do arithmetic.
Note that the $12$ is automatically factored for you.
\spadcommand{\% * 12}
\index{radix}
$$
{2 \sp 2} \  3 \  {{11} \sp {13}} \  {{13} \sp {11}} \  {{17} \sp 7} \  {{19} 
\sp 5} \  {{23} \sp 3} \  {{29} \sp 2} 
$$
\returnType{Type: Factored Integer}

Integers can also be displayed to bases other than 10.
This is an integer in base 11.
\spadcommand{radix(25937424601,11)}
$$
10000000000 
$$
\returnType{Type: RadixExpansion 11}

Roman numerals are also available for those special occasions.
\index{Roman numerals}

\spadcommand{roman(1992)}
$$
{\rm MCMXCII }
$$
\returnType{Type: RomanNumeral}

Rational number arithmetic is also exact.

\spadcommand{r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9}
$$
\frac{55739}{2520} 
$$
\returnType{Type: Fraction Integer}

To factor fractions, you have to map {\bf factor} onto the numerator
and denominator.

\spadcommand{map(factor,r)}
$$
\frac{{139} \  {401}}{{2 \sp 3} \  {3 \sp 2} \  5 \  7} 
$$
\returnType{Type: Fraction Factored Integer}

{\tt SingleInteger} refers to machine word-length integers.

In English, this expression means ``$11$ as a small integer''.
\spadcommand{11@SingleInteger}
$$
11 
$$
\returnType{Type: SingleInteger}

Machine double-precision floating-point numbers are also available for
numeric and graphical applications.
\spadcommand{123.21@DoubleFloat}
$$
123.21000000000001 
$$
\returnType{Type: DoubleFloat}

%Original Page 30

The normal floating-point type in Axiom, {\tt Float}, is a
software implementation of floating-point numbers in which the
exponent and the mantissa may have any number of digits.
The types {\tt Complex(Float)} and
{\tt Complex(DoubleFloat)} are the corresponding software
implementations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits.
\index{floating point} The ``{\tt ::}'' is used here to change from
one kind of object (here, a rational number) to another (a
floating-point number).

\spadcommand{r :: Float}
$$
22.1186507936 50793651 
$$
\returnType{Type: Float}

Use \spadfunFrom{digits}{Float} to change the number of digits in
the representation.
This operation returns the previous value so you can reset it
later.
\spadcommand{digits(22)}
$$
20 
$$
\returnType{Type: PositiveInteger}

To $22$ digits of precision, the number
$e^{\pi {\sqrt {163.0}}}$ appears to be an integer.
\spadcommand{exp(\%pi * sqrt 163.0)}
$$
26253741 2640768744.0 
$$
\returnType{Type: Float}

Increase the precision to forty digits and try again.
\spadcommand{digits(40);  exp(\%pi * sqrt 163.0)}
$$
26253741\ 2640768743.9999999999\ 9925007259\ 76 
$$
\returnType{Type: Float}

Here are complex numbers with rational numbers as real and
\index{complex numbers} imaginary parts.
\spadcommand{(2/3 + \%i)**3}
$$
-{\frac{46}{27}}+{{\frac{1}{3}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

The standard operations on complex numbers are available.
\spadcommand{conjugate \% }
$$
-{\frac{46}{27}} -{{\frac{1}{3}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

You can factor complex integers.
\spadcommand{factor(89 - 23 * \%i)}
$$
-{{\left( 1+i 
\right)}
\  {{\left( 2+i 
\right)}
\sp 2} \  {{\left( 3+{2 \  i} 
\right)}
\sp 2}} 
$$
\returnType{Type: Factored Complex Integer}

Complex numbers with floating point parts are also available.
\spadcommand{exp(\%pi/4.0 * \%i)}
$$
{0.7071067811\ 8654752440\ 0844362104\ 8490392849} + 
$$
$$
{{0.7071067811\ 8654752440\ 0844362104\ 8490392848} \  i} 
$$
\returnType{Type: Complex Float}

The real and imaginary parts can be symbolic.
\spadcommand{complex(u,v)}
$$
u+{v \  i} 
$$
\returnType{Type: Complex Polynomial Integer}

Of course, you can do complex arithmetic with these also.
\spadcommand{\% ** 2}
$$
-{v \sp 2}+{u \sp 2}+{2 \  u \  v \  i} 
$$
\returnType{Type: Complex Polynomial Integer}

%Original Page 31

Every rational number has an exact representation as a
repeating decimal expansion
\spadcommand{decimal(1/352)}
$$
0.{00284}{\overline {09}} 
$$
\returnType{Type: DecimalExpansion}

A rational number can also be expressed as a continued fraction.

\spadcommand{continuedFraction(6543/210)}
$$
{31}+ \zag{1}{6}+ \zag{1}{2}+ \zag{1}{1}+ \zag{1}{3} 
$$
\returnType{Type: ContinuedFraction Integer}

Also, partial fractions can be used and can be displayed in a
\index{partial fraction}
compact format
\index{fraction!partial}
\spadcommand{partialFraction(1,factorial(10))}
$$
{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} 
-{\frac{12}{5 \sp 2}}+{\frac{1}{7}} 
$$
\returnType{Type: PartialFraction Integer}

or expanded format.
\spadcommand{padicFraction(\%)}
$$
{\frac{1}{2}}+{\frac{1}{2 \sp 4}}+{\frac{1}{2 \sp 5}}+{\frac{1}{2 \sp 6}}
+{\frac{1}{2 \sp 7}}+{\frac{1}{2 \sp 8}} -{\frac{2}{3 \sp 2}} 
-{\frac{1}{3 \sp 3}} -{\frac{2}{3 \sp 4}} -{\frac{2}{5}} 
-{\frac{2}{5 \sp 2}}+{\frac{1}{7}} 
$$
\returnType{Type: PartialFraction Integer}

Like integers, bases (radices) other than ten can be used for rational
numbers.
Here we use base eight.
\spadcommand{radix(4/7, 8)}
$$
0.{\overline 4} 
$$
\returnType{Type: RadixExpansion 8}

Of course, there are complex versions of these as well.
Axiom decides to make the result a complex rational number.
\spadcommand{\% + 2/3*\%i}
$$
{\frac{4}{7}}+{{\frac{2}{3}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

You can also use Axiom to manipulate fractional powers.
\index{radical}
\spadcommand{(5 + sqrt 63 + sqrt 847)**(1/3)}
$$
\root {3} \of {{{{14} \  {\sqrt {7}}}+5}} 
$$
\returnType{Type: AlgebraicNumber}

You can also compute with integers modulo a prime.
\spadcommand{x : PrimeField 7 := 5}
$$
5 
$$
\returnType{Type: PrimeField 7}

Arithmetic is then done modulo $7$.
\spadcommand{x**3}
$$
6 
$$
\returnType{Type: PrimeField 7}

Since $7$ is prime, you can invert nonzero values.
\spadcommand{1/x}
$$
3 
$$
\returnType{Type: PrimeField 7}

%Original Page 32

You can also compute modulo an integer that is not a prime.
\spadcommand{y : IntegerMod 6 := 5}
$$
5 
$$
\returnType{Type: IntegerMod 6}

All of the usual arithmetic operations are available.
\spadcommand{y**3}
$$
5 
$$
\returnType{Type: IntegerMod 6}

Inversion is not available if the modulus is not a prime number.
Modular arithmetic and prime fields are discussed in 
\sectionref{ugxProblemFinitePrime}.

\spadcommand{1/y}
\begin{verbatim}
   There are 12 exposed and 13 unexposed library operations named / 
      having 2 argument(s) but none was determined to be applicable. 
      Use HyperDoc Browse, or issue
                                )display op /
      to learn more about the available operations. Perhaps 
      package-calling the operation or using coercions on the arguments
      will allow you to apply the operation.
 
   Cannot find a definition or applicable library operation named / 
      with argument type(s) 
                               PositiveInteger
                                IntegerMod 6
      
      Perhaps you should use "@" to indicate the required return type, 
      or "$" to specify which version of the function you need.
\end{verbatim}

This defines $a$ to be an algebraic number, that is,
a root of a polynomial equation.
\spadcommand{a := rootOf(a**5 + a**3 + a**2 + 3,a)}
$$
a 
$$
\returnType{Type: Expression Integer}

Computations with $a$ are reduced according to the polynomial equation.
\spadcommand{(a + 1)**10}
$$
-{{85} \  {a \sp 4}} -{{264} \  {a \sp 3}} -{{378} \  {a \sp 2}} -{{458} \  
a} -{287} 
$$
\returnType{Type: Expression Integer}

Define $b$ to be an algebraic number involving $a$.
\spadcommand{b := rootOf(b**4 + a,b)}
$$
b 
$$
\returnType{Type: Expression Integer}

Do some arithmetic.
\spadcommand{2/(b - 1)}
$$
\frac{2}{b -1} 
$$
\returnType{Type: Expression Integer}

To expand and simplify this, call {\it ratDenom}
to rationalize the denominator.
\spadcommand{ratDenom(\%)}
$$
\begin{array}{@{}l}
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^3}}+{{\left({a^
4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^2}}+ 
\\
\\
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\  b}+{a^4}-{a^
3}+{2 \ {a^2}}- a + 1 
\end{array}
$$

\returnType{Type: Expression Integer}

%Original Page 33

If we do this, we should get $b$.
\spadcommand{2/\%+1}
$$
\frac{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^3}}+{{\left({a^
4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^2}}+ 
\\
\\
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\  b}+{a^4}
-{a^3}+{2 \ {a^2}}- a + 3 
\end{array}
\right)}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^3}}+{{\left({a^
4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^2}}+ 
\\
\\
\displaystyle
{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\  b}+{a^4}-{a^
3}+{2 \ {a^2}}- a + 1 
\end{array}
\right)}
$$
\returnType{Type: Expression Integer}

But we need to rationalize the denominator again.

\spadcommand{ratDenom(\%)}
$$
b 
$$
\returnType{Type: Expression Integer}

Types {\tt Quaternion} and {\tt Octonion} are also available.
Multiplication of quaternions is non-commutative, as expected.

\spadcommand{q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)}
$$
-{8 \  i}+{{16} \  j} -{8 \  k} 
$$
\returnType{Type: Quaternion Integer}

\section{Data Structures}
\label{ugIntroCollect}
Axiom has a large variety of data structures available.  Many
data structures are particularly useful for interactive computation
and others are useful for building applications.  The data structures
of Axiom are organized into {\sl category hierarchies}.

A {\it list} \footnote{\domainref{List}} 
is the most commonly used data structure in
Axiom for holding objects all of the same type. The name {\it list} is
short for ``linked-list of nodes.'' Each node consists of a value
(\spadfunFrom{first}{List}) and a link (\spadfunFrom{rest}{List}) that
points to the next node, or to a distinguished value denoting the
empty list.  To get to, say, the third element, Axiom starts at the
front of the list, then traverses across two links to the third node.

Write a list of elements using square brackets with commas separating
the elements.
\spadcommand{u := [1,-7,11]}
$$
\left[
1,  -7,  {11} 
\right]
$$
\returnType{Type: List Integer}

This is the value at the third node.  Alternatively, you can say $u.3$.
\spadcommand{first rest rest u}
$$
11 
$$
\returnType{Type: PositiveInteger}

%Original Page 34

Many operations are defined on lists, such as: {\bf empty?}, to test
that a list has no elements; {\bf cons}$(x,l)$, to create a new list
with {\bf first} element $x$ and {\bf rest} $l$; {\bf reverse}, to
create a new list with elements in reverse order; and {\bf sort}, to
arrange elements in order.

An important point about lists is that they are ``mutable'': their
constituent elements and links can be changed ``in place.''
To do this, use any of the operations whose names end with the
character ``{\tt !}''.

The operation \spadfunFrom{concat!}{List}$(u,v)$ replaces the
last link of the list $u$ to point to some other list $v$.
Since $u$ refers to the original list, this change is seen by $u$.
\spadcommand{concat!(u,[9,1,3,-4]); u}
$$
\left[
1,  -7,  {11},  9,  1,  3,  -4 
\right]
$$
\returnType{Type: List Integer}

A {\it cyclic list} is a list with a ``cycle'': \index{list!cyclic} a
link pointing back to an earlier node of the list.  \index{cyclic
list} To create a cycle, first get a node somewhere down the list.
\spadcommand{lastnode := rest(u,3)}
$$
\left[
9,  1,  3,  -4 
\right]
$$
\returnType{Type: List Integer}

Use \spadfunFrom{setrest!}{List} to change the link emanating from
that node to point back to an earlier part of the list.

\spadcommand{setrest!(lastnode,rest(u,2)); u}
$$
\left[
1,  -7,  {\overline {{11},  9}} 
\right]
$$
\returnType{Type: List Integer}

A {\it stream} is a structure that (potentially) has an infinite
number of distinct elements. Think of a stream as an
``infinite list'' where elements are computed successively.
\footnote{\domainref{Stream}}

Create an infinite stream of factored integers.  Only a certain number
of initial elements are computed and displayed.

\spadcommand{[factor(i) for i in 2.. by 2]}
$$
\left[
2,  {2 \sp 2},  {2 \  3},  {2 \sp 3},  {2 \  5},  {{2 \sp 2} \  3}, 
 {2 \  7},  {2 \sp 4},  {2 \  {3 \sp 2}},  {{2 \sp 2} \  5},  
\ldots 
\right]
$$
\returnType{Type: Stream Factored Integer}

Axiom represents streams by a collection of already-computed
elements together with a function to compute the next element ``on
demand.''  Asking for the $n$-th element causes elements
$1$ through $n$ to be evaluated.
\spadcommand{\%.36}
$$
{2 \sp 3} \  {3 \sp 2} 
$$
\returnType{Type: Factored Integer}

Streams can also be finite or cyclic.
They are implemented by a linked list structure similar to lists
and have many of the same operations.
For example, {\bf first} and {\bf rest} are used to access
elements and successive nodes of a stream.

A {\it one-dimensional array} is another data structure used to hold
objects of the same type \footnote{\domainref{OneDimensionalArray}}.  
Unlike lists, one-dimensional
arrays are inflexible---they are \index{array!one-dimensional}
implemented using a fixed block of storage.  Their advantage is that
they give quick and equal access time to any element.

%Original Page 35

A simple way to create a one-dimensional array is to apply the
operation {\bf oneDimensionalArray} to a list of elements.
\spadcommand{a := oneDimensionalArray [1, -7, 3, 3/2]}
$$
\left[
1,  -7,  3,  {\frac{3}{2}} 
\right]
$$
\returnType{Type: OneDimensionalArray Fraction Integer}

One-dimensional arrays are also mutable: you can change their
constituent elements ``in place.''
\spadcommand{a.3 := 11; a}
$$
\left[
1,  -7,  {11},  {\frac{3}{2}} 
\right]
$$
\returnType{Type: OneDimensionalArray Fraction Integer}

However, one-dimensional arrays are not flexible structures.
You cannot destructively {\bf concat!} them together.
\spadcommand{concat!(a,oneDimensionalArray [1,-2])}
\begin{verbatim}
   There are 5 exposed and 0 unexposed library operations named concat!
      having 2 argument(s) but none was determined to be applicable. 
      Use HyperDoc Browse, or issue
                             )display op concat!
      to learn more about the available operations. Perhaps 
      package-calling the operation or using coercions on the arguments
      will allow you to apply the operation.
 
   Cannot find a definition or applicable library operation named 
      concat! with argument type(s) 
                    OneDimensionalArray Fraction Integer
                         OneDimensionalArray Integer
      
      Perhaps you should use "@" to indicate the required return type, 
      or "$" to specify which version of the function you need.
\end{verbatim}

Examples of datatypes similar to {\tt OneDimensionalArray}
are: {\tt Vector} (vectors are mathematical structures
implemented by one-dimensional arrays), {\tt String} (arrays
of ``characters,'' represented by byte vectors), and
{\tt Bits} (represented by ``bit vectors'').

A vector of 32 bits, each representing the {\bf Boolean} value
${\tt true}$.
\spadcommand{bits(32,true)}
$$
\mbox{\tt "11111111111111111111111111111111"} 
$$
\returnType{Type: Bits}

A {\it flexible array} \footnote{\domainref{FlexibleArray}}
is a cross between a list \index{array!flexible} and a one-dimensional
array. Like a one-dimensional array, a flexible array occupies a fixed
block of storage.  Its block of storage, however, has room to expand.
When it gets full, it grows (a new, larger block of storage is
allocated); when it has too much room, it contracts.

Create a flexible array of three elements.
\spadcommand{f := flexibleArray [2, 7, -5]}
$$
\left[
2,  7,  -5 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Insert some elements between the second and third elements.
\spadcommand{insert!(flexibleArray [11, -3],f,2)}
$$
\left[
2,  {11},  -3,  7,  -5 
\right]
$$
\returnType{Type: FlexibleArray Integer}

%Original Page 36

Flexible arrays are used to implement ``heaps.'' A {\it heap}
\footnote{\domainref{Heap}}
is an example of a data structure called a {\it priority queue}, where
elements are ordered with respect to one another. A heap
is organized so as to optimize insertion
and extraction of maximum elements.  The {\bf extract!} operation
returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum
element is ready to be delivered.

An easy way to create a heap is to apply the operation {\bf heap}
to a list of values.
\spadcommand{h := heap [-4,7,11,3,4,-7]}
$$
\left[
{11},  4,  7,  -4,  3,  -7 
\right]
$$
\returnType{Type: Heap Integer}

This loop extracts elements one-at-a-time from $h$ until the heap
is exhausted, returning the elements as a list in the order they were
extracted.
\spadcommand{[extract!(h) while not empty?(h)]}
$$
\left[
{11},  7,  4,  3,  -4,  -7 
\right]
$$
\returnType{Type: List Integer}

A {\it binary tree} is a ``tree'' with at most two branches
\index{tree} per node: it is either empty, or else is a node
consisting of a value, and a left and right subtree (again, binary
trees). 
Examples of binary tree types are {\tt BinarySearchTree}, 
{\tt PendantTree}, {\tt TournamentTree}, and {\tt BalancedBinaryTree}.


A {\it binary search tree} is a binary tree such that,
\index{tree!binary search} for each node, the value of the node is
\index{binary search tree} greater than all values (if any) in the
left subtree, and less than or equal all values (if any) in the right
subtree. \footnote{\domainref{BinarySearchTree}}
\spadcommand{binarySearchTree [5,3,2,9,4,7,11]}
$$
\left[
{\left[ 2,  3,  4 
\right]},
 5,  {\left[ 7,  9,  {11} 
\right]}
\right]
$$
\returnType{Type: BinarySearchTree PositiveInteger}

A {\it balanced binary tree} is useful for doing modular computations.
\footnote{\domainref{BalancedBinaryTree}}
\index{balanced binary tree} Given a list $lm$ of moduli,
\index{tree!balanced binary} {\bf modTree}$(a,lm)$ produces
a balanced binary tree with the values $a \bmod m$ at its leaves.
\spadcommand{modTree(8,[2,3,5,7])}
$$
\left[
0,  2,  3,  1 
\right]
$$
\returnType{Type: List Integer}

A {\it set} is a collection of elements where duplication and order is
irrelevant. \footnote{\domainref{Set}} 
Sets are always finite and have no
corresponding structure like streams for infinite collections.

Create sets using braces ``\{'' and ``\}'' rather than brackets.

\spadcommand{fs := set [1/3,4/5,-1/3,4/5]}
$$
\left\{
-{\frac{1}{3}},  {\frac{1}{3}},  {\frac{4}{5}} 
\right\}
$$
\returnType{Type: Set Fraction Integer}

A {\it multiset} is a set that keeps track of the number of duplicate
values. \footnote{\domainref{Multiset}}

%Original Page 37

For all the primes $p$ between 2 and 1000, find the
distribution of $p \bmod 5$.
\spadcommand{multiset [x rem 5 for x in primes(2,1000)]}
$$
\left\{
0,  {{42} \mbox{\rm : } 3},  {{40} \mbox{\rm : } 1},  {{38} \mbox{\rm : 
} 4},  {{47} \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset Integer}

A {\it table} is conceptually a set of ``key--value'' pairs and is a
generalization of a multiset. For examples of tables, see \\
{\tt AssociationList}, {\tt HashTable}, {\tt KeyedAccessFile}, \\
{\tt Library}, {\tt SparseTable}, {\tt StringTable}, and {\tt Table}.\\
The domain {\tt Table(Key, Entry)} provides a general-purpose type for
tables with {\it values} of type $Entry$ indexed by {\it keys} of type
$Key$.

Compute the above distribution of primes using tables.  First, let
$t$ denote an empty table of keys and values, each of type {\tt Integer}.
\spadcommand{t : Table(Integer,Integer) := empty()}
$$
{\rm table}() 
$$
\returnType{Type: Table(Integer,Integer)}

We define a function {\bf howMany} to return the number of values
of a given modulus $k$ seen so far.  It calls
{\bf search}$(k,t)$ which returns the number of values
stored under the key $k$ in table $t$, or {\tt "failed"}
if no such value is yet stored in $t$ under $k$.

In English, this says ``Define $howMany(k)$ as follows.
First, let $n$ be the value of {\it search}$(k,t)$.
Then, if $n$ has the value $"failed"$, return the value
$1$; otherwise return $n + 1$.''
\spadcommand{howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)}
\returnType{Type: Void}

Run through the primes to create the table, then print the table.
The expression {\tt t.m := howMany(m)} updates the value in table $t$
stored under key $m$.
\spadcommand{for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t}
\begin{verbatim}
   Compiling function howMany with type Integer -> Integer 
\end{verbatim}
$$
{\rm table }
\left(
{{2={47}},  {4={38}},  {1={40}},  {3={42}},  {0=1}} 
\right)
$$
\returnType{Type: Table(Integer,Integer)}

A {\it record} is an example of an inhomogeneous collection of
objects.\footnote{See \sectionref{ugTypesRecords} for details.}  
A record consists of a
set of named {\it selectors} that can be used to access its
components.  \index{Record@{\sf Record}}

Declare that $daniel$ can only be
assigned a record with two prescribed fields.
\spadcommand{daniel : Record(age : Integer, salary : Float)}
\returnType{Type: Void}

%Original Page 38

Give $daniel$ a value, using square brackets to enclose the values of
the fields.
\spadcommand{daniel := [28, 32005.12]}
$$
\left[
{age={28}},  {salary={32005.12}} 
\right]
$$
\returnType{Type: Record(age: Integer,salary: Float)}

Give $daniel$ a raise.
\spadcommand{daniel.salary := 35000; daniel}
$$
\left[
{age={28}},  {salary={35000.0}} 
\right]
$$
\returnType{Type: Record(age: Integer,salary: Float)}

A {\it union} is a data structure used when objects have multiple
types.\footnote{See \sectionref{ugTypesUnions} for details.}  
\index{Union@{\sf Union}}

Let $dog$ be either an integer or a string value.
\spadcommand{dog: Union(licenseNumber: Integer, name: String)}
\returnType{Type: Void}

Give $dog$ a name.
\spadcommand{dog := "Whisper"}
$$
\mbox{\tt "Whisper"} 
$$
\returnType{Type: Union(name: String,...)}

All told, there are over forty different data structures in Axiom.
Using the domain constructors described in \sectionref{ugDomains},
you can add your own data structure or
extend an existing one.  Choosing the right data structure for your
application may be the key to obtaining good performance.

\section{Expanding to Higher Dimensions}
\label{ugIntroTwoDim}
To get higher dimensional aggregates, you can create one-dimensional
aggregates with elements that are themselves aggregates, for example,
lists of lists, one-dimensional arrays of lists of multisets, and so
on.  For applications requiring two-dimensional homogeneous
aggregates, you will likely find {\it two-dimensional arrays}
\index{matrix} and {\it matrices} most useful.
\index{array!two-dimensional}

The entries in {\tt TwoDimensionalArray} and {\tt Matrix} objects are
all the same type, except that those for {\tt Matrix} must belong to a
{\tt Ring}.  You create and access elements in roughly the same way.
Since matrices have an understood algebraic structure, certain
algebraic operations are available for matrices but not for arrays.
Because of this, we limit our discussion here to {\tt Matrix}, that
can be regarded as an extension of {\tt TwoDimensionalArray}. See {\tt
TwoDimensionalArray} for more information about arrays.  For more
information about Axiom's linear algebra facilities, see 
\domainref{Matrix}, \domainref{Permanent}, \domainref{SquareMatrix}, 
\domainref{Vector}, \domainref{TwoDimensionalArray}, 
\sectionref{ugProblemEigen} (computation of eigenvalues and eigenvectors), 
and \sectionref{ugProblemLinPolEqn} 
(solution of linear and polynomial equations).

You can create a matrix from a list of lists, \index{matrix!creating}
where each of the inner lists represents a row of the matrix.
\spadcommand{m := matrix([ [1,2], [3,4] ])}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
3 & 4 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

%Original Page 39

The ``collections'' construct (see \sectionref{ugLangIts}) 
is useful for creating matrices whose
entries are given by formulas.  \index{matrix!Hilbert}
\spadcommand{matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])}
$$
\left[
\begin{array}{cccc}
-{\frac{1}{x -2}}&-{\frac{1}{x -3}}&-{\frac{1}{x -4}}&-{\frac{1}{x -5}}\\ 
-{\frac{1}{x -3}}&-{\frac{1}{x -4}}&-{\frac{1}{x -5}}&-{\frac{1}{x -6}}\\ 
-{\frac{1}{x -4}}&-{\frac{1}{x -5}}&-{\frac{1}{x -6}}&-{\frac{1}{x -7}}\\ 
-{\frac{1}{x -5}}&-{\frac{1}{x -6}}&-{\frac{1}{x -7}}&-{\frac{1}{x -8}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Polynomial Integer}

Let $vm$ denote the three by three Vandermonde matrix.
\spadcommand{vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ]}
$$
\left[
\begin{array}{ccc}
1 & 1 & 1 \\ 
x & y & z \\ 
{x \sp 2} & {y \sp 2} & {z \sp 2} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

Use this syntax to extract an entry in the matrix.

\spadcommand{vm(3,3)}
$$
z \sp 2 
$$
\returnType{Type: Polynomial Integer}

You can also pull out a {\bf row} or a {\bf column}.

\spadcommand{column(vm,2)}
$$
\left[
1,  y,  {y \sp 2} 
\right]
$$
\returnType{Type: Vector Polynomial Integer}

You can do arithmetic.

\spadcommand{vm * vm}
$$
\left[
\begin{array}{ccc}
{{x \sp 2}+x+1} & {{y \sp 2}+y+1} & {{z \sp 2}+z+1} \\ 
{{{x \sp 2} \  z}+{x \  y}+x} & {{{y \sp 2} \  z}+{y \sp 2}+x} & {{z \sp 
3}+{y \  z}+x} \\ 
{{{x \sp 2} \  {z \sp 2}}+{x \  {y \sp 2}}+{x \sp 2}} & {{{y \sp 2} \  {z \sp 
2}}+{y \sp 3}+{x \sp 2}} & {{z \sp 4}+{{y \sp 2} \  z}+{x \sp 2}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

You can perform operations such as
{\bf transpose}, {\bf trace}, and {\bf determinant}.
\spadcommand{factor determinant vm}
$$
{\left( y -x 
\right)}
\  {\left( z -y 
\right)}
\  {\left( z -x 
\right)}
$$
\returnType{Type: Factored Polynomial Integer}

\section{Writing Your Own Functions}
\label{ugIntroYou}
Axiom provides you with a very large library of predefined
operations and objects to compute with.  You can use the Axiom
library of constructors to create new objects dynamically of quite
arbitrary complexity.  For example, you can make lists of matrices of
fractions of polynomials with complex floating point numbers as
coefficients.  Moreover, the library provides a wealth of operations
that allow you to create and manipulate these objects.

%Original Page 40

For many applications, you need to interact with the interpreter and
write some Axiom programs to tackle your application.
Axiom allows you to write functions interactively,
\index{function} thereby effectively extending the system library.
Here we give a few simple examples, leaving the details to
\sectionref{ugUser}.

We begin by looking at several ways that you can define the
``factorial'' function in Axiom.  The first way is to give a
\index{function!piece-wise definition} piece-wise definition of the
function.  \index{piece-wise function definition} This method is best
for a general recurrence relation since the pieces are gathered
together and compiled into an efficient iterative function.
Furthermore, enough previously computed values are automatically saved
so that a subsequent call to the function can pick up from where it
left off.

Define the value of {\bf fact} at $0$.
\spadcommand{fact(0) == 1}
\returnType{Type: Void}

Define the value of {\bf fact}(n) for general $n$.
\spadcommand{fact(n) == n*fact(n-1)}
\returnType{Type: Void}

Ask for the value at $50$.  The resulting function created by
Axiom computes the value by iteration.

\spadcommand{fact(50)}
\begin{verbatim}
   Compiling function fact with type Integer -> Integer 
   Compiling function fact as a recurrence relation.
\end{verbatim}
$$
30414093201713378043612608166064768844377641568960512000000000000 
$$
\returnType{Type: PositiveInteger}

A second definition uses an {\tt if-then-else} and recursion.
\spadcommand{fac(n) == if n < 3 then n else n * fac(n - 1)}
\returnType{Type: Void}

This function is less efficient than the previous version since
each iteration involves a recursive function call.
\spadcommand{fac(50)}
$$
30414093201713378043612608166064768844377641568960512000000000000 
$$
\returnType{Type: PositiveInteger}

A third version directly uses iteration.
\spadcommand{fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)}
\returnType{Type: Void}

This is the least space-consumptive version.
\spadcommand{fa(50)}
\begin{verbatim}
   Compiling function fac with type Integer -> Integer 
\end{verbatim}
$$
30414093201713378043612608166064768844377641568960512000000000000 
$$
\returnType{Type: PositiveInteger}

%Original Page 41

A final version appears to construct a large list and then reduces over
it with multiplication.
\spadcommand{f(n) == reduce(*,[i for i in 2..n])}
\returnType{Type: Void}

In fact, the resulting computation is optimized into an efficient
iteration loop equivalent to that of the third version.
\spadcommand{f(50)}
\begin{verbatim}
Compiling function f with type 
   PositiveInteger -> PositiveInteger 
\end{verbatim}
$$
30414093201713378043612608166064768844377641568960512000000000000 
$$
\returnType{Type: PositiveInteger}

The library version uses an algorithm that is different from the four
above because it highly optimizes the recurrence relation definition of
{\bf factorial}.

\spadcommand{factorial(50)}
$$
30414093201713378043612608166064768844377641568960512000000000000 
$$
\returnType{Type: PositiveInteger}

You are not limited to one-line functions in Axiom.  If you place your
function definitions in {\bf .input} files \index{file!input} (see
\sectionref{ugInOutIn}), you can have multi-line
functions that use indentation for grouping.

Given $n$ elements, {\bf diagonalMatrix} creates an
$n$ by $n$ matrix with those elements down the diagonal.
This function uses a permutation matrix
that interchanges the $i$th and $j$th rows of a matrix
by which it is right-multiplied.

This function definition shows a style of definition that can be used
in {\bf .input} files.  Indentation is used to create {\sl blocks}:
sequences of expressions that are evaluated in sequence except as
modified by control statements such as {\tt if-then-else} and {\tt return}.

\begin{verbatim}
permMat(n, i, j) ==
  m := diagonalMatrix
    [(if i = k or j = k then 0 else 1)
      for k in 1..n]
  m(i,j) := 1
  m(j,i) := 1
  m
\end{verbatim}

This creates a four by four matrix that interchanges the second and third
rows.
\spadcommand{p := permMat(4,2,3)}
\begin{verbatim}
   Compiling function permMat with type (PositiveInteger,
      PositiveInteger,PositiveInteger) -> Matrix Integer 
\end{verbatim}
$$
\left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\ 
0 & 0 & 1 & 0 \\ 
0 & 1 & 0 & 0 \\ 
0 & 0 & 0 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

Create an example matrix to permute.
\spadcommand{m := matrix [ [4*i + j for j in 1..4] for i in 0..3]}
$$
\left[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\ 
5 & 6 & 7 & 8 \\ 
9 & {10} & {11} & {12} \\ 
{13} & {14} & {15} & {16} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

%Original Page 42

Interchange the second and third rows of m.
\spadcommand{permMat(4,2,3) * m}
$$
\left[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\ 
9 & {10} & {11} & {12} \\ 
5 & 6 & 7 & 8 \\ 
{13} & {14} & {15} & {16} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

A function can also be passed as an argument to another function,
which then applies the function or passes it off to some other
function that does.  You often have to declare the type of a function
that has functional arguments.

This declares {\bf t} to be a two-argument function that returns a
{\tt Float}.  The first argument is a function that takes one
{\tt Float} argument and returns a {\tt Float}.

\spadcommand{t : (Float -> Float, Float) -> Float}
\returnType{Type: Void}

This is the definition of {\bf t}.

\spadcommand{t(fun, x) == fun(x)**2 + sin(x)**2}
\returnType{Type: Void}

We have not defined a {\bf cos} in the workspace. The one from the
Axiom library will do.

\spadcommand{t(cos, 5.2058)}
$$
1.0 
$$
\returnType{Type: Float}

Here we define our own (user-defined) function.
\spadcommand{cosinv(y) == cos(1/y)}
\returnType{Type: Void}

Pass this function as an argument to {\bf t}.
\spadcommand{t(cosinv, 5.2058)}
$$
1.7392237241\ 8005164925\ 4147684772\ 932520785 
$$
\returnType{Type: Float}

Axiom also has pattern matching capabilities for
\index{simplification}
simplification
\index{pattern matching}
of expressions and for defining new functions by rules.
For example, suppose that you want to apply regularly a transformation
that groups together products of radicals:
$$\sqrt{a}\sqrt{b} \mapsto \sqrt{ab}, \quad
(\forall a)(\forall b)$$
Note that such a transformation is not generally correct.
Axiom never uses it automatically.

%Original Page 43

Give this rule the name {\bf groupSqrt}.
\spadcommand{groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))}
$$
{ \%C \  {\sqrt {a}} \  {\sqrt {b}}} \mbox{\rm == } { \%C \  {\sqrt {{a \  
b}}}} 
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Here is a test expression.
\spadcommand{a := (sqrt(x) + sqrt(y) + sqrt(z))**4}
$$
\begin{array}{@{}l}
\displaystyle
{{\left({{\left({4 \  z}+{4 \  y}+{{12}\  x}\right)}\ {\sqrt{y}}}+
{{\left({4 \  z}+{{12}\  y}+{4 \  x}\right)}\ {\sqrt{x}}}\right)}\ {\sqrt{z}}}+
 
\\
\\
\displaystyle
{{\left({{12}\  z}+{4 \  y}+{4 \  x}\right)}\ {\sqrt{x}}\ {\sqrt{y}}}+
{z^2}+{{\left({6 \  y}+{6 \  x}\right)}\  z}+{y^2}+{6 \  x \  
y}+{x^2}
\end{array}
$$
\returnType{Type: Expression Integer}

The rule
{\bf groupSqrt} successfully simplifies the expression.
\spadcommand{groupSqrt a}
$$
\begin{array}{@{}l}
\displaystyle
{{\left({4 \  z}+{4 \  y}+{{12}\  x}\right)}\ {\sqrt{y \  z}}}+
{{\left({4 \  z}+{{12}\  y}+{4 \  x}\right)}\ {\sqrt{x \  z}}}+
 
\\
\\
\displaystyle
{{\left({{12}\  z}+{4 \  y}+{4 \  x}\right)}\ {\sqrt{x \  y}}}+
{z^2}+{{\left({6 \  y}+{6 \  x}\right)}\  z}+{y^2}+{6 \  x \  
y}+{x^2}
\end{array}
$$
\returnType{Type: Expression Integer}

\section{Polynomials}
\label{ugIntroVariables}
Polynomials are the commonly used algebraic types in symbolic
computation.  \index{polynomial} Interactive users of Axiom
generally only see one type of polynomial: {\tt Polynomial(R)}.
This type represents polynomials in any number of unspecified
variables over a particular coefficient domain $R$.  This type
represents its coefficients {\sl sparsely}: only terms with non-zero
coefficients are represented.

In building applications, many other kinds of polynomial
representations are useful.  Polynomials may have one variable or
multiple variables, the variables can be named or unnamed, the
coefficients can be stored sparsely or densely.  So-called
``distributed multivariate polynomials'' store polynomials as
coefficients paired with vectors of exponents.  This type is
particularly efficient for use in algorithms for solving systems of
non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user
is {\tt Polynomial}.
\spadcommand{(x**2 - x*y**3 +3*y)**2}
$$
{{x \sp 2} \  {y \sp 6}} -{6 \  x \  {y \sp 4}} -{2 \  {x \sp 3} \  {y \sp 
3}}+{9 \  {y \sp 2}}+{6 \  {x \sp 2} \  y}+{x \sp 4} 
$$
\returnType{Type: Polynomial Integer}

If you wish to restrict the variables used,
{\tt UnivariatePolynomial} provides polynomials in one variable.

\spadcommand{p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)}
$$
{{18} \  {x \sp 3}}+{{60} \  {x \sp 2}} -{{46} \  x}+8 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The constructor {\tt MultivariatePolynomial} provides polynomials
in one or more specified variables.

\spadcommand{m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2}
$$
{x \sp 4} -{2 \  {y \sp 3} \  {x \sp 3}}+{{\left( {y \sp 6}+{6 \  y} 
\right)}
\  {x \sp 2}} -{6 \  {y \sp 4} \  x}+{9 \  {y \sp 2}} 
$$
\returnType{Type: MultivariatePolynomial([x,y],Integer)}

%Original Page 44

You can change the way the polynomial appears by modifying the variable
ordering in the explicit list.
\spadcommand{m :: MPOLY([y,x],INT)}
$$
{{x \sp 2} \  {y \sp 6}} -{6 \  x \  {y \sp 4}} -{2 \  {x \sp 3} \  {y \sp 
3}}+{9 \  {y \sp 2}}+{6 \  {x \sp 2} \  y}+{x \sp 4} 
$$
\returnType{Type: MultivariatePolynomial([y,x],Integer)}

The constructor {\tt DistributedMultivariatePolynomial} provides\\
polynomials in one or more specified variables with the monomials
ordered lexicographically.

\spadcommand{m :: DMP([y,x],INT)}
$$
{{y \sp 6} \  {x \sp 2}} -{6 \  {y \sp 4} \  x} -{2 \  {y \sp 3} \  {x \sp 
3}}+{9 \  {y \sp 2}}+{6 \  y \  {x \sp 2}}+{x \sp 4} 
$$
\returnType{Type: DistributedMultivariatePolynomial([y,x],Integer)}

The constructor
{\tt HomogeneousDistributedMultivariatePolynomial} is similar
except that the monomials are ordered by total order refined by
reverse lexicographic order.
\spadcommand{m :: HDMP([y,x],INT)}
$$
{{y \sp 6} \  {x \sp 2}} -{2 \  {y \sp 3} \  {x \sp 3}} -{6 \  {y \sp 4} \  
x}+{x \sp 4}+{6 \  y \  {x \sp 2}}+{9 \  {y \sp 2}} 
$$
\returnType{Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)}

More generally, the domain constructor
{\tt GeneralDistributedMultivariatePolynomial} allows the user to
provide an arbitrary predicate to define his own term ordering.  These
last three constructors are typically used in Gr\"{o}bner basis
applications and
when a flat (that is, non-recursive) display is wanted and the term
ordering is critical for controlling the computation.

\section{Limits}
\label{ugIntroCalcLimits}

Axiom's {\bf limit} function is usually used to evaluate
limits of quotients where the numerator and denominator \index{limit}
both tend to zero or both tend to infinity.  To find the limit of an
expression $f$ as a real variable $x$ tends to a limit
value $a$, enter {\tt limit(f, x=a)}.  Use
{\bf complexLimit} if the variable is complex.  Additional
information and examples of limits are in 
\sectionref{ugProblemLimits}.

You can take limits of functions with parameters.
\index{limit!of function with parameters}
\spadcommand{g := csc(a*x) / csch(b*x)}
$$
\frac{\csc \left({{a \  x}} \right)}{\csch \left({{b \  x}} \right)}
$$
\returnType{Type: Expression Integer}

As you can see, the limit is expressed in terms of the parameters.
\spadcommand{limit(g,x=0)}
$$
\frac{b}{a}
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

A variable may also approach plus or minus infinity:
\spadcommand{h := (1 + k/x)**x}
$$
{\frac{x+k}{x}} \sp x 
$$
\returnType{Type: Expression Integer}

%Original Page 45

Use {\tt \%plusInfinity} and {\tt \%minusInfinity} to
denote $\infty$ and $-\infty$.
\spadcommand{limit(h,x=\%plusInfinity)}
$$
e \sp k 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

A function can be defined on both sides of a particular value, but
may tend to different limits as its variable approaches that value from the
left and from the right.

\spadcommand{limit(sqrt(y**2)/y,y = 0)}
$$
\left[
{leftHandLimit=-1},  {rightHandLimit=1} 
\right]
$$
\returnType{Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}

As $x$ approaches $0$ along the real axis, {\tt exp(-1/x**2)}
tends to $0$.

\spadcommand{limit(exp(-1/x**2),x = 0)}
$$
0 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

However, if $x$ is allowed to approach $0$ along any path in the
complex plane, the limiting value of {\tt exp(-1/x**2)} depends on the
path taken because the function has an essential singularity at $x=0$.
This is reflected in the error message returned by the function.
\spadcommand{complexLimit(exp(-1/x**2),x = 0)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

\section{Series}
\label{ugIntroSeries}

Axiom also provides power series.  \index{series!power} By default,
Axiom tries to compute and display the first ten elements of a series.
Use {\tt )set streams calculate} to change the default value to
something else.  For the purposes of this document, we have used this
system command to display fewer than ten terms.  For more information
about working with series, see \sectionref{ugProblemSeries}.

You can convert a functional expression to a power series by using the
operation {\bf series}.  In this example, {\tt sin(a*x)} is
expanded in powers of $(x - 0)$, that is, in powers of $x$.
\spadcommand{series(sin(a*x),x = 0)}
$$
{a \  x} -{{\frac{a \sp 3}{6}} \  {x \sp 3}}
+{{\frac{a \sp 5}{120}} \  {x \sp 5}} 
-{{\frac{a \sp 7}{5040}} \  {x \sp 7}}
+{{\frac{a \sp 9}{362880}} \  {x \sp 9}} 
-{{\frac{a \sp {11}}{39916800}} \  {x \sp {11}}}
+{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

%Original Page 46

This expression expands {\tt sin(a*x)} in powers of {\tt (x - \%pi/4)}.
\spadcommand{series(sin(a*x),x = \%pi/4)}
$$
{\sin 
\left({{\frac{a \  \pi}{4}}}\right)}+
{a \  {\cos \left({{\frac{a \  \pi}{4}}} \right)}
\  {\left( x -{\frac{\pi}{4}} \right)}}-
\hbox{\hskip 2.0cm}
$$
$$
{{\frac{{a \sp 2} \  {\sin \left({{\frac{a \  \pi}{4}}} \right)}}{2}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 2}} -
{{\frac{{a \sp 3} \  {\cos \left({{\frac{a \  \pi}{4}}} \right)}}{6}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 3}} +
$$
$$
{{\frac{{a \sp 4} \  {\sin \left({{\frac{a \  \pi}{4}}} \right)}}{24}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 4}} +
{{\frac{{a \sp 5} \  {\cos \left({{\frac{a \  \pi}{4}}} \right)}}{120}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 5}} -
$$
$$
{{\frac{{a \sp 6} \  {\sin \left({{\frac{a \  \pi}{4}}} \right)}}{720}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 6}} -
{{\frac{{a \sp 7} \  {\cos \left({{\frac{a \  \pi}{4}}} \right)}}{5040}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 7}} +
$$
$$
{{\frac{{a \sp 8} \  {\sin \left({{\frac{a \  \pi}{4}}} \right)}}{40320}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 8}} +
{{\frac{{a \sp 9} \  {\cos \left({{\frac{a \  \pi}{4}}} \right)}}{362880}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp 9}} -
$$
$$
{{\frac{{a \sp {10}} \  {\sin \left({{\frac{a \  \pi}{4}}} \right)}}{3628800}} 
\  {{\left( x -{\frac{\pi}{4}} \right)}\sp {10}}} +
{O \left({{{\left( x -{\frac{\pi}{4}} \right)}\sp {11}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)}

Axiom provides \index{series!Puiseux} {\it Puiseux series:}
\index{Puiseux series} series with rational number exponents.  The
first argument to {\bf series} is an in-place function that
computes the $n$-th coefficient.  (Recall that the
``{\tt +->}'' is an infix operator meaning ``maps to.'')
\spadcommand{series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)}
%%NOTE: the paper book shows O(x^4) but Axiom computes O(x^5)
$$
{x \sp {\frac{4}{3}}} -{{\frac{1}{6}} \  {x \sp {\frac{10}{3}}}}
+{O \left({{x \sp 5}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

Once you have created a power series, you can perform arithmetic
operations on that series.  We compute the Taylor expansion of $1/(1-x)$.
\index{series!Taylor}
\spadcommand{f := series(1/(1-x),x = 0)}
$$
1+x+{x \sp 2}+{x \sp 3}+{x \sp 4}+{x \sp 5}+{x \sp 6}+{x \sp 7}+{x \sp 8}
+{x \sp 9}+{x \sp {10}}+{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

Compute the square of the series.
\spadcommand{f ** 2}
$$
1+{2 \  x}+{3 \  {x \sp 2}}+{4 \  {x \sp 3}}+{5 \  {x \sp 4}}+{6 \  {x \sp 
5}}+{7 \  {x \sp 6}}+{8 \  {x \sp 7}}+{9 \  {x \sp 8}}+{{10} \  {x \sp 
9}}+{{11} \  {x \sp {10}}}+{O 
\left(
{{x \sp {11}}} 
\right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

The usual elementary functions
({\bf log}, {\bf exp}, trigonometric functions, and so on)
are defined for power series.
\spadcommand{f := series(1/(1-x),x = 0)}
$$
1+x+{x \sp 2}+{x \sp 3}+{x \sp 4}+{x \sp 5}+{x \sp 6}+{x \sp 7}+{x \sp 8}+{x 
\sp 9}+{x \sp {10}}+{O 
\left(
{{x \sp {11}}} 
\right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\spadcommand{g := log(f)}
$$
\begin{array}{@{}l}
x+
{{\frac{1}{2}} \  {x \sp 2}}+
{{\frac{1}{3}} \  {x \sp 3}}+
{{\frac{1}{4}} \  {x \sp 4}}+
{{\frac{1}{5}} \  {x \sp 5}}+
{{\frac{1}{6}} \  {x \sp 6}}+
{{\frac{1}{7}} \  {x \sp 7}}+
\\
\\
\displaystyle
{{\frac{1}{8}} \  {x \sp 8}}+
{{\frac{1}{9}} \  {x \sp 9}}+
{{\frac{1}{10}} \  {x \sp {10}}}+
{{\frac{1}{11}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

%Original Page 47

\spadcommand{exp(g)}
$$
1+x+{x \sp 2}+{x \sp 3}+{x \sp 4}+{x \sp 5}+{x \sp 6}+{x \sp 7}+{x \sp 8}+{x 
\sp 9}+{x \sp {10}}+{O 
\left(
{{x \sp {11}}} 
\right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

% Warning: currently there are (interpreter) problems with converting
% rational functions and polynomials to power series.

Here is a way to obtain numerical approximations of
$e$ from the Taylor series expansion of {\bf exp}(x).
First create the desired Taylor expansion.
\spadcommand{f := taylor(exp(x))}
$$
1+x
+{{\frac{1}{2}} \  {x \sp 2}}
+{{\frac{1}{6}} \  {x \sp 3}}
+{{\frac{1}{24}} \ {x \sp 4}}
+{{\frac{1}{120}} \  {x \sp 5}}
+{{\frac{1}{720}} \  {x \sp 6}} +
\hbox{\hskip 1.0cm}
$$
$$
{{\frac{1}{5040}} \  {x \sp 7}} 
+{{\frac{1}{40320}} \  {x \sp 8}}
+{{\frac{1}{362880}} \  {x \sp 9}}
+{{\frac{1}{3628800}} \  {x \sp {10}}}
+{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)}

Evaluate the series at the value $1.0$.
% Warning: syntax for evaluating power series may change.
As you see, you get a sequence of partial sums.
\spadcommand{eval(f,1.0)}
$$
\left[
{1.0},  {2.0},  {2.5},  {2.6666666666 666666667},  \hbox{\hskip 3.0cm}
\right.
$$
$${2.7083333333 333333333},  {2.7166666666 666666667},  \hbox{\hskip 1.0cm}
$$
$${2.7180555555 555555556},  {2.7182539682 53968254},  \hbox{\hskip 1.1cm}
$$
$$\left.
{2.7182787698 412698413},  {2.7182815255 731922399},  \ldots 
\hbox{\hskip 0.4cm}
\right]
$$
\returnType{Type: Stream Expression Float}

\section{Derivatives}
\label{ugIntroCalcDeriv}

Use the Axiom function {\bf D} to differentiate an
\index{derivative} expression.  \index{differentiation}

To find the derivative of an expression $f$ with respect to a
variable $x$, enter {\bf D}(f, x).

\spadcommand{f := exp exp x}
$$
e \sp {e \sp x} 
$$
\returnType{Type: Expression Integer}

\spadcommand{D(f, x)}
$$
{e \sp x} \  {e \sp {e \sp x}} 
$$
\returnType{Type: Expression Integer}

An optional third argument $n$ in {\bf D} asks Axiom for the $n$-th
derivative of $f$.  This finds the fourth derivative of $f$ with
respect to $x$.

\spadcommand{D(f, x, 4)}
$$
{\left( {{e \sp x} \sp 4}+{6 \  {{e \sp x} \sp 3}}+{7 \  {{e \sp x} \sp 
2}}+{e \sp x} 
\right)}
\  {e \sp {e \sp x}} 
$$
\returnType{Type: Expression Integer}

You can also compute partial derivatives by specifying the order of
\index{differentiation!partial}
differentiation.
\spadcommand{g := sin(x**2 + y)}
$$
\sin 
\left(
{{y+{x \sp 2}}} 
\right)
$$
\returnType{Type: Expression Integer}

%Original Page 48

\spadcommand{D(g, y)}
$$
\cos 
\left(
{{y+{x \sp 2}}} 
\right)
$$
\returnType{Type: Expression Integer}

\spadcommand{D(g, [y, y, x, x])}
$$
{4 \  {x \sp 2} \  {\sin 
\left(
{{y+{x \sp 2}}} 
\right)}}
-{2 \  {\cos 
\left(
{{y+{x \sp 2}}} 
\right)}}
$$
\returnType{Type: Expression Integer}

Axiom can manipulate the derivatives (partial and iterated) of
\index{differentiation!formal} expressions involving formal operators.
All the dependencies must be explicit.

This returns $0$ since F (so far) does not explicitly depend on $x$.

\spadcommand{D(F,x)}
$$
0 
$$
\returnType{Type: Polynomial Integer}

Suppose that we have F a function of $x$, $y$, and $z$,
where $x$ and $y$ are themselves functions of $z$.

Start by declaring that $F$, $x$, and $y$ are operators.
\index{operator}

\spadcommand{F := operator 'F; x := operator 'x; y := operator 'y}
$$
y 
$$
\returnType{Type: BasicOperator}

You can use F, $x$, and $y$ in expressions.

\spadcommand{a := F(x z, y z, z**2) + x y(z+1)}
$$
{x 
\left(
{{y 
\left(
{{z+1}} 
\right)}}
\right)}+{F
\left(
{{x 
\left(
{z} 
\right)},
 {y 
\left(
{z} 
\right)},
 {z \sp 2}} 
\right)}
$$
\returnType{Type: Expression Integer}

Differentiate formally with respect to $z$.
The formal derivatives appearing in $dadz$ are not just formal symbols,
but do represent the derivatives of $x$, $y$, and F.

\spadcommand{dadz := D(a, z)}
$$
\begin{array}{@{}l}
\displaystyle
{2 \  z \ {{F_{, 3}}\left({{x \left({z}\right)}, {y \left({z}\right)},
 {z^2}}\right)}}+{{{y_{\ }^{,}}\left({z}\right)}\ {{F_{, 2}}\left({{x 
\left({z}\right)}, {y \left({z}\right)}, {z^2}}\right)}}+
 
\\
\\
\displaystyle
{{{x_{\ }^{,}}\left({z}\right)}\ {{F_{, 1}}\left({{x \left({z}\right)},
 {y \left({z}\right)}, {z^2}}\right)}}+{{{x_{\ }^{,}}\left({y 
\left({z + 1}\right)}\right)}\ {{y_{\ }^{,}}\left({z + 1}\right)}}
\end{array}
$$
\returnType{Type: Expression Integer}

You can evaluate the above for particular functional values of
F, $x$, and $y$.  If $x(z)$ is {\bf exp}(z) and $y(z)$ is {\bf log}(z+1), 
then evaluates {\tt dadz}.

\spadcommand{eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))}
$$
\frac{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({2 \ {z^2}}+{2 \  z}\right)}\ {{F_{, 3}}\left({{e^z},
 {\log \left({z + 1}\right)}, {z^2}}\right)}}+
\\
\\
\displaystyle
{{F_{, 2}}\left({{e^
z}, {\log \left({z + 1}\right)}, {z^2}}\right)}+ 
\\
\\
\displaystyle
{{\left(z + 1 \right)}\ {e^z}\ {{F_{, 1}}\left({{e^z}, {\log 
\left({z + 1}\right)}, {z^2}}\right)}}+ z + 1 
\end{array}
\right)}{z + 1}
$$
\returnType{Type: Expression Integer}

%Original Page 49

You obtain the same result by first evaluating $a$ and
then differentiating.

\spadcommand{eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1))}
$$
{F 
\left(
{{e \sp z},  {\log 
\left(
{{z+1}} 
\right)},
 {z \sp 2}} 
\right)}+z+2
$$
\returnType{Type: Expression Integer}

\spadcommand{D(\%, z)}
$$
\frac{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({2 \ {z^2}}+{2 \  z}\right)}\ {{F_{, 3}}\left({{e^
z}, {\log \left({z + 1}\right)}, {z^2}}\right)}}+
\\
\\
\displaystyle
{{F_{, 2}}\left({{e^z}, {\log \left({z + 1}\right)}, {z^2}}\right)}+
\\
\\
\displaystyle
{{\left(z 
+ 1 \right)}\ {e^z}\ {{F_{, 1}}\left({{e^z}, {\log \left({z 
+ 1}\right)}, {z^2}}\right)}}+ z + 1
\end{array}
\right)}{z + 1}
$$
\returnType{Type: Expression Integer}

\section{Integration}
\label{ugIntroIntegrate}

Axiom has extensive library facilities for integration.
\index{integration}

The first example is the integration of a fraction with denominator
that factors into a quadratic and a quartic irreducible polynomial.
The usual partial fraction approach used by most other computer
algebra systems either fails or introduces expensive unneeded
algebraic numbers.

We use a factorization-free algorithm.
\spadcommand{integrate((x**2+2*x+1)/((x+1)**6+1),x)}
$$
\frac{\arctan \left({{{x \sp 3}+{3 \  {x \sp 2}}+{3 \  x}+1}} \right)}{3} 
$$
\returnType{Type: Union(Expression Integer,...)}

When real parameters are present, the form of the integral can depend on
the signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns
all possible answers.
\spadcommand{integrate(1/(x**2 + a),x)}
$$
\left[
{\frac{\log 
\left({{
\frac{{{\left( {x \sp 2} -a \right)}\  {\sqrt {-a}}}+{2 \  a \  x}}
{{x \sp 2}+a}}} \right)}{2 \  {\sqrt {-a}}}},  
{\frac{\arctan \left({{\frac{x \  {\sqrt {a}}}{a}}} \right)}{\sqrt {a}}} 
\right]
$$
\returnType{Type: Union(List Expression Integer,...)}

The {\bf integrate} operation generally assumes that all
parameters are real.  The only exception is when the integrand has
complex valued quantities.

If the parameter is complex instead of real, then the notion of sign
is undefined and there is a unique answer.  You can request this
answer by ``prepending'' the word ``complex'' to the command name:

\spadcommand{complexIntegrate(1/(x**2 + a),x)}
%%NOTE: the expression in the book is different but they differentiate
%%to exactly the same answer.
$$
\frac{{\log 
\left(
{{\frac{{x \  {\sqrt {-a}}}+a}{\sqrt {-a}}}} 
\right)}
-{\log \left({{\frac{{x \  {\sqrt {-a}}} -a}{\sqrt {-a}}}} \right)}}
{2 \  {\sqrt {-a}}} 
$$
\returnType{Type: Expression Integer}

%Original Page 50

The following two examples illustrate the limitations of table-based
approaches.  The two integrands are very similar, but the answer to
one of them requires the addition of two new algebraic numbers.

This one is the easy one.
The next one looks very similar
but the answer is much more complicated.
\spadcommand{integrate(x**3 / (a+b*x)**(1/3),x)}
$$
\frac{{\left( {{120} \  {b \sp 3} \  {x \sp 3}} 
-{{135} \  a \  {b \sp 2} \  {x \sp 2}}
+{{162} \  {a \sp 2} \  b \  x} -{{243} \  {a \sp 3}} \right)}
\  {{\root {3} \of {{{b \  x}+a}}} \sp 2}}{{440} \  {b \sp 4}} 
$$
\returnType{Type: Union(Expression Integer,...)}

Only an algorithmic approach is guaranteed to find what new constants
must be added in order to find a solution.

\spadcommand{integrate(1 / (x**3 * (a+b*x)**(1/3)),x)}
$$
\frac{\left(
\begin{array}{@{}l}
-{2 \  {b \sp 2} \  {x \sp 2} \  {\sqrt {3}} \  {\log 
\left(
{{{{\root {3} \of {a}} \  {{\root {3} \of {{{b \  x}+a}}} \sp 2}}
+{{{\root {3} \of {a}} \sp 2} \  {\root {3} \of {{{b \  x}+a}}}}+a}} 
\right)}}+
\\
\\
\displaystyle
{4\  {b \sp 2} \  {x \sp 2} \  {\sqrt {3}} \  {\log 
\left(
{{{{{\root {3} \of {a}} \sp 2} \  {\root {3} \of {{{b \  x}+a}}}} -a}} 
\right)}}+
\\
\\
\displaystyle
{{12}\  {b \sp 2} \  {x \sp 2} \  {\arctan 
\left(
{{\frac{{2 \  {\sqrt {3}} \  {{\root {3} \of {a}} \sp 2} \  
{\root {3} \of {{{b \  x}+a}}}}
+{a \  {\sqrt {3}}}}{3 \  a}}} 
\right)}}+
\\
\\
\displaystyle
{{\left(
{{12} \  b \  x} -{9 \  a} 
\right)}
\  {\sqrt {3}} \  {\root {3} \of {a}} \  {{\root {3} \of {{{b \  x}+a}}} \sp 
2}}
\end{array}
\right)}{{18} \  {a \sp 2} \  {x \sp 2} \  {\sqrt {3}} \  {\root {3} \of {a}}} 
$$
\returnType{Type: Union(Expression Integer,...)}

Some computer algebra systems use heuristics or table-driven
approaches to integration.  When these systems cannot determine the
answer to an integration problem, they reply ``I don't know.''  Axiom
uses an algorithm which is a {\sl decision procedure} for integration.
If Axiom returns the original integral that conclusively proves that
an integral cannot be expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer
exists as an elementary function.

\spadcommand{integrate(log(1 + sqrt(a*x + b)) / x,x)}
$$
\int \sp{\displaystyle x} {{\frac{\log 
\left({{{\sqrt {{b+{ \%Q \  a}}}}+1}} \right)}{\%Q}} \  {d \%Q}} 
$$
\returnType{Type: Union(Expression Integer,...)}

Axiom can handle complicated mixed functions much beyond what you
can find in tables.

Whenever possible, Axiom tries to express the answer using the
functions present in the integrand.

\spadcommand{integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x + cosh(1+sqrt(x + b)))), x)}
%%NOTE: the book has the same answer with a trailing ``+4'' term.
%%This term is not generated by Axiom
$$
{2 \  {\log 
\left(
{{\frac{-{2 \  {\cosh \left({{{\sqrt {{x+b}}}+1}} \right)}}-{2 \  x}}
{{\sinh\left({{{\sqrt {{x+b}}}+1}} \right)}
-{\cosh \left({{{\sqrt {{x+b}}}+1}} \right)}}}}
\right)}}
-{2 \  {\sqrt {{x+b}}}} 
$$
\returnType{Type: Union(Expression Integer,...)}

%Original Page 51

A strong structure-checking algorithm in Axiom finds hidden algebraic
relationships between functions.

\spadcommand{integrate(tan(atan(x)/3),x)}
%%NOTE: the book has a trailing ``+16'' term in the numerator
%%This is not generated by Axiom
$$
\frac{\left(
\begin{array}{@{}l}
{8 \  {\log \left({{{3 \  {{\tan \left({{
\frac{\arctan \left({x} \right)}{3}}} \right)}
\sp 2}} -1}} 
\right)}}
-{3 \  {{\tan \left({{\frac{\arctan \left({x} \right)}{3}}} \right)} \sp 2}}+
\\
\\
\displaystyle
{{18} \  x \  {\tan \left({{\frac{\arctan \left({x} \right)}{3}}} \right)}}
\end{array}
\right)}{18} 
$$
\returnType{Type: Union(Expression Integer,...)}

The discovery of this algebraic relationship is necessary for correct
integration of this function.
Here are the details:
\begin{enumerate}
\item
If $x=\tan t$ and $g=\tan (t/3)$ then the following 
algebraic relation is true: $${g^3-3xg^2-3g+x=0}$$
\item
Integrate $g$ using this algebraic relation; this produces:
$${\frac{(24g^2 - 8)\log(3g^2 - 1) + (81x^2 + 24)g^2 + 72xg - 27x^2 - 16}
{54g^2 - 18}}$$
\item
Rationalize the denominator, producing:
$$\frac{8\log(3g^2-1) - 3g^2 + 18xg + 16}{18}$$
Replace $g$ by the initial definition
$g = \tan(\arctan(x)/3)$
to produce the final result.
\end{enumerate}

This is an example of a mixed function where
the algebraic layer is over the transcendental one.
\spadcommand{integrate((x + 1) / (x*(x + log x) ** (3/2)), x)}
$$
-{\frac{2 \  {\sqrt {{{\log \left({x} \right)}+x}}}}
{{\log \left({x} \right)}+x}}
$$
\returnType{Type: Union(Expression Integer,...)}

While incomplete for non-elementary functions, Axiom can
handle some of them.
\spadcommand{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)}
$$
\frac{{{\left( {\erf \left({x} \right)}-1 \right)}\  {\sqrt {\pi}} \  {\log 
\left({{\frac{{\erf \left({x} \right)}-1}
{{\erf \left({x} \right)}+1}}}\right)}}
-{2 \  {\sqrt {\pi}}}}{{8 \  {\erf \left({x} \right)}}-8} 
$$
\returnType{Type: Union(Expression Integer,...)}

More examples of Axiom's integration capabilities are discussed in
\sectionref{ugProblemIntegration}.

%Original Page 52

\section{Differential Equations}
\label{ugIntroDiffEqns}
The general approach used in integration also carries over to the
solution of linear differential equations.

Let's solve some differential equations.
Let $y$ be the unknown function in terms of $x$.
\spadcommand{y := operator 'y}
$$
y 
$$
\returnType{Type: BasicOperator}

Here we solve a third order equation with polynomial coefficients.
\spadcommand{deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x**4}
$$
{{{x \sp 3} \  {{y \sb {{\ }} \sp {,,,}} 
\left(
{x} 
\right)}}+{{x
\sp 2} \  {{y \sb {{\ }} \sp {,,}} 
\left(
{x} 
\right)}}
-{2 \  x \  {{y \sb {{\ }} \sp {,}} 
\left(
{x} 
\right)}}+{2
\  {y 
\left(
{x} 
\right)}}}={2
\  {x \sp 4}} 
$$
\returnType{Type: Equation Expression Integer}

\spadcommand{solve(deq, y, x)}
%%NOTE: the book has a different solution and it appears to be 
%%less complicated than this one.
$$
\begin{array}{@{}l}
\left[
{particular={\frac{{x \sp 5} -{{10} \  {x \sp 3}}+{{20} \  {x \sp 2}}+4} 
{{15} \  x}}}, 
\right.
\\
\\
\displaystyle
\left.
{basis={\left[ {\frac{{2 \  {x \sp 3}} -{3 \  {x \sp 2}}+1}{x}},  
{\frac{{x \sp 3} -1}{x}},  
{\frac{{x \sp 3} -{3 \  {x \sp 2}} -1}{x}}
\right]}}
\right]
\end{array}
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)}


Here we find all the algebraic function solutions of the equation.
\spadcommand{deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0}
$$
{{{\left( {x \sp 2}+1 \right)}\  {{y \sb {{\ }} \sp {,,}} 
\left({x} \right)}}+{3\  x \  {{y \sb {{\ }} \sp {,}} 
\left({x} \right)}}+{y\left({x} \right)}}=0
$$
\returnType{Type: Equation Expression Integer}

\spadcommand{solve(deq, y, x)}
$$
\left[
{particular=0},  
{basis={\left[ {\frac{1}{\sqrt {{{x \sp 2}+1}}}},  
{\frac{\log \left({{{\sqrt {{{x \sp 2}+1}}} -x}} \right)}
{\sqrt {{{x \sp 2}+1}}}} 
\right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)}

Coefficients of differential equations can come from arbitrary
constant fields.  For example, coefficients can contain algebraic
numbers.

This example has solutions whose logarithmic derivative is an
algebraic function of degree two.

\spadcommand{eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x}
$$
{2 \  {x \sp 3} \  {{y \sb {{\ }} \sp {,,}} 
\left({x} \right)}}+{3\  {x \sp 2} \  {{y \sb {{\ }} \sp {,}} 
\left({x} \right)}}-{2 \  {y \left({x} \right)}}
$$
\returnType{Type: Expression Integer}

\spadcommand{solve(eq,y,x).basis}
$$
\left[
{e \sp {\left( -{\frac{2}{\sqrt {x}}} \right)}},
{e \sp {\frac{2}{\sqrt {x}}}} 
\right]
$$
\returnType{Type: List Expression Integer}

%Original Page 53

Here's another differential equation to solve.
\spadcommand{deq := D(y x, x) = y(x) / (x + y(x) * log y x)}
$$
{{y \sb {{\ }} \sp {,}} 
\left({x} \right)}
={\frac{y\left({x} \right)}
{{{y \left({x} \right)}\  {\log \left({{y \left({x} \right)}}\right)}}+x}}
$$
\returnType{Type: Equation Expression Integer}

\spadcommand{solve(deq, y, x)}
$$
\frac{{{y \left({x} \right)}\  {
{\log \left({{y \left({x} \right)}}\right)}\sp 2}} -{2 \  x}}
{2 \  {y \left({x} \right)}}
$$
\returnType{Type: Union(Expression Integer,...)}

Rather than attempting to get a closed form solution of
a differential equation, you instead might want to find an
approximate solution in the form of a series.

Let's solve a system of nonlinear first order equations and get a
solution in power series.  Tell Axiom that $x$ is also an
operator.

\spadcommand{x := operator 'x}
$$
x 
$$
\returnType{Type: BasicOperator}

Here are the two equations forming our system.
\spadcommand{eq1 := D(x(t), t) = 1 + x(t)**2}
$$
{{x \sb {{\ }} \sp {,}} 
\left(
{t} 
\right)}={{{x
\left(
{t} 
\right)}
\sp 2}+1} 
$$
\returnType{Type: Equation Expression Integer}

\spadcommand{eq2 := D(y(t), t) = x(t) * y(t)}
$$
{{y \sb {{\ }} \sp {,}} 
\left(
{t} 
\right)}={{x
\left(
{t} 
\right)}
\  {y 
\left(
{t} 
\right)}}
$$
\returnType{Type: Equation Expression Integer}

We can solve the system around $t = 0$ with the initial
conditions $x(0) = 0$ and $y(0) = 1$.  Notice that since
we give the unknowns in the order $[x, y]$, the answer is a list
of two series in the order 
$[{\rm series\ for\ }x(t), {\rm series\ for\ }y(t)]$.

\spadcommand{seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])}
$$
\left[
{\ t+
{{\frac{1}{3}} \  {t \sp 3}}+
{{\frac{2}{15}} \  {t \sp 5}}+
{{\frac{17}{315}} \  {t \sp 7}}+
{{\frac{62}{2835}} \  {t \sp 9}}+
{O \left({{t \sp {11}}} \right)}},
\right. 
\hbox{\hskip 2.0cm}
$$
$$
\hbox{\hskip 0.4cm}
\left.
{1+
{{\frac{1}{2}} \  {t \sp 2}}+
{{\frac{5}{24}} \  {t \sp 4}}+
{{\frac{61}{720}} \  {t \sp 6}}+
{{\frac{277}{8064}} \  {t \sp 8}}+
{{\frac{50521}{3628800}} \  {t \sp {10}}}+
{O \left({{t \sp {11}}}\right)}}
\right]
$$
\returnType{Type: List UnivariateTaylorSeries(Expression Integer,t,0)}

\section{Solution of Equations}
\label{ugIntroSolution}
Axiom also has state-of-the-art algorithms for the solution of
systems of polynomial equations.  When the number of equations and
unknowns is the same, and you have no symbolic coefficients, you can
use {\bf solve} for real roots and {\bf complexSolve} for
complex roots.  In each case, you tell Axiom how accurate you
want your result to be.  All operations in the {\it solve} family
return answers in the form of a list of solution sets, where each
solution set is a list of equations.

%Original Page 54

A system of two equations involving a symbolic parameter $t$.
\spadcommand{S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]}
\returnType{Type: Void}

Find the real roots of $S(19)$ with
rational arithmetic, correct to within $1/10^{20}$.
\spadcommand{solve(S(19),1/10**20)}
$$
\left[
{\left[ {y=5},  {x=-{\frac{2451682632253093442511}{295147905179352825856}}} 
\right]},
\right.
$$
$$
\left.
{\left[ {y=5},  {x={\frac{2451682632253093442511}{295147905179352825856}}} 
\right]}
\right]
$$
\returnType{Type: List List Equation Polynomial Fraction Integer}

Find the complex roots of $S(19)$ with floating
point coefficients to $20$ digits accuracy in the mantissa.

\spadcommand{complexSolve(S(19),10.e-20)}
$$
\left[
{\left[ {y={5.0}},  {x={8.3066238629 180748526}} \right]},
\right.
$$
$$
{\left[ {y={5.0}},  {x=-{8.3066238629 180748526}} \right]},
$$
$$
\left.
{\left[ {y=-{{3.0} \  i}},  {x={1.0}} \right]},
{\left[ {y={{3.0} \  i}},  {x={1.0}} \right]}
\right]
$$
\returnType{Type: List List Equation Polynomial Complex Float}

If a system of equations has symbolic coefficients and you want
a solution in radicals, try {\bf radicalSolve}.
\spadcommand{radicalSolve(S(a),[x,y])}
$$
\left[
{\left[ {x=-{\sqrt {{a+{50}}}}}, {y=5} \right]},
{\left[ {x={\sqrt {{a+{50}}}}}, {y=5} \right]},
\right.
$$
$$
\hbox{\hskip 0.7cm}
\left.
{\left[ {x=1}, {y={\sqrt {{\frac{-a+1}{2}}}}} \right]},
{\left[ {x=1}, {y=-{\sqrt {{\frac{-a+1}{2}}}}} \right]}
\right]
$$
\returnType{Type: List List Equation Expression Integer}

For systems of equations with symbolic coefficients, you can apply
{\bf solve}, listing the variables that you want Axiom to
solve for.  For polynomial equations, a solution cannot usually be
expressed solely in terms of the other variables.  Instead, the
solution is presented as a ``triangular'' system of equations, where
each polynomial has coefficients involving only the succeeding
variables. This is analogous to converting a linear system of
equations to ``triangular form''.

A system of three equations in five variables.
\spadcommand{eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]}
$$
\left[
{z -y+{x \sp 2}},  {{{x \sp 2} \  z} -{b \  y}+{x \sp 4}},  {{{y \sp 2} \  
z} -{b \  x} -a} 
\right]
$$
\returnType{Type: List Polynomial Integer}

%Original Page 55

Solve the system for unknowns $[x,y,z]$,
reducing the solution to triangular form.
\spadcommand{solve(eqns,[x,y,z])}
$$
\left[
{\left[ {x=-{\frac{a}{b}}},  {y=0},  {z=-{\frac{a \sp 2}{b \sp 2}}} 
\right]},
\right.
\hbox{\hskip 10.0cm}
$$
$$
\left.
\begin{array}{@{}l}
\displaystyle
\left[
{x={\frac{{z \sp 3}+{2 \  b \  {z \sp 2}}+{{b \sp 2} \  z} -a}{b}}}, 
{y={z+b}}, 
\right.
\hbox{\hskip 7.2cm}
\\
\\
\displaystyle
{z \sp 6}+{4 \  b \  {z \sp 5}}+
{6 \  {b \sp 2} \  {z \sp 4}}+
{{\left( {4 \  {b \sp 3}} -{2 \  a} \right)}\  {z \sp 3}}+
{{\left( {b \sp 4} -{4 \  a \  b} \right)}\  {z \sp 2}}-
\left.
{2 \  a \  {b \sp 2} \  z} -{b \sp 3}+{a \sp 2}=0
\right]
\end{array}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

\section{System Commands}
\label{ugIntroSysCmmands}
We conclude our tour of Axiom with a brief discussion of
{\it system commands}.  System commands are special statements
that start with a closing parenthesis ({\tt )}). They are used
to control or display your Axiom environment, start the
HyperDoc system, issue operating system commands and leave
Axiom.  For example, {\tt )system} is used to issue commands
to the operating system from Axiom.  Here
is a brief description of some of these commands.  For more
information on specific commands, see Appendix A 
on page~\pageref{ugSysCmd}.

Perhaps the most important user command is the {\tt )clear all}
command that initializes your environment.  Every section and
subsection in this document has an invisible {\tt )clear all} that is
read prior to the examples given in the section.  {\tt )clear all}
gives you a fresh, empty environment with no user variables defined
and the step number reset to $1$.  The {\tt )clear} command
can also be used to selectively clear values and properties of system
variables.

Another useful system command is {\tt )read}.  A preferred way to
develop an application in Axiom is to put your interactive
commands into a file, say {\bf my.input} file.  To get Axiom to
read this file, you use the system command {\tt )read my.input}.
If you need to make changes to your approach or definitions, go into
your favorite editor, change {\bf my.input}, then {\tt )read
my.input} again.

Other system commands include: {\tt )history}, to display
previous input and/or output lines; {\tt )display}, to display
properties and values of workspace variables; and {\tt )what}.

%Original Page 56

Issue {\tt )what} to get a list of Axiom objects that
contain a given substring in their name.
\spadcommand{)what operations integrate}
\begin{verbatim}

Operations whose names satisfy the above pattern(s):

HermiteIntegrate       algintegrate           complexIntegrate       
expintegrate           extendedIntegrate      fintegrate             
infieldIntegrate       integrate              internalIntegrate      
internalIntegrate0     lazyGintegrate         lazyIntegrate          
lfintegrate            limitedIntegrate       monomialIntegrate      
nagPolygonIntegrate    palgintegrate          pmComplexintegrate     
pmintegrate            primintegrate          tanintegrate           
   
To get more information about an operation such as 
limitedIntegrate , issue the command )display op limitedIntegrate
      
\end{verbatim}

\subsection{Undo}
\label{ugIntroUndo}
A useful system command is {\tt )undo}.  Sometimes while computing
interactively with Axiom, you make a mistake and enter an
incorrect definition or assignment.  Or perhaps you need to try one of
several alternative approaches, one after another, to find the best
way to approach an application.  For this, you will find the
{\it undo} facility of Axiom helpful.

System command {\tt )undo n} means ``undo back to step
$n$''; it restores the values of user variables to those that
existed immediately after input expression $n$ was evaluated.
Similarly, {\tt )undo -n} undoes changes caused by the last
$n$ input expressions.  Once you have done an {\tt )undo},
you can continue on from there, or make a change and {\bf redo} all
your input expressions from the point of the {\tt )undo} forward.
The {\tt )undo} is completely general: it changes the environment
like any user expression.  Thus you can {\tt )undo} any previous
undo.

Here is a sample dialogue between user and Axiom.

``Let me define
two mutually dependent functions $f$ and $g$ piece-wise.''
\spadcommand{f(0) == 1; g(0) == 1}
\returnType{Type: Void}

``Here is the general term for $f$.''
\spadcommand{f(n) == e/2*f(n-1) - x*g(n-1)}
\returnType{Type: Void}

``And here is the general term for $g$.''
\spadcommand{g(n) == -x*f(n-1) + d/3*g(n-1)}
\returnType{Type: Void}

%Original Page 57

``What is the value of $f(3)$?''
\spadcommand{f(3)}
$$
-{x \sp 3}+{{\left( e+{{\frac{1}{3}} \  d} \right)}
\  {x \sp 2}}
+{{\left( 
-{{\frac{1}{4}} \  {e \sp 2}} 
-{{\frac{1}{6}} \  d \  e} 
-{{\frac{1}{9}} \  {d \sp 2}} 
\right)}\  x}
+{{\frac{1}{8}} \  {e \sp 3}} 
$$
\returnType{Type: Polynomial Fraction Integer}

``Hmm, I think I want to define $f$ differently.
Undo to the environment right after I defined $f$.''
\spadcommand{)undo 2}

``Here is how I think I want $f$ to be defined instead.''
\spadcommand{f(n) == d/3*f(n-1) - x*g(n-1)}
\begin{verbatim}
   1 old definition(s) deleted for function or rule f 
\end{verbatim}
\returnType{Type: Void}

Redo the computation from expression $3$ forward.
\spadcommand{)undo )redo}
\begin{verbatim}
g(n) == -x*f(n-1) + d/3*g(n-1)
 
                                                          Type: Void
f(3)
 
   Compiling function g with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
   Compiling function g with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
   Compiling function f with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined
\end{verbatim}
$$
-{x \sp 3}+{d \  {x \sp 2}} 
-{{\frac{1}{3}} \  {d \sp 2} \  x}
+{{\frac{1}{27}} \  {d \sp 3}} 
$$
\returnType{Type: Polynomial Fraction Integer}

``I want my old definition of
$f$ after all. Undo the undo and restore
the environment to that immediately after $(4)$.''
\spadcommand{)undo 4}

``Check that the value of $f(3)$ is restored.''
\spadcommand{f(3)}
\begin{verbatim}
   Compiling function g with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
   Compiling function g with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
   Compiling function f with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined
\end{verbatim}
$$
-{x \sp 3}+{{\left( e+{{\frac{1}{3}} \  d} \right)}\  {x \sp 2}}
+{{\left( 
-{{\frac{1}{4}} \  {e \sp 2}} 
-{{\frac{1}{6}} \  d \  e} 
-{{\frac{1}{9}} \  {d \sp 2}} 
\right)}\  x}
+{{\frac{1}{8}} \  {e \sp 3}} 
$$
\returnType{Type: Polynomial Fraction Integer}

After you have gone off on several tangents, then backtracked to
previous points in your conversation using {\tt )undo}, you might
want to save all the ``correct'' input commands you issued,
disregarding those undone.  The system command {\tt )history
)write mynew.input} writes a clean straight-line program onto the file
{\bf mynew.input} on your disk.

%Original Page 28

\section{Graphics}
\label{ugIntroGraphics}
Axiom has a two- and three-dimensional drawing and rendering
\index{graphics} package that allows you to draw, shade, color,
rotate, translate, map, clip, scale and combine graphic output of
Axiom computations.  The graphics interface is capable of
plotting functions of one or more variables and plotting parametric
surfaces.  Once the graphics figure appears in a window, move your
mouse to the window and click.  A control panel appears immediately
and allows you to interactively transform the object.

This is an example of Axiom's two-dimensional plotting.
From the 2D Control Panel you can rescale the plot, turn axes and units
on and off and save the image, among other things.
This PostScript image was produced by clicking on the
{\bf PS} 2D Control Panel button.
\spadgraph{draw(cos(5*t/8), t=0..16*\%pi, coordinates==polar)}
% window was 256 x 256
%\epsffile[72 72 300 300]{ps/rose-1.ps}
\begin{figure}[htbp]
\includegraphics[bbllx=14, bblly=14, bburx=176, bbury=186]{ps/p28a.eps}
\caption{$J_0(\sqrt{x^2+y^2})$ for $-20 \leq x,y \leq 20$}
\label{tpdhere}
\end{figure}

This is an example of Axiom's three-dimensional plotting.
It is a monochrome graph of the complex arctangent
function.
The image displayed was rotated and had the ``shade'' and ``outline''
display options set from the 3D Control Panel.
The PostScript output was produced by clicking on the
{\bf save} 3D Control Panel button and then
clicking on the {\bf PS} button.
See \sectionref{ugProblemNumeric}
for more details and examples of Axiom's numeric and graphics capabilities.

\spadgraph{draw((x,y) +-> real atan complex(x,y), -\%pi..\%pi, -\%pi..\%pi, colorFunction == (x,y) +-> argument atan complex(x,y))}
% window was 256 x 256
%\epsffile[72 72 285 285]{ps/atan-1.ps}
\begin{figure}[htbp]
\includegraphics[bbllx=14, bblly=14, bburx=175, bbury=185]{ps/p28b.eps}
\caption{atan}
\label{tpdhere1}
\end{figure}

An exhibit of Axiom images is given later.  For a description of the
commands and programs that produced these figures, see
\sectionref{ugAppGraphics}.  PostScript
\index{PostScript} output is available so that Axiom images can be
printed.\footnote{PostScript is a trademark of Adobe Systems
Incorporated, registered in the United States.}  See \sectionref{ugGraph}
for more examples and details about using
Axiom's graphics facilities.

This concludes your tour of Axiom.
To disembark, issue the system command {\tt )quit} to leave Axiom
and return to the operating system.

%\setcounter{chapter}{1}

\chapter{Using Types and Modes}
\begin{quote}
Only recently have I begun to realize that the problem is not merely
one of technical mastery or the competent application of the rules 
\ldots
but that there is actually something else which is guiding these
rules. It actually involves a different level of mastery. It's quite
a different process to do it right; and every single act that you 
do can be done in that sense well or badly. But even assuming that 
you have got the technical part clear, the creation of this quality
is a much more complicated process of the most utterly absorbing and
fascinating dimensions. It is in fact a major creative or artistic 
act -- every single little thing you do -- \ldots

-- Christopher Alexander

(from Patterns of Software by Richard Gabriel)

\end{quote}
\label{ugTypes}

%Original Page 59

In this chapter we look at the key notion of {\it type} and its
generalization {\it mode}.  We show that every Axiom object has a type
that determines what you can do with the object.  In particular, we
explain how to use types to call specific functions from particular
parts of the library and how types and modes can be used to create new
objects from old.  We also look at {\tt Record} and {\tt Union} types
and the special type {\tt Any}.  Finally, we give you an idea of how
Axiom manipulates types and modes internally to resolve ambiguities.

\section{The Basic Idea}
\label{ugTypesBasic}

The Axiom world deals with many kinds of objects.  There are
mathematical objects such as numbers and polynomials, data structure
objects such as lists and arrays, and graphics objects such as points
and graphic images.  Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or
simply {\it domain}.  Each domain denotes a class of objects.  The
class of objects it denotes is usually given by the name of the
domain: {\tt Integer} for the integers, {\tt Float} for floating-point
numbers, and so on.  The convention is that the first letter of a
domain name is capitalized.  Similarly, the domain 
{\tt Polynomial(Integer)} denotes ``polynomials with integer
coefficients.''  Also, {\tt Matrix(Float)} denotes ``matrices with
floating-point entries.''

Every basic Axiom object belongs to a unique domain.  The integer $3$
belongs to the domain {\tt Integer} and the polynomial $x + 3$ belongs
to the domain {\tt Polynomial(Integer)}.  The domain of an object is
also called its {\it type}.  Thus we speak of ``the type 
{\tt Integer}'' and ``the type {\tt Polynomial(Integer)}.''

%Original Page 60

After an Axiom computation, the type is displayed toward the
right-hand side of the page (or screen).
\spadcommand{-3}
$$
-3 
$$
\returnType{Type: Integer}

Here we create a rational number but it looks like the last result.
The type however tells you it is different.  You cannot identify the
type of an object by how Axiom displays the object.
\spadcommand{-3/1}
$$
-3 
$$
\returnType{Type: Fraction Integer}

When a computation produces a result of a simpler type, Axiom leaves
the type unsimplified.  Thus no information is lost.
\spadcommand{x + 3 - x}
$$
3 
$$
\returnType{Type: Polynomial Integer}

This seldom matters since Axiom retracts the answer to the
simpler type if it is necessary.
\spadcommand{factorial(\%)}
$$
6 
$$
\returnType{Type: Expression Integer}

When you issue a positive number, the type {\tt PositiveInteger} is
printed.  Surely, $3$ also has type {\tt Integer}!  The curious reader
may now have two questions.  First, is the type of an object not
unique?  Second, how is {\tt PositiveInteger} related to {\tt
Integer}?
\spadcommand{3}
$$
3 
$$
\returnType{Type: PositiveInteger}

Any domain can be refined to a {\it subdomain} by a membership 
{\tt predicate}. A {\tt predicate} is a function that, when applied to an
object of the domain, returns either {\tt true} or {\tt false}.  For
example, the domain {\tt Integer} can be refined to the subdomain 
{\tt PositiveInteger}, the set of integers $x$ such that $x > 0$, by giving
the Axiom predicate {\tt x +-> x > 0}.  Similarly, Axiom can define
subdomains such as ``the subdomain of diagonal matrices,'' ``the
subdomain of lists of length two,'' ``the subdomain of monic
irreducible polynomials in $x$,'' and so on.  Trivially, any domain is
a subdomain of itself.

While an object belongs to a unique domain, it can belong to any
number of subdomains.  Any subdomain of the domain of an object can be
used as the {\it type} of that object.  The type of $3$ is indeed both
{\tt Integer} and {\tt PositiveInteger} as well as any other subdomain
of integer whose predicate is satisfied, such as ``the prime
integers,'' ``the odd positive integers between 3 and 17,'' and so on.

%Original Page 61

\subsection{Domain Constructors}
\label{ugTypesBasicDomainCons}

In Axiom, domains are objects.  You can create them, pass them to
functions, and, as we'll see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name
to a set of arguments.

To ask for ``the factorial of $7$'' you enter this expression to
Axiom.  This applies the function {\tt factorial} to the value $7$ to
compute the result.
\spadcommand{factorial(7)}
$$
5040 
$$
\returnType{Type: PositiveInteger}

Enter the type {\tt Polynomial (Integer)} as an expression to Axiom.
This looks much like a function call as well.  It is!  The result is
appropriately stated to be of type {\tt Domain}, which according to
our usual convention, denotes the class of all domains.
\spadcommand{Polynomial(Integer)}
$$
\mbox{\rm Polynomial Integer} 
$$
\returnType{Type: Domain}

The most basic operation involving domains is that of building a new
domain from a given one.  To create the domain of ``polynomials over
the integers,'' Axiom applies the function {\tt Polynomial} to the
domain {\tt Integer}.  A function like {\tt Polynomial} is called a
{\it domain constructor} or, \index{constructor!domain} more simply, a
{\it constructor}.  A domain constructor is a function that creates a
domain.  An argument to a domain constructor can be another domain or,
in general, an arbitrary kind of object.  {\tt Polynomial} takes a
single domain argument while {\tt SquareMatrix} takes a positive
integer as an argument to give its dimension and a domain argument to
give the type of its components.

What kinds of domains can you use as the argument to {\tt Polynomial}
or {\tt SquareMatrix} or {\tt List}?  Well, the first two are
mathematical in nature.  You want to be able to perform algebraic
operations like ``{\tt +}'' and ``{\tt *}'' on polynomials and square
matrices, and operations such as {\bf determinant} on square
matrices.  So you want to allow polynomials of integers {\it and}
polynomials of square matrices with complex number coefficients and,
in general, anything that ``makes sense.'' At the same time, you don't
want Axiom to be able to build nonsense domains such as ``polynomials
of strings!''

In contrast to algebraic structures, data structures can hold any kind
of object.  Operations on lists such as \spadfunFrom{insert}{List},
\spadfunFrom{delete}{List}, and \spadfunFrom{concat}{List} just
manipulate the list itself without changing or operating on its
elements.  Thus you can build {\tt List} over almost any datatype,
including itself.

Create a complicated algebraic domain.
\spadcommand{List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))}
$$
\mbox{\rm List List Matrix Polynomial Complex Fraction Integer} 
$$
\returnType{Type: Domain}

%Original Page 62

Try to create a meaningless domain.
\spadcommand{Polynomial(String)}
\begin{verbatim}
   Polynomial String is not a valid type.
\end{verbatim}

Evidently from our last example, Axiom has some mechanism that tells
what a constructor can use as an argument.  This brings us to the
notion of {\it category}.  As domains are objects, they too have a
domain.  The domain of a domain is a category.  A category is simply a
type whose members are domains.

A common algebraic category is {\tt Ring}, the class of all domains
that are ``rings.''  A ring is an algebraic structure with constants
$0$ and $1$ and operations \spadopFrom{+}{Ring}, \spadopFrom{-}{Ring},
and \spadopFrom{*}{Ring}.  These operations are assumed ``closed''
with respect to the domain, meaning that they take two objects of the
domain and produce a result object also in the domain.  The operations
are understood to satisfy certain ``axioms,'' certain mathematical
principles providing the algebraic foundation for rings.  For example,
the {\it additive inverse axiom} for rings states: \begin{center}
Every element $x$ has an additive inverse $y$ such that $x + y = 0$.
\end{center} The prototypical example of a domain that is a ring is
the integers.  Keep them in mind whenever we mention {\tt Ring}.

Many algebraic domain constructors such as {\tt Complex}, 
{\tt Polynomial}, {\tt Fraction}, take rings as arguments and return rings
as values.  You can use the infix operator ``$has$'' to ask a domain
if it belongs to a particular category.

All numerical types are rings.  Domain constructor {\tt Polynomial}
builds ``the ring of polynomials over any other ring.''
\spadcommand{Polynomial(Integer) has Ring}
$$
{\rm true}
$$
\returnType{Type: Boolean}

Constructor {\tt List} never produces a ring.
\spadcommand{List(Integer) has Ring}
$$
{\rm false}
$$
\returnType{Type: Boolean}

The constructor {\tt Matrix(R)} builds ``the domain of all matrices
over the ring $R$.'' This domain is never a ring since the operations
``{\tt +}'', ``{\tt -}'', and ``{\tt *}'' on matrices of arbitrary
shapes are undefined.
\spadcommand{Matrix(Integer) has Ring}
$$
{\rm false}
$$
\returnType{Type: Boolean}

Thus you can never build polynomials over matrices.
\spadcommand{Polynomial(Matrix(Integer))}
\begin{verbatim}
   Polynomial Matrix Integer is not a valid type.
\end{verbatim}

%Original Page 63

Use {\tt SquareMatrix(n,R)} instead.  For any positive integer $n$, it
builds ``the ring of $n$ by $n$ matrices over $R$.''
\spadcommand{Polynomial(SquareMatrix(7,Complex(Integer)))}
$$
\mbox{\rm Polynomial SquareMatrix(7,Complex Integer)} 
$$
\returnType{Type: Domain}

Another common category is {\tt Field}, the class of all fields.
\index{field} A field is a ring with additional operations.  For
example, a field has commutative multiplication and a closed operation
\spadopFrom{/}{Field} for the division of two elements.  {\tt Integer}
is not a field since, for example, $3/2$ does not have an integer
result.  The prototypical example of a field is the rational numbers,
that is, the domain {\tt Fraction(Integer)}.  In general, the
constructor {\tt Fraction} takes an IntegralDomain, which is a ring
with additional properties, as an argument and returns a field. 
\footnote{Actually, the argument domain must have some additional
so as to belong to the category {\tt IntegralDomain}}
Other domain constructors, such as {\tt Complex}, build fields only if their
argument domain is a field.

The complex integers (often called the ``Gaussian integers'') do not form
a field.
\spadcommand{Complex(Integer) has Field}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

But fractions of complex integers do.
\spadcommand{Fraction(Complex(Integer)) has Field}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The algebraically equivalent domain of complex rational numbers is a field
since domain constructor {\tt Complex} produces a field whenever its
argument is a field.
\spadcommand{Complex(Fraction(Integer)) has Field}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The most basic category is {\tt Type}.  \index{Type} It denotes the
class of all domains and subdomains. Note carefully that {\tt Type}
does not denote the class of all types.  The type of all categories is
{\tt Category}.  The type of {\tt Type} itself is undefined.  Domain
constructor {\tt List} is able to build ``lists of elements from
domain $D$'' for arbitrary $D$ simply by requiring that $D$ belong to
category {\tt Type}.

Now, you may ask, what exactly is a category?  \index{category} Like
domains, categories can be defined in the Axiom language.  A category
is defined by three components:

\begin{enumerate}
\item a name (for example, {\tt Ring}),
used to refer to the class of domains that the category represents;
\item a set of operations, used to refer to the operations that
the domains of this class support
(for example, ``{\tt +}'', ``{\tt -}'', and ``{\tt *}'' for rings); and
\item an optional list of other categories that this category extends.
\end{enumerate}

%Original Page 64

This last component is a new idea.  And it is key to the design of
Axiom!  Because categories can extend one another, they form
hierarchies.  Detailed charts showing the category hierarchies
in Axiom are displayed in Appendix (TPDHERE).  There you see
that all categories are extensions of {\tt Type} and that {\tt Field}
is an extension of {\tt Ring}.

The operations supported by the domains of a category are called the
{\sl exports} of that category because these are the operations made
available for system-wide use.  The exports of a domain of a given
category are not only the ones explicitly mentioned by the category.
Since a category extends other categories, the operations of these
other categories---and all categories these other categories
extend---are also exported by the domains.

For example, polynomial domains belong to {\tt PolynomialCategory}.
This category explicitly mentions some twenty-nine operations on
polynomials, but it extends eleven other categories (including 
{\tt Ring}).  As a result, the current system has over one hundred
operations on polynomials.

If a domain belongs to a category that extends, say, {\tt Ring}, it is
convenient to say that the domain exports {\tt Ring}.  The name of the
category thus provides a convenient shorthand for the list of
operations exported by the category.  Rather than listing operations
such as \spadopFrom{+}{Ring} and \spadopFrom{*}{Ring} of {\tt Ring}
each time they are needed, the definition of a type simply asserts
that it exports category {\tt Ring}.

The category name, however, is more than a shorthand.  The name 
{\tt Ring}, in fact, implies that the operations exported by rings are
required to satisfy a set of ``axioms'' associated with the name 
{\tt Ring}. This subtle but important feature distinguishes Axiom from
other abstract datatype designs.

Why is it not correct to assume that some type is a ring if it exports
all of the operations of {\tt Ring}?  Here is why.  Some languages
such as {\bf APL} \index{APL} denote the {\tt Boolean} constants
{\tt true} and {\tt false} by the integers $1$ and $0$ respectively, then use
``{\tt +}'' and ``{\tt *}'' to denote the logical operators {\bf or} and
{\bf and}.  But with these definitions {\tt Boolean} is not a
ring since the additive inverse axiom is violated. That is, there is
no inverse element $a$ such that $1 + a = 0$, or, in the usual terms:
{\tt true or a = false}.  This alternative definition of {\tt Boolean}
can be easily and correctly implemented in Axiom, since {\tt Boolean}
simply does not assert that it is of category {\tt Ring}.  This
prevents the system from building meaningless domains such as 
{\tt Polynomial(Boolean)} and then wrongfully applying algorithms that
presume that the ring axioms hold.

Enough on categories. To learn more about them, see 
\sectionref{ugCategories}. We now return to our discussion of domains.

%Original Page 65

Domains {\it export} a set of operations to make them available for
system-wide use.  {\tt Integer}, for example, exports the operations
\spadopFrom{+}{Integer} and \spadopFrom{=}{Integer} given by the
signatures \spadopFrom{+}{Integer}:
\spadsig{(Integer,Integer)}{Integer} and \spadopFrom{=}{Integer}:
\spadsig{(Integer,Integer)}{Boolean}, respectively.  Each of these
operations takes two {\tt Integer} arguments.  The
\spadopFrom{+}{Integer} operation also returns an {\tt Integer} but
\spadopFrom{=}{Integer} returns a {\tt Boolean}: {\tt true} or {\tt false}.
The operations exported by a domain usually manipulate objects of the
domain---but not always.

The operations of a domain may actually take as arguments, and return
as values, objects from any domain.  For example, {\tt Fraction
(Integer)} exports the operations \spadopFrom{/}{Fraction}:
\spadsig{(Integer,Integer)}{Fraction(Integer)} and
\spadfunFrom{characteristic}{Fraction}:
\spadsig{}{NonNegativeInteger}.

Suppose all operations of a domain take as arguments and return as
values, only objects from {\it other} domains.  \index{package} This
kind of domain \index{constructor!package} is what Axiom calls a {\it
package}.

A package does not designate a class of objects at all.  Rather, a
package is just a collection of operations.  Actually the bulk of the
Axiom library of algorithms consists of packages.  The facilities for
factorization; integration; solution of linear, polynomial, and
differential equations; computation of limits; and so on, are all
defined in packages.  Domains needed by algorithms can be passed to a
package as arguments or used by name if they are not ``variable.''
Packages are useful for defining operations that convert objects of
one type to another, particularly when these types have different
parameterizations.  As an example, the package {\tt PolynomialFunction2(R,S)} 
defines operations that convert polynomials
over a domain $R$ to polynomials over $S$.  To convert an object from
{\tt Polynomial(Integer)} to {\tt Polynomial(Float)}, Axiom builds the
package {\tt PolynomialFunctions2(Integer,Float)} in order to create
the required conversion function.  (This happens ``behind the scenes''
for you: see \sectionref{ugTypesConvert}
for details on how to convert objects.)

Axiom categories, domains and packages and all their contained
functions are written in the Axiom programming language and have been
compiled into machine code.  This is what comprises the Axiom 
{\it library}.  We will show you how to use these
domains and their functions and how to write your own functions.

%Original Page 66

\section{Writing Types and Modes}
\label{ugTypesWriting}

We have already seen in the last section \sectionref{ugTypesBasic}
several examples of types.  Most of these
examples had either no arguments (for example, {\tt Integer}) or one
argument (for example, {\tt Polynomial (Integer)}).  In this section
we give details about writing arbitrary types.  We then define modes
and discuss how to write them.  We conclude the section with a
discussion on constructor abbreviations.

When might you need to write a type or mode?  You need to do so when
you declare variables.
\spadcommand{a : PositiveInteger}
\returnType{Type: Void}

You need to do so when you declare functions 
(See \sectionref{ugTypesDeclare})
\spadcommand{f : Integer -> String}
\returnType{Type: Void}

You need to do so when you convert an object from one type to another
(See \sectionref{ugTypesConvert}).
\spadcommand{factor(2 :: Complex(Integer))}
$$
-{i \  {{\left( 1+i 
\right)}
\sp 2}} 
$$
\returnType{Type: Factored Complex Integer}

\spadcommand{(2 = 3)\$Integer}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

You need to do so when you give computation target type information
(See \sectionref{ugTypesPkgCall})
\spadcommand{(2 = 3)@Boolean}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\subsection{Types with No Arguments}
\label{ugTypesWritingZero}

A constructor with no arguments can be written either
\index{type!using parentheses} with or without
\index{parentheses!using with types} trailing opening and closing
parentheses ``{\tt ()}''.

\begin{center}
{\tt Boolean()} is the same as {\tt Boolean} \\
{\tt Integer()} is the same as {\tt Integer} \\
{\tt String()} is the same as {\tt String} \\
{\tt Void()} is the same as {\tt Void} 
\end{center}

It is customary to omit the parentheses.

\subsection{Types with One Argument}
\label{ugTypesWritingOne}

A constructor with one argument can frequently be 
\index{type!using parentheses} written with no 
\index{parentheses!using with types} parentheses.  Types nest from 
right to left so that {\tt Complex Fraction Polynomial Integer} 
is the same as {\tt Complex (Fraction (Polynomial (Integer)))}.  
You need to use parentheses to force the application of a constructor 
to the correct argument, but you need not use any more than is necessary 
to remove ambiguities.

%Original Page 67

Here are some guidelines for using parentheses (they are possibly slightly
more restrictive than they need to be).

If the argument is an expression like $2 + 3$
then you must enclose the argument in parentheses.
\spadcommand{e : PrimeField(2 + 3)}
\returnType{Type: Void}

If the type is to be used with package calling
then you must enclose the argument in parentheses.
\spadcommand{content(2)\$Polynomial(Integer)}
$$
2 
$$
\returnType{Type: Integer}

Alternatively, you can write the type without parentheses
then enclose the whole type expression with parentheses.
\spadcommand{content(2)\$(Polynomial Complex Fraction Integer)}
$$
2 
$$
\returnType{Type: Complex Fraction Integer}

If you supply computation target type information 
(See \sectionref{ugTypesPkgCall})
then you should enclose the argument in parentheses.
\spadcommand{(2/3)@Fraction(Polynomial(Integer))}
$$
\frac{2}{3}
$$
\returnType{Type: Fraction Polynomial Integer}

If the type itself has parentheses around it and we are not in the
case of the first example above, then the parentheses can usually be
omitted.
\spadcommand{(2/3)@Fraction(Polynomial Integer)}
$$
\frac{2}{3}
$$
\returnType{Type: Fraction Polynomial Integer}

If the type is used in a declaration and the argument is a single-word
type, integer or symbol, then the parentheses can usually be omitted.
\spadcommand{(d,f,g) : Complex Polynomial Integer}
\returnType{Type: Void}

\subsection{Types with More Than One Argument}
\label{ugTypesWritingMore}

If a constructor \index{type!using parentheses} has more than
\index{parentheses!using with types} one argument, you must use
parentheses.  Some examples are \\

\noindent
{\tt UnivariatePolynomial(x, Float)} \\ 
{\tt MultivariatePolynomial([z,w,r], Complex Float)} \\ 
{\tt SquareMatrix(3, Integer)} \\ 
{\tt FactoredFunctions2(Integer,Fraction Integer)} 

%Original Page 68

\subsection{Modes}
\label{ugTypesWritingModes}

A {\it mode} is a type that possibly is a question mark ({\tt ?}) or
contains one in an argument position.  For example, the following are
all modes.\\

\noindent
{\tt ?} \\
{\tt Polynomial ?} \\
{\tt Matrix Polynomial ?} \\
{\tt SquareMatrix(3,?)} \\
{\tt Integer} \\
{\tt OneDimensionalArray(Float)}

As is evident from these examples, a mode is a type with a part that
is not specified (indicated by a question mark).  Only one ``{\tt ?}'' is
allowed per mode and it must appear in the most deeply nested argument
that is a type. Thus {\tt ?(Integer)}, {\tt Matrix(? (Polynomial))},
{\tt SquareMatrix(?, Integer)} (it requires a numeric argument)
and {\tt SquareMatrix(?, ?)} are all
invalid.  The question mark must take the place of a domain, not data.
This rules out, for example, the two {\tt SquareMatrix} expressions.

Modes can be used for declarations (See \sectionref{ugTypesDeclare})
and conversions (\sectionref{ugTypesConvert}).  However, you
cannot use a mode for package calling or giving target type information.

\subsection{Abbreviations}
\label{ugTypesWritingAbbr}

Every constructor has an abbreviation that
\index{abbreviation!constructor} you can freely
\index{constructor!abbreviation} substitute for the constructor name.
In some cases, the abbreviation is nothing more than the capitalized
version of the constructor name.

\boxer{4.6in}{

Aside from allowing types to be written more concisely, abbreviations
are used by Axiom to name various system files for constructors (such
as library filenames, test input files and example files).  Here are
some common abbreviations.

\begin{center}
\begin{tabular}{ll}
\small{\tt COMPLEX}   abbreviates {\tt Complex}             &
\small{\tt DFLOAT}    abbreviates {\tt DoubleFloat}         \\
\small{\tt EXPR}      abbreviates {\tt Expression}          &
\small{\tt FLOAT}     abbreviates {\tt Float}               \\
\small{\tt FRAC}      abbreviates {\tt Fraction}            &
\small{\tt INT}       abbreviates {\tt Integer}             \\
\small{\tt MATRIX}    abbreviates {\tt Matrix}              &
\small{\tt NNI}       abbreviates {\tt NonNegativeInteger}  \\
\small{\tt PI}        abbreviates {\tt PositiveInteger}     &
\small{\tt POLY}      abbreviates {\tt Polynomial}          \\
\small{\tt STRING}    abbreviates {\tt String}              &
\small{\tt UP}        abbreviates {\tt UnivariatePolynomial}\\
\end{tabular}
\end{center}
\vskip 0.1cm
}

You can combine both full constructor names and abbreviations in a
type expression.  Here are some types using abbreviations.

\begin{center}
\begin{tabular}{rcl}
{\tt POLY INT} & is the same as & {\tt Polynomial(INT)} \\
{\tt POLY(Integer)} & is the same as & {\tt Polynomial(Integer)} \\
{\tt POLY(Integer)} & is the same as & {\tt Polynomial(INT)} \\
{\tt FRAC(COMPLEX(INT))} & is the same as & {\tt Fraction Complex Integer} \\
{\tt FRAC(COMPLEX(INT))} & is the same as & {\tt FRAC(Complex Integer)} 
\end{tabular}
\end{center}

%Original Page 69

There are several ways of finding the names of constructors and their
abbreviations.  For a specific constructor, use {\tt )abbreviation
query}.  \index{abbreviation} You can also use the {\tt )what} system
command to see the names and abbreviations of constructors.
\index{what} For more information about {\tt )what}, see
\sectionref{ugSysCmdwhat}.

{\tt )abbreviation query} can be abbreviated (no pun intended) to 
{\tt )abb q}.
\spadcommand{)abb q Integer}
\begin{verbatim}
   INT abbreviates domain Integer 
\end{verbatim}

The {\tt )abbreviation query} command lists the constructor name if
you give the abbreviation.  Issue {\tt )abb q} if you want to see the
names and abbreviations of all Axiom constructors.  
\spadcommand{)abb q DMP} 
\begin{verbatim}
   DMP abbreviates domain DistributedMultivariatePolynomial 
\end{verbatim}

Issue this to see all packages whose
names contain the string ``ode''.  \index{what packages}
\spadcommand{)what packages ode}
\begin{verbatim}
---------------------- Packages -----------------------

Packages with names matching patterns:
     ode 

 EXPRODE  ExpressionSpaceODESolver     
 FCPAK1   FortranCodePackage1
 GRAY     GrayCode                     
 LODEEF   ElementaryFunctionLODESolver
 NODE1    NonLinearFirstOrderODESolver 
 ODECONST ConstantLODE
 ODEEF    ElementaryFunctionODESolver  
 ODEINT   ODEIntegration
 ODEPAL   PureAlgebraicLODE            
 ODERAT   RationalLODE
 ODERED   ReduceLODE                   
 ODESYS   SystemODESolver
 ODETOOLS ODETools
 UTSODE   UnivariateTaylorSeriesODESolver
 UTSODETL UTSodetools
\end{verbatim}

\section{Declarations}
\label{ugTypesDeclare}

A {\it declaration} is an expression used to restrict the type of
values that can be assigned to variables.  A colon ``{\tt :}'' is always
used after a variable or list of variables to be declared.

%Original Page 70

\boxer{4.6in}{
For a single variable, the syntax for declaration is
\begin{center}
{\it variableName $:$ typeOrMode}
\end{center}

For multiple variables, the syntax is
\begin{center}
{\tt ($\hbox{\it variableName}_{1}$, $\hbox{\it variableName}_{2}$, 
\ldots $\hbox{\it variableName}_{N}$): {\it typeOrMode}}
\end{center}
\vskip 0.1cm
}

You can always combine a declaration with an assignment.  When you do,
it is equivalent to first giving a declaration statement, then giving
an assignment.  For more information on assignment, see
\sectionref{ugIntroAssign} and \sectionref{ugLangAssign}.
To see how to declare your own functions, see \sectionref{ugUserDeclare}.

This declares one variable to have a type.
\spadcommand{a : Integer}
\returnType{Type: Void}

This declares several variables to have a type.
\spadcommand{(b,c) : Integer}
\returnType{Type: Void}

$a$, $b$ and $c$ can only hold integer values.
\spadcommand{a := 45}
$$
45 
$$
\returnType{Type: Integer}

If a value cannot be converted to a declared type,
an error message is displayed.
\spadcommand{b := 4/5}
\begin{verbatim}
 
   Cannot convert right-hand side of assignment
   4
   -
   5

      to an object of the type Integer of the left-hand side.
\end{verbatim}

This declares a variable with a mode.
\spadcommand{n : Complex ?}
\returnType{Type: Void}

This declares several variables with a mode.
\spadcommand{(p,q,r) : Matrix Polynomial ?}
\returnType{Type: Void}

%Original Page 71

This complex object has integer real and imaginary parts.
\spadcommand{n := -36 + 9 * \%i}
$$
-{36}+{9 \  i} 
$$
\returnType{Type: Complex Integer}

This complex object has fractional symbolic real and imaginary parts.
\spadcommand{n := complex(4/(x + y),y/x)}
$$
{\frac{4}{y+x}}+{{\frac{y}{x}} \  i} 
$$
\returnType{Type: Complex Fraction Polynomial Integer}

This matrix has entries that are polynomials with integer
coefficients.
\spadcommand{p := [ [1,2],[3,4],[5,6] ]}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
3 & 4 \\ 
5 & 6 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

This matrix has a single entry that is a polynomial with
rational number coefficients.
\spadcommand{q := [ [x - 2/3] ]}
$$
\left[
\begin{array}{c}
{x -{\frac{2}{3}}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Fraction Integer}

This matrix has entries that are polynomials with complex integer
coefficients.

\spadcommand{r := [ [1-\%i*x,7*y+4*\%i] ]}
$$
\left[
\begin{array}{cc}
{-{i \  x}+1} & {{7 \  y}+{4 \  i}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Complex Integer}

Note the difference between this and the next example.
This is a complex object with polynomial real and imaginary parts.

\spadcommand{f : COMPLEX POLY ? := (x + y*\%i)**2}
$$
-{y \sp 2}+{x \sp 2}+{2 \  x \  y \  i} 
$$
\returnType{Type: Complex Polynomial Integer}

This is a polynomial with complex integer coefficients.  The objects
are convertible from one to the other.  See \sectionref{ugTypesConvert}
for more information.

\spadcommand{g : POLY COMPLEX ? := (x + y*\%i)**2}
$$
-{y \sp 2}+{2 \  i \  x \  y}+{x \sp 2} 
$$
\returnType{Type: Polynomial Complex Integer}

\section{Records}
\label{ugTypesRecords}

A {\tt Record} is an object composed of one or more other objects,
\index{Record} each of which is referenced \index{selector!record}
with \index{record!selector} a {\it selector}.  Components can all
belong to the same type or each can have a different type.

\boxer{4.6in}{
The syntax for writing a {\tt Record} type is \begin{center} {\tt
Record($\hbox{\it selector}_{1}$:$\hbox{\it type}_{1}$,
$\hbox{\it selector}_{2}$:$\hbox{\it type}_{2}$, \ldots,
$\hbox{\it selector}_{N}$:$\hbox{\it type}_{N}$)} \end{center} You must be
careful if a selector has the same name as a variable in the
workspace.  If this occurs, precede the selector name by a single
\index{quote} quote.\\
}

%Original Page 72

Record components are implicitly ordered.  All the components of a
record can be set at once by assigning the record a bracketed {\it
tuple} of values of the proper length. For example:
\spadcommand{r : Record(a:Integer, b: String) := [1, "two"]}  
$$
\left[
{a=1},  {b= \mbox{\tt "two"} } 
\right]
$$
\returnType{Type: Record(a: Integer,b: String)}
To access a component of a record $r$, write the name $r$, followed by
a period, followed by a selector.

The object returned by this computation is a record with two components: a
$quotient$ part and a $remainder$ part.
\spadcommand{u := divide(5,2)}
$$
\left[
{quotient=2},  {remainder=1} 
\right]
$$
\returnType{Type: Record(quotient: Integer,remainder: Integer)}

This is the quotient part.
\spadcommand{u.quotient}
$$
2 
$$
\returnType{Type: PositiveInteger}

This is the remainder part.
\spadcommand{u.remainder}
$$
1 
$$
\returnType{Type: PositiveInteger}

You can use selector expressions on the left-hand side of an assignment
to change destructively the components of a record.
\spadcommand{u.quotient := 8978}
$$
8978 
$$
\returnType{Type: PositiveInteger}

The selected component $quotient$ has the value $8978$, which is what
is returned by the assignment.  Check that the value of $u$ was
modified.
\spadcommand{u}
$$
\left[
{quotient={8978}},  {remainder=1} 
\right]
$$
\returnType{Type: Record(quotient: Integer,remainder: Integer)}

Selectors are evaluated.  Thus you can use variables that evaluate to
selectors instead of the selectors themselves.
\spadcommand{s := 'quotient}
$$
quotient 
$$
\returnType{Type: Variable quotient}

Be careful!  A selector could have the same name as a variable in the
workspace.  If this occurs, precede the selector name by a single
quote, as in $u.'quotient$.  \index{selector!quoting}
\spadcommand{divide(5,2).s}
$$
2 
$$
\returnType{Type: PositiveInteger}

Here we declare that the value of $bd$ has two components: a string,
to be accessed via {\tt name}, and an integer, to be accessed via
{\tt birthdayMonth}.
\spadcommand{bd : Record(name : String, birthdayMonth : Integer)}
\returnType{Type: Void}

You must initially set the value of the entire {\tt Record} at once.
\spadcommand{bd := ["Judith", 3]}
$$
\left[
{name= \mbox{\tt "Judith"} },  {birthdayMonth=3} 
\right]
$$
\returnType{Type: Record(name: String,birthdayMonth: Integer)}

%Original Page 73

Once set, you can change any of the individual components.
\spadcommand{bd.name := "Katie"}
$$
\mbox{\tt "Katie"} 
$$
\returnType{Type: String}

Records may be nested and the selector names can be shared at
different levels.
\spadcommand{r : Record(a : Record(b: Integer, c: Integer), b: Integer)}
\returnType{Type: Void}

The record $r$ has a $b$ selector at two different levels.
Here is an initial value for $r$.
\spadcommand{r := [ [1,2], 3 ]}
$$
\left[
{a={\left[ {b=1},  {c=2} 
\right]}},
 {b=3} 
\right]
$$
\returnType{Type: Record(a: Record(b: Integer,c: Integer),b: Integer)}

This extracts the $b$ component from the $a$ component of $r$.
\spadcommand{r.a.b}
$$
1 
$$
\returnType{Type: PositiveInteger}

This extracts the $b$ component from $r$.
\spadcommand{r.b}
$$
3 
$$
\returnType{Type: PositiveInteger}

You can also use spaces or parentheses to refer to {\tt Record}
components.  This is the same as $r.a$.
\spadcommand{r(a)}
$$
\left[
{b=1},  {c=2} 
\right]
$$
\returnType{Type: Record(b: Integer,c: Integer)}
This is the same as $r.b$.
\spadcommand{r b}
$$
3 
$$
\returnType{Type: PositiveInteger}

This is the same as $r.b := 10$.
\spadcommand{r(b) := 10}
$$
10 
$$
\returnType{Type: PositiveInteger}

Look at $r$ to make sure it was modified.
\spadcommand{r}
$$
\left[
{a={\left[ {b=1},  {c=2} 
\right]}},
 {b={10}} 
\right]
$$
\returnType{Type: Record(a: Record(b: Integer,c: Integer),b: Integer)}

\section{Unions}
\label{ugTypesUnions}

Type {\tt Union} is used for objects that can be of any of a specific
finite set of types.  \index{Union} Two versions of unions are
available, one with selectors (like records) and one without.
\index{union}

%Original Page 74

\subsection{Unions Without Selectors}
\label{ugTypesUnionsWOSel}

The declaration $x : Union(Integer, String, Float)$ states that $x$
can have values that are integers, strings or ``big'' floats.  If, for
example, the {\tt Union} object is an integer, the object is said to
belong to the {\tt Integer} {\it branch} of the {\tt Union}.  Note
that we are being a bit careless with the language here.  Technically,
the type of $x$ is always {\tt Union(Integer, String, Float)}.  If it
belongs to the {\tt Integer} branch, $x$ may be converted to an object
of type {\tt Integer}.

\boxer{4.6in}{
The syntax for writing a {\tt Union} type without selectors is
\begin{center}
{\tt Union($\hbox{\it type}_{1}$, $\hbox{\it type}_{2}$, 
\ldots, $\hbox{\it type}_{N}$)}
\end{center}
The types in a union without selectors must be distinct.\\
}

It is possible to create unions like {\tt Union(Integer, PositiveInteger)} 
but they are difficult to work with because of the overlap in the branch 
types.  See below for the rules Axiom uses for converting something into 
a union object.

The {\tt case} infix \index{case} operator returns a {\tt Boolean} and can
be used to determine the branch in which an object lies.

This function displays a message stating in which branch of the 
{\tt Union} the object (defined as $x$ above) lies.

\begin{verbatim}
sayBranch(x : Union(Integer,String,Float)) : Void  ==
  output
    x case Integer => "Integer branch"
    x case String  => "String branch"
    "Float branch"
\end{verbatim}

This tries {\bf sayBranch} with an integer.
\spadcommand{sayBranch 1}
\begin{verbatim}
Compiling function sayBranch with type Union(Integer,String,Float)
    -> Void 
 Integer branch
\end{verbatim}
\returnType{Type: Void}

This tries {\bf sayBranch} with a string.
\spadcommand{sayBranch "hello"}
\begin{verbatim}
   String branch
\end{verbatim}
\returnType{Type: Void}

This tries {\bf sayBranch} with a floating-point number.
\spadcommand{sayBranch 2.718281828}
\begin{verbatim}
   Float branch
\end{verbatim}
\returnType{Type: Void}

%Original Page 75

There are two things of interest about this particular
example to which we would like to draw your attention.
\begin{enumerate}
\item Axiom normally converts a result to the target value
before passing it to the function.
If we left the declaration information out of this function definition
then the {\bf sayBranch} call would have been attempted with an
{\tt Integer} rather than a {\tt Union}, and an error would have
resulted.
\item The types in a {\tt Union} are searched in the order given.
So if the type were given as

%\noindent
{\tt sayBranch(x: Union(String,Integer,Float,Any)): Void}

then the result would have been ``String branch'' because there
is a conversion from {\tt Integer} to {\tt String}.
\end{enumerate}

Sometimes {\tt Union} types can have extremely long names.  Axiom
therefore abbreviates the names of unions by printing the type of the
branch first within the {\tt Union} and then eliding the remaining
types with an ellipsis ({\tt ...}).

Here the {\tt Integer} branch is displayed first.  Use ``{\tt ::}'' to
create a {\tt Union} object from an object.
\spadcommand{78 :: Union(Integer,String)}
$$
78 
$$
\returnType{Type: Union(Integer,...)}

Here the {\tt String} branch is displayed first.
\spadcommand{s := "string" :: Union(Integer,String)}
$$
\mbox{\tt "string"} 
$$
\returnType{Type: Union(String,...)}

Use {\tt typeOf} to see the full and actual {\tt Union} type. \index{typeOf}
\spadcommand{typeOf s}
$$
Union(Integer,String) 
$$
\returnType{Type: Domain}

A common operation that returns a union is \spadfunFrom{exquo}{Integer}
which returns the ``exact quotient'' if the quotient is exact,
\spadcommand{three := exquo(6,2)}
$$
3 
$$
\returnType{Type: Union(Integer,...)}

and {\tt "failed"} if the quotient is not exact.
\spadcommand{exquo(5,2)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

A union with a {\tt "failed"} is frequently used to indicate the failure
or lack of applicability of an object.  As another example, assign an
integer a variable $r$ declared to be a rational number.
\spadcommand{r: FRAC INT := 3}
$$
3 
$$
\returnType{Type: Fraction Integer}

The operation \spadfunFrom{retractIfCan}{Fraction} tries to retract
the fraction to the underlying domain {\tt Integer}.  It produces a
union object.  Here it succeeds.
\spadcommand{retractIfCan(r)}
$$
3 
$$
\returnType{Type: Union(Integer,...)}

%Original Page 76

Assign it a rational number.
\spadcommand{r := 3/2}
$$
\frac{3}{2}
$$
\returnType{Type: Fraction Integer}

Here the retraction fails.
\spadcommand{retractIfCan(r)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

\subsection{Unions With Selectors}
\label{ugTypesUnionsWSel}

Like records (\sectionref{ugTypesRecords}), 
you can write {\tt Union} types \index{selector!union} with selectors.
\index{union!selector}

\boxer{4.6in}{
The syntax for writing a {\tt Union} type with selectors is
\begin{center}
{\tt Union($\hbox{\it selector}_{1}$:$\hbox{\it type}_{1}$, 
$\hbox{\it selector}_{2}$:$\hbox{\it type}_{2}$, \ldots, 
$\hbox{\it selector}_{N}$:$\hbox{\it type}_{N}$)}
\end{center}
You must be careful if a selector has the same name as a variable in
the workspace.  If this occurs, precede the selector name by a single
\index{quote} quote.  \index{selector!quoting} It is an error to use a
selector that does not correspond to the branch of the {\tt Union} in
which the element actually lies.  \\
}

Be sure to understand the difference between records and unions with
selectors.  \index{union!difference from record} Records can have more
than one component and the selectors are used to refer to the
components.  \index{record!difference from union} Unions always have
one component but the type of that one component can vary.  An object
of type {\tt Record(a: Integer, b: Float, c: String)} contains an
integer {\it and} a float {\it and} a string.  An object of type 
{\tt Union(a: Integer, b: Float, c: String)} contains an integer 
{\it or} a float {\it or} a string.

Here is a version of the {\bf sayBranch} function (cf.
\sectionref{ugTypesUnionsWOSel}) that
works with a union with selectors.  It displays a message stating in
which branch of the {\tt Union} the object lies.

\begin{verbatim}
sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
  output
    x case i => "Integer branch"
    x case s  => "String branch"
    "Float branch"
\end{verbatim}

Note that {\tt case} uses the selector name as its right-hand argument.
\index{case} If you accidentally use the branch type on the right-hand
side of {\tt case}, {\tt false} will be returned.

%Original Page 77

Declare variable $u$ to have a union type with selectors.
\spadcommand{u : Union(i : Integer, s : String)}
\returnType{Type: Void}

Give an initial value to $u$.
\spadcommand{u := "good morning"}
$$
\mbox{\tt "good morning"} 
$$
\returnType{Type: Union(s: String,...)}

Use $case$ to determine in which branch of a {\tt Union} an object lies.
\spadcommand{u case i}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{u case s}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

To access the element in a particular branch, use the selector.
\spadcommand{u.s}
$$
\mbox{\tt "good morning"} 
$$
\returnType{Type: String}

\section{The ``Any'' Domain}
\label{ugTypesAnyNone}

With the exception of objects of type {\tt Record}, all Axiom data
structures are homogenous, that is, they hold objects all of the same
type.  \index{Any} If you need to get around this, you can use type
{\tt Any}.  Using {\tt Any}, for example, you can create lists whose
elements are integers, rational numbers, strings, and even other
lists.

Declare $u$ to have type {\tt Any}.
\spadcommand{u: Any}
\returnType{Type: Void}

Assign a list of mixed type values to $u$
\spadcommand{u := [1, 7.2, 3/2, x**2, "wally"]}
$$
\left[
1,  {7.2},  {\frac{3}{2}},  {x \sp 2},  \mbox{\tt "wally"} 
\right]
$$
\returnType{Type: List Any}

When we ask for the elements, Axiom displays these types.
\spadcommand{u.1}
$$
1 
$$
\returnType{Type: PositiveInteger}

Actually, these objects belong to {\tt Any} but Axiom
automatically converts them to their natural types for you.
\spadcommand{u.3}
$$
\frac{3}{2}
$$
\returnType{Type: Fraction Integer}

%Original Page 78

Since type {\tt Any} can be anything, it can only belong to type 
{\tt Type}.  Therefore it cannot be used in algebraic domains.
\spadcommand{v : Matrix(Any)}
\begin{verbatim}
   Matrix Any is not a valid type.
\end{verbatim}

Perhaps you are wondering how Axiom internally represents objects of
type {\tt Any}.  An object of type {\tt Any} consists not only a data
part representing its normal value, but also a type part (a 
{\it badge}) giving \index{badge} its type.  For example, the value $1$ of
type {\tt PositiveInteger} as an object of type {\tt Any} internally
looks like $[1,{\tt PositiveInteger()}]$.

When should you use {\tt Any} instead of a {\tt Union} type?  For a
{\tt Union}, you must know in advance exactly which types you are
going to
allow.  For {\tt Any}, anything that comes along can be accommodated.

\section{Conversion}
\label{ugTypesConvert}

\boxer{4.6in}{
Conversion is the process of changing an object of one type into an
object of another type.  The syntax for conversion is:
$$
{\it object} {\tt ::} {\it newType}
$$
}

By default, $3$ has the type {\tt PositiveInteger}.
\spadcommand{3}
$$
3 
$$
\returnType{Type: PositiveInteger}

We can change this into an object of type {\tt Fraction Integer}
by using ``{\tt ::}''.
\spadcommand{3 :: Fraction Integer}
$$
3 
$$
\returnType{Type: Fraction Integer}

A {\it coercion} is a special kind of conversion that Axiom is allowed
to do automatically when you enter an expression.  Coercions are
usually somewhat safer than more general conversions.  The Axiom
library contains operations called {\bf coerce} and {\bf convert}.
Only the {\bf coerce} operations can be used by the interpreter to
change an object into an object of another type unless you explicitly
use a {\tt ::}.

By now you will be quite familiar with what types and modes look like.
It is useful to think of a type or mode as a pattern for what you want
the result to be.

Let's start with a square matrix of polynomials with complex rational
number coefficients. \index{SquareMatrix}
\spadcommand{m : SquareMatrix(2,POLY COMPLEX FRAC INT)}
\returnType{Type: Void}

%Original Page 79

\spadcommand{m := matrix [ [x-3/4*\%i,z*y**2+1/2],[3/7*\%i*y**4 - x,12-\%i*9/5] ]}
$$
\left[
\begin{array}{cc}
{x -{{\frac{3}{4}} \  i}} & {{{y \sp 2} \  z}+{\frac{1}{2}}} \\ 
{{{\frac{3}{7}} \  i \  {y \sp 4}} -x} & {{12} -{{\frac{9}{5}} \  i}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Polynomial Complex Fraction Integer)}

We first want to interchange the {\tt Complex} and {\tt Fraction}
layers.  We do the conversion by doing the interchange in the type
expression.
\spadcommand{m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)}
$$
\left[
\begin{array}{cc}
{x -{\frac{3 \  i}{4}}} & {{{y \sp 2} \  z}+{\frac{1}{2}}} \\ 
{{{\frac{3 \  i}{7}} \  {y \sp 4}} -x} & {\frac{{60} -{9 \  i}}{5}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Polynomial Fraction Complex Integer)}

Interchange the {\tt Polynomial} and the {\tt Fraction} levels.
\spadcommand{m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)}
$$
\left[
\begin{array}{cc}
{\frac{{4 \  x} -{3 \  i}}{4}} & {\frac{{2 \  {y \sp 2} \  z}+1}{2}} \\ 
{\frac{{3 \  i \  {y \sp 4}} -{7 \  x}}{7}} & {\frac{{60} -{9 \  i}}{5}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Polynomial Complex Integer)}

Interchange the {\tt Polynomial} and the {\tt Complex} levels.
\spadcommand{m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)}
$$
\left[
\begin{array}{cc}
{\frac{{4 \  x} -{3 \  i}}{4}} & {\frac{{2 \  {y \sp 2} \  z}+1}{2}} \\ 
{\frac{-{7 \  x}+{3 \  {y \sp 4} \  i}}{7}} & {\frac{{60} -{9 \  i}}{5}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Complex Polynomial Integer)}

All the entries have changed types, although in comparing the
last two results only the entry in the lower left corner looks different.
We did all the intermediate steps to show you what Axiom can do.

In fact, we could have combined all these into one conversion.
\spadcommand{m :: SquareMatrix(2,FRAC COMPLEX POLY INT)}
$$
\left[
\begin{array}{cc}
{\frac{{4 \  x} -{3 \  i}}{4}} & {\frac{{2 \  {y \sp 2} \  z}+1}{2}} \\ 
{\frac{-{7 \  x}+{3 \  {y \sp 4} \  i}}{7}} & {\frac{{60} -{9 \  i}}{5}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Complex Polynomial Integer)}

There are times when Axiom is not be able to do the conversion in one
step.  You may need to break up the transformation into several
conversions in order to get an object of the desired type.

We cannot move either {\tt Fraction} or {\tt Complex} above (or to the
left of, depending on how you look at it) {\tt SquareMatrix} because
each of these levels requires that its argument type have commutative
multiplication, whereas {\tt SquareMatrix} does not. That is because
{\tt Fraction} requires that its argument belong to the category 
{\tt IntegralDomain} and \index{category} {\tt Complex} requires that its
argument belong to {\tt CommutativeRing}. 
See \sectionref{ugTypesBasic} for a
brief discussion of categories. The {\tt Integer} level did not move
anywhere because it does not allow any arguments.  We also did not
move the {\tt SquareMatrix} part anywhere, but we could have.

%Original Page 80

Recall that $m$ looks like this.

\spadcommand{m}
$$
\left[
\begin{array}{cc}
{x -{{\frac{3}{4}} \  i}} & {{{y \sp 2} \  z}+{\frac{1}{2}}} \\ 
{{{\frac{3}{7}} \  i \  {y \sp 4}} -x} & {{12} -{{\frac{9}{5}} \  i}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Polynomial Complex Fraction Integer)}

If we want a polynomial with matrix coefficients rather than a matrix
with polynomial entries, we can just do the conversion.

\spadcommand{m :: POLY SquareMatrix(2,COMPLEX FRAC INT)}
$$
{{\left[ 
\begin{array}{cc}
0 & 1 \\ 
0 & 0 
\end{array}
\right]}
\  {y \sp 2} \  z}
+{{\left[ 
\begin{array}{cc}
0 & 0 \\ 
{{\frac{3}{7}} \  i} & 0 
\end{array}
\right]}
\  {y \sp 4}}
+{{\left[ 
\begin{array}{cc}
1 & 0 \\ 
-1 & 0 
\end{array}
\right]}
\  x}+{\left[ 
\begin{array}{cc}
-{{\frac{3}{4}} \  i} & {\frac{1}{2}} \\ 
0 & {{12} -{{\frac{9}{5}} \  i}} 
\end{array}
\right]}
$$
\returnType{Type: Polynomial SquareMatrix(2,Complex Fraction Integer)}

We have not yet used modes for any conversions.  Modes are a great
shorthand for indicating the type of the object you want.  Instead of
using the long type expression in the last example, we could have
simply said this.

\spadcommand{m :: POLY ?}
$$
{{\left[ 
\begin{array}{cc}
0 & 1 \\ 
0 & 0 
\end{array}
\right]}
\  {y \sp 2} \  z}+{{\left[ 
\begin{array}{cc}
0 & 0 \\ 
{{\frac{3}{7}} \  i} & 0 
\end{array}
\right]}
\  {y \sp 4}}+{{\left[ 
\begin{array}{cc}
1 & 0 \\ 
-1 & 0 
\end{array}
\right]}
\  x}+{\left[ 
\begin{array}{cc}
-{{\frac{3}{4}} \  i} & {\frac{1}{2}} \\ 
0 & {{12} -{{\frac{9}{5}} \  i}} 
\end{array}
\right]}
$$
\returnType{Type: Polynomial SquareMatrix(2,Complex Fraction Integer)}

We can also indicate more structure if we want the entries of the
matrices to be fractions.

\spadcommand{m :: POLY SquareMatrix(2,FRAC ?)}
$$
{{\left[ 
\begin{array}{cc}
0 & 1 \\ 
0 & 0 
\end{array}
\right]}
\  {y \sp 2} \  z}+{{\left[ 
\begin{array}{cc}
0 & 0 \\ 
{\frac{3 \  i}{7}} & 0 
\end{array}
\right]}
\  {y \sp 4}}+{{\left[ 
\begin{array}{cc}
1 & 0 \\ 
-1 & 0 
\end{array}
\right]}
\  x}+{\left[ 
\begin{array}{cc}
-{\frac{3 \  i}{4}} & {\frac{1}{2}} \\ 
0 & {\frac{{60} -{9 \  i}}{5}} 
\end{array}
\right]}
$$
\returnType{Type: Polynomial SquareMatrix(2,Fraction Complex Integer)}

\section{Subdomains Again}
\label{ugTypesSubdomains}

A {\it subdomain} {\rm S} of a domain {\rm D} is a domain consisting of
\begin{enumerate} 
\item those elements of {\rm D} that satisfy some 
{\it predicate} (that is, a test that returns {\tt true} or {\tt false}) and 
\item a subset of the operations of {\rm D}.  
\end{enumerate} 
Every domain is a subdomain of itself, trivially satisfying the
membership test: {\tt true}.

%Original Page 81

Currently, there are only two system-defined subdomains in Axiom that
receive substantial use.  {\tt PositiveInteger} and 
{\tt NonNegativeInteger} are subdomains of {\tt Integer}.  An element $x$
of {\tt NonNegativeInteger} is an integer that is greater than or
equal to zero, that is, satisfies $x >= 0$.  An element $x$ of 
{\tt PositiveInteger} is a nonnegative integer that is, in fact, greater
than zero, that is, satisfies $x > 0$.  Not all operations from 
{\tt Integer} are available for these subdomains.  For example, negation
and subtraction are not provided since the subdomains are not closed
under those operations.  When you use an integer in an expression,
Axiom assigns to it the type that is the most specific subdomain whose
predicate is satisfied.

This is a positive integer.
\spadcommand{5}
$$
5 
$$
\returnType{Type: PositiveInteger}

This is a nonnegative integer.
\spadcommand{0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

This is neither of the above.
\spadcommand{-5}
$$
-5 
$$
\returnType{Type: Integer}

Furthermore, unless you are assigning an integer to a declared variable
or using a conversion, any integer result has as type the most
specific subdomain.
\spadcommand{(-2) - (-3)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{0 :: Integer}
$$
0 
$$
\returnType{Type: Integer}

\spadcommand{x : NonNegativeInteger := 5}
$$
5 
$$
\returnType{Type: NonNegativeInteger}

When necessary, Axiom converts an integer object into one belonging to
a less specific subdomain.  For example, in $3-2$, the arguments to
\spadopFrom{-}{Integer} are both elements of {\tt PositiveInteger},
but this type does not provide a subtraction operation.  Neither does
{\tt NonNegativeInteger}, so $3$ and $2$ are viewed as elements of
{\tt Integer}, where their difference can be calculated.  The result
is $1$, which Axiom then automatically assigns the type 
{\tt PositiveInteger}.

Certain operations are very sensitive to the subdomains to which their
arguments belong.  This is an element of {\tt PositiveInteger}.
\spadcommand{2 ** 2}
$$
4 
$$
\returnType{Type: PositiveInteger}

%Original Page 82

This is an element of {\tt Fraction Integer}.
\spadcommand{2 ** (-2)}
$$
\frac{1}{4}
$$
\returnType{Type: Fraction Integer}

It makes sense then that this is a list of elements of {\tt
PositiveInteger}.
\spadcommand{[10**i for i in 2..5]}
$$
\left[
{100},  {1000},  {10000},  {100000} 
\right]
$$
\returnType{Type: List PositiveInteger}

What should the type of {\tt [10**(i-1) for i in 2..5]} be?  On one hand,
$i-1$ is always an integer greater than zero as $i$ ranges from $2$ to
$5$ and so $10**i$ is also always a positive integer.  On the other,
$i-1$ is a very simple function of $i$.  Axiom does not try to analyze
every such function over the index's range of values to determine
whether it is always positive or nowhere negative.  For an arbitrary
Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.
\spadcommand{[10**(i-1) for i in 2..5]}
$$
\left[
{10},  {100},  {1000},  {10000} 
\right]
$$
\returnType{Type: List Fraction Integer}

To get a list of elements of {\tt PositiveInteger} instead, you have
two choices.  You can use a conversion.

\spadcommand{[10**((i-1) :: PI) for i in 2..5]}
\begin{verbatim}
Compiling function G82696 with type Integer -> Boolean 
Compiling function G82708 with type NonNegativeInteger -> Boolean 
\end{verbatim}
$$
\left[
{10},  {100},  {1000},  {10000} 
\right]
$$
\returnType{Type: List PositiveInteger}

Or you can use {\tt pretend}.  \index{pretend}
\spadcommand{[10**((i-1) pretend PI) for i in 2..5]}
$$
\left[
{10},  {100},  {1000},  {10000} 
\right]
$$
\returnType{Type: List PositiveInteger}

The operation {\tt pretend} is used to defeat the Axiom type system.
The expression {\tt object pretend D} means ``make a new object
(without copying) of type {\tt D} from {\tt object}.''  If 
{\tt object} were an integer and you told Axiom to pretend it was a list,
you would probably see a message about a fatal error being caught and
memory possibly being damaged.  Lists do not have the same internal
representation as integers!

You use {\tt pretend} at your peril.  \index{peril}

Use $pretend$ with great care!  Axiom trusts you that the value is of
the specified type.

\spadcommand{(2/3) pretend Complex Integer}
$$
2+{3 \  i} 
$$
\returnType{Type: Complex Integer}

%Original Page 83

\section{Package Calling and Target Types}
\label{ugTypesPkgCall}

Axiom works hard to figure out what you mean by an expression without
your having to qualify it with type information.  Nevertheless, there
are times when you need to help it along by providing hints (or even
orders!) to get Axiom to do what you want.

We saw in \sectionref{ugTypesDeclare} that
declarations using types and modes control the type of the results
produced.  For example, we can either produce a complex object with
polynomial real and imaginary parts or a polynomial with complex
integer coefficients, depending on the declaration.

Package calling is how you tell Axiom to use a particular function
from a particular part of the library.

Use the \spadopFrom{/}{Fraction} from {\tt Fraction Integer} to create
a fraction of two integers.
\spadcommand{2/3}
$$
\frac{2}{3}
$$
\returnType{Type: Fraction Integer}

If we wanted a floating point number, we can say ``use the
\spadopFrom{/}{Float} in {\tt Float}.''
\spadcommand{(2/3)\$Float}
$$
0.6666666666 6666666667 
$$
\returnType{Type: Float}

Perhaps we actually wanted a fraction of complex integers.
\spadcommand{(2/3)\$Fraction(Complex Integer)}
$$
\frac{2}{3}
$$
\returnType{Type: Fraction Complex Integer}

In each case, Axiom used the indicated operations, sometimes first
needing to convert the two integers into objects of the appropriate type.
In these examples, ``/'' is written as an infix operator.

\boxer{4.6in}{
To use package calling with an infix operator, use the following syntax:
$$(\ arg_1{\rm \ op\ }arg_2\ )\$type$$
} 

We used, for example, $(2/3)\${\rm Float}$. The expression $2+3+4$
is equivalent to $(2+3)+4$. Therefore in the expression 
$(2+3+4)\${\rm Float}$ the second ``+'' comes from the {\rm Float}
domain. The first ``+'' comes from {\rm Float} because the package
call causes Axiom to convert $(2+3)$ and $4$ to type
{\rm Float}. Before the sum is converted, it is given a target type
of {\rm Float} by Axiom and then evaluated. The target type causes the
``+'' from {\tt Float} to be used.

%Original Page 84

\boxer{4.6in}{
For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a ``\$'' and then the type.
$$ fun\ (\ arg_1, arg_2, \ldots, arg_N\ )\$type$$
}

For example, to call the ``minimum'' function from {\rm DoubleFloat} on two
integers, you could write {\bf min}(4,89){\tt \$DoubleFloat}. Another use of
package calling is to tell Axiom to use a library function rather than a
function you defined. We discuss this in \sectionref{ugUserUse}.

Sometimes rather than specifying where an operation comes from, you
just want to say what type the result should be. We say that you provide a
{\sl target type} for the expression. Instead of using a ``\$'', use a ``@''
to specify the requested target type. Otherwise, the syntax is the same.
Note that giving a target type is not the same as explicitly doing a
conversion. The first says ``try to pick operations so that the result has
such-and-such a type.'' The second says ``compute the result and then convert
to an object of such-and-such a type.''

Sometimes it makes sense, as in this expression, to say ``choose the 
operations in this expression so that the final result is {\rm Float}.
\spadcommand{(2/3)@Float}
$$
0.6666666666 6666666667 
$$
\returnType{Type: Float}

Here we used ``{\tt @}'' to say that the target type of the left-hand side
was {\tt Float}.  In this simple case, there was no real difference
between using ``{\tt \$}'' and ``{\tt @}''.  
You can see the difference if you try the following.

This says to try to choose ``{\tt +}'' so that the result is a string.
Axiom cannot do this.
\spadcommand{(2 + 3)@String}
\begin{verbatim} 
An expression involving @ String actually evaluated to one of 
   type PositiveInteger . Perhaps you should use :: String .
\end{verbatim}

This says to get the {\tt +} from {\tt String} and apply it to the two
integers.  Axiom also cannot do this because there is no {\tt +}
exported by {\tt String}.
\spadcommand{(2 + 3)\$String}
\begin{verbatim}
   The function + is not implemented in String .
\end{verbatim}

The operation \spadfunFrom{concat}{String}
is used to concatenate two strings. One can also concatenate strings
by juxtaposition. For instance, by writing
\begin{verbatim}
   "asdf" "jkl"
\end{verbatim}
\index{String}

When we have more than one operation in an expression, the difference
is even more evident.  The following two expressions show that Axiom
uses the target type to create different objects.  
The ``{\tt +}'', ``{\tt *}'' and ``{\tt **}'' operations are all 
chosen so that an object of the correct final type is created.

%Original Page 85

This says that the operations should be chosen so that the result is a
{\tt Complex} object.
\spadcommand{((x + y * \%i)**2)@(Complex Polynomial Integer)}
$$
-{y \sp 2}+{x \sp 2}+{2 \  x \  y \  i} 
$$
\returnType{Type: Complex Polynomial Integer}

This says that the operations should be chosen so that the result is a
{\tt Polynomial} object.
\spadcommand{((x + y * \%i)**2)@(Polynomial Complex Integer)}
$$
-{y \sp 2}+{2 \  i \  x \  y}+{x \sp 2} 
$$
\returnType{Type: Polynomial Complex Integer}

What do you think might happen if we left off all target type and
package call information in this last example?
\spadcommand{(x + y * \%i)**2}
$$
-{y \sp 2}+{2 \  i \  x \  y}+{x \sp 2} 
$$
\returnType{Type: Polynomial Complex Integer}

We can convert it to {\tt Complex} as an afterthought.  But this is
more work than just saying making what we want in the first place.
\spadcommand{\% :: Complex ?}
$$
-{y \sp 2}+{x \sp 2}+{2 \  x \  y \  i} 
$$
\returnType{Type: Complex Polynomial Integer}

Finally, another use of package calling is to qualify fully an
operation that is passed as an argument to a function.

Start with a small matrix of integers.
\spadcommand{h := matrix [ [8,6],[-4,9] ]}
$$
\left[
\begin{array}{cc}
8 & 6 \\ 
-4 & 9 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

We want to produce a new matrix that has for entries the
multiplicative inverses of the entries of $h$.  One way to do this is
by calling \spadfunFrom{map}{MatrixCategoryFunctions2} with the
\spadfunFrom{inv}{Fraction} function from {\tt Fraction (Integer)}.

\spadcommand{map(inv\$Fraction(Integer),h)}
$$
\left[
\begin{array}{cc}
{\frac{1}{8}} & {\frac{1}{6}} \\ 
-{\frac{1}{4}} & {\frac{1}{9}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

We could have been a bit less verbose and used abbreviations.
\spadcommand{map(inv\$FRAC(INT),h)}
$$
\left[
\begin{array}{cc}
{\frac{1}{8}} & {\frac{1}{6}} \\ 
-{\frac{1}{4}} & {\frac{1}{9}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

As it turns out, Axiom is smart enough to know what we mean anyway.
We can just say this.
\spadcommand{map(inv,h)}
$$
\left[
\begin{array}{cc}
{\frac{1}{8}} & {\frac{1}{6}} \\ 
-{\frac{1}{4}} & {\frac{1}{9}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

%Original Page 86

\section{Resolving Types}
\label{ugTypesResolve}

In this section we briefly describe an internal process by which
\index{resolve} Axiom determines a type to which two objects of
possibly different types can be converted.  We do this to give you
further insight into how Axiom takes your input, analyzes it, and
produces a result.

What happens when you enter $x + 1$ to Axiom?  Let's look at what you
get from the two terms of this expression.

This is a symbolic object whose type indicates the name.
\spadcommand{x}
$$
x 
$$
\returnType{Type: Variable x}

This is a positive integer.
\spadcommand{1}
$$
1 
$$
\returnType{Type: PositiveInteger}

There are no operations in {\tt PositiveInteger} that add positive
integers to objects of type {\tt Variable(x)} nor are there any in
{\tt Variable(x)}.  Before it can add the two parts, Axiom must come
up with a common type to which both $x$ and $1$ can be converted.  We
say that Axiom must {\it resolve} the two types into a common type.
In this example, the common type is {\tt Polynomial(Integer)}.

Once this is determined, both parts are converted into polynomials,
and the addition operation from {\tt Polynomial(Integer)} is used to
get the answer.
\spadcommand{x + 1}
$$
x+1 
$$
\returnType{Type: Polynomial Integer}

Axiom can always resolve two types: if nothing resembling the original
types can be found, then {\tt Any} is be used.  \index{Any} This is
fine and useful in some cases.

\spadcommand{["string",3.14159]}
$$
\left[
\mbox{\tt "string"} ,  {3.14159} 
\right]
$$
\returnType{Type: List Any}

In other cases objects of type {\tt Any} can't be used by the
operations you specified.
\spadcommand{"string" + 3.14159}
\begin{verbatim}
There are 11 exposed and 5 unexposed library operations named + 
  having 2 argument(s) but none was determined to be applicable. 
  Use HyperDoc Browse, or issue
                            )display op +
  to learn more about the available operations. Perhaps 
  package-calling the operation or using coercions on the 
  arguments will allow you to apply the operation.
 
Cannot find a definition or applicable library operation named + 
  with argument type(s) 
                               String
                                Float
      
  Perhaps you should use "@" to indicate the required return type, 
  or "$" to specify which version of the function you need.
\end{verbatim}

Although this example was contrived, your expressions may need to be
qualified slightly to help Axiom resolve the types involved.  You may
need to declare a few variables, do some package calling, provide some
target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and
see what Axiom does.  We think you will be impressed with its ability
to ``do what I mean.''  If Axiom is still being obtuse, give it some
hints.  As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

%Original Page 87

\section{Exposing Domains and Packages}
\label{ugTypesExpose}

In this section we discuss how Axiom makes some operations available
to you while hiding others that are meant to be used by developers or
only in rare cases.  If you are a new user of Axiom, it is likely that
everything you need is available by default and you may want to skip
over this section on first reading.

Every \index{constructor!exposed} domain and package in the Axiom
library \index{constructor!hidden} is \index{exposed!constructor}
either exposed (meaning that you can use its operations without doing
anything special) or it is {\it hidden} (meaning you have to either
package call (see \sectionref{ugTypesPkgCall})
the operations it contains or
explicitly expose it to use the operations).  The initial exposure
status for a constructor is set in the file {\bf exposed.lsp} (see the
{\it Installer's Note} \index{exposed.lsp @{\bf exposed.lsp}} for
Axiom \index{file!exposed.lsp @{\bf exposed.lsp}} if you need to know
the location of this file).  Constructors are collected together in
\index{group!exposure} {\it exposure groups}.  \index{exposure!group}
Categories are all in the exposure group ``categories'' and the bulk
of the basic set of packages and domains that are exposed are in the
exposure group ``basic.''  Here is an abbreviated sample of the file
(without the Lisp parentheses):

\begin{verbatim}
basic
        AlgebraicNumber                          AN
        AlgebraGivenByStructuralConstants        ALGSC
        Any                                      ANY
        AnyFunctions1                            ANY1
        BinaryExpansion                          BINARY
        Boolean                                  BOOLEAN
        CardinalNumber                           CARD
        CartesianTensor                          CARTEN
        Character                                CHAR
        CharacterClass                           CCLASS
        CliffordAlgebra                          CLIF
        Color                                    COLOR
        Complex                                  COMPLEX
        ContinuedFraction                        CONTFRAC
        DecimalExpansion                         DECIMAL
        ...
\end{verbatim}
\begin{verbatim}
categories
        AbelianGroup                             ABELGRP
        AbelianMonoid                            ABELMON
        AbelianMonoidRing                        AMR
        AbelianSemiGroup                         ABELSG
        Aggregate                                AGG
        Algebra                                  ALGEBRA
        AlgebraicallyClosedField                 ACF
        AlgebraicallyClosedFunctionSpace         ACFS
        ArcHyperbolicFunctionCategory            AHYP
        ...
\end{verbatim}

%Original Page 88

For each constructor in a group, the full name and the abbreviation is
given.  There are other groups in {\bf exposed.lsp} but initially only
the constructors in exposure groups ``basic'' ``categories''
``naglink'' and ``anna'' are exposed.

As an interactive user of Axiom, you do not need to modify this file.
Instead, use {\tt )set expose} to expose, hide or query the exposure
status of an individual constructor or exposure group. \index{set expose} 
The reason for having exposure groups is to be able to expose
or hide multiple constructors with a single command.  For example, you
might group together into exposure group ``quantum'' a number of
domains and packages useful for quantum mechanical computations.
These probably should not be available to every user, but you want an
easy way to make the whole collection visible to Axiom when it is
looking for operations to apply.

If you wanted to hide all the basic constructors available by default,
you would issue {\tt )set expose drop group basic}.  
\index{set expose drop group} We do not recommend that you do this.  
If, however, you discover that you have hidden all the basic constructors, 
you should issue {\tt )set expose add group basic} to restore your default
environment.  \index{set expose add group}

It is more likely that you would want to expose or hide individual
constructors.  In \sectionref{ugUserTriangle}
we use several operations from 
{\tt OutputForm}, a domain usually hidden.  To avoid package calling every
operation from {\tt OutputForm}, we expose the domain and let Axiom
conclude that those operations should be used.  Use {\tt )set expose
add constructor} and {\tt )set expose drop constructor} to expose and
hide a constructor, respectively.  \index{set expose drop constructor}
You should use the constructor name, not the abbreviation.  The 
{\tt )set expose} command guides you through these options.  
\index{set expose add constructor}

If you expose a previously hidden constructor, Axiom exhibits new
behavior (that was your intention) though you might not expect the
results that you get.  {\tt OutputForm} is, in fact, one of the worst
offenders in this regard.  \index{OutputForm} This domain is meant to
be used by other domains for creating a structure that Axiom knows how
to display.  It has functions like \spadopFrom{+}{OutputForm} that
form output representations rather than do mathematical calculations.
Because of the order in which Axiom looks at constructors when it is
deciding what operation to apply, {\tt OutputForm} might be used
instead of what you expect.

This is a polynomial.
\spadcommand{x + x}
$$
2 \  x 
$$
\returnType{Type: Polynomial Integer}

%Original Page 89

Expose {\tt OutputForm}.
\spadcommand{)set expose add constructor OutputForm }
\begin{verbatim}
   OutputForm is now explicitly exposed in frame G82322 
\end{verbatim}

This is what we get when {\tt OutputForm} is automatically available.
\spadcommand{x + x}
$$
x+x 
$$
\returnType{Type: OutputForm}

Hide {\tt OutputForm} so we don't run into problems with any later examples!
\spadcommand{)set expose drop constructor OutputForm }
\begin{verbatim}
   OutputForm is now explicitly hidden in frame G82322 
\end{verbatim}

Finally, exposure is done on a frame-by-frame basis.  A {\it frame}
(see \sectionref{ugSysCmdframe})
\index{frame!exposure and} is one of possibly several logical Axiom
workspaces within a physical one, each having its own environment (for
example, variables and function definitions).  If you have several
Axiom workspace windows on your screen, they are all different frames,
automatically created for you by HyperDoc.  Frames can be manually
created, made active and destroyed by the {\tt )frame} system command.
\index{frame} They do not share exposure information, so you need to
use {\tt )set expose} in each one to add or drop constructors from
view.

\section{Commands for Snooping}
\label{ugAvailSnoop}

To conclude this chapter, we introduce you to some system commands
that you can use for getting more information about domains, packages,
categories, and operations.  The most powerful Axiom facility for
getting information about constructors and operations is the Browse
component of HyperDoc.  This is discussed in \sectionref{ugBrowse}.

Use the {\tt )what} system command to see lists of system objects
whose name contain a particular substring (uppercase or lowercase is
not significant).  \index{what}

Issue this to see a list of all operations with ``{\tt complex}'' in
their names.  \index{what operation}
\spadcommand{)what operation complex}
\begin{verbatim}

Operations whose names satisfy the above pattern(s):

complex                   complex?                          
complexEigenvalues        complexEigenvectors               
complexElementary         complexExpand                     
complexForm               complexIntegrate                  
complexLimit              complexNormalize                  
complexNumeric            complexNumericIfCan               
complexRoots              complexSolve                      
complexZeros              createLowComplexityNormalBasis    
createLowComplexityTable  doubleComplex?                    
drawComplex               drawComplexVectorField            
fortranComplex            fortranDoubleComplex              
pmComplexintegrate                
   
To get more information about an operation such as 
complexZeros, issue the command )display op complexZeros 
\end{verbatim}

%Original Page 90

If you want to see all domains with ``{\tt matrix}'' in their names,
issue this.  \index{what domain}
\spadcommand{)what domain matrix}
\begin{verbatim}
----------------------- Domains -----------------------

Domains with names matching patterns:
     matrix 

 DHMATRIX DenavitHartenbergMatrix      
 DPMM     DirectProductMatrixModule
 IMATRIX  IndexedMatrix                
 LSQM     LieSquareMatrix
 M3D      ThreeDimensionalMatrix       
 MATCAT-  MatrixCategory&
 MATRIX   Matrix                       
 RMATCAT- RectangularMatrixCategory&
 RMATRIX  RectangularMatrix            
 SMATCAT- SquareMatrixCategory&
 SQMATRIX SquareMatrix
\end{verbatim}

Similarly, if you wish to see all packages whose names contain ``{\tt
gauss}'', enter this.  \index{what packages}
\spadcommand{)what package gauss}
\begin{verbatim}
---------------------- Packages -----------------------

Packages with names matching patterns:
     gauss 

 GAUSSFAC GaussianFactorizationPackage
\end{verbatim}

This command shows all the operations that {\tt Any} provides.
Wherever {\tt \$} appears, it means ``{\tt Any}''.  \index{show}
\spadcommand{)show Any}
\begin{verbatim}
 Any  is a domain constructor
 Abbreviation for Any is ANY 
 This constructor is exposed in this frame.
 Issue )edit /usr/local/axiom/mnt/algebra/any.spad 
  to see algebra source code for ANY 

--------------------- Operations ----------------------
 ?=? : (%,%) -> Boolean                
 any : (SExpression,None) -> %
 coerce : % -> OutputForm              
 dom : % -> SExpression
 domainOf : % -> OutputForm            
 hash : % -> SingleInteger
 latex : % -> String                   
 obj : % -> None
 objectOf : % -> OutputForm            
 ?~=? : (%,%) -> Boolean
 showTypeInOutput : Boolean -> String

\end{verbatim}

This displays all operations with the name {\tt complex}.
\index{display operation}
\spadcommand{)display operation complex}
\begin{verbatim}
There is one exposed function called complex :
 [1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING
\end{verbatim}

Let's analyze this output.

%Original Page 91

First we find out what some of the abbreviations mean.
\spadcommand{)abbreviation query COMPCAT}
\begin{verbatim}
   COMPCAT abbreviates category ComplexCategory 
\end{verbatim}

\spadcommand{)abbreviation query COMRING}
\begin{verbatim}
   COMRING abbreviates category CommutativeRing 
\end{verbatim}

So if {\tt D1} is a commutative ring (such as the integers or floats) and
{\tt D} belongs to {\tt Complex\-Category D1}, then there is an operation
called {\bf complex} that takes two elements of {\tt D1} and creates an
element of {\tt D}.  The primary example of a constructor implementing
domains belonging to {\tt ComplexCategory} is {\tt Complex}.  See
\domainref{Complex} for more information on that and see
\sectionref{ugUserDeclare} for more information on function types.

%\setcounter{chapter}{2}

%Original Page 93

\chapter{Using HyperDoc}
\label{ugHyper}

\begin{figure}[htbp]
\begin{picture}(324,260)%(-54,0)
\special{psfile=ps/v0hyper.eps}
\end{picture}
\caption{The HyperDoc root window page.}
\end{figure}

HyperDoc is the gateway to Axiom.  \index{HyperDoc} It's both an
on-line tutorial and an on-line reference manual.  It also enables you
to use Axiom simply by using the mouse and filling in templates.
HyperDoc is available to you if you are running Axiom under the X
Window System.

%Original Page 94

Pages usually have active areas, marked in {\bf this font} (bold
face).  As you move the mouse pointer to an active area, the pointer
changes from a filled dot to an open circle.  The active areas are
usually linked to other pages.  When you click on an active area, you
move to the linked page.

\section{Headings}
\label{ugHyperHeadings}
Most pages have a standard set of buttons at the top of the page.
This is what they mean:

\begin{description}

\item[\HelpBitmap] Click on this to get help.  The button only appears
if there is specific help for the page you are viewing.  You can get
{\it general} help for HyperDoc by clicking the help button on the
home page.

\item[\UpBitmap] Click here to go back one page.
By clicking on this button repeatedly, you can go back several pages and
then take off in a new direction.

\item[\ReturnBitmap] Go back to the home page, that is, the page on
which you started.  Use HyperDoc to explore, to make forays into new
topics.  Don't worry about how to get back.  HyperDoc remembers where
you came from.  Just click on this button to return.

\item[\ExitBitmap] From the root window (the one that is displayed
when you start the system) this button leaves the HyperDoc program,
and it must be restarted if you want to use it again.  From any other
HyperDoc window, it just makes that one window go away.  You {\it must} 
use this button to get rid of a window.  If you use the window
manager ``Close'' button, then all of HyperDoc goes away.

\end{description}

The buttons are not displayed if they are not applicable to the page
you are viewing.  For example, there is no \ReturnBitmap button on the
top-level menu.

\section{Key Definitions}
\label{ugHyperKeys}

The following keyboard definitions are in effect throughout HyperDoc.
See \sectionref{ugHyperScroll} and \sectionref{ugHyperInput}
for some contextual key definitions.

\begin{description}
\item[F1] Display the main help page.
\item[F3] Same as \ExitBitmap{}, makes the window go away if you are not at the top-level window or quits the HyperDoc facility if you are at the top-level.
\item[F5] Rereads the HyperDoc database, if necessary (for system developers).
\item[F9] Displays this information about key definitions.
\item[F12] Same as {\bf F3}.
\item[Up Arrow] Scroll up one line.
\item[Down Arrow] Scroll down one line.
\item[Page Up] Scroll up one page.
\item[Page Down] Scroll down one page.
\end{description}

\section{Scroll Bars}
\label{ugHyperScroll}

Whenever there is too much text to fit on a page, a 
{\it scroll \index{scroll bar} bar} 
automatically appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window
into a larger amount of text than can be displayed at one time.  The
scroll bar lets you move up and down in the text to see different
parts.  It also shows where the aperture is relative to the whole
text.  The aperture is indicated by a strip on the scroll bar.

%Original Page 95

Move the cursor with the mouse to the ``down-arrow'' at the bottom of
the scroll bar and click.  See that the aperture moves down one line.
Do it several times.  Each time you click, the aperture moves down one
line.  Move the mouse to the ``up-arrow'' at the top of the scroll bar
and click.  The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar
and click.  HyperDoc attempts to move the top of the aperture to this
point in the text.

You cannot make the aperture go off the bottom edge.  When the
aperture is about half the size of text, the lowest you can move the
aperture is halfway down.

To move up or down one screen at a time, use the \fbox{\bf PageUp} and 
\fbox{\bf PageDown} keys on your keyboard.  They move the visible part of the
region up and down one page each time you press them.

If the HyperDoc page does not contain an input area (see
\sectionref{ugHyperInput}, you can also use
the \fbox{\bf Home} and \fbox{$\uparrow$} and \fbox{$\downarrow$}
arrow keys to navigate.  When you press the \fbox{\bf Home} key, the
screen is positioned at the very top of the page.  Use the
\fbox{$\uparrow$} and \fbox{$\downarrow$} arrow keys to move the
screen up and down one line at a time, respectively.

\section{Input Areas}
\label{ugHyperInput}

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within
the HyperDoc page.  Characters that you type are inserted in front of
the underscore.  This means that when you type characters at your
keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type.
Use the \fbox{\bf Backspace} key to erase characters to the left.  To
modify what you type, use the right-arrow \fbox{$\rightarrow$} and
left-arrow keys \fbox{$\leftarrow$} and the keys \fbox{\bf Insert},
\fbox{\bf Delete}, \fbox{\bf Home} and \fbox{\bf End}.  These keys are
found immediately on the right of the standard IBM keyboard.

If you press the \fbox{\bf Home} key, the cursor moves to the
beginning of the line and if you press the \fbox{\bf End} key, the
cursor moves to the end of the line.  Pressing 
\fbox{\bf Ctrl}--\fbox{\bf End} deletes all the text from the 
cursor to the end of the line.

A page may have more than one input area.  Only one input area has an
underscore cursor.  When you first see apage, the top-most input area
contains the cursor.  To type information into another input area, use
the \fbox{\bf Enter} or \fbox{\bf Tab} key to move from one input area to
xanother.  To move in the reverse order, use \fbox{\bf Shift}--\fbox{\bf Tab}.

You can also move from one input area to another using your mouse.
Notice that each input area is active. Click on one of the areas.
As you can see, the underscore cursor moves to that window.

%Original Page 96

\section{Radio Buttons and Toggles}
\label{ugHyperButtons}

Some pages have {\it radio buttons} and {\it toggles}.
Radio buttons are a group of buttons like those on car radios: you can
select only one at a time.

Once you have selected a button, it appears to be inverted and
contains a checkmark.  To change the selection, move the cursor with
the mouse to a different radio button and click.

A toggle is an independent button that displays some on/off state.
When ``on'', the button appears to be inverted and contains a
checkmark.  When ``off'', the button is raised.

Unlike radio buttons, you can set a group of them any way you like.
To change toggle the selection, move the cursor with the mouse to the
button and click.

\section{Search Strings}
\label{ugHyperSearch}

A {\it search string} is used for searching some database.  To learn
about search strings, we suggest that you bring up the HyperDoc
glossary.  To do this from the top-level page of HyperDoc:
\begin{enumerate}
\item Click on Reference, bringing up the Axiom Reference page.
\item Click on Glossary, bringing up the glossary.
\end{enumerate}

The glossary has an input area at its bottom.  We review the various
kinds of search strings you can enter to search the glossary.

The simplest search string is a word, for example, {\tt operation}.  A
word only matches an entry having exactly that spelling.  Enter the
word {\tt operation} into the input area above then click on 
{\bf Search}.  As you can see, {\tt operation} matches only one entry,
namely with {\tt operation} itself.

Normally matching is insensitive to whether the alphabetic characters
of your search string are in uppercase or lowercase.  Thus 
{\tt operation} and {\tt OperAtion} both have the same effect.
%If you prefer that matching be case-sensitive, issue the command
%{\tt set HHyperName mixedCase} command to the interpreter.

You will very often want to use the wildcard ``{\tt *}'' in your search
string so as to match multiple entries in the list.  The search key
``{\tt *}'' matches every entry in the list.  You can also use ``{\tt *}''
anywhere within a search string to match an arbitrary substring.  Try
``{\tt cat*}'' for example: enter ``{\tt cat*}'' into the input area and click
on {\bf Search}.  This matches several entries.

You use any number of wildcards in a search string as long as they are
not adjacent.  Try search strings such as ``{\tt *dom*}''.  As you see,
this search string matches ``{\tt domain}'', ``{\tt domain constructor}'',
``{\tt subdomain}'', and so on.

%Original Page 97

\subsection{Logical Searches}
\label{ugLogicalSearches}

For more complicated searches, you can use ``{\tt and}'', ``{\tt or}'', and
``{\tt not}'' with basic search strings; write logical expressions using
these three operators just as in the Axiom language.  For example,
{\tt domain or package} matches the two entries {\tt domain} and 
{\tt package}.  Similarly, ``{\tt dom* and *con*}'' matches 
``{\tt domain constructor}'' and others.  Also ``{\tt not *a*}'' matches 
every entry that does not contain the letter ``{\tt a}'' somewhere.

Use parentheses for grouping.  For example, ``{\tt dom* and (not *con*)}''
matches ``{\tt domain}'' but not ``{\tt domain constructor}''.

There is no limit to how complex your logical expression can be.
For example,
\begin{center}
{\tt a* or b* or c* or d* or e* and (not *a*)}
\end{center}
is a valid expression.

\section{Example Pages}
\label{ugHyperExample}

Many pages have Axiom example commands.

Each command has an active ``button'' along the left margin.  When you
click on this button, the output for the command is ``pasted-in.''
Click again on the button and you see that the pasted-in output
disappears.

Maybe you would like to run an example?  To do so, just click on any
part of its text!  When you do, the example line is copied into a new
interactive Axiom buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one.
Don't worry---HyperDoc automatically runs all the necessary
lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc.
If you want to get rid of it beforehand, use the {\bf Cancel} button
of the X Window manager or issue the Axiom system command 
{\tt )close.}  \index{close}

\section{X Window Resources for HyperDoc}
\label{ugHyperResources}

You can control the appearance of HyperDoc while running under Version
11 \index{HyperDoc X Window System defaults} of the X Window System by
placing the following resources \index{X Window System} in the file
{\bf .Xdefaults} in your home directory.  \index{file!.Xdefaults} 
In what follows, {\it font} is any valid X11 font name
\index{font} (for example, {\tt Rom14}) and {\it color} is any valid
X11 color \index{color} specification (for example, {\tt NavyBlue}).
For more information about fonts and colors, refer to the X Window
documentation for your system.

\begin{description}
\item[{\tt Axiom.hyperdoc.RmFont:} {\it font}] \ \newline
This is the standard text font.  
The default value is {\tt Rom14}
\item[{\tt Axiom.hyperdoc.RmColor:} {\it color}] \ \newline
This is the standard text color.  
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.ActiveFont:} {\it font}] \ \newline
This is the font used for HyperDoc link buttons.  
The default value is {\tt Bld14}

%Original Page 98

\item[{\tt Axiom.hyperdoc.ActiveColor:} {\it color}] \ \newline
This is the color used for HyperDoc link buttons.  
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.AxiomFont:} {\it font}] \ \newline
This is the font used for active Axiom commands.
The default value is {\tt Bld14}
\item[{\tt Axiom.hyperdoc.AxiomColor:} {\it color}] \ \newline
This is the color used for active Axiom commands.
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.BoldFont:} {\it font}] \ \newline
This is the font used for bold face.  
The default value is {\tt Bld14}
\item[{\tt Axiom.hyperdoc.BoldColor:} {\it color}] \ \newline
This is the color used for bold face.  
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.TtFont:} {\it font}] \ \newline
This is the font used for Axiom output in HyperDoc.
This font must be fixed-width.  
The default value is {\tt Rom14}
\item[{\tt Axiom.hyperdoc.TtColor:} {\it color}] \ \newline
This is the color used for Axiom output in HyperDoc.
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.EmphasizeFont:} {\it font}] \ \newline
This is the font used for italics.  
The default value is {\tt Itl14}
\item[{\tt Axiom.hyperdoc.EmphasizeColor:} {\it color}] \ \newline
This is the color used for italics.  
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.InputBackground:} {\it color}] \ \newline
This is the color used as the background for input areas.
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.InputForeground:} {\it color}] \ \newline
This is the color used as the foreground for input areas.
The default value is {\tt white}
\item[{\tt Axiom.hyperdoc.BorderColor:} {\it color}] \ \newline
This is the color used for drawing border lines.
The default value is {\tt black}
\item[{\tt Axiom.hyperdoc.Background:} {\it color}] \ \newline
This is the color used for the background of all windows.
The default value is {\tt white}
\end{description}
\vfill
\eject

%\setcounter{chapter}{3}

%Original Page 99

\chapter{Input Files and Output Styles}
\label{ugInOut}

In this chapter we discuss how to collect Axiom statements
and commands into files and then read the contents into the
workspace.
We also show how to display the results of your computations in
several different styles including \TeX{}, FORTRAN and
monospace two-dimensional format.\footnote{\TeX{} is a
trademark of the American Mathematical Society.}

The printed version of this book uses the Axiom \TeX{} output formatter.
When we demonstrate a particular output style, we will need to turn
\TeX{} formatting off and the output style on so that the correct output
is shown in the text.

\section{Input Files}
\label{ugInOutIn}

In this section we explain what an {\it input file} is and
\index{file!input} why you would want to know about it.  We discuss
where Axiom looks for input files and how you can direct it to look
elsewhere.  We also show how to read the contents of an input file
into the {\it workspace} and how to use the {\it history} facility to
generate an input file from the statements you have entered directly
into the workspace.

An {\it input} file contains Axiom expressions and system commands.
Anything that you can enter directly to Axiom can be put into an input
file.  This is how you save input functions and expressions that you
wish to read into Axiom more than one time.

%Original Page 100

To read an input file into Axiom, use the {\tt )read} system command.
\index{read} For example, you can read a file in a particular
directory by issuing
\begin{verbatim}
)read /spad/src/input/matrix.input
\end{verbatim}

The ``{\bf .input}'' is optional; this also works:
\begin{verbatim}
)read /spad/src/input/matrix
\end{verbatim}

What happens if you just enter {\tt )read matrix.input} or even {\tt
)read matrix}?  Axiom looks in your current working directory for
input files that are not qualified by a directory name.  Typically,
this directory is the directory from which you invoked Axiom.

To change the current working directory, use the {\tt )cd} system
command.  The command {\tt {)cd}} by itself shows the current working
\index{directory!default for searching} directory.  \index{cd} To
change it to \index{file!input!where found} the {\tt {src/input}}
subdirectory for user ``babar'', issue
\begin{verbatim}
)cd /u/babar/src/input
\end{verbatim}
Axiom looks first in this directory for an input file.  If it is not
found, it looks in the system's directories, assuming you meant some
input file that was provided with Axiom.

\boxer{4.6in}{
If you have the Axiom history facility turned on (which it is
by default), you can save all the lines you have entered into the
workspace by entering

)history )write

\index{history )write}

Axiom tells you what input file to edit to see your statements.  The
file is in your home directory or in the directory you specified with
\index{cd} {\tt {)cd}}.\\
}

In \sectionref{ugLangBlocks} we discuss using indentation in input files to
group statements into {\it blocks.}

\section{The .axiom.input File}
\label{ugInOutSpadprof}

When Axiom starts up, it tries to read the input file {\bf
.axiom.input}\footnote{{\bf.axiom.input} used to be called 
{\bf axiom.input} in the NAG version}
from your home \index{start-up profile file}
directory. \index{file!start-up profile} It
there is no {\bf .axiom.input} in your home directory, it reads the
copy located in its own {\bf src/input} directory.
\index{file!.axiom.input @{\bf .axiom.input}} The file usually
contains system commands to personalize your Axiom environment.  In
the remainder of this section we mention a few things that users
frequently place in their {\bf .axiom.input} files.

In order to have FORTRAN output always produced from your
computations, place the system command {\tt )set output fortran on} in
{\bf .axiom.input}.  \index{quit} If you do not want to be prompted
for confirmation when you issue the {\tt )quit} system command, place
{\tt )set quit unprotected} in {\bf .axiom.input}.  
\index{set quit unprotected} 

%Original Page 101

If you then decide that you do want to be prompted, issue
{\tt )set quit protected}.  \index{set quit protected} This is the
default setting so that new users do not leave Axiom
inadvertently.\footnote{The system command {\tt )pquit} always
prompts you for confirmation.}

To see the other system variables you can set, issue {\tt {)set}}
or use the HyperDoc {\bf Settings} facility to view and change
Axiom system variables.

\section{Common Features of Using Output Formats}
\label{ugInOutOut}

In this section we discuss how to start and stop the display
\index{output formats!common features} of the different output formats
and how to send the output to the screen or to a file.
\index{file!sending output to} To fix ideas, we use FORTRAN output
format for most of the examples.

You can use the {\tt )set output} system \index{output
formats!starting} command to \index{output formats!stopping} toggle or
redirect the different kinds of output.  \index{set output} The name
of the kind of output follows ``output'' in the command.  The names are

\begin{tabular}{@{}ll}
{\bf fortran} & for FORTRAN output. \\
{\bf algebra} & for monospace two-dimensional mathematical output. \\
{\bf tex}     & for \TeX{} output. \\
{\bf script}  & for IBM Script Formula Format output.
\end{tabular}

For example, issue {\tt {)set output fortran on}} to turn on FORTRAN
format and issue {\tt {)set output fortran off}} to turn it off.  By
default, {\tt algebra} is {\tt on} and all others are {\tt off}.
\index{set output fortran} When output is started, it is sent to the
screen.  To send the output to a file, give the file name without
\index{output formats!sending to file} directory or extension.  Axiom
appends a file extension depending on the kind of output being
produced.

Issue this to redirect FORTRAN output to, for example, the file
{\bf linalg.sfort}.
\spadcommand{)set output fortran linalg}
\begin{verbatim}
   FORTRAN output will be written to file linalg.sfort .
\end{verbatim}

You must {\it also} turn on the creation of FORTRAN output.
The above just says where it goes if it is created.
\spadcommand{)set output fortran on}

In what directory is this output placed?  It goes into the directory
from which you started Axiom, or if you have used the {\tt {)cd}}
system command, the one that you specified with {\tt {)cd}}.
\index{cd} You should use {\tt )cd} before you send the output to the file.

You can always direct output back to the screen by issuing this.
\index{output formats!sending to screen}
\spadcommand{)set output fortran console}

%Original Page 102

Let's make sure FORTRAN formatting is off so that nothing we
do from now on produces FORTRAN output.
\spadcommand{)set output fortran off}

We also delete the demonstrated output file we created.
\spadcommand{)system rm linalg.sfort}

You can abbreviate the words ``{\tt on},'' ``{\tt off},'' and 
``{\tt console}'' to the minimal number of characters needed to distinguish
them.  Because of this, you cannot send output to files called 
{\bf on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort} and so on.

The width of the output on the page is set by \index{output
formats!line length} {\tt )set output length} for all formats except
FORTRAN.  \index{set output length} Use {\tt )set fortran fortlength}
to change the FORTRAN line length from its default value of $72$.

\section{Monospace Two-Dimensional Mathematical Format}
\label{ugInOutAlgebra}

This is the default output format for Axiom.  
It is usually on when you start the system.  
\index{set output algebra} 
\index{output formats!monospace 2D} 
\index{monospace 2D output format}

If it is not, issue this.
\spadcommand{)set output algebra on}

Since the printed version of this book (as opposed to the HyperDoc
version) shows output produced by the \TeX{} output formatter, let us
temporarily turn off \TeX{} output.
\spadcommand{)set output tex off}

Here is an example of what it looks like.
\spadcommand{matrix [ [i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]}
\begin{verbatim}

        +     3           3     2+
        |3%i y  + x  3%i y  + 2x |
   (1)  |                        |
        |     4           4     2|
        +4%i y  + x  4%i y  + 2x +
\end{verbatim}
\returnType{Type: Matrix Polynomial Complex Integer}

Issue this to turn off this kind of formatting.
\spadcommand{)set output algebra off}

Turn \TeX{} output on again.
\spadcommand{)set output tex on}

The characters used for the matrix brackets above are rather ugly.
You get this character set when you issue \index{character set} 
{\tt )set output characters plain}.  \index{set output characters} This
character set should be used when you are running on a machine that
does not support the IBM extended ASCII character set.  If you are
running on an IBM workstation, for example, issue 
{\tt )set output characters default} to get better looking output.

%Original Page 103

\section{TeX Format}
\label{ugInOutTeX}

Axiom can produce \TeX{} output for your \index{output formats!TeX
@{\TeX{}}} expressions.  \index{TeX output format @{\TeX{}} output format}
The output is produced using macros from the \LaTeX{} document
preparation system by Leslie Lamport\cite{Lamp86}. The printed version
of this book was produced using this formatter.

To turn on \TeX{} output formatting, issue this.
\index{set output tex}
\spadcommand{)set output tex on}

Here is an example of its output.
\begin{verbatim}
matrix [ [i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

$$
\left[
\begin{array}{cc}
{{3 \  i \  {y \sp 3}}+x} & 
{{3 \  i \  {y \sp 3}}+{2 \  {x \sp 2}}} \\ 
{{4 \  i \  {y \sp 4}}+x} & 
{{4 \  i \  {y \sp 4}}+{2 \  {x \sp 2}}} 
\end{array}
\right]
$$

\end{verbatim}
This formats as
$$
\left[
\begin{array}{cc}
{{3 \  i \  {y \sp 3}}+x} & 
{{3 \  i \  {y \sp 3}}+{2 \  {x \sp 2}}} \\ 
{{4 \  i \  {y \sp 4}}+x} &  
{{4 \  i \  {y \sp 4}}+{2 \  {x \sp 2}}} 
\end{array}
\right]
$$

To turn \TeX{} output formatting off, issue 
{\tt {)set output tex off}}.
The \LaTeX macros in the output generated by Axiom
are all standard except for the following definitions:
\begin{verbatim}
\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{
  {\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill}
  }
}
\end{verbatim}

%Original Page 104

\section{IBM Script Formula Format}
\label{ugInOutScript}

Axiom can \index{output formats!IBM Script Formula Format} produce IBM
Script Formula Format output for your 
\index{IBM Script Formula Format} expressions.

To turn IBM Script Formula Format on, issue this.
\index{set output script}
\spadcommand{)set output script on}

Here is an example of its output.
\begin{verbatim}
matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @
:df.
<left lb < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 @@ %i @@
<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@
<y sup 4> >+x> here < <4 @@ %i @@ <y sup 4> >+<2 @@
<x up 2> > > > > right rb>
:edf.
\end{verbatim}

To turn IBM Script Formula Format output formatting off, issue this.
\spadcommand{)set output script off}

\section{FORTRAN Format}
\label{ugInOutFortran}

In addition to turning FORTRAN output on and off and stating where the
\index{output formats!FORTRAN} output should be placed, there are many
options that control the \index{FORTRAN output format} appearance of
the generated code.  In this section we describe some of the basic
options.  Issue {\tt )set fortran} to see a full list with their
current settings.

The output FORTRAN expression usually begins in column 7.  If the
expression needs more than one line, the ampersand character {\tt \&}
is used in column 6.  Since some versions of FORTRAN have restrictions
on the number of lines per statement, Axiom breaks long expressions
into segments with a maximum of 1320 characters (20 lines of 66
characters) per segment.  \index{set fortran} If you want to change
this, say, to 660 characters, issue the system command 
\index{set fortran explength} {\tt )set fortran explength 660}.  
\index{FORTRAN output format!breaking into multiple statements} 
You can turn off the line breaking by issuing {\tt )set fortran segment off}.
\index{set fortran segment} Various code optimization levels are available.

FORTRAN output is produced after you issue this.
\index{set output fortran}
\spadcommand{)set output fortran on}

For the initial examples, we set the optimization level to 0, which is the
lowest level.
\index{set fortran optlevel}
\spadcommand{)set fortran optlevel 0}

The output is usually in columns 7 through 72, although fewer columns
are used in the following examples so that the output
\index{FORTRAN output format!line length}
fits nicely on the page.
\spadcommand{)set fortran fortlength 60}

%Original Page 105

By default, the output goes to the screen and is displayed before the
standard Axiom two-dimensional output.  In this example, an assignment
to the variable $R1$ was generated because this is the result of step 1.
\spadcommand{(x+y)**3}
\begin{verbatim}
      R1=y**3+3*x*y*y+3*x*x*y+x**3
\end{verbatim}
$$
{y \sp 3}+{3 \  x \  {y \sp 2}}+{3 \  {x \sp 2} \  y}+{x \sp 3} 
$$
\returnType{Type: Polynomial Integer}

Here is an example that illustrates the line breaking.
\spadcommand{(x+y+z)**3}
\begin{verbatim}
      R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y
     &*y+3*x*x*y+x**3
\end{verbatim}
$$
{z \sp 3}+{{\left( {3 \  y}+{3 \  x} 
\right)}
\  {z \sp 2}}+{{\left( {3 \  {y \sp 2}}+{6 \  x \  y}+{3 \  {x \sp 2}} 
\right)}
\  z}+{y \sp 3}+{3 \  x \  {y \sp 2}}+{3 \  {x \sp 2} \  y}+{x \sp 3} 
$$
\returnType{Type: Polynomial Integer}

Note in the above examples that integers are generally converted to
\index{FORTRAN output format!integers vs. floats} floating point
numbers, except in exponents.  This is the default behavior but can be
turned off by issuing {\tt )set fortran ints2floats off}.  
\index{set fortran ints2floats} The rules governing when the conversion 
is done are:
\begin{enumerate}
\item If an integer is an exponent, convert it to a floating point
number if it is greater than 32767 in absolute value, otherwise leave it
as an integer.
\item Convert all other integers in an expression to floating point numbers.
\end{enumerate}

These rules only govern integers in expressions.\\  
Numbers generated by Axiom for $DIMENSION$ statements are also integers.

To set the type of generated FORTRAN data, 
\index{FORTRAN output format!data types}
use one of the following:
\begin{verbatim}
)set fortran defaulttype REAL
)set fortran defaulttype INTEGER
)set fortran defaulttype COMPLEX
)set fortran defaulttype LOGICAL
)set fortran defaulttype CHARACTER
\end{verbatim}

When temporaries are created, they are given a default type of {\tt REAL.}  
Also, the {\tt REAL} versions of functions are used by default.
\spadcommand{sin(x)}
\begin{verbatim}
      R3=DSIN(x)
\end{verbatim}
$$
\sin 
\left(
{x} 
\right)
$$
\returnType{Type: Expression Integer}

At optimization level 1, Axiom removes common subexpressions.
\index{FORTRAN output format!optimization level}
\index{set fortran optlevel}
\spadcommand{)set fortran optlevel 1}

%Original Page 106

\spadcommand{(x+y+z)**3}
\begin{verbatim}
      T2=y*y
      T3=x*x
      R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+
     &3*T3*y+x**3
\end{verbatim}
$$
{z \sp 3}+{{\left( {3 \  y}+{3 \  x} 
\right)}
\  {z \sp 2}}+{{\left( {3 \  {y \sp 2}}+{6 \  x \  y}+{3 \  {x \sp 2}} 
\right)}
\  z}+{y \sp 3}+{3 \  x \  {y \sp 2}}+{3 \  {x \sp 2} \  y}+{x \sp 3} 
$$
\returnType{Type: Polynomial Integer}

This changes the precision to {\tt DOUBLE}.  \index{set fortran
precision double} Substitute {\tt single} for {\tt double}
\index{FORTRAN output format!precision} to return to single precision.  
\index{set fortran precision single}

\spadcommand{)set fortran precision double}

Complex constants display the precision.
\spadcommand{2.3 + 5.6*\%i }
\begin{verbatim}
      R5=(2.3D0,5.6D0)
\end{verbatim}
$$
{2.3}+{{5.6} \  i} 
$$
\returnType{Type: Complex Float}

The function names that Axiom generates depend on the chosen precision.
\spadcommand{sin \%e}
%%NOTE: the book shows DSIN(DEXP(1.0D0))
\begin{verbatim}
      R6=DSIN(DEXP(1))
\end{verbatim}
$$
\sin 
\left(
{e} 
\right)
$$
\returnType{Type: Expression Integer}

Reset the precision to {\tt single} and look at these two examples again.
\spadcommand{)set fortran precision single}

\spadcommand{2.3 + 5.6*\%i}
\begin{verbatim}
      R7=(2.3,5.6)
\end{verbatim}
$$
{2.3}+{{5.6} \  i} 
$$
\returnType{Type: Complex Float}

\spadcommand{sin \%e}
%%NOTE: the book shows SIN(EXP(1.))
\begin{verbatim}
      R8=SIN(EXP(1))
\end{verbatim}
$$
\sin 
\left(
{e} 
\right)
$$
\returnType{Type: Expression Integer}

%Original Page 107

Expressions that look like lists, streams, sets or matrices cause
array code to be generated.
\spadcommand{[x+1,y+1,z+1]}
\begin{verbatim}
      T1(1)=x+1
      T1(2)=y+1
      T1(3)=z+1
      R9=T1
\end{verbatim}
$$
\left[
{x+1}, {y+1}, {z+1} 
\right]
$$
\returnType{Type: List Polynomial Integer}


A temporary variable is generated to be the name of the array.
\index{FORTRAN output format!arrays} This may have to be changed in
your particular application.
\spadcommand{set[2,3,4,3,5]}
\begin{verbatim}
      T1(1)=2
      T1(2)=3
      T1(3)=4
      T1(4)=5
      R10=T1
\end{verbatim}
$$
\left\{
2,  3,  4,  5 
\right\}
$$
\returnType{Type: Set PositiveInteger}

By default, the starting index for generated FORTRAN arrays is $0$.
\spadcommand{matrix [ [2.3,9.7],[0.0,18.778] ]}
\begin{verbatim}
      T1(0,0)=2.3
      T1(0,1)=9.7
      T1(1,0)=0.0
      T1(1,1)=18.778
      T1
\end{verbatim}
$$
\left[
\begin{array}{cc}
{2.3} & {9.7} \\ 
{0.0} & {18.778} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}

To change the starting index for generated FORTRAN arrays to be $1$,
\index{set fortran startindex} issue this.  This value can only be $0$
or $1$.
\spadcommand{)set fortran startindex 1}

%Original Page 108

Look at the code generated for the matrix again.
\spadcommand{matrix [ [2.3,9.7],[0.0,18.778] ]}
\begin{verbatim}
      T1(1,1)=2.3
      T1(1,2)=9.7
      T1(2,1)=0.0
      T1(2,2)=18.778
      T1
\end{verbatim}
$$
\left[
\begin{array}{cc}
{2.3} & {9.7} \\ 
{0.0} & {18.778} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}


%\setcounter{chapter}{4}

%Original Page 

\chapter{Overview of Interactive Language}
\label{ugLang}

In this chapter we look at some of the basic components of the Axiom
language that you can use interactively.  We show how to create a {\it
block} of expressions, how to form loops and list iterations, how to
modify the sequential evaluation of a block and how to use 
{\tt if-then-else} to evaluate parts of your program conditionally.  We
suggest you first read the boxer material in each section and then
proceed to a more thorough reading of the chapter.

\section{Immediate and Delayed Assignments}
\label{ugLangAssign}

A {\it variable} in Axiom refers to a value.  A variable has a name
beginning with an uppercase or lowercase alphabetic character, 
``{\tt \%}'', or ``{\tt !}''.  Successive characters (if any) can be any of
the above, digits, or ``{\tt ?}''.  Case is distinguished.  The
following are all examples of valid, distinct variable names:

\begin{verbatim}
a             tooBig?    a1B2c3%!?
A             %j         numberOfPoints
beta6         %J         numberofpoints
\end{verbatim}

%Original Page 110

The ``{\tt :=}'' operator is the immediate {\it assignment} operator.
\index{assignment!immediate} Use it to associate a value with a
variable.  \index{immediate assignment}

\boxer{4.6in}{
The syntax for immediate assignment for a single variable is
\begin{center}
{\it variable} $:=$ {\it expression}
\end{center}
The value returned by an immediate assignment is the value of 
{\it expression}.\\
}

The right-hand side of the expression is evaluated, yielding $1$.
This value is then assigned to $a$.
\spadcommand{a := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

The right-hand side of the expression is evaluated, yielding $1$.
This value is then assigned to $b$.  Thus $a$ and $b$ both have the
value $1$ after the sequence of assignments.
\spadcommand{b := a}
$$
1 
$$
\returnType{Type: PositiveInteger}

What is the value of $b$ if $a$ is assigned the value $2$?
\spadcommand{a := 2}
$$
2 
$$
\returnType{Type: PositiveInteger}

As you see, the value of $b$ is left unchanged.
\spadcommand{b}
$$
1 
$$
\returnType{Type: PositiveInteger}

This is what we mean when we say this kind of assignment is {\it
immediate}; $b$ has no dependency on $a$ after the initial assignment.
This is the usual notion of assignment found in programming languages
such as C, \index{C language!assignment} PASCAL
\index{PASCAL!assignment} and FORTRAN.  \index{FORTRAN!assignment}

Axiom provides delayed assignment with ``{\tt ==}''.
\index{assignment!delayed} This implements a \index{delayed
assignment} delayed evaluation of the right-hand side and dependency
checking.

\boxer{4.6in}{
The syntax for delayed assignment is
\begin{center}
{\it variable} $==$ {\it expression}
\end{center}
The value returned by a delayed assignment is the unique value of {\tt Void}.\\
}

%Original Page 111

Using $a$ and $b$ as above, these are the corresponding delayed assignments.
\spadcommand{a == 1}
\returnType{Type: Void}

\spadcommand{b == a}
\returnType{Type: Void}

The right-hand side of each delayed assignment is left unevaluated
until the variables on the left-hand sides are evaluated.  Therefore
this evaluation and \ldots
\spadcommand{a}
\begin{verbatim}
Compiling body of rule a to compute value of type PositiveInteger 
\end{verbatim}
$$
1 
$$
\returnType{Type: PositiveInteger}

this evaluation seem the same as before.
\spadcommand{b}
\begin{verbatim}
Compiling body of rule b to compute value of type PositiveInteger 
\end{verbatim}
$$
1 
$$
\returnType{Type: PositiveInteger}

If we change $a$ to $2$
\spadcommand{a == 2}
\begin{verbatim}
   Compiled code for a has been cleared.
   Compiled code for b has been cleared.
   1 old definition(s) deleted for function or rule a 
\end{verbatim}
\returnType{Type: Void}

then $a$ evaluates to $2$, as expected, but
\spadcommand{a}
\begin{verbatim}
Compiling body of rule a to compute value of type PositiveInteger 

+++ |*0;a;1;G82322| redefined
\end{verbatim}
$$
2 
$$
\returnType{Type: PositiveInteger}

the value of $b$ reflects the change to $a$.
\spadcommand{b}
\begin{verbatim}
Compiling body of rule b to compute value of type PositiveInteger 

+++ |*0;b;1;G82322| redefined
\end{verbatim}
$$
2 
$$
\returnType{Type: PositiveInteger}

It is possible to set several variables at the same time
\index{assignment!multiple immediate} by using \index{multiple
immediate assignment} a {\it tuple} of variables and a tuple of
expressions. Note that a {\it tuple} is a collection of things
separated by commas, often surrounded by parentheses.

%Original Page 112

\boxer{4.6in}{
The syntax for multiple immediate assignments is
\begin{center}
{\tt ( $\hbox{\it var}_{1}$, $\hbox{\it var}_{2}$, \ldots, 
$\hbox{\it var}_{N}$ ) := ( $\hbox{\it expr}_{1}$, $\hbox{\it expr}_{2}$, 
\ldots, $\hbox{\it expr}_{N}$ ) }
\end{center}
The value returned by an immediate assignment is the value of
$\hbox{\it expr}_{N}$.\\
}

This sets $x$ to $1$ and $y$ to $2$.
\spadcommand{(x,y) := (1,2)}
$$
2 
$$
\returnType{Type: PositiveInteger}

Multiple immediate assigments are parallel in the sense that the
expressions on the right are all evaluated before any assignments on
the left are made.  However, the order of evaluation of these
expressions is undefined.

You can use multiple immediate assignment to swap the values held by
variables.
\spadcommand{(x,y) := (y,x)}
$$
1 
$$
\returnType{Type: PositiveInteger}

$x$ has the previous value of $y$.
\spadcommand{x}
$$
2 
$$
\returnType{Type: PositiveInteger}

$y$ has the previous value of $x$.
\spadcommand{y}
$$
1 
$$
\returnType{Type: PositiveInteger}

There is no syntactic form for multiple delayed assignments.  See the
discussion in \sectionref{ugUserDelay}
about how Axiom differentiates between delayed assignments and user
functions of no arguments.

\section{Blocks}
\label{ugLangBlocks}

A {\it block} is a sequence of expressions evaluated in the order that
they appear, except as modified by control expressions such as
{\tt break}, \index{break} {\tt return}, \index{return} {\tt iterate} and
\index{iterate} {\tt if-then-else} constructions.  The value of a block is
the value of the expression last evaluated in the block.

To leave a block early, use ``{\tt =>}''.  For example, {\tt i < 0 => x}.  The
expression before the ``{\tt =>}'' must evaluate to {\tt true} or {\tt false}.
The expression following the ``{\tt =>}'' is the return value for the block.

A block can be constructed in two ways:
\begin{enumerate}
\item the expressions can be separated by semicolons
and the resulting expression surrounded by parentheses, and
\item the expressions can be written on succeeding lines with each line
indented the same number of spaces (which must be greater than zero).
\index{indentation}
A block entered in this form is
called a {\it pile}.
\end{enumerate}

%Original Page 113

Only the first form is available if you are entering expressions
directly to Axiom.  Both forms are available in {\bf .input} files.

\boxer{4.6in}{
The syntax for a simple block of expressions entered interactively is
\begin{center}
{\tt ( $\hbox{\it expression}_{1}$; $\hbox{\it expression}_{2}$; \ldots; 
$\hbox{\it expression}_{N}$ )}
\end{center}
The value returned by a block is the value of an {\tt =>} expression,
or $\hbox{\it expression}_{N}$ if no {\tt =>} is encountered.\\
}

In {\bf .input} files, blocks can also be written using piles.  The
examples throughout this book are assumed to come from {\bf .input} files.

In this example, we assign a rational number to $a$ using a block
consisting of three expressions.  This block is written as a pile.
Each expression in the pile has the same indentation, in this case two
spaces to the right of the first line.
\begin{verbatim}
a :=
  i := gcd(234,672)
  i := 3*i**5 - i + 1
  1 / i
\end{verbatim}
$$
\frac{1}{23323} 
$$
\returnType{Type: Fraction Integer}

Here is the same block written on one line.  This is how you are
required to enter it at the input prompt.
\spadcommand{a := (i := gcd(234,672); i := 3*i**5 - i + 1; 1 / i)}
$$
\frac{1}{23323} 
$$
\returnType{Type: Fraction Integer}

Blocks can be used to put several expressions on one line.  The value
returned is that of the last expression.
\spadcommand{(a := 1; b := 2; c := 3; [a,b,c])}
$$
\left[
1,  2,  3 
\right]
$$
\returnType{Type: List PositiveInteger}

Axiom gives you two ways of writing a block and the preferred way in
an {\bf .input} file is to use a pile.  \index{file!input} Roughly
speaking, a pile is a block whose constituent expressions are indented
the same amount.  You begin a pile by starting a new line for the
first expression, indenting it to the right of the previous line.  You
then enter the second expression on a new line, vertically aligning it
with the first line. And so on.  If you need to enter an inner pile,
further indent its lines to the right of the outer pile.  Axiom knows
where a pile ends.  It ends when a subsequent line is indented to the
left of the pile or the end of the file.

%Original Page 114

Blocks can be used to perform several steps before an assignment
(immediate or delayed) is made.
\begin{verbatim}
d :=
   c := a**2 + b**2
   sqrt(c * 1.3)
\end{verbatim}
$$
2.5495097567 96392415 
$$
\returnType{Type: Float}

Blocks can be used in the arguments to functions.  (Here $h$ is
assigned $2.1 + 3.5$.)
\begin{verbatim}
h := 2.1 +
   1.0
   3.5
\end{verbatim}
$$
5.6 
$$
\returnType{Type: Float}

Here the second argument to {\bf eval} is $x = z$, where the value of
$z$ is computed in the first line of the block starting on the second
line.
\begin{verbatim}
eval(x**2 - x*y**2,
     z := %pi/2.0 - exp(4.1)
     x = z
   )
\end{verbatim}
$$
{{58.7694912705 67072878} \  {y \sp 2}}+{3453.8531042012 59382} 
$$
\returnType{Type: Polynomial Float}

Blocks can be used in the clauses of {\tt if-then-else} expressions 
(see \sectionref{ugLangIf}).

\spadcommand{if h > 3.1 then 1.0 else (z := cos(h); max(z,0.5))}
$$
1.0 
$$
\returnType{Type: Float}

This is the pile version of the last block.
\begin{verbatim}
if h > 3.1 then
    1.0
  else
    z := cos(h)
    max(z,0.5)
\end{verbatim}
$$
1.0 
$$
\returnType{Type: Float}

Blocks can be nested.
\spadcommand{a := (b := factorial(12); c := (d := eulerPhi(22); factorial(d));b+c)}
$$
482630400 
$$
\returnType{Type: PositiveInteger}

This is the pile version of the last block.
\begin{verbatim}
a :=
  b := factorial(12)
  c :=
    d := eulerPhi(22)
    factorial(d)
  b+c
\end{verbatim}
$$
482630400 
$$
\returnType{Type: PositiveInteger}

%Original Page 115

Since $c + d$ does equal $3628855$, $a$ has the value of $c$ and the
last line is never evaluated.
\begin{verbatim}
a :=
  c := factorial 10
  d := fibonacci 10
  c + d = 3628855 => c
  d
\end{verbatim}
$$
3628800 
$$
\returnType{Type: PositiveInteger}

\section{if-then-else}
\label{ugLangIf}

Like many other programming languages, Axiom uses the three keywords
\index{if} {\tt if}, {\tt then} \index{then} and {\tt else}
\index{else} to form \index{conditional} conditional expressions.  The
{\tt else} part of the conditional is optional.  The expression
between the {\tt if} and {\tt then} keywords is a {\it predicate}: an
expression that evaluates to or is convertible to either {\tt true} or
{\tt false}, that is, a {\tt Boolean}.  \index{Boolean}

\boxer{4.6in}{
The syntax for conditional expressions is
\begin{center}
{\tt if\ }{\it predicate} 
{\tt then\ }$\hbox{\it expression}_{1}$ 
{\tt else\ }$\hbox{\it expression}_{2}$
\end{center}
where the {\tt else} $\hbox{\it expression}_{2}$ part is optional.  The
value returned from a conditional expression is 
$\hbox{\it expression}_{1}$ if the predicate evaluates to {\tt true} and 
$\hbox{\it expression}_{2}$ otherwise.  If no {\tt else} clause is given, 
the value is always the unique value of {\tt Void}.\\
}

An {\tt if-then-else} expression always returns a value.  If the 
{\tt else} clause is missing then the entire expression returns the unique
value of {\tt Void}.  If both clauses are present, the type of the
value returned by {\tt if} is obtained by resolving the types of the
values of the two clauses.  See \sectionref{ugTypesResolve} 
for more information.

The predicate must evaluate to, or be convertible to, an object of
type {\tt Boolean}: {\tt true} or {\tt false}.  By default, the equal
sign \spadopFrom{=}{Equation} creates \index{equation} an equation.

This is an equation.  \index{Equation} In particular, it is an object
of type {\tt Equation Polynomial Integer}.

\spadcommand{x + 1 = y}
$$
{x+1}=y 
$$
\returnType{Type: Equation Polynomial Integer}

However, for predicates in {\tt if} expressions, Axiom \index{equality
testing} places a default target type of {\tt Boolean} on the
predicate and equality testing is performed.  \index{Boolean} Thus you
need not qualify the ``{\tt =}'' in any way.  In other contexts you
may need to tell Axiom that you want to test for equality rather than
create an equation.  In those cases, use ``{\tt @}'' and a target type
of {\tt Boolean}.  See \sectionref{ugTypesPkgCall} for more information.

%Original Page 116

The compound symbol meaning ``not equal'' in Axiom is
\index{inequality testing} ``{$\sim =$}''.  \index{\_notequal@$\sim =$} 
This can be used directly without a package call or a target
specification.  The expression $a$~$\sim =$~$b$ is directly translated
into {\tt not}$(a = b)$.

Many other functions have return values of type {\tt Boolean}.  These
include ``{\tt <}'', ``{\tt <=}'', ``{\tt >}'', ``{\tt >=}'', 
``{\tt $\sim$=}'' and ``{\bf member?}''.  By convention,
operations with names ending in ``{\tt ?}''  return {\tt Boolean} values.

The usual rules for piles are suspended for conditional expressions.
In {\bf .input} files, the {\tt then} and {\tt else} keywords can begin in the
same column as the corresponding {\tt if} but may also appear to the
right.  Each of the following styles of writing {\tt if-then-else}
expressions is acceptable:
\begin{verbatim}
if i>0 then output("positive") else output("nonpositive")

if i > 0 then output("positive")
  else output("nonpositive")

if i > 0 then output("positive")
else output("nonpositive")

if i > 0
then output("positive")
else output("nonpositive")

if i > 0
  then output("positive")
  else output("nonpositive")
\end{verbatim}

A block can follow the {\tt then} or {\tt else} keywords.  In the following
two assignments to {\tt a}, the {\tt then} and {\tt else} clauses each are
followed by two-line piles.  The value returned in each is the value
of the second line.
\begin{verbatim}
a :=
  if i > 0 then
    j := sin(i * pi())
    exp(j + 1/j)
  else
    j := cos(i * 0.5 * pi())
    log(abs(j)**5 + 1)

a :=
  if i > 0
    then
      j := sin(i * pi())
      exp(j + 1/j)
    else
      j := cos(i * 0.5 * pi())
      log(abs(j)**5 + 1)
\end{verbatim}

These are both equivalent to the following:
\begin{verbatim}
a :=
  if i > 0 then (j := sin(i * pi()); exp(j + 1/j))
  else (j := cos(i * 0.5 * pi()); log(abs(j)**5 + 1))
\end{verbatim}

%Original Page 117

\section{Loops}
\label{ugLangLoops}

A {\it loop} is an expression that contains another expression,
\index{loop} called the {\it loop body}, which is to be evaluated zero
or more \index{loop!body} times.  All loops contain the {\tt repeat}
keyword and return the unique value of {\tt Void}.  Loops can contain
inner loops to any depth.

\boxer{4.6in}{
The most basic loop is of the form
\begin{center}
{\tt repeat\ }{\it loopBody}
\end{center}

Unless {\it loopBody} contains a {\tt break} or {\tt return} expression, the
loop repeats forever.  The value returned by the loop is the unique
value of {\tt Void}.\\
}

\subsection{Compiling vs. Interpreting Loops}
\label{ugLangLoopsCompInt}

Axiom tries to determine completely the type of every object in a loop
and then to translate the loop body to LISP or even to machine code.
This translation is called compilation.

If Axiom decides that it cannot compile the loop, it issues a
\index{loop!compilation} message stating the problem and then the
following message:
\begin{center}
{\bf We will attempt to step through and interpret the code.}
\end{center}

It is still possible that Axiom can evaluate the loop but in {\it
interpret-code mode}.  See \sectionref{ugUserCompInt} 
where this is discussed in terms
\index{panic!avoiding} of compiling versus interpreting functions.

\subsection{return in Loops}
\label{ugLangLoopsReturn}

A {\tt return} expression is used to exit a function with
\index{loop!leaving via return} a particular value.  In particular, if
a {\tt return} is in a loop within the \index{return} function, the loop
is terminated whenever the {\tt return} is evaluated.
%> This is a bug! The compiler should never accept allow
%> Void to be the return type of a function when it has to use
%> resolve to determine it.

Suppose we start with this.
\begin{verbatim}
f() ==
  i := 1
  repeat
    if factorial(i) > 1000 then return i
    i := i + 1
\end{verbatim}
\returnType{Type: Void}

When {\tt factorial(i)} is big enough, control passes from inside the loop
all the way outside the function, returning the value of $i$ (or so we
think).
\spadcommand{f()}
\returnType{Type: Void}

%Original Page 118

What went wrong?  Isn't it obvious that this function should return an
integer?  Well, Axiom makes no attempt to analyze the structure of a
loop to determine if it always returns a value because, in general,
this is impossible.  So Axiom has this simple rule: the type of the
function is determined by the type of its body, in this case a block.
The normal value of a block is the value of its last expression, in
this case, a loop.  And the value of every loop is the unique value of
{\tt Void}!  So the return type of {\bf f} is {\tt Void}.

There are two ways to fix this.  The best way is for you to tell Axiom
what the return type of $f$ is.  You do this by giving $f$ a
declaration {\tt f:()~->~Integer} prior to calling for its value.  This
tells Axiom: ``trust me---an integer is returned.''  We'll explain
more about this in the next chapter.  Another clumsy way is to add a
dummy expression as follows.

Since we want an integer, let's stick in a dummy final expression that is
an integer and will never be evaluated.
\begin{verbatim}
f() ==
  i := 1
  repeat
    if factorial(i) > 1000 then return i
    i := i + 1
  0
\end{verbatim}
\returnType{Type: Void}

When we try {\bf f} again we get what we wanted.  See
\sectionref{ugUserBlocks} for more information.

\spadcommand{f()}
\begin{verbatim}
   Compiling function f with type () -> NonNegativeInteger 
\end{verbatim}
$$
7 
$$
\returnType{Type: PositiveInteger}

\subsection{break in Loops}
\label{ugLangLoopsBreak}

The {\tt break} keyword is often more useful \index{break} in terminating
\index{loop!leaving via break} a loop.  A {\tt break} causes control to
transfer to the expression immediately following the loop.  As loops
always return the unique value of {\tt Void}, you cannot return a
value with {\tt break}.  That is, {\tt break} takes no argument.

This example is a modification of the last example in the previous
\sectionref{ugLangLoopsReturn}.
Instead of using {\tt return}, we'll use {\tt break}.

\begin{verbatim}
f() ==
  i := 1
  repeat
    if factorial(i) > 1000 then break
    i := i + 1
  i
\end{verbatim}
\begin{verbatim}
   Compiled code for f has been cleared.
   1 old definition(s) deleted for function or rule f 
\end{verbatim}
\returnType{Type: Void}

The loop terminates when {\tt factorial(i)} gets big enough, the last line
of the function evaluates to the corresponding ``good'' value of $i$,
and the function terminates, returning that value.

\spadcommand{f()}
\begin{verbatim}
   Compiling function f with type () -> PositiveInteger 

+++ |*0;f;1;G82322| redefined
\end{verbatim}
$$
7 
$$
\returnType{Type: PositiveInteger}

%Original Page 119

You can only use {\tt break} to terminate the evaluation of one loop.
Let's consider a loop within a loop, that is, a loop with a nested
loop.  First, we initialize two counter variables.

\spadcommand{(i,j) := (1, 1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

Nested loops must have multiple {\tt break} \index{loop!nested}
expressions at the appropriate nesting level.  How would you rewrite
this so {\tt (i + j) > 10} is only evaluated once?
\begin{verbatim}
repeat
  repeat
    if (i + j) > 10 then break
    j := j + 1
  if (i + j) > 10 then break
  i := i + 1
\end{verbatim}
\returnType{Type: Void}

\subsection{break vs. {\tt =>} in Loop Bodies}
\label{ugLangLoopsBreakVs}

Compare the following two loops:
\begin{verbatim}
i := 1                            i := 1
repeat                            repeat
  i := i + 1                        i := i + 1
  i > 3 => i                        if i > 3 then break
  output(i)                         output(i)
\end{verbatim}

In the example on the left, the values $2$ and $3$ for $i$ are
displayed but then the ``{\tt =>}'' does not allow control to reach the
call to \spadfunFrom{output}{OutputForm} again.  The loop will not
terminate until you run out of space or interrupt the execution.  The
variable $i$ will continue to be incremented because the ``{\tt =>}'' only
means to leave the {\it block}, not the loop.

In the example on the right, upon reaching $4$, the {\tt break} will be
executed, and both the block and the loop will terminate.  This is one
of the reasons why both ``{\tt =>}'' and {\tt break} are provided.  Using a
{\tt while} clause (see below) with the ``{\tt =>}'' \index{while} lets you
simulate the action of {\tt break}.

\subsection{More Examples of break}
\label{ugLangLoopsBreakMore}

Here we give four examples of {\tt repeat} loops that terminate when a
value exceeds a given bound.

First, initialize $i$ as the loop counter.
\spadcommand{i := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

Here is the first loop.  When the square of $i$ exceeds $100$, the
loop terminates.
\begin{verbatim}
repeat
  i := i + 1
  if i**2 > 100 then break
\end{verbatim}
\returnType{Type: Void}

%Original Page 120

Upon completion, $i$ should have the value $11$.
\spadcommand{i}
$$
11 
$$
\returnType{Type: NonNegativeInteger}

Do the same thing except use ``{\tt =>}'' instead an {\tt if-then} expression.

\spadcommand{i := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

\begin{verbatim}
repeat
  i := i + 1
  i**2 > 100 => break
\end{verbatim}
\returnType{Type: Void}

\spadcommand{i}
$$
11 
$$
\returnType{Type: NonNegativeInteger}

As a third example, we use a simple loop to compute $n!$.
\spadcommand{(n, i, f) := (100, 1, 1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

Use $i$ as the iteration variable and $f$ to compute the factorial.
\begin{verbatim}
repeat
  if i > n then break
  f := f * i
  i := i + 1
\end{verbatim}
\returnType{Type: Void}

Look at the value of $f$.
\spadcommand{f}
\begin{verbatim}
 93326215443944152681699238856266700490715968264381621468_
 59296389521759999322991560894146397615651828625369792082_
 7223758251185210916864000000000000000000000000
\end{verbatim}
\returnType{Type: PositiveInteger}

Finally, we show an example of nested loops.  First define a four by
four matrix.
\spadcommand{m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] ]}
$$
\left[
\begin{array}{cccc}
{21} & {37} & {53} & {14} \\ 
8 & -{24} & {22} & -{16} \\ 
2 & {10} & {15} & {14} \\ 
{26} & {33} & {55} & -{13} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

Next, set row counter $r$ and column counter $c$ to $1$.  Note: if we
were writing a function, these would all be local variables rather
than global workspace variables.
\spadcommand{(r, c) := (1, 1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

%Original Page 121

Also, let {\tt lastrow} and {\tt lastcol} be the final row and column index.

\spadcommand{(lastrow, lastcol) := (nrows(m), ncols(m))}
$$
4 
$$
\returnType{Type: PositiveInteger}

Scan the rows looking for the first negative element.  We remark that
you can reformulate this example in a better, more concise form by
using a {\tt for} clause with {\tt repeat}.  See
\sectionref{ugLangLoopsForIn} for more information.

\begin{verbatim}
repeat
  if r > lastrow then break
  c := 1
  repeat
    if c > lastcol then break
    if elt(m,r,c) < 0 then
      output [r, c, elt(m,r,c)]
      r := lastrow
      break     -- don't look any further
    c := c + 1
  r := r + 1
 
   [2,2,- 24]
\end{verbatim}
\returnType{Type: Void}

\subsection{iterate in Loops}
\label{ugLangLoopsIterate}

Axiom provides an {\tt iterate} expression that \index{iterate} skips over
the remainder of a loop body and starts the next loop iteration.

We first initialize a counter.

\spadcommand{i := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

Display the even integers from $2$ to $5$.
\begin{verbatim}
repeat
  i := i + 1
  if i > 5 then break
  if odd?(i) then iterate
  output(i)
 
   2
   4
\end{verbatim}
\returnType{Type: Void}

\subsection{while Loops}
\label{ugLangLoopsWhile}

The {\tt repeat} in a loop can be modified by adding one or more {\tt while}
clauses.  \index{while} Each clause contains a {\it predicate}
immediately following the {\tt while} keyword.  The predicate is tested
{\it before} the evaluation of the body of the loop.  The loop body is
evaluated whenever the predicates in a {\tt while} clause are all {\tt true}.

%Original Page 122

\boxer{4.6in}{
The syntax for a simple loop using {\tt while} is
\begin{center}
{\tt while} {\it predicate} {\tt repeat} {\it loopBody}
\end{center}
The {\it predicate} is evaluated before {\it loopBody} is evaluated.
A {\tt while} loop terminates immediately when {\it predicate} evaluates
to {\tt false} or when a {\tt break} or {\tt return} expression is evaluated in
{\it loopBody}.  The value returned by the loop is the unique value of
{\tt Void}.\\
}

Here is a simple example of using {\tt while} in a loop.  We first
initialize the counter.
\spadcommand{i := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

The steps involved in computing this example are\\
(1) set $i$ to $1$,\\
(2) test the condition $i < 1$ and determine that it is not {\tt true}, and\\
(3) do not evaluate the loop body and therefore do not display $"hello"$.
\begin{verbatim}
while i < 1 repeat
  output "hello"
  i := i + 1
\end{verbatim}
\returnType{Type: Void}

If you have multiple predicates to be tested use the logical {\tt and}
operation to separate them.  Axiom evaluates these predicates from
left to right.
\spadcommand{(x, y) := (1, 1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\begin{verbatim}
while x < 4 and y < 10 repeat
  output [x,y]
  x := x + 1
  y := y + 2
 
   [1,1]
   [2,3]
   [3,5]
\end{verbatim}
\returnType{Type: Void}

A {\tt break} expression can be included in a loop body to terminate a
loop even if the predicate in any {\tt while} clauses are not {\tt false}.
\spadcommand{(x, y) := (1, 1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

This loop has multiple {\tt while} clauses and the loop terminates
before any one of their conditions evaluates to {\tt false}.
\begin{verbatim}
while x < 4 while y < 10 repeat
  if x + y > 7 then break
  output [x,y]
  x := x + 1
  y := y + 2
 
   [1,1]
   [2,3]
\end{verbatim}
\returnType{Type: Void}

%Original Page 123

Here's a different version of the nested loops that looked for the
first negative element in a matrix.
\spadcommand{m := matrix [ [21,37,53,14], [8,-24,22,-16], [2,10,15,14], [26,33,55,-13] ]}
$$
\left[
\begin{array}{cccc}
{21} & {37} & {53} & {14} \\ 
8 & -{24} & {22} & -{16} \\ 
2 & {10} & {15} & {14} \\ 
{26} & {33} & {55} & -{13} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

Initialized the row index to $1$ and get the number of rows and
columns.  If we were writing a function, these would all be local
variables.
\spadcommand{r := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{(lastrow, lastcol) := (nrows(m), ncols(m))}
$$
4 
$$
\returnType{Type: PositiveInteger}

Scan the rows looking for the first negative element.
\begin{verbatim}
while r <= lastrow repeat
  c := 1  -- index of first column
  while c <= lastcol repeat
    if elt(m,r,c) < 0 then
      output [r, c, elt(m,r,c)]
      r := lastrow
      break     -- don't look any further
    c := c + 1
  r := r + 1
 
   [2,2,- 24]
\end{verbatim}
\returnType{Type: Void}

\subsection{for Loops}
\label{ugLangLoopsForIn}

Axiom provides the {\tt for} \index{for} and {\tt in} \index{in} keywords in
{\tt repeat} loops, allowing you to iterate across all \index{iteration}
elements of a list, or to have a variable take on integral values from
a lower bound to an upper bound.  We shall refer to these modifying
clauses of {\tt repeat} loops as {\tt for} clauses.  These clauses can be
present in addition to {\tt while} clauses.  As with all other types of
{\tt repeat} loops, {\tt break} can \index{break} be used to prematurely
terminate the evaluation of the loop.

%Original Page 124

\boxer{4.6in}{
The syntax for a simple loop using {\tt for} is
\begin{center}
{\tt for} {\it iterator} {\tt repeat} {\it loopBody}
\end{center}

The {\it iterator} has several forms.  Each form has an end test which
is evaluated before {\it loopBody} is evaluated.  A {\tt for} loop
terminates immediately when the end test succeeds (evaluates to 
{\tt true}) or when a {\tt break} or {\tt return} expression is evaluated
in {\it loopBody}.  The value returned by the loop is the unique value
of {\tt Void}.\\ }

\subsection{for i in n..m repeat}
\label{ugLangLoopsForInNM}

If {\tt for} \index{for} is followed by a variable name, the {\tt in}
\index{in} keyword and then an integer segment of the form $n..m$,
\index{segment} the end test for this loop is the predicate $i > m$.
The body of the loop is evaluated $m-n+1$ times if this number is
greater than 0.  If this number is less than or equal to 0, the loop
body is not evaluated at all.

The variable $i$ has the value $n, n+1, ..., m$ for successive iterations
of the loop body.The loop variable is a {\it local variable}
within the loop body: its value is not available outside the loop body
and its value and type within the loop body completely mask any outer
definition of a variable with the same name.

This loop prints the values of
${10}^3$, ${11}^3$, and $12^3$:
\spadcommand{for i in 10..12 repeat output(i**3)}
\begin{verbatim}
   1000
   1331
   1728
\end{verbatim}
\returnType{Type: Void}

Here is a sample list.
\spadcommand{a := [1,2,3]}
$$
\left[
1,  2,  3 
\right]
$$
\returnType{Type: List PositiveInteger}

Iterate across this list, using ``{\tt .}'' to access the elements of
a list and the ``{\bf \#}'' operation to count its elements.

\spadcommand{for i in 1..\#a repeat output(a.i)}
\begin{verbatim}
   1
   2
   3
\end{verbatim}
\returnType{Type: Void}

This type of iteration is applicable to anything that uses ``{\tt .}''.
You can also use it with functions that use indices to extract elements.

%Original Page 125

Define $m$ to be a matrix.
\spadcommand{m := matrix [ [1,2],[4,3],[9,0] ]}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
4 & 3 \\ 
9 & 0 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

Display the rows of $m$.
\spadcommand{for i in 1..nrows(m) repeat output row(m,i)}
\begin{verbatim}
   [1,2]
   [4,3]
   [9,0]
\end{verbatim}
\returnType{Type: Void}

You can use {\tt iterate} with {\tt for}-loops.\index{iterate}

Display the even integers in a segment.
\begin{verbatim}
for i in 1..5 repeat
  if odd?(i) then iterate
  output(i)
 
   2
   4
\end{verbatim}
\returnType{Type: Void}

See \domainref{Segment}.

\subsection{for i in n..m by s repeat}
\label{ugLangLoopsForInNMS}

By default, the difference between values taken on by a variable in
loops such as {\tt for i in n..m repeat ...} is $1$.  It is possible to
supply another, possibly negative, step value by using the {\tt by}
\index{by} keyword along with {\tt for} and {\tt in}.  Like the upper and
lower bounds, the step value following the {\tt by} keyword must be an
integer.  Note that the loop {\tt for i in 1..2 by 0 repeat output(i)}
will not terminate by itself, as the step value does not change the
index from its initial value of $1$.

This expression displays the odd integers between two bounds.
\spadcommand{for i in 1..5 by 2 repeat output(i)}
\begin{verbatim}
   1
   3
   5
\end{verbatim}
\returnType{Type: Void}

Use this to display the numbers in reverse order.
\spadcommand{for i in 5..1 by -2 repeat output(i)}
\begin{verbatim}
   5
   3
   1
\end{verbatim}
\returnType{Type: Void}

\subsection{for i in n.. repeat}
\label{ugLangLoopsForInN}

%Original Page 126

If the value after the ``{\tt ..}''  is omitted, the loop has no end test.
A potentially infinite loop is thus created.  The variable is given
the successive values ${n}, {n+1}, {n+2}, ...$ and the loop is terminated
only if a {\tt break} or {\tt return} expression is evaluated in the loop
body.  However you may also add some other modifying clause on the
{\tt repeat} (for example, a {\tt while} clause) to stop the loop.

This loop displays the integers greater than or equal to $15$
and less than the first prime greater than $15$.
\spadcommand{for i in 15.. while not prime?(i) repeat output(i)}
\begin{verbatim}
   15
   16
\end{verbatim}
\returnType{Type: Void}

\subsection{for x in l repeat}
\label{ugLangLoopsForInXL}

Another variant of the {\tt for} loop has the form:
\begin{center}
{\it {\tt for} x {\tt in} list {\tt repeat} loopBody}
\end{center}

This form is used when you want to iterate directly over the elements
of a list.  In this form of the {\tt for} loop, the variable {\tt x} takes on
the value of each successive element in {\tt l}.  The end test is most
simply stated in English: ``are there no more {\tt x} in {\tt l}?''

If {\tt l} is this list,
\spadcommand{l := [0,-5,3]}
$$
\left[
0,  -5,  3 
\right]
$$
\returnType{Type: List Integer}

display all elements of {\tt l}, one per line.
\spadcommand{for x in l repeat output(x)}
\begin{verbatim}
   0
   - 5
   3
\end{verbatim}
\returnType{Type: Void}

Since the list constructing expression {\bf expand}{\tt [n..m]} creates the
list $[n, {n+1}, ..., m]$. Note that this list is empty if $n > m$.  You
might be tempted to think that the loops
\begin{verbatim}
for i in n..m repeat output(i)
\end{verbatim}

and
\begin{verbatim}
for x in expand [n..m] repeat output(x)
\end{verbatim}

are equivalent.  The second form first creates the list {\bf
expand}{\tt [n..m]} (no matter how large it might be) and then does
the iteration.  The first form potentially runs in much less space, as
the index variable $i$ is simply incremented once per loop and the
list is not actually created.  Using the first form is much more
efficient.

%Original Page 127

Of course, sometimes you really want to iterate across a specific list.
This displays each of the factors of $2400000$.
\spadcommand{for f in factors(factor(2400000)) repeat output(f)}
\begin{verbatim}
   [factor= 2,exponent= 8]
   [factor= 3,exponent= 1]
   [factor= 5,exponent= 5]
\end{verbatim}
\returnType{Type: Void}

\subsection{``Such that'' Predicates}
\label{ugLangLoopsForInPred}

A {\tt for} loop can be followed by a ``{\tt |}'' and then a predicate.  The
predicate qualifies the use of the values from the iterator following
the {\tt for}.  Think of the vertical bar ``{\tt |}'' as the phrase ``such
that.''

This loop expression prints out the integers $n$ in the given segment
such that $n$ is odd.
\spadcommand{for n in 0..4 | odd? n repeat output n}
\begin{verbatim}
   1
   3
\end{verbatim}
\returnType{Type: Void}

\boxer{4.6in}{
A {\tt for} loop can also be written
$$
{\rm for} {\it \ iterator\ } | {\it \ predicate\ } 
{\rm repeat} {\it \ loopBody\ }
$$

which is equivalent to:
$$
{\rm for} {\it \ iterator\ } {\rm repeat\ if}
{\it \ predicate\ } {\rm then} {\it \ loopBody\ } {\rm else\ }iterate
$$
}

The predicate need not refer only to the variable in the {\tt for} clause:
any variable in an outer scope can be part of the predicate.

In this example, the predicate on the inner {\tt for} loop uses $i$ from
the outer loop and the $j$ from the {\tt for} \index{iteration!nested}
clause that it directly modifies.
\begin{verbatim}
for i in 1..50 repeat
  for j in 1..50 | factorial(i+j) < 25 repeat
    output [i,j]
 
   [1,1]
   [1,2]
   [1,3]
   [2,1]
   [2,2]
   [3,1]
\end{verbatim}
\returnType{Type: Void}

\subsection{Parallel Iteration}
\label{ugLangLoopsPar}

The last example of the previous \sectionref{ugLangLoopsForInPred}
gives an example of {\it nested iteration}: a loop is contained
\index{iteration!nested} in another loop.  \index{iteration!parallel}
Sometimes you want to iterate across two lists in parallel, or perhaps
you want to traverse a list while incrementing a variable.

%Original Page 128

\boxer{4.6in}{
The general syntax of a repeat loop is 
$$
iterator_1\  iterator_2\  \ldots\  iterator_N {\rm \ repeat\ } loopBody
$$
where each {\it iterator} is either a {\tt for} or a {\tt while} clause.  The
loop terminates immediately when the end test of any {\it iterator}
succeeds or when a {\tt break} or {\tt return} expression is evaluated in {\it
loopBody}.  The value returned by the loop is the unique value of {\tt
Void}.\\
}

Here we write a loop to iterate across two lists, computing the sum of
the pairwise product of elements. Here is the first list.
\spadcommand{l := [1,3,5,7]}
$$
\left[
1,  3,  5,  7 
\right]
$$
\returnType{Type: List PositiveInteger}

And the second.
\spadcommand{m := [100,200]}
$$
\left[
{100},  {200} 
\right]
$$
\returnType{Type: List PositiveInteger}

The initial value of the sum counter.
\spadcommand{sum := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

The last two elements of $l$ are not used in the calculation because
$m$ has two fewer elements than $l$.
\begin{verbatim}
for x in l for y in m repeat
    sum := sum + x*y
\end{verbatim}
\returnType{Type: Void}

Display the ``dot product.''
\spadcommand{sum}
$$
700 
$$
\returnType{Type: NonNegativeInteger}

Next, we write a loop to compute the sum of the products of the loop
elements with their positions in the loop.
\spadcommand{l := [2,3,5,7,11,13,17,19,23,29,31,37]}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
{31},  {37} 
\right]
$$
\returnType{Type: List PositiveInteger}

The initial sum.
\spadcommand{sum := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

Here looping stops when the list $l$ is exhausted, even though
the {\tt for i in 0..} specifies no terminating condition.

\spadcommand{for i in 0.. for x in l repeat sum := i * x}
\returnType{Type: Void}

%Original Page 129

Display this weighted sum.
\spadcommand{sum}
$$
407 
$$
\returnType{Type: NonNegativeInteger}

When ``{\tt |}'' is used to qualify any of the {\tt for} clauses in a parallel
iteration, the variables in the predicates can be from an outer scope
or from a {\tt for} clause in or to the left of a modified clause.

This is correct:
% output from following is too long to show
\begin{verbatim}
for i in 1..10 repeat
  for j in 200..300 | odd? (i+j) repeat
    output [i,j]
\end{verbatim}

This is not correct since the variable $j$ has not been defined
outside the inner loop.
\begin{verbatim}
for i in 1..10 | odd? (i+j) repeat  -- wrong, j not defined
  for j in 200..300 repeat
    output [i,j]
\end{verbatim}

\subsection{Mixing Loop Modifiers}
\label{ugLangLoopsMix}

This example shows that it is possible to mix several of the
\index{loop!mixing modifiers} forms of {\tt repeat} modifying clauses on a loop.
\begin{verbatim}
for i in 1..10
    for j in 151..160 | odd? j
      while i + j < 160 repeat
        output [i,j]
 
   [1,151]
   [3,153]
\end{verbatim}
\returnType{Type: Void}

Here are useful rules for composing loop expressions:
\begin{enumerate}
\item {\tt while} predicates can only refer to variables that
are global (or in an outer scope)
or that are defined in {\tt for} clauses to the left of the
predicate.
\item A ``such that'' predicate (something following ``{\tt |}'')
must directly follow a {\tt for} clause and can only refer to
variables that are global (or in an outer scope)
or defined in the modified {\tt for} clause
or any {\tt for} clause to the left.
\end{enumerate}

\section{Creating Lists and Streams with Iterators}
\label{ugLangIts}

%Original Page 130

All of what we did for loops in 
\sectionref{ugLangLoops} \index{iteration}
can be transformed into expressions that create lists
\index{list!created by iterator} and streams.  \index{stream!created
by iterator} The {\tt repeat}, {\tt break} or {\tt iterate} words are not used but
all the other ideas carry over.  Before we give you the general rule,
here are some examples which give you the idea.

This creates a simple list of the integers from $1$ to $10$.
\spadcommand{list := [i for i in 1..10]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10} 
\right]
$$
\returnType{Type: List PositiveInteger}

Create a stream of the integers greater than or equal to $1$.
\spadcommand{stream := [i for i in 1..]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10},  \ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

This is a list of the prime integers between $1$ and $10$, inclusive.
\spadcommand{[i for i in 1..10 | prime? i]}
$$
\left[
2,  3,  5,  7 
\right]
$$
\returnType{Type: List PositiveInteger}

This is a stream of the prime integers greater than or equal to $1$.
\spadcommand{[i for i in 1..   | prime? i]}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
\ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

This is a list of the integers between $1$ and $10$, inclusive, whose
squares are less than $700$.
\spadcommand{[i for i in 1..10 while i*i < 700]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10} 
\right]
$$
\returnType{Type: List PositiveInteger}

This is a stream of the integers greater than or equal to $1$
whose squares are less than $700$.
\spadcommand{[i for i in 1..   while i*i < 700]}
$$
\left[
1,  2,  3,  4,  5,  6,  7,  8,  9,  {10},  \ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

Here is the general rule.
\index{collection}

\boxer{4.6in}{
The general syntax of a collection is
\begin{center}
{\tt [ {\it collectExpression} $\hbox{\it iterator}_{1}$  
$\hbox{\it iterator}_{2}$ \ldots $\hbox{\it iterator}_{N}$ ]}
\end{center}

where each $\hbox{\it iterator}_{i}$ is either a {\tt for} or a {\tt while}
clause.  The loop terminates immediately when the end test of any
$\hbox{\it iterator}_{i}$ succeeds or when a {\tt return} expression is
evaluated in {\it collectExpression}.  The value returned by the
collection is either a list or a stream of elements, one for each
iteration of the {\it collectExpression}.\\
}

%Original Page 131

Be careful when you use {\tt while} 
\index{stream!using while @{using {\tt while}}} 
to create a stream.  By default, Axiom tries to compute and
display the first ten elements of a stream.  If the {\tt while} condition
is not satisfied quickly, Axiom can spend a long (possibly infinite)
time trying to compute \index{stream!number of elements computed} the
elements.  Use {\tt )set streams calculate} to change the default to
something else.  \index{set streams calculate} This also affects the
number of terms computed and displayed for power series.  For the
purposes of this book, we have used this system command to display
fewer than ten terms.

Use nested iterators to create lists of \index{iteration!nested} lists
which can then be given as an argument to {\bf matrix}.
\spadcommand{matrix [ [x**i+j for i in 1..3] for j in 10..12]}
$$
\left[
\begin{array}{ccc}
{x+{10}} & {{x \sp 2}+{10}} & {{x \sp 3}+{10}} \\ 
{x+{11}} & {{x \sp 2}+{11}} & {{x \sp 3}+{11}} \\ 
{x+{12}} & {{x \sp 2}+{12}} & {{x \sp 3}+{12}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

You can also create lists of streams, streams of lists and streams of
streams.  Here is a stream of streams.
\spadcommand{[ [i/j for i in j+1..] for j in 1..]}
$$
\begin{array}{@{}l}
\left[
{\left[ 2,  3,  4,  5,  6,  7,  8,  9,  {10},  {11},  
\ldots 
\right]},
 {\left[ {\frac{3}{2}},  2,  {\frac{5}{2}},  3,  {\frac{7}{2}},  4,  
{\frac{9}{2}},  5,  {\frac{11}{2}},  6,  \ldots 
\right]},
\right.
\\
\\
\displaystyle
 {\left[ {\frac{4}{3}},  {\frac{5}{3}},  2,  {\frac{7}{3}},  {\frac{8}{3}}, 
 3,  {\frac{10}{3}},  {\frac{11}{3}},  4,  {\frac{13}{3}},  
\ldots 
\right]},
 {\left[ {\frac{5}{4}},  {\frac{3}{2}},  {\frac{7}{4}},  2,  {\frac{9}{4}}, 
 {\frac{5}{2}},  {\frac{11}{4}},  3,  {\frac{13}{4}},  {\frac{7}{2}}, 
 \ldots 
\right]},
\\
\\
\displaystyle
 {\left[ {\frac{6}{5}},  {\frac{7}{5}},  {\frac{8}{5}},  {\frac{9}{5}},  2, 
 {\frac{11}{5}},  {\frac{12}{5}},  {\frac{13}{5}},  {\frac{14}{5}}, 
 3,  \ldots 
\right]},
 {\left[ {\frac{7}{6}},  {\frac{4}{3}},  {\frac{3}{2}},  {\frac{5}{3}},  
{\frac{11}{6}},  2,  {\frac{13}{6}},  {\frac{7}{3}},  {\frac{5}{2}},  
{\frac{8}{3}},  \ldots 
\right]},
\\
\\
\displaystyle
 {\left[ {\frac{8}{7}},  {\frac{9}{7}},  {\frac{10}{7}},  {\frac{11}{7}}, 
 {\frac{12}{7}},  {\frac{13}{7}},  2,  {\frac{15}{7}},  {\frac{16}{7}},
 {\frac{17}{7}},  \ldots 
\right]},
 {\left[ {\frac{9}{8}},  {\frac{5}{4}},  {\frac{11}{8}},  {\frac{3}{2}},  
 {\frac{13}{8}},  {\frac{7}{4}},  {\frac{15}{8}},  2,  {\frac{17}{8}}, 
 {\frac{9}{4}},  \ldots 
\right]},
\\
\\
\displaystyle
 {\left[ {\frac{10}{9}},  {\frac{11}{9}},  {\frac{4}{3}},  {\frac{13}{9}},
 {\frac{14}{9}},  {\frac{5}{3}},  {\frac{16}{9}},  {\frac{17}{9}}, 
  2,  {\frac{19}{9}},  \ldots 
\right]},
\\
\\
\displaystyle
\left.
 {\left[ {\frac{11}{10}},  {\frac{6}{5}},  {\frac{13}{10}},  {\frac{7}{5}},
  {\frac{3}{2}},  {\frac{8}{5}},  {\frac{17}{10}}, {\frac{9}{5}},
  {\frac{19}{10}},  2,  \ldots 
\right]},
 \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream Stream Fraction Integer}

You can use parallel iteration across lists and streams to create
\index{iteration!parallel} new lists.
\spadcommand{[i/j for i in 3.. by 10 for j in 2..]}
$$
\left[
{\frac{3}{2}},  {\frac{13}{3}},  {\frac{23}{4}},  {\frac{33}{5}},  
{\frac{43}{6}},  {\frac{53}{7}},  {\frac{63}{8}},  {\frac{73}{9}},  
{\frac{83}{10}},  {\frac{93}{11}},  \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

Iteration stops if the end of a list or stream is reached.
\spadcommand{[i**j for i in 1..7 for j in 2.. ]}
$$
\left[
1,  8,  {81},  {1024},  {15625},  {279936},  {5764801} 
\right]
$$
\returnType{Type: Stream Integer}

%or a while condition fails.
%\spadcommand{[i**j for i in 1..  for j in 2.. while i + j < 5 ]}
%tpdhere
%   There are no library operations named swhile 
%      Use HyperDoc Browse or issue
%                               )what op swhile
%      to learn if there is any operation containing " swhile " in its 
%      name.
% 
%   Cannot find a definition or applicable library operation named 
%      swhile with argument type(s) 
%     (Record(part1: PositiveInteger,part2: PositiveInteger) -> Boolean)
%     InfiniteTuple Record(part1: PositiveInteger,part2: PositiveInteger)
%      
%      Perhaps you should use "@" to indicate the required return type, 
%      or "$" to specify which version of the function you need.

As with loops, you can combine these modifiers to make very
complicated conditions.
\spadcommand{[ [ [i,j] for i in 10..15 | prime? i] for j in 17..22 | j = squareFreePart j]}
$$
\left[
{\left[ {\left[ {11},  {17} 
\right]},
 {\left[ {13},  {17} 
\right]}
\right]},
 {\left[ {\left[ {11},  {19} 
\right]},
 {\left[ {13},  {19} 
\right]}
\right]},
 {\left[ {\left[ {11},  {21} 
\right]},
 {\left[ {13},  {21} 
\right]}
\right]},
 {\left[ {\left[ {11},  {22} 
\right]},
 {\left[ {13},  {22} 
\right]}
\right]}
\right]
$$
\returnType{Type: List List List PositiveInteger}

%Original Page 132

See \domainref{List} and \domainref{Stream} 
for more information on creating and
manipulating lists and streams, respectively.

\section{An Example: Streams of Primes}
\label{ugLangStreamsPrimes}

We conclude this chapter with an example of the creation and
manipulation of infinite streams of prime integers.  This might be
useful for experiments with numbers or other applications where you
are using sequences of primes over and over again.  As for all
streams, the stream of primes is only computed as far out as you need.
Once computed, however, all the primes up to that point are saved for
future reference.

Two useful operations provided by the Axiom library are
\spadfunFrom{prime?}{IntegerPrimesPackage} and
\spadfunFrom{nextPrime}{IntegerPrimesPackage}.  A straight-forward way
to create a stream of prime numbers is to start with the stream of
positive integers $[2,..]$ and filter out those that are prime.

Create a stream of primes.
\spadcommand{primes : Stream Integer := [i for i in 2.. | prime? i]}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

A more elegant way, however, is to use the
\spadfunFrom{generate}{Stream} operation from {\tt Stream}.  Given an
initial value $a$ and a function $f$, \spadfunFrom{generate}{Stream}
constructs the stream $[a, f(a), f(f(a)), ...]$.  This function gives
you the quickest method of getting the stream of primes.

This is how you use \spadfunFrom{generate}{Stream} to generate an
infinite stream of primes.
\spadcommand{primes := generate(nextPrime,2)}
$$
\left[
2,  3,  5,  7,  {11},  {13},  {17},  {19},  {23},  {29},  
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

Once the stream is generated, you might only be interested in primes
starting at a particular value.
\spadcommand{smallPrimes := [p for p in primes | p > 1000]}
$$
\left[
{1009},  {1013},  {1019},  {1021},  {1031},  {1033},  {1039},  
{1049},  {1051},  {1061},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Here are the first 11 primes greater than 1000.
\spadcommand{[p for p in smallPrimes for i in 1..11]}
$$
\left[
{1009},  {1013},  {1019},  {1021},  {1031},  {1033},  {1039},  
{1049},  {1051},  {1061},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Here is a stream of primes between 1000 and 1200.
\spadcommand{[p for p in smallPrimes while p < 1200]}
$$
\left[
{1009},  {1013},  {1019},  {1021},  {1031},  {1033},  {1039},  
{1049},  {1051},  {1061},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

To get these expanded into a finite stream, you call
\spadfunFrom{complete}{Stream} on the stream.
\spadcommand{complete \%}
$$
\left[
{1009},  {1013},  {1019},  {1021},  {1031},  {1033},  {1039},  
{1049},  {1051},  {1061},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

%Original Page 133

Twin primes are consecutive odd number pairs which are prime.
Here is the stream of twin primes.
\spadcommand{twinPrimes := [ [p,p+2] for p in primes | prime?(p + 2)]}
$$
\begin{array}{@{}l}
\left[
{\left[ 3,  5 \right]},
{\left[ 5,  7 \right]},
{\left[ {11},  {13} \right]},
{\left[ {17},  {19} \right]},
{\left[ {29},  {31} \right]},
{\left[ {41},  {43} \right]},
{\left[ {59},  {61} \right]},
{\left[ {71},  {73} \right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ {101},  {103} \right]},
{\left[ {107},  {109} \right]},
 \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream List Integer}

Since we already have the primes computed we can avoid the call to
\spadfunFrom{prime?}{IntegerPrimesPackage} by using a double
iteration.  This time we'll just generate a stream of the first of the
twin primes.
\spadcommand{firstOfTwins:= [p for p in primes for q in rest primes | q=p+2]}
$$
\left[
3,  5,  {11},  {17},  {29},  {41},  {59},  {71},  {101},  
{107},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Let's try to compute the infinite stream of triplet primes, the set of
primes $p$ such that $[p,p+2,p+4]$ are primes. For example, $[3,5,7]$
is a triple prime.  We could do this by a triple {\tt for} iteration.  A
more economical way is to use {\bf firstOfTwins}.  This time however,
put a semicolon at the end of the line.

Create the stream of {\bf firstTriplets}.  Put a semicolon at the end so
that no elements are computed.
\spadcommand{firstTriplets := [p for p in firstOfTwins for q in rest firstOfTwins | q = p+2];}
\returnType{Type: Stream Integer}

What happened?  As you know, by default Axiom displays the first ten
elements of a stream when you first display it.  And, therefore, it
needs to compute them!  If you want {\it no} elements computed, just
terminate the expression by a semicolon (``{\tt ;}'').  The semi-colon
prevents the display of the result of evaluating the expression.
Since no stream elements are needed for display (or anything else, so
far), none are computed.

Compute the first triplet prime.
\spadcommand{firstTriplets.1}
$$
3 
$$
\returnType{Type: PositiveInteger}

If you want to compute another, just ask for it.  But wait a second!
Given three consecutive odd integers, one of them must be divisible by
$3$. Thus there is only one triplet prime.  But suppose that you did not
know this and wanted to know what was the tenth triplet prime.
\begin{verbatim}
firstTriples.10
\end{verbatim}

To compute the tenth triplet prime, Axiom first must compute the
second, the third, and so on.  But since there isn't even a second
triplet prime, Axiom will compute forever.  Nonetheless, this effort
can produce a useful result.  After waiting a bit, hit \fbox{\bf Ctrl-c}.
The system responds as follows.

%Original Page 134

\begin{verbatim}
   >> System error:
   Console interrupt.
   You are being returned to the top level of
   the interpreter.
\end{verbatim}

If you want to know how many primes have been computed, type:
\begin{verbatim}
numberOfComputedEntries primes
\end{verbatim}

and, for this discussion, let's say that the result is $2045$.
How big is the $2045$-th prime?
\spadcommand{primes.2045}
$$
17837 
$$
\returnType{Type: PositiveInteger}

What you have learned is that there are no triplet primes between 5
and 17837.  Although this result is well known (some might even say
trivial), there are many experiments you could make where the result
is not known.  What you see here is a paradigm for testing of
hypotheses.  Here our hypothesis could have been: ``there is more than
one triplet prime.''  We have tested this hypothesis for 17837 cases.
With streams, you can let your machine run, interrupt it to see how
far it has progressed, then start it up and let it continue from where
it left off.

%\setcounter{chapter}{5}

%Original Page 135

\chapter{User-Defined Functions, Macros and Rules}
\label{ugUser}

In this chapter we show you how to write functions and macros,
and we explain how Axiom looks for and applies them.
We show some simple one-line examples of functions, together
with larger ones that are defined piece-by-piece or through the use of
piles.

\section{Functions vs. Macros}
\label{ugUserFunMac}

A function is a program to perform some \index{function!vs. macro}
computation.  \index{macro!vs. function} Most functions have names so
that it is easy to refer to them.  A simple example of a function is
one named \spadfunFrom{abs}{Integer} which computes the absolute value
of an integer.

This is a use of the ``absolute value'' library function for integers.
\spadcommand{abs(-8)}
$$
8 
$$
\returnType{Type: PositiveInteger}

This is an unnamed function that does the same thing, using the
``maps-to'' syntax {\tt +->} that we discuss in 
\sectionref{ugUserAnon}.
\spadcommand{(x +-> if x < 0 then -x else x)(-8)}
$$
8 
$$
\returnType{Type: PositiveInteger}

%Original Page 136

Functions can be used alone or serve as the building blocks for larger
programs.  Usually they return a value that you might want to use in
the next stage of a computation, but not always (for example, see
\domainref{Exit} and \domainref{Void}.
They may also read data from your
keyboard, move information from one place to another, or format and
display results on your screen.

In Axiom, as in mathematics, functions \index{function!parameters} are
usually parameterized.  Each time you {\it call} (some people say {\it
apply} or invoke) a function, you give \index{parameters to a
function} values to the parameters (variables).  Such a value is
called an {\it argument} of \index{function!arguments} the function.
Axiom uses the arguments for the computation.  In this way you get
different results depending on what you ``feed'' the function.

Functions can have local variables or refer to global variables in the
workspace.  Axiom can often compile functions so that they execute
very efficiently.  Functions can be passed as arguments to other
functions.

Macros are textual substitutions.  They are used to clarify the
meaning of constants or expressions and to be templates for frequently
used expressions.  Macros can be parameterized but they are not
objects that can be passed as arguments to functions.  In effect,
macros are extensions to the Axiom expression parser.

\section{Macros}
\label{ugUserMacros}

A {\it macro} provides general textual substitution of \index{macro}
an Axiom expression for a name.  You can think of a macro as being a
generalized abbreviation.  You can only have one macro in your
workspace with a given name, no matter how many arguments it has.

\boxer{4.6in}{
The two general forms for macros are
\begin{center}
{\tt macro} {\it name} {\tt ==} {\it body} \\
{\tt macro} {\it name(arg1,...)} {\tt ==} {\it body}
\end{center}
where the body of the macro can be any Axiom expression.\\
}

For example, suppose you decided that you like to use {\tt df} for 
{\tt D}.  You define the macro {\tt df} like this.
\spadcommand{macro df == D}
\returnType{Type: Void}

Whenever you type {\tt df}, the system expands it to {\tt D}.
\spadcommand{df(x**2 + x + 1,x)}
$$
{2 \  x}+1 
$$
\returnType{Type: Polynomial Integer}

%Original Page 137

Macros can be parameterized and so can be used for many different
kinds of objects.
\spadcommand{macro ff(x) == x**2 + 1}
\returnType{Type: Void}

Apply it to a number, a symbol, or an expression.
\spadcommand{ff z}
$$
{z \sp 2}+1 
$$
\returnType{Type: Polynomial Integer}

Macros can also be nested, but you get an error message if you
run out of space because of an infinite nesting loop.
\spadcommand{macro gg(x) == ff(2*x - 2/3)}
\returnType{Type: Void}

This new macro is fine as it does not produce a loop.
\spadcommand{gg(1/w)}
$$
\frac{{{13} \  {w \sp 2}} -{{24} \  w}+{36}}{9 \  {w \sp 2}} 
$$
\returnType{Type: Fraction Polynomial Integer}

This, however, loops since {\tt gg} is defined in terms of {\tt ff}.
\spadcommand{macro ff(x) == gg(-x)}
\returnType{Type: Void}

The body of a macro can be a block.
\spadcommand{macro next == (past := present; present := future; future := past + present)}
\returnType{Type: Void}

Before entering {\tt next}, we need values for {\tt present} and {\tt future}.
\spadcommand{present : Integer := 0}
$$
0 
$$
\returnType{Type: Integer}

\spadcommand{future : Integer := 1}
$$
1 
$$
\returnType{Type: Integer}

Repeatedly evaluating {\tt next} produces the next Fibonacci number.
\spadcommand{next}
$$
1 
$$
\returnType{Type: Integer}

And the next one.
\spadcommand{next}
$$
2 
$$
\returnType{Type: Integer}

%Original Page 138

Here is the infinite stream of the rest of the Fibonacci numbers.
\spadcommand{[next for i in 1..]}
$$
\left[
3,  5,  8,  {13},  {21},  {34},  {55},  {89},  {144},  
{233},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Bundle all the above lines into a single macro.
\begin{verbatim}
macro fibStream ==
  present : Integer := 1
  future : Integer := 1
  [next for i in 1..] where
    macro next ==
      past := present
      present := future
      future := past + present
\end{verbatim}
\returnType{Type: Void}

Use \spadfunFrom{concat}{Stream} to start with the first two
\index{Fibonacci numbers} Fibonacci numbers.
\spadcommand{concat([1,1],fibStream)}
$$
\left[
1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55}, 
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

The library operation {\bf fibonacci} is an easier way to compute
these numbers.

\spadcommand{[fibonacci i for i in 1..]}
$$
\left[
1,  1,  2,  3,  5,  8,  {13},  {21},  {34},  {55},  
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

\section{Introduction to Functions}
\label{ugUserIntro}

Each name in your workspace can refer to a single object.  This may be
any kind of object including a function.  You can use interactively
any function from the library or any that you define in the workspace.
In the library the same name can have very many functions, but you can
have only one function with a given name, although it can have any
number of arguments that you choose.

If you define a function in the workspace that has the same name and
number of arguments as one in the library, then your definition takes
precedence.  In fact, to get the library function you must
{\sl package-call} it (see \sectionref{ugTypesPkgCall}).

To use a function in Axiom, you apply it to its arguments.  Most
functions are applied by entering the name of the function followed by
its argument or arguments.
\spadcommand{factor(12)}
$$
{2 \sp 2} \  3 
$$
\returnType{Type: Factored Integer}

%Original Page 139

Some functions like ``{\tt +}'' have {\it infix} {\it operators} as names.
\spadcommand{3 + 4}
$$
7 
$$
\returnType{Type: PositiveInteger}

The function ``{\tt +}'' has two arguments.  When you give it more than
two arguments, Axiom groups the arguments to the left.  This
expression is equivalent to $(1 + 2) + 7$.
\spadcommand{1 + 2 + 7}
$$
10 
$$
\returnType{Type: PositiveInteger}

All operations, including infix operators, can be written in prefix
form, that is, with the operation name followed by the arguments in
parentheses.  For example, $2 + 3$ can alternatively be written as
$+(2,3)$.  But $+(2,3,4)$ is an error since {\tt +} takes only two
arguments.

Prefix operations are generally applied before the infix operation.\\
Thus the form ${\bf factorial\ } 3 + 1$ means ${\bf factorial}(3) + 1$
producing $7$, and $-2 + 5$ means $(-2) + 5$ producing $3$.  An
example of a prefix operator is prefix ``{\tt -}''.  For example, $- 2 +
5$ converts to $(- 2) + 5$ producing the value $3$.  Any prefix
function taking two arguments can be written in an infix manner by
putting an ampersand ``{\tt \&}'' before the name.  Thus ${\tt D}(2*x,x)$ can
be written as $2*x\ {\tt \&D}\ x$ returning $2$.

Every function in Axiom is identified by a {\it name} and 
{\it type}. (An exception is an ``anonymous function'' discussed in
\sectionref{ugUserAnon}.)
The type of a function is always a mapping of the
form \spadsig{Source}{Target} where {\tt Source} and {\tt Target} are types.
To enter a type from the keyboard, enter the arrow by using a hyphen
``{\tt -}'' followed by a greater-than sign ``{\tt >}'', e.g. 
{\tt Integer -> Integer}.

Let's go back to ``{\tt +}''.  There are many ``{\tt +}'' functions in the
Axiom library: one for integers, one for floats, another for rational
numbers, and so on.  These ``{\tt +}'' functions have different types and
thus are different functions.  You've seen examples of this 
{\it overloading} before---using the same name for different functions.
Overloading is the rule rather than the exception.  You can add two
integers, two polynomials, two matrices or two power series.  These
are all done with the same function name but with different functions.

%Original Page 140

\section{Declaring the Type of Functions}
\label{ugUserDeclare}

In \sectionref{ugTypesDeclare} we discussed
how to declare a variable to restrict the kind of values that can be
assigned to it.  In this section we show how to declare a variable
that refers to function objects.

\boxer{4.6in}{
A function is an object of type
\begin{center}
{\sf Source $\rightarrow$ Type}
\end{center}

where {\tt Source} and {\tt Target} can be any type.  A common type
for {\tt Source} is {\tt Tuple}($\hbox{\it T}_{1}$, \ldots, 
$\hbox{\it T}_{n}$), usually written ($\hbox{\it T}_{1}$, \ldots, 
$\hbox{\it T}_{n}$), to indicate a function of $n$ arguments.\\
}

If $g$ takes an {\tt Integer}, a {\tt Float} and another {\tt Integer}, 
and returns a {\tt String}, the declaration is written:
\spadcommand{g: (Integer,Float,Integer) -> String}
\returnType{Type: Void}

The types need not be written fully; using abbreviations, the above
declaration is:
\spadcommand{g: (INT,FLOAT,INT) -> STRING}
\returnType{Type: Void}

It is possible for a function to take no arguments.  If $ h$ takes no
arguments but returns a {\tt Polynomial} {\tt Integer}, any of the
following declarations is acceptable.
\spadcommand{h: () -> POLY INT}
\returnType{Type: Void}

\spadcommand{h: () -> Polynomial INT}
\returnType{Type: Void}

\spadcommand{h: () -> POLY Integer}
\returnType{Type: Void}

\boxer{4.6in}{
Functions can also be declared when they are being defined.
The syntax for combined declaration/definition is:
\begin{center}
\frenchspacing{\tt {\it functionName}($\hbox{\it parm}_{1}$: 
$\hbox{\it parmType}_{1}$, \ldots, $\hbox{\it parm}_{N}$: 
$\hbox{\it parmType}_{N}$): {\it functionReturnType}}
\end{center}
{\ }%force a blank line 
}

The following definition fragments show how this can be done for
the functions $g$ and $h$ above.
\begin{verbatim}
g(arg1: INT, arg2: FLOAT, arg3: INT): STRING == ...

h(): POLY INT == ...
\end{verbatim}

%Original Page 141

A current restriction on function declarations is that they must
involve fully specified types (that is, cannot include modes involving
explicit or implicit ``{\tt ?}'').  For more information on declaring
things in general, see \sectionref{ugTypesDeclare}.

\section{One-Line Functions}
\label{ugUserOne}

As you use Axiom, you will find that you will write many short
functions \index{function!one-line definition} to codify sequences of
operations that you often perform.  In this section we write some
simple one-line functions.

This is a simple recursive factorial function for positive integers.
\spadcommand{fac n == if n < 3 then n else n * fac(n-1)}
\returnType{Type: Void}

\spadcommand{fac 10}
$$
3628800 
$$
\returnType{Type: PositiveInteger}

This function computes $1 + 1/2 + 1/3 + ... + 1/n$.
\spadcommand{s n == reduce(+,[1/i for i in 1..n])}
\returnType{Type: Void}

\spadcommand{s 50}
$$
\frac{13943237577224054960759}{3099044504245996706400} 
$$
\returnType{Type: Fraction Integer}

This function computes a Mersenne number, several of which are prime.
\index{Mersenne number}
\spadcommand{mersenne i == 2**i - 1}
\returnType{Type: Void}

If you type {\tt mersenne}, Axiom shows you the function definition.
\spadcommand{mersenne}
$$
mersenne \  i \  == \  {{2 \sp i} -1} 
$$
\returnType{Type: FunctionCalled mersenne}

Generate a stream of Mersenne numbers.
\spadcommand{[mersenne i for i in 1..]}
$$
\left[
1,  3,  7,  {15},  {31},  {63},  {127},  {255},  {511},  
{1023},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

%Original Page 142

Create a stream of those values of $i$ such that {\tt mersenne(i)} is prime.
\spadcommand{mersenneIndex := [n for n in 1.. | prime?(mersenne(n))]}
\begin{verbatim}
   Compiling function mersenne with type PositiveInteger -> Integer 
\end{verbatim}
$$
\left[
2,  3,  5,  7,  {13},  {17},  {19},  {31},  {61},  {89},  
\ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

Finally, write a function that returns the $n$-th Mersenne prime.
\spadcommand{mersennePrime n == mersenne mersenneIndex(n)}
\returnType{Type: Void}

\spadcommand{mersennePrime 5}
$$
8191 
$$
\returnType{Type: PositiveInteger}

\section{Declared vs. Undeclared Functions}
\label{ugUserDecUndec}

If you declare the type of a function, you can apply it to any data
that can be converted to the source type of the function.

Define {\bf f} with type {\sf Integer $\rightarrow$ Integer}.
\spadcommand{f(x: Integer): Integer == x + 1}
\begin{verbatim}
   Function declaration f : Integer -> Integer has been added to 
      workspace.
\end{verbatim}
\returnType{Type: Void}

The function {\bf f} can be applied to integers, \ldots
\spadcommand{f 9}
\begin{verbatim}
   Compiling function f with type Integer -> Integer 
\end{verbatim}
$$
10 
$$
\returnType{Type: PositiveInteger}

and to values that convert to integers, \ldots
\spadcommand{f(-2.0)}
$$
-1 
$$
\returnType{Type: Integer}

but not to values that cannot be converted to integers.
\spadcommand{f(2/3)}
\begin{verbatim}
   Conversion failed in the compiled user function f .
 
   Cannot convert from type Fraction Integer to Integer for value
   2
   -
   3
\end{verbatim}

To make the function over a wide range of types, do not declare its type.

%Original Page 143

Give the same definition with no declaration.
\spadcommand{g x == x + 1}
\returnType{Type: Void}

If $x + 1$ makes sense, you can apply {\bf g} to $x$.
\spadcommand{g 9}
\begin{verbatim}
   Compiling function g with type PositiveInteger -> PositiveInteger 
\end{verbatim}
$$
10 
$$
\returnType{Type: PositiveInteger}

A version of {\bf g} with different argument types get compiled for
each new kind of argument used.
\spadcommand{g(2/3)}
\begin{verbatim}
   Compiling function g with type Fraction Integer -> Fraction Integer 
\end{verbatim}
$$
\frac{5}{3}
$$
\returnType{Type: Fraction Integer}

Here $x+1$ for $x = ``axiom''$ makes no sense.
\spadcommand{g("axiom")}
\begin{verbatim}
   There are 11 exposed and 5 unexposed library operations named + 
      having 2 argument(s) but none was determined to be applicable. 
      Use HyperDoc Browse, or issue
                                )display op +
      to learn more about the available operations. Perhaps 
      package-calling the operation or using coercions on the arguments
      will allow you to apply the operation.
   Cannot find a definition or applicable library operation named + 
      with argument type(s) 
                                   String
                               PositiveInteger
      
      Perhaps you should use "@" to indicate the required return type, 
      or "$" to specify which version of the function you need.
   Axiom will attempt to step through and interpret the code.
   There are 11 exposed and 5 unexposed library operations named + 
      having 2 argument(s) but none was determined to be applicable. 
      Use HyperDoc Browse, or issue
                                )display op +
      to learn more about the available operations. Perhaps 
      package-calling the operation or using coercions on the arguments
      will allow you to apply the operation.
 
   Cannot find a definition or applicable library operation named + 
      with argument type(s) 
                                   String
                               PositiveInteger
      
      Perhaps you should use "@" to indicate the required return type, 
      or "$" to specify which version of the function you need.
\end{verbatim}

As you will see in \sectionref{ugCategories}, 
Axiom has a formal idea of categories for what ``makes sense.''

\section{Functions vs. Operations}
\label{ugUserDecOpers}

A function is an object that you can create, manipulate, pass to, and
return from functions (for some interesting examples of library
functions that manipulate functions, see \domainref{MappingPackage1}.
Yet, we often seem to use
the term {\it operation} and {\it function} interchangeably in Axiom.  What
is the distinction?

First consider values and types associated with some variable $n$ in
your workspace.  You can make the declaration {\tt n : Integer}, then
assign $n$ an integer value.  You then speak of the integer $n$.
However, note that the integer is not the name $n$ itself, but the
value that you assign to $n$.

%Original Page 144

Similarly, you can declare a variable $f$ in your workspace to have
type {\sf Integer $\rightarrow$ Integer}, then assign $f$, through a
definition or an assignment of an anonymous function.  You then speak
of the function $f$.  However, the function is not $f$, but the value
that you assign to $f$.

A function is a value, in fact, some machine code for doing something.
Doing what?  Well, performing some {\it operation}.  Formally, an
operation consists of the constituent parts of $f$ in your workspace,
excluding the value; thus an operation has a name and a type.  An
operation is what domains and packages export.  Thus {\tt Ring}
exports one operation ``{\tt +}''.  Every ring also exports this
operation.  Also, the author of every ring in the system is obliged
under contract (see \sectionref{ugPackagesAbstract} 
to provide an implementation for this operation.

This chapter is all about functions---how you create them
interactively and how you apply them to meet your needs.  In 
\sectionref{ugPackages} you will learn how to
create them for the Axiom library.  Then in \sectionref{ugCategories},
you will learn about categories and exported operations.

\section{Delayed Assignments vs. Functions with No Arguments}
\label{ugUserDelay}

In \sectionref{ugLangAssign} we discussed the
difference between immediate and \index{function!with no arguments}
delayed assignments.  In this section we show the difference between
delayed assignments and functions of no arguments.

A function of no arguments is sometimes called a {\it nullary function.}
\spadcommand{sin24() == sin(24.0)}
\returnType{Type: Void}

You must use the parentheses ``{\tt ()}'' to evaluate it.  Like a
delayed assignment, the right-hand-side of a function evaluation is
not evaluated until the left-hand-side is used.
\spadcommand{sin24()}
\begin{verbatim}
   Compiling function sin24 with type () -> Float 
\end{verbatim}
$$
-{0.9055783620\ 0662384514} 
$$
\returnType{Type: Float}

If you omit the parentheses, you just get the function definition.
\spadcommand{sin24}
$$
sin24 \  {\left( 
\right)}
\  == \  {\sin 
\left(
{{24.0}} 
\right)}
$$
\returnType{Type: FunctionCalled sin24}

You do not use the parentheses ``{\tt ()}'' in a delayed assignment\ldots

\spadcommand{cos24 == cos(24.0)}
\returnType{Type: Void}

%Original Page 145

nor in the evaluation.

\spadcommand{cos24}
\begin{verbatim}
   Compiling body of rule cos24 to compute value of type Float 
\end{verbatim}
$$
0.4241790073\ 3699697594 
$$
\returnType{Type: Float}

The only syntactic difference between delayed assignments
and nullary functions is that you use ``{\tt ()}'' in the latter case.

\section{How Axiom Determines What Function to Use}
\label{ugUserUse}

What happens if you define a function that has the same name as a
library function?  Well, if your function has the same name and number
of arguments (we sometimes say {\it arity}) as another function in the
library, then your function covers up the library function.  If you
want then to call the library function, you will have to {\sl package-call}
it.  Axiom can use both the functions you write and those that come
from the library.  Let's do a simple example to illustrate this.

Suppose you (wrongly!) define {\bf sin} in this way.
\spadcommand{sin x == 1.0}
\returnType{Type: Void}

The value $1.0$ is returned for any argument.
\spadcommand{sin 4.3}
\begin{verbatim}
   Compiling function sin with type Float -> Float 
\end{verbatim}
$$
1.0 
$$
\returnType{Type: Float}

If you want the library operation, we have to package-call it
(see \sectionref{ugTypesPkgCall} for more information).
\spadcommand{sin(4.3)\$Float}
$$
-{0.9161659367 4945498404} 
$$
\returnType{Type: Float}

\spadcommand{sin(34.6)\$Float}
$$
-{0.0424680347 1695010154 3} 
$$
\returnType{Type: Float}

Even worse, say we accidentally used the same name as a library
function in the function.
\spadcommand{sin x == sin x}
\begin{verbatim}
   Compiled code for sin has been cleared.
   1 old definition(s) deleted for function or rule sin 
\end{verbatim}
\returnType{Type: Void}

Then Axiom definitely does not understand us.
\spadcommand{sin 4.3}
\begin{verbatim}
Axiom cannot determine the type of sin because it cannot analyze 
   the non-recursive part, if that exists. This may be remedied 
   by declaring the function.
\end{verbatim}

%Original Page 146

Again, we could package-call the inside function.
\spadcommand{sin x == sin(x)\$Float}
\begin{verbatim}
   1 old definition(s) deleted for function or rule sin 
\end{verbatim}
\returnType{Type: Void}

\spadcommand{sin 4.3}
\begin{verbatim}
   Compiling function sin with type Float -> Float 

+++ |*1;sin;1;G82322| redefined
\end{verbatim}
$$
-{0.9161659367 4945498404} 
$$
\returnType{Type: Float}

Of course, you are unlikely to make such obvious errors.  It is more
probable that you would write a function and in the body use a
function that you think is a library function.  If you had also
written a function by that same name, the library function would be
invisible.

How does Axiom determine what library function to call?  It very much
depends on the particular example, but the simple case of creating the
polynomial $x + 2/3$ will give you an idea.
\begin{enumerate}
\item The $x$ is analyzed and its default type is
{\tt Variable(x)}.
\item The $2$ is analyzed and its default type is
{\tt PositiveInteger}.
\item The $3$ is analyzed and its default type is
{\tt PositiveInteger}.
\item Because the arguments to ``{\tt /}'' are integers, Axiom
gives the expression $2/3$ a default target type of
{\tt Fraction(Integer)}.
\item Axiom looks in {\tt PositiveInteger} for ``{\tt /}''.
It is not found.
\item Axiom looks in {\tt Fraction(Integer)} for ``{\tt /}''.
It is found for arguments of type {\tt Integer}.
\item The $2$ and $3$ are converted to objects of type
{\tt Integer} (this is trivial) and ``{\tt /}'' is applied,
creating an object of type {\tt Fraction(Integer)}.
\item No ``{\tt +}'' for arguments of types {\tt Variable(x)} and
{\tt Fraction(Integer)} are found in either domain.
\item Axiom resolves
\index{resolve}
(see \sectionref{ugTypesResolve})
the types and gets \\
{\tt Polynomial(Fraction(Integer))}.
\item The $x$ and the $2/3$ are converted to objects of this
type and {\tt +} is applied, yielding the answer, an object of type
{\tt Polynomial (Fraction (Integer))}.
\end{enumerate}

\section{Compiling vs. Interpreting}
\label{ugUserCompInt}

When possible, Axiom completely determines the type of every object in
a function, then translates the function definition to Common Lisp or
to machine code (see the next section).  This translation,
\index{function!compiler} called compilation, happens the first time
you call the function and results in a computational delay.
Subsequent function calls with the same argument types use the
compiled version of the code without delay.

%Original Page 147

If Axiom cannot determine the type of everything, the function may
still be executed \index{function!interpretation} but
\index{interpret-code mode} in interpret-code mode: each statement in
the function is analyzed and executed as the control flow indicates.
This process is slower than executing a compiled function, but it
allows the execution of code that may involve objects whose types
change.

\boxer{4.6in}{
If Axiom decides that it cannot compile the code, it issues a message
stating the problem and then the following message:
\begin{center}
{\bf We will attempt to step through and interpret the code.}
\end{center}

This is not a time to panic.  \index{panic!avoiding} Rather, it just
means that what you gave to Axiom is somehow ambiguous: either it is
not specific enough to be analyzed completely, or it is beyond Axiom's
present interactive compilation abilities.\\
}

This function runs in interpret-code mode, but it does not compile.
\begin{verbatim}
varPolys(vars) ==
  for var in vars repeat
    output(1 :: UnivariatePolynomial(var,Integer))
\end{verbatim}
\returnType{Type: Void}

For $vars$ equal to $['x, 'y, 'z]$, this function displays $1$ three times.
\spadcommand{varPolys ['x,'y,'z]}
\begin{verbatim}
Cannot compile conversion for types involving local variables. 
   In particular, could not compile the expression involving :: 
   UnivariatePolynomial(var,Integer) 
 Axiom will attempt to step through and interpret the code.
 1
 1
 1
\end{verbatim}
\returnType{Type: Void}

The type of the argument to {\bf output} changes in each iteration, so
Axiom cannot compile the function.  In this case, even the inner loop
by itself would have a problem:
\begin{verbatim}
for var in ['x,'y,'z] repeat
  output(1 :: UnivariatePolynomial(var,Integer))
\end{verbatim}
\begin{verbatim}
Cannot compile conversion for types involving local variables. 
   In particular, could not compile the expression involving :: 
   UnivariatePolynomial(var,Integer) 
 Axiom will attempt to step through and interpret the code.
 1
 1
 1
\end{verbatim}
\returnType{Type: Void}

%Original Page 148

Sometimes you can help a function to compile by using an extra
conversion or by using $pretend$.  \index{pretend} See
\sectionref{ugTypesSubdomains} for details.

When a function is compilable, you have the choice of whether it is
compiled to Common Lisp and then interpreted by the Common Lisp
interpreter or then further compiled from Common Lisp to machine code.
\index{machine code} The option is controlled via 
{\tt )set functions compile}.  
\index{set function compile} Issue {\tt )set functions compile on} 
to compile all the way to machine code.  With the default
setting {\tt )set functions compile off}, Axiom has its Common Lisp
code interpreted because the overhead of further compilation is larger
than the run-time of most of the functions our users have defined.
You may find that selectively turning this option on and off will
\index{performance} give you the best performance in your particular
application.  For example, if you are writing functions for graphics
applications where hundreds of points are being computed, it is almost
certainly true that you will get the best performance by issuing 
{\tt )set functions compile on}.

\section{Piece-Wise Function Definitions}
\label{ugUserPiece}

To move beyond functions defined in one line, we introduce in this
section functions that are defined piece-by-piece.  That is, we say
``use this definition when the argument is such-and-such and use this
other definition when the argument is that-and-that.''

\subsection{A Basic Example}
\label{ugUserPieceBasic}

There are many other ways to define a factorial function for
nonnegative integers.  You might 
\index{function!piece-wise definition} 
say \index{piece-wise function definition} factorial of
$0$ is $1$, otherwise factorial of $n$ is $n$ times factorial of
$n-1$.  Here is one way to do this in Axiom.

Here is the value for $n = 0$.
\spadcommand{fact(0) == 1}
\returnType{Type: Void}

Here is the value for $n > 0$.  The vertical bar ``{\tt |}'' means ``such
that''. \index{such that}
\spadcommand{fact(n | n > 0) == n * fact(n - 1)}
\returnType{Type: Void}

What is the value for $n = 7$?
\spadcommand{fact(7)}
\begin{verbatim}
   Compiling function fact with type Integer -> Integer 
   Compiling function fact as a recurrence relation.
\end{verbatim}
$$
5040
$$
\returnType{Type: PositiveInteger}

What is the value for $n = -3$?
\spadcommand{fact(-3)}
\begin{verbatim}
   You did not define fact for argument -3 .
\end{verbatim}

%Original Page 149

Now for a second definition.  Here is the value for $n = 0$.
\spadcommand{facto(0) == 1}
\returnType{Type: Void}

Give an error message if $n < 0$.
\spadcommand{facto(n | n < 0) == error "arguments to facto must be non-negative"}
\returnType{Type: Void}

Here is the value otherwise.
\spadcommand{facto(n) == n * facto(n - 1)}
\returnType{Type: Void}

What is the value for $n = 7$?
\spadcommand{facto(3)}
\begin{verbatim}
   Compiling function facto with type Integer -> Integer 
\end{verbatim}
$$
6 
$$
\returnType{Type: PositiveInteger}

What is the value for $n = -7$?
\spadcommand{facto(-7)}
\begin{verbatim}
   Error signalled from user code in function facto: 
      arguments to facto must be non-negative
\end{verbatim}
\returnType{Type: PositiveInteger}

To see the current piece-wise definition of a function, use 
{\tt )display value}.
\spadcommand{)display value facto}
\begin{verbatim}
   Definition:
     facto 0 == 1
     facto (n | n < 0) == 
       error(arguments to facto must be non-negative)
     facto n == n facto(n - 1)
\end{verbatim}

In general a {\it piece-wise definition} of a function consists of two
or more parts.  Each part gives a ``piece'' of the entire definition.
Axiom collects the pieces of a function as you enter them.  When you
ask for a value of the function, it then ``glues'' the pieces together
to form a function.

The two piece-wise definitions for the factorial function are examples
of recursive functions, that is, functions that are defined in terms
of themselves.  Here is an interesting doubly-recursive function.
This function returns the value $11$ for all positive integer
arguments.

Here is the first of two pieces.
\spadcommand{eleven(n | n < 1) == n + 11}
\returnType{Type: Void}

%Original Page 150

And the general case.
\spadcommand{eleven(m) == eleven(eleven(m - 12))}
\returnType{Type: Void}

Compute $elevens$, the infinite stream of values of $eleven$.
\spadcommand{elevens := [eleven(i) for i in 0..]}
$$
\left[
{11},  {11},  {11},  {11},  {11},  {11},  {11},  {11},  {11}, 
 {11},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

What is the value at $n = 200$?
\spadcommand{elevens 200}
$$
11 
$$
\returnType{Type: PositiveInteger}

What is the Axiom's definition of $eleven$?
\spadcommand{)display value eleven}
\begin{verbatim}
   Definition:
     eleven (m | m < 1) == m + 11
     eleven m == eleven(eleven(m - 12))
\end{verbatim}

\subsection{Picking Up the Pieces}
\label{ugUserPiecePicking}

Here are the details about how Axiom creates a function from its
pieces.  Axiom converts the $i$-th piece of a function definition
into a conditional expression of the form: 
{\tt if} $\hbox{\it pred}_{i}$ {\tt then} $\hbox{\it expression}_{i}$.  
If any new piece has a $\hbox{\it pred}_{i}$ that is 
identical (after all variables are uniformly named) to 
an earlier $\hbox{\it pred}_{j}$, the earlier piece is removed.  
Otherwise, the new piece is always added at the end.

\boxer{4.6in}{
If there are $n$ pieces to a function definition for $f$, the function
defined $f$ is: \newline
\hspace*{3pc}
{\tt if} $\hbox{\it pred}_{1}$ {\tt then} $\hbox{\it expression}_{1}$ {\tt else}\newline
\hspace*{6pc}. . . \newline
\hspace*{3pc}
{\tt if} $\hbox{\it pred}_{n}$ {\tt then} $\hbox{\it expression}_{n}$ {\tt else}\newline
\hspace*{3pc}
{\tt  error "You did not define f for argument <arg>."}\\
}

You can give definitions of any number of mutually recursive function
definitions, piece-wise or otherwise.  No computation is done until
you ask for a value.  When you do ask for a value, all the relevant
definitions are gathered, analyzed, and translated into separate
functions and compiled.

Let's recall the definition of {\bf eleven} from
the previous section. 
\spadcommand{eleven(n | n < 1) == n + 11}
\returnType{Type: Void}

%Original Page 151

\spadcommand{eleven(m) == eleven(eleven(m - 12))}
\returnType{Type: Void}

A similar doubly-recursive function below produces $-11$ for all
negative positive integers.  If you haven't worked out why or how 
{\bf eleven} works, the structure of this definition gives a clue.

This definition we write as a block.
\begin{verbatim}
minusEleven(n) ==
  n >= 0 => n - 11
  minusEleven (5 + minusEleven(n + 7))
\end{verbatim}
\returnType{Type: Void}

Define $s(n)$ to be the sum of plus and minus ``eleven'' functions
divided by $n$.  Since $11 - 11 = 0$, we define $s(0)$ to be $1$.
\spadcommand{s(0) == 1}
\returnType{Type: Void}

And the general term.
\spadcommand{s(n) == (eleven(n) + minusEleven(n))/n}
\returnType{Type: Void}

What are the first ten values of $s$?
\spadcommand{[s(n) for n in 0..]}
$$
\left[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

%% interpreter puts the rule at the end - should fix

% Oops! Evidently $s(0)$ should be $1$.
% Let's check the current definition of {\bf s} using {\tt )display}.

% \spadcommand{)display value s}

% Change the value at $n = 0$.

% \spadcommand{s(0) == 1}

% Now, what is the definition of {\bf s}?
% Note: {\it you can only replace a given piece if you give exactly the same
% predicate!}

% \spadcommand{)display value s}

Axiom can create infinite streams in the positive direction (for
example, for index values $0,1, \ldots$) or negative direction (for
example, for $0,-1,-2, \ldots$).  Here we would like a
stream of values of $s(n)$ that is infinite in both directions.  The
function $t(n)$ below returns the $n$-th term of the infinite stream 
$$[s(0), s(1), s(-1), s(2), s(-2), \ldots]$$ 
Its definition has three pieces.

Define the initial term.
\spadcommand{t(1) == s(0)}
\returnType{Type: Void}

The even numbered terms are the $s(i)$ for positive $i$.  We use
``{\tt quo}'' rather than ``{\tt /}'' since we want the result to be
an integer.

\spadcommand{t(n | even?(n)) == s(n quo 2)}
\returnType{Type: Void}

%Original Page 152

Finally, the odd numbered terms are the $s(i)$ for negative $i$.  In
piece-wise definitions, you can use different variables to define
different pieces. Axiom will not get confused.
\spadcommand{t(p) == s(- p quo 2)}
\returnType{Type: Void}

Look at the definition of $t$.  In the first piece, the variable $n$
was used; in the second piece, $p$.  Axiom always uses your last
variable to display your definitions back to you.
\spadcommand{)display value t}
\begin{verbatim}
   Definition:
     t 1 == s(0)
     t (p | even?(p)) == s(p quo 2)
     t p == s(- p quo 2)
\end{verbatim}

Create a series of values of $s$ applied to
alternating positive and negative arguments.
\spadcommand{[t(i) for i in 1..]}
\begin{verbatim}
   Compiling function s with type Integer -> Fraction Integer 
   Compiling function t with type PositiveInteger -> Fraction Integer 
\end{verbatim}
$$
\left[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

Evidently $t(n) = 1$ for all $i$. Check it at $n= 100$. 

\spadcommand{t(100)}
$$
1 
$$
\returnType{Type: Fraction Integer}

\subsection{Predicates}
\label{ugUserPiecePred}

We have already seen some examples of \index{function!predicate}
predicates \index{predicate!in function definition}
(\sectionref{ugUserPieceBasic}.
Predicates are {\tt Boolean}-valued expressions and Axiom uses them
for filtering collections (see \sectionref{ugLangIts}
and for placing constraints on function
arguments.  In this section we discuss their latter usage.

The simplest use of a predicate is one you don't see at all.
\spadcommand{opposite 'right == 'left}
\returnType{Type: Void}

Here is a longer way to give the ``opposite definition.''
\spadcommand{opposite (x | x = 'left) == 'right}
\returnType{Type: Void}

Try it out.
\spadcommand{for x in ['right,'left,'inbetween] repeat output opposite x}
\begin{verbatim}
Compiling function opposite with type 
   OrderedVariableList [right, left,inbetween] -> Symbol    
 left
 right
 
The function opposite is not defined for the given argument(s).
\end{verbatim}

%Original Page 153

Explicit predicates tell Axiom that the given function definition
piece is to be applied if the predicate evaluates to {\tt true} for
the arguments to the function.  You can use such ``constant''
arguments for integers, \index{function!constant argument} strings,
and quoted symbols.  \index{constant function argument} The {\tt
Boolean} values {\tt true} and {\tt false} can also be used if qualified with
``$@$'' or ``$\$$'' and {\tt Boolean}.  The following are all valid
function definition fragments using constant arguments.
\begin{verbatim}
a(1) == ...
b("unramified") == ...
c('untested) == ...
d(true@Boolean) == ...
\end{verbatim}

If a function has more than one argument, each argument can have its
own predicate.  However, if a predicate involves two or more
arguments, it must be given {\it after} all the arguments mentioned in
the predicate have been given.  You are always safe to give a single
predicate at the end of the argument list.

A function involving predicates on two arguments.
\spadcommand{inFirstHalfQuadrant(x | x > 0,y | y < x) == true}
\returnType{Type: Void}

This is incorrect as it gives a predicate on $y$ before the argument
$y$ is given.
\spadcommand{inFirstHalfQuadrant(x | x > 0 and y < x,y) == true}
\begin{verbatim}
   1 old definition(s) deleted for function or rule inFirstHalfQuadrant
\end{verbatim}
\returnType{Type: Void}

It is always correct to write the predicate at the end.
\spadcommand{inFirstHalfQuadrant(x,y | x > 0 and y < x) == true}
\begin{verbatim}
   1 old definition(s) deleted for function or rule inFirstHalfQuadrant
\end{verbatim}
\returnType{Type: Void}

Here is the rest of the definition.
\spadcommand{inFirstHalfQuadrant(x,y) == false}
\returnType{Type: Void}

Try it out.
\spadcommand{[inFirstHalfQuadrant(i,3) for i in 1..5]}
\begin{verbatim}
   Compiling function inFirstHalfQuadrant with type (PositiveInteger,
      PositiveInteger) -> Boolean 
\end{verbatim}
$$
\left[
{\tt false},  {\tt false},  {\tt false},  {\tt true},  {\tt true} 
\right]
$$
\returnType{Type: List Boolean}

\section{Caching Previously Computed Results}
\label{ugUserCache}

By default, Axiom does not save the values of any function.
\index{function!caching values} You can cause it to save values and
not to recompute unnecessarily \index{remembering function values} by
using {\tt )set functions cache}.  \index{set functions cache} This
should be used before the functions are defined or, at least, before
they are executed.  The word following ``cache'' should be $0$ to turn
off caching, a positive integer $n$ to save the last $n$ computed
values or ``all'' to save all computed values.  If you then give a
list of names of functions, the caching only affects those functions.
Use no list of names or ``all'' when you want to define the default
behavior for functions not specifically mentioned in other 
{\tt )set functions cache} statements.  If you give no list of names, all
functions will have the caching behavior.  If you explicitly turn on
caching for one or more names, you must explicitly turn off caching
for those names when you want to stop saving their values.

%Original Page 154

This causes the functions {\bf f} and {\bf g} to have the last three
computed values saved.
\spadcommand{)set functions cache 3 f g}
\begin{verbatim}
   function f will cache the last 3 values.
   function g will cache the last 3 values.
\end{verbatim}

This is a sample definition for {\bf f}.
\spadcommand{f x == factorial(2**x)}
\returnType{Type: Void}

A message is displayed stating what {\bf f} will cache.
\spadcommand{f(4)}
\begin{verbatim}
   Compiling function f with type PositiveInteger -> Integer 
   f will cache 3 most recently computed value(s).

+++ |*1;f;1;G82322| redefined
\end{verbatim}
$$
20922789888000 
$$
\returnType{Type: PositiveInteger}

This causes all other functions to have all computed values saved by default.
\spadcommand{)set functions cache all}
\begin{verbatim}
   In general, interpreter functions will cache all values.
\end{verbatim}

This causes all functions that have not been specifically cached in some way
to have no computed values saved.
\spadcommand{)set functions cache 0}
\begin{verbatim}
 In general, functions will cache no returned values.
\end{verbatim}

We also make {\bf f} and {\bf g} uncached.
\spadcommand{)set functions cache 0 f g}
\begin{verbatim}
   Caching for function f is turned off
   Caching for function g is turned off
\end{verbatim}

\boxer{4.6in}{
Be careful about caching functions that have side effects.  Such a
function might destructively modify the elements of an array or issue
a {\bf draw} command, for example.  A function that you expect to
execute every time it is called should not be cached.  Also, it is
highly unlikely that a function with no arguments should be cached.\\
}

You should also be careful about caching functions that depend on free
variables.  See \sectionref{ugUserFreeLocal} for an example.

%Original Page 155

\section{Recurrence Relations}
\label{ugUserRecur}

One of the most useful classes of function are those defined via a
``recurrence relation.''  A {\it recurrence relation} makes each
successive \index{recurrence relation} value depend on some or all of
the previous values.  A simple example is the ordinary ``factorial'' function:
\begin{verbatim}
fact(0) == 1
fact(n | n > 0) == n * fact(n-1)
\end{verbatim}

The value of $fact(10)$ depends on the value of $fact(9)$, $fact(9)$
on $fact(8)$, and so on.  Because it depends on only one previous
value, it is usually called a {\it first order recurrence relation.}
You can easily imagine a function based on two, three or more previous
values.  The Fibonacci numbers are probably the most famous function
defined by a \index{Fibonacci numbers} second order recurrence relation.

The library function {\bf fibonacci} computes Fibonacci numbers.
It is obviously optimized for speed.
\spadcommand{[fibonacci(i) for i in 0..]}
$$
\left[
0,  1,  1,  2,  3,  5,  8,  {13},  {21},  {34},  \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Define the Fibonacci numbers ourselves using a piece-wise definition.
\spadcommand{fib(1) == 1}
\returnType{Type: Void}

\spadcommand{fib(2) == 1}
\returnType{Type: Void}

\spadcommand{fib(n) == fib(n-1) + fib(n-2)}
\returnType{Type: Void}

As defined, this recurrence relation is obviously doubly-recursive.
To compute $fib(10)$, we need to compute $fib(9)$ and $fib(8)$.  And
to $fib(9)$, we need to compute $fib(8)$ and $fib(7)$.  And so on.  It
seems that to compute $fib(10)$ we need to compute $fib(9)$ once,
$fib(8)$ twice, $fib(7)$ three times.  Look familiar?  The number of
function calls needed to compute {\it any} second order recurrence
relation in the obvious way is exactly $fib(n)$.  These numbers grow!
For example, if Axiom actually did this, then $fib(500)$ requires more
than $10^{104}$ function calls.  And, given all
this, our definition of {\bf fib} obviously could not be used to
calculate the five-hundredth Fibonacci number.

%Original Page 156

Let's try it anyway.
\spadcommand{fib(500)}
\begin{verbatim}
   Compiling function fib with type Integer -> PositiveInteger 
   Compiling function fib as a recurrence relation.

13942322456169788013972438287040728395007025658769730726410_
8962948325571622863290691557658876222521294125
\end{verbatim}

\returnType{Type: PositiveInteger}

Since this takes a short time to compute, it obviously didn't do as
many as $10^{104}$ operations!  By default, Axiom transforms any
recurrence relation it recognizes into an iteration.  Iterations are
efficient.  To compute the value of the $n$-th term of a recurrence
relation using an iteration requires only $n$ function calls. Note
that if you compare the speed of our {\bf fib} function to the library
function, our version is still slower.  This is because the library
\spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions} uses a
``powering algorithm'' with a computing time proportional to
$\log^3(n)$ to compute {\tt fibonacci(n)}.

To turn off this special recurrence relation compilation, issue
\index{set function recurrence}
\begin{verbatim}
)set functions recurrence off
\end{verbatim}
To turn it back on, substitute ``{\tt on}'' for ``{\tt off}''.

The transformations that Axiom uses for {\bf fib} caches the last two
values. For a more general $k$-th order recurrence relation, Axiom
caches the last $k$ values.  If, after computing a value for {\bf
fib}, you ask for some larger value, Axiom picks up the cached values
and continues computing from there.  See \sectionref{ugUserFreeLocal}
for an example of a function definition
that has this same behavior.  Also see \sectionref{ugUserCache} 
for a more general discussion of how you can cache function values.

Recurrence relations can be used for defining recurrence relations
involving polynomials, rational functions, or anything you like.
Here we compute the infinite stream of Legendre polynomials.

The Legendre polynomial of degree $0.$
\spadcommand{p(0) == 1}
\returnType{Type: Void}

The Legendre polynomial of degree $1.$
\spadcommand{p(1) == x}
\returnType{Type: Void}

The Legendre polynomial of degree $n$.
\spadcommand{p(n) == ((2*n-1)*x*p(n-1) - (n-1)*p(n-2))/n}
\returnType{Type: Void}

%Original Page 157

Compute the Legendre polynomial of degree $6.$
\spadcommand{p(6)}
\begin{verbatim}
   Compiling function p with type Integer -> Polynomial Fraction 
      Integer 
   Compiling function p as a recurrence relation.
\end{verbatim}
$$
{{\frac{231}{16}} \  {x \sp 6}} -{{\frac{315}{16}} \  {x \sp 4}}
+{{\frac{105}{16}} \  {x \sp 2}} -{\frac{5}{16}} 
$$
\returnType{Type: Polynomial Fraction Integer}

\section{Making Functions from Objects}
\label{ugUserMake}

There are many times when you compute a complicated expression and
then wish to use that expression as the body of a function.  Axiom
provides an operation called {\bf function} to do \index{function!from
an object} this. \index{function!made by function @{made by 
{\bf function}}} It creates a function object and places it into the
workspace.  There are several versions, depending on how many
arguments the function has.  The first argument to {\bf function} is
always the expression to be converted into the function body, and the
second is always the name to be used for the function.  For more
information, see \domainref{MakeFunction}.

Start with a simple example of a polynomial in three variables.
\spadcommand{p := -x + y**2 - z**3}
$$
-{z \sp 3}+{y \sp 2} -x 
$$
\returnType{Type: Polynomial Integer}

To make this into a function of no arguments that simply returns the
polynomial, use the two argument form of {\bf function}.
\spadcommand{function(p,'f0)}
$$
f0 
$$
\returnType{Type: Symbol}

To avoid possible conflicts (see below), it is a good idea to
quote always this second argument.
\spadcommand{f0}
$$
f0 \  {\left( 
\right)}
\  == \  {-{z \sp 3}+{y \sp 2} -x} 
$$
\returnType{Type: FunctionCalled f0}

This is what you get when you evaluate the function.
\spadcommand{f0()}
$$
-{z \sp 3}+{y \sp 2} -x 
$$
\returnType{Type: Polynomial Integer}

To make a function in $x$, use a version of {\bf function} that takes
three arguments.  The last argument is the name of the variable to use
as the parameter.  Typically, this variable occurs in the expression
and, like the function name, you should quote it to avoid possible confusion.
\spadcommand{function(p,'f1,'x)}
$$
f1 
$$
\returnType{Type: Symbol}

This is what the new function looks like.
\spadcommand{f1}
$$
f1 \  x \  == \  {-{z \sp 3}+{y \sp 2} -x} 
$$
\returnType{Type: FunctionCalled f1}

%Original Page 158

This is the value of {\bf f1} at $x = 3$.  Notice that the return type
of the function is {\tt Polynomial (Integer)}, the same as $p$.
\spadcommand{f1(3)}
\begin{verbatim}
   Compiling function f1 with type PositiveInteger -> Polynomial 
      Integer 
\end{verbatim}
$$
-{z \sp 3}+{y \sp 2} -3 
$$
\returnType{Type: Polynomial Integer}

To use $x$ and $y$ as parameters, use the four argument form of {\bf function}.
\spadcommand{function(p,'f2,'x,'y)}
$$
f2 
$$
\returnType{Type: Symbol}

\spadcommand{f2}
$$
f2 \  {\left( x,  y 
\right)}
\  == \  {-{z \sp 3}+{y \sp 2} -x} 
$$
\returnType{Type: FunctionCalled f2}

Evaluate $f2$ at $x = 3$ and $y = 0$.  The return type of {\bf f2} is
still {\tt Polynomial(Integer)} because the variable $z$ is still
present and not one of the parameters.
\spadcommand{f2(3,0)}
$$
-{z \sp 3} -3 
$$
\returnType{Type: Polynomial Integer}

Finally, use all three variables as parameters.  There is no five
argument form of {\bf function}, so use the one with three arguments,
the third argument being a list of the parameters.
\spadcommand{function(p,'f3,['x,'y,'z])}
$$
f3 
$$
\returnType{Type: Symbol}

Evaluate this using the same values for $x$ and $y$ as above, but let
$z$ be $-6$.  The result type of {\bf f3} is {\tt Integer}.
\spadcommand{f3}
$$
f3 \  {\left( x,  y,  z 
\right)}
\  == \  {-{z \sp 3}+{y \sp 2} -x} 
$$
\returnType{Type: FunctionCalled f3}

\spadcommand{f3(3,0,-6)}
\begin{verbatim}
   Compiling function f3 with type (PositiveInteger,NonNegativeInteger,
      Integer) -> Integer 
\end{verbatim}
$$
213 
$$
\returnType{Type: PositiveInteger}

The four functions we have defined via $p$ have been undeclared.  To
declare a function whose body is to be generated by 
\index{function!declaring} {\bf function}, issue the declaration 
{\it before} the function is created.
\spadcommand{g: (Integer, Integer) -> Float}
\returnType{Type: Void}

\spadcommand{D(sin(x-y)/cos(x+y),x)}
$$
\frac{-{{\sin \left({{y -x}} \right)}\  {\sin \left({{y+x}} \right)}}
+{{\cos\left({{y -x}} \right)}\  {\cos \left({{y+x}} \right)}}}
{{\cos \left({{y+x}} \right)}\sp 2} 
$$
\returnType{Type: Expression Integer}

%Original Page 159

\spadcommand{function(\%,'g,'x,'y)}
$$
g 
$$
\returnType{Type: Symbol}

\spadcommand{g}
$$
g \  {\left( x,  y \right)}\  == \  {\frac{-{{\sin \left({{y -x}} \right)}
\  {\sin \left({{y+x}} \right)}}+{{\cos\left({{y -x}} \right)}
\  {\cos \left({{y+x}} \right)}}}{{\cos \left({{y+x}} \right)}\sp 2}} 
$$
\returnType{Type: FunctionCalled g}

It is an error to use $g$ without the quote in the penultimate
expression since $g$ had been declared but did not have a value.
Similarly, since it is common to overuse variable names like $x$, $y$,
and so on, you avoid problems if you always quote the variable names
for {\bf function}.  In general, if $x$ has a value and you use $x$
without a quote in a call to {\bf function}, then Axiom does not know
what you are trying to do.

What kind of object is allowable as the first argument to 
{\bf function}?  Let's use the Browse facility of HyperDoc to find out.
\index{Browse@Browse} At the main Browse menu, enter the string 
{\tt function} and then click on {\bf Operations.}  The exposed operations
called {\bf function} all take an object whose type belongs to
category {\tt ConvertibleTo InputForm}.  What domains are those?  Go
back to the main Browse menu, erase {\tt function}, enter 
{\tt ConvertibleTo} in the input area, and click on {\bf categories} on the
{\tt Constructors} line.  At the bottom of the page, enter 
{\tt InputForm} in the input area following {\bf S =}.  Click on 
{\tt Cross Reference} and then on {\tt Domains}.  
The list you see contains over forty domains that belong to the 
category {\tt ConvertibleTo InputForm}.  Thus you can use {\bf function} 
for {\tt Integer}, {\tt Float}, {\tt Symbol}, {\tt Complex}, 
{\tt Expression}, and so on.

\section{Functions Defined with Blocks}
\label{ugUserBlocks}

You need not restrict yourself to functions that only fit on one line
or are written in a piece-wise manner.  The body of the function can
be a block, as discussed in \sectionref{ugLangBlocks}.

Here is a short function that swaps two elements of a list, array or vector.
\begin{verbatim}
swap(m,i,j) ==
  temp := m.i
  m.i := m.j
  m.j := temp
\end{verbatim}
\returnType{Type: Void}

The significance of {\bf swap} is that it has a destructive
effect on its first argument.
\spadcommand{k := [1,2,3,4,5]}
$$
\left[
1,  2,  3,  4,  5 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{swap(k,2,4)}
\begin{verbatim}
   Compiling function swap with type (List PositiveInteger,
      PositiveInteger,PositiveInteger) -> PositiveInteger 
\end{verbatim}
$$
2 
$$
\returnType{Type: PositiveInteger}

%Original Page 160

You see that the second and fourth elements are interchanged.
\spadcommand{k}
$$
\left[
1, 4, 3, 2, 5 
\right]
$$
\returnType{Type: List PositiveInteger}

Using this, we write a couple of different sort functions.  First, a
simple bubble sort.  \index{sort!bubble} The operation
\spadopFrom{\#}{List} returns the number of elements in an aggregate.
\begin{verbatim}
bubbleSort(m) ==
  n := #m
  for i in 1..(n-1) repeat
    for j in n..(i+1) by -1 repeat
      if m.j < m.(j-1) then swap(m,j,j-1)
  m
\end{verbatim}
\returnType{Type: Void}

Let this be the list we want to sort.
\spadcommand{m := [8,4,-3,9]}
$$
\left[
8,  4,  -3,  9 
\right]
$$
\returnType{Type: List Integer}

This is the result of sorting.
\spadcommand{bubbleSort(m)}
\begin{verbatim}
   Compiling function swap with type (List Integer,Integer,Integer) -> 
      Integer 

+++ |*3;swap;1;G82322| redefined
   Compiling function bubbleSort with type List Integer -> List Integer
\end{verbatim}
$$
\left[
-3, 4, 8, 9 
\right]
$$
\returnType{Type: List Integer}

Moreover, $m$ is destructively changed to be the sorted version.
\spadcommand{m}
$$
\left[
-3, 4, 8, 9 
\right]
$$
\returnType{Type: List Integer}

This function implements an insertion sort.  \index{sort!insertion}
The basic idea is to traverse the list and insert the $i$-th element
in its correct position among the $i-1$ previous elements.  Since we
start at the beginning of the list, the list elements before the
$i$-th element have already been placed in ascending order.
\begin{verbatim}
insertionSort(m) ==
  for i in 2..#m repeat
    j := i
    while j > 1 and m.j < m.(j-1) repeat
      swap(m,j,j-1)
      j := j - 1
  m
\end{verbatim}
\returnType{Type: Void}

As with our bubble sort, this is a destructive function.
\spadcommand{m := [8,4,-3,9]}
$$
\left[
8,  4,  -3,  9 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{insertionSort(m)}
\begin{verbatim}
   Compiling function insertionSort with type List Integer -> List 
      Integer 
\end{verbatim}
$$
\left[
-3, 4, 8, 9 
\right]
$$
\returnType{Type: List Integer}

%Original Page 161

\spadcommand{m}
$$
\left[
-3, 4, 8, 9 
\right]
$$
\returnType{Type: List Integer}

Neither of the above functions is efficient for sorting large lists
since they reference elements by asking for the $j$-th element of the
structure $m$.

Here is a more efficient bubble sort for lists.
\begin{verbatim}
bubbleSort2(m: List Integer): List Integer ==
  null m => m
  l := m
  while not null (r := l.rest) repeat
     r := bubbleSort2 r
     x := l.first
     if x < r.first then
       l.first := r.first
       r.first := x
     l.rest := r
     l := l.rest
  m

   Function declaration bubbleSort2 : List Integer -> List Integer has 
      been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Try it out.
\spadcommand{bubbleSort2 [3,7,2]}
$$
\left[
7, 3, 2 
\right]
$$
\returnType{Type: List Integer}

This definition is both recursive and iterative, and is tricky!
Unless you are {\it really} curious about this definition, we suggest
you skip immediately to the next section.

Here are the key points in the definition.  First notice that if you
are sorting a list with less than two elements, there is nothing to
do: just return the list.  This definition returns immediately if
there are zero elements, and skips the entire {\tt while} loop if there is
just one element.

The second point to realize is that on each outer iteration, the
bubble sort ensures that the minimum element is propagated leftmost.
Each iteration of the {\tt while} loop calls {\bf bubbleSort2} recursively
to sort all but the first element.  When finished, the minimum element
is either in the first or second position.  The conditional expression
ensures that it comes first.  If it is in the second, then a swap
occurs.  In any case, the {\bf rest} of the original list must be
updated to hold the result of the recursive call.

%Original Page 162

\section{Free and Local Variables}
\label{ugUserFreeLocal}

When you want to refer to a variable that is not local to your
function, use a ``{\tt free}'' declaration.  \index{free} Variables
declared to be {\tt free} \index{free variable} are assumed to be defined
globally \index{variable!free} in the \index{variable!global}
workspace.  \index{global variable}

This is a global workspace variable.
\spadcommand{counter := 0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

This function refers to the global $counter$.
\begin{verbatim}
f() ==
  free counter
  counter := counter + 1
\end{verbatim}
\returnType{Type: Void}

The global $counter$ is incremented by $1$.
\spadcommand{f()}
\begin{verbatim}
   Compiling function f with type () -> NonNegativeInteger 

+++ |*0;f;1;G82322| redefined
\end{verbatim}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{counter}
$$
1 
$$
\returnType{Type: NonNegativeInteger}


Usually Axiom can tell that you mean to refer to a global variable and
so {\tt free} isn't always necessary.  However, for clarity and the sake
of self-documentation, we encourage you to use it.

Declare a variable to be ``{\tt local}'' when you do not want to refer to
\index{variable!local} a global variable by the same name.
\index{local variable}

This function uses $counter$ as a local variable.
\begin{verbatim}
g() ==
  local counter
  counter := 7
\end{verbatim}
\returnType{Type: Void}

Apply the function.
\spadcommand{g()}
$$
7 
$$
\returnType{Type: PositiveInteger}

Check that the global value of $counter$ is unchanged.
\spadcommand{counter}
$$
1 
$$
\returnType{Type: NonNegativeInteger}

Parameters to a function are local variables in the function.  Even if
you issue a {\tt free} declaration for a parameter, it is still local.

%Original Page 163

What happens if you do not declare that a variable $x$ in the body of
your function is {\tt local} or {\tt free}?  Well, Axiom decides on this basis:
\begin{enumerate}
\item Axiom scans your function line-by-line, from top-to-bottom.
The right-hand side of an assignment is looked at before the left-hand
side.
\item If $x$ is referenced before it is assigned a value, it is a
{\tt free} (global) variable.
\item If $x$ is assigned a value before it is referenced, it is a
{\tt local} variable.
\end{enumerate}

Set two global variables to 1.
\spadcommand{a := b := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

Refer to $a$ before it is assigned a value, but assign a value to $b$
before it is referenced.
\begin{verbatim}
h() ==
  b := a + 1
  a := b + a
\end{verbatim}
\returnType{Type: Void}

Can you predict this result?
\spadcommand{h()}
\begin{verbatim}
   Compiling function h with type () -> PositiveInteger 

+++ |*0;h;1;G82322| redefined
\end{verbatim}
$$
3 
$$
\returnType{Type: PositiveInteger}

How about this one?
\spadcommand{[a, b]}
$$
\left[
3, 1 
\right]
$$
\returnType{Type: List PositiveInteger}

What happened?  In the first line of the function body for $h$, $a$ is
referenced on the right-hand side of the assignment.  Thus $a$ is a
free variable.  The variable $b$ is not referenced in that line, but
it is assigned a value.  Thus $b$ is a local variable and is given the
value $a + 1 = 2$.  In the second line, the free variable $a$ is
assigned the value $b + a$ which equals $2 + 1 = 3.$ This is the value
returned by the function.  Since $a$ was free in {\bf h}, the global
variable $a$ has value $3.$ Since $b$ was local in {\bf h}, the global
variable $b$ is unchanged---it still has the value $1$.

It is good programming practice always to declare global variables.
However, by far the most common situation is to have local variables
in your functions.  No declaration is needed for this situation, but
be sure to initialize their values.

Be careful if you use free variables and you cache the value of your
function (see \sectionref{ugUserCache}).
Caching {\it only} checks if the values of the function arguments are
the same as in a function call previously seen.  It does not check if
any of the free variables on which the function depends have changed
between function calls.

Turn on caching for {\bf p}.
\spadcommand{)set fun cache all p}
\begin{verbatim}
   function p will cache all values.
\end{verbatim}

Define {\bf p} to depend on the free variable $N$.
\spadcommand{p(i,x) == ( free N; reduce( + , [ (x-i)**n for n in 1..N ] ) )}
\returnType{Type: Void}

Set the value of $N$.
\spadcommand{N := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

Evaluate {\bf p} the first time.
\spadcommand{p(0, x)}
$$
x 
$$
\returnType{Type: Polynomial Integer}

Change the value of $N$.
\spadcommand{N := 2}
$$
2 
$$
\returnType{Type: PositiveInteger}

Evaluate {\bf p} the second time.
\spadcommand{p(0, x)}
$$
x 
$$
\returnType{Type: Polynomial Integer}

If caching had been turned off, the second evaluation would have
reflected the changed value of $N$.

Turn off caching for {\bf p}.
\spadcommand{)set fun cache 0 p}
\begin{verbatim}
   Caching for function p is turned off
\end{verbatim}

Axiom does not allow {\it fluid variables}, that is, variables
\index{variable!fluid} bound by a function $f$ that can be referenced
by functions called by $f$.  \index{fluid variable}

Values are passed to functions by {\it reference}: a pointer to the
value is passed rather than a copy of the value or a pointer to a
copy.

%Original Page 164

This is a global variable that is bound to a record object.
\spadcommand{r : Record(i : Integer) := [1]}
$$
\left[
{i=1} 
\right]
$$
\returnType{Type: Record(i: Integer)}

This function first modifies the one component of its record argument
and then rebinds the parameter to another record.
\begin{verbatim}
resetRecord rr ==
  rr.i := 2
  rr := [10]
\end{verbatim}
\returnType{Type: Void}

Pass $r$ as an argument to {\bf resetRecord}. 
\spadcommand{resetRecord r}
$$
\left[
{i={10}} 
\right]
$$
\returnType{Type: Record(i: Integer)}

The value of $r$ was changed by the expression $rr.i := 2$ but not by
$rr := [10]$.
\spadcommand{r}
$$
\left[
{i=2} 
\right]
$$
\returnType{Type: Record(i: Integer)}

To conclude this section, we give an iterative definition of
\index{Fibonacci numbers} a function that computes Fibonacci numbers.
This definition approximates the definition into which Axiom
transforms the recurrence relation definition of {\bf fib} in
\sectionref{ugUserRecur}.

Global variables {\tt past} and {\tt present} are used to hold the last
computed Fibonacci numbers.
\spadcommand{past := present := 1}
$$
1 
$$
\returnType{Type: PositiveInteger}

Global variable $index$ gives the current index of $present$.
\spadcommand{index := 2}
$$
2 
$$
\returnType{Type: PositiveInteger}

Here is a recurrence relation defined in terms of these three global
variables.
\begin{verbatim}
fib(n) ==
  free past, present, index
  n < 3 => 1
  n = index - 1 => past
  if n < index-1 then
    (past,present) := (1,1)
    index := 2
  while (index < n) repeat
    (past,present) := (present, past+present)
    index := index + 1
  present
\end{verbatim}
\returnType{Type: Void}

%Original Page 165

Compute the infinite stream of Fibonacci numbers.
\spadcommand{fibs := [fib(n) for n in 1..]}
$$
\left[
1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55},
\ldots 
\right]
$$
\returnType{Type: Stream PositiveInteger}

What is the 1000th Fibonacci number?
\spadcommand{fibs 1000}
\begin{verbatim}
  434665576869374564356885276750406258025646605173717804024_
    8172908953655541794905189040387984007925516929592259308_
    0322634775209689623239873322471161642996440906533187938_
    298969649928516003704476137795166849228875
\end{verbatim}
\returnType{Type: PositiveInteger}

As an exercise, we suggest you write a function in an iterative style
that computes the value of the recurrence relation 
$p(n) = p(n-1) - 2 \, p(n-2) + 4 \, p(n-3)$ 
having the initial values 
$p(1) = 1,\, p(2) = 3 \hbox{ and } p(3) = 9.$ 
How would you write the function using an element {\tt OneDimensionalArray} 
or {\tt Vector} to hold the previously computed values?

\section{Anonymous Functions}
\label{ugUserAnon}

\boxer{4.6in}{
An {\it anonymous function} is a function that is
\index{function!anonymous} defined \index{anonymous function} by
giving a list of parameters, the ``maps-to'' compound 
\index{+-> @{\tt +->}} symbol ``{\tt +->}'' 
(from the mathematical symbol $\mapsto$), and
by an expression involving the parameters, the evaluation of which
determines the return value of the function.

\begin{center}
{\tt ( $\hbox{\it parm}_{1}$, $\hbox{\it parm}_{2}$, \ldots, 
$\hbox{\it parm}_{N}$ ) {\tt +->} {\it expression}}
\end{center}
{\ }%force a blank line 
}

You can apply an anonymous function in several ways.
\begin{enumerate}
\item Place the anonymous function definition in parentheses
directly followed by a list of arguments.
\item Assign the anonymous function to a variable and then
use the variable name when you would normally use a function name.
\item Use ``{\tt ==}'' to use the anonymous function definition as
the arguments and body of a regular function definition.
\item Have a named function contain a declared anonymous function and
use the result returned by the named function.
\end{enumerate}

\subsection{Some Examples}
\label{ugUserAnonExamp}

Anonymous functions are particularly useful for defining functions
``on the fly.'' That is, they are handy for simple functions that are
used only in one place.  In the following examples, we show how to
write some simple anonymous functions.

%Original Page 166

This is a simple absolute value function.
\spadcommand{x +-> if x < 0 then -x else x}
$$
x \mapsto {if \  {x<0} \  {\begin{array}{l} {then \  -x} \\ 
{else \  x} 
\end{array}
}} 
$$
\returnType{Type: AnonymousFunction}

\spadcommand{abs1 := \%}
$$
x \mapsto {if \  {x<0} \  {\begin{array}{l} {then \  -x} \\ 
{else \  x} 
\end{array}
}} 
$$
\returnType{Type: AnonymousFunction}

This function returns {\tt true} if the absolute value of
the first argument is greater than the absolute value of the
second, {\tt false} otherwise.

\spadcommand{(x,y) +-> abs1(x) > abs1(y)}
$$
{\left( x,  y 
\right)}
\mapsto {{abs1 
\left(
{y} 
\right)}<{abs1
\left(
{x} 
\right)}}
$$
\returnType{Type: AnonymousFunction}

We use the above function to ``sort'' a list of integers.
\spadcommand{sort(\%,[3,9,-4,10,-3,-1,-9,5])}
$$
\left[
{10},  -9,  9,  5,  -4,  -3,  3,  -1 
\right]
$$
\returnType{Type: List Integer}

This function returns $1$ if $i + j$ is even, $-1$ otherwise.
\spadcommand{ev := ( (i,j) +-> if even?(i+j) then 1 else -1)}
$$
{\left( i,  j 
\right)}
\mapsto {if \  {even? 
\left(
{{i+j}} 
\right)}
\  {\begin{array}{l} {then \  1} \\ 
{else \  -1} 
\end{array}
}} 
$$
\returnType{Type: AnonymousFunction}

We create a four-by-four matrix containing $1$ or $-1$ depending on
whether the row plus the column index is even or not.
\spadcommand{matrix([ [ev(row,col) for row in 1..4] for col in 1..4])}
$$
\left[
\begin{array}{cccc}
1 & -1 & 1 & -1 \\ 
-1 & 1 & -1 & 1 \\ 
1 & -1 & 1 & -1 \\ 
-1 & 1 & -1 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

This function returns {\tt true} if a polynomial in $x$ has multiple
roots, {\tt false} otherwise.  It is defined and applied in the same
expression.
\spadcommand{( p +-> not one?(gcd(p,D(p,x))) )(x**2+4*x+4)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

This and the next expression are equivalent.
\spadcommand{g(x,y,z) == cos(x + sin(y + tan(z)))}
\returnType{Type: Void}

The one you use is a matter of taste.
\spadcommand{g == (x,y,z) +-> cos(x + sin(y + tan(z)))}
\begin{verbatim}
   1 old definition(s) deleted for function or rule g 
\end{verbatim}
\returnType{Type: Void}

\subsection{Declaring Anonymous Functions}
\label{ugUserAnonDeclare}

%Original Page 167

If you declare any of the arguments you must declare all of them. Thus,
\begin{verbatim}
(x: INT,y): FRAC INT +-> (x + 2*y)/(y - 1)
\end{verbatim}
is not legal.

This is an example of a fully declared anonymous function.
\index{function!declaring} \index{function!anonymous!declaring} The
output shown just indicates that the object you created is a
particular kind of map, that is, function.
\spadcommand{(x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)}
$$
\mbox{theMap(...)} 
$$
\returnType{Type: ((Integer,Integer) {\tt ->} Fraction Integer)}

Axiom allows you to declare the arguments and not declare
the return type.
\spadcommand{(x: INT,y: INT) +-> (x + 2*y)/(y - 1)}
$$
\mbox{theMap(...)} 
$$
\returnType{Type: ((Integer,Integer) {\tt ->} Fraction Integer)}

The return type is computed from the types of the arguments and the
body of the function.  You cannot declare the return type if you do
not declare the arguments.  Therefore,
\begin{verbatim}
(x,y): FRAC INT +-> (x + 2*y)/(y - 1)
\end{verbatim}

is not legal. This and the next expression are equivalent.
\spadcommand{h(x: INT,y: INT): FRAC INT == (x + 2*y)/(y - 1)}
\begin{verbatim}
   Function declaration h : (Integer,Integer) -> Fraction Integer
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

The one you use is a matter of taste.
\spadcommand{h == (x: INT,y: INT): FRAC INT +-> (x + 2*y)/(y - 1)}
\begin{verbatim}
   Function declaration h : (Integer,Integer) -> Fraction Integer
      has been added to workspace.
   1 old definition(s) deleted for function or rule h 
\end{verbatim}
\returnType{Type: Void}

When should you declare an anonymous function?  
\begin{enumerate}
\item If you use an anonymous function and Axiom can't figure out what
you are trying to do, declare the function.  
\item If the function has nontrivial argument types or a nontrivial 
return type that Axiom may be able to determine eventually, but you 
are not willing to wait that long, declare the function.  
\item If the function will only be used for arguments of specific types 
and it is not too much trouble to declare the function, do so.  
\item If you are using the anonymous function as an argument to another 
function (such as {\bf map} or {\bf sort}), consider declaring the function.  
\item If you define an anonymous function inside a named function, 
you {\it must} declare the anonymous function.  
\end{enumerate}

This is an example of a named function for integers that returns a
function.
\spadcommand{addx x == ((y: Integer): Integer +-> x + y)}
\returnType{Type: Void}

We define {\bf g} to be a function that adds $10$ to its
argument.
\spadcommand{g := addx 10}
\begin{verbatim}
   Compiling function addx with type 
     PositiveInteger -> (Integer -> Integer) 
\end{verbatim}
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (Integer {\tt ->} Integer)}

Try it out.
\spadcommand{g 3}
$$
13 
$$
\returnType{Type: PositiveInteger}

\spadcommand{g(-4)}
$$
6 
$$
\returnType{Type: PositiveInteger}

\index{function!anonymous!restrictions}
An anonymous function cannot be recursive: since it does not have a
name, you cannot even call it within itself!  If you place an
anonymous function inside a named function, the anonymous function
must be declared.

\section{Example: A Database}
\label{ugUserDatabase}

This example shows how you can use Axiom to organize a database of
lineage data and then query the database for relationships.

The database is entered as ``assertions'' that are really pieces of a
function definition.
\spadcommand{children("albert") == ["albertJr","richard","diane"]}
\returnType{Type: Void}

Each piece $children(x) == y$ means ``the children of $x$ are $y$''.
\spadcommand{children("richard") == ["douglas","daniel","susan"]}
\returnType{Type: Void}

This family tree thus spans four generations.
\spadcommand{children("douglas") == ["dougie","valerie"]}
\returnType{Type: Void}

%Original Page 169

Say ``no one else has children.''
\spadcommand{children(x) == []}
\returnType{Type: Void}

We need some functions for computing lineage.  Start with {\tt childOf}.
\spadcommand{childOf(x,y) == member?(x,children(y))}
\returnType{Type: Void}

To find the {\tt parentOf} someone, you have to scan the database of
people applying {\tt children}.
\begin{verbatim}
parentOf(x) ==
  for y in people repeat
    (if childOf(x,y) then return y)
  "unknown"
\end{verbatim}
\returnType{Type: Void}

And a grandparent of $x$ is just a parent of a parent of $x$.
\spadcommand{grandParentOf(x) == parentOf parentOf x}
\returnType{Type: Void}

The grandchildren of $x$ are the people $y$ such that $x$ is a
grandparent of $y$.
\spadcommand{grandchildren(x) == [y for y in people | grandParentOf(y) = x]}
\returnType{Type: Void}

Suppose you want to make a list of all great-grandparents.  Well, a
great-grandparent is a grandparent of a person who has children.

\begin{verbatim}
greatGrandParents == [x for x in people |
  reduce(_or,
    [not empty? children(y) for y in grandchildren(x)],false)]
\end{verbatim}
\returnType{Type: Void}

Define {\tt descendants} to include the parent as well.
\begin{verbatim}
descendants(x) ==
  kids := children(x)
  null kids => [x]
  concat(x,reduce(concat,[descendants(y)
    for y in kids],[]))
\end{verbatim}
\returnType{Type: Void}

Finally, we need a list of people.  Since all people are descendants
of ``albert'', let's say so.
\spadcommand{people == descendants "albert"}
\returnType{Type: Void}

We have used ``{\tt ==}'' to define the database and some functions to
query the database.  But no computation is done until we ask for some
information.  Then, once and for all, the functions are analyzed and
compiled to machine code for run-time efficiency.  Notice that no
types are given anywhere in this example.  They are not needed.

%Original Page 170

Who are the grandchildren of ``richard''?
\spadcommand{grandchildren "richard"}
\begin{verbatim}
Compiling function children with type String -> List String 
Compiling function descendants with type String -> List String 
Compiling body of rule people to compute value of type List String 
Compiling function childOf with type (String,String) -> Boolean 
Compiling function parentOf with type String -> String 
Compiling function grandParentOf with type String -> String 
Compiling function grandchildren with type String -> List String 
\end{verbatim}
$$
\left[
\mbox{\tt "dougie"} , \mbox{\tt "valerie"} 
\right]
$$
\returnType{Type: List String}

Who are the great-grandparents?
\spadcommand{greatGrandParents}
\begin{verbatim}
Compiling body of rule greatGrandParents to compute value of 
   type List String 
\end{verbatim}
$$
\left[
\mbox{\tt "albert"} 
\right]
$$
\returnType{Type: List String}

\section{Example: A Famous Triangle}
\label{ugUserTriangle}

In this example we write some functions that display Pascal's
triangle.  \index{Pascal's triangle} It demonstrates the use of
piece-wise definitions and some output operations you probably haven't
seen before.

To make these output operations available, we have to {\it expose} the
domain {\tt OutputForm}.  \index{OutputForm} See 
\sectionref{ugTypesExpose}
for more information about exposing domains and packages.
\spadcommand{)set expose add constructor OutputForm}
\begin{verbatim}
   OutputForm is now explicitly exposed in frame G82322 
\end{verbatim}

Define the values along the first row and any column $i$.
\spadcommand{pascal(1,i) == 1}
\returnType{Type: Void}

Define the values for when the row and column index $i$ are equal.
Repeating the argument name indicates that the two index values are equal.
\spadcommand{pascal(n,n) == 1}
\returnType{Type: Void}

\begin{verbatim}
pascal(i,j | 1 < i and i < j) ==
   pascal(i-1,j-1)+pascal(i,j-1)
\end{verbatim}
\returnType{Type: Void}

Now that we have defined the coefficients in Pascal's triangle, let's
write a couple of one-liners to display it. 

First, define a function that gives the $n$-th row.
\spadcommand{pascalRow(n) == [pascal(i,n) for i in 1..n]}
\returnType{Type: Void}

Next, we write the function {\bf displayRow} to display the row,
separating entries by blanks and centering.
\spadcommand{displayRow(n) == output center blankSeparate pascalRow(n)}
\returnType{Type: Void}

%Original Page 171

Here we have used three output operations.  Operation
\spadfunFrom{output}{OutputForm} displays the printable form of
objects on the screen, \spadfunFrom{center}{OutputForm} centers a
printable form in the width of the screen, and
\spadfunFrom{blankSeparate}{OutputForm} takes a list of n printable
forms and inserts a blank between successive elements.

Look at the result.
\spadcommand{for i in 1..7 repeat displayRow i}
\begin{verbatim}
   Compiling function pascal with type (Integer,Integer) -> 
      PositiveInteger 
   Compiling function pascalRow with type PositiveInteger -> List 
      PositiveInteger 
   Compiling function displayRow with type PositiveInteger -> Void 


                                   1
                                  1 1
                                 1 2 1
                                1 3 3 1
                               1 4 6 4 1
                             1 5 10 10 5 1
                            1 6 15 20 15 6 1
\end{verbatim}
\returnType{Type: Void}

Being purists, we find this less than satisfactory.  Traditionally,
elements of Pascal's triangle are centered between the left and right
elements on the line above.

To fix this misalignment, we go back and redefine {\bf pascalRow} to
right adjust the entries within the triangle within a width of four
characters.

\spadcommand{pascalRow(n) == [right(pascal(i,n),4) for i in 1..n]}
\begin{verbatim}
   Compiled code for pascalRow has been cleared.
   Compiled code for displayRow has been cleared.
   1 old definition(s) deleted for function or rule pascalRow 
\end{verbatim}
\returnType{Type: Void}

Finally let's look at our purely reformatted triangle.
\spadcommand{for i in 1..7 repeat displayRow i}
\begin{verbatim}
   Compiling function pascalRow with type PositiveInteger -> List 
      OutputForm 

+++ |*1;pascalRow;1;G82322| redefined
   Compiling function displayRow with type PositiveInteger -> Void 

+++ |*1;displayRow;1;G82322| redefined
                                     1
                                  1    1
                                1    2    1
                             1    3    3    1
                           1    4    6    4    1
                        1    5   10   10    5    1
                      1    6   15   20   15    6    1
\end{verbatim}
\returnType{Type: Void}

Unexpose {\tt OutputForm} so we don't get unexpected results later.
\spadcommand{)set expose drop constructor OutputForm}
\begin{verbatim}
   OutputForm is now explicitly hidden in frame G82322 
\end{verbatim}

\section{Example: Testing for Palindromes}
\label{ugUserPal}

In this section we define a function {\bf pal?} that tests whether its
\index{palindrome} argument is a {\it palindrome}, that is, something
that reads the same backwards and forwards.  For example, the string
``Madam I'm Adam'' is a palindrome (excluding blanks and punctuation)
and so is the number $123454321$.  The definition works for any
datatype that has $n$ components that are accessed by the indices
$1\ldots n$.

%Original Page 172

Here is the definition for {\bf pal?}.  It is simply a call to an
auxiliary function called {\bf palAux?}.  We are following the
convention of ending a function's name with {\tt ?} if the function
returns a {\tt Boolean} value.
\spadcommand{pal? s ==  palAux?(s,1,\#s)}
\returnType{Type: Void}

Here is {\bf palAux?}.  It works by comparing elements that are
equidistant from the start and end of the object.
\begin{verbatim}
palAux?(s,i,j) ==
  j > i =>
    (s.i = s.j) and palAux?(s,i+1,i-1)
  true
\end{verbatim}
\returnType{Type: Void}

Try {\bf pal?} on some examples.  First, a string.
\spadcommand{pal? "Oxford"}
\begin{verbatim}
   Compiling function palAux? with type (String,Integer,Integer) -> 
      Boolean 
   Compiling function pal? with type String -> Boolean 
\end{verbatim}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

A list of polynomials.
\spadcommand{pal? [4,a,x-1,0,x-1,a,4]}
\begin{verbatim}
   Compiling function palAux? with type (List Polynomial Integer,
      Integer,Integer) -> Boolean 
   Compiling function pal? with type List Polynomial Integer -> Boolean
\end{verbatim}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

A list of integers from the example in the last section. 
\spadcommand{pal? [1,6,15,20,15,6,1]}
\begin{verbatim}
   Compiling function palAux? with type (List PositiveInteger,Integer,
      Integer) -> Boolean 
   Compiling function pal? with type List PositiveInteger -> Boolean 
\end{verbatim}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

To use {\bf pal?} on an integer, first convert it to a string.
\spadcommand{pal?(1441::String)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Compute an infinite stream of decimal numbers, each of which is an
obvious palindrome.
\spadcommand{ones := [reduce(+,[10**j for j in 0..i]) for i in 1..]}
$$
\begin{array}{@{}l}
\left[
{11}, {111}, {1111}, {11111}, {111111}, {1111111}, 
\right.
\\
\\
\displaystyle
\left.
{11111111}, {111111111}, {1111111111}, {11111111111}, \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream PositiveInteger}

\spadcommand{)set streams calculate 9}

How about their squares?
\spadcommand{squares := [x**2 for x in ones]}
$$
\begin{array}{@{}l}
\left[
{121}, {12321}, {1234321}, {123454321}, {12345654321}, {1234567654321}, 
\right.
\\
\\
\displaystyle
{123456787654321}, {12345678987654321}, {1234567900987654321}, 
\\
\\
\displaystyle
\left.
{123456790120987654321},  \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream PositiveInteger}

Well, let's test them all.
\spadcommand{[pal?(x::String) for x in squares]}
$$
\left[
{\tt true}, {\tt true}, {\tt true}, {\tt true}, {\tt true}, 
{\tt true}, {\tt true}, {\tt true}, {\tt true}, {\tt true}, \ldots 
\right]
$$
\returnType{Type: Stream Boolean}

\spadcommand{)set streams calculate 7}

%Original Page 173

\section{Rules and Pattern Matching}
\label{ugUserRules}

A common mathematical formula is 
$$ \log(x) + \log(y) = \log(x y) \quad\forall \, x \hbox{\ and\ } y$$ 
The presence of ``$\forall$'' indicates that $x$ and $y$ can stand for
arbitrary mathematical expressions in the above formula.  You can use
such mathematical formulas in Axiom to specify ``rewrite rules''.
Rewrite rules are objects in Axiom that can be assigned to variables
for later use, often for the purpose of simplification.  Rewrite rules
look like ordinary function definitions except that they are preceded
by the reserved word $rule$.  \index{rule} For example, a rewrite rule
for the above formula is:
\begin{verbatim}
rule log(x) + log(y) == log(x * y)
\end{verbatim}

Like function definitions, no action is taken when a rewrite rule is
issued.  Think of rewrite rules as functions that take one argument.
When a rewrite rule $A = B$ is applied to an argument $f$, its meaning
is: ``rewrite every subexpression of $f$ that {\it matches} $A$ by
$B.$'' The left-hand side of a rewrite rule is called a {\it pattern};
its right-hand side is called its {\it substitution}.

Create a rewrite rule named {\bf logrule}.  The generated symbol
beginning with a ``{\tt \%}'' is a place-holder for any other terms that
might occur in the sum.
\spadcommand{logrule := rule log(x) + log(y) == log(x * y)}
$$
{{\log 
\left(
{y} 
\right)}+{\log
\left(
{x} 
\right)}+
 \%C} \mbox{\rm == } {{\log 
\left(
{{x \  y}} 
\right)}+
 \%C} 
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Create an expression with logarithms.
\spadcommand{f := log sin x + log x}
$$
{\log 
\left(
{{\sin 
\left(
{x} 
\right)}}
\right)}+{\log
\left(
{x} 
\right)}
$$
\returnType{Type: Expression Integer}

Apply {\bf logrule} to $f$.
\spadcommand{logrule f}
$$
\log 
\left(
{{x \  {\sin 
\left(
{x} 
\right)}}}
\right)
$$
\returnType{Type: Expression Integer}

The meaning of our example rewrite rule is: ``for all expressions $x$
and $y$, rewrite $log(x) + log(y)$ by $log(x * y)$.''  Patterns
generally have both operation names (here, {\bf log} and ``{\tt +}'') and
variables (here, $x$ and $y$).  By default, every operation name
stands for itself.  Thus {\bf log} matches only ``$log$'' and not any
other operation such as {\bf sin}.  On the other hand, variables do
not stand for themselves.  Rather, a variable denotes a {\it pattern
variable} that is free to match any expression whatsoever.
\index{pattern!variables}

When a rewrite rule is applied, a process called 
{\it pattern matching} goes to work by systematically scanning
\index{pattern!matching} the subexpressions of the argument.  When a
subexpression is found that ``matches'' the pattern, the subexpression
is replaced by the right-hand side of the rule.  The details of what
happens will be covered later.

%Original Page 174

The customary Axiom notation for patterns is actually a shorthand for
a longer, more general notation.  Pattern variables can be made
explicit by using a percent ``{\tt \%}'' as the first character of the
variable name.  To say that a name stands for itself, you can prefix
that name with a quote operator ``{\tt '}''.  Although the current Axiom
parser does not let you quote an operation name, this more general
notation gives you an alternate way of giving the same rewrite rule:
\begin{verbatim}
rule log(%x) + log(%y) == log(x * y)
\end{verbatim}

This longer notation gives you patterns that the standard notation
won't handle.  For example, the rule
\begin{verbatim}
rule %f(c * 'x) ==  c*%f(x)
\end{verbatim}
means ``for all $f$ and $c$, replace $f(y)$ by $c * f(x)$ when $y$ is
the product of $c$ and the explicit variable $x$.''

Thus the pattern can have several adornments on the names that appear there.
Normally, all these adornments are dropped in the substitution on the
right-hand side.

To summarize:

\boxer{4.6in}{
To enter a single rule in Axiom, use the following syntax: \index{rule}
\begin{center}
{\tt rule {\it leftHandSide} == {\it rightHandSide}}
\end{center}

The {\it leftHandSide} is a pattern to be matched and the {\it
rightHandSide} is its substitution.  The rule is an object of type
{\tt RewriteRule} that can be assigned to a variable and applied to
expressions to transform them.\\
}

Rewrite rules can be collected
into rulesets so that a set of rules can be applied at once.
Here is another simplification rule for logarithms.
$$y \log(x) = \log(x^y) \quad\forall \, x \hbox{\ and\ } y$$
If instead of giving a single rule following the reserved word $rule$
you give a ``pile'' of rules, you create what is called a {\it
ruleset.}  \index{ruleset} Like rules, rulesets are objects in Axiom
and can be assigned to variables.  You will find it useful to group
commonly used rules into input files, and read them in as needed.

Create a ruleset named $logrules$.
\begin{verbatim}
logrules := rule
  log(x) + log(y) == log(x * y)
  y * log x       == log(x ** y)
\end{verbatim}
$$
\left\{{{{\log \left({y} \right)}
+{\log\left({x} \right)}+ \%B} 
\mbox{\rm == } 
{{\log \left({{x \  y}} \right)}+ \%B}}, 
{{y \  {\log \left({x} \right)}}
\mbox{\rm == } 
{\log \left({{x \sp y}} \right)}}\right\}
$$
\returnType{Type: Ruleset(Integer,Integer,Expression Integer)}

%Original Page 175

Again, create an expression $f$ containing logarithms.
\spadcommand{f := a * log(sin x) - 2 * log x}
$$
{a \  {\log 
\left(
{{\sin 
\left(
{x} 
\right)}}
\right)}}
-{2 \  {\log 
\left(
{x} 
\right)}}
$$
\returnType{Type: Expression Integer}

Apply the ruleset {\bf logrules} to $f$.
\spadcommand{logrules f}
$$
\log \left({{\frac{{\sin \left({x} \right)}\sp a}{x \sp 2}}} \right)
$$
\returnType{Type: Expression Integer}


We have allowed pattern variables to match arbitrary expressions in
the above examples.  Often you want a variable only to match
expressions satisfying some predicate.  For example, we may want to
apply the transformation 
$$y \log(x) = \log(x^y)$$ 
only when $y$ is an integer.

The way to restrict a pattern variable $y$ by a predicate $f(y)$
\index{pattern!variable!predicate} is by using a vertical bar ``{\tt |}'',
which means ``such that,'' in \index{such that} much the same way it
is used in function definitions.  \index{predicate!on a pattern
variable} You do this only once, but at the earliest (meaning deepest
and leftmost) part of the pattern.

This restricts the logarithmic rule to create integer exponents only.
\begin{verbatim}
logrules2 := rule
  log(x) + log(y)          == log(x * y)
  (y | integer? y) * log x == log(x ** y)
\end{verbatim}
$$
\left\{{{{\log \left({y} \right)}
+{\log\left({x} \right)}+ \%D} 
\mbox{\rm == } 
{{\log \left({{x \  y}} \right)}+ \%D}}, 
{{y \  {\log \left({x} \right)}}
\mbox{\rm == } 
{\log \left({{x \sp y}} \right)}}\right\}
$$
\returnType{Type: Ruleset(Integer,Integer,Expression Integer)}

Compare this with the result of applying the previous set of rules.
\spadcommand{f}
$$
{a \  {\log \left({{\sin \left({x} \right)}}\right)}}
-{2 \  {\log \left({x} \right)}}
$$
\returnType{Type: Expression Integer}

\spadcommand{logrules2 f}
$$
{a \  {\log \left({{\sin \left({x} \right)}}\right)}}
+{\log\left({{\frac{1}{x \sp 2}}} \right)}
$$
\returnType{Type: Expression Integer}

You should be aware that you might need to apply a function like 
{\tt integer} within your predicate expression to actually apply the test
function.

Here we use {\tt integer} because $n$ has type {\tt Expression
Integer} but {\bf even?} is an operation defined on integers.
\spadcommand{evenRule := rule cos(x)**(n | integer? n and even? integer n)==(1-sin(x)**2)**(n/2)}
$$
{{\cos \left({x} \right)}\sp n} \mbox{\rm == } 
{{\left( -{{\sin \left({x} \right)}\sp 2}+1 \right)}\sp {\frac{n}{2}}} 
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Here is the application of the rule.
\spadcommand{evenRule( cos(x)**2 )}
$$
-{{\sin \left({x} \right)}\sp 2}+1 
$$
\returnType{Type: Expression Integer}

This is an example of some of the usual identities involving products of
sines and cosines.
\begin{verbatim}
sinCosProducts == rule
  sin(x) * sin(y) == (cos(x-y) - cos(x + y))/2
  cos(x) * cos(y) == (cos(x-y) + cos(x+y))/2
  sin(x) * cos(y) == (sin(x-y) + sin(x + y))/2
\end{verbatim}
\returnType{Type: Void}

\spadcommand{g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2*a)*cos(2*a)}
$$
{{\sin \left({a} \right)}\  {\sin \left({b} \right)}}
+{{\cos\left({{2 \  a}} \right)}\  {\sin \left({{2 \  a}} \right)}}
+{{\cos\left({a} \right)}\  {\cos \left({b} \right)}}
$$
\returnType{Type: Expression Integer}

%Original Page 176

\spadcommand{sinCosProducts g}
\begin{verbatim}
   Compiling body of rule sinCosProducts to compute value of type 
      Ruleset(Integer,Integer,Expression Integer) 
\end{verbatim}
$$
\frac{{\sin \left({{4 \  a}} \right)}+{2\  {\cos \left({{b -a}} \right)}}}{2} 
$$
\returnType{Type: Expression Integer}

Another qualification you will often want to use is to allow a pattern to
match an identity element.
Using the pattern $x + y$, for example, neither $x$ nor $y$
matches the expression $0$.
Similarly, if a pattern contains a product $x*y$ or an exponentiation
$x**y$, then neither $x$ or $y$ matches $1$.

If identical elements were matched, pattern matching would generally loop.
Here is an expansion rule for exponentials.
\spadcommand{exprule := rule exp(a + b) == exp(a) * exp(b)}
$$
{e \sp {\left( b+a \right)}}
\mbox{\rm == } {{e \sp a} \  {e \sp b}} 
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

This rule would cause infinite rewriting on this if either $a$ or
$b$ were allowed to match $0$.
\spadcommand{exprule exp x}
$$
e \sp x 
$$
\returnType{Type: Expression Integer}

There are occasions when you do want a pattern variable in a sum or
product to match $0$ or $1$. If so, prefix its name
with a ``{\tt ?}'' whenever it appears in a left-hand side of a rule.
For example, consider the following rule for the exponential integral:
$$\int \left(\frac{y+e^x}{x}\right) dx = 
\int \frac{y}{x} dx + \hbox{\rm Ei}(x) \quad\forall \, x \hbox{\ and\ } y$$
This rule is valid for $y = 0$.  One solution is to create a {\tt
Ruleset} with two rules, one with and one without $y$.  A better
solution is to use an ``optional'' pattern variable.

Define rule {\tt eirule} with
a pattern variable $?y$ to indicate
that an expression may or may not occur.
\spadcommand{eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x}
$$
{\int \sp{\displaystyle x} {{\frac{{e \sp \%M}+y}{\%M}} \  {d \%M}}} 
\mbox{\rm == } {{{{\tt '}integral} 
\left({{\frac{y}{x}}, x} \right)}+{{{\tt'}Ei} \left({x} \right)}}
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Apply rule {\tt eirule} to an integral without this term.
\spadcommand{eirule integral(exp u/u, u)}
$$
Ei \left({u} \right)
$$
\returnType{Type: Expression Integer}

Apply rule {\tt eirule} to an integral with this term.
\spadcommand{eirule integral(sin u + exp u/u, u)}
$$
{\int \sp{\displaystyle u} {{\sin \left({ \%M} \right)}\  {d \%M}}}
+{Ei \left({u} \right)}
$$
\returnType{Type: Expression Integer}

%Original Page 177

Here is one final adornment you will find useful.  When matching a
pattern of the form $x + y$ to an expression containing a long sum of
the form $a +\ldots+ b$, there is no way to predict in advance which
subset of the sum matches $x$ and which matches $y$.  Aside from
efficiency, this is generally unimportant since the rule holds for any
possible combination of matches for $x$ and $y$.  In some situations,
however, you may want to say which pattern variable is a sum (or
product) of several terms, and which should match only a single term.
To do this, put a prefix colon ``{\tt :}'' before the pattern variable
that you want to match multiple terms.
\index{pattern!variable!matching several terms}

The remaining rules involve operators $u$ and $v$. \index{operator}
\spadcommand{u := operator 'u}
$$
u 
$$
\returnType{Type: BasicOperator}

These definitions tell Axiom that $u$ and $v$ are formal operators to
be used in expressions.
\spadcommand{v := operator 'v}
$$
v 
$$
\returnType{Type: BasicOperator}

First define {\tt myRule} with no restrictions on the pattern variables
$x$ and $y$.
\spadcommand{myRule := rule u(x + y) == u x + v y}
$$
{u \left({{y+x}} \right)}\mbox{\rm == } 
{{{{\tt '}v} \left({y} \right)}+{{{\tt'}u} \left({x} \right)}}
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Apply {\tt myRule} to an expression.
\spadcommand{myRule u(a + b + c + d)}
$$
{v \left({{d+c+b}} \right)}+{u\left({a} \right)}
$$
\returnType{Type: Expression Integer}

Define {\tt myOtherRule} to match several terms so that the rule gets
applied recursively.
\spadcommand{myOtherRule := rule u(:x + y) == u x + v y}
$$
{u \left({{y+x}} \right)}\mbox{\rm == } 
{{{{\tt '}v} \left({y} \right)}+{{{\tt'}u} \left({x} \right)}}
$$
\returnType{Type: RewriteRule(Integer,Integer,Expression Integer)}

Apply {\tt myOtherRule} to the same expression.
\spadcommand{myOtherRule u(a + b + c + d)}
$$
{v \left({c} \right)}
+{v\left({b} \right)}
+{v\left({a} \right)}
+{u\left({d} \right)}
$$
\returnType{Type: Expression Integer}

\boxer{4.6in}{
Summary of pattern variable adornments:
\vskip .5\baselineskip
\begin{tabular}{@{}ll}
{\tt (x | predicate?(x))} &
  means that the substutution $s$ for $x$\\ &
  must satisfy {\tt predicate(s) = true.} \\
{\tt ?x} &
  means that $x$ can match an identity \\ & element (0 or 1). \\
{\tt :x} &
  means that $x$ can match several terms \\ & in a sum.
\end{tabular}\\
}

%Original Page 178

Here are some final remarks on pattern matching.  Pattern matching
provides a very useful paradigm for solving certain classes of
problems, namely, those that involve transformations of one form to
another and back.  However, it is important to recognize its
limitations.  \index{pattern!matching!caveats}

First, pattern matching slows down as the number of rules you have to
apply increases.  Thus it is good practice to organize the sets of
rules you use optimally so that irrelevant rules are never included.

Second, careless use of pattern matching can lead to wrong answers.
You should avoid using pattern matching to handle hidden algebraic
relationships that can go undetected by other programs.  As a simple
example, a symbol such as ``J'' can easily be used to represent the
square root of $-1$ or some other important algebraic quantity.  Many
algorithms branch on whether an expression is zero or not, then divide
by that expression if it is not.  If you fail to simplify an
expression involving powers of $J$ to $-1,$ algorithms may incorrectly
assume an expression is non-zero, take a wrong branch, and produce a
meaningless result.

Pattern matching should also not be used as a substitute for a domain.
In Axiom, objects of one domain are transformed to objects of other
domains using well-defined {\bf coerce} operations.  Pattern matching
should be used on objects that are all the same type.  Thus if your
application can be handled by type {\tt Expression} in Axiom and you
think you need pattern matching, consider this choice carefully.
\index{Expression} You may well be better served by extending an
existing domain or by building a new domain of objects for your
application.

%\setcounter{chapter}{6}

%Original Page 179

\chapter{Graphics}
\label{ugGraph}

\begin{figure}[htbp]
\includegraphics{ps/torusknot.ps}
\caption{Torus knot of type (15,17).}
\end{figure}

This chapter shows how to use the Axiom graphics facilities
\index{graphics} under the X Window System.  Axiom has
two-di\-men\-sion\-al and three-di\-men\-sion\-al drawing and
rendering packages that allow the drawing, coloring, transforming,
mapping, clipping, and combining of graphic output from Axiom
computations.  This facility is particularly useful for investigating
problems in areas such as topology.  The graphics package is capable
of plotting functions of one or more variables or plotting parametric
surfaces and curves.  Various coordinate systems are also available,
such as polar and spherical.

A graph is displayed in a viewport window and it has a
\index{viewport} control-panel that uses interactive mouse commands.
PostScript and other output forms are available so that Axiom
\index{PostScript} images can be printed or used by other programs.

%Original Page 180

\section{Two-Dimensional Graphics}
\label{ugGraphTwoD}

The Axiom two-di\-men\-sion\-al graphics package provides the ability
to \index{graphics!two-dimensional} display
\begin{itemize}
\item curves defined by functions of a single real variable
\item curves defined by parametric equations
\item implicit non-singular curves defined by polynomial equations
\item planar graphs generated from lists of point components.
\end{itemize}

These graphs can be modified by specifying various options, such as
calculating points in the polar coordinate system or changing the size
of the graph viewport window.

\subsection{Plotting Two-Dimensional Functions of One Variable}
\label{ugGraphTwoDPlot}

\index{curve!one variable function} The first kind of
two-di\-men\-sion\-al graph is that of a curve defined by a function
$y = f(x)$ over a finite interval of the $x$ axis.

\boxer{4.6in}{
The general format for drawing a function defined by a formula $f(x)$ is:
\begin{center}
{\tt draw(f(x), x = a..b, {\it options})}
\end{center}

where $a..b$ defines the range of $x$, and where {\it options}
prescribes zero or more options as described in
\sectionref{ugGraphTwoDOptions}.  An
example of an option is $curveColor == bright\ red().$ An alternative
format involving functions $f$ and $g$ is also available.\\
}

A simple way to plot a function is to use a formula.  The first
argument is the formula.  For the second argument, write the name of
the independent variable (here, $x$), followed by an ``{\tt =}'', and the
range of values.

%Original Page 181

Display this formula over the range $0 \leq x \leq 6$.
Axiom converts your formula to a compiled function so that the
results can be computed quickly and efficiently. 

\spadgraph{draw(sin(tan(x)) - tan(sin(x)),x = 0..6)}
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2d1vara.eps}}
\begin{center}
$sin(tan(x)) - tan(sin(x))\ \ \ x = 0 \ldots6$
\end{center}
\end{minipage}

Notice that Axiom compiled the function before the graph was put
on the screen.

Here is the same graph on a different interval.

\spadgraph{draw(sin(tan(x)) - tan(sin(x)),x = 10..16)}
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2d1varb.eps}}
\begin{center}
$sin(tan(x)) - tan(sin(x))\ \ \ x = 10 \ldots16$
\end{center}
\end{minipage}

Once again the formula is converted to a compiled function before any
points were computed.  If you want to graph the same function on
several intervals, it is a good idea to define the function first so
that the function has to be compiled only once.

This time we first define the function.
\spadcommand{f(x) == (x-1)*(x-2)*(x-3) }

%Original Page 182

To draw the function, the first argument is its name and the second is
just the range with no independent variable.
\spadgraph{draw(f, 0..4) }
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2d1vard.eps}}
\begin{center}
$f(x) == (x-1)(x-2)(x-3)$
\end{center}
\end{minipage}

\subsection{Plotting Two-Dimensional Parametric Plane Curves}
\label{ugGraphTwoDPar}

The second kind of two-di\-men\-sion\-al graph is that of
\index{parametric plane curve} curves produced by parametric
equations.  \index{curve!parametric plane} Let $x = f(t)$ and 
$y = g(t)$ be formulas or two functions $f$ and $g$ as the parameter $t$
ranges over an interval $[a,b]$.  The function {\bf curve} takes the
two functions $f$ and $g$ as its parameters.

\boxer{4.6in}{
The general format for drawing a two-di\-men\-sion\-al plane curve defined by
parametric formulas $x = f(t)$ and $y = g(t)$ is:
\begin{center}
{\tt draw(curve(f(t), g(t)), t = a..b, {\it options})}
\end{center}

where $a..b$ defines the range of the independent variable $t$, and
where {\it options} prescribes zero or more options as described in
\sectionref{ugGraphThreeDOptions}.  An
example of an option is $curveColor == bright\ red().$\\ }

Here's an example:

%Original Page 183

Define a parametric curve using a range involving $\%pi$, Axiom's way
of saying $\pi$.  For parametric curves, Axiom
compiles two functions, one for each of the functions $f$ and $g$.
\spadgraph{draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t = 0..2*\%pi)}
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2dppca.eps}}
\begin{center}
$curve(sin(t)*sin(2t)*sin(3t), sin(4t)*sin(5t)*sin(6t))$
\end{center}
\end{minipage}

The title may be an arbitrary string and is an optional argument to
the {\bf draw} command.
\spadgraph{draw(curve(cos(t), sin(t)), t = 0..2*\%pi)}
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2dppcb.eps}}
\begin{center}
$curve(cos(t), sin(t)), \quad t = 0..2\pi$
\end{center}
\end{minipage}

If you plan on plotting $x = f(t)$, $y = g(t)$ as $t$ ranges over
several intervals, you may want to define functions $f$ and $g$ first,
so that they need not be recompiled every time you create a new graph.
Here's an example:

As before, you can first define the functions you wish to draw.
\spadcommand{f(t:DFLOAT):DFLOAT == sin(3*t/4) }
\begin{verbatim}
   Function declaration f : DoubleFloat -> DoubleFloat has been 
      added to workspace.
\end{verbatim}
\returnType{Type: Void}

Axiom compiles them to map {\tt DoubleFloat} values to {\tt DoubleFloat} 
values.
\spadcommand{g(t:DFLOAT):DFLOAT == sin(t) }
\begin{verbatim}
   Function declaration f : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

%Original Page 184

Give to {\tt curve} the names of the functions, then write the range
without the name of the independent variable.
\spadgraph{draw(curve(f,g),0..\%pi) }
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2dppcc.eps}}
\begin{center}
$curve(f,g) \quad 0..\pi$
\end{center}
\end{minipage}

Here is another look at the same curve but over a different
range. Notice that $f$ and $g$ are not recompiled.  Also note that
Axiom provides a default title based on the first function specified
in {\bf curve}.
\spadgraph{draw(curve(f,g),-4*\%pi..4*\%pi) }
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2dppce.eps}}
\begin{center}
$curve(f,g)\quad -4\pi..4\pi$
\end{center}
\end{minipage}

\subsection{Plotting Plane Algebraic Curves}
\label{ugGraphTwoDPlane}

A third kind of two-di\-men\-sion\-al graph is a non-singular
``solution curve'' \index{curve!plane algebraic} in a rectangular
region of the plane.  A solution curve is a curve defined by a
polynomial equation $p(x,y) = 0$.  \index{plane algebraic curve}
Non-singular means that the curve is ``smooth'' in that it does not
cross itself or come to a point (cusp).  Algebraically, this means
that for any point $(x,y)$ on the curve, that is, a point such that
$p(x,y) = 0$, the partial derivatives 
${\frac{\partial p}{\partial x}}(x,y)$ and 
${\frac{\partial p}{\partial y}}(x,y)$ are not both zero.
\index{curve!smooth} \index{curve!non-singular} \index{smooth curve}
\index{non-singular curve}

%Original Page 185

\boxer{4.6in}{
The general format for drawing a non-singular solution curve given by
a polynomial of the form $p(x,y) = 0$ is:
\begin{center}
{\tt draw(p(x,y) = 0, x, y, range == [a..b, c..d], {\it options})}
\end{center}

where the second and third arguments name the first and second
independent variables of $p$.  A {\tt range} option is always given to
designate a bounding rectangular region of the plane
$a \leq x \leq b, c \leq y \leq d$.
Zero or more additional options as described in
\sectionref{ugGraphTwoDOptions} may be given.
}

We require that the polynomial has rational or integral coefficients.
Here is an algebraic curve example (``Cartesian ovals''):
\index{Cartesian!ovals}
\spadcommand{p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1) }
$$
{y \sp 4}+{{\left( {2 \  {x \sp 2}} -{{16} \  x} -6 
\right)}
\  {y \sp 2}}+{x \sp 4} -{{16} \  {x \sp 3}}+{{58} \  {x \sp 2}} -{{12} \  x} 
-6 
$$
\returnType{Type: Polynomial Integer}

The first argument is always expressed as an equation of the form $p = 0$
where $p$ is a polynomial.
\spadgraph{draw(p = 0, x, y, range == [-1..11, -7..7]) }
\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2dpaca.eps}}
\begin{center}
$p = 0, x, y,\quad range == [-1..11, -7..7]$
\end{center}
\end{minipage}

\subsection{Two-Dimensional Options}
\label{ugGraphTwoDOptions}

The {\bf draw} commands take an optional list of options, such as {\tt
title} shown above.  Each option is given by the syntax: 
{\it name} {\tt ==} {\it value}.  
Here is a list of the available options in the
order that they are described below.

\begin{tabular}{llll}
adaptive&clip&unit\\
clip&curveColor&range\\
toScale&pointColor&coordinates\\
\end{tabular}


%Original Page 186


The $adaptive$ option turns adaptive plotting on or off.
\index{adaptive plotting} Adaptive plotting uses an algorithm that
traverses a graph and computes more points for those parts of the
graph with high curvature.  The higher the curvature of a region is,
the more points the algorithm computes.  
\index{graphics!2D options!adaptive}

The {\tt adaptive} option is normally on.  Here we turn it off.
\spadgraph{draw(sin(1/x),x=-2*\%pi..2*\%pi, adaptive == false)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptad.eps}}
\begin{center}
$sin(1/x),x=-2\pi..2\pi,\quad adaptive == false$
\end{center}
\end{minipage}

The {\tt clip} option turns clipping on or off.  
\index{graphics!2D options!clipping} 
If on, large values are cut off according to
\spadfunFrom{clipPointsDefault}{GraphicsDefaults}.

\spadgraph{draw(tan(x),x=-2*\%pi..2*\%pi, clip == true)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptcp.eps}}
\begin{center}
$tan(x),x=-2\pi..2\pi,\quad clip == true$
\end{center}
\end{minipage}

Option {\tt toScale} does plotting to scale if {\tt true} or uses the
entire viewport if {\tt false}.  The default can be determined using
\spadfunFrom{drawToScale}{GraphicsDefaults}.  
\index{graphics!2D options!to scale}

\spadgraph{draw(sin(x),x=-\%pi..\%pi, toScale == true, unit == [1.0,1.0])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptsc.eps}}
\begin{center}
$sin(x),x=-\pi..\pi,\quad toScale == true,\quad unit == [1.0,1.0]$
\end{center}
\end{minipage}

%Original Page 187

Option {\tt clip} with a range sets point clipping of a graph within
the \index{graphics!2D options!clip in a range} ranges specified in
the list $[x range,y range]$.  \index{clipping} If only one range is
specified, clipping applies to the y-axis.
\spadgraph{draw(sec(x),x=-2*\%pi..2*\%pi, clip == [-2*\%pi..2*\%pi,-\%pi..\%pi], unit == [1.0,1.0])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptcpr.eps}}
\begin{center}
$sec(x),x=-2\pi..2\pi, \quad clip == [-2\pi..2\pi,-\pi..\pi], 
 unit == [1.0,1.0]$
\end{center}
\end{minipage}

Option {\tt curveColor} sets the color of the graph curves or lines to
be the \index{graphics!2D options!curve color} indicated palette color
\index{curve!color} (see \sectionref{ugGraphColor} and
\sectionref{ugGraphColorPalette}).  
\index{color!curve}

\spadgraph{draw(sin(x),x=-\%pi..\%pi, curveColor == bright red())}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptcvc.eps}}
\begin{center}
$sin(x),x=-\pi..\pi, \quad curveColor == bright red()$
\end{center}
\end{minipage}

Option {\tt pointColor} sets the color of the graph points to the
indicated \index{graphics!2D options!point color} palette color (see
\sectionref{ugGraphColor} and \sectionref{ugGraphColorPalette}).
\index{color!point}
\spadgraph{draw(sin(x),x=-\%pi..\%pi, pointColor == pastel yellow())}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptptc.eps}}
\begin{center}
$sin(x),x=-\pi..\pi, \quad pointColor == pastel yellow()$
\end{center}
\end{minipage}

%Original Page 188

Option {\tt unit} sets the intervals at which the axis units are
plotted \index{graphics!2D options!set units} according to the
indicated steps [$x$ interval, $y$ interval].
\spadgraph{draw(curve(9*sin(3*t/4),8*sin(t)), t = -4*\%pi..4*\%pi, unit == [2.0,1.0])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptut.eps}}
\begin{center}
$9sin(3t/4),8sin(t)), t = -4\pi..4\pi, \quad unit == [2.0,1.0]$
\end{center}
\end{minipage}

Option {\tt range} sets the range of variables in a graph to be within
the ranges \index{graphics!2D options!range} for solving plane
algebraic curve plots.
\spadgraph{draw(y**2 + y - (x**3 - x) = 0, x, y, range == [-2..2,-2..1], unit==[1.0,1.0])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptrga.eps}}
\begin{center}
$y^2 + y - (x^3 - x) = 0, x, y, range == [-2..2,-2..1], unit==[1.0,1.0]$
\end{center}
\end{minipage}

A second example of a solution plot.
\spadgraph{draw(x**2 + y**2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptrgb.eps}}
\begin{center}
$x^2 + y^2 = 1, x, y, range == [-3/2..3/2,-3/2..3/2], unit==[0.5,0.5]$
\end{center}
\end{minipage}

%Original Page 189

Option $coordinates$ indicates the coordinate system in which the
graph \index{graphics!2D options!coordinates} is plotted.  The default
is to use the Cartesian coordinate system.
\index{Cartesian!coordinate system} For more details, see
\sectionref{ugGraphCoord}
{or {\tt CoordinateSystems}.}
\index{coordinate system!Cartesian}

\spadgraph{draw(curve(sin(5*t),t),t=0..2*\%pi, coordinates == polar)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/2doptplr.eps}}
\begin{center}
$sin(5t),t),t=0..2\pi,\quad coordinates == polar$
\end{center}
\end{minipage}

\subsection{Color}
\label{ugGraphColor}

The domain {\tt Color} \index{Color} provides operations for
manipulating \index{graphics!color} colors in two-di\-men\-sion\-al
graphs.  \index{color} Colors are objects of {\tt Color}.  Each color
has a {\it hue} and a {\it weight}.  \index{hue} Hues are represented
by integers that range from $1$ to the
\spadfunFrom{numberOfHues()}{Color}, normally
\index{graphics!color!number of hues} $27$.  \index{weight} Weights
are floats and have the value $1.0$ by default.

\begin{description}

\item[{\bf color}]\funArgs{integer}
creates a color of hue {\it integer} and weight $1.0$.

\item[{\bf hue}]\funArgs{color}
returns the hue of {\it color} as an integer.
\index{graphics!color!hue function}

\item[{\bf red}]\funArgs{}
\funSyntax{blue}{},
\funSyntax{green}{}, and \funSyntax{yellow}{}
\index{graphics!color!primary color functions}
create colors of that hue with weight $1.0$.

\item[$\hbox{\it color}_{1}$ {\tt +} $\hbox{\it color}_{2}$] returns the
color that results from additively combining the indicated
$\hbox{\it color}_{1}$ and $\hbox{\it color}_{2}$.
Color addition is not commutative: changing the order of the arguments
produces different results.

\item[{\it integer} {\tt *} {\it color}]
changes the weight of {\it color} by {\it integer}
without affecting its hue.
\index{graphics!color!multiply function}
For example,
$red() + 3*yellow()$ produces a color closer to yellow than to red.
Color multiplication is not associative: changing the order of grouping
\index{color!multiplication}
produces different results.
\end{description}

%Original Page 190

These functions can be used to change the point and curve colors
for two- and three-di\-men\-sion\-al graphs.
Use the {\tt pointColor} option for points.

\spadgraph{draw(x**2,x=-1..1,pointColor == green())}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/23dcola.eps}}
\begin{center}
$x^2, x=-1..1, \quad pointColor == green()$
\end{center}
\end{minipage}

Use the {\tt curveColor} option for curves.

\spadgraph{draw(x**2,x=-1..1,curveColor == color(13) + 2*blue())}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/23dcolb.eps}}
\begin{center}
$x^2, x=-1..1, \quad curveColor == color(13) + 2*blue()$
\end{center}
\end{minipage}

\subsection{Palette}
\label{ugGraphColorPalette}
\index{graphics!palette}

Domain {\tt Palette} is the domain of shades of colors:
{\bf dark}, {\bf dim}, {\bf bright}, {\bf pastel}, and {\bf light},
designated by the integers $1$ through $5$, respectively.
\index{Palette}

Colors are normally ``bright.''

\spadcommand{shade red()}
$$
3 
$$
\returnType{Type: PositiveInteger}

To change the shade of a color, apply the name of a shade to it.
\index{color!shade}
\index{shade}

\spadcommand{myFavoriteColor := dark blue() }
$$
[{ \mbox{\rm Hue: }{22}\quad \mbox{\rm Weight: }{1.0}} \mbox{\rm ] from the } 
Dark\ \mbox{\rm palette} 
$$
\returnType{Type: Palette}

The expression $shade(color)$
returns the value of a shade of $color$.

\spadcommand{shade myFavoriteColor }
$$
1 
$$
\returnType{Type: PositiveInteger}

%Original Page 191

The expression $hue(color)$ returns its hue.

\spadcommand{hue myFavoriteColor }
$$
\mbox{\rm Hue: } {22}\quad \mbox{\rm Weight: } {1.0} 
$$
\returnType{Type: Color}

Palettes can be used in specifying colors in two-di\-men\-sion\-al graphs.

\spadgraph{draw(x**2,x=-1..1,curveColor == dark blue())}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/23dpal.eps}}
\begin{center}
$x^2,x=-1..1, \quad curveColor == dark blue()$
\end{center}
\end{minipage}

\subsection{Two-Dimensional Control-Panel}
\label{ugGraphTwoDControl}

\index{graphics!2D control-panel}
Once you have created a viewport, move your mouse to the viewport and click
with your left mouse button to display a control-panel.
The panel is displayed on the side of the viewport closest to
where you clicked.  Each of the buttons which toggle on and off show the
current state of the graph.

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=1.0]{ps/2dctrl.eps}}
\begin{center}
Two-dimensional control-panel.
\end{center}
\end{minipage}

\subsubsection{Transformations}
\index{graphics!2D control-panel!transformations}

Object transformations are executed from the control-panel by mouse-activated
potentiometer windows.
%
\begin{description}
%
\item[Scale:] To scale a graph, click on a mouse button
\index{graphics!2D control-panel!scale}
within the {\bf Scale} window in the upper left corner of the control-panel.
The axes along which the scaling is to occur are indicated by setting the
toggles above the arrow.
With {\tt X On} and {\tt Y On} appearing, both axes are selected and scaling
is uniform.
If either is not selected, for example, if {\tt X Off} appears, scaling is
non-uniform.
%
\item[Translate:] To translate a graph, click the mouse in the
\index{graphics!2D control-panel!translate}
{\bf Translate} window in the direction you wish the graph to move.
This window is located in the upper right corner of the control-panel.
Along the top of the {\bf Translate} window are two buttons for selecting
the direction of translation.
Translation along both coordinate axes results when {\tt X On} and {\tt Y
On} appear or along one axis when one is on, for example, {\tt X On} and
{\tt Y Off} appear.
\end{description}

\subsubsection{Messages}
\index{graphics!2D control-panel!messages}

The window directly below the transformation potentiometer windows is
used to display system messages relating to the viewport and the control-panel.
The following format is displayed: \newline
%

%Original Page 192

\begin{center}
[scaleX, scaleY] $>$graph$<$ [translateX, translateY] \newline
\end{center}
The two values to the left show the scale factor along the {\tt X} and
{\tt Y} coordinate axes.  The two values to the right show the distance of
translation from the center in the {\tt X} and {\tt Y} directions.  The number
in the center shows which graph in the viewport this data pertains to.
When multiple graphs exist in the same viewport,
the graph must be selected (see ``Multiple Graphs,'' below) in
order for its transformation data to be shown, otherwise the number
is 1.

\subsubsection{Multiple Graphs}

\index{graphics!2D control-panel!multiple graphs}
The {\bf Graphs} window contains buttons that allow the placement
of two-di\-men\-sion\-al graphs into one of nine available slots in any other
two-di\-men\-sion\-al viewport.
In the center of the window are numeral buttons from one to nine
that show whether a graph is displayed in the viewport.
Below each number button is a button showing whether a graph
that is present is selected for application of some
transformation.
When the caret symbol is displayed, then the graph in that slot
will be manipulated.
Initially, the graph for which the viewport is created occupies
the first slot, is displayed, and is selected.
%

%%Original Page 193

\begin{description}
%
\item[Clear:]  The {\bf Clear} button deselects every viewport graph slot.
\index{graphics!2D control-panel!clear}
A graph slot is reselected by selecting the button below its number.
%
\item[Query:]  The {\bf Query} button is used to display the scale and
\index{graphics!2D control-panel!query}
translate data for the indicated graph.  When this button is selected the
message ``Click on the graph to query'' appears.  Select a slot
number button from the {\bf Graphs} window. The scaling factor and translation
offset of the graph are then displayed in the message window.
%
\item[Pick:]  The {\bf Pick} button is used to select a graph
\index{graphics!2D control-panel!pick}
to be placed or dropped into the indicated viewport.  When this button is
selected, the message ``Click on the graph to pick'' appears.
Click on the slot with the graph number of the desired
graph.  The graph information is held waiting for
you to execute a {\bf Drop} in some other graph.
%
\item[Drop:]  Once a graph has been picked up using the {\bf Pick} button,
\index{graphics!2D control-panel!drop}
the {\bf Drop} button places it into a new viewport slot.
The message ``Click on the graph to drop'' appears in the message
window when the {\bf Drop} button is selected.
By selecting one of the slot number buttons in the {\bf Graphs}
window, the graph currently being held is dropped into this slot
and displayed.
\end{description}

\subsubsection{Buttons}
\index{graphics!2D control-panel!buttons}

%
\begin{description}
%
\item[Axes] turns the coordinate axes on or off.
\index{graphics!2D control-panel!axes}
%
\item[Units] turns the units along the {\tt x}
and {\tt y} axis on or off.
\index{graphics!2D control-panel!units}
%
\item[Box] encloses the area of the viewport graph
in a bounding box, or removes the box if already enclosed.
\index{graphics!2D control-panel!box}
%
\item[Pts] turns on or off the display of points.
\index{graphics!2D control-panel!points}
%
\item[Lines] turns on or off the display
of lines connecting points.
\index{graphics!2D control-panel!lines}
%
\item[PS] writes the current viewport contents to
\index{graphics!2D control-panel!ps}
a file {\bf axiom2d.ps} or to a name specified in the user's {\bf
\index{graphics!.Xdefaults!PostScript file name}
.Xdefaults} file.
\index{file!.Xdefaults @{\bf .Xdefaults}}
The file is placed in the directory from which Axiom or the {\bf
viewalone} program was invoked.
\index{PostScript}
%
\item[Reset] resets the object transformation
characteristics and attributes back to their initial states.
\index{graphics!2D control-panel!reset}
%
\item[Hide] makes the control-panel disappear.
\index{graphics!2D control-panel!hide}
%
\item[Quit] queries whether the current viewport
\index{graphics!2D control-panel!quit}
session should be terminated.
\end{description}

\subsection{Operations for Two-Dimensional Graphics}
\label{ugGraphTwoDops}

Here is a summary of useful Axiom operations for two-di\-men\-sion\-al
graphics.
Each operation name is followed by a list of arguments.
Each argument is written as a variable informally named according
to the type of the argument (for example, {\it integer}).
If appropriate, a default value for an argument is given in
parentheses immediately following the name.


%%Original Page 194

\begin{description}
%
\item[{\bf adaptive}]\funArgs{\optArg{boolean\argDef{true}}}
\index{adaptive plotting}
sets or indicates whether graphs are plotted
\index{graphics!set 2D defaults!adaptive}
according to the adaptive refinement algorithm.
%
\item[{\bf axesColorDefault}]\funArgs{\optArg{color\argDef{dark blue()}}}
sets or indicates the default color of the
\index{graphics!set 2D defaults!axes color}
axes in a two-di\-men\-sion\-al graph viewport.
%
\item[{\bf clipPointsDefault}]\funArgs{\optArg{boolean\argDef{false}}}
sets or
indicates whether point clipping is
\index{graphics!set 2D defaults!clip points}
to be applied as the default for graph plots.
%
\item[{\bf drawToScale}]\funArgs{\optArg{boolean\argDef{false}}}
sets or
indicates whether the plot of a graph
\index{graphics!set 2D defaults!to scale}
is ``to scale'' or uses the entire viewport space as the default.
%
\item[{\bf lineColorDefault}]\funArgs{\optArg{color\argDef{pastel yellow()}}}
sets or indicates the default color of the
\index{graphics!set 2D defaults!line color}
lines or curves in a two-di\-men\-sion\-al graph viewport.
%
\item[{\bf maxPoints}]\funArgs{\optArg{integer\argDef{500}}}
sets or indicates
the default maximum number of
\index{graphics!set 2D defaults!max points}
possible points to be used when constructing a two-di\-men\-sion\-al graph.
%
\item[{\bf minPoints}]\funArgs{\optArg{integer\argDef{21}}}
sets or indicates the default minimum number of
\index{graphics!set 2D defaults!min points}
possible points to be used when constructing a two-di\-men\-sion\-al graph.
%
\item[{\bf pointColorDefault}]\funArgs{\optArg{color\argDef{bright red()}}}
sets or indicates the default color of the
\index{graphics!set 2D defaults!point color}
points in a two-di\-men\-sion\-al graph viewport.
%
\item[{\bf pointSizeDefault}]\funArgs{\optArg{integer\argDef{5}}}
sets or indicates the default size of the
\index{graphics!set 2D defaults!point size}
dot used to plot points in a two-di\-men\-sion\-al graph.
%
\item[{\bf screenResolution}]\funArgs{\optArg{integer\argDef{600}}}
sets or indicates the default screen
\index{graphics!set 2D defaults!screen resolution}
resolution constant used in setting the computation limit of adaptively
\index{adaptive plotting}
generated curve plots.
%
\item[{\bf unitsColorDefault}]\funArgs{\optArg{color\argDef{dim green()}}}
sets or indicates the default color of the
\index{graphics!set 2D defaults!units color}
unit labels in a two-di\-men\-sion\-al graph viewport.
%
\item[{\bf viewDefaults}]\funArgs{}
resets the default settings for the following
\index{graphics!set 2D defaults!reset viewport}
attributes:  point color, line color, axes color, units color, point size,
viewport upper left-hand corner position, and the viewport size.
%
\item[{\bf viewPosDefault}]\funArgs{\optArg{list\argDef{[100,100]}}}
sets or indicates the default position of the
\index{graphics!set 2D defaults!viewport position}
upper left-hand corner of a two-di\-men\-sion\-al viewport, relative to the
display root window.
The upper left-hand corner of the display is considered to be at the
(0, 0) position.

%%Original Page 195

\item[{\bf viewSizeDefault}]\funArgs{\optArg{list\argDef{[200,200]}}}
sets or
indicates the default size in which two
\index{graphics!set 2D defaults!viewport size}
dimensional viewport windows are shown.
It is defined by a width and then a height.
%
\item[{\bf viewWriteAvailable}]
\funArgs{\optArg{list\argDef{["pixmap","bitmap", "postscript", "image"]}}}
indicates the possible file types
\index{graphics!2D defaults!available viewport writes}
that can be created with the \spadfunFrom{write}{TwoDimensionalViewport} function.
%
\item[{\bf viewWriteDefault}]\funArgs{\optArg{list\argDef{[]}}}
sets or indicates the default types of files, in
\index{graphics!set 2D defaults!write viewport}
addition to the {\bf data} file, that are created when a
{\bf write} function is executed on a viewport.
%
\item[{\bf units}]\funArgs{viewport, integer\argDef{1}, string\argDef{"off"}}
turns the units on or off for the graph with index {\it integer}.
%
\item[{\bf axes}]\funArgs{viewport, integer\argDef{1}, string\argDef{"on"}}
turns the axes on
\index{graphics!2D commands!axes}
or off for the graph with index {\it integer}.
%
\item[{\bf close}]\funArgs{viewport}
closes {\it viewport}.
\index{graphics!2D commands!close}
%
\item[{\bf connect}]\funArgs{viewport, integer\argDef{1}, string\argDef{"on"}}
declares whether lines
\index{graphics!2D commands!connect}
connecting the points are displayed or not.
%
\item[{\bf controlPanel}]\funArgs{viewport, string\argDef{"off"}}
declares
whether the two-di\-men\-sion\-al control-panel is automatically displayed
or not.
%
\item[{\bf graphs}]\funArgs{viewport}
returns a list
\index{graphics!2D commands!graphs}
describing the state of each graph.
If the graph state is not being used this is shown by {\tt "undefined"},
otherwise a description of the graph's contents is shown.
%
\item[{\bf graphStates}]\funArgs{viewport}
displays
\index{graphics!2D commands!state of graphs}
a list of all the graph states available for {\it viewport}, giving the
values for every property.
%
\item[{\bf key}]\funArgs{viewport}
returns the process
\index{graphics!2D commands!key}
ID number for {\it viewport}.
%
\item[{\bf move}]\funArgs{viewport,
$integer_{x}$(viewPosDefault),
$integer_{y}$(viewPosDefault)}
moves {\it viewport} on the screen so that the
\index{graphics!2D commands!move}
upper left-hand corner of {\it viewport} is at the position {\it (x,y)}.
%
\item[{\bf options}]\funArgs{\it viewport}
returns a list
\index{graphics!2D commands!options}
of all the {\tt DrawOption}s used by {\it viewport}.
%
\item[{\bf points}]\funArgs{viewport, integer\argDef{1}, string\argDef{"on"}}
specifies whether the graph points for graph {\it integer} are
\index{graphics!2D commands!points}
to be displayed or not.
%
\item[{\bf region}]\funArgs{viewport, integer\argDef{1}, string\argDef{"off"}}
declares whether graph {\it integer} is or is not to be displayed
with a bounding rectangle.

%%Original Page 196

\item[{\bf reset}]\funArgs{viewport}
resets all the properties of {\it viewport}.
%
\item[{\bf resize}]\funArgs{viewport,
$integer_{width}$,$integer_{height}$}
\index{graphics!2D commands!resize}
resizes {\it viewport} with a new {\it width} and {\it height}.
%
\item[{\bf scale}]\funArgs{viewport, $integer_{n}$\argDef{1},
$integer_{x}$\argDef{0.9}, $integer_{y}$\argDef{0.9}}
scales values for the
\index{graphics!2D commands!scale}
{\it x} and {\it y} coordinates of graph {\it n}.
%
\item[{\bf show}]\funArgs{viewport, $integer_{n}$\argDef{1},
string\argDef{"on"}}
indicates if graph {\it n} is shown or not.
%
\item[{\bf title}]\funArgs{viewport, string\argDef{"Axiom 2D"}}
designates the title for {\it viewport}.
%
\item[{\bf translate}]\funArgs{viewport,
$integer_{n}$\argDef{1},
$float_{x}$\argDef{0.0}, $float_{y}$\argDef{0.0}}
\index{graphics!2D commands!translate}
causes graph {\it n} to be moved {\it x} and {\it y} units in the respective 
directions.
%
\item[{\bf write}]\funArgs{viewport, $string_{directory}$,
\optArg{strings}}
if no third argument is given, writes the {\bf data} file onto the directory
with extension {\bf data}.
The third argument can be a single string or a list of strings with some or
all the entries {\tt "pixmap"}, {\tt "bitmap"}, {\tt "postscript"}, and
{\tt "image"}.
\end{description}

\subsection{Addendum: Building Two-Dimensional Graphs}
\label{ugGraphTwoDbuild}

In this section we demonstrate how to create two-di\-men\-sion\-al graphs from
lists of points and give an example showing how to read the lists
of points from a file.

\subsubsection{Creating a Two-Dimensional Viewport from a List of Points}

Axiom creates lists of points in a two-di\-men\-sion\-al viewport by utilizing
the {\tt GraphImage} and {\tt TwoDimensionalViewport} domains.
In this example, the \spadfunFrom{makeGraphImage}{GraphImage}
function takes a list of lists of points parameter, a list of colors for
each point in the graph, a list of colors for each line in the graph, and
a list of sizes for each point in the graph.
%

The following expressions create a list of lists of points which will be read
by Axiom and made into a two-di\-men\-sion\-al viewport.

\spadcommand{p1 := point [1,1]\$(Point DFLOAT) }
$$
\left[
{1.0},  {1.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p2 := point [0,1]\$(Point DFLOAT) }
$$
\left[
{0.0},  {1.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p3 := point [0,0]\$(Point DFLOAT) }
$$
\left[
{0.0},  {0.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p4 := point [1,0]\$(Point DFLOAT) }
$$
\left[
{1.0},  {0.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p5 := point [1,.5]\$(Point DFLOAT) }
$$
\left[
{1.0},  {0.5} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p6 := point [.5,0]\$(Point DFLOAT) }
$$
\left[
{0.5},  {0.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p7 := point [0,0.5]\$(Point DFLOAT) }
$$
\left[
{0.0},  {0.5} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p8 := point [.5,1]\$(Point DFLOAT) }
$$
\left[
{0.5},  {1.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p9 := point [.25,.25]\$(Point DFLOAT) }
$$
\left[
{0.25},  {0.25} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p10 := point [.25,.75]\$(Point DFLOAT) }
$$
\left[
{0.25},  {0.75} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p11 := point [.75,.75]\$(Point DFLOAT) }
$$
\left[
{0.75},  {0.75} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p12 := point [.75,.25]\$(Point DFLOAT) }
$$
\left[
{0.75},  {0.25} 
\right]
$$
\returnType{Type: Point DoubleFloat}

Finally, here is the list.

\spadcommand{llp := [ [p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7], [p7,p8], [p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9] ]  }
$$
\begin{array}{@{}l}
\displaystyle
\left[
  {\left[ {\left[ {1.0},  {1.0} \right]},
          {\left[ {0.0},  {1.0} \right]}
   \right]},
   {\left[ {\left[ {0.0},  {1.0} \right]},
           {\left[ {0.0},  {0.0} \right]}
   \right]},
   {\left[ {\left[ {0.0},  {0.0} \right]},
           {\left[ {1.0},  {0.0} \right]}
   \right]},
   {\left[ {\left[ {1.0},  {0.0} \right]},
           {\left[ {1.0},  {1.0} \right]}
   \right]},
\right.\\
\left.
\displaystyle
   {\left[ {\left[ {1.0},  {0.5} \right]},
           {\left[ {0.5},  {0.0} \right]},
   \right]},
   {\left[ {\left[ {0.5},  {0.0} \right]},
           {\left[ {0.0},  {0.5} \right]}
   \right]},
   {\left[ {\left[ {0.0},  {0.5} \right]},
           {\left[ {0.5},  {1.0} \right]}
   \right]},
\right.\\
\left.
\displaystyle
   {\left[ {\left[ {0.5},  {1.0} \right]},
           {\left[ {1.0},  {0.5} \right]}
   \right]},
   {\left[ {\left[ {0.25},  {0.25} \right]},
           {\left[ {0.25},  {0.75} \right]},
   \right]},
   {\left[ {\left[ {0.25},  {0.75} \right]},
           {\left[ {0.75},  {0.75} \right]}
   \right]},
\right.\\
\left.
\displaystyle
   {\left[ {\left[ {0.75},  {0.75} \right]},
           {\left[ {0.75},  {0.25} \right]}
   \right]},
   {\left[ {\left[ {0.75},  {0.25} \right]},
           {\left[ {0.25},  {0.25} \right]}
   \right]}
\right]
\end{array}
$$
\returnType{Type: List List Point DoubleFloat}

Now we set the point sizes for all components of the graph.

\spadcommand{size1 := 6::PositiveInteger }
$$
6 
$$
\returnType{Type: PositiveInteger}

\spadcommand{size2 := 8::PositiveInteger }
$$
8 
$$
\returnType{Type: PositiveInteger}

\spadcommand{size3 := 10::PositiveInteger }

\spadcommand{lsize := [size1, size1, size1, size1, size2, size2, size2, size2, size3, size3, size3, size3]  }
$$
\left[
6,  6,  6,  6,  8,  8,  8,  8,  10,  10,  10,  10 
\right]
$$
\returnType{Type: List Polynomial Integer}

Here are the colors for the points.

\spadcommand{pc1 := pastel red() }
$$
[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the } 
Pastel \mbox{\rm palette} 
$$
\returnType{Type: Palette}

\spadcommand{pc2 := dim green() }
$$
[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the } 
Dim \mbox{\rm palette} 
$$
\returnType{Type: Palette}

\spadcommand{pc3 := pastel yellow() }
$$
[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the } 
Pastel \mbox{\rm palette} 
$$
\returnType{Type: Palette}

\spadcommand{lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3]  }
$$
\begin{array}{@{}l}
\left[
{[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the } 
Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: } 
{1.0}} \mbox{\rm ] from the } Pastel \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Pastel \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Dim \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Dim \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Dim \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Dim \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Pastel \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Pastel \mbox{\rm palette} } 
 \right]
\end{array}
$$
\returnType{Type: List Palette}

Here are the colors for the lines.

\spadcommand{lc := [pastel blue(), light yellow(), dim green(), bright red(), light green(), dim yellow(), bright blue(), dark red(), pastel red(), light blue(), dim green(), light yellow()] }
$$
+\begin{array}{@{}l}
 \left[
 {[{ \mbox{\rm Hue: } {22} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the } 
 Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: } 
{1.0}} \mbox{\rm ] from the } Light \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Dim \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Bright \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Light \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Dim \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {22} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Bright \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Dark \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } 1 \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Pastel \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {22} \mbox{\rm Weight: }
{1.0}} \mbox{\rm ] from the } Light \mbox{\rm palette} },
\right. \\
\\
\left.
{[{ \mbox{\rm Hue: } {14} \mbox{\rm Weight: } {1.0}} \mbox{\rm ] from the }
Dim \mbox{\rm palette} },  {[{ \mbox{\rm Hue: } {11} \mbox{\rm Weight: } 
 {1.0}} \mbox{\rm ] from the } Light \mbox{\rm palette} } 
 \right]
\end{array}
$$
\returnType{Type: List Palette}

Now the {\tt GraphImage} is created according to the component
specifications indicated above.

\spadcommand{g := makeGraphImage(llp,lpc,lc,lsize)\$GRIMAGE  }

The \spadfunFrom{makeViewport2D}{TwoDimensionalViewport} function now
creates a {\tt TwoDimensionalViewport} for this graph according to the
list of options specified within the brackets.

\spadgraph{makeViewport2D(g,[title("Lines")])\$VIEW2D }

%See Figure #.#.

This example demonstrates the use of the {\tt GraphImage} functions
\spadfunFrom{component}{GraphImage} and \spadfunFrom{appendPoint}{GraphImage}
in adding points to an empty {\tt GraphImage}.

\spadcommand{)clear all }

\spadcommand{g := graphImage()\$GRIMAGE }
$$
\mbox{\rm Graph with } 0 \mbox{\rm point lists} 
$$
\returnType{Type: GraphImage}

\spadcommand{p1 := point [0,0]\$(Point DFLOAT) }
$$
\left[
{0.0},  {0.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p2 := point [.25,.25]\$(Point DFLOAT) }
$$
\left[
{0.25},  {0.25} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p3 := point [.5,.5]\$(Point DFLOAT) }
$$
\left[
{0.5},  {0.5} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p4 := point [.75,.75]\$(Point DFLOAT) }
$$
\left[
{0.75},  {0.75} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{p5 := point [1,1]\$(Point DFLOAT) }
$$
\left[
{1.0},  {1.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{component(g,p1)\$GRIMAGE}
\returnType{Type: Void}

\spadcommand{component(g,p2)\$GRIMAGE}
\returnType{Type: Void}

\spadcommand{appendPoint(g,p3)\$GRIMAGE}
\returnType{Type: Void}

\spadcommand{appendPoint(g,p4)\$GRIMAGE}
\returnType{Type: Void}

\spadcommand{appendPoint(g,p5)\$GRIMAGE}
\returnType{Type: Void}

\spadcommand{g1 := makeGraphImage(g)\$GRIMAGE  }

Here is the graph.

\spadgraph{makeViewport2D(g1,[title("Graph Points")])\$VIEW2D }

%
%See Figure #.#.
%

A list of points can also be made into a {\tt GraphImage} by using
the operation \spadfunFrom{coerce}{GraphImage}.  It is equivalent to adding
each point to $g2$ using \spadfunFrom{component}{GraphImage}.

\spadcommand{g2 := coerce([ [p1],[p2],[p3],[p4],[p5] ])\$GRIMAGE   }

Now, create an empty {\tt TwoDimensionalViewport}.

\spadcommand{v := viewport2D()\$VIEW2D }

\spadcommand{options(v,[title("Just Points")])\$VIEW2D }

Place the graph into the viewport.

\spadcommand{putGraph(v,g2,1)\$VIEW2D }

Take a look.

\spadgraph{makeViewport2D(v)\$VIEW2D }

%See Figure #.#.

\subsubsection{Creating a Two-Dimensional Viewport of a List of Points from a File}

The following three functions read a list of points from a
file and then draw the points and the connecting lines. The
points are stored in the file in readable form as floating point numbers
(specifically, {\tt DoubleFloat} values) as an alternating
stream of $x$- and $y$-values. For example,
\begin{verbatim}
0.0 0.0     1.0 1.0     2.0 4.0
3.0 9.0     4.0 16.0    5.0 25.0
\end{verbatim}

\begin{verbatim}
drawPoints(lp:List Point DoubleFloat):VIEW2D ==
  g := graphImage()$GRIMAGE
  for p in lp repeat
    component(g,p,pointColorDefault(),lineColorDefault(),
      pointSizeDefault())
  gi := makeGraphImage(g)$GRIMAGE
  makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==
  g := graphImage()$GRIMAGE
  component(g, lp, pointColorDefault(), lineColorDefault(),
    pointSizeDefault())$GRIMAGE
  gi := makeGraphImage(g)$GRIMAGE
  makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==
  f:File(DFLOAT) := open(name,"input")
  lp:LIST(Point DFLOAT) := empty()
  while ((x := readIfCan!(f)) case DFLOAT) repeat
    y : DFLOAT := read!(f)
    lp := cons(point [x,y]$(Point DFLOAT), lp)
    lp
  close!(f)
  drawPoints(lp)
  drawLines(lp)
\end{verbatim}
%
This command will actually create the viewport and the graph if
the point data is in the file $``file.data''$.
\begin{verbatim}
plotData2D("file.data", "2D Data Plot")
\end{verbatim}

\subsection{Addendum: Appending a Graph to a Viewport Window Containing a Graph}
\label{ugGraphTwoDappend}

This section demonstrates how to append a two-di\-men\-sion\-al graph
to a viewport already containing other graphs.  The default {\bf draw}
command places a graph into the first {\tt GraphImage} slot position
of the {\tt TwoDimensionalViewport}.

This graph is in the first slot in its viewport.

\spadcommand{v1 := draw(sin(x),x=0..2*\%pi) }

So is this graph.

\spadcommand{v2 := draw(cos(x),x=0..2*\%pi, curveColor==light red()) }

The operation \spadfunFrom{getGraph}{TwoDimensionalViewport}
retrieves the {\tt GraphImage} $g1$ from the first slot position
in the viewport $v1$.

\spadcommand{g1 := getGraph(v1,1) }

Now \spadfunFrom{putGraph}{TwoDimensionalViewport}
places $g1$ into the the second slot position of $v2$.

\spadcommand{putGraph(v2,g1,2) }

Display the new {\tt TwoDimensionalViewport} containing both graphs.

\spadgraph{makeViewport2D(v2) }

%
%See Figure #.#.
%

\section{Three-Dimensional Graphics}
\label{ugGraphThreeD}

%
The Axiom three-di\-men\-sion\-al graphics package provides the ability to
\index{graphics!three-dimensional}
%
\begin{itemize}
%
\item generate surfaces defined by a function of two real variables
%
\item generate space curves and tubes defined by parametric equations
%
\item generate surfaces defined by parametric equations
\end{itemize}
These graphs can be modified by using various options, such as calculating
points in the spherical coordinate system or changing the polygon grid size
of a surface.

\subsection{Plotting Three-Dimensional Functions of Two Variables}
\label{ugGraphThreeDPlot}

\index{surface!two variable function}
The simplest three-di\-men\-sion\-al graph is that of a surface defined by a function
of two variables, $z = f(x,y)$.

%Original Page 197

\boxer{4.6in}{
The general format for drawing a surface defined by a formula $f(x,y)$
of two variables $x$ and $y$ is:
%
\begin{center}
{\tt draw(f(x,y), x = a..b, y = c..d, {\it options})}
\end{center}
where $a..b$ and $c..d$ define the range of $x$
and $y$, and where {\it options} prescribes zero or more
options as described in \sectionref{ugGraphThreeDOptions}.
An example of an option is $title == ``Title\ of\ Graph''.$
An alternative format involving a function $f$ is also
available.\\
}

The simplest way to plot a function of two variables is to use a formula.
With formulas you always precede the range specifications with
the variable name and an {\tt =} sign.

\spadgraph{draw(cos(x*y),x=-3..3,y=-3..3)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3d2vara.eps}}
\begin{center}
$cos(xy), x=-3..3, y=-3..3$
\end{center}
\end{minipage}

If you intend to use a function more than once,
or it is long and complex, then first
give its definition to Axiom.

\spadcommand{f(x,y) == sin(x)*cos(y) }
\returnType{Type: Void}

To draw the function, just give its name and drop the variables
from the range specifications.
Axiom compiles your function for efficient computation
of data for the graph.
Notice that Axiom uses the text of your function as a
default title.

\spadgraph{draw(f,-\%pi..\%pi,-\%pi..\%pi) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3d2varb.eps}}
\begin{center}
$f, -\pi..\pi, -\pi..\pi$
\end{center}
\end{minipage}

%Original Page 198

\subsection{Plotting Three-Dimensional Parametric Space Curves}
\label{ugGraphThreeDParm}

A second kind of three-di\-men\-sion\-al graph is a three-di\-men\-sion\-al space curve
\index{curve!parametric space}
defined by the parametric equations for $x(t)$, $y(t)$,
\index{parametric space curve}
and $z(t)$ as a function of an independent variable $t$.

\boxer{4.6in}{
The general format for drawing a three-di\-men\-sion\-al space curve defined by
parametric formulas $x = f(t)$, $y = g(t)$, and
$z = h(t)$ is:
%
\begin{center}
{\tt draw(curve(f(t),g(t),h(t)), t = a..b, {\it options})}
\end{center}
where $a..b$ defines the range of the independent variable
$t$, and where {\it options} prescribes zero or more options
as described in \sectionref{ugGraphThreeDOptions}.
An example of an option is $title == ``Title\ of\ Graph''.$
An alternative format involving functions $f$, $g$ and
$h$ is also available.\\
}

If you use explicit formulas to draw a space curve, always precede
the range specification with the variable name and an
{\tt =} sign.

\spadgraph{draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dpsca.eps}}
\begin{center}
$curve(5cos(t), 5sin(t),t),\quad t=-12..12$
\end{center}
\end{minipage}

Alternatively, you can draw space curves by referring to functions.

\spadcommand{i1(t:DFLOAT):DFLOAT == sin(t)*cos(3*t/5) }
\begin{verbatim}
   Function declaration i1 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

This is useful if the functions are to be used more than once \ldots

\spadcommand{i2(t:DFLOAT):DFLOAT == cos(t)*cos(3*t/5) }
\begin{verbatim}
   Function declaration i2 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

or if the functions are long and complex.

\spadcommand{i3(t:DFLOAT):DFLOAT == cos(t)*sin(3*t/5) }
\begin{verbatim}
   Function declaration i3 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

%Original Page 199

Give the names of the functions and
drop the variable name specification in the second argument.
Again, Axiom supplies a default title.

\spadgraph{draw(curve(i1,i2,i3),0..15*\%pi) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dpscb.eps}}
\begin{center}
$curve(i1,i2,i3),\quad 0..15\pi$
\end{center}
\end{minipage}

\subsection{Plotting Three-Dimensional Parametric Surfaces}
\label{ugGraphThreeDPar}

\index{surface!parametric}
A third kind of three-di\-men\-sion\-al graph is a surface defined by
\index{parametric surface}
parametric equations for $x(u,v)$, $y(u,v)$, and
$z(u,v)$ of two independent variables $u$ and $v$.

\boxer{4.6in}{
The general format for drawing a three-di\-men\-sion\-al graph defined by
parametric formulas $x = f(u,v)$, $y = g(u,v)$,
and $z = h(u,v)$ is:
%
\begin{center}
{\tt draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, {\it options})}
\end{center}
where $a..b$ and $c..d$ define the range of the
independent variables $u$ and $v$, and where
{\it options} prescribes zero or more options as described in
\sectionref{ugGraphThreeDOptions}.
An example of an option is $title == ``Title\ of\ Graph''.$
An alternative format involving functions $f$, $g$ and
$h$ is also available.\\
}

This example draws a graph of a surface plotted using the
parabolic cylindrical coordinate system option.
\index{coordinate system!parabolic cylindrical}
The values of the functions supplied to {\bf surface} are
\index{parabolic cylindrical coordinate system}
interpreted in coordinates as given by a {\tt coordinates} option,
here as parabolic cylindrical coordinates (see
\sectionref{ugGraphCoord}.

\spadgraph{draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..\%pi, coordinates== parabolicCylindrical)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dpsa.eps}}
\begin{center}
$surface(u cos(v), u sin(v), v cos(u)), u=-4..4, v=0..\pi, 
coordinates==parabolicCylindrical$
\end{center}
\end{minipage}

%Original Page 200

Again, you can graph these parametric surfaces using functions,
if the functions are long and complex.

Here we declare the types of arguments and values to be of type
{\tt DoubleFloat}.

\spadcommand{n1(u:DFLOAT,v:DFLOAT):DFLOAT == u*cos(v) }
\begin{verbatim}
   Function declaration n1 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

As shown by previous examples, these declarations are necessary.

\spadcommand{n2(u:DFLOAT,v:DFLOAT):DFLOAT == u*sin(v) }
\begin{verbatim}
   Function declaration n2 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

In either case, Axiom compiles the functions
when needed to graph a result.

\spadcommand{n3(u:DFLOAT,v:DFLOAT):DFLOAT == u }
\begin{verbatim}
   Function declaration n3 : DoubleFloat -> DoubleFloat has been added 
      to workspace.
\end{verbatim}
\returnType{Type: Void}

Without these declarations, you have to suffix floats
with $@DFLOAT$ to get a {\tt DoubleFloat} result.
However, a call here with an unadorned float produces a {\tt DoubleFloat}.

\spadcommand{n3(0.5,1.0)}
\begin{verbatim}
   Compiling function n3 with type (DoubleFloat,DoubleFloat) -> 
      DoubleFloat 
\end{verbatim}
\returnType{Type: DoubleFloat}

Draw the surface by referencing the function names, this time
choosing the toroidal coordinate system.
\index{coordinate system!toroidal}
\index{toroidal coordinate system}

\spadgraph{draw(surface(n1,n2,n3), 1..4, 1..2*\%pi, coordinates == toroidal(1\$DFLOAT)) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dpsb.eps}}
\begin{center}
$surface(n1,n2,n3), 1..4, 1..2\pi, coordinates == toroidal(1\$DFLOAT)$
\end{center}
\end{minipage}

\subsection{Axiom Images}
\newpage
{\center{\includegraphics{ps/v0page1.eps}}}

\newpage
{\center{\includegraphics{ps/v0page2.eps}}}

\newpage
{\center{\includegraphics{ps/v0page3.eps}}}

\newpage
{\center{\includegraphics{ps/v0page4.eps}}}

\newpage
{\center{\includegraphics{ps/v0page5.eps}}}

\newpage
{\center{\includegraphics{ps/v0page6.eps}}}

\newpage
{\center{\includegraphics{ps/v0page7.eps}}}

\newpage
{\center{\includegraphics{ps/v0page8.eps}}}

\newpage
\subsection{Three-Dimensional Options}
\label{ugGraphThreeDOptions}

\index{graphics!3D options}
The {\bf draw} commands optionally take an optional list of options such
as {\tt coordinates} as shown in the last example.
Each option is given by the syntax: $name$ {\tt ==} $value$.
Here is a list of the available options in the order that they are
described below:

\begin{tabular}{llll}
title&coordinates&var1Steps\\
style&tubeRadius&var2Steps\\
colorFunction&tubePoints&space\\
\end{tabular}

%Original Page 201

The option $title$ gives your graph a title.
\index{graphics!3D options!title}

\spadgraph{draw(cos(x*y),x=0..2*\%pi,y=0..\%pi,title == "Title of Graph") }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptttl.eps}}
\begin{center}
$cos(xy),x=0..2\pi,y=0..\pi,\quad title == "{\rm Title\ of\ Graph}"$
\end{center}
\end{minipage}

The $style$ determines which of four rendering algorithms is used for
\index{rendering}
the graph.
The choices are
{\tt "wireMesh"}, {\tt "solid"}, {\tt "shade"}, and {\tt "smooth"}.

\spadgraph{draw(cos(x*y),x=-3..3,y=-3..3, style=="smooth", title=="Smooth Option")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptsty.eps}}
\begin{center}
$cos(xy),x=-3..3,y=-3..3, style=="smooth", title=="{\rm Smooth\ Option}"$
\end{center}
\end{minipage}

In all but the wire-mesh style, polygons in a surface or tube plot
are normally colored in a graph according to their
$z$-coordinate value.  Space curves are colored according to their
parametric variable value.
\index{graphics!3D options!color function}
To change this, you can give a coloring function.
\index{function!coloring}
The coloring function is sampled across the range of its arguments, then
normalized onto the standard Axiom colormap.

A function of one variable  makes the color depend on the
value of the parametric variable specified for a tube plot.

\spadcommand{color1(t) == t }
\returnType{Type: Void}

%Original Page 202

\spadgraph{draw(curve(sin(t), cos(t),0), t=0..2*\%pi, tubeRadius == .3, colorFunction == color1) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptcf1.eps}}
\begin{center}
$curve(sin(t), cos(t),0), t=0..2\pi, tubeRadius== .3, colorFunction== color1$
\end{center}
\end{minipage}

A function of two variables makes the color depend on the
values of the independent variables.

\spadcommand{color2(u,v) == u**2 - v**2 }
\returnType{Type: Void}

Use the option {\tt colorFunction} for special coloring.

\spadgraph{draw(cos(u*v), u=-3..3, v=-3..3, colorFunction == color2) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptcf2.eps}}
\begin{center}
$cos(uv), u=-3..3, v=-3..3, colorFunction == color2$
\end{center}
\end{minipage}

With a three variable function, the
color also depends on the value of the function.

\spadcommand{color3(x,y,fxy) == sin(x*fxy) + cos(y*fxy) }
\returnType{Type: Void}

%Original Page 203

\spadgraph{draw(cos(x*y), x=-3..3, y=-3..3, colorFunction == color3) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptcf3.eps}}
\begin{center}
$cos(xy), x=-3..3, y=-3..3, colorFunction == color3$
\end{center}
\end{minipage}

Normally the Cartesian coordinate system is used.
\index{Cartesian!coordinate system}
To change this, use the {\tt coordinates} option.
\index{coordinate system!Cartesian}
For details, see \sectionref{ugGraphCoord}.

\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == 1 }
\begin{verbatim}
   Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat 
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Use the spherical
\index{spherical coordinate system}
coordinate system.
\index{coordinate system!spherical}

\spadgraph{draw(m, 0..2*\%pi,0..\%pi, coordinates == spherical, style=="shade") }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptcrd.eps}}
\begin{center}
$m, 0..2\pi,0..\pi, coordinates == spherical, style=="shade"$
\end{center}
\end{minipage}

\index{tube}
Space curves may be displayed as tubes with polygonal cross sections.\\
Two options, {\tt tubeRadius} and {\tt tubePoints},\\  
control the size and shape of this cross section.
%

%Original Page 204

The {\tt tubeRadius} option specifies the radius of the tube that
\index{tube!radius}
encircles the specified space curve.

\spadgraph{draw(curve(sin(t),cos(t),0),t=0..2*\%pi, style=="shade", tubeRadius == .3)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptrad.eps}}
\begin{center}
$curve(sin(t),cos(t),0),t=0..2\pi, style=="shade", tubeRadius == .3$
\end{center}
\end{minipage}

The {\tt tubePoints} option specifies the number of vertices
\index{tube!points in polygon}
defining the polygon that is used to create a tube around the
specified space curve.
The larger this number is, the more cylindrical the tube becomes.

\spadgraph{draw(curve(sin(t), cos(t), 0), t=0..2*\%pi, style=="shade", tubeRadius == .25, tubePoints == 3)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptpts.eps}}
\begin{center}
$curve(sin(t),cos(t),0), t=0..2\pi, style=="shade", tubeRadius == .25, 
tubePoints == 3$
\end{center}
\end{minipage}

\index{graphics!3D options!variable steps}

Options \spadfunFrom{var1Steps}{DrawOption} and
\spadfunFrom{var2Steps}{DrawOption} specify the number of intervals into
which the grid defining a surface plot is subdivided with respect to the
first and second parameters of the surface function(s).

\spadgraph{draw(cos(x*y),x=-3..3,y=-3..3, style=="shade", var1Steps == 30, var2Steps == 30)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3doptvb.eps}}
\begin{center}
$cos(xy),x=-3..3,y=-3..3, style=="shade", var1Steps == 30, var2Steps == 30$
\end{center}
\end{minipage}

The {\tt space} option
of a {\bf draw} command lets you build multiple graphs in three space.
To use this option, first create an empty three-space object,
then use the {\tt space} option thereafter.
There is no restriction as to the number or kinds
of graphs that can be combined this way.

%Original Page 205

Create an empty three-space object.

\spadcommand{s := create3Space()\$(ThreeSpace DFLOAT) }
$$
{3-Space with }0 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == 1 }
\begin{verbatim}
   Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat 
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Add a graph to this three-space object.
The new graph destructively inserts the graph
into $s$.

\spadgraph{draw(m,0..\%pi,0..2*\%pi, coordinates == spherical, space == s) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dmult1a.eps}}
\begin{center}
$m,0..\pi,0..2\pi, coordinates == spherical, space == s$
\end{center}
\end{minipage}

Add a second graph to $s$.

\spadgraph{v := draw(curve(1.5*sin(t), 1.5*cos(t),0), t=0..2*\%pi, tubeRadius == .25, space == s)  }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dmult1b.eps}}
\begin{center}
$curve(1.5 sin(t), 1.5 cos(t),0), t=0..2\pi, tubeRadius == .25, space == s$
\end{center}
\end{minipage}

A three-space object can also be obtained from an existing three-di\-men\-sion\-al viewport
using the \spadfunFrom{subspace}{ThreeSpace} command.
You can then use {\bf makeViewport3D} to create a viewport window.

Assign to $subsp$ the three-space object in viewport $v$.

\spadcommand{subsp := subspace v  }

%Original Page 206

Reset the space component of $v$ to the value of $subsp$.

\spadcommand{subspace(v, subsp)  }

Create a viewport window from a three-space object.

\spadgraph{makeViewport3D(subsp,"Graphs") }

\subsection{The makeObject Command}
\label{ugGraphMakeObject}

An alternate way to create multiple graphs is to use
{\bf makeObject}.
The {\bf makeObject} command is similar to the {\bf draw}
command, except that it returns a three-space object rather than a
{\tt ThreeDimensionalViewport}.
In fact, {\bf makeObject} is called by the {\bf draw}
command to create the {\tt ThreeSpace} then
\spadfunFrom{makeViewport3D}{ThreeDimensionalViewport} to create a
viewport window.

\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == 1 }
\begin{verbatim}
   Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat 
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Do the last example a new way.
First use {\bf makeObject} to
create a three-space object $sph$.

\spadcommand{sph := makeObject(m, 0..\%pi, 0..2*\%pi, coordinates==spherical)}
\begin{verbatim}
   Compiling function m with type (DoubleFloat,DoubleFloat) -> 
      DoubleFloat 
\end{verbatim}
$$
{3-Space with }1 \mbox{\rm component} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

Add a second object to $sph$.

\spadcommand{makeObject(curve(1.5*sin(t), 1.5*cos(t), 0), t=0..2*\%pi, space == sph, tubeRadius == .25) }
\begin{verbatim}
   Compiling function %D with type DoubleFloat -> DoubleFloat 
   Compiling function %F with type DoubleFloat -> DoubleFloat 
   Compiling function %H with type DoubleFloat -> DoubleFloat 
\end{verbatim}
$$
{3-Space with }2 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

Create and display a viewport
containing $sph$.

\spadgraph{makeViewport3D(sph,"Multiple Objects") }

Note that an undefined {\tt ThreeSpace} parameter declared in a
{\bf makeObject} or {\bf draw} command results in an error.
Use the \spadfunFrom{create3Space}{ThreeSpace} function to define a
{\tt ThreeSpace}, or obtain a {\tt ThreeSpace} that has been
previously generated before including it in a command line.

\subsection{Building Three-Dimensional Objects From Primitives}
\label{ugGraphThreeDBuild}

Rather than using the {\bf draw} and {\bf makeObject} commands,
\index{graphics!advanced!build 3D objects}
you can create three-di\-men\-sion\-al graphs from primitives.
Operation \spadfunFrom{create3Space}{ThreeSpace} creates a
three-space object to which points, curves and polygons
can be added using the operations from the {\tt ThreeSpace}
domain.
The resulting object can then be displayed in a viewport using
\spadfunFrom{makeViewport3D}{ThreeDimensionalViewport}.

Create the empty three-space object $space$.

\spadcommand{space := create3Space()\$(ThreeSpace DFLOAT) }
$$
{3-Space with }0 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

Objects can be sent to this $space$ using the operations
exported by the {\tt ThreeSpace} domain.
\index{ThreeSpace}
The following examples place curves into $space$.

%Original Page 207

Add these eight curves to the space.

\spadcommand{closedCurve(space,[ [0,30,20], [0,30,30], [0,40,30], [0,40,100], [0,30,100],[0,30,110], [0,60,110], [0,60,100], [0,50,100], [0,50,30], [0,60,30], [0,60,20] ])  }
$$
{3-Space with }1 \mbox{\rm component} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [80,0,30], [80,0,100], [70,0,110], [40,0,110], [30,0,100], [30,0,90], [40,0,90], [40,0,95], [45,0,100], [65,0,100], [70,0,95], [70,0,35] ])  }
$$
{3-Space with }2 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [70,0,35], [65,0,30], [45,0,30], [40,0,35], [40,0,60], [50,0,60], [50,0,70], [30,0,70], [30,0,30], [40,0,20], [70,0,20], [80,0,30] ])  }
$$
{3-Space with }3 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [0,70,20], [0,70,110], [0,110,110], [0,120,100], [0,120,70], [0,115,65], [0,120,60], [0,120,30], [0,110,20], [0,80,20], [0,80,30], [0,80,20] ])  }
$$
{3-Space with }4 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [0,105,30], [0,110,35], [0,110,55], [0,105,60], [0,80,60], [0,80,70], [0,105,70], [0,110,75], [0,110,95], [0,105,100], [0,80,100], [0,80,20], [0,80,30] ])  }
$$
{3-Space with }5 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [140,0,20], [140,0,110], [130,0,110], [90,0,20], [101,0,20],[114,0,50], [130,0,50], [130,0,60], [119,0,60], [130,0,85], [130,0,20] ])  }
$$
{3-Space with }6 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{closedCurve(space,[ [0,140,20], [0,140,110], [0,150,110], [0,170,50], [0,190,110], [0,200,110], [0,200,20], [0,190,20], [0,190,75], [0,175,35], [0,165,35],[0,150,75], [0,150,20] ])  }
$$
{3-Space with }7 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

%Original Page 208

\spadcommand{closedCurve(space,[ [200,0,20], [200,0,110], [189,0,110], [160,0,45], [160,0,110], [150,0,110], [150,0,20], [161,0,20], [190,0,85], [190,0,20] ])  }
$$
{3-Space with }8 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

Create and display the viewport using {\bf makeViewport3D}.
Options may also be given but here are displayed as a list with values
enclosed in parentheses.

\spadgraph{makeViewport3D(space, title == "Letters") }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dbuilda.eps}}
\begin{center}
$makeViewport3D(space, title == "Letters")$
\end{center}
\end{minipage}

\subsubsection{Cube Example}

As a second example of the use of primitives, we generate a cube using a
polygon mesh.
It is important to use a consistent orientation of the polygons for
correct generation of three-di\-men\-sion\-al objects.

Again start with an empty three-space object.

\spadcommand{spaceC := create3Space()\$(ThreeSpace DFLOAT) }
$$
{3-Space with }0 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

For convenience,
give {\tt DoubleFloat} values $+1$ and $-1$ names.

\spadcommand{x: DFLOAT := 1 }
$$
1.0 
$$
\returnType{Type: DoubleFloat}

\spadcommand{y: DFLOAT := -1 }
$$
-{1.0} 
$$
\returnType{Type: DoubleFloat}

Define the vertices of the cube.

\spadcommand{a := point [x,x,y,1::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
{1.0},  {1.0},  -{1.0},  {1.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{b := point [y,x,y,4::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
-{1.0},  {1.0},  -{1.0},  {4.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

%Original Page 209

\spadcommand{c := point [y,x,x,8::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
-{1.0},  {1.0},  {1.0},  {8.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{d := point [x,x,x,12::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
{1.0},  {1.0},  {1.0},  {12.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{e := point [x,y,y,16::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
{1.0},  -{1.0},  -{1.0},  {16.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{f := point [y,y,y,20::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
-{1.0},  -{1.0},  -{1.0},  {20.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{g := point [y,y,x,24::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
-{1.0},  -{1.0},  {1.0},  {24.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

\spadcommand{h := point [x,y,x,27::DFLOAT]\$(Point DFLOAT)  }
$$
\left[
{1.0},  -{1.0},  {1.0},  {27.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

Add the faces of the cube as polygons to the space using a
consistent orientation.

\spadcommand{polygon(spaceC,[d,c,g,h])  }
$$
{3-Space with }1 \mbox{\rm component} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{polygon(spaceC,[d,h,e,a])  }
$$
{3-Space with }2 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{polygon(spaceC,[c,d,a,b])  }
$$
{3-Space with }3 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{polygon(spaceC,[g,c,b,f])  }
$$
{3-Space with }4 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

%Original Page 210

\spadcommand{polygon(spaceC,[h,g,f,e])  }
$$
{3-Space with }5 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

\spadcommand{polygon(spaceC,[e,f,b,a])  }
$$
{3-Space with }6 \mbox{\rm components} 
$$
\returnType{Type: ThreeSpace DoubleFloat}

Create and display the viewport.

\spadgraph{makeViewport3D(spaceC, title == "Cube") }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dbuildb.eps}}
\begin{center}
$makeViewport3D(spaceC, title == "Cube")$
\end{center}
\end{minipage}

\subsection{Coordinate System Transformations}
\label{ugGraphCoord}
\index{graphics!advanced!coordinate systems}

The {\tt CoordinateSystems} package provides coordinate transformation
functions that map a given data point from the coordinate system specified
into the Cartesian coordinate system.
\index{CoordinateSystems}
The default coordinate system, given a triplet $(f(u,v), u, v)$, assumes
that $z = f(u, v)$, $x = u$ and $y = v$,
that is, reads the coordinates in $(z, x, y)$ order.

\spadcommand{m(u:DFLOAT,v:DFLOAT):DFLOAT == u**2 }
\begin{verbatim}
   Function declaration m : (DoubleFloat,DoubleFloat) -> DoubleFloat 
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Graph plotted in default coordinate system.

\spadgraph{draw(m,0..3,0..5) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/defcoord.eps}}
\begin{center}
$m,0..3,0..5$
\end{center}
\end{minipage}

%Original Page 211

The $z$ coordinate comes first since the first argument of
the {\bf draw} command gives its values.
In general, the coordinate systems Axiom provides, or any
that you make up, must provide a map to an $(x, y, z)$ triplet in
order to be compatible with the
\spadfunFrom{coordinates}{DrawOption} {\tt DrawOption}.
\index{DrawOption}
Here is an example.

Define the identity function.

\spadcommand{cartesian(point:Point DFLOAT):Point DFLOAT == point }
\begin{verbatim}
   Function declaration cartesian : Point DoubleFloat -> Point 
      DoubleFloat has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Pass $cartesian$ as the \spadfunFrom{coordinates}{DrawOption}
parameter to the {\bf draw} command.

\spadgraph{draw(m,0..3,0..5,coordinates==cartesian) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/cartcoord.eps}}
\begin{center}
$m, 0..3,0..5, coordinates==cartesian$
\end{center}
\end{minipage}

What happened?  The option {\tt coordinates == cartesian} directs
Axiom to treat the dependent variable $m$ defined by $m=u^2$ as the
$x$ coordinate.  Thus the triplet of values $(m, u, v)$ is transformed
to coordinates $(x, y, z)$ and so we get the graph of $x=y^2$.

Here is another example.
The \spadfunFrom{cylindrical}{CoordinateSystems} transform takes
\index{coordinate system!cylindrical}
input of the form $(w,u,v)$, interprets it in the order
\index{cylindrical coordinate system}
($r$,$\theta$,$z$)
and maps it to the Cartesian coordinates
$x=r\cos(\theta)$, $y=r\sin(\theta)$, $z=z$
in which
$r$ is the radius,
$\theta$ is the angle and
$z$ is the z-coordinate.

An example using the \spadfunFrom{cylindrical}{CoordinateSystems}
coordinates for the constant $r = 3$.

\spadcommand{f(u:DFLOAT,v:DFLOAT):DFLOAT == 3 }
\begin{verbatim}
   Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat 
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

%Original Page 212

Graph plotted in cylindrical coordinates.

\spadgraph{draw(f,0..\%pi,0..6,coordinates==cylindrical) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/cylcoord.eps}}
\begin{center}
$f, 0..\pi,0..6, coordinates==cylindrical$
\end{center}
\end{minipage}

Suppose you would like to specify $z$ as a function of
$r$ and $\theta$ instead of just $r$?
Well, you still can use the {\bf cylindrical} Axiom
transformation but we have to reorder the triplet before
passing it to the transformation.

First, let's create a point to
work with and call it $pt$ with some color $col$.

\spadcommand{col := 5 }
$$
5 
$$
\returnType{Type: PositiveInteger}

\spadcommand{pt := point[1,2,3,col]\$(Point DFLOAT)  }
$$
\left[
{1.0},  {2.0},  {3.0},  {5.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

The reordering you want is
$(z,r, \theta)$ to
$(r, \theta,z)$
so that the first element is moved to the third element, while the second
and third elements move forward and the color element does not change.

Define a function {\bf reorder} to reorder the point elements.

\spadcommand{reorder(p:Point DFLOAT):Point DFLOAT == point[p.2, p.3, p.1, p.4] }
\begin{verbatim}
   Function declaration reorder : Point DoubleFloat -> Point 
      DoubleFloat has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

The function moves the second and third elements
forward but the color does not change.

\spadcommand{reorder pt }
$$
\left[
{2.0},  {3.0},  {1.0},  {5.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

The function {\bf newmap} converts our reordered version of
the cylindrical coordinate system to the standard
$(x,y,z)$ Cartesian system.

\spadcommand{newmap(pt:Point DFLOAT):Point DFLOAT == cylindrical(reorder pt)  }
\begin{verbatim}
   Function declaration newmap : Point DoubleFloat -> Point DoubleFloat
      has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

\spadcommand{newmap pt  }
$$
\left[
-{1.9799849932008908},  {0.28224001611973443},  {1.0},  {5.0} 
\right]
$$
\returnType{Type: Point DoubleFloat}

%Original Page 213

Graph the same function $f$ using the coordinate mapping of the function
$newmap$, so it is now interpreted as
$z=3$:

\spadgraph{draw(f,0..3,0..2*\%pi,coordinates==newmap) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/newmap.eps}}
\begin{center}
$f,0..3,0..2\pi,coordinates==newmap$
\end{center}
\end{minipage}

% I think this is good to say here: it shows a lot of depth. RSS
%{\sloppy
The {\tt CoordinateSystems} package exports the following
\index{coordinate system}
operations:\\
{\bf bipolar}, {\bf bipolarCylindrical}, {\bf cartesian}, \\
{\bf conical}, {\bf cylindrical}, {\bf elliptic},\\
{\bf ellipticCylindrical}, {\bf oblateSpheroidal}, {\bf parabolic},\\
{\bf parabolicCylindrical}, {\bf paraboloidal}, {\bf polar},\\
{\bf prolateSpheroidal}, {\bf spherical}, and {\bf toroidal}.\\
Use Browse or the {\tt )show} system command
\index{show}
to get more information.

\subsection{Three-Dimensional Clipping}
\label{ugGraphClip}

A three-di\-men\-sion\-al graph can be explicitly clipped within the {\bf draw}
\index{graphics!advanced!clip}
command by indicating a minimum and maximum threshold for the
\index{clipping}
given function definition.
These thresholds can be defined using the Axiom {\bf min}
and {\bf max} functions.

\begin{verbatim}
gamma(x,y) ==
  g := Gamma complex(x,y)
  point [x, y, max( min(real g, 4), -4), argument g]
\end{verbatim}

Here is an example that clips
the gamma function in order to eliminate the extreme divergence it creates.

\spadgraph{draw(gamma,-\%pi..\%pi,-\%pi..\%pi,var1Steps==50,var2Steps==50) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/clipgamma.eps}}
\begin{center}
$gamma, -\pi..\pi, -\pi..\pi, var1Steps==50, var2Steps==50$
\end{center}
\end{minipage}

\subsection{Three-Dimensional Control-Panel}
\label{ugGraphThreeDControl}

%Original Page 214

\index{graphics!3D control-panel}
Once you have created a viewport, move your mouse to the viewport
and click with your left mouse button.
This displays a control-panel on the side of the viewport
that is closest to where you clicked.

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=1.0]{ps/3dctrl.eps}}
\begin{center}
Three-dimensional control-panel.
\end{center}
\end{minipage}

\subsubsection{Transformations}

We recommend you first select the {\bf Bounds} button while
\index{graphics!3D control-panel!transformations}
executing transformations since the bounding box displayed
indicates the object's position as it changes.
%
\begin{description}
%
\item[Rotate:]  A rotation transformation occurs by clicking the mouse
\index{graphics!3D control-panel!rotate}
within the {\bf Rotate} window in the upper left corner of the
control-panel.
The rotation is computed in spherical coordinates, using the
horizontal mouse position to increment or decrement the value of
the longitudinal angle $\theta$ within the
range of 0 to 2$\pi$ and the vertical mouse position
to increment or decrement the value of the latitudinal angle
$\phi$ within the range of -$\pi$
to $\pi$.
The active mode of rotation is displayed in green on a color
monitor or in clear text on a black and white monitor, while the
inactive mode is displayed in red for color display or a mottled
pattern for black and white.
%
\begin{description}
%
\item[origin:]  The {\bf origin} button indicates that the
rotation is to occur with respect to the origin of the viewing space, that is
indicated by the axes.

%%Original Page 215

\item[object:]  The {\bf object} button indicates that the
rotation is to occur with respect to the center of volume of the object,
independent of the axes' origin position.
\end{description}
%
\item[Scale:]  A scaling transformation occurs by clicking the mouse
\index{graphics!3D control-panel!scale}
within the {\bf Scale} window in the upper center of the
control-panel, containing a zoom arrow.
The axes along which the scaling is to occur are indicated by
selecting the appropriate button above the zoom arrow window.
The selected axes are displayed in green on a color monitor or in
clear text on a black and white monitor, while the unselected axes
are displayed in red for a color display or a mottled pattern for
black and white.
%
\begin{description}
%
\item[uniform:]  Uniform scaling along the {\tt x}, {\tt y}
and {\tt z} axes occurs when all the axes buttons are selected.
%
\item[non-uniform:]  If any of the axes buttons are
not selected, non-uniform scaling occurs, that is, scaling occurs only in the
direction of the axes that are selected.
\end{description}
%
\item[Translate:]  Translation occurs by indicating with the mouse in the
\index{graphics!3D control-panel!translate}
{\bf Translate} window the direction you want the graph to move.
This window is located in the upper right corner of the
control-panel and contains a potentiometer with crossed arrows
pointing up, down, left and right.
Along the top of the {\bf Translate} window are three buttons
({\bf XY},
{\bf XZ}, and {\bf YZ}) indicating the three orthographic projection planes.
Each orientates the group as a view into that plane.
Any translation of the graph occurs only along this plane.
\end{description}

\subsubsection{Messages}

\index{graphics!3D control-panel!messages}

The window directly below the potentiometer windows for transformations is
used to display system messages relating to the viewport, the control-panel
and the current graph displaying status.

\subsubsection{Colormap}

\index{graphics!3D control-panel!color map}

Directly below the message window is the colormap range indicator
window.
\index{colormap}
The Axiom Colormap shows a sampling of the spectrum from
which hues can be drawn to represent the colors of a surface.
The Colormap is composed of five shades for each of the hues along
this spectrum.
By moving the markers above and below the Colormap, the range of
hues that are used to color the existing surface are set.
The bottom marker shows the hue for the low end of the color range
and the top marker shows the hue for the upper end of the range.
Setting the bottom and top markers at the same hue results in
monochromatic smooth shading of the graph when {\bf Smooth} mode is selected.
At each end of the Colormap are {\bf +} and {\bf -} buttons.
When clicked on, these increment or decrement the top or bottom
marker.

\subsubsection{Buttons}
\index{graphics!3D control-panel!buttons}

%Original Page 216

Below the Colormap window and to the left are located various
buttons that determine the characteristics of a graph.
The buttons along the bottom and right hand side all have special
meanings; the remaining buttons in the first row indicate the mode
or style used to display the graph.
The second row are toggles that turn on or off a property of the
graph.
On a color monitor, the property is on if green (clear text, on a
monochrome monitor) and off if red (mottled pattern, on a
monochrome monitor).
Here is a list of their functions.
%
\begin{description}
%
\item[Wire] displays surface and tube plots as a
\index{graphics!3D control-panel!wire}
wireframe image in a single color (blue) with no hidden surfaces removed,
or displays space curve plots in colors based upon their parametric variables.
This is the fastest mode for displaying a graph.
This is very useful when you
want to find a good orientation of your graph.
%
\item[Solid] displays the graph with hidden
\index{graphics!3D control-panel!solid}
surfaces removed, drawing each polygon beginning with the furthest
from the viewer.
The edges of the polygons are displayed in the hues specified by
the range in the Colormap window.
%
\item[Shade] displays the graph with hidden
\index{graphics!3D control-panel!shade}
surfaces removed and with the polygons shaded, drawing each
polygon beginning with the furthest from the viewer.
Polygons are shaded in the hues specified by the range in the
Colormap window using the Phong illumination model.
\index{Phong!illumination model}
%
\item[Smooth] displays the graph using a
\index{graphics!3D control-panel!smooth}
renderer that computes the graph one line at a time.
The location and color of the graph at each visible point on the
screen are determined and displayed using the Phong illumination
\index{Phong!illumination model}
model.
Smooth shading is done in one of two ways, depending on the range
selected in the colormap window and the number of colors available
from the hardware and/or window manager.
When the top and bottom markers of the colormap range are set to
different hues, the graph is rendered by dithering between the
\index{dithering}
transitions in color hue.
When the top and bottom markers of the colormap range are set to
the same hue, the graph is rendered using the Phong smooth shading
model.
\index{Phong!smooth shading model}
However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a
sufficient color supply is available.
For this reason, it may not be possible to render multiple Phong
smooth shaded graphs at the same time on some systems.
%
\item[Bounds] encloses the entire volume of the
viewgraph within a bounding box, or removes the box if previously selected.
\index{graphics!3D control-panel!bounds}
The region that encloses the entire volume of the viewport graph is displayed.

%%Original Page 217

\item[Axes] displays Cartesian
\index{graphics!3D control-panel!axes}
coordinate axes of the space, or turns them off if previously selected.
%
\item[Outline] causes
\index{graphics!3D control-panel!outline}
quadrilateral polygons forming the graph surface to be outlined in black when
the graph is displayed in {\bf Shade} mode.
%
\item[BW] converts a color viewport to black and white, or vice-versa.
\index{graphics!3D control-panel!bw}
When this button is selected the
control-panel and viewport switch to an immutable colormap composed of a range
of grey scale patterns or tiles that are used wherever shading is necessary.
%
\item[Light] takes you to a control-panel described below.
%
\item[ViewVolume] takes you to another control-panel as described below.
\index{graphics!3D control-panel!save}
%
\item[Save] creates a menu of the possible file types that can
be written using the control-panel.
The {\bf Exit} button leaves the save menu.
The {\bf Pixmap} button writes an Axiom pixmap of
\index{graphics!3D control-panel!pixmap}
the current viewport contents.  The file is called {\bf axiom3D.pixmap} and is
located in the directory from which Axiom or {\bf viewalone} was
started.
The {\bf PS} button writes the current viewport contents to
\index{graphics!3D control-panel!ps}
PostScript output rather than to the viewport window.
By default the file is called {\bf axiom3D.ps}; however, if a file
\index{file!.Xdefaults @{\bf .Xdefaults}}
name is specified in the user's {\bf .Xdefaults} file it is
\index{graphics!.Xdefaults!PostScript file name}
used.
The file is placed in the directory from which the Axiom or
{\bf viewalone} session was begun.
See also the \spadfunFrom{write}{ThreeDimensionalViewport}
function.
\index{PostScript}
%
\item[Reset] returns the object transformation
\index{graphics!3D control-panel!reset}
characteristics back to their initial states.
%
\item[Hide] causes the control-panel for the
\index{graphics!3D control-panel!hide}
corresponding viewport to disappear from the screen.
%
\item[Quit]  queries whether the current viewport
\index{graphics!3D control-panel!quit}
session should be terminated.
\end{description}

\subsubsection{Light}

\index{graphics!3D control-panel!light}

%>>>\begin{figure}[htbp]
%>>>\begin{picture}(183,252)(-125,0)
%>>>\special{psfile=ps/3dlight.ps}
%>>>\end{picture}
%>>>\caption{Three-Dimensional Lighting Panel.}
%>>>\end{figure}

The {\bf Light} button changes the control-panel into the
{\bf Lighting Control-Panel}.  At the top of this panel, the three axes
are shown with the same orientation as the object.  A light vector from
the origin of the axes shows the current position of the light source
relative to the object.  At the bottom of the panel is an {\bf Abort}
button that cancels any changes to the lighting that were made, and a
{\bf Return} button that carries out the current set of lighting changes
on the graph.
%
\begin{description}
%
\item[XY:]  The {\bf XY} lighting axes window is below the
\index{graphics!3D control-panel!move xy}
{\bf Lighting Control-Panel} title and to the left.
This changes the light vector within the {\bf XY} view plane.
%
\item[Z:]  The {\bf Z} lighting axis window is below the
\index{graphics!3D control-panel!move z}
{\bf Lighting Control-Panel} title and in the center.  This
changes the {\bf Z}
location of the light vector.
%
\item[Intensity:]
Below the {\bf Lighting Control-Panel} title
\index{graphics!3D control-panel!intensity}
and to the right is the light intensity meter.
Moving the intensity indicator down decreases the amount of
light emitted from the light source.

%Original Page 218

When the indicator is at the top of the meter the light source is
emitting at 100\% intensity.
At the bottom of the meter the light source is emitting at a level
slightly above ambient lighting.
\end{description}

\subsubsection{View Volume}

\index{graphics!3D control-panel!view volume}

The {\bf View Volume} button changes the control-panel into
the {\bf Viewing Volume Panel}.
At the bottom of the viewing panel is an {\bf Abort} button that
cancels any changes to the viewing volume that were made and a
{\it Return} button that carries out the current set of
viewing changes to the graph.
%
%>>>\begin{figure}[htbp]
%>>>\begin{picture}(183,252)(-125,0)
%>>>\special{psfile=ps/3dvolume.ps}
%>>>\end{picture}
%>>>\caption{Three-Dimensional Volume Panel.}
%>>>\end{figure}

\begin{description}

\item[Eye Reference:]  At the top of this panel is the
\index{graphics!3D control-panel!eye reference}
{\bf Eye Reference} window.
It shows a planar projection of the viewing pyramid from the eye
of the viewer relative to the location of the object.
This has a bounding region represented by the rectangle on the
left.
Below the object rectangle is the {\bf Hither} window.
By moving the slider in this window the hither clipping plane sets
\index{hither clipping plane}
the front of the view volume.
As a result of this depth clipping all points of the object closer
to the eye than this hither plane are not shown.
The {\bf Eye Distance} slider to the right of the {\bf Hither}
slider is used to change the degree of perspective in the image.
%
\item[Clip Volume:]  The {\bf Clip Volume} window is at the
\index{graphics!3D control-panel!clip volume}
bottom of the {\bf Viewing Volume Panel}.
On the right is a {\bf Settings} menu.
In this menu are buttons to select viewing attributes.
Selecting the {\bf Perspective} button computes the image using
perspective projection.
\index{graphics!3D control-panel!perspective}
The {\bf Show Region} button indicates whether the clipping region
of the
\index{graphics!3D control-panel!show clip region}
volume is to be drawn in the viewport and the {\bf Clipping On}
button shows whether the view volume clipping is to be in effect
when the image
\index{graphics!3D control-panel!clipping on}
is drawn.
The left side of the {\bf Clip Volume} window shows the clipping
\index{graphics!3D control-panel!clip volume}
boundary of the graph.
Moving the knobs along the {\bf X}, {\bf Y}, and {\bf Z} sliders
adjusts the volume of the clipping region accordingly.
\end{description}

\subsection{Operations for Three-Dimensional Graphics}
\label{ugGraphThreeDops}


Here is a summary of useful Axiom operations for three-di\-men\-sion\-al
graphics.
Each operation name is followed by a list of arguments.
Each argument is written as a variable informally named according
to the type of the argument (for example, {\it integer}).
If appropriate, a default value for an argument is given in
parentheses immediately following the name.

%
\bgroup\hbadness = 10001\sloppy
\begin{description}
%
\item[{\bf adaptive3D?}]\funArgs{}
tests whether space curves are to be plotted
\index{graphics!plot3d defaults!adaptive}
according to the
\index{adaptive plotting}
adaptive refinement algorithm.

%
\item[{\bf axes}]\funArgs{viewport, string\argDef{"on"}}
turns the axes on and off.
\index{graphics!3D commands!axes}

%Original Page 219

%
\item[{\bf close}]\funArgs{viewport}
closes the viewport.
\index{graphics!3D commands!close}

%
\item[{\bf colorDef}]\funArgs{viewport,
$\hbox{\it color}_{1}$\argDef{1}, $\hbox{\it color}_{2}$\argDef{27}}
sets the colormap
\index{graphics!3D commands!define color}
range to be from
$\hbox{\it color}_{1}$ to $\hbox{\it color}_{2}$.

%
\item[{\bf controlPanel}]\funArgs{viewport, string\argDef{"off"}}
declares whether the
\index{graphics!3D commands!control-panel}
control-panel for the viewport is to be displayed or not.

%
\item[{\bf diagonals}]\funArgs{viewport, string\argDef{"off"}}
declares whether the
\index{graphics!3D commands!diagonals}
polygon outline includes the diagonals or not.

%
\item[{\bf drawStyle}]\funArgs{viewport, style}
selects which of four drawing styles
\index{graphics!3D commands!drawing style}
are used: {\tt "wireMesh", "solid", "shade",} or {\tt "smooth".}

%
\item[{\bf eyeDistance}]\funArgs{viewport,float\argDef{500}}
sets the distance of the eye from the origin of the object
\index{graphics!3D commands!eye distance}
for use in the \spadfunFrom{perspective}{ThreeDimensionalViewport}.

%
\item[{\bf key}]\funArgs{viewport}
returns the operating
\index{graphics!3D commands!key}
system process ID number for the viewport.

%
\item[{\bf lighting}]\funArgs{viewport,
$float_{x}$\argDef{-0.5},
$float_{y}$\argDef{0.5}, $float_{z}$\argDef{0.5}}
sets the Cartesian
\index{graphics!3D commands!lighting}
coordinates of the light source.

%
\item[{\bf modifyPointData}]\funArgs{viewport,integer,point}
replaces the coordinates of the point with
\index{graphics!3D commands!modify point data}
the index {\it integer} with {\it point}.

%
\item[{\bf move}]\funArgs{viewport,
$integer_{x}$\argDef{viewPosDefault},
$integer_{y}$\argDef{viewPosDefault}}
moves the upper
\index{graphics!3D commands!move}
left-hand corner of the viewport to screen position
\allowbreak
({\small $integer_{x}$, $integer_{y}$}).

%
\item[{\bf options}]\funArgs{viewport}
returns a list of all current draw options.

%
\item[{\bf outlineRender}]\funArgs{viewport, string\argDef{"off"}}
turns polygon outlining
\index{graphics!3D commands!outline}
off or on when drawing in {\tt "shade"} mode.

%
\item[{\bf perspective}]\funArgs{viewport, string\argDef{"on"}}
turns perspective
\index{graphics!3D commands!perspective}
viewing on and off.

%
\item[{\bf reset}]\funArgs{viewport}
resets the attributes of a viewport to their
\index{graphics!3D commands!reset}
initial settings.

%
\item[{\bf resize}]\funArgs{viewport,
$integer_{width}$ \argDef{viewSizeDefault},
$integer_{height}$ \argDef{viewSizeDefault}}
resets the width and height
\index{graphics!3D commands!resize}
values for a viewport.

%
\item[{\bf rotate}]\funArgs{viewport,
$number_{\theta}$\argDef{viewThetaDefapult},
$number_{\phi}$\argDef{viewPhiDefault}}
rotates the viewport by rotation angles for longitude
({\it $\theta$}) and
latitude ({\it $\phi$}).
Angles designate radians if given as floats, or degrees if given
\index{graphics!3D commands!rotate}
as integers.

%Original Page 220

%
\item[{\bf setAdaptive3D}]\funArgs{boolean\argDef{true}}
sets whether space curves are to be plotted
\index{graphics!plot3d defaults!set adaptive}
according to the adaptive
\index{adaptive plotting}
refinement algorithm.

%
\item[{\bf setMaxPoints3D}]\funArgs{integer\argDef{1000}}
 sets the default maximum number of possible
\index{graphics!plot3d defaults!set max points}
points to be used when constructing a three-di\-men\-sion\-al space curve.

%
\item[{\bf setMinPoints3D}]\funArgs{integer\argDef{49}}
sets the default minimum number of possible
\index{graphics!plot3d defaults!set min points}
points to be used when constructing a three-di\-men\-sion\-al space curve.

%
\item[{\bf setScreenResolution3D}]\funArgs{integer\argDef{49}}
sets the default screen resolution constant
\index{graphics!plot3d defaults!set screen resolution}
used in setting the computation limit of adaptively
\index{adaptive plotting}
generated three-di\-men\-sion\-al space curve plots.

%
\item[{\bf showRegion}]\funArgs{viewport, string\argDef{"off"}}
declares whether the bounding
\index{graphics!3D commands!showRegion}
box of a graph is shown or not.
%
\item[{\bf subspace}]\funArgs{viewport}
returns the space component.
%
\item[{\bf subspace}]\funArgs{viewport, subspace}
resets the space component
\index{graphics!3D commands!subspace}
to {\it subspace}.

%
\item[{\bf title}]\funArgs{viewport, string}
gives the viewport the
\index{graphics!3D commands!title}
title {\it string}.

%
\item[{\bf translate}]\funArgs{viewport,
$float_{x}$\argDef{viewDeltaXDefault},
$float_{y}$\argDef{viewDeltaYDefault}}
translates
\index{graphics!3D commands!translate}
the object horizontally and vertically relative to the center of the viewport.

%
\item[{\bf intensity}]\funArgs{viewport,float\argDef{1.0}}
resets the intensity {\it I} of the light source,
\index{graphics!3D commands!intensity}
$0 \le I \le 1.$

%
\item[{\bf tubePointsDefault}]\funArgs{\optArg{integer\argDef{6}}}
sets or indicates the default number of
\index{graphics!3D defaults!tube points}
vertices defining the polygon that is used to create a tube around
a space curve.

%
\item[{\bf tubeRadiusDefault}]\funArgs{\optArg{float\argDef{0.5}}}
sets or indicates the default radius of
\index{graphics!3D defaults!tube radius}
the tube that encircles a space curve.

%
\item[{\bf var1StepsDefault}]\funArgs{\optArg{integer\argDef{27}}}
sets or indicates the default number of
\index{graphics!3D defaults!var1 steps}
increments into which the grid defining a surface plot is subdivided with
respect to the first parameter declared in the surface function.

%
\item[{\bf var2StepsDefault}]\funArgs{\optArg{integer\argDef{27}}}
sets or indicates the default number of
\index{graphics!3D defaults!var2 steps}
increments into which the grid defining a surface plot is subdivided with
respect to the second parameter declared in the surface function.


%%Original Page 221

\item[{\bf viewDefaults}]\funArgs{{\tt [}$integer_{point}$, 
$integer_{line}$, $integer_{axes}$,
$integer_{units}$, $float_{point}$,
\allowbreak$list_{position}$,
$list_{size}${\tt ]}}
resets the default settings for the
\index{graphics!3D defaults!reset viewport defaults}
point color, line color, axes color, units color, point size,
viewport upper left-hand corner position, and the viewport size.

%
\item[{\bf viewDeltaXDefault}]\funArgs{\optArg{float\argDef{0}}}
resets the default horizontal offset
\index{graphics!3D commands!deltaX default}
from the center of the viewport, or returns the current default offset if no argument is given.

%
\item[{\bf viewDeltaYDefault}]\funArgs{\optArg{float\argDef{0}}}
resets the default vertical offset
\index{graphics!3D commands!deltaY default}
from the center of the viewport, or returns the current default offset if no argument is given.

%
\item[{\bf viewPhiDefault}]\funArgs{\optArg{float\argDef{-$\pi$/4}}}
resets the default latitudinal view angle,
or returns the current default angle if no argument is given.
\index{graphics!3D commands!phi default}
$\phi$ is set to this value.

%
\item[{\bf viewpoint}]\funArgs{viewport, $float_{x}$,
$float_{y}$, $float_{z}$}
sets the viewing position in Cartesian coordinates.

%
\item[{\bf viewpoint}]\funArgs{viewport,
$float_{\theta}$,
$Float_{\phi}$}
sets the viewing position in spherical coordinates.

%
\item[{\bf viewpoint}]\funArgs{viewport,
$Float_{\theta}$,
$Float_{\phi}$,
$Float_{scaleFactor}$,
$Float_{xOffset}$, $Float_{yOffset}$}
sets the viewing position in spherical coordinates,
the scale factor, and offsets.
\index{graphics!3D commands!viewpoint}
$\theta$ (longitude) and
$\phi$ (latitude) are in radians.

%
\item[{\bf viewPosDefault}]\funArgs{\optArg{list\argDef{[0,0]}}}
sets or indicates the position of the upper
\index{graphics!3D defaults!viewport position}
left-hand corner of a two-di\-men\-sion\-al viewport, relative to the display root
window (the upper left-hand corner of the display is $[0, 0]$).

%
\item[{\bf viewSizeDefault}]\funArgs{\optArg{list\argDef{[400,400]}}}
sets or indicates the width and height dimensions
\index{graphics!3D defaults!viewport size}
of a viewport.

%
\item[{\bf viewThetaDefault}]\funArgs{\optArg{float\argDef{$\pi$/4}}}
resets the default longitudinal view angle,
or returns the current default angle if no argument is given.
\index{graphics!3D commands!theta default}
When a parameter is specified, the default longitudinal view angle
$\theta$ is set to this value.

%
\item[{\bf viewWriteAvailable}]\funArgs{\optArg{list\argDef{["pixmap",
"bitmap", "postscript", "image"]}}}
indicates the possible file types
\index{graphics!3D defaults!available viewport writes}
that can be created with the \spadfunFrom{write}{ThreeDimensionalViewport} function.

%
\item[{\bf viewWriteDefault}]\funArgs{\optArg{list\argDef{[]}}}
sets or indicates the default types of files
that are created in addition to the {\bf data} file when a
\spadfunFrom{write}{ThreeDimensionalViewport} command
\index{graphics!3D defaults!viewport writes}
is executed on a viewport.

%
\item[{\bf viewScaleDefault}]\funArgs{\optArg{float}}
sets the default scaling factor, or returns
\index{graphics!3D commands!scale default}
the current factor if no argument is given.


%%Original Page 222

\item[{\bf write}]\funArgs{viewport, directory, \optArg{option}}
writes the file {\bf data} for {\it viewport}
in the directory {\it directory}.
An optional third argument specifies a file type (one of {\tt
pixmap}, {\tt bitmap}, {\tt postscript}, or {\tt image}), or a
list of file types.
An additional file is written for each file type listed.

%
\item[{\bf scale}]\funArgs{viewport, float\argDef{2.5}}
specifies the scaling factor.
\index{graphics!3D commands!scale}
\index{scaling graphs}
\end{description}
\egroup

\subsection{Customization using .Xdefaults}
\label{ugXdefaults}

\index{graphics!.Xdefaults}

Both the two-di\-men\-sion\-al and three-di\-men\-sion\-al drawing facilities consult
the {\bf .Xdefaults} file for various defaults.
\index{file!.Xdefaults @{\bf .Xdefaults}}
The list of defaults that are recognized by the graphing routines
is discussed in this section.
These defaults are preceded by {\tt Axiom.3D.}
for three-di\-men\-sion\-al viewport defaults, {\tt Axiom.2D.}
for two-di\-men\-sion\-al viewport defaults, or {\tt Axiom*} (no dot) for
those defaults that are acceptable to either viewport type.

%
\begin{description}
%
\item[{\tt Axiom*buttonFont:\ \it font}] \ \newline
This indicates which
\index{graphics!.Xdefaults!button font}
font type is used for the button text on the control-panel.
{\bf Rom11}
%
\item[{\tt Axiom.2D.graphFont:\ \it font}] \quad (2D only) \newline
This indicates
\index{graphics!.Xdefaults!graph number font}
which font type is used for displaying the graph numbers and
slots in the {\bf Graphs} section of the two-di\-men\-sion\-al control-panel.
{\bf Rom22}
%
\item[{\tt Axiom.3D.headerFont:\ \it font}] \ \newline
This indicates which
\index{graphics!.Xdefaults!graph label font}
font type is used for the axes labels and potentiometer
header names on three-di\-men\-sion\-al viewport windows.
This is also used for two-di\-men\-sion\-al control-panels for indicating
which font type is used for potentionmeter header names and
multiple graph title headers.
%for example, {\tt Axiom.2D.headerFont: 8x13}.
{\bf Itl14}
%
\item[{\tt Axiom*inverse:\ \it switch}] \ \newline
This indicates whether the
\index{graphics!.Xdefaults!inverting background}
background color is to be inverted from white to black.
If {\tt on}, the graph viewports use black as the background
color.
If {\tt off} or no declaration is made, the graph viewports use a
white background.
{\bf off}
%
\item[{\tt Axiom.3D.lightingFont:\ \it font}] \quad (3D only) \newline
This indicates which font type is used for the {\bf x},
\index{graphics!.Xdefaults!lighting font}
{\bf y}, and {\bf z} labels of the two lighting axes potentiometers, and for
the {\bf Intensity} title on the lighting control-panel.
{\bf Rom10}
%
\item[{\tt Axiom.2D.messageFont, Axiom.3D.messageFont:\ \it font}] \ \newline
These indicate the font type
\index{graphics!.Xdefaults!message font}
to be used for the text in the control-panel message window.
{\bf Rom14}

%%Original Page 223

\item[{\tt Axiom*monochrome:\ \it switch}] \ \newline
This indicates whether the
\index{graphics!.Xdefaults!monochrome}
graph viewports are to be displayed as if the monitor is black and
white, that is, a 1 bit plane.
If {\tt on} is specified, the viewport display is black and white.
If {\tt off} is specified, or no declaration for this default is
given, the viewports are displayed in the normal fashion for the
monitor in use.
{\bf off}
%
\item[{\tt Axiom.2D.postScript:\ \it filename}] \ \newline
This specifies
\index{graphics!.Xdefaults!PostScript file name}
the name of the file that is generated when a 2D PostScript graph
\index{PostScript}
is saved.
{\bf axiom2d.ps}
%
\item[{\tt Axiom.3D.postScript:\ \it filename}] \ \newline
This specifies
\index{graphics!.Xdefaults!PostScript file name}
the name of the file that is generated when a 3D PostScript graph
\index{PostScript}
is saved.
{\bf axiom3D.ps}
%
\item[{\tt Axiom*titleFont \it font}] \ \newline
This
\index{graphics!.Xdefaults!title font}
indicates which font type is used
for the title text and, for three-di\-men\-sion\-al graphs,
in the lighting and viewing-volume control-panel windows.
\index{graphics!Xdefaults!2d}
{\bf Rom14}
%
\item[{\tt Axiom.2D.unitFont:\ \it font}] \quad (2D only) \newline
This indicates
\index{graphics!.Xdefaults!unit label font}
which font type is used for displaying the unit labels on
two-di\-men\-sion\-al viewport graphs.
{\bf 6x10}
%
\item[{\tt Axiom.3D.volumeFont:\ \it font}] \quad (3D only) \newline
This indicates which font type is used for the {\bf x},
\index{graphics!.Xdefaults!volume label font}
{\bf y}, and {\bf z} labels of the clipping region sliders; for the
{\bf Perspective}, {\bf Show Region}, and {\bf Clipping On} buttons under
{\bf Settings}, and above the windows for the {\bf Hither} and
{\bf Eye Distance} sliders in the {\bf Viewing Volume Panel} of the
three-di\-men\-sion\-al control-panel.
{\bf Rom8}
\end{description}

%\setcounter{chapter}{7} % Chapter 8
% viewSizeDefault [300,300]

%Original Page 227

\chapter{Advanced Problem Solving}
\label{ugProblem}

In this chapter we describe techniques useful in solving advanced problems
with Axiom.

\section{Numeric Functions}
\label{ugProblemNumeric}

%
Axiom provides two basic floating-point types: {\tt Float} and
{\tt DoubleFloat}.  This section describes how to use numerical
\index{function!numeric}
operations defined on these types and the related complex types.
\index{numeric operations}
%
As we mentioned in Chapter 
\sectionref{ugIntro}, the {\tt Float} type is a software
implementation of floating-point numbers in which the exponent and the
\index{floating-point number}
significand may have any number of digits.
\index{number!floating-point}
See \domainref{Float}
for detailed information about this domain.
The \domainref{DoubleFloat}
is usually a hardware implementation 
of floating point numbers, corresponding to machine double
precision.
The types {\tt Complex Float} and {\tt Complex DoubleFloat} are
\index{floating-point number!complex}
the corresponding software implementations of complex floating-point numbers.
\index{complex!floating-point number}
In this section the term {\it floating-point type}  means any of these
\index{number!complex floating-point}
four types.
%
The floating-point types implement the basic elementary functions.
These include (where {\tt \$} means
{\tt DoubleFloat},
{\tt Float},
{\tt Complex DoubleFloat}, or
{\tt Complex Float}):

%Original Page 228

\noindent
{\bf exp},  {\bf log}: $\$ -> \$$ \newline
{\bf sin},  {\bf cos}, {\bf tan}, {\bf cot}, {\bf sec}, {\bf csc}: $\$ -> \$$ \newline
{\bf asin}, {\bf acos}, {\bf atan}, {\bf acot}, {\bf asec}, {\bf acsc}: $\$ -> \$$  \newline
{\bf sinh},  {\bf cosh}, {\bf tanh}, {\bf coth}, {\bf sech}, {\bf csch}: $\$ -> \$$  \newline
{\bf asinh}, {\bf acosh}, {\bf atanh}, {\bf acoth}, {\bf asech}, {\bf acsch}: $\$ -> \$$  \newline
{\bf pi}: $() -> \$$  \newline
{\bf sqrt}: $\$ -> \$$ \newline
{\bf nthRoot}: $(\$, Integer) -> \$$  \newline
\spadfunFrom{**}{Float}: $(\$, Fraction Integer) -> \$$ \newline
\spadfunFrom{**}{Float}: $(\$,\$) -> \$$  \newline

The handling of roots depends on whether the floating-point type
\index{root!numeric approximation}
is real or complex: for the real floating-point types,
{\tt DoubleFloat} and {\tt Float}, if a real root exists
the one with the same sign as the radicand is returned; for the
complex floating-point types, the principal value is returned.
\index{principal value}
Also, for real floating-point types the inverse functions
produce errors if the results are not real.
This includes cases such as $asin(1.2)$, $log(-3.2)$,
$sqrt(-1.1)$.
%

The default floating-point type is {\tt Float} so to evaluate
functions using {\tt Float} or {\tt Complex Float}, just use
normal decimal notation.

\spadcommand{exp(3.1)}
$$
22.1979512814 41633405 
$$
\returnType{Type: Float}

\spadcommand{exp(3.1 + 4.5 * \%i)}
$$
-{4.6792348860 969899118} -{{21.6991659280 71731864} \  i} 
$$
\returnType{Type: Complex Float}

To evaluate functions using {\tt DoubleFloat}
or {\tt Complex DoubleFloat},
a declaration or conversion is required.

\spadcommand{r: DFLOAT := 3.1; t: DFLOAT := 4.5; exp(r + t*\%i)}
$$
-{4.6792348860969906} -{{21.699165928071732} \  i} 
$$
\returnType{Type: Complex DoubleFloat}

\spadcommand{exp(3.1::DFLOAT + 4.5::DFLOAT * \%i)}
$$
-{4.6792348860969906} -{{21.699165928071732} \  i} 
$$
\returnType{Type: Complex DoubleFloat}

A number of special functions are provided by the package
{\tt DoubleFloatSpecialFunctions} for the machine-precision
\index{special functions}
floating-point types.
\index{DoubleFloatSpecialFunctions}
The special functions provided are listed below, where $F$ stands for
the types {\tt DoubleFloat} and {\tt Complex DoubleFloat}.
The real versions of the functions yield an error if the result is not real.
\index{function!special}

\noindent
{\bf Gamma}: $F -> F$\hfill\newline
$Gamma(z)$ is the Euler gamma function,
\index{function!Gamma}
   $\Gamma(z)$,
   defined by
\index{Euler!gamma function}
   $$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt.$$
   

%Original Page 229

\noindent
{\bf Beta}: $F -> F$\hfill\newline
   $Beta(u, v)$ is the Euler Beta function,
\index{function!Euler Beta}
   $Beta(u,v)$, defined by
\index{Euler!Beta function}
   $$Beta(u,v) = \int_{0}^{1} t^{u-1} (1-t)^{v-1} dt.$$
   
   This is related to $\Gamma(z)$ by
   $$Beta(u,v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}.$$

\noindent
{\bf logGamma}: $F -> F$\hfill\newline
   $logGamma(z)$ is the natural logarithm of
$\Gamma(z)$.
   This can often be computed even if $\Gamma(z)$
cannot.
%

\noindent
{\bf digamma}: $F -> F$\hfill\newline
   $digamma(z)$, also called $psi(z)$,
\index{psi @ $\psi$}
is the function $\psi(z)$,
\index{function!digamma}
   defined by $$\psi(z) = \Gamma'(z)/\Gamma(z).$$

\noindent
{\bf polygamma}: $(NonNegativeInteger, F) -> F$\hfill\newline
   $polygamma(n, z)$ is the $n$-th derivative of
\index{function!polygamma}
   $\psi(z)$, written $\psi^{(n)}(z)$.

\noindent
{\bf E1}: $(DoubleFloat) -> OnePointCompletion DoubleFloat$\hfill\newline
   E1(x) is the Exponential Integral function
   The current implementation is a piecewise approximation
   involving one poly from $-4..4$ and a second poly for $x > 4$
\index{function!E1}

\noindent
{\bf En}: $(PI, DFLOAT) -> OnePointCompletion DoubleFloat$\hfill\newline
   En(PI,R) is the nth Exponential Integral
\index{function!En}

\noindent
{\bf Ei}: $(OnePointCompletion DFLOAT) -> OnePointCompletion DFLOAT$
\hfill\newline
   Ei is the Exponential Integral function.
   This is computed using a 6 part piecewise approximation.
   DoubleFloat can only preserve about 16 digits but the
   Chebyshev approximation used can give 30 digits.
\index{function!Ei}

\noindent
{\bf Ei1}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei1 is the first approximation of Ei where the result is
   $x*e^{-x}*Ei(x)$ from -infinity to -10 (preserves digits)
\index{function!Ei1}

\noindent
{\bf Ei2}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei2 is the first approximation of Ei where the result is
   $x*e^{-x}*Ei(x)$ from -10 to -4 (preserves digits)
\index{function!Ei2}

\noindent
{\bf Ei3}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei3 is the first approximation of Ei where the result is
   $(Ei(x)-log |x| - gamma)/x$ from -4 to 4 (preserves digits)
\index{function!Ei3}

\noindent
{\bf Ei4}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei4 is the first approximation of Ei where the result is
   $x*e^{-x}*Ei(x)$ from 4 to 12 (preserves digits)
\index{function!Ei4}

\noindent
{\bf Ei5}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei5 is the first approximation of Ei where the result is
   $x*e^{-x}*Ei(x)$ from 12 to 32 (preserves digits)
\index{function!Ei5}

\noindent
{\bf Ei6}: $(DoubleFloat) -> DoubleFloat$\hfill\newline
   Ei6 is the first approximation of Ei where the result is
   $x*e^{-x}*Ei(x)$ from 32 to infinity (preserves digits)
\index{function!Ei6}

\noindent
{\bf besselJ}: $(F,F) -> F$\hfill\newline
   $besselJ(v,z)$ is the Bessel function of the first kind,
\index{function!Bessel}
   $J_\nu (z)$.
   This function satisfies the differential equation
   $$z^2 w''(z) + z w'(z) + (z^2-\nu^2)w(z) = 0.$$

\noindent
{\bf besselY}: $(F,F) -> F$\hfill\newline
   $besselY(v,z)$ is the Bessel function of the second kind,
\index{function!Bessel}
   $Y_\nu (z)$.
   This function satisfies the same differential equation as
   {\bf besselJ}.
   The implementation simply uses the relation
  $$Y_\nu (z) = \frac{J_\nu (z) \cos(\nu \pi) - J_{-\nu} (z)}{\sin(\nu \pi)}.$$

\noindent
{\bf besselI}: $(F,F) -> F$\hfill\newline
   $besselI(v,z)$ is the modified Bessel function of the first kind,
\index{function!Bessel}
   $I_\nu (z)$.
   This function satisfies the differential equation
   $$z^2 w''(z) + z w'(z) - (z^2+\nu^2)w(z) = 0.$$

\noindent
{\bf besselK}: $(F,F) -> F$\hfill\newline
   $besselK(v,z)$ is the modified Bessel function of the second kind,
\index{function!Bessel}
   $K_\nu (z)$.
   This function satisfies the same differential equation as {\bf besselI}.
\index{Bessel function}
   The implementation simply uses the relation
   $$K_\nu (z) = \pi \frac{I_{-\nu} (z) - I_{\nu} (z)}{2 \sin(\nu \pi)}.$$
   

%Original Page 230

\noindent
{\bf airyAi}: $F -> F$\hfill\newline
   $airyAi(z)$ is the Airy function $Ai(z)$.
\index{function!Airy Ai}
   This function satisfies the differential equation
   $w''(z) - z w(z) = 0.$
   The implementation simply uses the relation
   $$Ai(-z) = \frac{1}{3}\sqrt{z} ( J_{-1/3} (\frac{2}{3}z^{3/2}) + J_{1/3} (\frac{2}{3}z^{3/2}) ).$$

\noindent
{\bf airyBi}: $F -> F$\hfill\newline
   $airyBi(z)$ is the Airy function $Bi(z)$.
\index{function!Airy Bi}
   This function satisfies the same differential equation as {\bf airyAi}.
\index{Airy function}
   The implementation simply uses the relation
   $$Bi(-z) = \frac{1}{3}\sqrt{3 z} ( J_{-1/3} (\frac{2}{3}z^{3/2}) - J_{1/3} (\frac{2}{3}z^{3/2}) ).$$
   
\noindent
{\bf hypergeometric0F1}: $(F,F) -> F$\hfill\newline
   $hypergeometric0F1(c,z)$ is the hypergeometric function
\index{function!hypergeometric}
   ${}_0 F_1 ( ; c; z)$.

The above special functions are defined only for small floating-point types.
If you give {\tt Float} arguments, they are converted to
{\tt DoubleFloat} by Axiom.

\spadcommand{Gamma(0.5)**2}
$$
3.14159265358979 
$$
\returnType{Type: DoubleFloat}

\spadcommand{a := 2.1; b := 1.1; besselI(a + \%i*b, b*a + 1)}
$$
{2.489481690673867} -{{2.365846713181643} \  i} 
$$
\returnType{Type: Complex DoubleFloat}

A number of additional operations may be used to compute numerical values.
These are special polynomial functions that can be evaluated for values in
any commutative ring $R$, and in particular for values in any
floating-point type.
The following operations are provided by the package
{\tt OrthogonalPolynomialFunctions}:
\index{OrthogonalPolynomialFunctions}

\noindent
{\bf chebyshevT}: $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $chebyshevT(n,z)$ is the $n$-th Chebyshev polynomial of the first
   kind, $T_n (z)$.  These are defined by
   $$\frac{1-t z}{1-2 t z+t^2} = \sum_{n=0}^{\infty} T_n (z) t^n.$$

\noindent
{\bf chebyshevU}: $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $chebyshevU(n,z)$ is the $n$-th Chebyshev polynomial of the second
   kind, $U_n (z)$. These are defined by
   $$\frac{1}{1-2 t z+t^2} = \sum_{n=0}^{\infty} U_n (z) t^n.$$

%Original Page 231

\noindent
{\bf hermiteH}:   $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $hermiteH(n,z)$ is the $n$-th Hermite polynomial,
   $H_n (z)$.
   These are defined by
   $$e^{2 t z - t^2} = \sum_{n=0}^{\infty} H_n (z) \frac{t^n}{n!}.$$

\noindent
{\bf laguerreL}:  $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $laguerreL(n,z)$ is the $n$-th Laguerre polynomial,
   $L_n (z)$.
   These are defined by
   $$\frac{e^{-\frac{t z}{1-t}}}{1-t} = \sum_{n=0}^{\infty} L_n (z) \frac{t^n}{n!}.$$

\noindent
{\bf laguerreL}:  $(NonNegativeInteger, NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $laguerreL(m,n,z)$ is the associated Laguerre polynomial,
   $L^m_n (z)$.
   This is the $m$-th derivative of $L_n (z)$.

\noindent
{\bf legendreP}:  $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $legendreP(n,z)$ is the $n$-th Legendre polynomial,
   $P_n (z)$.  These are defined by
   $$\frac{1}{\sqrt{1-2 t z+t^2}} = \sum_{n=0}^{\infty} P_n (z) t^n.$$

These operations require non-negative integers for the indices, but otherwise
the argument can be given as desired.

\spadcommand{[chebyshevT(i, z) for i in 0..5]}
$$
\left[
1,  z,  {{2 \  {z \sp 2}} -1},  {{4 \  {z \sp 3}} -{3 \  z}},  {{8 \  
{z \sp 4}} -{8 \  {z \sp 2}}+1},  {{{16} \  {z \sp 5}} -{{20} \  {z \sp 
3}}+{5 \  z}} 
\right]
$$
\returnType{Type: List Polynomial Integer}

The expression $chebyshevT(n,z)$ evaluates to the $n$-th Chebyshev
\index{polynomial!Chebyshev!of the first kind}
polynomial of the first kind.

\spadcommand{chebyshevT(3, 5.0 + 6.0*\%i)}
$$
-{1675.0}+{{918.0} \  i} 
$$
\returnType{Type: Complex Float}

\spadcommand{chebyshevT(3, 5.0::DoubleFloat)}
$$
485.0 
$$
\returnType{Type: DoubleFloat}

The expression $chebyshevU(n,z)$ evaluates to the $n$-th Chebyshev
\index{polynomial!Chebyshev!of the second kind}
polynomial of the second kind.

\spadcommand{[chebyshevU(i, z) for i in 0..5]}
$$
\left[
1,  {2 \  z},  {{4 \  {z \sp 2}} -1},  {{8 \  {z \sp 3}} -{4 \  z}},  
{{{16} \  {z \sp 4}} -{{12} \  {z \sp 2}}+1},  {{{32} \  {z \sp 5}} -{{32} 
\  {z \sp 3}}+{6 \  z}} 
\right]
$$
\returnType{Type: List Polynomial Integer}

%Original Page 232

\spadcommand{chebyshevU(3, 0.2)}
$$
-{0.736} 
$$
\returnType{Type: Float}

The expression $hermiteH(n,z)$ evaluates to the $n$-th Hermite
\index{polynomial!Hermite}
polynomial.

\spadcommand{[hermiteH(i, z) for i in 0..5]}
$$
\left[
1,  {2 \  z},  {{4 \  {z \sp 2}} -2},  {{8 \  {z \sp 3}} -{{12} \  z}}, 
 {{{16} \  {z \sp 4}} -{{48} \  {z \sp 2}}+{12}},  {{{32} \  {z \sp 5}} 
-{{160} \  {z \sp 3}}+{{120} \  z}} 
\right]
$$
\returnType{Type: List Polynomial Integer}

\spadcommand{hermiteH(100, 1.0)}
$$
-{0.1448706729 337934088 E 93} 
$$
\returnType{Type: Float}

The expression $laguerreL(n,z)$ evaluates to the $n$-th Laguerre
\index{polynomial!Laguerre}
polynomial.

\spadcommand{[laguerreL(i, z) for i in 0..4]}
$$
\left[
1,  {-z+1},  {{z \sp 2} -{4 \  z}+2},  {-{z \sp 3}+{9 \  {z \sp 2}} 
-{{18} \  z}+6},  {{z \sp 4} -{{16} \  {z \sp 3}}+{{72} \  {z \sp 2}} 
-{{96} \  z}+{24}} 
\right]
$$
\returnType{Type: List Polynomial Integer}

\spadcommand{laguerreL(4, 1.2)}
$$
-{13.0944} 
$$
\returnType{Type: Float}

\spadcommand{[laguerreL(j, 3, z) for j in 0..4]}
$$
\left[
{-{z \sp 3}+{9 \  {z \sp 2}} -{{18} \  z}+6},  {-{3 \  {z \sp 2}}+{{18} \  
z} -{18}},  {-{6 \  z}+{18}},  -6,  0 
\right]
$$
\returnType{Type: List Polynomial Integer}

\spadcommand{laguerreL(1, 3, 2.1)}
$$
6.57 
$$
\returnType{Type: Float}

The expression
\index{polynomial!Legendre}
$legendreP(n,z)$ evaluates to the $n$-th Legendre polynomial,

\spadcommand{[legendreP(i,z) for i in 0..5]}
$$
\left[
1,  z,  {{{\frac{3}{2}} \  {z \sp 2}} -{\frac{1}{2}}},  
{{{\frac{5}{2}} \  {z \sp 3}} -{{\frac{3}{2}} \  z}},  
{{{\frac{35}{8}} \  {z \sp 4}} -{{\frac{15}{4}} \  {z \sp 2}}+{\frac{3}{8}}},
{{{\frac{63}{8}} \  {z \sp 5}} -{{\frac{35}{4}} \  {z \sp 3}}
+{{\frac{15}{8}} \  z}} 
\right]
$$
\returnType{Type: List Polynomial Fraction Integer}

%Original Page 233

\spadcommand{legendreP(3, 3.0*\%i)}
$$
-{{72.0} \  i} 
$$
\returnType{Type: Complex Float}

Finally, three number-theoretic polynomial operations may be evaluated.
\index{number theory}
The following operations are provided by the package
{\tt NumberTheoreticPolynomialFunctions}.
\index{NumberTheoreticPolynomialFunctions}

\noindent
{\bf bernoulliB}: $(NonNegativeInteger, R) -> R$ \hbox{}\hfill\newline
   $bernoulliB(n,z)$ is the $n$-th Bernoulli polynomial,
\index{polynomial!Bernoulli}
   $B_n (z)$.  These are defined by
   $$\frac{t e^{z t}}{e^t - 1} = \sum_{n=0}^{\infty} B_n (z) \frac{t^n}{n!}.$$

\noindent
{\bf eulerE}: $(NonNegativeInteger, R) -> R$ \hbox{}\hfill\newline
   $eulerE(n,z)$ is the $n$-th Euler polynomial,
\index{Euler!polynomial}
   $E_n (z)$.  These are defined by
\index{polynomial!Euler}
   $$\frac{2 e^{z t}}{e^t + 1} = \sum_{n=0}^{\infty} E_n (z) \frac{t^n}{n!}.$$

\noindent
{\bf cyclotomic}: $(NonNegativeInteger, R) -> R$\hbox{}\hfill\newline
   $cyclotomic(n,z)$ is the $n$-th cyclotomic polynomial
   $\Phi_n (z)$.  This is the polynomial whose
   roots are precisely the primitive $n$-th roots of unity.
\index{Euler!totient function}
   This polynomial has degree given by the Euler totient function
\index{function!totient}
   $\phi(n)$.

The expression $bernoulliB(n,z)$ evaluates to the $n$-th Bernoulli
\index{polynomial!Bernouilli}
polynomial.

\spadcommand{bernoulliB(3, z)}
$$
{z \sp 3} -{{\frac{3}{2}} \  {z \sp 2}}+{{\frac{1}{2}} \  z} 
$$
\returnType{Type: Polynomial Fraction Integer}

\spadcommand{bernoulliB(3, 0.7 + 0.4 * \%i)}
$$
-{0.138} -{{0.116} \  i} 
$$
\returnType{Type: Complex Float}

The expression
\index{polynomial!Euler}
$eulerE(n,z)$ evaluates to the $n$-th Euler polynomial.

\spadcommand{eulerE(3, z)}
$$
{z \sp 3} -{{\frac{3}{2}} \  {z \sp 2}}+{\frac{1}{4}} 
$$
\returnType{Type: Polynomial Fraction Integer}

\spadcommand{eulerE(3, 0.7 + 0.4 * \%i)}
$$
-{0.238} -{{0.316} \  i} 
$$
\returnType{Type: Complex Float}

%Original Page 234

The expression
\index{polynomial!cyclotomic}
$cyclotomic(n,z)$ evaluates to the $n$-th cyclotomic polynomial.
\index{cyclotomic polynomial}

\spadcommand{cyclotomic(3, z)}
$$
{z \sp 2}+z+1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{cyclotomic(3, (-1.0 + 0.0 * \%i)**(2/3))}
$$
0.0 
$$
\returnType{Type: Complex Float}

Drawing complex functions in Axiom is presently somewhat
awkward compared to drawing real functions.
It is necessary to use the {\bf draw} operations that operate
on functions rather than expressions.

This is the complex exponential function (rotated interactively).
\index{function!complex exponential}
When this is displayed in color, the height is the value of the real part of
the function and the color is the imaginary part.
Red indicates large negative imaginary values, green indicates imaginary
values near zero and blue/violet indicates large positive imaginary values.

\spadgraph{draw((x,y)+-> real exp complex(x,y), -2..2, -2*\%pi..2*\%pi, colorFunction == (x, y) +->  imag exp complex(x,y), title=="exp(x+\%i*y)", style=="smooth")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/compexp.eps}}
\begin{center}
$(x,y)+-> real exp complex(x,y), -2..2, -2\pi..2\pi, $\\
$colorFunction == (x, y) +-> imag exp complex(x,y),  $\\
$title=="exp(x+\%i*y)", style=="smooth"$
\end{center}
\end{minipage}

This is the complex arctangent function.
\index{function!complex arctangent}
Again, the height is the real part of the function value but here
the color indicates the function value's phase.
The position of the branch cuts are clearly visible and one can
see that the function is real only for a real argument.

\spadgraph{vp := draw((x,y) +-> real atan complex(x,y), -\%pi..\%pi, -\%pi..\%pi, colorFunction==(x,y) +->argument atan complex(x,y), title=="atan(x+\%i*y)", style=="shade"); rotate(vp,-160,-45); vp}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/compatan.eps}}
\begin{center}
$(x,y) +-> real atan complex(x,y), -\pi..\pi, -\pi..\pi,$\\
$colorFunction==(x,y) +->argument atan complex(x,y), $\\
$title=="atan(x+\%i*y)", style=="shade"$
\end{center}
\end{minipage}

%Original Page 235

This is the complex Gamma function.

\spadgraph{draw((x,y) +-> max(min(real Gamma complex(x,y),4),-4), -\%pi..\%pi, -\%pi..\%pi, style=="shade", colorFunction == (x,y) +-> argument Gamma complex(x,y), title == "Gamma(x+\%i*y)", var1Steps == 50, var2Steps== 50)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/compgamma.eps}}
\begin{center}
$(x,y) +-> max(min(real Gamma complex(x,y),4),-4), -\pi..\pi, -\pi..\pi, $\\
$style=="shade", colorFunction == (x,y) +-> argument Gamma complex(x,y), $\\
$title == "Gamma(x+\%i*y)", var1Steps == 50, var2Steps== 50$
\end{center}
\end{minipage}

This shows the real Beta function near the origin.

\spadgraph{draw(Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, style=="shade", title=="Beta(x,y)", var1Steps==40, var2Steps==40)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/realbeta.eps}}
\begin{center}
$Beta(x,y)/100, x=-1.6..1.7, y = -1.6..1.7, $\\
$style=="shade", title=="Beta(x,y)", var1Steps==40, var2Steps==40$
\end{center}
\end{minipage}

This is the Bessel function $J_\alpha (x)$
for index $\alpha$ in the range $-6..4$ and
argument $x$ in the range $2..14$.

\spadgraph{draw((alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6), -6..4, -6..6, title=="besselJ(alpha,x)", style=="shade", var1Steps==40, var2Steps==40)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/bessel.eps}}
\begin{center}
$(alpha,x) +-> min(max(besselJ(alpha, x+8), -6), 6), -6..4, -6..6, $\\
$title=="besselJ(alpha,x)", style=="shade", var1Steps==40, var2Steps==40$
\end{center}
\end{minipage}

%Original Page 236

This is the modified Bessel function
$I_\alpha (x)$
evaluated for various real values of the index $\alpha$
and fixed argument $x = 5$.

\spadgraph{draw(besselI(alpha, 5), alpha = -12..12, unit==[5,20])}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/modbess.eps}}
\begin{center}
$besselI(alpha, 5), alpha = -12..12, unit==[5,20]$
\end{center}
\end{minipage}

This is similar to the last example
except the index $\alpha$
takes on complex values in a $6 \times 6$ rectangle  centered on the origin.

\spadgraph{draw((x,y) +-> real besselI(complex(x/20, y/20),5), -60..60, -60..60, colorFunction == (x,y)+-> argument besselI(complex(x/20,y/20),5), title=="besselI(x+i*y,5)", style=="shade")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/modbessc.eps}}
\begin{center}
$(x,y) +-> real besselI(complex(x/20, y/20),5), -60..60, -60..60, $\\
$colorFunction == (x,y)+-> argument besselI(complex(x/20,y/20),5), $\\
$title=="besselI(x+i*y,5)", style=="shade"$
\end{center}
\end{minipage}

\section{Polynomial Factorization}
\label{ugProblemFactor}

%
The Axiom polynomial factorization
\index{polynomial!factorization}
facilities are available for all polynomial types and a wide variety of
coefficient domains.
\index{factorization}
Here are some examples.

\subsection{Integer and Rational Number Coefficients}
\label{ugProblemFactorIntRat}

Polynomials with integer
\index{polynomial!factorization!integer coefficients}
coefficients can be be factored.

\spadcommand{v := (4*x**3+2*y**2+1)*(12*x**5-x**3*y+12) }
$$
-{2 \  {x \sp 3} \  {y \sp 3}}+{{\left( {{24} \  {x \sp 5}}+{24} 
\right)}
\  {y \sp 2}}+{{\left( -{4 \  {x \sp 6}} -{x \sp 3} 
\right)}
\  y}+{{48} \  {x \sp 8}}+{{12} \  {x \sp 5}}+{{48} \  {x \sp 3}}+{12} 
$$
\returnType{Type: Polynomial Integer}

%Original Page 237

\spadcommand{factor v }
$$
-{{\left( {{x \sp 3} \  y} -{{12} \  {x \sp 5}} -{12} 
\right)}
\  {\left( {2 \  {y \sp 2}}+{4 \  {x \sp 3}}+1 
\right)}}
$$
\returnType{Type: Factored Polynomial Integer}

Also, Axiom can factor polynomials with
\index{polynomial!factorization!rational number coefficients}
rational number coefficients.

\spadcommand{w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12) }
$$
{{48} \  {x \sp 8}}
+{8 \  {x \sp 7}} 
-{2 \  {x \sp 6}}
+{{\frac{35}{3}} \  {x \sp 5}}
+{{\frac{95}{2}} \  {x \sp 3}}
+{8 \  {x \sp 2}}+{12} 
$$
\returnType{Type: Polynomial Fraction Integer}

\spadcommand{factor w }
$$
{48} \  {\left( {x \sp 3}
+{{\frac{1}{6}} \  {x \sp 2}}
+{\frac{1}{4}} \right)}\  {\left( {x \sp 5} 
-{{\frac{1}{24}} \  {x \sp 3}}+1 \right)}
$$
\returnType{Type: Factored Polynomial Fraction Integer}

\subsection{Finite Field Coefficients}
\label{ugProblemFactorFF}

Polynomials with coefficients in a finite field
\index{polynomial!factorization!finite field coefficients}
can be also be factored.
\index{finite field!factoring polynomial with coefficients in}

\spadcommand{u : POLY(PF(19)) :=3*x**4+2*x**2+15*x+18 }
$$
{3 \  {x \sp 4}}+{2 \  {x \sp 2}}+{{15} \  x}+{18} 
$$
\returnType{Type: Polynomial PrimeField 19}

These include the integers mod $p$, where $p$ is prime, and
extensions of these fields.

\spadcommand{factor u }
$$
3 \  {\left( x+{18} 
\right)}
\  {\left( {x \sp 3}+{x \sp 2}+{8 \  x}+{13} 
\right)}
$$
\returnType{Type: Factored Polynomial PrimeField 19}

Convert this to have coefficients in the finite
field with $19^3$ elements.
See \sectionref{ugProblemFinite} for more information about finite fields.

\spadcommand{factor(u :: POLY FFX(PF 19,3)) }
$$
3 \  {\left( x+{18} 
\right)}
\  {\left( x+{5 \  { \%I \sp 2}}+{3 \  \%I}+{13} 
\right)}
\  {\left( x+{{16} \  { \%I \sp 2}}+{{14} \  \%I}+{13} 
\right)}
\  {\left( x+{{17} \  { \%I \sp 2}}+{2 \  \%I}+{13} 
\right)}
$$
\returnType{Type: Factored Polynomial FiniteFieldExtension(PrimeField 19,3)}

\subsection{Simple Algebraic Extension Field Coefficients}
\label{ugProblemFactorAlg}

Polynomials with coefficients in simple algebraic extensions
\index{polynomial!factorization!algebraic extension field coefficients}
of the rational numbers can be factored.
\index{algebraic number}
\index{number!algebraic}

Here, $aa$ and $bb$ are symbolic roots of polynomials.

\spadcommand{aa := rootOf(aa**2+aa+1) }
$$
aa 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{p:=(x**3+aa**2*x+y)*(aa*x**2+aa*x+aa*y**2)**2 }
$$
\begin{array}{@{}l}
{{\left( -aa -1 \right)} \  {y \sp 5}}+
{{\left( {{\left( -aa -1 \right)}\  {x \sp 3}}+
{aa \  x} \right)}\  {y \sp 4}}+
\\
\\
\displaystyle
{{\left( {{\left( -{2 \  aa} -2 \right)}\  {x \sp 2}}+
{{\left( -{2 \  aa} -2 \right)}\  x} \right)}\  {y \sp 3}}+
\\
\\
\displaystyle
{{\left( {{\left( -{2 \  aa} -2 \right)}\  {x \sp 5}}+
{{\left( -{2 \  aa} -2 \right)}\  {x \sp 4}}+
{2 \  aa \  {x \sp 3}}+{2 \  aa \  {x \sp 2}} \right)}\  {y \sp 2}}+
\\
\\
\displaystyle
{{\left( {{\left( -aa -1 \right)}\  {x \sp 4}}+
{{\left( -{2 \  aa} -2 \right)}\  {x \sp 3}}+
{{\left( -aa -1 \right)}\  {x \sp 2}} \right)}\  y}+
\\
\\
\displaystyle
{{\left( -aa -1 \right)}\  {x \sp 7}}+
{{\left( -{2 \  aa} -2 \right)}\  {x \sp 6}} -
{x \sp 5}+
{2 \  aa \  {x \sp 4}}+
{aa \  {x \sp 3}} 
\end{array}
$$
\returnType{Type: Polynomial AlgebraicNumber}

Note that the second argument to factor can be a list of
algebraic extensions to factor over.

\spadcommand{factor(p,[aa]) }
%Note: this answer differs from the book but is equivalent.
$$
{\left( -aa -1 
\right)}
\  {\left( y+{x \sp 3}+{{\left( -aa -1 
\right)}
\  x} 
\right)}
\  {{\left( {y \sp 2}+{x \sp 2}+x 
\right)}
\sp 2} 
$$
\returnType{Type: Factored Polynomial AlgebraicNumber}

%Original Page 238

This factors $x**2+3$ over the integers.

\spadcommand{factor(x**2+3)}
$$
{x \sp 2}+3 
$$
\returnType{Type: Factored Polynomial Integer}

Factor the same polynomial over the field obtained by adjoining
$aa$ to the rational numbers.

\spadcommand{factor(x**2+3,[aa]) }
$$
{\left( x -{2 \  aa} -1 
\right)}
\  {\left( x+{2 \  aa}+1 
\right)}
$$
\returnType{Type: Factored Polynomial AlgebraicNumber}

Factor $x**6+108$ over the same field.

\spadcommand{factor(x**6+108,[aa]) }
$$
{\left( {x \sp 3} -{{12} \  aa} -6 
\right)}
\  {\left( {x \sp 3}+{{12} \  aa}+6 
\right)}
$$
\returnType{Type: Factored Polynomial AlgebraicNumber}

\spadcommand{bb:=rootOf(bb**3-2) }
$$
bb 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{factor(x**6+108,[bb]) }
$$
{\left( {x \sp 2} -{3 \  bb \  x}+{3 \  {bb \sp 2}} 
\right)}
\  {\left( {x \sp 2}+{3 \  {bb \sp 2}} 
\right)}
\  {\left( {x \sp 2}+{3 \  bb \  x}+{3 \  {bb \sp 2}} 
\right)}
$$
\returnType{Type: Factored Polynomial AlgebraicNumber}

Factor again over the field obtained by adjoining both $aa$
and $bb$ to the rational numbers.

\spadcommand{factor(x**6+108,[aa,bb]) }
$$
\begin{array}{@{}l}
{\left( x+{{\left( -{2 \  aa} -1 \right)}\  bb} \right)}
\  {\left( x+{{\left( -aa -2 \right)}\  bb} \right)}
\  {\left( x+{{\left( -aa+1 \right)}\  bb} \right)}
\\
\\
\displaystyle
\  {\left( x+{{\left( aa -1 \right)}\  bb} \right)}
\  {\left( x+{{\left( aa+2 \right)}\  bb} \right)}
\  {\left( x+{{\left( {2 \  aa}+1 \right)}\  bb} \right)}
\end{array}
$$
\returnType{Type: Factored Polynomial AlgebraicNumber}

\subsection{Factoring Rational Functions}
\label{ugProblemFactorRatFun}

Since fractions of polynomials form a field, every element (other than zero)
\index{rational function!factoring}
divides any other, so there is no useful notion of irreducible factors.
Thus the {\bf factor} operation is not very useful for fractions
of polynomials.

There is, instead, a specific operation {\bf factorFraction}
that separately factors the numerator and denominator and returns
a fraction of the factored results.

\spadcommand{factorFraction((x**2-4)/(y**2-4))}
$$
\frac{{\left( x -2 \right)}\  {\left( x+2 \right)}}
{{\left( y -2 \right)}\  {\left( y+2 \right)}}
$$
\returnType{Type: Fraction Factored Polynomial Integer}

You can also use {\bf map}. This expression
applies the {\bf factor} operation
to the numerator and denominator.

\spadcommand{map(factor,(x**2-4)/(y**2-4))}
$$
\frac{{\left( x -2 \right)}\  {\left( x+2 \right)}}
{{\left( y -2 \right)}\  {\left( y+2 \right)}}
$$
\returnType{Type: Fraction Factored Polynomial Integer}

%Original Page 239

\section{Manipulating Symbolic Roots of a Polynomial}
\label{ugProblemSymRoot}

%
In this section we show you how to work with one root or all roots
\index{root!symbolic}
of a polynomial.
These roots are represented symbolically (as opposed to being
numeric approximations).
See \sectionref{ugxProblemOnePol} and 
\sectionref{ugxProblemPolSys} for
information about solving for the roots of one or more polynomials.

\subsection{Using a Single Root of a Polynomial}
\label{ugxProblemSymRootOne}

Use {\bf rootOf} to get a symbolic root of a polynomial:
$rootOf(p, x)$ returns a root of $p(x)$.

This creates an algebraic number $a$.
\index{algebraic number}
\index{number!algebraic}

\spadcommand{a := rootOf(a**4+1,a) }
$$
a 
$$
\returnType{Type: Expression Integer}

To find the algebraic relation that defines $a$,
use {\bf definingPolynomial}.

\spadcommand{definingPolynomial a }
$$
{a \sp 4}+1 
$$
\returnType{Type: Expression Integer}

You can use $a$ in any further expression,
including a nested {\bf rootOf}.

\spadcommand{b := rootOf(b**2-a-1,b) }
$$
b 
$$
\returnType{Type: Expression Integer}

Higher powers of the roots are automatically reduced during
calculations.

\spadcommand{a + b }
$$
b+a 
$$
\returnType{Type: Expression Integer}

\spadcommand{\% ** 5 }
$$
{{\left( {{10} \  {a \sp 3}}+{{11} \  {a \sp 2}}+{2 \  a} -4 
\right)}
\  b}+{{15} \  {a \sp 3}}+{{10} \  {a \sp 2}}+{4 \  a} -{10} 
$$
\returnType{Type: Expression Integer}

The operation {\bf zeroOf} is similar to {\bf rootOf},
except that it may express the root using radicals in some cases.
\index{radical}

\spadcommand{rootOf(c**2+c+1,c)}
$$
c 
$$
\returnType{Type: Expression Integer}

\spadcommand{zeroOf(d**2+d+1,d)}
$$
\frac{{\sqrt {-3}} -1}{2} 
$$
\returnType{Type: Expression Integer}

\spadcommand{rootOf(e**5-2,e)}
$$
e 
$$
\returnType{Type: Expression Integer}

%Original Page 240

\spadcommand{zeroOf(f**5-2,f)}
$$
\root {5} \of {2} 
$$
\returnType{Type: Expression Integer}

\subsection{Using All Roots of a Polynomial}
\label{ugxProblemSymRootAll}

Use {\bf rootsOf} to get all symbolic roots of a polynomial:
$rootsOf(p, x)$ returns a
list of all the roots of $p(x)$.
If $p(x)$ has a multiple root of order $n$, then that root
\index{root!multiple}
appears $n$ times in the list.
\typeout{Make sure these variables are x0 etc}

Compute all the roots of $x**4 + 1$.

\spadcommand{l := rootsOf(x**4+1,x) }
$$
\left[
 \%x0,  { \%x0 \  \%x1},  - \%x0,  -{ \%x0 \  \%x1} 
\right]
$$
\returnType{Type: List Expression Integer}

As a side effect, the variables $\%x0$ and $\%x1$ are bound
to the first two roots of $x**4+1$.

\spadcommand{\%x0**5 }
$$
- \%x0 
$$
\returnType{Type: Expression Integer}

Although they all satisfy $x**4 + 1 = 0, \%x0$
and $\%x1$ are different algebraic numbers.
To find the algebraic relation that defines each of them,
use {\bf definingPolynomial}.

\spadcommand{definingPolynomial \%x0 }
$$
{ \%x0 \sp 4}+1 
$$
\returnType{Type: Expression Integer}

\spadcommand{definingPolynomial \%x1 }
$$
{ \%x1 \sp 2}+1 
$$
\returnType{Type: Expression Integer}

\spadcommand{[t1:=l.1, t2:=l.2, t3:=l.3, t4:=l.4]}
$$
\left[
 \%x0,  { \%x0 \  \%x1},  - \%x0,  -{ \%x0 \  \%x1} 
\right]
$$
\returnType{Type: List Expression Integer}

We can check that the sum and product of the roots of $x**4+1$ are
its trace and norm.

\spadcommand{t1+t2+t3+t4}
$$
0
$$
\returnType{Type: Expression Integer}

\spadcommand{t1*t2*t3*t4}
$$
1
$$
\returnType{Type: Expression Integer}

%Original Page 241

Corresponding to the pair of operations
{\bf rootOf}/{\bf zeroOf} in
\sectionref{ugxProblemOnePol}, there is
an operation {\bf zerosOf} that, like {\bf rootsOf},
computes all the roots
of a given polynomial, but which expresses some of them in terms of
radicals.

\spadcommand{zerosOf(y**4+1,y) }
$$
\left[
{\frac{{\sqrt {-1}}+1}{\sqrt {2}}},  
{\frac{{\sqrt {-1}} -1}{\sqrt {2}}},  
{\frac{-{\sqrt {-1}} -1}{\sqrt {2}}},  
{\frac{-{\sqrt {-1}}+1}{\sqrt {2}}} 
\right]
$$
\returnType{Type: List Expression Integer}

As you see, only one implicit algebraic number was created
($\%y1$), and its defining equation is this.
The other three roots are expressed in radicals.

\spadcommand{definingPolynomial \%y1 }
$$
{ \%\%var \sp 2}+1 
$$
\returnType{Type: Expression Integer}

\section{Computation of Eigenvalues and Eigenvectors}
\label{ugProblemEigen}
%
In this section we show you
some of Axiom's facilities for computing and
\index{eigenvalue}
manipulating eigenvalues and eigenvectors, also called
\index{eigenvector}
characteristic values and characteristic vectors,
\index{characteristic!value}
respectively.
\index{characteristic!vector}

\vskip 4pc

Let's first create a matrix with integer entries.

\spadcommand{m1 := matrix [ [1,2,1],[2,1,-2],[1,-2,4] ] }
$$
\left[
\begin{array}{ccc}
1 & 2 & 1 \\ 
2 & 1 & -2 \\ 
1 & -2 & 4 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

To get a list of the {\it rational} eigenvalues,
use the operation {\bf eigenvalues}.

\spadcommand{leig := eigenvalues(m1)  }
$$
\left[
5,  {\left( \%K \mid {{ \%K \sp 2} - \%K -5} 
\right)}
\right]
$$
\returnType{Type: List Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer))}

Given an explicit eigenvalue, {\bf eigenvector} computes the eigenvectors
corresponding to it.

\spadcommand{eigenvector(first(leig),m1) }
$$
\left[
{\left[ 
\begin{array}{c}
0 \\ 
-{\frac{1}{2}} \\ 
1 
\end{array}
\right]}
\right]
$$
\returnType{Type: List Matrix Fraction Polynomial Fraction Integer}

The operation {\bf eigenvectors} returns a list of pairs of values and
vectors. When an eigenvalue is rational, Axiom gives you
the value explicitly; otherwise, its minimal polynomial is given,
(the polynomial of lowest degree with the eigenvalues as roots),
together with a parametric representation of the eigenvector using the
eigenvalue.

%Original Page 242

This means that if you ask Axiom to {\bf solve}
the minimal polynomial, then you can substitute these roots
\index{polynomial!minimal}
into the parametric form of the corresponding eigenvectors.
\index{minimal polynomial}

You must be aware that unless an exact eigenvalue has been computed,
the eigenvector may be badly in error.

\spadcommand{eigenvectors(m1) }
$$
\begin{array}{@{}l}
\left[
{\left[ {eigval=5},  {eigmult=1},  {eigvec=
{\left[ 
{\left[ 
\begin{array}{c}
0 \\ 
-{\frac{1}{2}} \\ 
1 
\end{array}
\right]}
\right]}}
\right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ 
{eigval={\left( \%L \mid {{ \%L \sp 2} - \%L -5} \right)}},
{eigmult=1},  {eigvec=
{\left[ 
{\left[ 
\begin{array}{c}
 \%L \\ 
2 \\ 
1 
\end{array}
\right]}
\right]}}
\right]}
\right]
\end{array}
$$
\returnType{Type: List Record(eigval: Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer)),eigmult: NonNegativeInteger,eigvec: List Matrix Fraction Polynomial Integer)}

Another possibility is to use the operation
{\bf radicalEigenvectors}
tries to compute explicitly the eigenvectors
in terms of radicals.
\index{radical}

\spadcommand{radicalEigenvectors(m1) }
$$
\begin{array}{@{}l}
\left[
{\left[ {radval={\frac{{\sqrt {{21}}}+1}{2}}},  {radmult=1},  
{radvect={\left[ {\left[ 
\begin{array}{c}
{\frac{{\sqrt {{21}}}+1}{2}} \\ 
2 \\ 
1 
\end{array}
\right]}
\right]}}
\right]},
\right.
\\
\\
\displaystyle
 \left[ {radval={\frac{-{\sqrt {{21}}}+1}{2}}},  {radmult=1},  
{radvect={\left[ {\left[ 
\begin{array}{c}
{\frac{-{\sqrt {{21}}}+1}{2}} \\ 
2 \\ 
1 
\end{array}
\right]}
\right]}}
\right],
\\
\\
\displaystyle
\left.
 \left[ {radval=5},  {radmult=1},  
{radvect={\left[ {\left[ 
\begin{array}{c}
0 \\ 
-{\frac{1}{2}} \\ 
1 
\end{array}
\right]}
\right]}}
\right]
\right]
\end{array}
$$
\returnType{Type: List Record(radval: Expression Integer,radmult: Integer,radvect: List Matrix Expression Integer)}

Alternatively, Axiom can compute real or complex approximations to the
\index{approximation}
eigenvectors and eigenvalues using the operations {\bf realEigenvectors}
or {\bf complexEigenvectors}.
They each take an additional argument $\epsilon$
to specify the ``precision'' required.
\index{precision}
In the real case, this means that each approximation will be within
$\pm\epsilon$ of the actual
result.
In the complex case, this means that each approximation will be within
$\pm\epsilon$ of the actual result
in each of the real and imaginary parts.

%Original Page 243

The precision can be specified as a {\tt Float} if the results are
desired in floating-point notation, or as {\tt Fraction Integer} if the
results are to be expressed using rational (or complex rational) numbers.

\spadcommand{realEigenvectors(m1,1/1000) }
$$
\begin{array}{@{}l}
\left[
{\left[ {outval=5},  {outmult=1},  {outvect={\left[ {\left[ 
\begin{array}{c}
0 \\ 
-{\frac{1}{2}} \\ 
1 
\end{array}
\right]}
\right]}}
\right]},
\right.
\\
\\
\displaystyle
 {\left[ {outval={\frac{5717}{2048}}},  {outmult=1},  
{outvect={\left[ {\left[ 
\begin{array}{c}
{\frac{5717}{2048}} \\ 
2 \\ 
1 
\end{array}
\right]}
\right]}}
\right]},
\\
\\
\displaystyle
\left.
 {\left[ {outval=-{\frac{3669}{2048}}},  {outmult=1},  
{outvect={\left[ {\left[ 
\begin{array}{c}
-{\frac{3669}{2048}} \\ 
2 \\ 
1 
\end{array}
\right]}
\right]}}
\right]}
\right]
\end{array}
$$
\returnType{Type: List Record(outval: Fraction Integer,outmult: Integer,outvect: List Matrix Fraction Integer)}

If an $n$ by $n$ matrix has $n$ distinct eigenvalues (and
therefore $n$ eigenvectors) the operation {\bf eigenMatrix}
gives you a matrix of the eigenvectors.

\spadcommand{eigenMatrix(m1) }
$$
\left[
\begin{array}{ccc}
{\frac{{\sqrt {{21}}}+1}{2}} & {\frac{-{\sqrt {{21}}}+1}{2}} & 0 \\ 
2 & 2 & -{\frac{1}{2}} \\ 
1 & 1 & 1 
\end{array}
\right]
$$
\returnType{Type: Union(Matrix Expression Integer,...)}

\spadcommand{m2 := matrix [ [-5,-2],[18,7] ] }
$$
\left[
\begin{array}{cc}
-5 & -2 \\ 
{18} & 7 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

\spadcommand{eigenMatrix(m2) }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

If a symmetric matrix
\index{matrix!symmetric}
has a basis of orthonormal eigenvectors, then
\index{basis!orthonormal}
{\bf orthonormalBasis} computes a list of these vectors.
\index{orthonormal basis}

\spadcommand{m3 := matrix [ [1,2],[2,1] ] }
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
2 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

\spadcommand{orthonormalBasis(m3) }
$$
\left[
{\left[ 
\begin{array}{c}
-{\frac{1}{\sqrt {2}}} \\ 
{\frac{1}{\sqrt {2}}} 
\end{array}
\right]},
 {\left[ 
\begin{array}{c}
{\frac{1}{\sqrt {2}}} \\ 
{\frac{1}{\sqrt {2}}} 
\end{array}
\right]}
\right]
$$
\returnType{Type: List Matrix Expression Integer}

%Original Page 244

\section{Solution of Linear and Polynomial Equations}
\label{ugProblemLinPolEqn}
%
In this section we discuss the Axiom facilities for solving
systems of linear equations, finding the roots of polynomials and
\index{linear equation}
solving systems of polynomial equations.
For a discussion of the solution of differential equations, see
\sectionref{ugProblemDEQ}.

\subsection{Solution of Systems of Linear Equations}
\label{ugxProblemLinSys}

You can use the operation {\bf solve} to solve systems of linear equations.
\index{equation!linear!solving}

The operation {\bf solve} takes two arguments, the list of equations and the
list of the unknowns to be solved for.
A system of linear equations need not have a unique solution.

To solve the linear system:
$$
\begin{array}{rcrcrcr}
  x &+&   y &+&   z &=& 8 \\
3 x &-& 2 y &+&   z &=& 0 \\
  x &+& 2 y &+& 2 z &=& 17
\end{array}
$$
evaluate this expression.

\spadcommand{solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])}
$$
\left[
{\left[ {x=-1},  {y=2},  {z=7} 
\right]}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

Parameters are given as new variables starting with a percent sign and
{\tt \%} and
the variables are expressed in terms of the parameters.
If the system has no solutions then the empty list is returned.

When you solve the linear system
$$
\begin{array}{rcrcrcr}
  x&+&2 y&+&3 z&=&2 \\
2 x&+&3 y&+&4 z&=&2 \\
3 x&+&4 y&+&5 z&=&2
\end{array}
$$
with this expression
you get a solution involving a parameter.

\spadcommand{solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])}
$$
\left[
{\left[ {x={ \%Q -2}},  {y={-{2 \  \%Q}+2}},  {z= \%Q} 
\right]}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

The system can also be presented as a matrix and a vector.
The matrix contains the coefficients of the linear equations and
the vector contains the numbers appearing on the right-hand sides
of the equations.
You may input the matrix as a list of rows and the vector as a
list of its elements.

To solve the system:
$$
\begin{array}{rcrcrcr}
  x&+&  y&+&  z&=&8  \\
3 x&-&2 y&+&  z&=&0  \\
  x&+&2 y&+&2 z&=&17
\end{array}
$$
in matrix form you would evaluate this expression.

\spadcommand{solve([ [1,1,1],[3,-2,1],[1,2,2] ],[8,0,17])}
$$
\left[
{particular={\left[ -1, 2,  7\right]}},
{basis={\left[ {\left[ 0, 0, 0\right]}\right]}}
\right]
$$
\returnType{Type: Record(particular: Union(Vector Fraction Integer,"failed"),
basis: List Vector Fraction Integer)}

The solutions are presented as a {\tt Record} with two
components: the component {\it particular} contains a particular solution of the given system or
the item {\tt "failed"} if there are no solutions, the component
{\it basis} contains a list of vectors that
are a basis for the space of solutions of the corresponding
homogeneous system.
If the system of linear equations does not have a unique solution,
then the {\it basis} component contains
non-trivial vectors.

%Original Page 245

This happens when you solve the linear system
$$
\begin{array}{rcrcrcr}
  x&+&2 y&+&3 z&=&2 \\
2 x&+&3 y&+&4 z&=&2 \\
3 x&+&4 y&+&5 z&=&2
\end{array}
$$
with this command.

\spadcommand{solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,2,2])}
$$
\left[
{particular={\left[ -2, 2, 0 \right]}},
{basis={\left[ {\left[ 1, -2, 1 \right]}\right]}}
\right]
$$
\returnType{Type: Record(particular: Union(Vector Fraction Integer,"failed"),
basis: List Vector Fraction Integer)}


All solutions of this system are obtained by adding the particular
solution with a linear combination of the {\it basis} vectors.

When no solution exists then {\tt "failed"} is returned as the
{\it particular} component, as follows:

\spadcommand{solve([ [1,2,3],[2,3,4],[3,4,5] ],[2,3,2])}
$$
\left[
{particular= \mbox{\tt "failed"} }, 
{basis={\left[ {\left[ 1, -2, 1\right]}\right]}}
\right]
$$
\returnType{Type: Record(particular: Union(Vector Fraction Integer,"failed"),
basis: List Vector Fraction Integer)}

When you want to solve a system of homogeneous equations (that is,
a system where the numbers on the right-hand sides of the
\index{nullspace}
equations are all zero) in the matrix form you can omit the second
argument and use the {\bf nullSpace} operation.

This computes the solutions of the following system of equations:
$$
\begin{array}{rcrcrcr}
  x&+&2 y&+&3 z&=&0  \\
2 x&+&3 y&+&4 z&=&0  \\
3 x&+&4 y&+&5 z&=&0
\end{array}
$$
The result is given as a list of vectors and
these vectors form a basis for the solution space.

\spadcommand{nullSpace([ [1,2,3],[2,3,4],[3,4,5] ])}
$$
\left[
{\left[ 1, -2, 1 \right]}
\right]
$$
\returnType{Type: List Vector Integer}

\subsection{Solution of a Single Polynomial Equation}
\label{ugxProblemOnePol}

Axiom can solve polynomial equations producing either approximate
\index{polynomial!root finding}
or exact solutions.
\index{equation!polynomial!solving}
Exact solutions are either members of the ground
field or can be presented symbolically as roots of irreducible polynomials.

This returns the one rational root along with an irreducible
polynomial describing the other solutions.

\spadcommand{solve(x**3  = 8,x)}
$$
\left[
{x=2},  {{{x \sp 2}+{2 \  x}+4}=0} 
\right]
$$
\returnType{Type: List Equation Fraction Polynomial Integer}

%Original Page 246

If you want solutions expressed in terms of radicals you would use this
instead.
\index{radical}

\spadcommand{radicalSolve(x**3  = 8,x)}
$$
\left[
{x={-{\sqrt {-3}} -1}}, {x={{\sqrt {-3}} -1}}, {x=2} 
\right]
$$
\returnType{Type: List Equation Expression Integer}

The {\bf solve} command always returns a value but
{\bf radicalSolve} returns only the solutions that it is
able to express in terms of radicals.
\index{radical}

If the polynomial equation has rational coefficients
you can ask for approximations to its real roots by calling
solve with a second argument that specifies the ``precision''
\index{precision}
$\epsilon$.
This means that each approximation will be within
$\pm\epsilon$ of the actual
result.

Notice that the type of second argument controls the type of the result.

\spadcommand{solve(x**4 - 10*x**3 + 35*x**2 - 50*x + 25,.0001)}
$$
\left[
{x={3.6180114746 09375}}, {x={1.3819885253 90625}} 
\right]
$$
\returnType{Type: List Equation Polynomial Float}

If you give a floating-point precision you get a floating-point result;
if you give the precision as a rational number you get a rational result.

\spadcommand{solve(x**3-2,1/1000)}
$$
\left[
{x={\frac{2581}{2048}}} 
\right]
$$
\returnType{Type: List Equation Polynomial Fraction Integer}

If you want approximate complex results you should use the
\index{approximation}
command {\bf complexSolve} that takes the same precision argument
$\epsilon$.

\spadcommand{complexSolve(x**3-2,.0001)}
$$
\begin{array}{@{}l}
\left[
{x={1.2599182128 90625}},
\right.
\\
\\
\displaystyle
{x={-{0.6298943279 5395613131} -{{1.0910949707 03125} \  i}}}, 
\\
\\
\displaystyle
\left.
{x={-{0.6298943279 5395613131}+{{1.0910949707 03125} \  
i}}} 
\right]
\end{array}
$$
\returnType{Type: List Equation Polynomial Complex Float}

Each approximation will be within
$\pm\epsilon$ of the actual result
in each of the real and imaginary parts.

\spadcommand{complexSolve(x**2-2*\%i+1,1/100)}
$$
\left[
{x={-{\frac{13028925}{16777216}} -{{\frac{325}{256}} \  i}}}, 
{x={{\frac{13028925}{16777216}}+{{\frac{325}{256}} \  i}}} 
\right]
$$
\returnType{Type: List Equation Polynomial Complex Fraction Integer}

Note that if you omit the {\tt =} from the first argument
Axiom generates an equation by equating the first argument to zero.
Also, when only one variable is present in the equation, you
do not need to specify the variable to be solved for, that is,
you can omit the second argument.

Axiom can also solve equations involving rational functions.
Solutions where the denominator vanishes are discarded.

\spadcommand{radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)}
$$
\left[
{x={\frac{-{\sqrt {-3}} -1}{2}}}, {x={\frac{{\sqrt {-3}} -1}{2}}} 
\right]
$$
\returnType{Type: List Equation Expression Integer}

%Original Page 247

\subsection{Solution of Systems of Polynomial Equations}
\label{ugxProblemPolSys}

Given a system of equations of rational functions with exact coefficients:
\index{equation!polynomial!solving}
\vskip 0.1cm
$$
\begin{array}{c}
p_1(x_1, \ldots, x_n) \\ \vdots \\ p_m(x_1,\ldots,x_n)
\end{array}
$$

Axiom can find
numeric or symbolic solutions.
The system is first split into irreducible components, then for
each component, a triangular system of equations is found that reduces
the problem to sequential solution of univariate polynomials resulting
from substitution of partial solutions from the previous stage.
$$
\begin{array}{c}
q_1(x_1, \ldots, x_n) \\ \vdots \\ q_m(x_n)
\end{array}
$$

Symbolic solutions can be presented using ``implicit'' algebraic numbers
defined as roots of irreducible polynomials or in terms of radicals.
Axiom can also find approximations to the real or complex roots
of a system of polynomial equations to any user-specified accuracy.

The operation {\bf solve} for systems is used in a way similar
to {\bf solve} for single equations.
Instead of a polynomial equation, one has to give a list of
equations and instead of a single variable to solve for, a list of
variables.
For solutions of single equations see \sectionref{ugxProblemOnePol}.

Use the operation {\bf solve} if you want implicitly presented
solutions.

\spadcommand{solve([3*x**3 + y + 1,y**2 -4],[x,y])}
$$
\left[
{\left[ {x=-1}, {y=2} \right]},
{\left[ {{{x \sp 2} -x+1}=0}, {y=2} \right]},
{\left[ {{{3 \  {x \sp 3}} -1}=0}, {y=-2} \right]}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

\spadcommand{solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])}
$$
\left[
{\left[ {x={\frac{z}{3}}}, 
{y={\frac{{3 \  {z \sp 2}}+z+9}{3}}}, 
{{{9 \  {z \sp 4}}+{6 \  {z \sp 3}}+{{55} \  {z \sp 2}}+{{15} \  z} -{90}}=0} 
\right]}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

%Original Page 248

Use {\bf radicalSolve} if you want your solutions expressed
in terms of radicals.

\spadcommand{radicalSolve([3*x**3 + y + 1,y**2 -4],[x,y])}
$$
\begin{array}{@{}l}
\left[
{\left[ {x={\frac{{\sqrt {-3}}+1}{2}}}, {y=2} \right]},
{\left[ {x={\frac{-{\sqrt {-3}}+1}{2}}}, {y=2} \right]},
\right.
\\
\\
\displaystyle
{\left[ {x={\frac{-{{\sqrt {-1}} \  {\sqrt {3}}} -1}
{2 \  {\root {3} \of {3}}}}}, {y=-2} \right]},
{\left[ {x={\frac{{{\sqrt {-1}} \  {\sqrt {3}}} -1}
{2 \  {\root {3} \of {3}}}}}, {y=-2} \right]},
\\
\\
\displaystyle
\left.
{\left[ {x={\frac{1}{\root {3} \of {3}}}}, {y=-2} \right]},
{\left[ {x=-1}, {y=2} \right]}
\right]
\end{array}
$$
\returnType{Type: List List Equation Expression Integer}

To get numeric solutions you only need to give the list of
equations and the precision desired.
The list of variables would be redundant information since there
can be no parameters for the numerical solver.

If the precision is expressed as a floating-point number you get
results expressed as floats.

\spadcommand{solve([x**2*y - 1,x*y**2 - 2],.01)}
$$
\left[
{\left[ {y={1.5859375}}, {x={0.79296875}} \right]}
\right]
$$
\returnType{Type: List List Equation Polynomial Float}

To get complex numeric solutions, use the operation {\bf complexSolve},
which takes the same arguments as in the real case.

\spadcommand{complexSolve([x**2*y - 1,x*y**2 - 2],1/1000)}
$$
\begin{array}{@{}l}
\left[
{\left[ {y={\frac{1625}{1024}}}, {x={\frac{1625}{2048}}} \right]},
\right.
\\
\\
\displaystyle
{\left[ 
{y={-{\frac{435445573689}{549755813888}} -{{\frac{1407}{1024}} \  i}}}, 
{x={-{\frac{435445573689}{1099511627776}} -{{\frac{1407}{2048}} \  i}}} 
\right]},
\\
\\
\displaystyle
\left.
{\left[ 
{y={-{\frac{435445573689}{549755813888}}+{{\frac{1407}{1024}} \  i}}}, 
{x={-{\frac{435445573689}{1099511627776}}+{{\frac{1407}{2048}} \  i}}} 
\right]}
\right]
\end{array}
$$
\returnType{Type: List List Equation Polynomial Complex Fraction Integer}


It is also possible to solve systems of equations in rational functions
over the rational numbers.
Note that $[x = 0.0, a = 0.0]$ is not returned as a solution since
the denominator vanishes there.

\spadcommand{solve([x**2/a = a,a = a*x],.001)}
$$
\left[
{\left[ {x={1.0}}, {a=-{1.0}} \right]},
{\left[ {x={1.0}}, {a={1.0}} \right]}
\right]
$$
\returnType{Type: List List Equation Polynomial Float}


%Original Page 249

When solving equations with
denominators, all solutions where the denominator vanishes are
discarded.

\spadcommand{radicalSolve([x**2/a + a + y**3 - 1,a*y + a + 1],[x,y])}
$$
\begin{array}{@{}l}
\left[
{\left[ 
{x=-{\sqrt {{\frac{-{a \sp 4}+{2 \  {a \sp 3}}+{3 \  {a \sp 2}}+{3 \  
a}+1}{a \sp 2}}}}}, 
{y={\frac{-a -1}{a}}} 
\right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ {x={\sqrt {{\frac{-{a \sp 4}+{2 \  {a \sp 3}}+{3 \  {a \sp 2}}+{3 \  
a}+1}{a \sp 2}}}}}, 
{y={\frac{-a -1}{a}}} 
\right]}
\right]
\end{array}
$$
\returnType{Type: List List Equation Expression Integer}

\section{Limits}
\label{ugProblemLimits}

%
To compute a limit, you must specify a functional expression,
\index{limit}
a variable, and a limiting value for that variable.
If you do not specify a direction, Axiom attempts to
compute a two-sided limit.

Issue this to compute the limit
$$\lim_{x \rightarrow 1}{\frac{\displaystyle x^2 - 3x + 2}
{\displaystyle x^2 - 1}}.$$

\spadcommand{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)}
$$
-{\frac{1}{2}} 
$$
\returnType{Type: Union(OrderedCompletion Fraction Polynomial Integer,...)}

Sometimes the limit when approached from the left is different from
the limit from the right and, in this case, you may wish to ask for a
one-sided limit.  Also, if you have a function that is only defined on
one side of a particular value, \index{limit!one-sided vs. two-sided}
you can compute a one-sided limit.

The function $log(x)$ is only defined to the right of zero, that is,
for $x > 0$.  Thus, when computing limits of functions involving
$log(x)$, you probably want a ``right-hand'' limit.

\spadcommand{limit(x * log(x),x = 0,"right")}
$$
0 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

When you do not specify ``$right$'' or ``$left$'' as the optional fourth
argument, {\bf limit} tries to compute a two-sided limit.  Here the
limit from the left does not exist, as Axiom indicates when you try to
take a two-sided limit.

\spadcommand{limit(x * log(x),x = 0)}
$$
\left[
{leftHandLimit= \mbox{\tt "failed"} }, {rightHandLimit=0} 
\right]
$$
\returnType{Type: Union(Record(leftHandLimit: 
Union(OrderedCompletion Expression Integer,"failed"),
rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}

A function can be defined on both sides of a particular value, but
tend to different limits as its variable approaches that value from
the left and from the right.  We can construct an example of this as
follows: Since $\sqrt{y^2}$ is simply the absolute value of $y$, the
function $\sqrt{y^2} / y$ is simply the sign ($+1$ or $-1$) of the
nonzero real number $y$.  Therefore, $\sqrt{y^2} / y = -1$ for $y < 0$
and $\sqrt{y^2} / y = +1$ for $y > 0$.

%Original Page 250

This is what happens when we take the limit at $y = 0$.
The answer returned by Axiom gives both a
``left-hand'' and a ``right-hand'' limit.

\spadcommand{limit(sqrt(y**2)/y,y = 0)}
$$
\left[
{leftHandLimit=-1}, {rightHandLimit=1} 
\right]
$$
\returnType{Type: Union(Record(leftHandLimit: 
Union(OrderedCompletion Expression Integer,"failed"),
rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}

Here is another example, this time using a more complicated function.

\spadcommand{limit(sqrt(1 - cos(t))/t,t = 0)}
$$
\left[
{leftHandLimit=-{\frac{1}{\sqrt {2}}}}, 
{rightHandLimit={\frac{1}{\sqrt {2}}}} 
\right]
$$
\returnType{Type: Union(Record(leftHandLimit: 
Union(OrderedCompletion Expression Integer,"failed"),
rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)}

You can compute limits at infinity by passing either 
\index{limit!at infinity} $+\infty$ or $-\infty$ as the third 
argument of {\bf limit}.

To do this, use the constants $\%plusInfinity$ and $\%minusInfinity$.

\spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%plusInfinity)}
$$
\frac{\sqrt {3}}{5}
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

\spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%minusInfinity)}
$$
-{\frac{\sqrt {3}}{5}} 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

You can take limits of functions with parameters.
\index{limit!of function with parameters}
As you can see, the limit is expressed in terms of the parameters.

\spadcommand{limit(sinh(a*x)/tan(b*x),x = 0)}
$$
\frac{a}{b}
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

When you use {\bf limit}, you are taking the limit of a real
function of a real variable.

When you compute this, Axiom returns $0$ because, as a function of a
real variable, $sin(1/z)$ is always between $-1$ and $1$, so 
$z * sin(1/z)$ tends to $0$ as $z$ tends to $0$.

\spadcommand{limit(z * sin(1/z),z = 0)}
$$
0 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

However, as a function of a {\it complex} variable, $sin(1/z)$ is badly
\index{limit!real vs. complex}
behaved near $0$ (one says that $sin(1/z)$ has an
\index{essential singularity}
{\it essential singularity} at $z = 0$).
\index{singularity!essential}

%Original Page 251

When viewed as a function of a complex variable, $z * sin(1/z)$
does not approach any limit as $z$ tends to $0$ in the complex plane.
Axiom indicates this when we call {\bf complexLimit}.

\spadcommand{complexLimit(z * sin(1/z),z = 0)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

Here is another example.
As $x$ approaches $0$ along the real axis, $exp(-1/x**2)$
tends to $0$.
\spadcommand{limit(exp(-1/x**2),x = 0)}
$$
0 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

However, if $x$ is allowed to approach $0$ along any path in the
complex plane, the limiting value of $exp(-1/x**2)$ depends on the
path taken because the function has an essential singularity at $x=0$.
This is reflected in the error message returned by the function.
\spadcommand{complexLimit(exp(-1/x**2),x = 0)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

You can also take complex limits at infinity, that is, limits of a
function of $z$ as $z$ approaches infinity on the Riemann sphere.  Use
the symbol $\%infinity$ to denote ``complex infinity.''

As above, to compute complex limits rather than real limits, use
{\bf complexLimit}.

\spadcommand{complexLimit((2 + z)/(1 - z),z = \%infinity)}
$$
-1 
$$
\returnType{Type: OnePointCompletion Fraction Polynomial Integer}

In many cases, a limit of a real function of a real variable exists
when the corresponding complex limit does not.  This limit exists.

\spadcommand{limit(sin(x)/x,x = \%plusInfinity)}
$$
0 
$$
\returnType{Type: Union(OrderedCompletion Expression Integer,...)}

But this limit does not.

\spadcommand{complexLimit(sin(x)/x,x = \%infinity)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

\section{Laplace Transforms}
\label{ugProblemLaplace}

Axiom can compute some forward Laplace transforms, mostly
\index{Laplace transform} of elementary \index{function!elementary}
functions \index{transform!Laplace} not involving logarithms, although
some cases of special functions are handled.

To compute the forward Laplace transform of $F(t)$ with respect to
$t$ and express the result as $f(s)$, issue the command
$laplace(F(t), t, s)$.

\spadcommand{laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)}
$$
\frac{4 \  {a \sp 3}}{{s \sp 4}+{4 \  {a \sp 4}}} 
$$
\returnType{Type: Expression Integer}

Here are some other non-trivial examples.

\spadcommand{laplace((exp(a*t) - exp(b*t))/t, t, s)}
$$
-{\log \left({{s -a}} \right)}+{\log\left({{s -b}} \right)}
$$
\returnType{Type: Expression Integer}

\spadcommand{laplace(2/t * (1 - cos(a*t)), t, s)}
$$
{\log \left({{{s \sp 2}+{a \sp 2}}} \right)}-{2 \  {\log \left({s} \right)}}
$$
\returnType{Type: Expression Integer}

%Original Page 252

\spadcommand{laplace(exp(-a*t) * sin(b*t) / b**2, t, s)}
$$
\frac{1}{{b \  {s \sp 2}}+{2 \  a \  b \  s}+{b \sp 3}+{{a \sp 2} \  b}} 
$$
\returnType{Type: Expression Integer}

\spadcommand{laplace((cos(a*t) - cos(b*t))/t, t, s)}
$$
\frac{{\log \left({{{s \sp 2}+{b \sp 2}}} \right)}-
{\log \left({{{s \sp 2}+{a \sp 2}}} \right)}}{2} 
$$
\returnType{Type: Expression Integer}

Axiom also knows about a few special functions.

\spadcommand{laplace(exp(a*t+b)*Ei(c*t), t, s)}
$$
\frac{{e \sp b} \  {\log \left({{\frac{s+c -a}{c}}} \right)}}{s -a} 
$$
\returnType{Type: Expression Integer}

\spadcommand{laplace(a*Ci(b*t) + c*Si(d*t), t, s)}
$$
\frac{{a \  {\log \left({{\frac{{s \sp 2}+{b \sp 2}}{b \sp 2}}} \right)}}+
{2\  c \  {\arctan \left({{\frac{d}{s}}} \right)}}}{2 \  s} 
$$
\returnType{Type: Expression Integer}

When Axiom does not know about a particular transform,
it keeps it as a formal transform in the answer.

\spadcommand{laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)}
$$
\frac{{{\left( {s \sp 4}+{2 \  {a \sp 2} \  {s \sp 2}}+{a \sp 4} \right)}
\  {laplace \left({{e \sp {t \sp 2}}, t, s} \right)}}+
{2\  {a \sp 3}}}{{s \sp 4}+{2 \  {a \sp 2} \  {s \sp 2}}+{a \sp 4}} 
$$
\returnType{Type: Expression Integer}

\section{Integration}
\label{ugProblemIntegration}

%
Integration is the reverse process of differentiation, that is,
\index{integration} an {\it integral} of a function $f$ with respect
to a variable $x$ is any function $g$ such that $D(g,x)$ is equal to
$f$.

The package {\tt FunctionSpaceIntegration} provides the top-level
integration operation, \spadfunFrom{integrate}{FunctionSpaceIntegration},
for integrating real-valued elementary functions.
\index{FunctionSpaceIntegration}

\spadcommand{integrate(cosh(a*x)*sinh(a*x), x)}
$$
\frac{{{\sinh \left({{a \  x}} \right)}\sp 2}+
{{\cosh \left({{a \  x}} \right)}\sp 2}} 
{4 \  a} 
$$
\returnType{Type: Union(Expression Integer,...)}

Unfortunately, antiderivatives of most functions cannot be expressed in
terms of elementary functions.

\spadcommand{integrate(log(1 + sqrt(a * x + b)) / x, x)}
$$
\int \sp{\displaystyle x} {{
\frac{\log \left({{{\sqrt {{b+{ \%M \  a}}}}+1}} \right)}{\%M}} \  {d \%M}} 
$$
\returnType{Type: Union(Expression Integer,...)}

Given an elementary function to integrate, Axiom returns a formal
integral as above only when it can prove that the integral is not
elementary and not when it cannot determine the integral.
In this rare case it prints a message that it cannot
determine if an elementary integral exists.

%Original Page 253

Similar functions may have antiderivatives \index{antiderivative}
that look quite different because the form of the antiderivative
depends on the sign of a constant that appears in the function.

\spadcommand{integrate(1/(x**2 - 2),x)}
$$
\frac{\log \left({{
\frac{{{\left( {x \sp 2}+2 \right)}\  {\sqrt {2}}} -{4 \  x}} 
{{x \sp 2} -2}}} \right)}
{2 \  {\sqrt {2}}} 
$$
\returnType{Type: Union(Expression Integer,...)}

\spadcommand{integrate(1/(x**2 + 2),x)}
$$
\frac{\arctan \left({{\frac{x \  {\sqrt {2}}}{2}}} \right)}{\sqrt {2}} 
$$
\returnType{Type: Union(Expression Integer,...)}

If the integrand contains parameters, then there may be several possible
antiderivatives, depending on the signs of expressions of the parameters.

In this case Axiom returns a list of answers that cover all the
possible cases.  Here you use the answer involving the square root of
$a$ when $a > 0$ and \index{integration!result as list of real
functions} the answer involving the square root of $-a$ when $a < 0$.

\spadcommand{integrate(x**2 / (x**4 - a**2), x)}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{\frac{{\log 
\left(
{{\frac{{{\left( {x \sp 2}+a \right)}
\  {\sqrt {a}}} -{2 \  a \  x}}{{x \sp 2} -a}}} 
\right)}+
{2\  {\arctan \left({{\frac{x \  {\sqrt {a}}}{a}}} \right)}}}
{4 \  {\sqrt {a}}}}, 
\right.
\\
\\
\displaystyle
\left.
{\frac{{\log \left({{\frac{{{\left( {x \sp 2} -a \right)}
\  {\sqrt {-a}}}+{2 \  a \  x}}{{x \sp 2}+a}}} 
\right)}
-{2 \  {\arctan \left({{\frac{x \  {\sqrt {-a}}}{a}}} \right)}}}
{4 \  {\sqrt {-a}}}} 
\right]
\end{array}
$$
\returnType{Type: Union(List Expression Integer,...)}

If the parameters and the variables of integration can be complex
numbers rather than real, then the notion of sign is not defined.  In
this case all the possible answers can be expressed as one complex
function.  To get that function, rather than a list of real functions,
use \spadfunFrom{complexIntegrate}{FunctionSpaceComplexIntegration},
which is provided by the package \index{integration!result as a
complex functions} {\tt FunctionSpaceComplexIntegration}.
\index{FunctionSpaceComplexIntegration}

This operation is used for integrating complex-valued elementary
functions.

\spadcommand{complexIntegrate(x**2 / (x**4 - a**2), x)}
$$
\frac{\left(
\begin{array}{@{}l}
\displaystyle
{{\sqrt {{4 \  a}}} \  {\log 
\left(
{{\frac{{x \  {\sqrt {-{4 \  a}}}}+{2 \  a}}{\sqrt {-{4 \  a}}}}} 
\right)}} -
{{\sqrt {-{4 \  a}}} \  {\log 
\left(
{{\frac{{x \  {\sqrt {{4 \  a}}}}+{2 \  a}}{\sqrt {{4 \  a}}}}} 
\right)}}+
\\
\\
\displaystyle
{{\sqrt{-{4 \  a}}} \  {\log 
\left(
{{\frac{{x \  {\sqrt {{4 \  a}}}} -{2 \  a}}{\sqrt {{4 \  a}}}}} 
\right)}}
-{{\sqrt {{4 \  a}}} \  {\log 
\left(
{{\frac{{x \  {\sqrt {-{4 \  a}}}} -{2 \  a}}{\sqrt {-{4 \  a}}}}} 
\right)}}
\end{array}
\right)}
{2 \  {\sqrt {-{4 \  a}}} \  {\sqrt {{4 \  a}}}} 
$$
\returnType{Type: Expression Integer}

%Original Page 254

As with the real case, antiderivatives for most complex-valued
functions cannot be expressed in terms of elementary functions.

\spadcommand{complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)}
$$
\int \sp{\displaystyle x} 
{{\frac{\log \left({{{\sqrt {{b+{ \%M \  a}}}}+1}} \right)}{\%M}} \  {d \%M}} 
$$
\returnType{Type: Expression Integer}

Sometimes {\bf integrate} can involve symbolic algebraic numbers
such as those returned by \spadfunFrom{rootOf}{Expression}.
To see how to work with these strange generated symbols (such as
$\%\%a0$), see \sectionref{ugxProblemSymRootAll}.

Definite integration is the process of computing the area between
\index{integration!definite}
the $x$-axis and the curve of a function $f(x)$.
The fundamental theorem of calculus states that if $f$ is
continuous on an interval $a..b$ and if there exists a function $g$
that is differentiable on $a..b$ and such that $D(g, x)$
is equal to $f$, then the definite integral of $f$
for $x$ in the interval $a..b$ is equal to $g(b) - g(a)$.

The package {\tt RationalFunctionDefiniteIntegration} provides
the top-level definite integration operation,
\spadfunFrom{integrate}{RationalFunctionDefiniteIntegration},
for integrating real-valued rational functions.

\spadcommand{integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x = 1..2)}
$$
\frac{{2 \  {\arctan \left({8} \right)}}+
{2\  {\arctan \left({5} \right)}}+
{2\  {\arctan \left({2} \right)}}+
{2\  {\arctan \left({{\frac{1}{2}}} \right)}}
-\pi}{2} 
$$
\returnType{Type: Union(f1: OrderedCompletion Expression Integer,...)}

Axiom checks beforehand that the function you are integrating is
defined on the interval $a..b$, and prints an error message if it
finds that this is not case, as in the following example:
\begin{verbatim}
integrate(1/(x**2-2), x = 1..2)

    >> Error detected within library code:
       Pole in path of integration
       You are being returned to the top level
       of the interpreter.
\end{verbatim}
When parameters are present in the function, the function may or may not be
defined on the interval of integration.

If this is the case, Axiom issues a warning that a pole might
lie in the path of integration, and does not compute the integral.

\spadcommand{integrate(1/(x**2-a), x = 1..2)}
$$
potentialPole 
$$
\returnType{Type: Union(pole: potentialPole,...)}

If you know that you are using values of the parameter for which
the function has no pole in the interval of integration, use the
string {\tt "noPole"} as a third argument to
\spadfunFrom{integrate}{RationalFunctionDefiniteIntegration}:

%Original Page 255

The value here is, of course, incorrect if $sqrt(a)$ is between
$1$ and $2.$

\spadcommand{integrate(1/(x**2-a), x = 1..2, "noPole")}
$$
\begin{array}{@{}l}
\left[
\displaystyle
\frac{\left(
\begin{array}{@{}l}
-{\log \left({{\frac{{{\left( -{4 \  {a \sp 2}} -{4 \  a} \right)}
\  {\sqrt {a}}}+{a \sp 3}+{6 \  {a \sp 2}}+a}{{a \sp 2} -{2 \  a}+1}}} 
\right)}+
\\
\\
\displaystyle
{\log\left({{\frac{{{\left( -{8 \  {a \sp 2}} -{{32} \  a} \right)}
\  {\sqrt {a}}}+{a \sp 3}+{{24} \  {a \sp 2}}+{{16} \  a}}{{a \sp 2} 
-{8 \  a}+{16}}}} 
\right)}
\end{array}
\right)}
{4 \  {\sqrt {a}}},
\right.
\\
\\
\displaystyle
\left. 
{\frac{-{\arctan \left({{\frac{2 \  {\sqrt {-a}}}{a}}} \right)}+
{\arctan\left({{\frac{\sqrt {-a}}{a}}} \right)}}
{\sqrt {-a}}} 
\right]
\end{array}
$$
\returnType{Type: Union(f2: List OrderedCompletion Expression Integer,...)}

\section{Working with Power Series}
\label{ugProblemSeries}
%
Axiom has very sophisticated facilities for working with power
\index{series}
series.
\index{power series}

Infinite series are represented by a list of the coefficients that
have already been determined, together with a function for computing
the additional coefficients if needed.

The system command that determines how many terms of a series is
displayed is {\tt )set streams calculate}.  For the purposes of this
book, we have used this system command to display fewer than ten
terms.  \index{set streams calculate} Series can be created from
expressions, from functions for the series coefficients, and from
applications of operations on existing series.  The most general
function for creating a series is called {\bf series}, although you
can also use {\bf taylor}, {\bf laurent} and {\bf puiseux} in
situations where you know what kind of exponents are involved.

For information about solving differential equations in terms of
power series, see \sectionref{ugxProblemDEQSeries}.

%Original Page 256

\subsection{Creation of Power Series}
\label{ugxProblemSeriesCreate}

This is the easiest way to create a power series.  This tells Axiom
that $x$ is to be treated as a power series, \index{series!creating}
so functions of $x$ are again power series.

\spadcommand{x := series 'x }
$$
x 
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

We didn't say anything about the coefficients of the power series, so
the coefficients are general expressions over the integers.  This
allows us to introduce denominators, symbolic constants, and other
variables as needed.

Here the coefficients are integers (note that the coefficients are the
Fibonacci \index{Fibonacci numbers} numbers).

\spadcommand{1/(1 - x - x**2) }
$$
1+x+
{2 \  {x \sp 2}}+
{3 \  {x \sp 3}}+
{5 \  {x \sp 4}}+
{8 \  {x \sp 5}}+
{{13} \  {x \sp 6}}+
{{21} \  {x \sp 7}}+
{{34} \  {x \sp 8}}+
{{55} \  {x \sp 9}}+
{{89} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

This series has coefficients that are rational numbers.

\spadcommand{sin(x) }
$$
x -
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{120}} \  {x \sp 5}} -
{{\frac{1}{5040}} \  {x \sp 7}}+
{{\frac{1}{362880}} \  {x \sp 9}} -
{{\frac{1}{39916800}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

When you enter this expression you introduce the symbolic constants
$sin(1)$ and $cos(1).$

\spadcommand{sin(1 + x) }
$$
\begin{array}{@{}l}
\displaystyle
{\sin \left({1} \right)}+
{{\cos\left({1} \right)}\  x} -
{{\frac{\sin \left({1} \right)}{2}} \  {x \sp 2}} -
{{\frac{\cos \left({1} \right)}{6}} \  {x \sp 3}}+
{{\frac{\sin \left({1} \right)}{24}} \  {x \sp 4}}+
{{\frac{\cos \left({1} \right)}{120}} \  {x \sp 5}} -
{{\frac{\sin \left({1} \right)}{720}} \  {x \sp 6}} -
\\
\\
\displaystyle
{{\frac{\cos \left({1} \right)}{5040}} \  {x \sp 7}}+
{{\frac{\sin \left({1} \right)}{40320}} \  {x \sp 8}}+
{{\frac{\cos \left({1} \right)}{362880}} \  {x \sp 9}} -
{{\frac{\sin \left({1} \right)}{3628800}} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

When you enter the expression
the variable $a$ appears in the resulting series expansion.

\spadcommand{sin(a * x) }
$$
{a \  x} -
{{\frac{a \sp 3}{6}} \  {x \sp 3}}+
{{\frac{a \sp 5}{120}} \  {x \sp 5}} -
{{\frac{a \sp 7}{5040}} \  {x \sp 7}}+
{{\frac{a \sp 9}{362880}} \  {x \sp 9}} -
{{\frac{a \sp {11}}{39916800}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

You can also convert an expression into a series expansion.  This
expression creates the series expansion of $1/log(y)$ about $y = 1$.
For details and more examples, see \sectionref{ugxProblemSeriesConversions}.

\spadcommand{series(1/log(y),y = 1)}
$$
\begin{array}{@{}l}
\displaystyle
{{\left( y -1 \right)}\sp {\left( -1 \right)}}+
{\frac{1}{2}} -{{\frac{1}{12}} \  {\left( y -1 \right)}}+
{{\frac{1}{24}} \  {{\left( y -1 \right)}\sp 2}} -
{{\frac{19}{720}} \  {{\left( y -1 \right)}\sp 3}}+
{{\frac{3}{160}} \  {{\left( y -1 \right)}\sp 4}} -
\\
\\
\displaystyle
{{\frac{863}{60480}} \  {{\left( y -1 \right)}\sp 5}}+
{{\frac{275}{24192}} \  {{\left( y -1 \right)}\sp 6}} -
{{\frac{33953}{3628800}} \  {{\left( y -1 \right)}\sp 7}}+
\\
\\
\displaystyle
{{\frac{8183}{1036800}} \  {{\left( y -1 \right)}\sp 8}} -
{{\frac{3250433}{479001600}} \  {{\left( y -1 \right)}\sp 9}}+
{O \left({{{\left( y -1 \right)}\sp {10}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,y,1)}

You can create power series with more general coefficients.  You
normally accomplish this via a type declaration (see 
\sectionref{ugTypesDeclare}).
See \sectionref{ugxProblemSeriesFunctions} 
for some warnings about working with declared series.

%Original Page 257

We declare that $y$ is a one-variable Taylor series
\index{series!Taylor} ({\tt UTS} is the abbreviation for 
{\tt Univariate\-TaylorSeries}) in the variable $z$ with {\tt FLOAT} 
(that is, floating-point) coefficients, centered about $0.$ Then, by
assignment, we obtain the Taylor expansion of $exp(z)$ with
floating-point coefficients.  \index{UnivariateTaylorSeries}

\spadcommand{y : UTS(FLOAT,'z,0) := exp(z) }
$$
\begin{array}{@{}l}
{1.0}+z+
{{0.5} \  {z \sp 2}}+
{{0.1666666666\ 6666666667} \  {z \sp 3}}+
\\
\\
\displaystyle
{{0.0416666666\ 6666666666 7} \  {z \sp 4}}+
{{0.0083333333\ 3333333333 34} \  {z \sp 5}}+
\\
\\
\displaystyle
{{0.0013888888\ 8888888888 89} \  {z \sp 6}}+
{{0.0001984126\ 9841269841 27} \  {z \sp 7}}+
\\
\\
\displaystyle
{{0.0000248015\ 8730158730 1587} \  {z \sp 8}}+
{{0.0000027557\ 3192239858 90653} \  {z \sp 9}}+
\\
\\
\displaystyle
{{0.2755731922\ 3985890653 E -6} \  {z \sp {10}}}+
{O \left({{z \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Float,z,0.0)}

You can also create a power series by giving an explicit formula for
its $n$-th coefficient.  For details and more examples, see
\sectionref{ugxProblemSeriesFormula}.

To create a series about $w = 0$ whose $n$-th Taylor coefficient is
$1/n!$, you can evaluate this expression.  This is the Taylor
expansion of $exp(w)$ at $w = 0$.

\spadcommand{series(1/factorial(n),n,w = 0)}
$$
\begin{array}{@{}l}
\displaystyle
1+w+
{{\frac{1}{2}} \  {w \sp 2}}+
{{\frac{1}{6}} \  {w \sp 3}}+
{{\frac{1}{24}} \  {w \sp 4}}+
{{\frac{1}{120}} \  {w \sp 5}}+
{{\frac{1}{720}} \  {w \sp 6}}+
{{\frac{1}{5040}} \  {w \sp 7}}+
\\
\\
\displaystyle
{{\frac{1}{40320}} \  {w \sp 8}}+
{{\frac{1}{362880}} \  {w \sp 9}}+
{{\frac{1}{3628800}} \  {w \sp {10}}}+
{O \left({{w \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,w,0)}

\subsection{Coefficients of Power Series}
\label{ugxProblemSeriesCoefficients}

You can extract any coefficient from a power series---even one that
hasn't been computed yet.  This is possible because in Axiom, infinite
series are represented by a list of the coefficients that have already
been determined, together with a function for computing the additional
coefficients.  (This is known as {\it lazy evaluation}.) When you ask
for a \index{series!lazy evaluation} coefficient that hasn't yet been
computed, Axiom computes \index{lazy evaluation} whatever additional
coefficients it needs and then stores them in the representation of
the power series.

Here's an example of how to extract the coefficients of a power series.
\index{series!extracting coefficients}

\spadcommand{x := series(x) }
$$
x 
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\spadcommand{y := exp(x) * sin(x)  }
$$
\begin{array}{@{}l}
\displaystyle
x+
{x \sp 2}+
{{\frac{1}{3}} \  {x \sp 3}} -
{{\frac{1}{30}} \  {x \sp 5}} -
{{\frac{1}{90}} \  {x \sp 6}} -
{{\frac{1}{630}} \  {x \sp 7}}+
{{\frac{1}{22680}} \  {x \sp 9}}+
\\
\\
\displaystyle
{{\frac{1}{113400}} \  {x \sp {10}}}+
{{\frac{1}{1247400}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

%Original Page 258

This coefficient is readily available.

\spadcommand{coefficient(y,6) }
$$
-{\frac{1}{90}} 
$$
\returnType{Type: Expression Integer}

But let's get the fifteenth coefficient of $y$.

\spadcommand{coefficient(y,15)  }
$$
-{\frac{1}{10216206000}} 
$$
\returnType{Type: Expression Integer}

If you look at $y$ then you see that the coefficients up to order $15$
have all been computed.

\spadcommand{y }
$$
\begin{array}{@{}l}
\displaystyle
x+
{x \sp 2}+
{{\frac{1}{3}} \  {x \sp 3}} -
{{\frac{1}{30}} \  {x \sp 5}} -
{{\frac{1}{90}} \  {x \sp 6}} -
{{\frac{1}{630}} \  {x \sp 7}}+
{{\frac{1}{22680}} \  {x \sp 9}}+
{{\frac{1}{113400}} \  {x \sp {10}}}+
\\
\\
\displaystyle
{{\frac{1}{1247400}} \  {x \sp {11}}} -
{{\frac{1}{97297200}} \  {x \sp {13}}} -
{{\frac{1}{681080400}} \  {x \sp {14}}} -
{{\frac{1}{10216206000}} \  {x \sp {15}}}+
{O \left({{x \sp {16}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\subsection{Power Series Arithmetic}
\label{ugxProblemSeriesArithmetic}

You can manipulate power series using the usual arithmetic operations
\index{series!arithmetic}
$+$, $-$, $*$, and $/$ (from UnivariatePuiseuxSeries)

The results of these operations are also power series.

\spadcommand{x := series x }
$$
x 
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\spadcommand{(3 + x) / (1 + 7*x)}
$$
\begin{array}{@{}l}
3 -
{{20} \  x}+
{{140} \  {x \sp 2}} -
{{980} \  {x \sp 3}}+
{{6860} \  {x \sp 4}} -
{{48020} \  {x \sp 5}}+
{{336140} \  {x \sp 6}} -
{{2352980} \  {x \sp 7}}+
\\
\\
\displaystyle
{{16470860} \  {x \sp 8}} -
{{115296020} \  {x \sp 9}}+
{{807072140} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

You can also compute $f(x) ** g(x)$, where $f(x)$ and $g(x)$
are two power series.

\spadcommand{base := 1 / (1 - x)  }
$$
1+x+
{x \sp 2}+
{x \sp 3}+
{x \sp 4}+
{x \sp 5}+
{x \sp 6}+
{x \sp 7}+
{x \sp 8}+
{x \sp 9}+
{x \sp {10}}+
{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\spadcommand{expon := x * base  }
$$
x+
{x \sp 2}+
{x \sp 3}+
{x \sp 4}+
{x \sp 5}+
{x \sp 6}+
{x \sp 7}+
{x \sp 8}+
{x \sp 9}+
{x \sp {10}}+
{x \sp {11}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

%Original Page 259

\spadcommand{base ** expon }
$$
\begin{array}{@{}l}
\displaystyle
1+
{x \sp 2}+
{{\frac{3}{2}} \  {x \sp 3}}+
{{\frac{7}{3}} \  {x \sp 4}}+
{{\frac{43}{12}} \  {x \sp 5}}+
{{\frac{649}{120}} \  {x \sp 6}}+
{{\frac{241}{30}} \  {x \sp 7}}+
{{\frac{3706}{315}} \  {x \sp 8}}+
\\
\\
\displaystyle
{{\frac{85763}{5040}} \  {x \sp 9}}+
{{\frac{245339}{10080}} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\subsection{Functions on Power Series}
\label{ugxProblemSeriesFunctions}

Once you have created a power series, you can apply transcendental
functions
(for example, {\bf exp}, {\bf log}, {\bf sin}, {\bf tan},
{\bf cosh}, etc.) to it.

To demonstrate this, we first create the power series
expansion of the rational function

$$\frac{\displaystyle x^2}{\displaystyle 1 - 6x + x^2}$$

about $x = 0$.

\spadcommand{x := series 'x }
$$
x 
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\spadcommand{rat := x**2 / (1 - 6*x + x**2)  }
$$
\begin{array}{@{}l}
{x \sp 2}+
{6 \  {x \sp 3}}+
{{35} \  {x \sp 4}}+
{{204} \  {x \sp 5}}+
{{1189} \  {x \sp 6}}+
{{6930} \  {x \sp 7}}+
{{40391} \  {x \sp 8}}+
{{235416} \  {x \sp 9}}+
\\
\\
\displaystyle
{{1372105} \  {x \sp {10}}}+
{{7997214} \  {x \sp {11}}}+
{{46611179} \  {x \sp {12}}}+
{O \left({{x \sp {13}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

If you want to compute the series expansion of

$$\sin\left(\frac{\displaystyle x^2}{\displaystyle 1 - 6x + x^2}\right)$$

you simply compute the sine of $rat$.

\spadcommand{sin(rat) }
$$
\begin{array}{@{}l}
\displaystyle
{x \sp 2}+
{6 \  {x \sp 3}}+
{{35} \  {x \sp 4}}+
{{204} \  {x \sp 5}}+
{{\frac{7133}{6}} \  {x \sp 6}}+
{{6927} \  {x \sp 7}}+
{{\frac{80711}{2}} \  {x \sp 8}}+
{{235068} \  {x \sp 9}}+
\\
\\
\displaystyle
{{\frac{164285281}{120}} \  {x \sp {10}}}+
{{\frac{31888513}{4}} \  {x \sp {11}}}+
{{\frac{371324777}{8}} \  {x \sp {12}}}+
{O \left({{x \sp {13}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\boxer{4.6in}{
\noindent {\bf Warning:}
the type of the coefficients of a power series may
affect the kind of computations that you can do with that series.
This can only happen when you have made a declaration to
specify a series domain with a certain type of coefficient.\\
}

If you evaluate then you have declared that $y$ is a one variable
Taylor series \index{series!Taylor} ({\tt UTS} is the abbreviation for
{\tt UnivariateTaylorSeries}) in the variable $y$ with {\tt FRAC INT}
(that is, fractions of integer) coefficients, centered about $0$.

\spadcommand{y : UTS(FRAC INT,y,0) := y }
$$
y 
$$
\returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)}

%Original Page 260

You can now compute certain power series in $y$, {\it provided} that
these series have rational coefficients.

\spadcommand{exp(y) }
$$
\begin{array}{@{}l}
\displaystyle
1+y+
{{\frac{1}{2}} \  {y \sp 2}}+
{{\frac{1}{6}} \  {y \sp 3}}+
{{\frac{1}{24}} \  {y \sp 4}}+
{{\frac{1}{120}} \  {y \sp 5}}+
{{\frac{1}{720}} \  {y \sp 6}}+
{{\frac{1}{5040}} \  {y \sp 7}}+
{{\frac{1}{40320}} \  {y \sp 8}}+
\\
\\
\displaystyle
{{\frac{1}{362880}} \  {y \sp 9}}+
{{\frac{1}{3628800}} \  {y \sp {10}}}+
{O \left({{y \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)}

You can get examples of such series by applying transcendental
functions to series in $y$ that have no constant terms.

\spadcommand{tan(y**2) }
$$
{y \sp 2}+
{{\frac{1}{3}} \  {y \sp 6}}+
{{\frac{2}{15}} \  {y \sp {10}}}+
{O \left({{y \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)}

\spadcommand{cos(y + y**5) }
$$
1 -
{{\frac{1}{2}} \  {y \sp 2}}+
{{\frac{1}{24}} \  {y \sp 4}} -
{{\frac{721}{720}} \  {y \sp 6}}+
{{\frac{6721}{40320}} \  {y \sp 8}} -
{{\frac{1844641}{3628800}} \  {y \sp {10}}}+
{O \left({{y \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)}

Similarly, you can compute the logarithm of a power series with rational
coefficients if the constant coefficient is $1.$

\spadcommand{log(1 + sin(y)) }
$$
\begin{array}{@{}l}
\displaystyle
y -
{{\frac{1}{2}} \  {y \sp 2}}+
{{\frac{1}{6}} \  {y \sp 3}} -
{{\frac{1}{12}} \  {y \sp 4}}+
{{\frac{1}{24}} \  {y \sp 5}} -
{{\frac{1}{45}} \  {y \sp 6}}+
{{\frac{61}{5040}} \  {y \sp 7}} -
{{\frac{17}{2520}} \  {y \sp 8}}+
{{\frac{277}{72576}} \  {y \sp 9}} -
\\
\\
\displaystyle
{{\frac{31}{14175}} \  {y \sp {10}}}+
{O \left({{y \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)}

If you wanted to apply, say, the operation {\bf exp} to a power series
with a nonzero constant coefficient $a_0$, then the constant
coefficient of the result would be $e^{a_0}$, which is {\it not} a
rational number.  Therefore, evaluating $exp(2 + tan(y))$ would
generate an error message.

If you want to compute the Taylor expansion of $exp(2 + tan(y))$, you
must ensure that the coefficient domain has an operation {\bf exp}
defined for it.  An example of such a domain is {\tt Expression
Integer}, the type of formal functional expressions over the integers.

When working with coefficients of this type,

\spadcommand{z : UTS(EXPR INT,z,0) := z }
$$
z 
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,z,0)}

this presents no problems.

\spadcommand{exp(2 + tan(z)) }
$$
\begin{array}{@{}l}
\displaystyle
{e \sp 2}+
{{e \sp 2} \  z}+
{{\frac{e \sp 2}{2}} \  {z \sp 2}}+
{{\frac{e \sp 2}{2}} \  {z \sp 3}}+
{{\frac{3 \  {e \sp 2}}{8}} \  {z \sp 4}}+
{{\frac{{37} \  {e \sp 2}}{120}} \  {z \sp 5}}+
{{\frac{{59} \  {e \sp 2}}{240}} \  {z \sp 6}}+
{{\frac{{137} \  {e \sp 2}}{720}} \  {z \sp 7}}+
\\
\\
\displaystyle
{{\frac{{871} \  {e \sp 2}}{5760}} \  {z \sp 8}}+
{{\frac{{41641} \  {e \sp 2}}{362880}} \  {z \sp 9}}+
{{\frac{{325249} \  {e \sp 2}}{3628800}} \  {z \sp {10}}}+
{O \left({{z \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,z,0)}

Another way to create Taylor series whose coefficients are expressions
over the integers is to use {\bf taylor} which works similarly to
\index{series!Taylor} {\bf series}.

%Original Page 261

This is equivalent to the previous computation, except that now we
are using the variable $w$ instead of $z$.

\spadcommand{w := taylor 'w }
$$
w 
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,w,0)}

\spadcommand{exp(2 + tan(w)) }
$$
\begin{array}{@{}l}
\displaystyle
{e \sp 2}+
{{e \sp 2} \  w}+
{{\frac{e \sp 2}{2}} \  {w \sp 2}}+
{{\frac{e \sp 2}{2}} \  {w \sp 3}}+
{{\frac{3 \  {e \sp 2}}{8}} \  {w \sp 4}}+
{{\frac{{37} \  {e \sp 2}}{120}} \  {w \sp 5}}+
{{\frac{{59} \  {e \sp 2}}{240}} \  {w \sp 6}}+
{{\frac{{137} \  {e \sp 2}}{720}} \  {w \sp 7}}+
\\
\\
\displaystyle
{{\frac{{871} \  {e \sp 2}}{5760}} \  {w \sp 8}}+
{{\frac{{41641} \  {e \sp 2}}{362880}} \  {w \sp 9}}+
{{\frac{{325249} \  {e \sp 2}}{3628800}} \  {w \sp {10}}}+
{O \left({{w \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,w,0)}

\subsection{Converting to Power Series}
\label{ugxProblemSeriesConversions}

The {\tt ExpressionToUnivariatePowerSeries} package provides
operations for computing series expansions of functions.
\index{ExpressionToUnivariatePowerSeries}

Evaluate this to compute the Taylor expansion of $sin(x)$ about
\index{series!Taylor} $x = 0$.  The first argument, $sin(x)$,
specifies the function whose series expansion is to be computed and
the second argument, $x = 0$, specifies that the series is to be
expanded in power of $(x - 0)$, that is, in power of $x$.

\spadcommand{taylor(sin(x),x = 0)}
$$
x -
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{120}} \  {x \sp 5}} -
{{\frac{1}{5040}} \  {x \sp 7}}+
{{\frac{1}{362880}} \  {x \sp 9}}+
{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)}

Here is the Taylor expansion of $sin x$ about $x = \frac{\pi}{6}$:

\spadcommand{taylor(sin(x),x = \%pi/6)}
$$
\begin{array}{@{}l}
\displaystyle
{\frac{1}{2}}+
{{\frac{\sqrt {3}}{2}} \  {\left( x -{\frac{\pi}{6}} \right)}}
-{{\frac{1}{4}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 2}} -
{{\frac{\sqrt {3}}{12}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 3}}+
{{\frac{1}{48}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 4}}+
\\
\\
\displaystyle
{{\frac{\sqrt {3}}{240}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 5}} -
{{\frac{1}{1440}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 6}} -
{{\frac{\sqrt {3}}{10080}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 7}}+
{{\frac{1}{80640}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 8}}+
\\
\\
\displaystyle
{{\frac{\sqrt {3}}{725760}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp 9}} -
{{\frac{1}{7257600}} \  {{\left( x -{\frac{\pi}{6}} \right)}\sp {10}}}+
{O \left({{{\left( x -{\frac{\pi}{6}} \right)}\sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,pi/6)}


The function to be expanded into a series may have variables other
than \index{series!multiple variables} the series variable.

%Original Page 262

For example, we may expand $tan(x*y)$ as a Taylor series in $x$

\spadcommand{taylor(tan(x*y),x = 0)}
$$
{y \  x}+
{{\frac{y \sp 3}{3}} \  {x \sp 3}}+
{{\frac{2 \  {y \sp 5}}{15}} \  {x \sp 5}}+
{{\frac{{17} \  {y \sp 7}}{315}} \  {x \sp 7}}+
{{\frac{{62} \  {y \sp 9}}{2835}} \  {x \sp 9}}+
{O \left({{x \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)}

or as a Taylor series in $y$.

\spadcommand{taylor(tan(x*y),y = 0)}
$$
{x \  y}+
{{\frac{x \sp 3}{3}} \  {y \sp 3}}+
{{\frac{2 \  {x \sp 5}}{15}} \  {y \sp 5}}+
{{\frac{{17} \  {x \sp 7}}{315}} \  {y \sp 7}}+
{{\frac{{62} \  {x \sp 9}}{2835}} \  {y \sp 9}}+
{O \left({{y \sp {11}}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,y,0)}

A more interesting function is 
$$\frac{\displaystyle t e^{x t}}{\displaystyle e^t - 1}$$ 
When we expand this function as a Taylor
series in $t$ the $n$-th order coefficient is the $n$-th Bernoulli
\index{Bernoulli!polynomial} polynomial \index{polynomial!Bernoulli}
divided by $n!$.

\spadcommand{bern := taylor(t*exp(x*t)/(exp(t) - 1),t = 0) }
$$
\begin{array}{@{}l}
\displaystyle
1+
{{\frac{{2 \  x} -1}{2}} \  t}+
{{\frac{{6 \  {x \sp 2}} -{6 \  x}+1}{12}} \  {t \sp 2}}+
{{\frac{{2 \  {x \sp 3}} -{3 \  {x \sp 2}}+x}{12}} \  {t \sp 3}}+
\\
\\
\displaystyle
{{\frac{{{30} \  {x \sp 4}} -{{60} \  {x \sp 3}}+{{30} \  {x \sp 2}} -1} 
{720}} \  {t \sp 4}}+
{{\frac{{6 \  {x \sp 5}} -{{15} \  {x \sp 4}}+{{10} \  {x \sp 
3}} -x}{720}} \  {t \sp 5}}+
\\
\\
\displaystyle
{{\frac{{{42} \  {x \sp 6}} -{{126} \  {x \sp 5}}+{{105} \  {x \sp 4}} -{{21} 
\  {x \sp 2}}+1}{30240}} \  {t \sp 6}}+
{{\frac{{6 \  {x \sp 7}} -{{21} \  {x \sp 6}}+{{21} \  {x \sp 5}} -{7 \  {x 
\sp 3}}+x}{30240}} \  {t \sp 7}}+
\\
\\
\displaystyle
{{\frac{{{30} \  {x \sp 8}} -{{120} \  {x \sp 7}}+{{140} \  {x \sp 6}} -
{{70} \  {x \sp 4}}+{{20} \  {x \sp 2}} -1}{1209600}} \  {t \sp 8}}+
\\
\\
\displaystyle
{{\frac{{{10} \  {x \sp 9}} -{{45} \  {x \sp 8}}+{{60} \  {x \sp 7}} -
{{42} \  {x \sp 5}}+{{20} \  {x \sp 3}} -{3 \  x}} 
{3628800}} \  {t \sp 9}}+
\\
\\
\displaystyle
{{\frac{{{66} \  {x \sp {10}}} -{{330} \  {x \sp 9}}+{{495} \  {x \sp 8}} -
{{462} \  {x \sp 6}}+{{330} \  {x \sp 4}} -{{99} \  {x \sp 2}}+5} 
{239500800}} \  {t \sp {10}}}+
{O \left({{t \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,t,0)}

Therefore, this and the next expression produce the same result.

\spadcommand{factorial(6) * coefficient(bern,6) }
$$
\frac{{{42} \  {x \sp 6}} -
{{126} \  {x \sp 5}}+
{{105} \  {x \sp 4}} -
{{21} \  {x \sp 2}}+1}
{42} 
$$
\returnType{Type: Expression Integer}

\spadcommand{bernoulliB(6,x)}
$$
{x \sp 6} -
{3 \  {x \sp 5}}+
{{\frac{5}{2}} \  {x \sp 4}} -
{{\frac{1}{2}} \  {x \sp 2}}+
{\frac{1}{42}} 
$$
\returnType{Type: Polynomial Fraction Integer}

Technically, a series with terms of negative degree is not considered
to be a Taylor series, but, rather, a \index{series!Laurent} 
{\it Laurent series}.  \index{Laurent series} If you try to compute a
Taylor series expansion of $\frac{x}{\log x}$ at $x = 1$ via
$taylor(x/log(x),x = 1)$ you get an error message.  The reason is that
the function has a {\it pole} at $x = 1$, meaning that its series
expansion about this point has terms of negative degree.  A series
with finitely many terms of negative degree is called a Laurent
series.

%Original Page 263

You get the desired series expansion by issuing this.

\spadcommand{laurent(x/log(x),x = 1)}
$$
\begin{array}{@{}l}
\displaystyle
{{\left( x -1 \right)}\sp {\left( -1\right)}}+
{\frac{3}{2}}+
{{\frac{5}{12}} \  {\left( x -1 \right)}}
-{{\frac{1}{24}} \  {{\left( x -1 \right)}\sp 2}}+
{{\frac{11}{720}} \  {{\left( x -1 \right)}\sp 3}} -
{{\frac{11}{1440}} \  {{\left( x -1 \right)}\sp 4}}+
\\
\\
\displaystyle
{{\frac{271}{60480}} \  {{\left( x -1 \right)}\sp 5}} -
{{\frac{13}{4480}} \  {{\left( x -1 \right)}\sp 6}}+
{{\frac{7297}{3628800}} \  {{\left( x -1 \right)}\sp 7}} -
{{\frac{425}{290304}} \  {{\left( x -1 \right)}\sp 8}}+
\\
\\
\displaystyle
{{\frac{530113}{479001600}} \  {{\left( x -1 \right)}\sp 9}}+
{O \left({{{\left( x -1 \right)}\sp {10}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateLaurentSeries(Expression Integer,x,1)}

Similarly, a series with terms of fractional degree is neither a
Taylor series nor a Laurent series.  Such a series is called a
\index{series!Puiseux} {\it Puiseux series}.  \index{Puiseux series}
The expression $laurent(sqrt(sec(x)),x = 3 * \%pi/2)$ results in an
error message because the series expansion about this point has terms
of fractional degree.

However, this command produces what you want.

\spadcommand{puiseux(sqrt(sec(x)),x = 3 * \%pi/2)}
$$
{{\left( x -{\frac{3 \  \pi}{2}} \right)}\sp {\left( -{\frac{1}{2}} \right)}}+
{{\frac{1}{12}} \  {{\left( x -{\frac{3 \  \pi}{2}} \right)}\sp 
{\frac{3}{2}}}}+
{{\frac{1}{160}} \  {{\left( x -{\frac{3 \  \pi}{2}} \right)}\sp 
{\frac{7}{2}}}}+
{O \left({{{\left( x -{\frac{3 \  \pi}{2}} \right)}\sp 5}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,(3*pi)/2)}

Finally, consider the case of functions that do not have Puiseux
expansions about certain points.  An example of this is $x^x$ about $x
= 0$.  $puiseux(x**x,x=0)$ produces an error message because of the
type of singularity of the function at $x = 0$.

The general function {\bf series} can be used in this case.
Notice that the series returned is not, strictly speaking, a power series
because of the $log(x)$ in the expansion.

\spadcommand{series(x**x,x=0)}
$$
\begin{array}{@{}l}
\displaystyle
1+
{{\log \left({x} \right)}\  x}+
{{\frac{{\log \left({x} \right)}\sp 2}{2}} \  {x \sp 2}}+
{{\frac{{\log \left({x} \right)}\sp 3}{6}} \  {x \sp 3}}+
{{\frac{{\log \left({x} \right)}\sp 4}{24}} \  {x \sp 4}}+
{{\frac{{\log \left({x} \right)}\sp 5}{120}} \  {x \sp 5}}+
{{\frac{{\log \left({x} \right)}\sp 6}{720}} \  {x \sp 6}}+
\\
\\
\displaystyle
{{\frac{{\log \left({x} \right)}\sp 7}{5040}} \  {x \sp 7}}+
{{\frac{{\log \left({x} \right)}\sp 8}{40320}} \  {x \sp 8}}+
{{\frac{{\log \left({x} \right)}\sp 9}{362880}} \  {x \sp 9}}+
{{\frac{{\log \left({x} \right)}\sp {10}}{3628800}} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: GeneralUnivariatePowerSeries(Expression Integer,x,0)}

\boxer{4.6in}{
The operation {\bf series} returns the most general type of
infinite series.
The user who is not interested in distinguishing
between various types of infinite series may wish to use this operation
exclusively.\\
}

\subsection{Power Series from Formulas}
\label{ugxProblemSeriesFormula}

The {\tt GenerateUnivariatePowerSeries} package enables you to
\index{series!giving formula for coefficients} create power series
from explicit formulas for their $n$-th coefficients.  In what
follows, we construct series expansions for certain transcendental
functions by giving formulas for their coefficients.  You can also
compute such series expansions directly simply by specifying the
function and the point about which the series is to be expanded.
\index{GenerateUnivariatePowerSeries} See
\sectionref{ugxProblemSeriesConversions} for more information.

%Original Page 264

Consider the Taylor expansion of $e^x$ \index{series!Taylor}
about $x = 0$:

$$
\begin{array}{ccl}
e^x &=& \displaystyle 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \\ \\
    &=& \displaystyle\sum_{n=0}^\infty \frac{x^n}{n!}
\end{array}
$$

The $n$-th Taylor coefficient is $1/n!$.

This is how you create this series in Axiom.

\spadcommand{series(n +-> 1/factorial(n),x = 0)}
$$
\begin{array}{@{}l}
\displaystyle
1+x+
{{\frac{1}{2}} \  {x \sp 2}}+
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{24}} \  {x \sp 4}}+
{{\frac{1}{120}} \  {x \sp 5}}+
{{\frac{1}{720}} \  {x \sp 6}}+
{{\frac{1}{5040}} \  {x \sp 7}}+
{{\frac{1}{40320}} \  {x \sp 8}}+
\\
\\
\displaystyle
{{\frac{1}{362880}} \  {x \sp 9}}+
{{\frac{1}{3628800}} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

The first argument specifies a formula for the $n$-th coefficient by
giving a function that maps $n$ to $1/n!$.  The second argument
specifies that the series is to be expanded in powers of $(x - 0)$,
that is, in powers of $x$.  Since we did not specify an initial
degree, the first term in the series was the term of degree 0 (the
constant term).  Note that the formula was given as an anonymous
function.  These are discussed in \sectionref{ugUserAnon}.

Consider the Taylor expansion of $log x$ about $x = 1$:

$$
\begin{array}{ccl}
\log(x) &=& \displaystyle (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3} - \cdots \\ \\
        &=& \displaystyle\sum_{n = 1}^\infty (-1)^{n-1} \frac{(x - 1)^n}{n}
\end{array}$$

If you were to evaluate the expression 
$series(n +-> (-1)**(n-1) / n, x = 1)$ 
you would get an error message because Axiom would try to
calculate a term of degree $0$ and therefore divide by $0.$

Instead, evaluate this.
The third argument, $1..$, indicates that only terms of degree
$n = 1, ...$ are to be computed.

\spadcommand{series(n +-> (-1)**(n-1)/n,x = 1,1..)}
$$
\begin{array}{@{}l}
\displaystyle
{\left( x -1 \right)}
-{{\frac{1}{2}} \  {{\left( x -1 \right)}\sp 2}}+
{{\frac{1}{3}} \  {{\left( x -1 \right)}\sp 3}} -
{{\frac{1}{4}} \  {{\left( x -1 \right)}\sp 4}}+
{{\frac{1}{5}} \  {{\left( x -1 \right)}\sp 5}} -
{{\frac{1}{6}} \  {{\left( x -1 \right)}\sp 6}}+
\\
\\
\displaystyle
{{\frac{1}{7}} \  {{\left( x -1 \right)}\sp 7}} -
{{\frac{1}{8}} \  {{\left( x -1 \right)}\sp 8}}+
{{\frac{1}{9}} \  {{\left( x -1 \right)}\sp 9}} -
{{\frac{1}{10}} \  {{\left( x -1 \right)}\sp {10}}}+
{{\frac{1}{11}} \  {{\left( x -1 \right)}\sp {11}}}+
\\
\\
\displaystyle
{O \left({{{\left( x -1 \right)}\sp {12}}} \right)}
\end{array}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,1)}

%Original Page 265

Next consider the Taylor expansion of an odd function, say, $sin(x)$:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

Here every other coefficient is zero and we would like to give an
explicit formula only for the odd Taylor coefficients.

This is one way to do it.  The third argument, $1..$, specifies that
the first term to be computed is the term of degree 1.  The fourth
argument, $2$, specifies that we increment by $2$ to find the degrees
of subsequent terms, that is, the next term is of degree $1 + 2$, the
next of degree $1 + 2 + 2$, etc.

\spadcommand{series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)}
$$
x -
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{120}} \  {x \sp 5}} -
{{\frac{1}{5040}} \  {x \sp 7}}+
{{\frac{1}{362880}} \  {x \sp 9}} -
{{\frac{1}{39916800}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

The initial degree and the increment do not have to be integers.
For example, this expression produces a series expansion of
$\sin(x^{\frac{1}{3}})$.

\spadcommand{series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)}
$$
{x \sp {\frac{1}{3}}} -
{{\frac{1}{6}} \  x}+
{{\frac{1}{120}} \  {x \sp {\frac{5}{3}}}} -
{{\frac{1}{5040}} \  {x \sp {\frac{7}{3}}}}+
{{\frac{1}{362880}} \  {x \sp 3}} -
{{\frac{1}{39916800}} \  {x \sp {\frac{11}{3}}}}+
{O \left({{x \sp 4}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

While the increment must be positive, the initial degree may be
negative.  This yields the Laurent expansion of $csc(x)$ at $x = 0$.
(bernoulli(numer(n+1)) is necessary because bernoulli takes integer
arguments.)

\spadcommand{cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..,2) }
$$
{x \sp {\left( -1 \right)}}+
{{\frac{1}{6}} \  x}+
{{\frac{7}{360}} \  {x \sp 3}}+
{{\frac{31}{15120}} \  {x \sp 5}}+
{{\frac{127}{604800}} \  {x \sp 7}}+
{{\frac{73}{3421440}} \  {x \sp 9}}+
{O \left({{x \sp {10}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

Of course, the reciprocal of this power series is the Taylor expansion
of $sin(x)$.

\spadcommand{1/cscx }
$$
x -
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{120}} \  {x \sp 5}} -
{{\frac{1}{5040}} \  {x \sp 7}}+
{{\frac{1}{362880}} \  {x \sp 9}} -
{{\frac{1}{39916800}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

As a final example,here is the Taylor expansion of $asin(x)$ about $x = 0$.

\spadcommand{asinx := series(n +-> binomial(n-1,(n-1)/2)/(n*2**(n-1)),x=0,1..,2) }
$$
x+
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{3}{40}} \  {x \sp 5}}+
{{\frac{5}{112}} \  {x \sp 7}}+
{{\frac{35}{1152}} \  {x \sp 9}}+
{{\frac{63}{2816}} \  {x \sp {11}}}+
{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

When we compute the $sin$ of this series, we get $x$
(in the sense that all higher terms computed so far are zero).

\spadcommand{sin(asinx) }
$$
x+{O \left({{x \sp {12}}} \right)}
$$
\returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)}

\boxer{4.6in}{
Axiom isn't sufficiently ``symbolic'' in the sense we might wish. It
is an open problem to decide that ``x'' is the only surviving
term. Two attacks on the problem might be:

(1) Notice that all of the higher terms are identically zero but
Axiom can't decide that from the information it knows. Presumably
we could attack this problem by looking at the sin function as
a taylor series around x=0 and seeing the term cancellation occur.
This uses a term-difference mechanism.

(2) Notice that there is no way to decide that the stream for asinx
is actually the definition of asin(x). But we could recognize that
the stream for asin(x) has a generator term and so will a taylor
series expansion of sin(x). From these two generators it may be
possible in certain cases to decide that the application of one
generator to the other will yield only ``x''. This trick involves
finding the correct inverse for the stream functions. If we can
find an inverse for the ``remaining tail'' of the stream we could
conclude cancellation and thus turn an infinite stream into a
finite object.

In general this is the zero-equivalence problem and is undecidable.\\
}

As we discussed in \sectionref{ugxProblemSeriesConversions},
you can also use
the operations {\bf taylor}, {\bf laurent} and {\bf puiseux} instead
of {\bf series} if you know ahead of time what kind of exponents a
series has.  You can't go wrong using {\bf series}, though.

%Original Page 266

\subsection{Substituting Numerical Values in Power Series}
\label{ugxProblemSeriesSubstitute}

Use \spadfunFrom{eval}{UnivariatePowerSeriesCategory}
\index{approximation} to substitute a numerical value for a variable
in \index{series!numerical approximation} a power series.  For
example, here's a way to obtain numerical approximations of $\%e$ from
the Taylor series expansion of $exp(x)$.

First you create the desired Taylor expansion.

\spadcommand{f := taylor(exp(x)) }
$$
\begin{array}{@{}l}
\displaystyle
1+x+
{{\frac{1}{2}} \  {x \sp 2}}+
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{1}{24}} \  {x \sp 4}}+
{{\frac{1}{120}} \  {x \sp 5}}+
{{\frac{1}{720}} \  {x \sp 6}}+
{{\frac{1}{5040}} \  {x \sp 7}}+
\\
\\
\displaystyle
{{\frac{1}{40320}} \  {x \sp 8}}+
{{\frac{1}{362880}} \  {x \sp 9}}+
{{\frac{1}{3628800}} \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)}


Then you evaluate the series at the value $1.0$.
The result is a sequence of the partial sums.

\spadcommand{eval(f,1.0)}
$$
\begin{array}{@{}l}
\left[
{1.0}, 
{2.0}, 
{2.5}, 
{2.6666666666\ 666666667}, 
{2.7083333333\ 333333333},
\right.
\\
\\
\displaystyle
{2.7166666666\ 666666667},
{2.7180555555\ 555555556},
{2.7182539682\ 53968254},
\\
\\
\displaystyle
\left.
{2.7182787698\ 412698413},
{2.7182815255\ 731922399},
\ldots 
\right]
\end{array}
$$
\returnType{Type: Stream Expression Float}

\subsection{Example: Bernoulli Polynomials and Sums of Powers}
\label{ugxProblemSeriesBernoulli}

Axiom provides operations for computing definite and
\index{summation!definite} indefinite sums.
\index{summation!indefinite}

You can compute the sum of the first ten fourth powers by evaluating
this.  This creates a list whose entries are $m^4$ as $m$ ranges from
1 to 10, and then computes the sum of the entries of that list.

\spadcommand{reduce(+,[m**4 for m in 1..10])}
$$
25333 
$$
\returnType{Type: PositiveInteger}

You can also compute a formula for the sum of the first $k$ fourth
powers, where $k$ is an unspecified positive integer.

\spadcommand{sum4 := sum(m**4, m = 1..k) }
$$
\frac{{6 \  {k \sp 5}}+{{15} \  {k \sp 4}}+{{10} \  {k \sp 3}} -k}{30} 
$$
\returnType{Type: Fraction Polynomial Integer}

This formula is valid for any positive integer $k$.  For instance, if
we replace $k$ by 10, \index{summation!definite} we obtain the number
we computed earlier.

\spadcommand{eval(sum4, k = 10) }
$$
25333 
$$
\returnType{Type: Fraction Polynomial Integer}

You can compute a formula for the sum of the first $k$ $n$-th powers
in a similar fashion.  Just replace the $4$ in the definition of 
{\bf sum4} by any expression not involving $k$.  Axiom computes these
formulas using Bernoulli polynomials; \index{Bernoulli!polynomial} we
\index{polynomial!Bernoulli} use the rest of this section to describe
this method.

%Original Page 267

First consider this function of $t$ and $x$.

\spadcommand{f := t*exp(x*t) / (exp(t) - 1) }
$$
\frac{t \  {e \sp {\left( t \  x \right)}}}{{e \sp t} -1} 
$$
\returnType{Type: Expression Integer}

Since the expressions involved get quite large, we tell
Axiom to show us only terms of degree up to $5.$

\spadcommand{)set streams calculate 5 }

\index{set streams calculate}

If we look at the Taylor expansion of $f(x, t)$ about $t = 0,$
we see that the coefficients of the powers of $t$ are polynomials
in $x$.

\spadcommand{ff := taylor(f,t = 0)  }
$$
\begin{array}{@{}l}
\displaystyle
1+
{{\frac{{2 \  x} -1}{2}} \  t}+
{{\frac{{6 \  {x \sp 2}} -{6 \  x}+1}{12}} \  {t \sp 2}}+
{{\frac{{2 \  {x \sp 3}} -{3 \  {x \sp 2}}+x}{12}} \  {t \sp 3}}+
\\
\\
\displaystyle
{{\frac{{{30} \  {x \sp 4}} -{{60} \  {x \sp 3}}+{{30} \  {x \sp 2}} -1}
{720}} \  {t \sp 4}}+
{{\frac{{6 \  {x \sp 5}} -{{15} \  {x \sp 4}}+{{10} \  {x \sp 
3}} -x}{720}} \  {t \sp 5}}+
{O \left({{t \sp 6}} \right)}
\end{array}
$$

                         Type: UnivariateTaylorSeries(Expression Integer,t,0)


In fact, the $n$-th coefficient in this series is essentially the
$n$-th Bernoulli polynomial: the $n$-th coefficient of the series is
${\frac{1}{n!}} B_n(x)$, where $B_n(x)$ is the $n$-th Bernoulli
polynomial.  Thus, to obtain the $n$-th Bernoulli polynomial, we
multiply the $n$-th coefficient of the series $ff$ by $n!$.

For example, the sixth Bernoulli polynomial is this.

\spadcommand{factorial(6) * coefficient(ff,6) }
$$
\frac{{{42} \  {x \sp 6}} -{{126} \  {x \sp 5}}+{{105} \  {x \sp 4}} -
{{21} \  {x \sp 2}}+1}{42} 
$$
\returnType{Type: Expression Integer}

We derive some properties of the function $f(x,t)$.
First we compute $f(x + 1,t) - f(x,t)$.

\spadcommand{g := eval(f, x = x + 1) - f  }
$$
\frac{{t \  {e \sp {\left( {t \  x}+t \right)}}}
-{t \  {e \sp {\left( t \  x \right)}}}}
{{e \sp t} -1} 
$$
\returnType{Type: Expression Integer}

If we normalize $g$, we see that it has a particularly simple form.

\spadcommand{normalize(g) }
$$
t \  {e \sp {\left( t \  x \right)}}
$$
\returnType{Type: Expression Integer}

From this it follows that the $n$-th coefficient in the Taylor
expansion of $g(x,t)$ at $t = 0$ is $${\frac{1}{(n-1)!}}x^{n-1}$$.

%Original Page 268

If you want to check this, evaluate the next expression.

\spadcommand{taylor(g,t = 0) }
$$
t+
{x \  {t \sp 2}}+
{{\frac{x \sp 2}{2}} \  {t \sp 3}}+
{{\frac{x \sp 3}{6}} \  {t \sp 4}}+
{{\frac{x \sp 4}{24}} \  {t \sp 5}}+
{O \left({{t \sp 6}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,t,0)}

However, since 
$$g(x,t) = f(x+1,t)-f(x,t)$$
it follows that the $n$-th coefficient is 
$${\frac{1}{n!}}(B_n(x+1)-B_n(x))$$ Equating
coefficients, we see that 
$${\frac{1}{(n-1)!}}x^{n-1} = {\frac{1}{n!}}(B_n(x + 1) - B_n(x))$$ 
and, therefore, 
$$x^{n-1} = {\frac{1}{n}}(B_n(x + 1) - B_n(x))$$

Let's apply this formula repeatedly, letting $x$ vary between two
integers $a$ and $b$, with $a < b$:

$$
\begin{array}{lcl}
  a^{n-1}       & = & {\frac{1}{n}}   (B_n(a + 1) - B_n(a))       \\
  (a + 1)^{n-1} & = & {\frac{1}{n}}   (B_n(a + 2) - B_n(a + 1))   \\
  (a + 2)^{n-1} & = & {\frac{1}{n}}   (B_n(a + 3) - B_n(a + 2))   \\
  & \vdots &                                                    \\
  (b - 1)^{n-1} & = & {\frac{1}{n}}   (B_n(b) - B_n(b - 1))       \\
  b^{n-1}       & = & {\frac{1}{n}}   (B_n(b + 1) - B_n(b))
\end{array}
$$

When we add these equations we find that the sum of the left-hand
sides is 
$$\sum_{m=a}^{b} m^{n-1},$$ 
the sum of the
$$(n-1)^{\hbox{\small\rm st}}$$ 
powers from $a$ to $b$.  The sum of the right-hand sides is a 
``telescoping series.''  After cancellation, the sum is simply 
$${\frac{1}{n}}(B_n(b + 1) - B_n(a))$$

Replacing $n$ by $n + 1$, we have shown that
$$
\sum_{m = a}^{b} m^n = {\frac{1}{\displaystyle n + 1}} 
(B_{n+1}(b + 1) - B_{n+1}(a))
$$

Let's use this to obtain the formula for the sum of fourth powers.

First we obtain the Bernoulli polynomial $B_5$.

\spadcommand{B5 := factorial(5) * coefficient(ff,5)  }
$$
\frac{{6 \  {x \sp 5}} -{{15} \  {x \sp 4}}+{{10} \  {x \sp 3}} -x}{6} 
$$
\returnType{Type: Expression Integer}

To find the sum of the first $k$ 4th powers,
we multiply $1/5$ by $B_5(k+1) - B_5(1)$.

\spadcommand{1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) }
$$
\frac{{6 \  {k \sp 5}}+{{15} \  {k \sp 4}}+{{10} \  {k \sp 3}} -k}{30} 
$$
\returnType{Type: Expression Integer}

This is the same formula that we obtained via $sum(m**4, m = 1..k)$.

\spadcommand{sum4 }
$$
\frac{{6 \  {k \sp 5}}+{{15} \  {k \sp 4}}+{{10} \  {k \sp 3}} -k}{30} 
$$
\returnType{Type: Fraction Polynomial Integer}

%Original Page 269

At this point you may want to do the same computation, but with an
exponent other than $4.$ For example, you might try to find a formula
for the sum of the first $k$ 20th powers.

\section{Solution of Differential Equations}
\label{ugProblemDEQ}

In this section we discuss Axiom's facilities for
\index{equation!differential!solving} solving \index{differential
equation} differential equations in closed-form and in series.

Axiom provides facilities for closed-form solution of
\index{equation!differential!solving in closed-form} single
differential equations of the following kinds:
\begin{itemize}
\item linear ordinary differential equations, and
\item non-linear first order ordinary differential equations
when integrating factors can be found just by integration.
\end{itemize}

For a discussion of the solution of systems of linear and polynomial
equations, see \sectionref{ugProblemLinPolEqn}.

\subsection{Closed-Form Solutions of Linear Differential Equations}
\label{ugxProblemLDEQClosed}

A {\it differential equation} is an equation involving an unknown 
{\it function} and one or more of its derivatives.  
\index{differential equation} The equation is called {\it ordinary} 
if derivatives with respect to \index{equation!differential} only 
one dependent variable appear in the equation (it is called 
{\it partial} otherwise).  The package {\tt ElementaryFunctionODESolver} 
provides the top-level operation {\bf solve} for finding closed-form 
solutions of ordinary differential equations.  
\index{ElementaryFunctionODESolver}

To solve a differential equation, you must first create an operator
for \index{operator} the unknown function.

We let $y$ be the unknown function in terms of $x$.

\spadcommand{y := operator 'y }
$$
y 
$$
\returnType{Type: BasicOperator}

You then type the equation using {\tt D} to create the
derivatives of the unknown function $y(x)$ where $x$ is any
symbol you choose (the so-called {\it dependent variable}).

This is how you enter
the equation $y'' + y' + y = 0$.

\spadcommand{deq := D(y x, x, 2) + D(y x, x) + y x = 0}
$$
{{{y \sb {{\ }} \sp {,,}} \left({x} \right)}+
{{y \sb {{\ }} \sp {,}} \left({x} \right)}+
{y \left({x} \right)}}=0
$$
\returnType{Type: Equation Expression Integer}

The simplest way to invoke the {\bf solve} command is with three
arguments.
\begin{itemize}
\item the differential equation,
\item the operator representing the unknown function,
\item the dependent variable.
\end{itemize}

%Original Page 270

So, to solve the above equation, we enter this.

\spadcommand{solve(deq, y, x) }
$$
\left[
{particular=0},  {basis={\left[ 
{{\cos \left({{\frac{x \  {\sqrt {3}}}{2}}} \right)}
\  {e \sp {\left( -{\frac{x}{2}} \right)}}},
{{e \sp {\left( -{\frac{x}{2}} \right)}}
\  {\sin \left({{\frac{x \  {\sqrt {3}}}{2}}} \right)}}\right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

Since linear ordinary differential equations have infinitely many
solutions, {\bf solve} returns a {\it particular solution} $f_p$ and a
basis $f_1,\dots,f_n$ for the solutions of the corresponding
homogenuous equation.  Any expression of the form 
$$f_p + c_1 f_1 + \dots c_n f_n$$ 
where the $c_i$ do not involve the dependent variable
is also a solution.  This is similar to what you get when you solve
systems of linear algebraic equations.

A way to select a unique solution is to specify {\it initial
conditions}: choose a value $a$ for the dependent variable and specify
the values of the unknown function and its derivatives at $a$.  If the
number of initial conditions is equal to the order of the equation,
then the solution is unique (if it exists in closed form!) and {\bf
solve} tries to find it.  To specify initial conditions to {\bf
solve}, use an {\tt Equation} of the form $x = a$ for the third
parameter instead of the dependent variable, and add a fourth
parameter consisting of the list of values $y(a), y'(a), ...$.

To find the solution of $y'' + y = 0$ satisfying $y(0) = y'(0) = 1$,
do this.

\spadcommand{deq := D(y x, x, 2) + y x }
$$
{{y \sb {{\ }} \sp {,,}} \left({x} \right)}+{y\left({x} \right)}
$$
\returnType{Type: Expression Integer}

You can omit the $= 0$ when you enter the equation to be solved.

\spadcommand{solve(deq, y, x = 0, [1, 1]) }
$$
{\sin \left({x} \right)}+{\cos\left({x} \right)}
$$
\returnType{Type: Union(Expression Integer,...)}

Axiom is not limited to linear differential equations with constant
coefficients.  It can also find solutions when the coefficients are
rational or algebraic functions of the dependent variable.
Furthermore, Axiom is not limited by the order of the equation.

Axiom can solve the following third order equations with
polynomial coefficients.

\spadcommand{deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y x = 2 * x**4 }
$$
{{{x \sp 3} \  {{y \sb {{\ }} \sp {,,,}} \left({x} \right)}}+
{{x\sp 2} \  {{y \sb {{\ }} \sp {,,}} \left({x} \right)}}-
{2 \  x \  {{y \sb {{\ }} \sp {,}} \left({x} \right)}}+
{2\  {y \left({x} \right)}}}=
{2\  {x \sp 4}} 
$$
\returnType{Type: Equation Expression Integer}

%Original Page 271

\spadcommand{solve(deq, y, x) }
$$
\begin{array}{@{}l}
\displaystyle
\left[
{particular={\frac{{x \sp 5} -{{10} \  {x \sp 3}}+{{20} \  {x \sp 2}}+4} 
{{15} \  x}}}, 
\right.
\\
\\
\displaystyle
\left.
{basis={\left[ 
{\frac{{2 \  {x \sp 3}} -{3 \  {x \sp 2}}+1}{x}},  
{\frac{{x \sp 3} -1}{x}},  
{\frac{{x \sp 3} -{3 \  {x \sp 2}} -1}{x}} 
\right]}}
\right]
\end{array}
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

Here we are solving a homogeneous equation.

\spadcommand{deq := (x**9+x**3) * D(y x, x, 3) + 18 * x**8 * D(y x, x, 2) - 90 * x * D(y x, x) - 30 * (11 * x**6 - 3) * y x }
$$
{{\left( {x \sp 9}+{x \sp 3} \right)}\  {{y \sb {{\ }} \sp {,,,}} 
\left({x} \right)}}+
{{18}\  {x \sp 8} \  {{y \sb {{\ }} \sp {,,}} \left({x} \right)}}-
{{90} \  x \  {{y \sb {{\ }} \sp {,}} \left({x} \right)}}+
{{\left(-{{330} \  {x \sp 6}}+{90} \right)}\  {y \left({x} \right)}}
$$
\returnType{Type: Expression Integer}

\spadcommand{solve(deq, y, x) }
$$
\left[
{particular=0}, 
{basis={\left[ 
{\frac{x}{{x \sp 6}+1}}, 
{\frac{x \  {e \sp {\left( -{{\sqrt {{91}}} \  
{\log \left({x} \right)}}\right)}}}{{x \sp 6}+1}}, 
{\frac{x \  {e \sp {\left( {\sqrt {{91}}} \  {\log \left({x} \right)}\right)}}}
{{x \sp 6}+1}} 
\right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

On the other hand, and in contrast with the operation {\bf integrate},
it can happen that Axiom finds no solution and that some closed-form
solution still exists.  While it is mathematically complicated to
describe exactly when the solutions are guaranteed to be found, the
following statements are correct and form good guidelines for linear
ordinary differential equations:
\begin{itemize}
\item If the coefficients are constants, Axiom finds a complete basis
of solutions (i,e. all solutions).
\item If the coefficients are rational functions in the dependent variable,
Axiom at least finds all solutions that do not involve algebraic
functions.
\end{itemize}

Note that this last statement does not mean that Axiom does not find
the solutions that are algebraic functions.  It means that it is not
guaranteed that the algebraic function solutions will be found.

This is an example where all the algebraic solutions are found.

\spadcommand{deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0 }
$$
{{{\left( {x \sp 2}+1 \right)}\  {{y \sb {{\ }} \sp {,,}} \left({x} \right)}}+
{3\  x \  {{y \sb {{\ }} \sp {,}} \left({x} \right)}}+
{y\left({x} \right)}}=0
$$
\returnType{Type: Equation Expression Integer}

%Original Page 272

\spadcommand{solve(deq, y, x) }
$$
\left[
{particular=0}, 
{basis={\left[ {\frac{1}{\sqrt {{{x \sp 2}+1}}}}, 
{\frac{\log \left({{{\sqrt {{{x \sp 2}+1}}} -x}} \right)}
{\sqrt {{{x \sp 2}+1}}}} \right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

\subsection{Closed-Form Solutions of Non-Linear Differential Equations}
\label{ugxProblemNLDEQClosed}

This is an example that shows how to solve a non-linear first order
ordinary differential equation manually when an integrating factor can
be found just by integration.  At the end, we show you how to solve it
directly.

Let's solve the differential equation $y' = y / (x + y log y)$.

Using the notation $m(x, y) + n(x, y) y' = 0$, we have $m = -y$ and 
$n = x + y log y$.

\spadcommand{m := -y }
$$
-y 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{n := x + y * log y }
$$
{y \  {\log \left({y} \right)}}+x
$$
\returnType{Type: Expression Integer}

We first check for exactness, that is, does $dm/dy = dn/dx$?

\spadcommand{D(m, y) - D(n, x) }
$$
-2 
$$
\returnType{Type: Expression Integer}

This is not zero, so the equation is not exact.  Therefore we must
look for an integrating factor: a function $mu(x,y)$ such that 
$d(mu m)/dy = d(mu n)/dx$.  Normally, we first search for $mu(x,y)$
depending only on $x$ or only on $y$.

Let's search for such a $mu(x)$ first.

\spadcommand{mu := operator 'mu }
$$
mu 
$$
\returnType{Type: BasicOperator}

\spadcommand{a := D(mu(x) * m, y) - D(mu(x) * n, x) }
$$
{{\left( -{y \  {\log \left({y} \right)}}-x \right)}
\  {{mu \sb {{\ }} \sp {,}} \left({x} \right)}}-
{2 \  {mu \left({x} \right)}}
$$
\returnType{Type: Expression Integer}

%Original Page 273

If the above is zero for a function $mu$ that does {\it not} depend on
$y$, then $mu(x)$ is an integrating factor.

\spadcommand{solve(a = 0, mu, x) }
$$
\left[
{particular=0}, 
{basis={\left[ 
{\frac{1} 
{{{y \sp 2} \  {{\log \left({y} \right)}\sp 2}}+
{2 \  x \  y \  {\log \left({y} \right)}}+
{x\sp 2}}} \right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

The solution depends on $y$, so there is no integrating factor that
depends on $x$ only.

Let's look for one that depends on $y$ only.

\spadcommand{b := D(mu(y) * m, y) - D(mu(y) * n, x) }
$$
-{y \  {{mu \sb {{\ }} \sp {,}} \left({y} \right)}}-
{2 \  {mu \left({y} \right)}}
$$
\returnType{Type: Expression Integer}

\spadcommand{sb := solve(b = 0, mu, y) }
$$
\left[
{particular=0}, 
{basis={\left[ {\frac{1}{y \sp 2}} \right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)}

\noindent
We've found one!

The above $mu(y)$ is an integrating factor.  We must multiply our
initial equation (that is, $m$ and $n$) by the integrating factor.

\spadcommand{intFactor := sb.basis.1 }
$$
\frac{1}{y \sp 2} 
$$
\returnType{Type: Expression Integer}

\spadcommand{m := intFactor * m }
$$
-{\frac{1}{y}} 
$$
\returnType{Type: Expression Integer}

\spadcommand{n := intFactor * n }
$$
\frac{{y \  {\log \left({y} \right)}}+x}{y \sp 2} 
$$
\returnType{Type: Expression Integer}

Let's check for exactness.

\spadcommand{D(m, y) - D(n, x) }
$$
0 
$$
\returnType{Type: Expression Integer}

We must solve the exact equation, that is, find a function $s(x,y)$
such that $ds/dx = m$ and $ds/dy = n$.

%Original Page 274

We start by writing $s(x, y) = h(y) + integrate(m, x)$ where $h(y)$ is
an unknown function of $y$.  This guarantees that $ds/dx = m$.

\spadcommand{h := operator 'h }
$$
h 
$$
\returnType{Type: BasicOperator}

\spadcommand{sol := h y + integrate(m, x) }
$$
\frac{{y \  {h \left({y} \right)}}-x}{y} 
$$
\returnType{Type: Expression Integer}

All we want is to find $h(y)$ such that $ds/dy = n$.

\spadcommand{dsol := D(sol, y) }
$$
\frac{{{y \sp 2} \  {{h \sb {{\ }} \sp {,}} 
\left({y} \right)}}+x}{y \sp 2} 
$$
\returnType{Type: Expression Integer}

\spadcommand{nsol := solve(dsol = n, h, y) }
$$
\left[
{particular={\frac{{\log \left({y} \right)}\sp 2}{2}}}, 
{basis={\left[ 1 \right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,basis: 
List Expression Integer),...)}

The above particular solution is the $h(y)$ we want, so we just replace
$h(y)$ by it in the implicit solution.

\spadcommand{eval(sol, h y = nsol.particular) }
$$
\frac{{y \  {{\log \left({y} \right)}\sp 2}} -{2 \  x}}{2 \  y} 
$$
\returnType{Type: Expression Integer}

A first integral of the initial equation is obtained by setting this
result equal to an arbitrary constant.

Now that we've seen how to solve the equation ``by hand,'' we show you
how to do it with the {\bf solve} operation.

First define $y$ to be an operator.

\spadcommand{y := operator 'y }
$$
y 
$$
\returnType{Type: BasicOperator}

Next we create the differential equation.

\spadcommand{deq := D(y x, x) = y(x) / (x + y(x) * log y x) }
$$
{{y \sb {{\ }} \sp {,}} \left({x} \right)}=
{\frac{y\left({x} \right)} 
{{{y \left({x} \right)}\  {\log \left({{y \left({x} \right)}}\right)}}+x}}
$$
\returnType{Type: Equation Expression Integer}

Finally, we solve it.

\spadcommand{solve(deq, y, x) }
$$
\frac{{{y \left({x} \right)}\  
{{\log \left({{y \left({x} \right)}}\right)}\sp 2}}-
{2 \  x}}{2 \  {y \left({x} \right)}}
$$
\returnType{Type: Union(Expression Integer,...)}

%Original Page 275

\subsection{Power Series Solutions of Differential Equations}
\label{ugxProblemDEQSeries}

The command to solve differential equations in power
\index{equation!differential!solving in power series} series
\index{power series} around \index{series!power} a particular initial
point with specific initial conditions is called {\bf seriesSolve}.
It can take a variety of parameters, so we illustrate its use with
some examples.

Since the coefficients of some solutions are quite large, we reset the
default to compute only seven terms.

\spadcommand{)set streams calculate 7 }

You can solve a single nonlinear equation of any order. For example,
we solve 
$$y''' = sin(y'') * exp(y) + cos(x)$$ subject to 
$$y(0) = 1, y'(0) = 0, y''(0) = 0$$

We first tell Axiom that the symbol $'y$ denotes a new operator.

\spadcommand{y := operator 'y }
$$
y 
$$
\returnType{Type: BasicOperator}

Enter the differential equation using $y$ like any system function.

\spadcommand{eq := D(y(x), x, 3) - sin(D(y(x), x, 2))*exp(y(x)) = cos(x)}
$$
{{{y \sb {{\ }} \sp {,,,}} \left({x} \right)}-
{{e \sp {y \left({x} \right)}}\  
{\sin \left({{{y \sb {{\ }} \sp {,,}} \left({x} \right)}}\right)}}}=
{\cos\left({x} \right)}
$$
\returnType{Type: Equation Expression Integer}

Solve it around $x = 0$ with the initial conditions
$y(0) = 1, y'(0) = y''(0) = 0$.

\spadcommand{seriesSolve(eq, y, x = 0, [1, 0, 0])}
$$
1+
{{\frac{1}{6}} \  {x \sp 3}}+
{{\frac{e}{24}} \  {x \sp 4}}+
{{\frac{{e \sp 2} -1}{120}} \  {x \sp 5}}+
{{\frac{{e \sp 3} -{2 \  e}}{720}} \  {x \sp 6}}+
{{\frac{{e \sp 4} -{8 \  {e \sp 2}}+{4 \  e}+1}{5040}} \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)}

You can also solve a system of nonlinear first order equations.  For
example, we solve a system that has $tan(t)$ and $sec(t)$ as
solutions.

We tell Axiom that $x$ is also an operator.

\spadcommand{x := operator 'x}
$$
x 
$$
\returnType{Type: BasicOperator}

Enter the two equations forming our system.

\spadcommand{eq1 := D(x(t), t) = 1 + x(t)**2}
$$
{{x \sb {{\ }} \sp {,}} \left({t} \right)}=
{{{x\left({t} \right)}\sp 2}+1} 
$$
\returnType{Type: Equation Expression Integer}

\spadcommand{eq2 := D(y(t), t) = x(t) * y(t)}
$$
{{y \sb {{\ }} \sp {,}} \left({t} \right)}=
{{x\left({t} \right)}\  {y \left({t} \right)}}
$$
\returnType{Type: Equation Expression Integer}

%Original Page 276

Solve the system around $t = 0$ with the initial conditions $x(0) = 0$
and $y(0) = 1$.  Notice that since we give the unknowns in the order
$[x, y]$, the answer is a list of two series in the order 
$$[{\rm series\ for\ } x(t), {\rm \ series\ for\ }y(t)]$$

\spadcommand{seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])}
\begin{verbatim}
   Compiling function %BZ with type List UnivariateTaylorSeries(
      Expression Integer,t,0) -> UnivariateTaylorSeries(Expression 
      Integer,t,0) 
   Compiling function %CA with type List UnivariateTaylorSeries(
      Expression Integer,t,0) -> UnivariateTaylorSeries(Expression 
      Integer,t,0) 
\end{verbatim}
$$
\left[
{t+
{{\frac{1}{3}} \  {t \sp 3}}+
{{\frac{2}{15}} \  {t \sp 5}}+
{{\frac{17}{315}} \  {t \sp 7}}+
{O \left({{t \sp 8}} \right)}},
{1+{{\frac{1}{2}} \  {t \sp 2}}+
{{\frac{5}{24}} \  {t \sp 4}}+
{{\frac{61}{720}} \  {t \sp 6}}+
{O \left({{t \sp 8}} \right)}}
\right]
$$
\returnType{Type: List UnivariateTaylorSeries(Expression Integer,t,0)}

\noindent
The order in which we give the equations and the initial conditions
has no effect on the order of the solution.

\section{Finite Fields}
\label{ugProblemFinite}

A {\it finite field} (also called a {\it Galois field}) is a finite
algebraic structure where one can add, multiply and divide under the
same laws (for example, commutativity, associativity or
distributivity) as apply to the rational, real or complex numbers.
Unlike those three fields, for any finite field there exists a
positive prime integer $p$, called the {\bf characteristic}, such that
$p\ x = 0$ for any element $x$ in the finite field.  In fact, the
number of elements in a finite field is a power of the characteristic
and for each prime $p$ and positive integer $n$ there exists exactly
one finite field with $p^n$ elements, up to isomorphism.\footnote{For
more information about the algebraic structure and properties of
finite fields, see, for example, S.  Lang, {\it Algebra}, Second
Edition, New York: Addison-Wesley Publishing Company, Inc., 1984, ISBN
0 201 05487 6; or R.  Lidl, H.  Niederreiter, {\it Finite Fields},
Encyclopedia of Mathematics and Its Applications, Vol.  20, Cambridge:
Cambridge Univ.  Press, 1983, ISBN 0 521 30240 4.}

When $n = 1,$ the field has $p$ elements and is called a {\it prime
field}, discussed in the next section.  There are several ways of
implementing extensions of finite fields, and Axiom provides quite a
bit of freedom to allow you to choose the one that is best for your
application.  Moreover, we provide operations for converting among the
different representations of extensions and different extensions of a
single field.  Finally, note that you usually need to package-call
operations from finite fields if the operations do not take as an
argument an object of the field.  See 
\sectionref{ugTypesPkgCall} for more information on package-calling.

\subsection{Modular Arithmetic and Prime Fields}
\label{ugxProblemFinitePrime}
\index{finite field}
\index{Galois!field}
\index{field!finite!prime}
\index{field!prime}
\index{field!Galois}
\index{prime field}
\index{modular arithmetic}
\index{arithmetic!modular}

Let $n$ be a positive integer.  It is well known that you can get the
same result if you perform addition, subtraction or multiplication of
integers and then take the remainder on dividing by $n$ as if you had
first done such remaindering on the operands, performed the arithmetic
and then (if necessary) done remaindering again.  This allows us to
speak of arithmetic {\it modulo} $n$ or, more simply {\it mod} $n$.

%Original Page 277

In Axiom, you use {\tt IntegerMod} to do such arithmetic.

\spadcommand{(a,b) : IntegerMod 12 }
\returnType{Type: Void}

\spadcommand{(a, b) := (16, 7) }
$$
7 
$$
\returnType{Type: IntegerMod 12}

\spadcommand{[a - b, a * b] }
$$
\left[
9, 4 
\right]
$$
\returnType{Type: List IntegerMod 12}

If $n$ is not prime, there is only a limited notion of reciprocals and
division.

\spadcommand{a / b }
\begin{verbatim}
   There are 12 exposed and 13 unexposed library operations named / 
      having 2 argument(s) but none was determined to be applicable. 
      Use HyperDoc Browse, or issue
                                )display op /
      to learn more about the available operations. Perhaps 
      package-calling the operation or using coercions on the arguments
      will allow you to apply the operation.
 
   Cannot find a definition or applicable library operation named / 
      with argument type(s) 
                                IntegerMod 12
                                IntegerMod 12
      
      Perhaps you should use "@" to indicate the required return type, 
      or "$" to specify which version of the function you need.
\end{verbatim}

\spadcommand{recip a }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

Here $7$ and $12$ are relatively prime, so $7$ has a multiplicative
inverse modulo $12$.

\spadcommand{recip b }
$$
7 
$$
\returnType{Type: Union(IntegerMod 12,...)}

If we take $n$ to be a prime number $p$, then taking inverses and,
therefore, division are generally defined.

Use {\tt PrimeField} instead of {\tt IntegerMod} for $n$ prime.

\spadcommand{c : PrimeField 11 := 8 }
$$
8 
$$
\returnType{Type: PrimeField 11}

\spadcommand{inv c }
$$
7 
$$
\returnType{Type: PrimeField 11}

You can also use $1/c$ and $c**(-1)$ for the inverse of $c$.

\spadcommand{9/c }
$$
8 
$$
\returnType{Type: PrimeField 11}

%Original Page 278

{\tt PrimeField} (abbreviation {\tt PF}) checks if its argument is
prime when you try to use an operation from it.  If you know the
argument is prime (particularly if it is large), {\tt InnerPrimeField}
(abbreviation {\tt IPF}) assumes the argument has already been
verified to be prime.  If you do use a number that is not prime, you
will eventually get an error message, most likely a division by zero
message.  For computer science applications, the most important finite
fields are {\tt PrimeField 2} and its extensions.

In the following examples, we work with the finite field with 
$p = 101$ elements.

\spadcommand{GF101 := PF 101  }
$$
\mbox{\rm PrimeField 101} 
$$
\returnType{Type: Domain}

Like many domains in Axiom, finite fields provide an operation for
returning a random element of the domain.

\spadcommand{x := random()\$GF101 }
$$
8 
$$
\returnType{Type: PrimeField 101}

\spadcommand{y : GF101 := 37 }
$$
37 
$$
\returnType{Type: PrimeField 101}

\spadcommand{z := x/y }
$$
63 
$$
\returnType{Type: PrimeField 101}

\spadcommand{z * y - x }
$$
0 
$$
\returnType{Type: PrimeField 101}

The element $2$ is a {\it primitive element} of this field,
\index{primitive element}
\index{element!primitive}

\spadcommand{pe := primitiveElement()\$GF101 }
$$
2 
$$
\returnType{Type: PrimeField 101}

in the sense that its powers enumerate all nonzero elements.

\spadcommand{[pe**i for i in 0..99] }
$$
\begin{array}{@{}l}
\left[
1, 2, 4, 8, {16}, {32}, {64}, {27}, {54}, 7, {14}, {28}, {56}, 
{11}, {22}, {44}, {88}, {75}, {49}, {98}, 
\right.
\\
\displaystyle
{95}, {89}, {77}, {53}, 5, {10}, {20}, {40}, {80}, {59}, {17}, 
{34}, {68}, {35}, {70}, {39}, {78}, {55}, 9, 
\\
\displaystyle
{18}, {36}, {72}, {43}, {86}, {71}, {41}, {82}, {63}, {25}, 
{50}, {100}, {99}, {97}, {93}, {85}, {69}, {37}, 
\\
\displaystyle
{74}, {47}, {94}, {87}, {73}, {45}, {90}, {79}, {57}, {13}, 
{26}, {52}, 3, 6, {12}, {24}, {48}, {96}, {91}, 
\\
\displaystyle
{81}, {61}, {21}, {42}, {84}, {67}, {33}, {66}, {31}, {62}, 
{23}, {46}, {92}, {83}, {65}, {29}, {58}, {15}, {30}, 
\\
\displaystyle
\left.
{60}, {19}, {38}, {76}, {51} 
\right]
\end{array}
$$
\returnType{Type: List PrimeField 101}

%Original Page 279

If every nonzero element is a power of a primitive element, how do you
determine what the exponent is?  Use \index{discrete logarithm} 
{\bf discreteLog}.  \index{logarithm!discrete}

\spadcommand{ex := discreteLog(y) }
$$
56 
$$
\returnType{Type: PositiveInteger}

\spadcommand{pe ** ex }
$$
37 
$$
\returnType{Type: PrimeField 101}

The {\bf order} of a nonzero element $x$ is the smallest positive
integer $t$ such $x^t = 1$.

\spadcommand{order y }
$$
25 
$$
\returnType{Type: PositiveInteger}

The order of a primitive element is the defining $p-1$.

\spadcommand{order pe }
$$
100 
$$
\returnType{Type: PositiveInteger}

\subsection{Extensions of Finite Fields}
\label{ugxProblemFiniteExtensionFinite}
\index{finite field}
\index{field!finite!extension of}

When you want to work with an extension of a finite field in Axiom,
you have three choices to make:
\begin{enumerate}
\item Do you want to generate an extension of the prime field
(for example, {\tt PrimeField 2}) or an extension of a given field?
\item Do you want to use a representation that is particularly
efficient for multiplication, exponentiation and addition but uses a
lot of computer memory (a representation that models the cyclic group
structure of the multiplicative group of the field extension and uses
a Zech logarithm table), one that \index{Zech logarithm} uses a normal
basis for the vector space structure of the field extension, or one
that performs arithmetic modulo an irreducible polynomial?  The cyclic
group representation is only usable up to ``medium'' (relative to your
machine's performance) sized fields.  If the field is large and the
normal basis is relatively simple, the normal basis representation is
more efficient for exponentiation than the irreducible polynomial
representation.
\item Do you want to provide a polynomial explicitly, a root of which
``generates'' the extension in one of the three senses in (2), or do
you wish to have the polynomial generated for you?
\end{enumerate}

This illustrates one of the most important features of Axiom: you can
choose exactly the right data-type and representation to suit your
application best.

We first tell you what domain constructors to use for each case above,
and then give some examples.

%Original Page 280

\hangafter=1\hangindent=2pc
Constructors that automatically generate extensions of the prime field:
\newline
{\tt FiniteField} \newline
{\tt FiniteFieldCyclicGroup} \newline
{\tt FiniteFieldNormalBasis}

\hangafter=1\hangindent=2pc
Constructors that generate extensions of an arbitrary field:
\newline
{\tt FiniteFieldExtension} \newline
{\tt FiniteFieldExtensionByPolynomial} \newline
{\tt FiniteFieldCyclicGroupExtension} \newline
{\tt FiniteFieldCyclicGroupExtensionByPolynomial} \newline
{\tt FiniteFieldNormalBasisExtension} \newline
{\tt FiniteFieldNormalBasisExtensionByPolynomial}

\hangafter=1\hangindent=2pc
Constructors that use a cyclic group representation:
\newline
{\tt FiniteFieldCyclicGroup} \newline
{\tt FiniteFieldCyclicGroupExtension} \newline
{\tt FiniteFieldCyclicGroupExtensionByPolynomial}

\hangafter=1\hangindent=2pc
Constructors that use a normal basis representation:
\newline
{\tt FiniteFieldNormalBasis} \newline
{\tt FiniteFieldNormalBasisExtension} \newline
{\tt FiniteFieldNormalBasisExtensionByPolynomial}

\hangafter=1\hangindent=2pc
Constructors that use an irreducible modulus polynomial representation:
\newline
{\tt FiniteField} \newline
{\tt FiniteFieldExtension} \newline
{\tt FiniteFieldExtensionByPolynomial}

\hangafter=1\hangindent=2pc
Constructors that generate a polynomial for you:
\newline
{\tt FiniteField} \newline
{\tt FiniteFieldExtension} \newline
{\tt FiniteFieldCyclicGroup} \newline
{\tt FiniteFieldCyclicGroupExtension} \newline
{\tt FiniteFieldNormalBasis} \newline
{\tt FiniteFieldNormalBasisExtension}

\hangafter=1\hangindent=2pc
Constructors for which you provide a polynomial:
\newline
{\tt FiniteFieldExtensionByPolynomial} \newline
{\tt FiniteFieldCyclicGroupExtensionByPolynomial} \newline
{\tt FiniteFieldNormalBasisExtensionByPolynomial}

These constructors are discussed in the following sections where we
collect together descriptions of extension fields that have the same
underlying representation.\footnote{For more information on the
implementation aspects of finite fields, see J. Grabmeier,
A. Scheerhorn, {\it Finite Fields in Axiom,} Technical Report, IBM
Heidelberg Scientific Center, 1992.}

%Original Page 281

If you don't really care about all this detail, just use {\tt
FiniteField}.  As your knowledge of your application and its Axiom
implementation grows, you can come back and choose an alternative
constructor that may improve the efficiency of your code.  Note that
the exported operations are almost the same for all constructors of
finite field extensions and include the operations exported by {\tt
PrimeField}.

\subsection{Irreducible Modulus Polynomial Representations}
\label{ugxProblemFiniteModulus}

All finite field extension constructors discussed in this
\index{finite field} section \index{field!finite!extension of} use a
representation that performs arithmetic with univariate (one-variable)
polynomials modulo an irreducible polynomial.  This polynomial may be
given explicitly by you or automatically generated.  The ground field
may be the prime field or one you specify.  See
\sectionref{ugxProblemFiniteExtensionFinite} 
for general information about finite field extensions.

For {\tt FiniteField} (abbreviation {\tt FF}) you provide a prime
number $p$ and an extension degree $n$.  This degree can be 1.

Axiom uses the prime field {\tt PrimeField(p)}, here {\tt PrimeField 2}, 
and it chooses an irreducible polynomial of degree $n$, here 12,
over the ground field.

\spadcommand{GF4096 := FF(2,12); }
\returnType{Type: Domain}

The objects in the generated field extension are polynomials of degree
at most $n-1$ with coefficients in the prime field.  The polynomial
indeterminate is automatically chosen by Axiom and is typically
something like $\%A$ or $\%D$.  These (strange) variables are 
{\it only} for output display; there are several ways to construct 
elements of this field.

The operation {\bf index} enumerates the elements of the field
extension and accepts as argument the integers from 1 to $p ^ n$.

The expression $index(p)$ always gives the indeterminate.

\spadcommand{a := index(2)\$GF4096 }
$$
\%A 
$$
\returnType{Type: FiniteField(2,12)}

You can build polynomials in $a$ and calculate in $GF4096$.

\spadcommand{b := a**12 - a**5 + a }
$$
{ \%A \sp 5}+{ \%A \sp 3}+ \%A+1 
$$
\returnType{Type: FiniteField(2,12)}

\spadcommand{b ** 1000 }
$$
{ \%A \sp {10}}+
{ \%A \sp 9}+
{ \%A \sp 7}+
{ \%A \sp 5}+
{ \%A \sp 4}+
{  \%A \sp 3}+ 
\%A 
$$
\returnType{Type: FiniteField(2,12)}

%Original Page 282

\spadcommand{c := a/b }
$$
{ \%A \sp {11}}+
{ \%A \sp 8}+
{ \%A \sp 7}+
{ \%A \sp 5}+
{ \%A \sp 4}+
{  \%A \sp 3}+
{ \%A \sp 2} 
$$
\returnType{Type: FiniteField(2,12)}

Among the available operations are {\bf norm} and {\bf trace}.

\spadcommand{norm c }
$$
1 
$$
\returnType{Type: PrimeField 2}

\spadcommand{trace c }
$$
0 
$$
\returnType{Type: PrimeField 2}

Since any nonzero element is a power of a primitive element, how do we
discover what the exponent is?

The operation {\bf discreteLog} calculates \index{discrete logarithm}
the exponent and, \index{logarithm!discrete} if it is called with only
one argument, always refers to the primitive element returned by {\bf
primitiveElement}.

\spadcommand{dL := discreteLog a }
$$
1729 
$$
\returnType{Type: PositiveInteger}

\spadcommand{g ** dL }
$$
g \sp {1729} 
$$
\returnType{Type: Polynomial Integer}

{\tt FiniteFieldExtension} (abbreviation {\tt FFX}) is similar to \\
{\tt FiniteField} except that the ground-field for \\
{\tt FiniteFieldExtension} is arbitrary and chosen by you.

In case you select the prime field as ground field, there is
essentially no difference between the constructed two finite field
extensions.

\spadcommand{GF16 := FF(2,4); }
\returnType{Type: Domain}

\spadcommand{GF4096 := FFX(GF16,3); }
\returnType{Type: Domain}

\spadcommand{r := (random()\$GF4096) ** 20 }
$$
{{\left( { \%B \sp 2}+1 \right)}\  { \%C \sp 2}}+
{{\left( { \%B \sp 3}+{ \%B \sp 2}+1 \right)}\  \%C}+
{ \%B \sp 3}+
{ \%B \sp 2}+ 
\%B+1 
$$
\returnType{Type: FiniteFieldExtension(FiniteField(2,4),3)}

\spadcommand{norm(r) }
$$
{ \%B \sp 2}+ \%B 
$$
\returnType{Type: FiniteField(2,4)}

{\tt FiniteFieldExtensionByPolynomial} (abbreviation {\tt FFP})
is similar to {\tt FiniteField} and {\tt FiniteFieldExtension}
but is more general.

%Original Page 283

\spadcommand{GF4 := FF(2,2); }
\returnType{Type: Domain}

\spadcommand{f := nextIrreduciblePoly(random(6)\$FFPOLY(GF4))\$FFPOLY(GF4) }
$$
{? \sp 6}+
{{\left( \%D+1 \right)}\  {? \sp 5}}+
{{\left( \%D+1 \right)}\  {? \sp 4}}+
{{\left( \%D+1 \right)}\  ?}+1 
$$
\returnType{Type: Union(SparseUnivariatePolynomial FiniteField(2,2),...)}

For {\tt FFP} you choose both the ground field and the irreducible
polynomial used in the representation.  The degree of the extension is
the degree of the polynomial.

\spadcommand{GF4096 := FFP(GF4,f); }
\returnType{Type: Domain}

\spadcommand{discreteLog random()\$GF4096 }
$$
582 
$$
\returnType{Type: PositiveInteger}

\subsection{Cyclic Group Representations}
\label{ugxProblemFiniteCyclic}
\index{finite field}
\index{field!finite!extension of}

In every finite field there exist elements whose powers are all the
nonzero elements of the field.  Such an element is called a 
{\it primitive element}.

In {\tt FiniteFieldCyclicGroup} (abbreviation {\tt FFCG})
\index{group!cyclic} the nonzero elements are represented by the
powers of a fixed primitive \index{element!primitive} element
\index{primitive element} of the field (that is, a generator of its
cyclic multiplicative group).  Multiplication (and hence
exponentiation) using this representation is easy.  To do addition, we
consider our primitive element as the root of a primitive polynomial
(an irreducible polynomial whose roots are all primitive).  See
\sectionref{ugxProblemFiniteUtility}
for examples of how to compute such a polynomial.

To use {\tt FiniteFieldCyclicGroup} you provide a prime number and an
extension degree.
\spadcommand{GF81 := FFCG(3,4); }
\returnType{Type: Domain}

Axiom uses the prime field, here {\tt PrimeField 3}, as the ground
field and it chooses a primitive polynomial of degree $n$, here 4,
over the prime field.

\spadcommand{a := primitiveElement()\$GF81 }
$$
 \%F \sp 1 
$$
\returnType{Type: FiniteFieldCyclicGroup(3,4)}

You can calculate in $GF81$.

\spadcommand{b  := a**12 - a**5 + a }
$$
 \%F \sp {72} 
$$
\returnType{Type: FiniteFieldCyclicGroup(3,4)}

%Original Page 284

In this representation of finite fields the discrete logarithm of an
element can be seen directly in its output form.

\spadcommand{b }
$$
 \%F \sp {72} 
$$
\returnType{Type: FiniteFieldCyclicGroup(3,4)}

\spadcommand{discreteLog b }
$$
72 
$$
\returnType{Type: PositiveInteger}

{\tt FiniteFieldCyclicGroupExtension} (abbreviation {\tt FFCGX}) is
similar to\\ 
{\tt FiniteFieldCyclicGroup} except that the ground field for\\ 
{\tt FiniteFieldCyclicGroupExtension} is arbitrary and chosen by
you.  In case you select the prime field as ground field, there is
essentially no difference between the constructed two finite field
extensions.

\spadcommand{GF9 := FF(3,2); }
\returnType{Type: Domain}

\spadcommand{GF729 := FFCGX(GF9,3); }
\returnType{Type: Domain}

\spadcommand{r := (random()\$GF729) ** 20 }
$$
 \%H \sp {420} 
$$
\returnType{Type: FiniteFieldCyclicGroupExtension(FiniteField(3,2),3)}

\spadcommand{trace(r) }
$$
0 
$$
\returnType{Type: FiniteField(3,2)}

{\tt FiniteFieldCyclicGroupExtensionByPolynomial} (abbreviation 
{\tt FFCGP}) is similar to \\
{\tt FiniteFieldCyclicGroup} and 
{\tt FiniteFieldCyclicGroupExtension} \\
but is more general.  For \\
{\tt FiniteFieldCyclicGroupExtensionByPolynomial} you choose both the
ground field and the irreducible polynomial used in the
representation.  The degree of the extension is the degree of the
polynomial.

\spadcommand{GF3  := PrimeField 3; }
\returnType{Type: Domain}

%Original Page 285

We use a utility operation to generate an irreducible primitive
polynomial (see \sectionref{ugxProblemFiniteUtility}).
The polynomial has one variable that is ``anonymous'': 
it displays as a question mark.

\spadcommand{f := createPrimitivePoly(4)\$FFPOLY(GF3) }
$$
{? \sp 4}+?+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 3}

\spadcommand{GF81 := FFCGP(GF3,f); }
\returnType{Type: Domain}

Let's look at a random element from this field.

\spadcommand{random()\$GF81 }
$$
 \%K \sp {13} 
$$
\returnType{Type: 
FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField 3,?**4+?+2)}

\subsection{Normal Basis Representations}
\label{ugxProblemFiniteNormal}
\index{finite field}
\index{field!finite!extension of}
\index{basis!normal}
\index{normal basis}

Let $K$ be a finite extension of degree $n$ of the finite field $F$
and let $F$ have $q$ elements.  An element $x$ of $K$ is said to be
{\it normal} over $F$ if the elements

$$1, x^q, x^{q^2}, \ldots, x^{q^{n-1}}$$

form a basis of $K$ as a vector space over $F$.  Such a basis is
called a {\it normal basis}.\footnote{This agrees with the general
definition of a normal basis because the $n$ distinct powers of the
automorphism $x \mapsto x^q$ constitute the Galois group of $K/F$.}

If $x$ is normal over $F$, its minimal \index{polynomial!minimal}
polynomial is also said to be {\it normal} over $F$.  
\index{minimal polynomial} 
There exist normal bases for all finite extensions of arbitrary 
finite fields.

In {\tt FiniteFieldNormalBasis} (abbreviation {\tt FFNB}), the
elements of the finite field are represented by coordinate vectors
with respect to a normal basis.

You provide a prime $p$ and an extension degree $n$.

\spadcommand{K := FFNB(3,8) }
$$
FiniteFieldNormalBasis(3,8) 
$$
\returnType{Type: Domain}

Axiom uses the prime field {\tt PrimeField(p)}, here {\tt PrimeField
3}, and it chooses a normal polynomial of degree $n$, here 8, over the
ground field.  The remainder class of the indeterminate is used as the
normal element.  The polynomial indeterminate is automatically chosen
by Axiom and is typically something like $\%A$ or $\%D$.  These
(strange) variables are only for output display; there are several
ways to construct elements of this field.  The output of the basis
elements is something like $\%A^{q^i}.$

\spadcommand{a := normalElement()\$K }
$$
 \%I 
$$
\returnType{Type: FiniteFieldNormalBasis(3,8)}

%Original Page 286

You can calculate in $K$ using $a$.

\spadcommand{b  := a**12 - a**5 + a }
$$
{2 \  { \%I \sp {q \sp 7}}}+{ \%I \sp {q \sp 5}}+{ \%I \sp q} 
$$
\returnType{Type: FiniteFieldNormalBasis(3,8)}

{\tt FiniteFieldNormalBasisExtension} (abbreviation {\tt FFNBX}) is
similar to \\
{\tt FiniteField\-NormalBasis} except that the groundfield
for \\
{\tt FiniteFieldNormalBasisExtension} is arbitrary and chosen by
you.  In case you select the prime field as ground field, there is
essentially no difference between the constructed two finite field
extensions.

\spadcommand{GF9 := FFNB(3,2); }
\returnType{Type: Domain}

\spadcommand{GF729 := FFNBX(GF9,3); }
\returnType{Type: Domain}

\spadcommand{r := random()\$GF729 }
$$
2 \  \%K \  { \%L \sp q} 
$$
\returnType{Type: 
FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)}

\spadcommand{r + r**3 + r**9 + r**27 }
$$
{2 \  \%K \  { \%L \sp {q \sp 2}}}+
{{\left( {2 \  { \%K \sp q}}+{2 \   \%K} \right)}\  { \%L \sp q}}+
{2 \  { \%K \sp q} \  \%L} 
$$
\returnType{Type: 
FiniteFieldNormalBasisExtension(FiniteFieldNormalBasis(3,2),3)}

{\tt FiniteFieldNormalBasisExtensionByPolynomial} (abbreviation 
{\tt FFNBP})\\ 
is similar to {\tt FiniteFieldNormalBasis} and\\
{\tt FiniteFieldNormalBasisExtension} but is more general.  For\\
{\tt FiniteFieldNormalBasisExtensionByPolynomial} you choose both the
ground field and the irreducible polynomial used in the representation.  
The degree of the extension is the degree of the polynomial.

\spadcommand{GF3 := PrimeField 3; }
\returnType{Type: Domain}

%Original Page 287

We use a utility operation to generate an irreducible normal
polynomial (see \sectionref{ugxProblemFiniteUtility}).  p
The polynomial has
one variable that is ``anonymous'': it displays as a question mark.

\spadcommand{f := createNormalPoly(4)\$FFPOLY(GF3) }
$$
{? \sp 4}+{2 \  {? \sp 3}}+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 3}

\spadcommand{GF81 := FFNBP(GF3,f); }
\returnType{Type: Domain}

Let's look at a random element from this field.

\spadcommand{r := random()\$GF81 }
$$
{ \%M \sp {q \sp 2}}+{2 \  { \%M \sp q}}+{2 \  \%M} 
$$
\returnType{Type: 
FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3,?**4+2*?**3+2)}

\spadcommand{r * r**3 * r**9 * r**27 }
$$
{2 \  { \%M \sp {q \sp 3}}}+
{2 \  { \%M \sp {q \sp 2}}}+
{2 \  { \%M \sp q}}+
{2 \  \%M} 
$$
\returnType{Type: 
FiniteFieldNormalBasisExtensionByPolynomial(PrimeField 3,?**4+2*?**3+2)}

\spadcommand{norm r }
$$
2 
$$
\returnType{Type: PrimeField 3}

\subsection{Conversion Operations for Finite Fields}
\label{ugxProblemFiniteConversion}
\index{field!finite!conversions}

Let $K$ be a finite field.

\spadcommand{K := PrimeField 3 }
$$
\mbox{\rm PrimeField 3} 
$$
\returnType{Type: Domain}

An extension field $K_m$ of degree $m$ over $K$ is a subfield of an
extension field $K_n$ of degree $n$ over $K$ if and only if $m$
divides $n$.

\begin{center}
\begin{tabular}{ccc}
$K_n$ \\
$|$ \\
$K_m$ & $\Longleftrightarrow$ & $m | n$ \\
$|$ \\
K
\end{tabular}
\end{center}

{\tt FiniteFieldHomomorphisms} provides conversion operations between
different extensions of one fixed finite ground field and between
different representations of these finite fields.

%Original Page 288

Let's choose $m$ and $n$,

\spadcommand{(m,n) := (4,8) }
$$
8 
$$
\returnType{Type: PositiveInteger}

build the field extensions,

\spadcommand{Km := FiniteFieldExtension(K,m) }
$$
\mbox{\rm FiniteFieldExtension(PrimeField 3,4)} 
$$
\returnType{Type: Domain}

and pick two random elements from the smaller field.

\spadcommand{Kn := FiniteFieldExtension(K,n) }
$$
\mbox{\rm FiniteFieldExtension(PrimeField 3,8)} 
$$
\returnType{Type: Domain}

\spadcommand{a1 := random()\$Km }
$$
{2 \  { \%A \sp 3}}+{ \%A \sp 2} 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,4)}

\spadcommand{b1 := random()\$Km }
$$
{ \%A \sp 3}+{ \%A \sp 2}+{2 \  \%A}+1 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,4)}

Since $m$ divides $n$,
$K_m$ is a subfield of $K_n$.

\spadcommand{a2 := a1 :: Kn }
$$
 \%B \sp 4 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,8)}

Therefore we can convert the elements of $K_m$
into elements of $K_n$.

\spadcommand{b2 := b1 :: Kn }
$$
{2 \  { \%B \sp 6}}+{2 \  { \%B \sp 4}}+{ \%B \sp 2}+1 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,8)}

To check this, let's do some arithmetic.

\spadcommand{a1+b1 - ((a2+b2) :: Km) }
$$
0 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,4)}

\spadcommand{a1*b1 - ((a2*b2) :: Km) }
$$
0 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 3,4)}

There are also conversions available for the situation, when $K_m$ and
$K_n$ are represented in different ways (see
\sectionref{ugxProblemFiniteExtensionFinite}).  For example let's choose
$K_m$ where the representation is 0 plus the cyclic multiplicative
group and $K_n$ with a normal basis representation.

%Original Page 289

\spadcommand{Km := FFCGX(K,m) }
$$
\mbox{\rm FiniteFieldCyclicGroupExtension(PrimeField 3,4)} 
$$
\returnType{Type: Domain}

\spadcommand{Kn := FFNBX(K,n) }
$$
\mbox{\rm FiniteFieldNormalBasisExtension(PrimeField 3,8)} 
$$
\returnType{Type: Domain}

\spadcommand{(a1,b1) := (random()\$Km,random()\$Km) }
$$
 \%C \sp {13} 
$$
\returnType{Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)}

\spadcommand{a2 := a1 :: Kn }
$$
{2 \  { \%D \sp {q \sp 6}}}+
{2 \  { \%D \sp {q \sp 5}}}+
{2 \  { \%D \sp {q \sp 4}}}+
{2 \  { \%D \sp {q \sp 2}}}+
{2 \  { \%D \sp q}}+
{2 \  \%D} 
$$
\returnType{Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)}

\spadcommand{b2 := b1 :: Kn }
$$
{2 \  { \%D \sp {q \sp 7}}}+
{ \%D \sp {q \sp 6}}+
{ \%D \sp {q \sp 5}}+
{ \%D \sp {q \sp 4}}+
{2 \  { \%D \sp {q \sp 3}}}+
{ \%D \sp {q \sp 2}}+
{ \%D \sp q}+ 
\%D 
$$
\returnType{Type: FiniteFieldNormalBasisExtension(PrimeField 3,8)}

Check the arithmetic again.

\spadcommand{a1+b1 - ((a2+b2) :: Km) }
$$
0 
$$
\returnType{Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)}

\spadcommand{a1*b1 - ((a2*b2) :: Km) }
$$
0 
$$
\returnType{Type: FiniteFieldCyclicGroupExtension(PrimeField 3,4)}

\subsection{Utility Operations for Finite Fields}
\label{ugxProblemFiniteUtility}

{\tt FiniteFieldPolynomialPackage} (abbreviation {\tt FFPOLY})
provides operations for generating, counting and testing polynomials
over finite fields. Let's start with a couple of definitions:
\begin{itemize}
\item A polynomial is {\it primitive} if its roots are primitive
\index{polynomial!primitive}
elements in an extension of the coefficient field of degree equal
to the degree of the polynomial.
\item A polynomial is {\it normal} over its coefficient field
\index{polynomial!normal}
if its roots are linearly independent
elements in an extension of the coefficient field of degree equal
to the degree of the polynomial.
\end{itemize}

In what follows, many of the generated polynomials have one
``anonymous'' variable.  This indeterminate is displayed as a question
mark ({\tt "?"}).

%Original Page 290

To fix ideas, let's use the field with five elements for the first
few examples.

\spadcommand{GF5 := PF 5; }
\returnType{Type: Domain}

You can generate irreducible polynomials of any (positive) degree
\index{polynomial!irreducible} (within the storage capabilities of the
computer and your ability to wait) by using
\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage}.

\spadcommand{f := createIrreduciblePoly(8)\$FFPOLY(GF5) }
$$
{? \sp 8}+{? \sp 4}+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

Does this polynomial have other important properties? Use
{\bf primitive?} to test whether it is a primitive polynomial.

\spadcommand{primitive?(f)\$FFPOLY(GF5) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Use {\bf normal?} to test whether it is a normal polynomial.

\spadcommand{normal?(f)\$FFPOLY(GF5) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\noindent
Note that this is actually a trivial case, because a normal polynomial
of degree $n$ must have a nonzero term of degree $n-1$.  We will refer
back to this later.

To get a primitive polynomial of degree 8 just issue this.

\spadcommand{p := createPrimitivePoly(8)\$FFPOLY(GF5) }
$$
{? \sp 8}+{? \sp 3}+{? \sp 2}+?+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

\spadcommand{primitive?(p)\$FFPOLY(GF5) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

This polynomial is not normal,

\spadcommand{normal?(p)\$FFPOLY(GF5) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

but if you want a normal one simply write this.

\spadcommand{n := createNormalPoly(8)\$FFPOLY(GF5)  }
$$
{? \sp 8}+{4 \  {? \sp 7}}+{? \sp 3}+1 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

This polynomial is not primitive!

\spadcommand{primitive?(n)\$FFPOLY(GF5) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

This could have been seen directly, as the constant term is 1 here,
which is not a primitive element up to the factor ($-1$) raised to the
degree of the polynomial.\footnote{Cf. Lidl, R. \& Niederreiter, H.,
{\it Finite Fields,} Encycl. of Math. 20, (Addison-Wesley, 1983),
p.90, Th. 3.18.}

%Original Page 291

What about polynomials that are both primitive and normal?  The
existence of such a polynomial is by no means obvious.
\footnote{The existence of such polynomials is proved in
Lenstra, H. W. \& Schoof, R. J., {\it Primitive
Normal Bases for Finite Fields,} Math. Comp. 48, 1987, pp. 217-231.}
%

If you really need one use either
\spadfunFrom{createPrimitiveNormalPoly}{FiniteFieldPolynomialPackage} or
\spadfunFrom{createNormalPrimitivePoly}{FiniteFieldPolynomialPackage}.

\spadcommand{createPrimitiveNormalPoly(8)\$FFPOLY(GF5) }
$$
{? \sp 8}+{4 \  {? \sp 7}}+{2 \  {? \sp 5}}+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

If you want to obtain additional polynomials of the various types
above as given by the {\bf create...} operations above, you can use
the {\bf next...} operations.  For instance,
\spadfunFrom{nextIrreduciblePoly}{FiniteFieldPolynomialPackage} yields
the next monic irreducible polynomial with the same degree as the
input polynomial.  By ``next'' we mean ``next in a natural order using
the terms and coefficients.''  This will become more clear in the
following examples.

This is the field with five elements.

\spadcommand{GF5 := PF 5; }
\returnType{Type: Domain}

Our first example irreducible polynomial, say of degree 3, must be
``greater'' than this.

\spadcommand{h := monomial(1,8)\$SUP(GF5) }
$$
? \sp 8 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

You can generate it by doing this.

\spadcommand{nh := nextIrreduciblePoly(h)\$FFPOLY(GF5) }
$$
{? \sp 8}+2 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

Notice that this polynomial is not the same as the one
\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage}.

\spadcommand{createIrreduciblePoly(3)\$FFPOLY(GF5) }
$$
{? \sp 3}+?+1 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

You can step through all irreducible polynomials of degree 8 over
the field with 5 elements by repeatedly issuing this.

\spadcommand{nh := nextIrreduciblePoly(nh)\$FFPOLY(GF5) }
$$
{? \sp 8}+3 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

You could also ask for the total number of these.

\spadcommand{numberOfIrreduciblePoly(5)\$FFPOLY(GF5) }
$$
624 
$$
\returnType{Type: PositiveInteger}

%Original Page 292

We hope that ``natural order'' on polynomials is now clear: first we
compare the number of monomials of two polynomials (``more'' is
``greater''); then, if necessary, the degrees of these monomials
(lexicographically), and lastly their coefficients (also
lexicographically, and using the operation {\bf lookup} if our field
is not a prime field).  Also note that we make both polynomials monic
before looking at the coefficients: multiplying either polynomial by a
nonzero constant produces the same result.

The package {\tt FiniteFieldPolynomialPackage} also provides similar
operations for primitive and normal polynomials. With the exception of
the number of primitive normal polynomials; we're not aware of any
known formula for this.

\spadcommand{numberOfPrimitivePoly(3)\$FFPOLY(GF5) }
$$
20 
$$
\returnType{Type: PositiveInteger}

Take these,

\spadcommand{m := monomial(1,1)\$SUP(GF5) }
$$
? 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

\spadcommand{f := m**3 + 4*m**2 + m + 2 }
$$
{? \sp 3}+{4 \  {? \sp 2}}+?+2 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

and then we have:

\spadcommand{f1 := nextPrimitivePoly(f)\$FFPOLY(GF5) }
$$
{? \sp 3}+{4 \  {? \sp 2}}+{4 \  ?}+2 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

What happened?

\spadcommand{nextPrimitivePoly(f1)\$FFPOLY(GF5) }
$$
{? \sp 3}+{2 \  {? \sp 2}}+3 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

Well, for the ordering used in
\spadfunFrom{nextPrimitivePoly}{FiniteFieldPolynomialPackage} we use
as first criterion a comparison of the constant terms of the
polynomials.  Analogously, in
\spadfunFrom{nextNormalPoly}{FiniteFieldPolynomialPackage} we first
compare the monomials of degree 1 less than the degree of the
polynomials (which is nonzero, by an earlier remark).

\spadcommand{f := m**3 + m**2 + 4*m + 1  }
$$
{? \sp 3}+{? \sp 2}+{4 \  ?}+1 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 5}

\spadcommand{f1 := nextNormalPoly(f)\$FFPOLY(GF5) }
$$
{? \sp 3}+{? \sp 2}+{4 \  ?}+3 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

%Original Page 293

\spadcommand{nextNormalPoly(f1)\$FFPOLY(GF5) }
$$
{? \sp 3}+{2 \  {? \sp 2}}+1 
$$
\returnType{Type: Union(SparseUnivariatePolynomial PrimeField 5,...)}

\noindent
We don't have to restrict ourselves to prime fields.

Let's consider, say, a field with 16 elements.

\spadcommand{GF16 := FFX(FFX(PF 2,2),2);  }
\returnType{Type: Domain}

We can apply any of the operations described above.

\spadcommand{createIrreduciblePoly(5)\$FFPOLY(GF16) }
$$
{? \sp 5}+ \%G 
$$
\returnType{Type: SparseUnivariatePolynomial 
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)}

Axiom also provides operations for producing random polynomials of a
given degree

\spadcommand{random(5)\$FFPOLY(GF16) }
$$
\begin{array}{@{}l}
{? \sp 5}+
{{\left( { \%F \  \%G}+1 \right)}\  {? \sp 4}}+
{ \%F \  \%G \  {? \sp 3}}+
{{\left( \%G+ \%F+1 \right)}\  {? \sp 2}}+
\\
\\
\displaystyle
{{\left( {{\left( \%F+1 \right)}\  \%G}+ \%F \right)}\  ?}+1 
\end{array}
$$
\returnType{Type: SparseUnivariatePolynomial 
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)}

or with degree between two given bounds.

\spadcommand{random(3,9)\$FFPOLY(GF16) }
$$
{? \sp 3}+
{{\left( { \%F \  \%G}+1 \right)}\  {? \sp 2}}+
{{\left( \%G+ \%F+1 \right)}\  ?}+1 
$$
\returnType{Type: SparseUnivariatePolynomial 
FiniteFieldExtension(FiniteFieldExtension(PrimeField 2,2),2)}

{\tt FiniteFieldPolynomialPackage2} (abbreviation {\tt FFPOLY2})
exports an operation {\bf rootOf\-IrreduciblePoly} for finding one root
of an irreducible polynomial $f$ \index{polynomial!root of} in an
extension field of the coefficient field.  The degree of the extension
has to be a multiple of the degree of $f$.  It is not checked whether
$f$ actually is irreducible.

To illustrate this operation, we fix a ground field $GF$

\spadcommand{GF2 := PrimeField 2; }
\returnType{Type: Domain}

and then an extension field.

\spadcommand{F := FFX(GF2,12) }
$$
\mbox{\rm FiniteFieldExtension(PrimeField 2,12)} 
$$
\returnType{Type: Domain}

We construct an irreducible polynomial over $GF2$.

\spadcommand{f := createIrreduciblePoly(6)\$FFPOLY(GF2) }
$$
{? \sp 6}+?+1 
$$
\returnType{Type: SparseUnivariatePolynomial PrimeField 2}

%Original Page 293

We compute a root of $f$.

\spadcommand{root := rootOfIrreduciblePoly(f)\$FFPOLY2(F,GF2) }
$$
{ \%H \sp {11}}+{ \%H \sp 8}+{ \%H \sp 7}+{ \%H \sp 5}+ \%H+1 
$$
\returnType{Type: FiniteFieldExtension(PrimeField 2,12)}

and check the result
\spadcommand{eval(f, monomial(1,1)\$SUP(F) = root) }
$$
0 
$$
\returnType{Type: SparseUnivariatePolynomial 
FiniteFieldExtension(PrimeField 2,12)}

\section{Primary Decomposition of Ideals}
\label{ugProblemIdeal}

Axiom provides a facility for the primary decomposition
\index{ideal!primary decomposition} of \index{primary decomposition of
ideal} polynomial ideals over fields of characteristic zero.  The
algorithm
%is discussed in \cite{gtz:gbpdpi} and
works in essentially two steps:
\begin{enumerate}
\item the problem is solved for 0-dimensional ideals by ``generic''
projection on the last coordinate
\item a ``reduction process'' uses localization and ideal quotients
to reduce the general case to the 0-dimensional one.
\end{enumerate}
The Axiom constructor {\tt PolynomialIdeals} represents ideals with
coefficients in any field and supports the basic ideal operations,
including intersection, sum and quotient.  {\tt Ideal\-DecompositionPackage} 
contains the specific operations for the
primary decomposition and the computation of the radical of an ideal
with polynomial coefficients in a field of characteristic 0 with an
effective algorithm for factoring polynomials.

The following examples illustrate the capabilities of this facility.

First consider the ideal generated by
$x^2 + y^2 - 1$
(which defines a circle in the $(x,y)$-plane) and the ideal
generated by $x^2 - y^2$ (corresponding to the
straight lines $x = y$ and $x = -y$.

\spadcommand{(n,m) : List DMP([x,y],FRAC INT) }
\returnType{Type: Void}

\spadcommand{m := [x**2+y**2-1]  }
$$
\left[
{{x \sp 2}+{y \sp 2} -1} 
\right]
$$
\returnType{Type: List 
DistributedMultivariatePolynomial([x,y],Fraction Integer)}

\spadcommand{n := [x**2-y**2]  }
$$
\left[
{{x \sp 2} -{y \sp 2}} 
\right]
$$
\returnType{Type: List 
DistributedMultivariatePolynomial([x,y],Fraction Integer)}

We find the equations defining the intersection of the two loci.
This correspond to the sum of the associated ideals.

\spadcommand{id := ideal m  + ideal n  }
$$
\left[
{{x \sp 2} -{\frac{1}{2}}}, {{y \sp 2} -{\frac{1}{2}}} 
\right]
$$
\returnType{Type: PolynomialIdeals(Fraction Integer,
DirectProduct(2,NonNegativeInteger),OrderedVariableList [x,y],
DistributedMultivariatePolynomial([x,y],Fraction Integer))}

%Original Page 295

We can check if the locus contains only a finite number of points,
that is, if the ideal is zero-dimensional.

\spadcommand{zeroDim? id }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{zeroDim?(ideal m) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{dimension ideal m }
$$
1 
$$
\returnType{Type: PositiveInteger}

We can find polynomial relations among the generators ($f$ and $g$ are
the parametric equations of the knot).

\spadcommand{(f,g):DMP([x,y],FRAC INT) }
\returnType{Type: Void}

\spadcommand{f := x**2-1  }
$$
{x \sp 2} -1 
$$
\returnType{Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)}

\spadcommand{g := x*(x**2-1)  }
$$
{x \sp 3} -x 
$$
\returnType{Type: DistributedMultivariatePolynomial([x,y],Fraction Integer)}

\spadcommand{relationsIdeal [f,g] }
$$
{\left[ {-{ \%B \sp 2}+{ \%A \sp 3}+{ \%A \sp 2}} \right]}
\mid 
{\left[ { \%A={{x \sp 2} -1}}, { \%B={{x \sp 3} -x}} \right]}
$$
\returnType{Type: SuchThat(List Polynomial Fraction Integer,
List Equation Polynomial Fraction Integer)}

We can compute the primary decomposition of an ideal.

\spadcommand{l: List DMP([x,y,z],FRAC INT) }
\returnType{Type: Void}

\spadcommand{l:=[x**2+2*y**2,x*z**2-y*z,z**2-4]  }
$$
\left[
{{x \sp 2}+{2 \  {y \sp 2}}}, {{x \  {z \sp 2}} -{y \  z}}, {{z \sp 2} -4} 
\right]
$$
\returnType{Type: List 
DistributedMultivariatePolynomial([x,y,z],Fraction Integer)}

%Original Page 296

\spadcommand{ld:=primaryDecomp ideal l  }
$$
\left[
{\left[ {x+{{\frac{1}{2}} \  y}}, {y \sp 2}, {z+2} \right]},
{\left[ {x -{{\frac{1}{2}} \  y}}, {y \sp 2}, {z -2} \right]}
\right]
$$
\returnType{Type: List PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger),
OrderedVariableList [x,y,z],
DistributedMultivariatePolynomial([x,y,z],Fraction Integer))}

We can intersect back.

\spadcommand{reduce(intersect,ld) }
$$
\left[
{x -{{\frac{1}{4}} \  y \  z}}, {y \sp 2}, {{z \sp 2} -4} 
\right]
$$
\returnType{Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger),
OrderedVariableList [x,y,z],
DistributedMultivariatePolynomial([x,y,z],Fraction Integer))}

We can compute the radical of every primary component.

\spadcommand{reduce(intersect,[radical ld.i for i in 1..2]) }
$$
\left[
x, y, {{z \sp 2} -4} 
\right]
$$
\returnType{Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger),
OrderedVariableList [x,y,z],
DistributedMultivariatePolynomial([x,y,z],Fraction Integer))}

Their intersection is equal to the radical of the ideal of $l$.

\spadcommand{radical ideal l }
$$
\left[x, y, {{z \sp 2} -4} \right]
$$
\returnType{Type: PolynomialIdeals(Fraction Integer,
DirectProduct(3,NonNegativeInteger),
OrderedVariableList [x,y,z],
DistributedMultivariatePolynomial([x,y,z],Fraction Integer))}

\section{Computation of Galois Groups}
\label{ugProblemGalois}

As a sample use of Axiom's algebraic number facilities,
\index{group!Galois}
we compute
\index{Galois!group}
the Galois group of the polynomial
$p(x) = x^5 - 5 x + 12$.

\spadcommand{p := x**5 - 5*x + 12 }
$$
{x \sp 5} -{5 \  x}+{12} 
$$
\returnType{Type: Polynomial Integer}

We would like to construct a polynomial $f(x)$ such that the splitting
\index{field!splitting} field \index{splitting field} of $p(x)$ is
generated by one root of $f(x)$.  First we construct a polynomial 
$r = r(x)$ such that one root of $r(x)$ generates the field generated by
two roots of the polynomial $p(x)$.  (As it will turn out, the field
generated by two roots of $p(x)$ is, in fact, the splitting field of
$p(x)$.)

From the proof of the primitive element theorem we know that if $a$
and $b$ are algebraic numbers, then the field ${\bf Q}(a,b)$ is equal
to ${\bf Q}(a+kb)$ for an appropriately chosen integer $k$.  In our
case, we construct the minimal polynomial of $a_i - a_j$, where $a_i$
and $a_j$ are two roots of $p(x)$.  We construct this polynomial using
{\bf resultant}.  The main result we need is the following: If $f(x)$
is a polynomial with roots $a_i \ldots a_m$ and $g(x)$ is a polynomial
with roots $b_i \ldots b_n$, then the polynomial $h(x) =
resultant(f(y), g(x-y), y)$ is a polynomial of degree $m*n$ with roots
$a_i + b_j, i = 1 \ldots m, j = 1 \ldots n$.

%Original Page 297

For $f(x)$ we use the polynomial $p(x)$.  For $g(x)$ we use the
polynomial $-p(-x)$.  Thus, the polynomial we first construct is
$resultant(p(y), -p(y-x), y)$.

\spadcommand{q := resultant(eval(p,x,y),-eval(p,x,y-x),y)  }
$$
\begin{array}{@{}l}
{x \sp {25}} -
{{50} \  {x \sp {21}}} -
{{2375} \  {x \sp {17}}}+
{{90000} \  {x \sp {15}}} -
{{5000} \  {x \sp {13}}}+
{{2700000} \  {x \sp {11}}}+
{{250000} \  {x \sp 9}}+
\\
\\
\displaystyle
{{18000000} \  {x \sp 7}}+
{{64000000} \  {x \sp 5}} 
\end{array}
$$
\returnType{Type: Polynomial Integer}

The roots of $q(x)$ are $a_i - a_j, i \leq 1, j \leq 5$.  Of course,
there are five pairs $(i,j)$ with $i = j$, so $0$ is a 5-fold root of
$q(x)$.

Let's get rid of this factor.

\spadcommand{q1 := exquo(q, x**5)  }
$$
\begin{array}{@{}l}
{x \sp {20}} -
{{50} \  {x \sp {16}}} -
{{2375} \  {x \sp {12}}}+
{{90000} \  {x \sp {10}}} -
{{5000} \  {x \sp 8}}+
{{2700000} \  {x \sp 6}}+
\\
\\
\displaystyle
{{250000} \  {x \sp 4}}+
{{18000000} \  {x \sp 2}}+
{64000000} 
\end{array}
$$
\returnType{Type: Union(Polynomial Integer,...)}

Factor the polynomial $q1$.

\spadcommand{factoredQ := factor q1  }
$$
\begin{array}{@{}l}
{\left( 
{x \sp {10}} -
{{10} \  {x \sp 8}} -
{{75} \  {x \sp 6}}+
{{1500} \  {x \sp 4}} -
{{5500} \  {x \sp 2}}+
{16000} 
\right)} *
\\
\\
\displaystyle
{\left( 
{x \sp {10}}+
{{10} \  {x \sp 8}}+
{{125} \  {x \sp 6}}+
{{500} \  {x \sp 4}}+
{{2500} \  {x \sp 2}}+
{4000} 
\right)}
\end{array}
$$
\returnType{Type: Factored Polynomial Integer}

We see that $q1$ has two irreducible factors, each of degree $10$.
(The fact that the polynomial $q1$ has two factors of degree $10$ is
enough to show that the Galois group of $p(x)$ is the dihedral group
of order $10$.\footnote{See McKay, Soicher, Computing Galois Groups
over the Rationals, Journal of Number Theory 20, 273-281 (1983).  We
do not assume the results of this paper, however, and we continue with
the computation.}  Note that the type of $factoredQ$ is {\tt FR POLY
INT}, that is, {\tt Factored Polynomial Integer}.  \index{Factored}
This is a special data type for recording factorizations of
polynomials with integer coefficients.

We can access the individual factors using the operation
\spadfunFrom{nthFactor}{Factored}.

\spadcommand{r := nthFactor(factoredQ,1)  }
$$
{x \sp {10}} -{{10} \  {x \sp 8}} -{{75} \  {x \sp 6}}+{{1500} \  {x \sp 4}} 
-{{5500} \  {x \sp 2}}+{16000} 
$$
\returnType{Type: Polynomial Integer}

Consider the polynomial $r = r(x)$.  This is the minimal polynomial of
the difference of two roots of $p(x)$.  Thus, the splitting field of
$p(x)$ contains a subfield of degree $10$.  We show that this subfield
is, in fact, the splitting field of $p(x)$ by showing that $p(x)$
factors completely over this field.

%Original Page 298

First we create a symbolic root of the polynomial $r(x)$.  (We
replaced $x$ by $b$ in the polynomial $r$ so that our symbolic root
would be printed as $b$.)

\spadcommand{beta:AN := rootOf(eval(r,x,b))  }
$$
b 
$$
\returnType{Type: AlgebraicNumber}

We next tell Axiom to view $p(x)$ as a univariate polynomial in $x$
with algebraic number coefficients.  This is accomplished with this
type declaration.

\spadcommand{p := p::UP(x,INT)::UP(x,AN)  }
$$
{x \sp 5} -{5 \  x}+{12} 
$$
\returnType{Type: UnivariatePolynomial(x,AlgebraicNumber)}

Factor $p(x)$ over the field ${\bf Q}(\beta)$.
(This computation will take some time!)

\spadcommand{algFactors := factor(p,[beta])  }
$$
\begin{array}{@{}l}
{\left( 
x+
{\frac{\left(
\begin{array}{@{}l}
-{{85} \  {b \sp 9}} -
{{116} \  {b \sp 8}}+
{{780} \  {b \sp 7}}+
{{2640} \  {b \sp 6}}+
{{14895} \  {b \sp 5}} -
\\
\\
\displaystyle
{{8820} \  {b \sp 4}} -
{{127050} \  {b \sp 3}} -
{{327000} \  {b \sp 2}} -
{{405200} \  b}+
{2062400}
\end{array}
\right)}{1339200}}
\right)}
\\
\\
\displaystyle
{\left( 
x+
{\frac{-{{17} \  {b \sp 8}}+
{{156} \  {b \sp 6}}+
{{2979} \  {b \sp 4}} -
{{25410} \  {b \sp 2}} -
{14080}}{66960}} 
\right)}
\\
\\
\displaystyle
\  {\left( 
x+
{\frac{{{143} \  {b \sp 8}} -
{{2100} \  {b \sp 6}} -
{{10485} \  {b \sp 4}}+
{{290550} \  {b \sp 2}} -
{{334800} \  b} -
{960800}} 
{669600}} 
\right)}
\\
\\
\displaystyle
\  {\left( 
x+
{\frac{{{143} \  {b \sp 8}} -
{{2100} \  {b \sp 6}} -
{{10485} \  {b \sp 4}}+
{{290550} \  {b \sp 2}}+
{{334800} \  b} -
{960800}} 
{669600}} 
\right)}
\\
\\
\displaystyle
{\left( 
x+
{\frac{\left(
\begin{array}{@{}l}
{{85} \  {b \sp 9}} -
{{116} \  {b \sp 8}} -
{{780} \  {b \sp 7}}+
{{2640} \  {b \sp 6}} -
{{14895} \  {b \sp 5}} -
\\
\\
\displaystyle
{{8820} \  {b \sp 4}}+
{{127050} \  {b \sp 3}} -
{{327000} \  {b \sp 2}}+
{{405200} \  b}+
{2062400}
\end{array}
\right)}
{1339200}}
\right)}
\end{array}
$$
\returnType{Type: Factored UnivariatePolynomial(x,AlgebraicNumber)}

When factoring over number fields, it is important to specify the
field over which the polynomial is to be factored, as polynomials have
different factorizations over different fields.  When you use the
operation {\bf factor}, the field over which the polynomial is
factored is the field generated by

%Original Page 299

\begin{enumerate}
\item the algebraic numbers that appear
in the coefficients of the polynomial, and
\item the algebraic numbers that
appear in a list passed as an optional second argument of the operation.
\end{enumerate}
In our case, the coefficients of $p$
are all rational integers and only $beta$
appears in the list, so the field is simply
${\bf Q}(\beta)$.

It was necessary to give the list $[beta]$ as a second argument of the
operation because otherwise the polynomial would have been factored
over the field generated by its coefficients, namely the rational
numbers.

\spadcommand{factor(p) }
$$
{x \sp 5} -{5 \  x}+{12} 
$$
\returnType{Type: Factored UnivariatePolynomial(x,AlgebraicNumber)}

We have shown that the splitting field of $p(x)$ has degree $10$.
Since the symmetric group of degree 5 has only one transitive subgroup
of order $10$, we know that the Galois group of $p(x)$ must be this
group, the dihedral group \index{group!dihedral} of order $10$.
Rather than stop here, we explicitly compute the action of the Galois
group on the roots of $p(x)$.

First we assign the roots of $p(x)$ as the values of five \index{root}
variables.

We can obtain an individual root by negating the constant coefficient of
one of the factors of $p(x)$.

\spadcommand{factor1 := nthFactor(algFactors,1)  }
$$
x+
{
\frac{\left(
\begin{array}{@{}l}
-{{85} \  {b \sp 9}} -
{{116} \  {b \sp 8}}+
{{780} \  {b \sp 7}}+
{{2640} \  {b \sp 6}}+
{{14895} \  {b \sp 5}} -
\\
\\
\displaystyle
{{8820} \  {b \sp 4}} -
{{127050} \  {b \sp 3}} -
{{327000} \  {b \sp 2}} -
{{405200} \  b}+
{2062400}
\end{array}
\right)}{1339200}} 
$$
\returnType{Type: UnivariatePolynomial(x,AlgebraicNumber)}

\spadcommand{root1 := -coefficient(factor1,0)  }
$$
\frac{\left(
\begin{array}{@{}l}
{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}} -
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}} -
{{14895} \  {b \sp 5}}+
\\
\\
\displaystyle
{{8820} \  {b \sp 4}}+
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}}+
{{405200} \  b} -
{2062400}
\end{array}
\right)}{1339200} 
$$
\returnType{Type: AlgebraicNumber}

%Original Page 300

We can obtain a list of all the roots in this way.

\spadcommand{roots := [-coefficient(nthFactor(algFactors,i),0) for i in 1..5]  }
$$
\begin{array}{@{}l}
\displaystyle
\left[
\frac{\left(
\begin{array}{@{}l}
{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}} -
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}} -
{{14895} \  {b \sp 5}}+
{{8820} \  {b \sp 4}}+
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}}+
{{405200} \  b} -
{2062400}
\end{array}
\right)}{1339200},
\right.
\\
\\
\displaystyle
{\frac{{{17} \  {b \sp 8}} -
{{156} \  {b \sp 6}} -
{{2979} \  {b \sp 4}}+
{{25410} \  {b \sp 2}}+
{14080}}{66960}},
\\
\\
\displaystyle
{\frac{-{{143} \  {b \sp 8}}+
{{2100} \  {b \sp 6}}+
{{10485} \  {b \sp 4}} -
{{290550} \  {b \sp 2}}+
{{334800} \  b}+
{960800}}{669600}}, 
\\
\\
\displaystyle
{\frac{-{{143} \  {b \sp 8}}+
{{2100} \  {b \sp 6}}+
{{10485} \  {b \sp 4}} -
{{290550} \  {b \sp 2}} -
{{334800} \  b}+{960800}}{669600}}, 
\\
\\
\displaystyle
\left.
\frac{\left(
\begin{array}{@{}l}
-{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}}+
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}}+
{{14895} \  {b \sp 5}}+
{{8820} \  {b \sp 4}} -
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}}-
{{405200} \  b} -
{2062400}
\end{array}
\right)}{1339200}
\right]
\end{array}
$$
\returnType{Type: List AlgebraicNumber}

The expression
\begin{verbatim}
- coefficient(nthFactor(algFactors, i), 0)
\end{verbatim}
is the $i $-th root of $p(x)$ and the elements of $roots$ are the 
$i$-th roots of $p(x)$ as $i$ ranges from $1$ to $5$.

Assign the roots as the values of the variables $a1,...,a5$.

\spadcommand{(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5)  }
$$
\frac{\left(
\begin{array}{@{}l}
-{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}}+
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}}+
{{14895} \  {b \sp 5}}+
{{8820} \  {b \sp 4}} -
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}}-
{{405200} \  b} -
{2062400}
\end{array}
\right)}{1339200}
$$
\returnType{Type: AlgebraicNumber}

%Original Page 301

Next we express the roots of $r(x)$ as polynomials in $beta$.  We
could obtain these roots by calling the operation {\bf factor}:
$factor(r, [beta])$ factors $r(x)$ over ${\bf Q}(\beta)$.  However,
this is a lengthy computation and we can obtain the roots of $r(x)$ as
differences of the roots $a1,...,a5$ of $p(x)$.  Only ten of these
differences are roots of $r(x)$ and the other ten are roots of the
other irreducible factor of $q1$.  We can determine if a given value
is a root of $r(x)$ by evaluating $r(x)$ at that particular value.
(Of course, the order in which factors are returned by the operation
{\bf factor} is unimportant and may change with different
implementations of the operation.  Therefore, we cannot predict in
advance which differences are roots of $r(x)$ and which are not.)

Let's look at four examples (two are roots of $r(x)$ and
two are not).

\spadcommand{eval(r,x,a1 - a2) }
$$
0 
$$
\returnType{Type: Polynomial AlgebraicNumber}

\spadcommand{eval(r,x,a1 - a3) }
$$
\frac{\left(
\begin{array}{@{}l}
{{47905} \  {b \sp 9}}+
{{66920} \  {b \sp 8}} -
{{536100} \  {b \sp 7}} -
{{980400} \  {b \sp 6}} -
{{3345075} \  {b \sp 5}} -
{{5787000} \  {b \sp 4}}+
\\
\\
\displaystyle
{{75572250} \  {b \sp 3}}+
{{161688000} \  {b \sp 2}} -
{{184600000} \  b} -
{710912000}
\end{array}
\right)}{4464} 
$$
\returnType{Type: Polynomial AlgebraicNumber}

\spadcommand{eval(r,x,a1 - a4) }
$$
0 
$$
\returnType{Type: Polynomial AlgebraicNumber}

\spadcommand{eval(r,x,a1 - a5) }
$$
\frac{{{405} \  {b \sp 8}}+
{{3450} \  {b \sp 6}} -
{{19875} \  {b \sp 4}} -
{{198000} \  {b \sp 2}} -
{588000}}{31} 
$$
\returnType{Type: Polynomial AlgebraicNumber}

Take one of the differences that was a root of $r(x)$ and assign it to
the variable $bb$.

For example, if $eval(r,x,a1 - a4)$ returned $0$, you would enter this.

\spadcommand{bb := a1 - a4  }
$$
\frac{\left(
\begin{array}{@{}l}
{{85} \  {b \sp 9}}+
{{402} \  {b \sp 8}} -
{{780} \  {b \sp 7}} -
{{6840} \  {b \sp 6}} -
{{14895} \  {b \sp 5}} -
{{12150} \  {b \sp 4}}+
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{908100} \  {b \sp 2}}+
{{1074800} \  b} -
{3984000}
\end{array}
\right)}{1339200} 
$$
\returnType{Type: AlgebraicNumber}

Of course, if the difference is, in fact, equal to the root $beta$,
you should choose another root of $r(x)$.

%Original Page 302

Automorphisms of the splitting field are given by mapping a generator
of the field, namely $beta$, to other roots of its minimal polynomial.
Let's see what happens when $beta$ is mapped to $bb$.

We compute the images of the roots $a1,...,a5$ under this automorphism:

\spadcommand{aa1 := subst(a1,beta = bb)  }
$$
\frac{-{{143} \  {b \sp 8}}+
{{2100} \  {b \sp 6}}+
{{10485} \  {b \sp 4}}-
{{290550} \  {b \sp 2}}+
{{334800} \  b}+
{960800}}{669600} 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{aa2 := subst(a2,beta = bb)  }
$$
\frac{\left(
\begin{array}{@{}l}
-{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}}+
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}}+
{{14895} \  {b \sp 5}}+
{{8820} \  {b \sp 4}} -
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}} -
{{405200} \  b} -
{2062400}
\end{array}
\right)}{1339200} 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{aa3 := subst(a3,beta = bb)  }
$$
\frac{\left(
\begin{array}{@{}l}
{{85} \  {b \sp 9}}+
{{116} \  {b \sp 8}} -
{{780} \  {b \sp 7}} -
{{2640} \  {b \sp 6}} -
{{14895} \  {b \sp 5}}+
{{8820} \  {b \sp 4}}+
\\
\\
\displaystyle
{{127050} \  {b \sp 3}}+
{{327000} \  {b \sp 2}}+
{{405200} \  b} -
{2062400} 
\end{array}
\right)}{1339200} 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{aa4 := subst(a4,beta = bb)  }
$$
\frac{-{{143} \  {b \sp 8}}+
{{2100} \  {b \sp 6}}+
{{10485} \  {b \sp 4}}-
{{290550} \  {b \sp 2}} -
{{334800} \  b}+
{960800}}{669600} 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{aa5 := subst(a5,beta = bb)  }
$$
\frac{{{17} \  {b \sp 8}} -
{{156} \  {b \sp 6}} -
{{2979} \  {b \sp 4}}+
{{25410} \  {b \sp 2}}+
{14080}}{66960} 
$$
\returnType{Type: AlgebraicNumber}

Of course, the values $aa1,...,aa5$ are simply a permutation of the values
$a1,...,a5$.

Let's find the value of $aa1$ (execute as many of the following five commands
as necessary).

\spadcommand{(aa1 = a1) :: Boolean }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{(aa1 = a2) :: Boolean }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%Original Page 303

\spadcommand{(aa1 = a3) :: Boolean }
$$
{\tt true}
$$
\returnType{Type: Boolean}

\spadcommand{(aa1 = a4) :: Boolean }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{(aa1 = a5) :: Boolean }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Proceeding in this fashion, you can find the values of
$aa2,...aa5$. You have represented the automorphism $beta -> bb$ as a
permutation of the roots $a1,...,a5$.  If you wish, you can repeat
this computation for all the roots of $r(x)$ and represent the Galois
group of $p(x)$ as a subgroup of the symmetric group on five letters.

Here are two other problems that you may attack in a similar fashion:
\begin{enumerate}
\item Show that the Galois group of
$p(x) = x^4 + 2 x^3 - 2 x^2 - 3 x + 1$
is the dihedral group of order eight. \index{group!dihedral}
(The splitting field of this polynomial is the Hilbert class field
\index{Hilbert class field} of \index{field!Hilbert class} the quadratic field
${\bf Q}(\sqrt{145})$.)
\item Show that the Galois group of
$p(x) = x^6 + 108$
has order 6 and is isomorphic to $S_3,$ the symmetric group on three letters.
\index{group!symmetric} (The splitting field of this polynomial is the 
splitting field of $x^3 - 2$.)
\end{enumerate}

\section{Non-Associative Algebras and Modelling Genetic Laws}
\label{ugProblemGenetic}

Many algebraic structures of mathematics and Axiom have a
multiplication operation {\tt *} that satisfies the associativity law
\index{associativity law} $a*(b*c) = (a*b)*c$ for all $a$, $b$ and
$c$.  The octonions are a well known exception.  There are many other
interesting non-associative structures, such as the class of
\index{Lie algebra} Lie algebras.\footnote{Two Axiom implementations
of Lie algebras are {\tt LieSquareMatrix} and {\tt FreeNilpotentLie}.}
Lie algebras can be used, for example, to analyse Lie symmetry
algebras of \index{symmetry} partial differential \index{differential
equation!partial} equations.  \index{partial differential equation} In
this section we show a different application of non-associative
algebras, \index{non-associative algebra} the modelling of genetic
laws.  \index{algebra!non-associative}

The Axiom library contains several constructors for creating
non-assoc\-i\-a\-tive structures, ranging from the categories 
{\tt Monad}, {\tt NonAssociativeRng}, and {\tt FramedNonAssociativeAlgebra}, 
to the domains {\tt AlgebraGivenByStructuralConstants} and 
{\tt GenericNonAssociativeAlgebra}.  Furthermore, the package 
{\tt AlgebraPackage} provides operations for analysing the structure of
such algebras.\footnote{% The interested reader can learn more about
these aspects of the Axiom library from the paper ``Computations in
Algebras of Finite Rank,'' by Johannes Grabmeier and Robert Wisbauer,
Technical Report, IBM Heidelberg Scientific Center, 1992.}

%Original Page 304

Mendel's genetic laws are often written in a form like

$$Aa \times Aa = {\frac{1}{4}}AA + {\frac{1}{2}}Aa + {\frac{1}{4}}aa$$

The implementation of general algebras in Axiom allows us to
\index{Mendel's genetic laws} use this as the definition for
multiplication in an algebra.  \index{genetics} Hence, it is possible
to study questions of genetic inheritance using Axiom.  To demonstrate
this more precisely, we discuss one example from a monograph of
A. W\"orz-Busekros, where you can also find a general setting of this
theory.\footnote{% W\"{o}rz-Busekros, A., {\it Algebras in Genetics},
Springer Lectures Notes in Biomathematics 36, Berlin e.a. (1980).  In
particular, see example 1.3.}

We assume that there is an infinitely large random mating population.
Random mating of two gametes $a_i$ and $a_j$ gives zygotes
\index{zygote} $a_ia_j$, which produce new gametes.  \index{gamete} In
classical Mendelian segregation we have 
$a_ia_j = {\frac{1}{2}}a_i+{\frac{1}{2}}a_j$.  In general, we have

$$a_ia_j = \sum_{k=1}^n \gamma_{i,j}^k\ a_k.$$

%{$ai aj = gammaij1 a1 + gammaij2 a2 + ... + gammaijn an$}

The segregation rates $\gamma_{i,j}$ are the structural constants of
an $n$-dimensional algebra.  This is provided in Axiom by the
constructor {\tt AlgebraGivenByStructuralConstants} (abbreviation 
{\tt ALGSC}).

Consider two coupled autosomal loci with alleles $A$, $a$, $B$, and
$b$, building four different gametes $a_1 = AB, a_2 = Ab, a_3 = aB,$
and $a_4 = ab$ {$a1 := AB, a2 := Ab, a3 := aB,$ and $a4 := ab$}.  The
zygotes $a_ia_j$ produce gametes $a_i$ and $a_j$ with classical
Mendelian segregation.  Zygote $a_1a_4$ undergoes transition to
$a_2a_3$ and vice versa with probability 
$0 \le \theta \le {\frac{1}{2}}$.

%Original Page 305

Define a list $[(\gamma_{i,j}^k) 1 \le k \le 4]$ of four four-by-four
matrices giving the segregation rates.  We use the value $1/10$ for
$\theta$.

\spadcommand{segregationRates : List SquareMatrix(4,FRAC INT) := [matrix [ [1, 1/2, 1/2, 9/20], [1/2, 0, 1/20, 0], [1/2, 1/20, 0, 0], [9/20, 0, 0, 0] ], matrix [ [0, 1/2, 0, 1/20], [1/2, 1, 9/20, 1/2], [0, 9/20, 0, 0], [1/20, 1/2, 0, 0] ], matrix [ [0, 0, 1/2, 1/20], [0, 0, 9/20, 0], [1/2, 9/20, 1, 1/2], [1/20, 0, 1/2, 0] ], matrix [ [0, 0, 0, 9/20], [0, 0, 1/20, 1/2], [0, 1/20, 0, 1/2], [9/20, 1/2, 1/2, 1] ] ] }
$$
\begin{array}{@{}l}
\left[
{\left[ 
\begin{array}{cccc}
1 & {\frac{1}{2}} & {\frac{1}{2}} & {\frac{9}{20}} \\ 
{\frac{1}{2}} & 0 & {\frac{1}{20}} & 0 \\ 
{\frac{1}{2}} & {\frac{1}{20}} & 0 & 0 \\ 
{\frac{9}{20}} & 0 & 0 & 0 
\end{array}
\right]},
{\left[ 
\begin{array}{cccc}
0 & {\frac{1}{2}} & 0 & {\frac{1}{20}} \\ 
{\frac{1}{2}} & 1 & {\frac{9}{20}} & {\frac{1}{2}} \\ 
0 & {\frac{9}{20}} & 0 & 0 \\ 
{\frac{1}{20}} & {\frac{1}{2}} & 0 & 0 
\end{array}
\right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ 
\begin{array}{cccc}
0 & 0 & {\frac{1}{2}} & {\frac{1}{20}} \\ 
0 & 0 & {\frac{9}{20}} & 0 \\ 
{\frac{1}{2}} & {\frac{9}{20}} & 1 & {\frac{1}{2}} \\ 
{\frac{1}{20}} & 0 & {\frac{1}{2}} & 0 
\end{array}
\right]},
{\left[ 
\begin{array}{cccc}
0 & 0 & 0 & {\frac{9}{20}} \\ 
0 & 0 & {\frac{1}{20}} & {\frac{1}{2}} \\ 
0 & {\frac{1}{20}} & 0 & {\frac{1}{2}} \\ 
{\frac{9}{20}} & {\frac{1}{2}} & {\frac{1}{2}} & 1 
\end{array}
\right]}
\right]
\end{array}
$$
\returnType{Type: List SquareMatrix(4,Fraction Integer)}

Choose the appropriate symbols for the basis of gametes,

\spadcommand{gametes := ['AB,'Ab,'aB,'ab]  }
$$
\left[
AB, Ab, aB, ab 
\right]
$$
\returnType{Type: List OrderedVariableList [AB,Ab,aB,ab]}

Define the algebra.

\spadcommand{A := ALGSC(FRAC INT, 4, gametes, segregationRates)}
$$
\begin{array}{@{}l}
{\rm AlgebraGivenByStructuralConstants(Fraction Integer, 4, }
\\
\displaystyle
{\rm [AB,Ab,aB,ab], [MATRIX,MATRIX,MATRIX,MATRIX])}
\end{array}
$$
\returnType{Type: Domain}

What are the probabilities for zygote $a_1a_4$ to produce the
different gametes?

\spadcommand{a := basis()\$A}
$$
\left[
AB, Ab, aB, ab 
\right]
$$
\returnType{Type: Vector 
AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}

\spadcommand{a.1*a.4}
$$
{{\frac{9}{20}} \  ab}+
{{\frac{1}{20}} \  aB}+
{{\frac{1}{20}} \  Ab}+
{{\frac{9}{20}} \  AB} 
$$
\returnType{Type: 
AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}

Elements in this algebra whose coefficients sum to one play a
distinguished role.  They represent a population with the distribution
of gametes reflected by the coefficients with respect to the basis of
gametes.

Random mating of different populations $x$ and $y$ is described by
their product $x*y$.

This product is commutative only if the gametes are not sex-dependent,
as in our example.

\spadcommand{commutative?()\$A }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%Original Page 306

In general, it is not associative.

\spadcommand{associative?()\$A }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Random mating within a population $x$ is described by $x*x$.  The next
generation is $(x*x)*(x*x)$.

Use decimal numbers to compare the distributions more easily.

\spadcommand{x : ALGSC(DECIMAL, 4, gametes, segregationRates) :=  convert [3/10, 1/5, 1/10, 2/5]}
$$
{{0.4} \  ab}+{{0.1} \  aB}+{{0.2} \  Ab}+{{0.3} \  AB} 
$$
\returnType{Type: 
AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}

To compute directly the gametic distribution in the fifth generation,
we use {\bf plenaryPower}.

\spadcommand{plenaryPower(x,5) }
$$
{{0.{36561}} \  ab}+{{0.{13439}} \  aB}+{{0.{23439}} \  Ab}+{{0.{26561}} \  
AB} 
$$
\returnType{Type: 
AlgebraGivenByStructuralConstants(DecimalExpansion,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}

We now ask two questions: Does this distribution converge to an
equilibrium state?  What are the distributions that are stable?

This is an invariant of the algebra and it is used to answer the first
question.  The new indeterminates describe a symbolic distribution.

\spadcommand{q := leftRankPolynomial()\$GCNAALG(FRAC INT, 4, gametes, segregationRates) :: UP(Y, POLY FRAC INT)}
$$
\begin{array}{@{}l}
{Y \sp 3}+
{{\left( 
-{{\frac{29}{20}} \  \%x4} -
{{\frac{29}{20}} \  \%x3} -
{{\frac{29}{20}} \  \%x2} -
{{\frac{29}{20}} \  \%x1} 
\right)}\  {Y \sp 2}}+
\\
\\
\displaystyle
{
\left(
\begin{array}{@{}l}
\left( {{\frac{9}{20}} \  { \%x4 \sp 2}}+
{{\left( 
{{\frac{9}{10}} \  \%x3}+
{{\frac{9}{10}} \  \%x2}+
{{\frac{9}{10}} \  \%x1} 
\right)}\  \%x4}+
\right.
\\
\\
\displaystyle
{{\frac{9}{20}} \  { \%x3 \sp 2}}+
{{\left( {{\frac{9}{10}} \   \%x2}+{{\frac{9}{10}} \  \%x1} \right)}\  \%x3}+
{{\frac{9}{20}} \  { \%x2 \sp 2}}+
\\
\\
\displaystyle
\left.
{{\frac{9}{10}} \  \%x1 \   \%x2}+
{{\frac{9}{20}} \  { \%x1 \sp 2}} 
\right)
\end{array}
\right)
\  Y} 
\end{array}
$$
\returnType{Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)}


Because the coefficient ${\frac{9}{20}}$ has absolute value less than 1,
all distributions do converge, by a theorem of this theory.

\spadcommand{factor(q :: POLY FRAC INT) }
$$
\begin{array}{@{}l}
{\left( Y - \%x4 - \%x3 - \%x2 - \%x1 \right)} *
\\
\\
\displaystyle
{\left( 
Y -
{{\frac{9}{20}} \  \%x4} -
{{\frac{9}{20}} \  \%x3} -
{{\frac{9}{20}} \  \%x2} -
{{\frac{9}{20}} \  \%x1} 
\right)}
\  Y 
\end{array}
$$
\returnType{Type: Factored Polynomial Fraction Integer}

%Original Page 307

The second question is answered by searching for idempotents in the algebra.

\spadcommand{cI := conditionsForIdempotents()\$GCNAALG(FRAC INT, 4, gametes, segregationRates) }
$$
\begin{array}{@{}l}
\left[
{{{\frac{9}{10}} \  \%x1 \  \%x4}+
{{\left( {{\frac{1}{10}} \  \%x2}+ \%x1 \right)}\  \%x3}+
{ \%x1 \  \%x2}+
{ \%x1 \sp 2} -
\%x1},
\right.
\\
\\
\displaystyle
{{{\left( \%x2+{{\frac{1}{10}} \  \%x1} \right)}\  \%x4}+
{{\frac{9}{10}} \  \%x2 \  \%x3}+
{ \%x2 \sp 2}+
{{\left( \%x1 -1 \right)}\  \%x2}},
\\
\\
\displaystyle
{{{\left( \%x3+{{\frac{1}{10}} \  \%x1} \right)}\  \%x4}+
{ \%x3 \sp 2}+
{{\left( {{\frac{9}{10}} \  \%x2}+ \%x1 -1 \right)}\  \%x3}},
\\
\\
\displaystyle
\left.
{{ \%x4 \sp 2}+
{{\left( \%x3+ \%x2+{{\frac{9}{10}} \  \%x1} -1 \right)}\  \%x4}+
{{\frac{1}{10}} \  \%x2 \  \%x3}} 
\right]
\end{array}
$$
\returnType{Type: List Polynomial Fraction Integer}

Solve these equations and look at the first solution.

\spadcommand{gbs:= groebnerFactorize cI}
$$
\begin{array}{@{}l}
\left[
\begin{array}{@{}l}
\left[ { \%x4+ \%x3+ \%x2+ \%x1 -1}, 
\right.
\\
\displaystyle
\left.
\ \ {{{\left( \%x2+ \%x1 \right)}\  \%x3}+
{ \%x1 \  \%x2}+{ \%x1 \sp 2} - \%x1} 
\right],
\end{array}
\right.
\\
\\
\displaystyle
{\left[ 1 \right]},
{\left[ { \%x4+ \%x3 -1}, \%x2, \%x1 \right]},
\\
\\
\displaystyle
{\left[ { \%x4+ \%x2 -1}, \%x3, \%x1 \right]},
{\left[ \%x4, \%x3, \%x2, \%x1 \right]},
\\
\\
\displaystyle
\left.
{\left[ { \%x4 -1}, \%x3, \%x2, \%x1 \right]},
{\left[ { \%x4 -{\frac{1}{2}}}, { \%x3 -{\frac{1}{2}}}, \%x2, \%x1 \right]}
\right]
\end{array}
$$
\returnType{Type: List List Polynomial Fraction Integer}

\spadcommand{gbs.1}
$$
\begin{array}{@{}l}
\left[
{ \%x4+ \%x3+ \%x2+ \%x1 -1}, 
\right.
\\
\displaystyle
\left.
{{{\left( \%x2+ \%x1 \right)}\  \%x3}+{ \%x1 \  \%x2}+{ \%x1 \sp 2} - \%x1} 
\right]
\end{array}
$$
\returnType{Type: List Polynomial Fraction Integer}


Further analysis using the package {\tt PolynomialIdeals} shows that
there is a two-dimensional variety of equilibrium states and all other
solutions are contained in it.

Choose one equilibrium state by setting two indeterminates to concrete
values.

\spadcommand{sol := solve concat(gbs.1,[\%x1-1/10,\%x2-1/10]) }
$$
\left[
{\left[ 
{ \%x4={\frac{2}{5}}}, 
{ \%x3={\frac{2}{5}}}, 
{ \%x2={\frac{1}{10}}}, 
{ \%x1={\frac{1}{10}}} 
\right]}
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

\spadcommand{e : A := represents reverse (map(rhs, sol.1) :: List FRAC INT) }
$$
{{\frac{2}{5}} \  ab}+
{{\frac{2}{5}} \  aB}+
{{\frac{1}{10}} \  Ab}+
{{\frac{1}{10}} \  AB} 
$$
\returnType{Type: 
AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}

Verify the result.

\spadcommand{e*e-e }
$$
0 
$$
\returnType{Type: 
AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab],
[MATRIX,MATRIX,MATRIX,MATRIX])}


%Original Page 309

%%\setcounter{chapter}{9} % Chapter 10
\chapter{Some Examples of Domains and Packages}
In this chapter we show examples of many of the most commonly used
Axiom domains and packages. The sections are organized by constructor
names.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{ApplicationProgramInterface}

The ApplicationProgramInterface exposes Axiom internal functions
which might be useful for understanding, debugging, or creating tools.

The getDomains function takes the name of a category and returns
a set of domains which inherit from that category:
\begin{verbatim}
  getDomains 'Collection

   {AssociationList, Bits, CharacterClass, DataList, EqTable, 
    FlexibleArray, GeneralPolynomialSet, GeneralSparseTable, 
    GeneralTriangularSet, HashTable, IndexedBits, 
    IndexedFlexibleArray, IndexedList, IndexedOneDimensionalArray,
    IndexedString, IndexedVector, InnerTable, KeyedAccessFile, 
    Library, List, ListMultiDictionary, Multiset, OneDimensionalArray, 
    Point, PrimitiveArray, RegularChain, RegularTriangularSet, 
    Result, RoutinesTable, Set, SparseTable, 
    SquareFreeRegularTriangularSet, Stream, String, StringTable, 
    Table, Vector, WuWenTsunTriangularSet}
                                                             
\end{verbatim}
\returnType{Type: Set Symbol}
This can be used to form the set-difference of two categories:
\begin{verbatim}
  difference(getDomains 'IndexedAggregate, getDomains 'Collection)

   {DirectProduct, DirectProductMatrixModule, DirectProductModule,
    HomogeneousDirectProduct, OrderedDirectProduct,
    SplitHomogeneousDirectProduct}
                                                             
\end{verbatim}
\returnType{Type: Set Symbol}
The credits function prints a list of the people who have contributed
to the development of Axiom. This is equivalent to the )credits command.

The summary function prints a short list of useful console commands.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{ArrayStack}

An ArrayStack object is represented as a list ordered by last-in,
first-out. It operates like a pile of books, where the ``next'' book is
the one on the top of the pile.

Here we create an array stack of integers from a list. Notice that the
order in the list is the order in the stack.
\begin{verbatim}
   a:ArrayStack INT:= arrayStack [1,2,3,4,5]
      [1,2,3,4,5]
\end{verbatim}
We can remove the top of the stack using pop!:
\begin{verbatim}
   pop! a
      1
\end{verbatim}
Notice that the use of pop! is destructive (destructive operations
in Axiom usually end with ! to indicate that the underylying data
structure is changed).
\begin{verbatim}
   a
      [2,3,4,5]
\end{verbatim}
The extract! operation is another name for the pop! operation and
has the same effect. This operation treats the stack as a BagAggregate:
\begin{verbatim}
   extract! a
      2
\end{verbatim}
and you can see that it also has destructively modified the stack:
\begin{verbatim}
   a
      [3,4,5]
\end{verbatim}
Next we push a new element on top of the stack:
\begin{verbatim}
   push!(9,a)
      9
\end{verbatim}
Again, the push! operation is destructive so the stack is changed:
\begin{verbatim}
   a
      [9,3,4,5]
\end{verbatim}
Another name for push! is insert!, which treats the stack as a BagAggregate:
\begin{verbatim}
   insert!(8,a)
      [8,9,3,4,5]
\end{verbatim}
and it modifies the stack:
\begin{verbatim}
   a
      [8,9,3,4,5]
\end{verbatim}
The inspect function returns the top of the stack without modification,
viewed as a BagAggregate:
\begin{verbatim}
   inspect a
      8
\end{verbatim}
The empty? operation returns true only if there are no element on the
stack, otherwise it returns false:
\begin{verbatim}
   empty? a
      false
\end{verbatim}
The top operation returns the top of stack without modification, viewed
as a Stack:
\begin{verbatim}
   top a
      8
\end{verbatim}
The depth operation returns the number of elements on the stack:
\begin{verbatim}
   depth a
      5
\end{verbatim}
which is the same as the \# (length) operation:
\begin{verbatim}
   #a
       5
\end{verbatim}
The less? predicate will compare the stack length to an integer:
\begin{verbatim}
   less?(a,9)
        true
\end{verbatim}
The more? predicate will compare the stack length to an integer:
\begin{verbatim}
   more?(a,9)
        false
\end{verbatim}
The size? operation will compare the stack length to an integer:
\begin{verbatim}
   size?(a,#a)
        true
\end{verbatim}
and since the last computation must alwasy be true we try:
\begin{verbatim}
   size?(a,9)
        false
\end{verbatim}
The parts function will return  the stack as a list of its elements:
\begin{verbatim}
   parts a
        [8,9,3,4,5]
\end{verbatim}
If we have a BagAggregate of elements we can use it to construct a stack.
Notice that the elements are pushed in reverse order:
\begin{verbatim}
   bag([1,2,3,4,5])$ArrayStack(INT)
        [5,4,3,2,1]
\end{verbatim}
The empty function will construct an empty stack of a given type:
\begin{verbatim}
   b:=empty()$(ArrayStack INT)
        []
\end{verbatim}
and the empty? predicate allows us to find out if a stack is empty:
\begin{verbatim}
   empty? b
        true
\end{verbatim}
The sample function returns a sample, empty stack:
\begin{verbatim}
   sample()$ArrayStack(INT)
        []
\end{verbatim}
We can copy a stack and it does not share storage so subsequent
modifications of the original stack will not affect the copy:
\begin{verbatim}
   c:=copy a
        [8,9,3,4,5]
\end{verbatim}
The eq? function is only true if the lists are the same reference,
so even though c is a copy of a, they are not the same:
\begin{verbatim}
   eq?(a,c)
        false
\end{verbatim}
However, a clearly shares a reference with itself:
\begin{verbatim}
   eq?(a,a)
        true
\end{verbatim}
But we can compare a and c for equality:
\begin{verbatim}
   (a=c)@Boolean
        true
\end{verbatim}
and clearly a is equal to itself:
\begin{verbatim}
   (a=a)@Boolean
        true
\end{verbatim}
and since a and c are equal, they are clearly NOT not-equal:
\begin{verbatim}
   a~=c
        false
\end{verbatim}
We can use the any? function to see if a predicate is true for any element:
\begin{verbatim}
   any?(x+->(x=4),a)
        true
\end{verbatim}
or false for every element:
\begin{verbatim}
   any?(x+->(x=11),a)
        false
\end{verbatim}
We can use the every? function to check every element satisfies a predicate:
\begin{verbatim}
   every?(x+->(x=11),a)
        false
\end{verbatim}
We can count the elements that are equal to an argument of this type:
\begin{verbatim}
   count(4,a)
        1
\end{verbatim}
or we can count against a boolean function:
\begin{verbatim}
   count(x+->(x>2),a)
        5
\end{verbatim}
You can also map a function over every element, returning a new stack:
\begin{verbatim}
   map(x+->x+10,a)
        [18,19,13,14,15]
\end{verbatim}
Notice that the orignal stack is unchanged:
\begin{verbatim}
   a
        [8,9,3,4,5]
\end{verbatim}
You can use map! to map a function over every element and change
the original stack since map! is destructive:
\begin{verbatim}
   map!(x+->x+10,a)
       [18,19,13,14,15]
\end{verbatim}
Notice that the orignal stack has been changed:
\begin{verbatim}
   a
       [18,19,13,14,15]
\end{verbatim}
The member function can also get the element of the stack as a list:
\begin{verbatim}
   members a
       [18,19,13,14,15]
\end{verbatim}
and using member? we can test if the stack holds a given element:
\begin{verbatim}
   member?(14,a)
       true
\end{verbatim}
Also see \domainref{Stack}, \domainref{Queue}, \domainref{Dequeue} and
\domainref{Heap}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{AssociationList}

The {\tt AssociationList} constructor provides a general structure for
associative storage.  This type provides association lists in which
data objects can be saved according to keys of any type.  For a given
association list, specific types must be chosen for the keys and
entries.  You can think of the representation of an association list
as a list of records with key and entry fields.

Association lists are a form of table and so most of the operations
available for {\tt Table} are also available for {\tt AssociationList}.  
They can also be viewed as lists and can be manipulated accordingly.

This is a {\tt Record} type with age and gender fields.

\spadcommand{Data := Record(monthsOld : Integer, gender : String)}
$$
\mbox{\rm Record(monthsOld: Integer,gender: String)} 
$$
\returnType{Type: Domain}

%Original Page 310

In this expression, {\tt al} is declared to be an association
list whose keys are strings and whose entries are the above records.

\spadcommand{al : AssociationList(String,Data)}
\returnType{Type: Void}

The \spadfunFrom{table}{AssociationList} operation is used to create
an empty association list.

\spadcommand{al := table()}
$$
table() 
$$
\returnType{Type: 
AssociationList(String,Record(monthsOld: Integer,gender: String))}

You can use assignment syntax to add things to the association list.

\spadcommand{al."bob" := [407,"male"]\$Data}
$$
\left[
{monthsOld={407}}, {gender= \mbox{\tt "male"} } 
\right]
$$
\returnType{Type: Record(monthsOld: Integer,gender: String)}

\spadcommand{al."judith" := [366,"female"]\$Data}
$$
\left[
{monthsOld={366}}, {gender= \mbox{\tt "female"} } 
\right]
$$
\returnType{Type: Record(monthsOld: Integer,gender: String)}

\spadcommand{al."katie" := [24,"female"]\$Data}
$$
\left[
{monthsOld={24}}, {gender= \mbox{\tt "female"} } 
\right]
$$
\returnType{Type: Record(monthsOld: Integer,gender: String)}

Perhaps we should have included a species field.

\spadcommand{al."smokie" := [200,"female"]\$Data}
$$
\left[
{monthsOld={200}}, {gender= \mbox{\tt "female"} } 
\right]
$$
\returnType{Type: Record(monthsOld: Integer,gender: String)}

Now look at what is in the association list.  Note that the last-added
(key, entry) pair is at the beginning of the list.

\spadcommand{al}
$$
\begin{array}{@{}l}
table 
\left(
{ \mbox{\tt "smokie"} =
{\left[ {monthsOld={200}}, {gender= \mbox{\tt "female"} } \right]}},
\right.
\\
\\
\displaystyle
\ \ \ \ \ \ \ \ { \mbox{\tt "katie"} =
{\left[ {monthsOld={24}}, {gender= \mbox{\tt "female"} } \right]}},
\\
\\
\displaystyle
\ \ \ \ \ \ \ \ { \mbox{\tt "judith"} =
{\left[ {monthsOld={366}}, {gender= \mbox{\tt "female"} } \right]}},
\\
\\
\displaystyle
\left.
\ \ \ \ \ \ \ \ { \mbox{\tt "bob"} =
{\left[ {monthsOld={407}}, {gender= \mbox{\tt "male"} } \right]}}
\right)
\end{array}
$$
\returnType{Type: 
AssociationList(String,Record(monthsOld: Integer,gender: String))}

You can reset the entry for an existing key.

\spadcommand{al."katie" := [23,"female"]\$Data}
$$
\left[
{monthsOld={23}}, {gender= \mbox{\tt "female"} } 
\right]
$$
\returnType{Type: Record(monthsOld: Integer,gender: String)}

Use \spadfunFrom{delete!}{AssociationList} to destructively remove an
element of the association list.  Use
\spadfunFrom{delete}{AssociationList} to return a copy of the
association list with the element deleted.  The second argument is the
index of the element to delete.

\spadcommand{delete!(al,1)}
$$
\begin{array}{@{}l}
table 
\left(
{ \mbox{\tt "katie"} =
{\left[ {monthsOld={23}}, {gender= \mbox{\tt "female"} } \right]}},
\right.
\\
\\
\displaystyle
\ \ \ \ \ \ \ \ { \mbox{\tt "judith"} =
{\left[ {monthsOld={366}}, {gender= \mbox{\tt "female"} } \right]}},
\\
\\
\displaystyle
\left.
\ \ \ \ \ \ \ \ { \mbox{\tt "bob"} =
{\left[ {monthsOld={407}}, {gender= \mbox{\tt "male"} } \right]}}
\right)
\end{array}
$$
\returnType{Type: 
AssociationList(String,Record(monthsOld: Integer,gender: String))}

For more information about tables, see \domainref{Table}.
For more information about lists, see \domainref{List}.

%Original Page 311

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{BalancedBinaryTree}

{\tt BalancedBinaryTrees(S)} is the domain of balanced binary trees
with elements of type {\tt S} at the nodes.  A binary tree is either
{\tt empty} or else consists of a {\tt node} having a {\tt value} and
two branches, each branch a binary tree.  A balanced binary tree is
one that is balanced with respect its leaves.  One with $2^k$ leaves
is perfectly ``balanced'': the tree has minimum depth, and the {\tt
left} and {\tt right} branch of every interior node is identical in
shape.

Balanced binary trees are useful in algebraic computation for
so-called ``divide-and-conquer'' algorithms.  Conceptually, the data
for a problem is initially placed at the root of the tree.  The
original data is then split into two subproblems, one for each
subtree.  And so on.  Eventually, the problem is solved at the leaves
of the tree.  A solution to the original problem is obtained by some
mechanism that can reassemble the pieces.  In fact, an implementation
of the Chinese Remainder Algorithm using balanced binary trees was
first proposed by David Y. Y.  Yun at the IBM T. J.  Watson Research
Center in Yorktown Heights, New York, in 1978.  It served as the
prototype for polymorphic algorithms in Axiom.

In what follows, rather than perform a series of computations with a
single expression, the expression is reduced modulo a number of
integer primes, a computation is done with modular arithmetic for each
prime, and the Chinese Remainder Algorithm is used to obtain the
answer to the original problem.  We illustrate this principle with the
computation of $12^2 = 144$.

A list of moduli.

\spadcommand{lm := [3,5,7,11]}
$$
\left[
3, 5, 7,  {11} 
\right]
$$
\returnType{Type: List PositiveInteger}

The expression {\tt modTree(n, lm)} creates a balanced binary tree
with leaf values {\tt n mod m} for each modulus {\tt m} in {\tt lm}.

\spadcommand{modTree(12,lm)}
$$
\left[
0, 2, 5, 1 
\right]
$$
\returnType{Type: List Integer}

Operation {\tt modTree} does this using operations on balanced binary
trees.  We trace its steps.  Create a balanced binary tree {\tt t} of
zeros with four leaves.

\spadcommand{t := balancedBinaryTree(\#lm, 0)}
$$
\left[
{\left[ 0, 0, 0 \right]}, 0, {\left[ 0, 0, 0\right]}
\right]
$$
\returnType{Type: BalancedBinaryTree NonNegativeInteger}

The leaves of the tree are set to the individual moduli.

\spadcommand{setleaves!(t,lm)}
$$
\left[
{\left[ 3, 0, 5\right]}, 0, {\left[ 7, 0, {11} \right]}
\right]
$$
\returnType{Type: BalancedBinaryTree NonNegativeInteger}

%Original Page 312

Use {\tt mapUp!} to do a bottom-up traversal of {\tt t}, setting each
interior node to the product of the values at the nodes of its
children.

\spadcommand{mapUp!(t,\_*)}
$$
1155 
$$
\returnType{Type: PositiveInteger}

The value at the node of every subtree is the product of the moduli
of the leaves of the subtree.

\spadcommand{t}
$$
\left[
{\left[ 3, {15}, 5\right]}, {1155}, {\left[ 7, {77}, {11} \right]}
\right]
$$
\returnType{Type: BalancedBinaryTree NonNegativeInteger}

Operation {\tt mapDown!}{\tt (t,a,fn)} replaces the value {\tt v} at
each node of {\tt t} by {\tt fn(a,v)}.

\spadcommand{mapDown!(t,12,\_rem)}
$$
\left[
{\left[ 0, {12}, 2\right]}, {12}, {\left[ 5, {12}, 1 \right]}
\right]
$$
\returnType{Type: BalancedBinaryTree NonNegativeInteger}

The operation {\tt leaves} returns the leaves of the resulting tree.
In this case, it returns the list of {\tt 12 mod m} for each modulus
{\tt m}.

\spadcommand{leaves \%}
$$
\left[
0, 2, 5, 1 
\right]
$$
\returnType{Type: List NonNegativeInteger}

Compute the square of the images of {\tt 12} modulo each {\tt m}.

\spadcommand{squares := [x**2 rem m for x in \% for m in lm]}
$$
\left[
0, 4, 4, 1 
\right]
$$
\returnType{Type: List NonNegativeInteger}

Call the Chinese Remainder Algorithm to get the answer for $12^2$.

\spadcommand{chineseRemainder(\%,lm)}
$$
144 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{BasicOperator}

A basic operator is an object that can be symbolically applied to a
list of arguments from a set, the result being a kernel over that set
or an expression.  In addition to this section, please see
\domainref{Expression} and \domainref{Kernel} for additional
information and examples.

You create an object of type {\tt BasicOperator} by using the
\spadfunFrom{operator}{BasicOperator} operation.  This first form of
this operation has one argument and it must be a symbol.  The symbol
should be quoted in case the name has been used as an identifier to
which a value has been assigned.

A frequent application of {\tt BasicOperator} is the creation of an
operator to represent the unknown function when solving a differential
equation.

Let {\tt y} be the unknown function in terms of {\tt x}.

\spadcommand{y := operator 'y}
$$
y 
$$
\returnType{Type: BasicOperator}

This is how you enter the equation {\tt y'' + y' + y = 0}.

\spadcommand{deq := D(y x, x, 2) + D(y x, x) + y x = 0}
$$
{{{y \sb {{\ }} \sp {,,}} \left({x} \right)}+
{{y\sb {{\ }} \sp {,}} \left({x} \right)}+
{y\left({x} \right)}}=0
$$
\returnType{Type: Equation Expression Integer}

To solve the above equation, enter this.

\spadcommand{solve(deq, y, x)}
$$
\left[
{particular=0}, 
{basis={\left[ {{\cos \left({{\frac{x \  {\sqrt {3}}}{2}}} \right)}
\  {e \sp {\left( -{\frac{x}{2}} \right)}}},
{{e \sp {\left( -{\frac{x}{2}} \right)}}
\  {\sin \left({{\frac{x \  {\sqrt {3}}}{2}}} \right)}}
\right]}}
\right]
$$
\returnType{Type: Union(Record(particular: Expression Integer,
basis: List Expression Integer),...)}

See \sectionref{ugProblemDEQ}
for this kind of use of {\tt BasicOperator}.

Use the single argument form of \spadfunFrom{operator}{BasicOperator}
(as above) when you intend to use the operator to create functional
expressions with an arbitrary number of arguments

{\it Nary} means an arbitrary number of arguments can be used
in the functional expressions.

\spadcommand{nary? y}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{unary? y}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Use the two-argument form when you want to restrict the number of
arguments in the functional expressions created with the operator.

This operator can only be used to create functional expressions
with one argument.

\spadcommand{opOne := operator('opOne, 1)}
$$
opOne 
$$
\returnType{Type: BasicOperator}

\spadcommand{nary? opOne}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{unary? opOne}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Use \spadfunFrom{arity}{BasicOperator} to learn the number of arguments 
that can be used.  It returns {\tt "false"} if the operator is nary.

\spadcommand{arity opOne}
$$
1 
$$
\returnType{Type: Union(NonNegativeInteger,...)}

Use \spadfunFrom{name}{BasicOperator} to learn the name of an operator.

\spadcommand{name opOne}
$$
opOne 
$$
\returnType{Type: Symbol}

Use \spadfunFrom{is?}{BasicOperator} to learn if an operator has a
particular name.

\spadcommand{is?(opOne, 'z2)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

You can also use a string as the name to be tested against.

\spadcommand{is?(opOne, "opOne")}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

You can attached named properties to an operator.  These are rarely
used at the top-level of the Axiom interactive environment but are
used with Axiom library source code.

By default, an operator has no properties.

\spadcommand{properties y}
$$
table() 
$$
\returnType{Type: AssociationList(String,None)}

The interface for setting and getting properties is somewhat awkward
because the property values are stored as values of type {\tt None}.

Attach a property by using \spadfunFrom{setProperty}{BasicOperator}.

\spadcommand{setProperty(y, "use", "unknown function" :: None )}
$$
y 
$$
\returnType{Type: BasicOperator}

\spadcommand{properties y}
$$
table 
\left(
{{ \mbox{\tt "use"} =NONE}} 
\right)
$$
\returnType{Type: AssociationList(String,None)}

We {\it know} the property value has type {\tt String}.

\spadcommand{property(y, "use") :: None pretend String}
$$
\mbox{\tt "unknown function"} 
$$
\returnType{Type: String}

Use \spadfunFrom{deleteProperty!}{BasicOperator} to destructively
remove a property.

\spadcommand{deleteProperty!(y, "use")}
$$
y 
$$
\returnType{Type: BasicOperator}

\spadcommand{properties y}
$$
table() 
$$
\returnType{Type: AssociationList(String,None)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{BinaryExpansion}

All rational numbers have repeating binary expansions.  Operations to
access the individual bits of a binary expansion can be obtained by
converting the value to {\tt RadixExpansion(2)}.  More examples of
expansions are available in \domainref{DecimalExpansion},\\ 
\domainref{HexadecimalExpansion}, and \domainref{RadixExpansion}.

The expansion (of type {\tt BinaryExpansion}) of a rational number
is returned by the \spadfunFrom{binary}{BinaryExpansion} operation.

\spadcommand{r := binary(22/7)}
$$
{11}.{\overline {001}} 
$$
\returnType{Type: BinaryExpansion}

Arithmetic is exact.

\spadcommand{r + binary(6/7)}
$$
100 
$$
\returnType{Type: BinaryExpansion}

%Original Page 313

The period of the expansion can be short or long \ldots

\spadcommand{[binary(1/i) for i in 102..106] }
$$
\begin{array}{@{}l}
\left[
{0.0{\overline {00000101}}}, 
{0.{\overline {000000100111110001000101100101111001110010010101001}}},
\right.
\\
\\
\displaystyle
{0.{000}{\overline {000100111011}}},
{0.{\overline {000000100111}}},
\\
\\
\displaystyle
\left.
{0.0{\overline {0000010011010100100001110011111011001010110111100011}}} 
\right]
\end{array}
$$
\returnType{Type: List BinaryExpansion}

or very long.

\spadcommand{binary(1/1007) }
$$
\begin{array}{@{}l}
0.
\overline 
{000000000100000100010100100101111000001111110000101111110010110001111101}
\\
\displaystyle
\ \ \overline 
{000100111001001100110001100100101010111101101001100000000110000110011110}
\\
\displaystyle
\ \ \overline 
{111000110100010111101001000111101100001010111011100111010101110011001010}
\\
\displaystyle
\ \ \overline 
{010111000000011100011110010000001001001001101110010101001110100011011101}
\\
\displaystyle
\ \ \overline 
{101011100010010000011001011011000000101100101111100010100000101010101101}
\\
\displaystyle
\ \ \overline 
{011000001101101110100101011111110101110101001100100001010011011000100110}
\\
\displaystyle
\ \ \overline 
{001000100001000011000111010011110001}
\end{array}
$$
\returnType{Type: BinaryExpansion}

These numbers are bona fide algebraic objects.

\spadcommand{p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)}
$$
{{0.{01}} \  {x \sp 2}}+{{0.{\overline {10}}} \  x}+{0.{\overline {011100}}} 
$$
\returnType{Type: Polynomial BinaryExpansion}

\spadcommand{q := D(p, x)}
$$
{{0.1} \  x}+{0.{\overline {10}}} 
$$
\returnType{Type: Polynomial BinaryExpansion}

\spadcommand{g := gcd(p, q)}
$$
x+{1.{\overline {01}}} 
$$
\returnType{Type: Polynomial BinaryExpansion}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{BinarySearchTree}

{\tt BinarySearchTree(R)} is the domain of binary trees with elements
of type {\tt R}, ordered across the nodes of the tree.  A non-empty
binary search tree has a value of type {\tt R}, and {\tt right} and
{\tt left} binary search subtrees.  If a subtree is empty, it is
displayed as a period (``.'').

Define a list of values to be placed across the tree.  The resulting
tree has {\tt 8} at the root; all other elements are in the left
subtree.

\spadcommand{lv := [8,3,5,4,6,2,1,5,7]}
$$
\left[
8, 3, 5, 4, 6, 2, 1, 5, 7 
\right]
$$
\returnType{Type: List PositiveInteger}

%Original Page 311314

A convenient way to create a binary search tree is to apply the
operation {\tt binarySearchTree} to a list of elements.

\spadcommand{t := binarySearchTree lv}
$$
\left[
{\left[ {\left[ 1, 2, . \right]}, 3, 
{\left[ 4, 5, {\left[ 5, 6, 7 \right]}\right]}
\right]},
8, . 
\right]
$$
\returnType{Type: BinarySearchTree PositiveInteger}

Another approach is to first create an empty binary search tree of integers.

\spadcommand{emptybst := empty()\$BSTREE(INT)}
$$
[\ ] 
$$
\returnType{Type: BinarySearchTree Integer}

Insert the value {\tt 8}.  This establishes {\tt 8} as the root of the
binary search tree.  Values inserted later that are less than {\tt 8}
get stored in the {\tt left} subtree, others in the {\tt right} subtree.

\spadcommand{t1 := insert!(8,emptybst)}
$$
8 
$$
\returnType{Type: BinarySearchTree Integer}

Insert the value {\tt 3}. This number becomes the root of the {\tt
left} subtree of {\tt t1}.  For optimal retrieval, it is thus
important to insert the middle elements first.

\spadcommand{insert!(3,t1)}
$$
\left[3, 8, . \right]
$$
\returnType{Type: BinarySearchTree Integer}

We go back to the original tree {\tt t}.  The leaves of the binary
search tree are those which have empty {\tt left} and {\tt right} subtrees.

\spadcommand{leaves t}
$$
\left[
1, 4, 5, 7 
\right]
$$
\returnType{Type: List PositiveInteger}

The operation {\tt split}{\tt (k,t)} returns a \index{record}
containing the two subtrees: one with all elements ``less'' than 
{\tt k}, another with elements ``greater'' than {\tt k}.

\spadcommand{split(3,t)}
$$
\left[
{less={\left[ 1, 2, . \right]}},
{greater={\left[ {\left[ ., 3, 
{\left[ 4, 5, 
{\left[ 5, 6, 7 \right]}
\right]}
\right]},
8, . 
\right]}}
\right]
$$
\returnType{Type: 
Record(less: BinarySearchTree PositiveInteger,greater: 
BinarySearchTree PositiveInteger)}

Define {\tt insertRoot} to insert new elements by creating a new node.

\spadcommand{insertRoot: (INT,BSTREE INT) -> BSTREE INT}
\returnType{Type: Void}

The new node puts the inserted value between its ``less'' tree and
``greater'' tree.

\begin{verbatim}
insertRoot(x, t) ==
    a := split(x, t)
    node(a.less, x, a.greater)
\end{verbatim}

Function {\tt buildFromRoot} builds a binary search tree from a list
of elements {\tt ls} and the empty tree {\tt emptybst}.

\spadcommand{buildFromRoot ls == reduce(insertRoot,ls,emptybst)}
\returnType{Type: Void}

Apply this to the reverse of the list {\tt lv}.

\spadcommand{rt := buildFromRoot reverse lv}
$$
\left[
{\left[ {\left[ 1, 2, . \right]}, 3, 
{\left[ 4, 5, {\left[ 5, 6, 7\right]}\right]}
\right]},
8, . 
\right]
$$
\returnType{Type: BinarySearchTree Integer}

%Original Page 315

Have Axiom check that these are equal.

\spadcommand{(t = rt)@Boolean}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{CardinalNumber}

The {\tt CardinalNumber} domain can be used for values indicating the
cardinality of sets, both finite and infinite.  For example, the
\spadfunFrom{dimension}{VectorSpace} operation in the category 
{\tt VectorSpace} returns a cardinal number.

The non-negative integers have a natural construction as cardinals
\begin{verbatim}
0 = #{ }, 1 = {0}, 2 = {0, 1}, ..., n = {i | 0 <= i < n}.
\end{verbatim}

The fact that {\tt 0} acts as a zero for the multiplication of cardinals is
equivalent to the axiom of choice.

Cardinal numbers can be created by conversion from non-negative integers.

\spadcommand{c0 := 0 :: CardinalNumber}
$$
0 
$$
\returnType{Type: CardinalNumber}

\spadcommand{c1 := 1 :: CardinalNumber}
$$
1 
$$
\returnType{Type: CardinalNumber}

\spadcommand{c2 := 2 :: CardinalNumber}
$$
2 
$$
\returnType{Type: CardinalNumber}

\spadcommand{c3 := 3 :: CardinalNumber}
$$
3 
$$
\returnType{Type: CardinalNumber}

They can also be obtained as the named cardinal {\tt Aleph(n)}.

\spadcommand{A0 := Aleph 0}
$$
Aleph 
\left(
{0} 
\right)
$$
\returnType{Type: CardinalNumber}

\spadcommand{A1 := Aleph 1}
$$
Aleph 
\left(
{1} 
\right)
$$
\returnType{Type: CardinalNumber}

The \spadfunFrom{finite?}{CardinalNumber} operation tests whether a
value is a finite cardinal, that is, a non-negative integer.

\spadcommand{finite? c2}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%Original Page 316

\spadcommand{finite? A0}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Similarly, the \spadfunFrom{countable?}{CardinalNumber}
operation determines whether a value is
a countable cardinal, that is, finite or {\tt Aleph(0)}.

\spadcommand{countable? c2}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{countable? A0}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{countable? A1}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Arithmetic operations are defined on cardinal numbers as follows:
If {\tt x = \#X}  and  {\tt y = \#Y} then

\noindent
$
\begin{array}{lr}
{\tt x+y  = \#(X+Y)}  & cardinality of the disjoint union\\
{\tt x-y  = \#(X-Y)}  & cardinality of the relative complement \\
{\tt x*y  = \#(X*Y)}  & cardinality of the Cartesian product \\
{\tt x**y = \#(X**Y)} & 
cardinality of the set of maps from {\tt Y} to {\tt X} \\
\end{array}
$

Here are some arithmetic examples.

\spadcommand{[c2 + c2, c2 + A1]}
$$
\left[4, {Aleph \left({1} \right)}\right]
$$
\returnType{Type: List CardinalNumber}

\spadcommand{[c0*c2, c1*c2, c2*c2, c0*A1, c1*A1, c2*A1, A0*A1]}
$$
\left[
0, 2, 4, 0, {Aleph \left({1} \right)},
{Aleph \left({1} \right)},
{Aleph \left({1} \right)}
\right]
$$
\returnType{Type: List CardinalNumber}

\spadcommand{[c2**c0, c2**c1, c2**c2, A1**c0, A1**c1, A1**c2]}
$$
\left[
1, 2, 4, 1, {Aleph \left({1} \right)},
{Aleph \left({1} \right)}
\right]
$$
\returnType{Type: List CardinalNumber}

Subtraction is a partial operation: it is not defined
when subtracting a larger cardinal from a smaller one, nor
when subtracting two equal infinite cardinals.

\spadcommand{[c2-c1, c2-c2, c2-c3, A1-c2, A1-A0, A1-A1]}
$$
\left[
1, 0, \mbox{\tt "failed"} , {Aleph \left({1} \right)},
{Aleph \left({1} \right)},
\mbox{\tt "failed"} 
\right]
$$
\returnType{Type: List Union(CardinalNumber,"failed")}

The generalized continuum hypothesis asserts that
\begin{verbatim}
2**Aleph i = Aleph(i+1)
\end{verbatim}

%Original Page 317

and is independent of the axioms of set theory.\footnote{Goedel,
{\it The consistency of the continuum hypothesis,}
Ann. Math. Studies, Princeton Univ. Press, 1940.}

The {\tt CardinalNumber} domain provides an operation to assert
whether the hypothesis is to be assumed.

\spadcommand{generalizedContinuumHypothesisAssumed true}

When the generalized continuum hypothesis
is assumed, exponentiation to a transfinite power is allowed.

\spadcommand{[c0**A0, c1**A0, c2**A0, A0**A0, A0**A1, A1**A0, A1**A1]}
$$
\left[
0, 1, {Aleph \left({1} \right)},
{Aleph \left({1} \right)},
{Aleph \left({2} \right)},
{Aleph \left({1} \right)},
{Aleph \left({2} \right)}
\right]
$$
\returnType{Type: List CardinalNumber}

Three commonly encountered cardinal numbers are

\noindent
$
\begin{array}{lr}
{\tt a = \#}{\bf Z} & countable infinity  \\
{\tt c = \#}{\bf R} & the continuum       \\
{\tt f = \#\{g| g: [0,1] -> {\bf R}\}}    \\
\end{array}
$

In this domain, these values are obtained under the generalized
continuum hypothesis in this way.

\spadcommand{a := Aleph 0}
$$
Aleph \left({0} \right)
$$
\returnType{Type: CardinalNumber}

\spadcommand{c := 2**a}
$$
Aleph \left({1} \right)
$$
\returnType{Type: CardinalNumber}

\spadcommand{f := 2**c}
$$
Aleph \left({2} \right)
$$
\returnType{Type: CardinalNumber}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{CartesianTensor}

{\tt CartesianTensor(i0,dim,R)} provides Cartesian tensors with
components belonging to a commutative ring {\tt R}.  Tensors can be
described as a generalization of vectors and matrices.  This gives a
concise {\it tensor algebra} for multilinear objects supported by the
{\tt CartesianTensor} domain.  You can form the inner or outer product
of any two tensors and you can add or subtract tensors with the same
number of components.  Additionally, various forms of traces and
transpositions are useful.

The {\tt CartesianTensor} constructor allows you to specify the
minimum index for subscripting.  In what follows we discuss in detail
how to manipulate tensors.

%Original Page 318

Here we construct the domain of Cartesian tensors of dimension 2 over the
integers, with indices starting at 1.

\spadcommand{CT := CARTEN(i0 := 1, 2, Integer)}
$$
CartesianTensor(1,2,Integer) 
$$
\returnType{Type: Domain}

\subsubsection{Forming tensors}

Scalars can be converted to tensors of rank zero.

\spadcommand{t0: CT := 8}
$$
8 
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{rank t0}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

Vectors (mathematical direct products, rather than one dimensional array
structures) can be converted to tensors of rank one.

\spadcommand{v: DirectProduct(2, Integer) := directProduct [3,4]}
$$
\left[
3, 4 
\right]
$$
\returnType{Type: DirectProduct(2,Integer)}

\spadcommand{Tv: CT := v}
$$
\left[
3, 4 
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

Matrices can be converted to tensors of rank two.

\spadcommand{m: SquareMatrix(2, Integer) := matrix [ [1,2],[4,5] ]}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
4 & 5 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{Tm: CT := m}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
4 & 5 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{n: SquareMatrix(2, Integer) := matrix [ [2,3],[0,1] ]}
$$
\left[
\begin{array}{cc}
2 & 3 \\ 
0 & 1 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{Tn: CT := n}
$$
\left[
\begin{array}{cc}
2 & 3 \\ 
0 & 1 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

%Original Page 319

In general, a tensor of rank {\tt k} can be formed by making a list of
rank {\tt k-1} tensors or, alternatively, a {\tt k}-deep nested list
of lists.

\spadcommand{t1: CT := [2, 3]}
$$
\left[
2, 3 
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{rank t1}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{t2: CT := [t1, t1]}
$$
\left[
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{t3: CT := [t2, t2]}
$$
\left[
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]},
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{tt: CT := [t3, t3]; tt := [tt, tt]}
$$
\left[
{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
\end{array}
\right]},
{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
2 & 3 \\ 
2 & 3 
\end{array}
\right]}
\end{array}
\right]}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{rank tt}
$$
5 
$$
\returnType{Type: PositiveInteger}

\subsubsection{Multiplication}

Given two tensors of rank {\tt k1} and {\tt k2}, the outer
\spadfunFrom{product}{CartesianTensor} forms a new tensor of rank 
{\tt k1+k2}. Here

$$T_{mn}(i,j,k,l) = T_m(i,j) \  T_n(k,l)$$

\spadcommand{Tmn := product(Tm, Tn)}
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
0 & 1 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
4 & 6 \\ 
0 & 2 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
8 & {12} \\ 
0 & 4 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
{10} & {15} \\ 
0 & 5 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

The inner product (\spadfunFrom{contract}{CartesianTensor}) forms a
tensor of rank {\tt k1+k2-2}.  This product generalizes the vector dot
product and matrix-vector product by summing component products along
two indices.

%Original Page 320

Here we sum along the second index of $T_m$ and the first index of
$T_v$.  Here 

$$T_{mv} = \sum_{j=1}^{\hbox{\tiny\rm dim}} T_m(i,j) \ T_v(j)$$

\spadcommand{Tmv := contract(Tm,2,Tv,1)}
$$
\left[
{11}, {32} 
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

The multiplication operator \spadopFrom{*}{CartesianTensor} is scalar
multiplication or an inner product depending on the ranks of the arguments.

If either argument is rank zero it is treated as scalar multiplication.
Otherwise, {\tt a*b} is the inner product summing the last index of
{\tt a} with the first index of {\tt b}.

\spadcommand{Tm*Tv}
$$
\left[
{11}, {32} 
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

This definition is consistent with the inner product on matrices
and vectors.

\spadcommand{Tmv = m * v}
$$
{\left[ {11}, {32} \right]}=
{\left[{11}, {32} \right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\subsubsection{Selecting Components}

For tensors of low rank (that is, four or less), components can be selected
by applying the tensor to its indices.

\spadcommand{t0()}
$$
8 
$$
\returnType{Type: PositiveInteger}

\spadcommand{t1(1+1)}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{t2(2,1)}
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{t3(2,1,2)}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{Tmn(2,1,2,1)}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

A general indexing mechanism is provided for a list of indices.

\spadcommand{t0[]}
$$
8 
$$
\returnType{Type: PositiveInteger}

%Original Page 321

\spadcommand{t1[2]}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{t2[2,1]}
$$
2 
$$
\returnType{Type: PositiveInteger}

The general mechanism works for tensors of arbitrary rank, but is
somewhat less efficient since the intermediate index list must be created.

\spadcommand{t3[2,1,2]}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{Tmn[2,1,2,1]}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

\subsubsection{Contraction}

A ``contraction'' between two tensors is an inner product, as we have
seen above.  You can also contract a pair of indices of a single
tensor.  This corresponds to a ``trace'' in linear algebra.  The
expression {\tt contract(t,k1,k2)} forms a new tensor by summing the
diagonal given by indices in position {\tt k1} and {\tt k2}.

This is the tensor given by
$$xT_{mn} = \sum_{k=1}^{\hbox{\tiny\rm dim}} T_{mn}(k,k,i,j)$$

\spadcommand{cTmn := contract(Tmn,1,2)}
$$
\left[
\begin{array}{cc}
{12} & {18} \\ 
0 & 6 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

Since {\tt Tmn} is the outer product of matrix {\tt m} and matrix {\tt n},
the above is equivalent to this.

\spadcommand{trace(m) * n}
$$
\left[
\begin{array}{cc}
{12} & {18} \\ 
0 & 6 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

In this and the next few examples, we show all possible contractions
of {\tt Tmn} and their matrix algebra equivalents.

\spadcommand{contract(Tmn,1,2) = trace(m) * n}
$$
{\left[ 
\begin{array}{cc}
{12} & {18} \\ 
0 & 6 
\end{array}
\right]}={\left[
\begin{array}{cc}
{12} & {18} \\ 
0 & 6 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\spadcommand{contract(Tmn,1,3) = transpose(m) * n}
$$
{\left[ 
\begin{array}{cc}
2 & 7 \\ 
4 & {11} 
\end{array}
\right]}={\left[
\begin{array}{cc}
2 & 7 \\ 
4 & {11} 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

%Original Page 322

\spadcommand{contract(Tmn,1,4) = transpose(m) * transpose(n)}
$$
{\left[ 
\begin{array}{cc}
{14} & 4 \\ 
{19} & 5 
\end{array}
\right]}={\left[
\begin{array}{cc}
{14} & 4 \\ 
{19} & 5 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\spadcommand{contract(Tmn,2,3) = m * n}
$$
{\left[ 
\begin{array}{cc}
2 & 5 \\ 
8 & {17} 
\end{array}
\right]}={\left[
\begin{array}{cc}
2 & 5 \\ 
8 & {17} 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\spadcommand{contract(Tmn,2,4) = m * transpose(n)}
$$
{\left[ 
\begin{array}{cc}
8 & 2 \\ 
{23} & 5 
\end{array}
\right]}={\left[
\begin{array}{cc}
8 & 2 \\ 
{23} & 5 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\spadcommand{contract(Tmn,3,4) = trace(n) * m}
$$
{\left[ 
\begin{array}{cc}
3 & 6 \\ 
{12} & {15} 
\end{array}
\right]}={\left[
\begin{array}{cc}
3 & 6 \\ 
{12} & {15} 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\subsubsection{Transpositions}

You can exchange any desired pair of indices using the
\spadfunFrom{transpose}{CartesianTensor} operation.

Here the indices in positions one and three are exchanged, that is,
$$
tT_{mn}(i,j,k,l) = T_{mn}(k,j,i,l).
$$

\spadcommand{tTmn := transpose(Tmn,1,3)}
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 3 \\ 
8 & {12} 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
4 & 6 \\ 
{10} & {15} 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
0 & 1 \\ 
0 & 4 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
0 & 2 \\ 
0 & 5 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

If no indices are specified, the first and last index are exchanged.

\spadcommand{transpose Tmn}
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 8 \\ 
0 & 0 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
4 & {10} \\ 
0 & 0 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
3 & {12} \\ 
1 & 4 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
6 & {15} \\ 
2 & 5 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

This is consistent with the matrix transpose.

\spadcommand{transpose Tm = transpose m}
$$
{\left[ 
\begin{array}{cc}
1 & 4 \\ 
2 & 5 
\end{array}
\right]}={\left[
\begin{array}{cc}
1 & 4 \\ 
2 & 5 
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

If a more complicated reordering of the indices is required, then the
\spadfunFrom{reindex}{CartesianTensor} operation can be used.
This operation allows the indices to be arbitrarily permuted.

%Original Page 323

This defines $rT_{mn}(i,j,k,l) = \allowbreak T_{mn}(i,l,j,k).$

\spadcommand{rTmn := reindex(Tmn, [1,4,2,3])}
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 0 \\ 
4 & 0 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
3 & 1 \\ 
6 & 2 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
8 & 0 \\ 
{10} & 0 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
{12} & 4 \\ 
{15} & 5 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\subsubsection{Arithmetic}

Tensors of equal rank can be added or subtracted so arithmetic
expressions can be used to produce new tensors.

\spadcommand{tt := transpose(Tm)*Tn - Tn*transpose(Tm)}
$$
\left[
\begin{array}{cc}
-6 & -{16} \\ 
2 & 6 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{Tv*(tt+Tn)}
$$
\left[
-4, -{11} 
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\spadcommand{reindex(product(Tn,Tn),[4,3,2,1])+3*Tn*product(Tm,Tm)}
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{46} & {84} \\ 
{174} & {212} 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
{57} & {114} \\ 
{228} & {285} 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
{18} & {24} \\ 
{57} & {63} 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
{17} & {30} \\ 
{63} & {76} 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

\subsubsection{Specific Tensors}

Two specific tensors have properties which depend only on the
dimension.

The Kronecker delta satisfies
\begin{verbatim}
             +-
             |   1  if i  = j
delta(i,j) = |
             |   0  if i ^= j
             +-
\end{verbatim}

\spadcommand{delta:  CT := kroneckerDelta()}
$$
\left[
\begin{array}{cc}
1 & 0 \\ 
0 & 1 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

This can be used to reindex via contraction.

\spadcommand{contract(Tmn, 2, delta, 1) = reindex(Tmn, [1,3,4,2])}
$$
{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 4 \\ 
3 & 6 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
0 & 0 \\ 
1 & 2 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
8 & {10} \\ 
{12} & {15} 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
0 & 0 \\ 
4 & 5 
\end{array}
\right]}
\end{array}
\right]}={\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
2 & 4 \\ 
3 & 6 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
0 & 0 \\ 
1 & 2 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
8 & {10} \\ 
{12} & {15} 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
0 & 0 \\ 
4 & 5 
\end{array}
\right]}
\end{array}
\right]}
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

%Original Page 324

The Levi Civita symbol determines the sign of a permutation of indices.

\spadcommand{epsilon:CT := leviCivitaSymbol()}
$$
\left[
\begin{array}{cc}
0 & 1 \\ 
-1 & 0 
\end{array}
\right]
$$
\returnType{Type: CartesianTensor(1,2,Integer)}

Here we have:
\begin{verbatim}
epsilon(i1,...,idim)
     = +1  if i1,...,idim is an even permutation of i0,...,i0+dim-1
     = -1  if i1,...,idim is an  odd permutation of i0,...,i0+dim-1
     =  0  if i1,...,idim is not   a permutation of i0,...,i0+dim-1
\end{verbatim}

This property can be used to form determinants.

\spadcommand{contract(epsilon*Tm*epsilon, 1,2) = 2 * determinant m}
$$
-6=-6 
$$
\returnType{Type: Equation CartesianTensor(1,2,Integer)}

\subsubsection{Properties of the CartesianTensor domain}

{\tt GradedModule(R,E)} denotes ``{\tt E}-graded {\tt R}-module'',
that is, a collection of {\tt R}-modules indexed by an abelian monoid
{\tt E.}  An element {\tt g} of {\tt G[s]} for some specific {\tt s}
in {\tt E} is said to be an element of {\tt G} with
\spadfunFrom{degree}{GradedModule} {\tt s}.  Sums are defined in each
module {\tt G[s]} so two elements of {\tt G} can be added if they have
the same degree.  Morphisms can be defined and composed by degree to
give the mathematical category of graded modules.

{\tt GradedAlgebra(R,E)} denotes ``{\tt E}-graded {\tt R}-algebra.''
A graded algebra is a graded module together with a degree preserving
{\tt R}-bilinear map, called the \spadfunFrom{product}{GradedAlgebra}.

\begin{verbatim}
degree(product(a,b))    = degree(a) + degree(b)

product(r*a,b)          = product(a,r*b) = r*product(a,b)
product(a1+a2,b)        = product(a1,b) + product(a2,b)
product(a,b1+b2)        = product(a,b1) + product(a,b2)
product(a,product(b,c)) = product(product(a,b),c)
\end{verbatim}

The domain {\tt CartesianTensor(i0, dim, R)} belongs to the category
{\tt GradedAlgebra(R, NonNegativeInteger)}.  The non-negative integer
\spadfunFrom{degree}{GradedAlgebra} is the tensor rank and the graded
algebra \spadfunFrom{product}{GradedAlgebra} is the tensor outer
product.  The graded module addition captures the notion that only
tensors of equal rank can be added.

If {\tt V} is a vector space of dimension {\tt dim} over {\tt R},
then the tensor module {\tt T[k](V)} is defined as
\begin{verbatim}
T[0](V) = R
T[k](V) = T[k-1](V) * V
\end{verbatim}
where {\tt *} denotes the {\tt R}-module tensor
\spadfunFrom{product}{GradedAlgebra}.  {\tt CartesianTensor(i0,dim,R)}
is the graded algebra in which the degree {\tt k} module is {\tt
T[k](V)}.

%Original Page 325

\subsubsection{Tensor Calculus}

It should be noted here that often tensors are used in the context of
tensor-valued manifold maps.  This leads to the notion of covariant
and contravariant bases with tensor component functions transforming
in specific ways under a change of coordinates on the manifold.  This
is no more directly supported by the {\tt CartesianTensor} domain than
it is by the {\tt Vector} domain.  However, it is possible to have the
components implicitly represent component maps by choosing a
polynomial or expression type for the components.  In this case, it is
up to the user to satisfy any constraints which arise on the basis of
this interpretation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Character}

The members of the domain {\tt Character} are values
representing letters, numerals and other text elements.
For more information on related topics, see
\domainref{CharacterClass} and \domainref{String}.

Characters can be obtained using {\tt String} notation.

\spadcommand{chars := [char "a", char "A", char "X", char "8", char "+"]}
$$
\left[
a, A, X, 8, + 
\right]
$$
\returnType{Type: List Character}

Certain characters are available by name.
This is the blank character.

\spadcommand{space()}
$$
\  
$$
\returnType{Type: Character}

This is the quote that is used in strings.

\spadcommand{quote()}
$$
\mbox{\tt "} 
$$
\returnType{Type: Character}

This is the escape character that allows quotes and other characters
within strings.

\spadcommand{escape()}
$$
\_ 
$$
\returnType{Type: Character}

Characters are represented as integers in a machine-dependent way.
The integer value can be obtained using the
\spadfunFrom{ord}{Character} operation.  It is always true that {\tt
char(ord c) = c} and {\tt ord(char i) = i}, provided that {\tt i} is
in the range {\tt 0..size()\$Character-1}.

\spadcommand{[ord c for c in chars]}
$$
\left[
{97}, {65}, {88}, {56}, {43} 
\right]
$$
\returnType{Type: List Integer}
 
The \spadfunFrom{lowerCase}{Character} operation converts an upper
case letter to the corresponding lower case letter.  If the argument
is not an upper case letter, then it is returned unchanged.

\spadcommand{[upperCase c for c in chars]}
$$
\left[
A, A, X, 8, + 
\right]
$$
\returnType{Type: List Character}

%Original Page 326

Likewise, the \spadfunFrom{upperCase}{Character} operation converts lower
case letters to upper case.

\spadcommand{[lowerCase c for c in chars] }
$$
\left[
a, a, x, 8, + 
\right]
$$
\returnType{Type: List Character}

A number of tests are available to determine whether characters
belong to certain families.

\spadcommand{[alphabetic? c for c in chars] }
$$
\left[
{\tt true}, {\tt true}, {\tt true}, {\tt false}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

\spadcommand{[upperCase? c for c in chars] }
$$
\left[
{\tt false}, {\tt true}, {\tt true}, {\tt false}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

\spadcommand{[lowerCase? c for c in chars] }
$$
\left[
{\tt true}, {\tt false}, {\tt false}, {\tt false}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

\spadcommand{[digit? c for c in chars] }
$$
\left[
{\tt false}, {\tt false}, {\tt false}, {\tt true}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

\spadcommand{[hexDigit? c for c in chars] }
$$
\left[
{\tt true}, {\tt true}, {\tt false}, {\tt true}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

\spadcommand{[alphanumeric? c for c in chars] }
$$
\left[
{\tt true}, {\tt true}, {\tt true}, {\tt true}, {\tt false} 
\right]
$$
\returnType{Type: List Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{CharacterClass}

The {\tt CharacterClass} domain allows classes of characters to be
defined and manipulated efficiently.
 
Character classes can be created by giving either a string or a list
of characters.

\spadcommand{cl1 := charClass [char "a", char "e", char "i", char "o", char "u", char "y"] }
$$
\mbox{\tt "aeiouy"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{cl2 := charClass "bcdfghjklmnpqrstvwxyz" }
$$
\mbox{\tt "bcdfghjklmnpqrstvwxyz"} 
$$
\returnType{Type: CharacterClass}

%Original Page 327

A number of character classes are predefined for convenience.

\spadcommand{digit()}
$$
\mbox{\tt "0123456789"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{hexDigit()}
$$
\mbox{\tt "0123456789ABCDEFabcdef"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{upperCase()}
$$
\mbox{\tt "ABCDEFGHIJKLMNOPQRSTUVWXYZ"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{lowerCase()}
$$
\mbox{\tt "abcdefghijklmnopqrstuvwxyz"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{alphabetic()}
$$
\mbox{\tt "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{alphanumeric()}
$$
\mbox{\tt "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"} 
$$
\returnType{Type: CharacterClass}

You can quickly test whether a character belongs to a class.

\spadcommand{member?(char "a", cl1) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{member?(char "a", cl2) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Classes have the usual set operations because the {\tt CharacterClass}
domain belongs to the category {\tt FiniteSetAggregate(Character)}.

\spadcommand{intersect(cl1, cl2)  }
$$
\mbox{\tt "y"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{union(cl1,cl2)       }
$$
\mbox{\tt "abcdefghijklmnopqrstuvwxyz"} 
$$
\returnType{Type: CharacterClass}

%Original Page 328

\spadcommand{difference(cl1,cl2)  }
$$
\mbox{\tt "aeiou"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{intersect(complement(cl1),cl2)  }
$$
\mbox{\tt "bcdfghjklmnpqrstvwxz"} 
$$
\returnType{Type: CharacterClass}

You can modify character classes by adding or removing characters.

\spadcommand{insert!(char "a", cl2) }
$$
\mbox{\tt "abcdfghjklmnpqrstvwxyz"} 
$$
\returnType{Type: CharacterClass}

\spadcommand{remove!(char "b", cl2) }
$$
\mbox{\tt "acdfghjklmnpqrstvwxyz"} 
$$
\returnType{Type: CharacterClass}
 
For more information on related topics, see 
\domainref{Character} and \domainref{String}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{CliffordAlgebra}

\noindent

{\tt CliffordAlgebra(n,K,Q)} defines a vector space of dimension $2^n$
over the field $K$ with a given quadratic form {\tt Q}.  If $\{e_1,
\ldots, e_n\}$ is a basis for $K^n$ then
\begin{verbatim}
{ 1,
  e(i) 1 <= i <= n,
  e(i1)*e(i2) 1 <= i1 < i2 <=n,
  ...,
  e(1)*e(2)*...*e(n) }
\end{verbatim}
is a basis for the Clifford algebra. The algebra is defined by the relations
\begin{verbatim}
e(i)*e(i) = Q(e(i))
e(i)*e(j) = -e(j)*e(i),  i ^= j
\end{verbatim}
Examples of Clifford Algebras are
gaussians (complex numbers), quaternions,
exterior algebras and spin algebras.

%Original Page 329

\subsection{The Complex Numbers as a Clifford Algebra}

This is the field over which we will work, rational functions with
integer coefficients.

\spadcommand{K := Fraction Polynomial Integer }
$$
\mbox{\rm Fraction Polynomial Integer} 
$$
\returnType{Type: Domain}

We use this matrix for the quadratic form.

\spadcommand{m := matrix [ [-1] ] }
$$
\left[
\begin{array}{c}
-1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

We get complex arithmetic by using this domain.

\spadcommand{C := CliffordAlgebra(1, K, quadraticForm m) }
$$
\mbox{\rm CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)} 
$$
\returnType{Type: Domain}

Here is {\tt i}, the usual square root of {\tt -1.}

\spadcommand{i: C := e(1)   }
$$
e \sb {1} 
$$
\returnType{Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)}

Here are some examples of the arithmetic.

\spadcommand{x := a + b * i }
$$
a+{b \  {e \sb {1}}} 
$$
\returnType{Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)}

\spadcommand{y := c + d * i }
$$
c+{d \  {e \sb {1}}} 
$$
\returnType{Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)}

See \domainref{Complex}
for examples of Axiom's constructor implementing complex numbers.

\spadcommand{x * y }
$$
-{b \  d}+{a \  c}+{{\left( {a \  d}+{b \  c} 
\right)}
\  {e \sb {1}}} 
$$
\returnType{Type: CliffordAlgebra(1,Fraction Polynomial Integer,MATRIX)}

\subsection{The Quaternion Numbers as a Clifford Algebra}

This is the field over which we will work, rational functions with
integer coefficients.

\spadcommand{K := Fraction Polynomial Integer }
$$
\mbox{\rm Fraction Polynomial Integer} 
$$
\returnType{Type: Domain}

%Original Page 330

We use this matrix for the quadratic form.

\spadcommand{m := matrix [ [-1,0],[0,-1] ] }
$$
\left[
\begin{array}{cc}
-1 & 0 \\ 
0 & -1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

The resulting domain is the quaternions.

\spadcommand{H  := CliffordAlgebra(2, K, quadraticForm m) }
$$
\mbox{\rm CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)} 
$$
\returnType{Type: Domain}

We use Hamilton's notation for {\tt i},{\tt j},{\tt k}.

\spadcommand{i: H  := e(1) }
$$
e \sb {1} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{j: H  := e(2) }
$$
e \sb {2} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{k: H  := i * j }
$$
{e \sb {1}} \  {e \sb {2}} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{x := a + b * i + c * j + d * k }
$$
a+{b \  {e \sb {1}}}+{c \  {e \sb {2}}}+{d \  {e \sb {1}} \  {e \sb {2}}} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{y := e + f * i + g * j + h * k }
$$
e+{f \  {e \sb {1}}}+{g \  {e \sb {2}}}+{h \  {e \sb {1}} \  {e \sb {2}}} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{x + y }
$$
e+a+{{\left( f+b 
\right)}
\  {e \sb {1}}}+{{\left( g+c 
\right)}
\  {e \sb {2}}}+{{\left( h+d 
\right)}
\  {e \sb {1}} \  {e \sb {2}}} 
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\spadcommand{x * y }
$$
\begin{array}{@{}l}
-{d \  h} -
{c \  g} -
{b \  f}+
{a \  e}+
{{\left( {c \  h} -{d \  g}+{a \  f}+{b \  e} \right)}\  {e \sb {1}}}+
\\
\\
\displaystyle
{{\left( -{b \  h}+{a \  g}+{d \  f}+{c \  e} \right)}\  {e \sb {2}}}+
{{\left( {a \  h}+{b \  g} -{c \  f}+{d \  e} \right)}
\  {e \sb {1}} \  {e \sb {2}}} 
\end{array}
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

%Original Page 331

See \domainref{Quaternion}
for examples of Axiom's constructor implementing quaternions.

\spadcommand{y * x }
$$
\begin{array}{@{}l}
-{d \  h} -{c \  g} -{b \  f}+{a \  e}+
{{\left( -{c \  h}+{d \  g}+{a \  f}+{b \  e} \right)}\  {e \sb {1}}}+
\\
\\
\displaystyle
{{\left( {b \  h}+{a \  g} -{d \  f}+{c \  e} \right)}\  {e \sb {2}}}+
{{\left( {a \  h} -
{b \  g}+{c \  f}+{d \  e} \right)}\  {e \sb {1}} \  {e \sb {2}}} 
\end{array}
$$
\returnType{Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)}

\subsection{The Exterior Algebra on a Three Space}

This is the field over which we will work, rational functions with
integer coefficients.

\spadcommand{K := Fraction Polynomial Integer }
$$
\mbox{\rm Fraction Polynomial Integer} 
$$
\returnType{Type: Domain}

If we chose the three by three zero quadratic form, we obtain
the exterior algebra on {\tt e(1),e(2),e(3)}.

\spadcommand{Ext := CliffordAlgebra(3, K, quadraticForm 0) }
$$
\mbox{\rm CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)} 
$$
\returnType{Type: Domain}

This is a three dimensional vector algebra.
We define {\tt i}, {\tt j}, {\tt k} as the unit vectors.

\spadcommand{i: Ext := e(1) }
$$
e \sb {1} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

\spadcommand{j: Ext := e(2) }
$$
e \sb {2} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

\spadcommand{k: Ext := e(3) }
$$
e \sb {3} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

Now it is possible to do arithmetic.

\spadcommand{x := x1*i + x2*j + x3*k }
$$
{x1 \  {e \sb {1}}}+{x2 \  {e \sb {2}}}+{x3 \  {e \sb {3}}} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

\spadcommand{y := y1*i + y2*j + y3*k }
$$
{y1 \  {e \sb {1}}}+{y2 \  {e \sb {2}}}+{y3 \  {e \sb {3}}} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

\spadcommand{x + y         }
$$
{{\left( y1+x1 
\right)}
\  {e \sb {1}}}+{{\left( y2+x2 
\right)}
\  {e \sb {2}}}+{{\left( y3+x3 
\right)}
\  {e \sb {3}}} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

%Original Page 332

\spadcommand{x * y + y * x }
$$
0 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

On an {\tt n} space, a grade {\tt p} form has a dual {\tt n-p} form.
In particular, in three space the dual of a grade two element identifies
{\tt e1*e2->e3, e2*e3->e1, e3*e1->e2}.

\spadcommand{dual2 a == coefficient(a,[2,3]) * i + coefficient(a,[3,1]) * j + coefficient(a,[1,2]) * k }
\returnType{Type: Void}

The vector cross product is then given by this.

\spadcommand{dual2(x*y) }
\begin{verbatim}
   Compiling function dual2 with type CliffordAlgebra(3,Fraction 
      Polynomial Integer,MATRIX) -> CliffordAlgebra(3,Fraction 
      Polynomial Integer,MATRIX) 
\end{verbatim}
$$
{{\left( {x2 \  y3} -{x3 \  y2} 
\right)}
\  {e \sb {1}}}+{{\left( -{x1 \  y3}+{x3 \  y1} 
\right)}
\  {e \sb {2}}}+{{\left( {x1 \  y2} -{x2 \  y1} 
\right)}
\  {e \sb {3}}} 
$$
\returnType{Type: CliffordAlgebra(3,Fraction Polynomial Integer,MATRIX)}

\subsection{The Dirac Spin Algebra}

In this section we will work over the field of rational numbers.

\spadcommand{K := Fraction Integer }
$$
\mbox{\rm Fraction Integer} 
$$
\returnType{Type: Domain}

We define the quadratic form to be the Minkowski space-time metric.

\spadcommand{g := matrix [ [1,0,0,0], [0,-1,0,0], [0,0,-1,0], [0,0,0,-1] ] }
$$
\left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\ 
0 & -1 & 0 & 0 \\ 
0 & 0 & -1 & 0 \\ 
0 & 0 & 0 & -1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

We obtain the Dirac spin algebra used in Relativistic Quantum Field Theory.

\spadcommand{D := CliffordAlgebra(4,K, quadraticForm g) }
$$
\mbox{\rm CliffordAlgebra(4,Fraction Integer,MATRIX)} 
$$
\returnType{Type: Domain}

The usual notation for the basis is $\gamma$ with a superscript.  For
Axiom input we will use {\tt gam(i)}:

\spadcommand{gam := [e(i)\$D for i in 1..4] }
$$
\left[
{e \sb {1}}, {e \sb {2}}, {e \sb {3}}, {e \sb {4}} 
\right]
$$
\returnType{Type: List CliffordAlgebra(4,Fraction Integer,MATRIX)}

\noindent
There are various contraction identities of the form
\begin{verbatim}
g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =
      2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))
\end{verbatim}
where a sum over {\tt l} and {\tt t} is implied.

%Original Page 333

Verify this identity for particular values of {\tt m,n,r,s}.

\spadcommand{m := 1; n:= 2; r := 3; s := 4; }
\returnType{Type: PositiveInteger}

\spadcommand{lhs := reduce(+, [reduce(+, [ g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) for l in 1..4]) for t in 1..4]) }
$$
-{4 \  {e \sb {1}} \  {e \sb {2}} \  {e \sb {3}} \  {e \sb {4}}} 
$$
\returnType{Type: CliffordAlgebra(4,Fraction Integer,MATRIX)}

\spadcommand{rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s) }
$$
-{4 \  {e \sb {1}} \  {e \sb {2}} \  {e \sb {3}} \  {e \sb {4}}} 
$$
\returnType{Type: CliffordAlgebra(4,Fraction Integer,MATRIX)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Complex}

The {\tt Complex} constructor implements complex objects over a
commutative ring {\tt R}.  Typically, the ring {\tt R} is {\tt Integer}, 
{\tt Fraction Integer}, {\tt Float} or {\tt DoubleFloat}.
{\tt R} can also be a symbolic type, like {\tt Polynomial Integer}.
For more information about the numerical and graphical aspects of
complex numbers, see \sectionref{ugProblemNumeric}.

Complex objects are created by the \spadfunFrom{complex}{Complex} operation.

\spadcommand{a := complex(4/3,5/2) }
$$
{\frac{4}{3}}+{{\frac{5}{2}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

\spadcommand{b := complex(4/3,-5/2) }
$$
{\frac{4}{3}} -{{\frac{5}{2}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

The standard arithmetic operations are available.

\spadcommand{a + b }
$$
\frac{8}{3} 
$$
\returnType{Type: Complex Fraction Integer}

\spadcommand{a - b }
$$
5 \  i 
$$
\returnType{Type: Complex Fraction Integer}

\spadcommand{a * b }
$$
\frac{289}{36} 
$$
\returnType{Type: Complex Fraction Integer}

%Original Page 334

If {\tt R} is a field, you can also divide the complex objects.

\spadcommand{a / b }
$$
-{\frac{161}{289}}+{{\frac{240}{289}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

Use a conversion (see \sectionref{ugTypesConvert})
to view the last object as a fraction of complex integers.

\spadcommand{\% :: Fraction Complex Integer }
$$
\frac{-{15}+{8 \  i}}{{15}+{8 \  i}} 
$$
\returnType{Type: Fraction Complex Integer}

The predefined macro {\tt \%i} is defined to be {\tt complex(0,1)}.

\spadcommand{3.4 + 6.7 * \%i}
$$
{3.4}+{{6.7} \  i} 
$$
\returnType{Type: Complex Float}

You can also compute the \spadfunFrom{conjugate}{Complex} and
\spadfunFrom{norm}{Complex} of a complex number.

\spadcommand{conjugate a }
$$
{\frac{4}{3}} -{{\frac{5}{2}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

\spadcommand{norm a }
$$
\frac{289}{36} 
$$
\returnType{Type: Fraction Integer}

The \spadfunFrom{real}{Complex} and \spadfunFrom{imag}{Complex} operations
are provided to extract the real and imaginary parts, respectively.

\spadcommand{real a }
$$
\frac{4}{3} 
$$
\returnType{Type: Fraction Integer}

\spadcommand{imag a }
$$
\frac{5}{2} 
$$
\returnType{Type: Fraction Integer}

The domain {\tt Complex Integer} is also called the Gaussian integers.
If {\tt R} is the integers (or, more generally, a {\tt EuclideanDomain}), 
you can compute greatest common divisors.

\spadcommand{gcd(13 - 13*\%i,31 + 27*\%i)}
$$
5+i 
$$
\returnType{Type: Complex Integer}

You can also compute least common multiples.

\spadcommand{lcm(13 - 13*\%i,31 + 27*\%i)}
$$
{143} -{{39} \  i} 
$$
\returnType{Type: Complex Integer}

%Original Page 335

You can \spadfunFrom{factor}{Complex} Gaussian integers.

\spadcommand{factor(13 - 13*\%i)}
$$
-{{\left( 1+i 
\right)}
\  {\left( 2+{3 \  i} 
\right)}
\  {\left( 3+{2 \  i} 
\right)}}
$$
\returnType{Type: Factored Complex Integer}

\spadcommand{factor complex(2,0)}
$$
-{i \  {{\left( 1+i 
\right)}
\sp 2}} 
$$
\returnType{Type: Factored Complex Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{ContinuedFraction}

Continued fractions have been a fascinating and useful tool in
mathematics for well over three hundred years.  Axiom implements
continued fractions for fractions of any Euclidean domain.  In
practice, this usually means rational numbers.  In this section we
demonstrate some of the operations available for manipulating both
finite and infinite continued fractions.  It may be helpful if you
review \domainref{Stream} to remind 
yourself of some of the operations with streams.

The {\tt ContinuedFraction} domain is a field and therefore you can
add, subtract, multiply and divide the fractions.

The \spadfunFrom{continuedFraction}{ContinuedFraction} operation
converts its fractional argument to a continued fraction.

\spadcommand{c := continuedFraction(314159/100000) }
$$
3+ \zag{1}{7}+ \zag{1}{{15}}+ \zag{1}{1}+ \zag{1}{{25}}+ \zag{1}{1}+ 
\zag{1}{7}+ \zag{1}{4} 
$$
\returnType{Type: ContinuedFraction Integer}

This display is a compact form of the bulkier
\begin{verbatim}
        3 +                 1
            -------------------------------
            7 +               1
                ---------------------------
                15 +            1
                     ----------------------
                     1 +          1
                         ------------------
                         25 +       1
                              -------------
                              1 +     1
                                  ---------
                                  7 +   1
                                      -----
                                        4
\end{verbatim}

You can write any rational number in a similar form.  The fraction
will be finite and you can always take the ``numerators'' to be {\tt 1}.
That is, any rational number can be written as a simple, finite
continued fraction of the form

\begin{verbatim}
        a(1) +           1
               -------------------------
               a(2) +          1
                      --------------------
                      a(3) +
                             .
                              .
                               .
                                     1
                               -------------
                               a(n-1) +  1
                                        ----
                                        a(n)
\end{verbatim}

%Original Page 336

The $a_i$ are called partial quotients and the operation
\spadfunFrom{partialQuotients}{ContinuedFraction} creates a stream of them.

\spadcommand{partialQuotients c }
$$
\left[
3, 7, {15}, 1, {25}, 1, 7, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

By considering more and more of the fraction, you get the
\spadfunFrom{convergents}{ContinuedFraction}.  For example, the first
convergent is $a_1$, the second is $a_1 + 1/a_2$ and so on.

\spadcommand{convergents c }
$$
\left[
3, {\frac{22}{7}}, {\frac{333}{106}}, {\frac{355}{113}}, 
{\frac{9208}{2931}}, {\frac{9563}{3044}}, {\frac{76149}{24239}}, 
\ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

Since this is a finite continued fraction, the last convergent is the
original rational number, in reduced form.  The result of
\spadfunFrom{approximants}{ContinuedFraction} is always an infinite
stream, though it may just repeat the ``last'' value.

\spadcommand{approximants c }
$$
\left[
3, {\frac{22}{7}}, {\frac{333}{106}}, {\frac{355}{113}}, 
{\frac{9208}{2931}}, {\frac{9563}{3044}}, {\frac{76149}{24239}}, 
\ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

Inverting {\tt c} only changes the partial quotients of its fraction
by inserting a {\tt 0} at the beginning of the list.

\spadcommand{pq := partialQuotients(1/c) }
$$
\left[
0, 3, 7, {15}, 1, {25}, 1, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Do this to recover the original continued fraction from this list of
partial quotients.  The three-argument form of the
\spadfunFrom{continuedFraction}{ContinuedFraction} operation takes an
element which is the whole part of the fraction, a stream of elements
which are the numerators of the fraction, and a stream of elements
which are the denominators of the fraction.

\spadcommand{continuedFraction(first pq,repeating [1],rest pq) }
$$
\zag{1}{3}+ \zag{1}{7}+ \zag{1}{{15}}+ \zag{1}{1}+ \zag{1}{{25}}+ \zag{1}{1}+ 
\zag{1}{7}+\ldots 
$$
\returnType{Type: ContinuedFraction Integer}

The streams need not be finite for
\spadfunFrom{continuedFraction}{ContinuedFraction}.  Can you guess
which irrational number has the following continued fraction?  See the
end of this section for the answer.

\spadcommand{z:=continuedFraction(3,repeating [1],repeating [3,6]) }
$$
3+ \zag{1}{3}+ \zag{1}{6}+ \zag{1}{3}+ \zag{1}{6}+ \zag{1}{3}+ \zag{1}{6}+ 
\zag{1}{3}+\ldots 
$$
\returnType{Type: ContinuedFraction Integer}

In 1737 Euler discovered the infinite continued fraction expansion
\begin{verbatim}
        e - 1             1
        ----- = ---------------------
          2     1 +         1
                    -----------------
                    6 +       1
                        -------------
                        10 +    1
                             --------
                             14 + ...
\end{verbatim}

We use this expansion to compute rational and floating point
approximations of {\tt e}.\footnote{For this and other interesting
expansions, see C. D. Olds, {\it Continued Fractions,} New
Mathematical Library, (New York: Random House, 1963), pp.  134--139.}

%Original Page 337

By looking at the above expansion, we see that the whole part is {\tt 0}
and the numerators are all equal to {\tt 1}.  This constructs the
stream of denominators.

\spadcommand{dens:Stream Integer := cons(1,generate((x+->x+4),6)) }
$$
\left[
1, 6, {10}, {14}, {18}, {22}, {26}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Therefore this is the continued fraction expansion for
$(e - 1) / 2$.

\spadcommand{cf := continuedFraction(0,repeating [1],dens) }
$$
\zag{1}{1}+ \zag{1}{6}+ \zag{1}{{10}}+ \zag{1}{{14}}+ \zag{1}{{18}}+ 
\zag{1}{{22}}+ \zag{1}{{26}}+\ldots 
$$
\returnType{Type: ContinuedFraction Integer}

These are the rational number convergents.

\spadcommand{ccf := convergents cf }
$$
\left[
0, 1, {\frac{6}{7}}, {\frac{61}{71}}, {\frac{860}{1001}}, 
{\frac{15541}{18089}}, {\frac{342762}{398959}}, \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

You can get rational convergents for {\tt e} by multiplying by {\tt 2} and
adding {\tt 1}.

\spadcommand{eConvergents := [2*e + 1 for e in ccf] }
$$
\left[
1, 3, {\frac{19}{7}}, {\frac{193}{71}}, {\frac{2721}{1001}}, 
{\frac{49171}{18089}}, {\frac{1084483}{398959}}, \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

You can also compute the floating point approximations to these convergents.

\spadcommand{eConvergents :: Stream Float }
$$
\begin{array}{@{}l}
\left[
{1.0}, {3.0}, {2.7142857142 857142857}, {2.7183098591 549295775}, 
\right.
\\
\\
\displaystyle
{2.7182817182 817182817}, {2.7182818287 356957267}, 
\\
\\
\displaystyle
\left.
{2.7182818284\ 585634113}, \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream Float}

Compare this to the value of {\tt e} computed by the
\spadfunFrom{exp}{Float} operation in {\tt Float}.

\spadcommand{exp 1.0}
$$
2.7182818284\ 590452354 
$$
\returnType{Type: Float}

In about 1658, Lord Brouncker established the following expansion
for $4 / \pi$,
\begin{verbatim}
        1 +            1
            -----------------------
            2 +          9
                -------------------
                2 +        25
                    ---------------
                    2 +      49
                        -----------
                        2 +    81
                            -------
                            2 + ...
\end{verbatim}

%Original Page 338

Let's use this expansion to compute rational and floating point
approximations for $\pi$.

\spadcommand{cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating [2])}
$$
1+ \zag{1}{2}+ \zag{9}{2}+ \zag{{25}}{2}+ \zag{{49}}{2}+ \zag{{81}}{2}+ 
\zag{{121}}{2}+ \zag{{169}}{2}+\ldots 
$$
\returnType{Type: ContinuedFraction Integer}

\spadcommand{ccf := convergents cf }
$$
\left[
1, {\frac{3}{2}}, {\frac{15}{13}}, {\frac{105}{76}}, {\frac{315}{263}}, 
{\frac{3465}{2578}}, {\frac{45045}{36979}}, \ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

\spadcommand{piConvergents := [4/p for p in ccf] }
$$
\left[
4, {\frac{8}{3}}, {\frac{52}{15}}, {\frac{304}{105}}, 
{\frac{1052}{315}}, {\frac{10312}{3465}}, {\frac{147916}{45045}}, 
\ldots 
\right]
$$
\returnType{Type: Stream Fraction Integer}

As you can see, the values are converging to
$\pi = 3.14159265358979323846...$,
but not very quickly.

\spadcommand{piConvergents :: Stream Float }
$$
\begin{array}{@{}l}
\left[
{4.0}, {2.6666666666\ 666666667}, {3.4666666666\ 666666667}, 
\right.
\\
\\
\displaystyle
{2.8952380952\ 380952381}, {3.3396825396\ 825396825}, 
\\
\\
\displaystyle
\left.
{2.9760461760\ 461760462}, {3.2837384837\ 384837385}, \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream Float}

You need not restrict yourself to continued fractions of integers.
Here is an expansion for a quotient of Gaussian integers.

\spadcommand{continuedFraction((- 122 + 597*\%i)/(4 - 4*\%i))}
$$
-{90}+{{59} \  i}+ \zag{1}{{1 -{2 \  i}}}+ \zag{1}{{-1+{2 \  i}}} 
$$
\returnType{Type: ContinuedFraction Complex Integer}

This is an expansion for a quotient of polynomials in one variable
with rational number coefficients.

\spadcommand{r : Fraction UnivariatePolynomial(x,Fraction Integer) }
\returnType{Type: Void}

\spadcommand{r := ((x - 1) * (x - 2)) / ((x-3) * (x-4)) }
$$
\frac{{x \sp 2} -{3 \  x}+2}{{x \sp 2} -{7 \  x}+{12}} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{continuedFraction r }
$$
1+ \zag{1}{{{{\frac{1}{4}} \  x} -{\frac{9}{8}}}}+ 
\zag{1}{{{{\frac{16}{3}} \  x} 
-{\frac{40}{3}}}} 
$$
\returnType{Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)}

To conclude this section, we give you evidence that
\begin{verbatim}
    z = 3 +            1
            -----------------------
            3 +          1
                -------------------
                6 +        1
                    ---------------
                    3 +      1
                        -----------
                        6 +    1
                            -------
                            3 + ...
\end{verbatim}

%Original Page 339

is the expansion of $\sqrt{11}$.

\spadcommand{[i*i for i in convergents(z) :: Stream Float] }
$$
\begin{array}{@{}l}
\left[
{9.0}, {11.1111111111\ 11111111}, {10.9944598337\ 9501385}, 
\right.
\\
\\
\displaystyle
{11.0002777777\ 77777778}, {10.9999860763\ 98799786}, 
\\
\\
\displaystyle
\left.
{11.0000006979\ 29731039}, {10.9999999650\ 15834446}, \ldots 
\right]
\end{array}
$$
\returnType{Type: Stream Float}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{CycleIndicators}

This section is based upon the paper J. H. Redfield, ``The Theory of
Group-Reduced Distributions'', American J. Math.,49 (1927) 433-455,
and is an application of group theory to enumeration problems.  It is
a development of the work by P. A. MacMahon on the application of
symmetric functions and Hammond operators to combinatorial theory.

The theory is based upon the power sum symmetric functions
$s_i$ which are the sum of the $i$-th powers of the
variables.  The cycle index of a permutation is an expression that
specifies the sizes of the cycles of a permutation, and may be
represented as a partition.  A partition of a non-negative integer
{\tt n} is a collection of positive integers called its parts whose
sum is {\tt n}.  For example, the partition $(3^2 \ 2 \ 1^2)$ will be
used to represent $s^2_3 s_2 s^2_1$ and will indicate that the
permutation has two cycles of length 3, one of length 2 and two of
length 1.  The cycle index of a permutation group is the sum of the
cycle indices of its permutations divided by the number of
permutations.  The cycle indices of certain groups are provided.

The operation {\tt complete} returns the cycle index of the
symmetric group of order {\tt n} for argument {\tt n}.
Alternatively, it is the $n$-th complete homogeneous symmetric
function expressed in terms of power sum symmetric functions.

\spadcommand{complete 1}
$$
\left(
1 
\right)
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

\spadcommand{complete 2}
$$
{{\frac{1}{2}} \  {\left( 2 \right)}}+{{\frac{1}{2}} \  
{\left( 1 \sp 2 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

%Original Page 340

\spadcommand{complete 3}
$$
{{\frac{1}{3}} \  {\left( 3 \right)}}
+{{\frac{1}{2}} \  {\left( {2 \sp {\ }} \  1 \right)}}
+{{\frac{1}{6}} \  {\left( 1 \sp 3 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

\spadcommand{complete 7}
$$
\begin{array}{@{}l}
{{\frac{1}{7}} \  {\left( 7 \right)}}+
{{\frac{1}{6}} \  {\left( {6 \sp {\ }} \  1 \right)}}+
{{\frac{1}{10}} \  {\left( {5 \sp {\ }} \  2 \right)}}+
{{\frac{1}{10}} \  {\left( {5 \sp {\ }} \  {1 \sp 2} \right)}}+
{{\frac{1}{12}} \  {\left( {4 \sp {\ }} \  3 \right)}}+
{{\frac{1}{8}} \  {\left( {4 \sp {\ }} \  {2 \sp {\ }} \  1 \right)}}+
\\
\\
\displaystyle
{{\frac{1}{24}} \  {\left( {4 \sp {\ }} \  {1 \sp 3} \right)}}+
{{\frac{1}{18}} \  {\left( {3 \sp 2} \  1 \right)}}+
{{\frac{1}{24}} \  {\left( {3 \sp {\ }} \  {2 \sp 2} \right)}}+
{{\frac{1}{12}} \  {\left( {3 \sp {\ }} \  {2 \sp {\ }} \  {1 \sp 2} \right)}}+
{{\frac{1}{72}} \  {\left( {3 \sp {\ }} \  {1 \sp 4} \right)}}+
\\
\\
\displaystyle
{{\frac{1}{48}} \  {\left( {2 \sp 3} \  1 \right)}}+
{{\frac{1}{48}} \  {\left( {2 \sp 2} \  {1 \sp 3} \right)}}+
{{\frac{1}{240}} \  {\left( {2 \sp {\ }} \  {1 \sp 5} \right)}}+
{{\frac{1}{5040}} \  {\left( 1 \sp 7 \right)}}
\end{array}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

%Original Page 

The operation {\tt elementary} computes the $n$-th
elementary symmetric function for argument {\tt n.}

\spadcommand{elementary 7}
$$
\begin{array}{@{}l}
{{\frac{1}{7}} \  {\left( 7 \right)}}
-{{\frac{1}{6}} \  {\left( {6 \sp {\ }} \  1 \right)}}
-{{\frac{1}{10}} \  {\left( {5 \sp {\ }} \  2 \right)}}+
{{\frac{1}{10}} \  {\left( {5 \sp {\ }} \  {1 \sp 2} \right)}}
-{{\frac{1}{12}} \  {\left( {4 \sp {\ }} \  3 \right)}}+
{{\frac{1}{8}} \  {\left( {4 \sp {\ }} \  {2 \sp {\ }} \  1 \right)}}
\\
\\
\displaystyle
-{{\frac{1}{24}} \  {\left( {4 \sp {\ }} \  {1 \sp 3} \right)}}+
{{\frac{1}{18}} \  {\left( {3 \sp 2} \  1 \right)}}+
{{\frac{1}{24}} \  {\left( {3 \sp {\ }} \  {2 \sp 2} \right)}}
-{{\frac{1}{12}} \  {\left( {3 \sp {\ }} \  {2 \sp {\ }} \  {1 \sp 2} \right)}}
+{{\frac{1}{72}} \  {\left( {3 \sp {\ }} \  {1 \sp 4} \right)}}
\\
\\
\displaystyle
-{{\frac{1}{48}} \  {\left( {2 \sp 3} \  1 \right)}}+
{{\frac{1}{48}} \  {\left( {2 \sp 2} \  {1 \sp 3} \right)}}
-{{\frac{1}{240}} \  {\left( {2 \sp {\ }} \  {1 \sp 5} \right)}}+
{{\frac{1}{5040}} \  {\left( 1 \sp 7 \right)}}
\end{array}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

The operation {\tt alternating} returns the cycle index of the alternating 
group having an even number of even parts in each cycle partition.

\spadcommand{alternating 7}
$$
\begin{array}{@{}l}
{{\frac{2}{7}} \  {\left( 7 \right)}}+
{{\frac{1}{5}} \  {\left( {5 \sp {\ }} \  {1 \sp 2} \right)}}+
{{\frac{1}{4}} \  {\left( {4 \sp {\ }} \  {2 \sp {\ }} \  1 \right)}}+
{{\frac{1}{9}} \  {\left( {3 \sp 2} \  1 \right)}}+
{{\frac{1}{12}} \  {\left( {3 \sp {\ }} \  {2 \sp 2} \right)}}+
{{\frac{1}{36}} \  {\left( {3 \sp {\ }} \  {1 \sp 4} \right)}}+
\\
\\
\displaystyle
{{\frac{1}{24}} \  {\left( {2 \sp 2} \  {1 \sp 3} \right)}}+
{{\frac{1}{2520}} \  {\left( 1 \sp 7 \right)}}
\end{array}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

The operation {\tt cyclic} returns the cycle index of the cyclic group.

\spadcommand{cyclic 7}
$$
{{\frac{6}{7}} \  {\left( 7 \right)}}+
{{\frac{1}{7}} \  {\left( 1 \sp 7 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

%Original Page 341

The operation {\tt dihedral} is the cycle index of the
dihedral group.

\spadcommand{dihedral 7}
$$
{{\frac{3}{7}} \  {\left( 7 \right)}}+
{{\frac{1}{2}} \  {\left( {2 \sp 3} \  1 \right)}}+
{{\frac{1}{14}} \  {\left( 1 \sp 7 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

The operation {\tt graphs} for argument {\tt n} returns the cycle
index of the group of permutations on the edges of the complete graph
with {\tt n} nodes induced by applying the symmetric group to the
nodes.

\spadcommand{graphs 5}
$$
\begin{array}{@{}l}
{{\frac{1}{6}} \  {\left( {6 \sp {\ }} \  {3 \sp {\ }} \  1 \right)}}+
{{\frac{1}{5}} \  {\left( 5 \sp 2 \right)}}+
{{\frac{1}{4}} \  {\left( {4 \sp 2} \  2 \right)}}+
{{\frac{1}{6}} \  {\left( {3 \sp 3} \  1 \right)}}+
{{\frac{1}{8}} \  {\left( {2 \sp 4} \  {1 \sp 2} \right)}}+
\\
\\
\displaystyle
{{\frac{1}{12}} \  {\left( {2 \sp 3} \  {1 \sp 4} \right)}}+
{{\frac{1}{120}} \  {\left( 1 \sp {10} \right)}}
\end{array}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

The cycle index of a direct product of two groups is the product of
the cycle indices of the groups.  Redfield provided two operations on
two cycle indices which will be called ``cup'' and ``cap'' here.  The
{\tt cup} of two cycle indices is a kind of scalar product that
combines monomials for permutations with the same cycles.  The {\tt
cap} operation provides the sum of the coefficients of the result of
the {\tt cup} operation which will be an integer that enumerates what
Redfield called group-reduced distributions.

We can, for example, represent {\tt complete 2 * complete 2} as the
set of objects {\tt a a b b} and 
{\tt complete 2 * complete 1 * complete 1} as {\tt c c d e.}

This integer is the number of different sets of four pairs.

\spadcommand{cap(complete 2**2, complete 2*complete 1**2)}
$$
4 
$$
\returnType{Type: Fraction Integer}

For example,
\begin{verbatim}
a a b b     a a b b    a a b b   a a b b
c c d e     c d c e    c e c d   d e c c
\end{verbatim}

This integer is the number of different sets of four pairs no two
pairs being equal.

\spadcommand{cap(elementary 2**2, complete 2*complete 1**2)}
$$
2 
$$
\returnType{Type: Fraction Integer}

For example,
\begin{verbatim}
a a b b    a a b b
c d c e    c e c d
\end{verbatim}
In this case the configurations enumerated are easily constructed,
however the theory merely enumerates them providing little help in
actually constructing them.

%Original Page 342

Here are the number of 6-pairs, first from {\tt a a a b b c,} second
from {\tt d d e e f g.}

\spadcommand{cap(complete 3*complete 2*complete 1,complete 2**2*complete 1**2)}
$$
24 
$$
\returnType{Type: Fraction Integer}

Here it is again, but with no equal pairs.

\spadcommand{cap(elementary 3*elementary 2*elementary 1,complete 2**2*complete 1**2)}
$$
8 
$$
\returnType{Type: Fraction Integer}

\spadcommand{cap(complete 3*complete 2*complete 1,elementary 2**2*elementary 1**2)}
$$
8 
$$
\returnType{Type: Fraction Integer}

The number of 6-triples, first from {\tt a a a b b c,} second from
{\tt d d e e f g,} third from {\tt h h i i j j.}

\spadcommand{eval(cup(complete 3*complete 2*complete 1, cup(complete 2**2*complete 1**2,complete 2**3)))}
$$
1500 
$$
\returnType{Type: Fraction Integer}

The cycle index of vertices of a square is dihedral 4.

\spadcommand{square:=dihedral 4}
$$
{{\frac{1}{4}} \  {\left( 4 \right)}}+
{{\frac{3}{8}} \  {\left( 2 \sp 2 \right)}}+
{{\frac{1}{4}} \  {\left( {2 \sp {\ }} \  {1 \sp 2} \right)}}+
{{\frac{1}{8}} \  {\left( 1 \sp 4 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

The number of different squares with 2 red vertices and 2 blue vertices.

\spadcommand{cap(complete 2**2,square)}
$$
2 
$$
\returnType{Type: Fraction Integer}

The number of necklaces with 3 red beads, 2 blue beads and 2 green beads.

\spadcommand{cap(complete 3*complete 2**2,dihedral 7)}
$$
18 
$$
\returnType{Type: Fraction Integer}

The number of graphs with 5 nodes and 7 edges.

\spadcommand{cap(graphs 5,complete 7*complete 3)}
$$
4 
$$
\returnType{Type: Fraction Integer}

The cycle index of rotations of vertices of a cube.

\spadcommand{s(x) == powerSum(x)}
\returnType{Type: Void}

\spadcommand{cube:=(1/24)*(s 1**8+9*s 2**4 + 8*s 3**2*s 1**2+6*s 4**2)}
\begin{verbatim}
   Compiling function s with type PositiveInteger -> 
      SymmetricPolynomial Fraction Integer 
\end{verbatim}
$$
{{\frac{1}{4}} \  {\left( 4 \sp 2 \right)}}+
{{\frac{1}{3}} \  {\left( {3 \sp 2} \  {1 \sp 2} \right)}}+
{{\frac{3}{8}} \  {\left( 2 \sp 4 \right)}}+
{{\frac{1}{24}} \  {\left( 1 \sp 8 \right)}}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

%Original Page 343

The number of cubes with 4 red vertices and 4 blue vertices.

\spadcommand{cap(complete 4**2,cube)}
$$
7 
$$
\returnType{Type: Fraction Integer}

The number of labeled graphs with degree sequence {\tt 2 2 2 1 1}
with no loops or multiple edges.

\spadcommand{cap(complete 2**3*complete 1**2,wreath(elementary 4,elementary 2))}
$$
7 
$$
\returnType{Type: Fraction Integer}

Again, but with loops allowed but not multiple edges.

\spadcommand{cap(complete 2**3*complete 1**2,wreath(elementary 4,complete 2))}
$$
17 
$$
\returnType{Type: Fraction Integer}

Again, but with multiple edges allowed, but not loops

\spadcommand{cap(complete 2**3*complete 1**2,wreath(complete 4,elementary 2))}
$$
10 
$$
\returnType{Type: Fraction Integer}

Again, but with both multiple edges and loops allowed

\spadcommand{cap(complete 2**3*complete 1**2,wreath(complete 4,complete 2))}
$$
23 
$$
\returnType{Type: Fraction Integer}

Having constructed a cycle index for a configuration we are at liberty
to evaluate the $s_i$ components any way we please.  For example we
can produce enumerating generating functions.  This is done by
providing a function {\tt f} on an integer {\tt i} to the value
required of $s_i$, and then evaluating {\tt eval(f, cycleindex)}.

\spadcommand{x: ULS(FRAC INT,'x,0) := 'x }
$$
x 
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

\spadcommand{ZeroOrOne: INT -> ULS(FRAC INT, 'x, 0) }
\returnType{Type: Void}

\spadcommand{Integers: INT -> ULS(FRAC INT, 'x, 0) }
\returnType{Type: Void}

%Original Page 344

For the integers 0 and 1, or two colors.

\spadcommand{ZeroOrOne n == 1+x**n }
\returnType{Type: Void}

\spadcommand{ZeroOrOne 5 }
\begin{verbatim}
   Compiling function ZeroOrOne with type Integer -> 
      UnivariateLaurentSeries(Fraction Integer,x,0) 
\end{verbatim}
$$
1+{x \sp 5} 
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

For the integers {\tt 0, 1, 2, ...} we have this.

\spadcommand{Integers n == 1/(1-x**n) }
\returnType{Type: Void}

\spadcommand{Integers 5 }
\begin{verbatim}
   Compiling function Integers with type Integer -> 
      UnivariateLaurentSeries(Fraction Integer,x,0) 
\end{verbatim}
$$
1+{x \sp 5}+{O 
\left(
{{x \sp 8}} 
\right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of graphs with 5 nodes and {\tt n}
edges. 

Note that there is an eval function that takes two arguments. It has the 
signature:
\begin{verbatim}
((Integer -> D1),SymmetricPolynomial Fraction Integer) -> D1
  from EvaluateCycleIndicators D1 if D1 has ALGEBRA FRAC INT
\end{verbatim}
This function is not normally exposed (it will not normally be considered
in the list of eval functions) as it is only useful for this particular
domain. To use it we ask that it be considered thus:

\spadcommand{)expose EVALCYC}

and now we can use it:

\spadcommand{eval(ZeroOrOne, graphs 5) }
$$
1+x+
{2 \  {x \sp 2}}+
{4 \  {x \sp 3}}+
{6 \  {x \sp 4}}+
{6 \  {x \sp 5}}+
{6 \  {x \sp 6}}+
{4 \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of necklaces with
{\tt n} red beads and {\tt n-8} green beads.

\spadcommand{eval(ZeroOrOne,dihedral 8) }
$$
1+x+
{4 \  {x \sp 2}}+
{5 \  {x \sp 3}}+
{8 \  {x \sp 4}}+
{5 \  {x \sp 5}}+
{4 \  {x \sp 6}}+
{x \sp 7}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of partitions of {\tt n} into 4
or fewer parts.

\spadcommand{eval(Integers,complete 4) }
$$
1+x+
{2 \  {x \sp 2}}+
{3 \  {x \sp 3}}+
{5 \  {x \sp 4}}+
{6 \  {x \sp 5}}+
{9 \  {x \sp 6}}+
{{11} \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of partitions of {\tt n} into 4
boxes containing ordered distinct parts.

\spadcommand{eval(Integers,elementary 4) }
$$
{x \sp 6}+
{x \sp 7}+
{2 \  {x \sp 8}}+
{3 \  {x \sp 9}}+
{5 \  {x \sp {10}}}+
{6 \  {x \sp {11}}}+
{9 \  {x \sp {12}}}+
{{11} \  {x \sp {13}}}+
{O \left({{x \sp {14}}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of different cubes with {\tt n}
red vertices and {\tt 8-n} green ones.

\spadcommand{eval(ZeroOrOne,cube) }
$$
1+x+
{3 \  {x \sp 2}}+
{3 \  {x \sp 3}}+
{7 \  {x \sp 4}}+
{3 \  {x \sp 5}}+
{3 \  {x \sp 6}}+
{x \sp 7}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The coefficient of $x^n$ is the number of different cubes with integers
on the vertices whose sum is {\tt n.}

\spadcommand{eval(Integers,cube) }
$$
1+x+
{4 \  {x \sp 2}}+
{7 \  {x \sp 3}}+
{{21} \  {x \sp 4}}+
{{37} \  {x \sp 5}}+
{{85} \  {x \sp 6}}+
{{151} \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

%Original Page 345

The coefficient of $x^n$ is the number of graphs with 5 nodes and with
integers on the edges whose sum is {\tt n.}  In other words, the
enumeration is of multigraphs with 5 nodes and {\tt n} edges.

\spadcommand{eval(Integers,graphs 5) }
$$
1+x+
{3 \  {x \sp 2}}+
{7 \  {x \sp 3}}+
{{17} \  {x \sp 4}}+
{{35} \  {x \sp 5}}+
{{76} \  {x \sp 6}}+
{{149} \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

Graphs with 15 nodes enumerated with respect to number of edges.

\spadcommand{eval(ZeroOrOne ,graphs 15) }
$$
1+x+
{2 \  {x \sp 2}}+
{5 \  {x \sp 3}}+
{{11} \  {x \sp 4}}+
{{26} \  {x \sp 5}}+
{{68} \  {x \sp 6}}+
{{177} \  {x \sp 7}}+
{O \left({{x \sp 8}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

Necklaces with 7 green beads, 8 white beads, 5 yellow beads and 10
red beads.

\spadcommand{cap(dihedral 30,complete 7*complete 8*complete 5*complete 10)}
$$
49958972383320 
$$
\returnType{Type: Fraction Integer}

The operation {\tt SFunction} is the S-function or Schur function of a
partition written as a descending list of integers expressed in terms
of power sum symmetric functions.

In this case the argument partition represents a tableau shape.  For
example {\tt 3,2,2,1} represents a tableau with three boxes in the
first row, two boxes in the second and third rows, and one box in the
fourth row.  {\tt SFunction [3,2,2,1]} counts the number of different
tableaux of shape {\tt 3, 2, 2, 1} filled with objects with an
ascending order in the columns and a non-descending order in the rows.

\spadcommand{sf3221:= SFunction [3,2,2,1] }
$$
\begin{array}{@{}l}
{{\frac{1}{12}} \  {\left( {6 \sp {\ }} \  2 \right)}}
-{{\frac{1}{12}} \  {\left( {6 \sp {\ }} \  {1 \sp 2} \right)}}
-{{\frac{1}{16}} \  {\left( 4 \sp 2 \right)}}+
{{\frac{1}{12}} \  {\left( {4 \sp {\ }} \  {3 \sp {\ }} \  1 \right)}}+
{{\frac{1}{24}} \  {\left( {4 \sp {\ }} \  {1 \sp 4} \right)}}
-{{\frac{1}{36}} \  {\left( {3 \sp 2} \  2 \right)}}+
\\
\\
\displaystyle
{{\frac{1}{36}} \  {\left( {3 \sp 2} \  {1 \sp 2} \right)}}
-{{\frac{1}{24}} \  {\left( {3 \sp {\ }} \  {2 \sp 2} \  1 \right)}}
-{{\frac{1}{36}} \  {\left( {3 \sp {\ }} \  {2 \sp {\ }} \  {1 \sp 3} \right)}}
-{{\frac{1}{72}} \  {\left( {3 \sp {\ }} \  {1 \sp 5} \right)}}
-{{\frac{1}{192}} \  {\left( 2 \sp 4 \right)}}+
\\
\\
\displaystyle
{{\frac{1}{48}} \  {\left( {2 \sp 3} \  {1 \sp 2} \right)}}+
{{\frac{1}{96}} \  {\left( {2 \sp 2} \  {1 \sp 4} \right)}}
-{{\frac{1}{144}} \  {\left( {2 \sp {\ }} \  {1 \sp 6} \right)}}+
{{\frac{1}{576}} \  {\left( 1 \sp 8 \right)}}
\end{array}
$$
\returnType{Type: SymmetricPolynomial Fraction Integer}

This is the number filled with {\tt a a b b c c d d.}

\spadcommand{cap(sf3221,complete 2**4) }
$$
3 
$$
\returnType{Type: Fraction Integer}

The configurations enumerated above are:
\begin{verbatim}
a a b    a a c    a a d
b c      b b      b b
c d      c d      c c
d        d        d
\end{verbatim}

This is the number of tableaux filled with {\tt 1..8.}

\spadcommand{cap(sf3221, powerSum 1**8)}
$$
70 
$$
\returnType{Type: Fraction Integer}

%Original Page 346

The coefficient of $x^n$ is the number of column strict reverse plane
partitions of {\tt n} of shape {\tt 3 2 2 1.}

\spadcommand{eval(Integers, sf3221)}
$$
{x \sp 9}+
{3 \  {x \sp {10}}}+
{7 \  {x \sp {11}}}+
{{14} \  {x \sp {12}}}+
{{27} \  {x \sp {13}}}+
{{47} \  {x \sp {14}}}+
{O \left({{x \sp {15}}} \right)}
$$
\returnType{Type: UnivariateLaurentSeries(Fraction Integer,x,0)}

The smallest is
\begin{verbatim}
0 0 0
1 1
2 2
3
\end{verbatim}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{DeRhamComplex}

The domain constructor {\tt DeRhamComplex} creates the class of
differential forms of arbitrary degree over a coefficient ring.  The
De Rham complex constructor takes two arguments: a ring, {\tt
coefRing,} and a list of coordinate variables.

This is the ring of coefficients.

\spadcommand{coefRing := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

These are the coordinate variables.

\spadcommand{lv : List Symbol := [x,y,z] }
$$
\left[
x, y, z 
\right]
$$
\returnType{Type: List Symbol}

This is the De Rham complex of Euclidean three-space using coordinates
{\tt x, y} and {\tt z.}

\spadcommand{der := DERHAM(coefRing,lv) }
$$
DeRhamComplex(Integer,[x,y,z]) 
$$
\returnType{Type: Domain}
 
This complex allows us to describe differential forms having
expressions of integers as coefficients.  These coefficients can
involve any number of variables, for example, {\tt f(x,t,r,y,u,z).}
As we've chosen to work with ordinary Euclidean three-space,
expressions involving these forms are treated as functions of 
{\tt x, y} and {\tt z} with the additional arguments {\tt t, r} 
and {\tt u} regarded as symbolic constants.

Here are some examples of coefficients.

\spadcommand{R := Expression coefRing }
$$
\mbox{\rm Expression Integer} 
$$
\returnType{Type: Domain}

\spadcommand{f : R := x**2*y*z-5*x**3*y**2*z**5 }
$$
-{5 \  {x \sp 3} \  {y \sp 2} \  {z \sp 5}}+{{x \sp 2} \  y \  z} 
$$
\returnType{Type: Expression Integer}

%Original Page 347

\spadcommand{g : R := z**2*y*cos(z)-7*sin(x**3*y**2)*z**2 }
$$
-{7 \  {z \sp 2} \  {\sin \left({{{x \sp 3} \  {y \sp 2}}} \right)}}+
{y\  {z \sp 2} \  {\cos \left({z} \right)}}
$$
\returnType{Type: Expression Integer}

\spadcommand{h : R :=x*y*z-2*x**3*y*z**2 }
$$
-{2 \  {x \sp 3} \  y \  {z \sp 2}}+{x \  y \  z} 
$$
\returnType{Type: Expression Integer}

We now define the multiplicative basis elements for the exterior
algebra over {\tt R}.

\spadcommand{dx : der := generator(1) }
$$
dx 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

\spadcommand{dy : der := generator(2)}
$$
dy 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

\spadcommand{dz : der := generator(3)}
$$
dz 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

This is an alternative way to give the above assignments.

\spadcommand{[dx,dy,dz] := [generator(i)\$der for i in 1..3] }
$$
\left[
dx, dy, dz 
\right]
$$
\returnType{Type: List DeRhamComplex(Integer,[x,y,z])}

Now we define some one-forms.

\spadcommand{alpha : der := f*dx + g*dy + h*dz }
$$
\begin{array}{@{}l}
{{\left( -{2 \  {x \sp 3} \  y \  {z \sp 2}}+{x \  y \  z} \right)}\  dz}+
\\
\\
\displaystyle
{{\left( 
-{7 \  {z \sp 2} \  {\sin \left({{{x \sp 3} \  {y \sp 2}}} \right)}}+
{y\  {z \sp 2} \  {\cos \left({z} \right)}}
\right)}\  dy}+
\\
\\
\displaystyle
{{\left( -{5 \  {x \sp 3} \  {y \sp 2} \  {z \sp 5}}+{{x \sp 2} \  y \  z} 
\right)}\  dx} 
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

\spadcommand{beta  : der := cos(tan(x*y*z)+x*y*z)*dx + x*dy }
$$
{x \  dy}+
{{\cos 
\left({{{\tan \left({{x \  y \  z}} \right)}+{x\  y \  z}}} \right)}
\  dx} 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

A well-known theorem states that the composition of
\spadfunFrom{exteriorDifferential}{DeRhamComplex} with itself is the
zero map for continuous forms.  Let's verify this theorem for {\tt alpha}.

\spadcommand{exteriorDifferential alpha }
$$
\begin{array}{@{}l}
{{\left( 
{y \  {z \sp 2} \  {\sin \left({z} \right)}}+
{{14}\  z \  {\sin \left({{{x \sp 3} \  {y \sp 2}}} \right)}}
-{2 \  y \  z \  {\cos \left({z} \right)}}
-{2 \  {x \sp 3} \  {z \sp 2}}+{x \  z} \right)}\  dy \  dz}+
\\
\\
\displaystyle
{{\left( 
{{25} \  {x \sp 3} \  {y \sp 2} \  {z \sp 4}} -
{6 \  {x \sp 2} \  y \  {z \sp 2}}+
{y \  z} -
{{x \sp 2} \  y} 
\right)}\  dx \  dz}+
\\
\\
\displaystyle
{{\left( 
-{{21} \  {x \sp 2} \  {y \sp 2} \  {z \sp 2} \  
{\cos \left({{{x \sp 3} \  {y \sp 2}}} \right)}}+
{{10}\  {x \sp 3} \  y \  {z \sp 5}} -{{x \sp 2} \  z} \right)}\  dx \  dy} 
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

%Original Page 348

We see a lengthy output of the last expression, but nevertheless, the
composition is zero.

\spadcommand{exteriorDifferential \% }
$$
0 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

Now we check that \spadfunFrom{exteriorDifferential}{DeRhamComplex}
is a ``graded derivation'' {\tt D,} that is, {\tt D} satisfies:
\begin{verbatim}
D(a*b) = D(a)*b + (-1)**degree(a)*a*D(b)
\end{verbatim}

\spadcommand{gamma := alpha * beta }
$$
\begin{array}{@{}l}
{{\left( 
{2 \  {x \sp 4} \  y \  {z \sp 2}} -
{{x \sp 2} \  y \  z} 
\right)}\  dy \  dz}+
\\
\\
\displaystyle
{{\left( 
{2 \  {x \sp 3} \  y \  {z \sp 2}} -{x \  y \  z} 
\right)}
\  {\cos 
\left(
{{{\tan \left({{x \  y \  z}} \right)}+
{x\  y \  z}}} 
\right)}\  dx \  dz}+
\\
\\
\displaystyle
\left( 
{{\left( 
{7 \  {z \sp 2} \  {\sin \left({{{x \sp 3} \  {y \sp 2}}} \right)}}
-{y \  {z \sp 2} \  {\cos \left({z} \right)}}
\right)}
\  {\cos \left({{{\tan \left({{x \  y \  z}} \right)}+{x\  y \  z}}} \right)}}-
\right.
\\
\\
\left.
\displaystyle
{5 \  {x \sp 4} \  {y \sp 2} \  {z \sp 5}}+
{{x \sp 3} \  y \  z} 
\right)\  dx \  dy
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

We try this for the one-forms {\tt alpha} and {\tt beta}.

\spadcommand{exteriorDifferential(gamma) - (exteriorDifferential(alpha)*beta - alpha * exteriorDifferential(beta)) }
$$
0 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

Now we define some ``basic operators'' (see \domainref{Operator}).

\spadcommand{a : BOP := operator('a) }
$$
a 
$$
\returnType{Type: BasicOperator}

\spadcommand{b : BOP := operator('b) }
$$
b 
$$
\returnType{Type: BasicOperator}

\spadcommand{c : BOP := operator('c) }
$$
c 
$$
\returnType{Type: BasicOperator}

We also define some indeterminate one- and two-forms using these
operators.

\spadcommand{sigma := a(x,y,z) * dx + b(x,y,z) * dy + c(x,y,z) * dz }
$$
{{c \left({x, y, z} \right)}\  dz}+
{{b \left({x, y, z} \right)}\  dy}+
{{a \left({x, y, z} \right)}\  dx} 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

\spadcommand{theta  := a(x,y,z) * dx * dy + b(x,y,z) * dx * dz + c(x,y,z) * dy * dz }
$$
{{c \left({x, y, z} \right)}\  dy \  dz}+
{{b \left({x, y, z} \right)}\  dx \  dz}+
{{a \left({x, y, z} \right)}\  dx \  dy} 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

%Original Page 349

This allows us to get formal definitions for the ``gradient'' \ldots

\spadcommand{totalDifferential(a(x,y,z))\$der }
$$
{{{a \sb {{,3}}} \left({x, y, z} \right)}\  dz}+
{{{a \sb {{,2}}} \left({x, y, z} \right)}\  dy}+
{{{a \sb {{,1}}} \left({x, y, z} \right)}\  dx} 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

the ``curl'' \ldots

\spadcommand{exteriorDifferential sigma }
$$
\begin{array}{@{}l}
{{\left( 
{{c \sb {{,2}}} \left({x, y, z} \right)}
-{{b \sb {{,3}}} \left({x, y, z} \right)}
\right)}\  dy \  dz}+
\\
\\
\displaystyle
{{\left( 
{{c \sb {{,1}}} \left({x, y, z} \right)}
-{{a \sb {{,3}}} \left({x, y, z} \right)}
\right)}\  dx \  dz}+
\\
\\
\displaystyle
{{\left( 
{{b \sb {{,1}}} \left({x, y, z} \right)}
-{{a \sb {{,2}}} \left({x, y, z} \right)}
\right)}\  dx \  dy} 
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

and the ``divergence.''

\spadcommand{exteriorDifferential theta }
$$
{\left( 
{{c \sb {{,1}}} \left({x, y, z} \right)}
-{{b \sb {{,2}}} \left({x, y, z} \right)}+
{{a\sb {{,3}}} \left({x, y, z} \right)}
\right)}\  dx \  dy \  dz 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

Note that the De Rham complex is an algebra with unity.  This element
{\tt 1} is the basis for elements for zero-forms, that is, functions
in our space.

\spadcommand{one : der := 1 }
$$
1 
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

To convert a function to a function lying in the De Rham complex,
multiply the function by ``one.''

\spadcommand{g1 : der := a([x,t,y,u,v,z,e]) * one }
$$
a 
\left(
{x, t, y, u, v, z, e} 
\right)
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

A current limitation of Axiom forces you to write functions with more
than four arguments using square brackets in this way.

\spadcommand{h1 : der := a([x,y,x,t,x,z,y,r,u,x]) * one }
$$
a 
\left(
{x, y, x, t, x, z, y, r, u, x} 
\right)
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

Now note how the system keeps track of where your coordinate functions
are located in expressions.

\spadcommand{exteriorDifferential g1 }
$$
\begin{array}{@{}l}
{{{a \sb {{,6}}} \left({x, t, y, u, v, z, e} \right)}\  dz}+
\\
\\
\displaystyle
{{{a \sb {{,3}}} \left({x, t, y, u, v, z, e} \right)}\  dy}+
\\
\\
\displaystyle
{{{a \sb {{,1}}} \left({x, t, y, u, v, z, e} \right)}\  dx} 
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

%Original Page 350

\spadcommand{exteriorDifferential h1 }
$$
\begin{array}{@{}l}
{{{a \sb {{,6}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}\  dz}+
\\
\\
\displaystyle
\begin{array}{@{}l}
\left( {{a \sb {{,7}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}+
\right.
\\
\\
\displaystyle
\left.
{{a\sb {{,2}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}
\right)\  dy+
\end{array}
\\
\\
\displaystyle
\begin{array}{@{}l}
\left( {{a \sb {{,{10}}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}+
\right.
\\
\\
\displaystyle
{{a\sb {{,5}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}+
\\
\\
\displaystyle
{{a\sb {{,3}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}+
\\
\\
\displaystyle
\left.
{{a\sb {{,1}}} 
\left({x, y, x, t, x, z, y, r, u, x} \right)}
\right)\  dx 
\end{array}
\end{array}
$$
\returnType{Type: DeRhamComplex(Integer,[x,y,z])}

In this example of Euclidean three-space, the basis for the De Rham complex
consists of the eight forms: {\tt 1}, {\tt dx}, {\tt dy}, {\tt dz},
{\tt dx*dy}, {\tt dx*dz}, {\tt dy*dz}, and {\tt dx*dy*dz}.

\spadcommand{coefficient(gamma, dx*dy) }
$$
\begin{array}{@{}l}
{{\left( {7 \  {z \sp 2} \  {\sin \left({{{x \sp 3} \  {y \sp 2}}} \right)}}
-{y \  {z \sp 2} \  {\cos \left({z} \right)}}\right)}\  {\cos 
\left(
{{{\tan \left({{x \  y \  z}} \right)}+
{x\  y \  z}}} 
\right)}}
\\
\\
\displaystyle
-{5 \  {x \sp 4} \  {y \sp 2} \  {z \sp 5}}+
{{x \sp 3} \  y \  z} 
\end{array}
$$
\returnType{Type: Expression Integer}

\spadcommand{coefficient(gamma, one) }
$$
0 
$$
\returnType{Type: Expression Integer}

\spadcommand{coefficient(g1,one) }
$$
a 
\left(
{x, t, y, u, v, z, e} 
\right)
$$
\returnType{Type: Expression Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{DecimalExpansion}

All rationals have repeating decimal expansions.  Operations to access
the individual digits of a decimal expansion can be obtained by
converting the value to {\tt RadixExpansion(10)}.  More examples of
expansions are available in \domainref{BinaryExpansion},\\ 
\domainref{HexadecimalExpansion}, and \domainref{RadixExpansion}.

The operation \spadfunFrom{decimal}{DecimalExpansion} is used to create
this expansion of type {\tt DecimalExpansion}.

\spadcommand{r := decimal(22/7) }
$$
3.{\overline {142857}} 
$$
\returnType{Type: DecimalExpansion}

%Original Page 351

Arithmetic is exact.

\spadcommand{r + decimal(6/7) }
$$
4 
$$
\returnType{Type: DecimalExpansion}

The period of the expansion can be short or long \ldots

\spadcommand{[decimal(1/i) for i in 350..354] }
$$
\begin{array}{@{}l}
\left[
{0.{00}{\overline {285714}}}, 
{0.{\overline {002849}}}, 
{0.{00284}{\overline {09}}}, 
{0.{\overline {00283286118980169971671388101983}}}, 
\right.
\\
\\
\displaystyle
\left.
{0.0{\overline {0282485875706214689265536723163841807909604519774011299435}}} 
\right]
\end{array}
$$
\returnType{Type: List DecimalExpansion}

or very long.

\spadcommand{decimal(1/2049) }
$$
\begin{array}{@{}l}
0.{\overline 
{000488042947779404587603709126403123474865788189360663738408979990239}}
\\
\\
\displaystyle
\ \ {\overline{
141044411908247925817471937530502684236212786725231820400195217179111}}
\\
\\
\displaystyle
\ \ {\overline{
761835041483650561249389946315275744265495363591996095656417764763299}}
\\
\\
\displaystyle
\ \ {\overline{
170326988775012201073694485114690092728160078086871644704734016593460}}
\\
\\
\displaystyle
\ \ {\overline{
22449975597852611029770619814543679843826256710590531966813079551}}
\end{array}
$$
\returnType{Type: DecimalExpansion}

These numbers are bona fide algebraic objects.

\spadcommand{p := decimal(1/4)*x**2 + decimal(2/3)*x + decimal(4/9)  }
$$
{{0.{25}} \  {x \sp 2}}+{{0.{\overline 6}} \  x}+{0.{\overline 4}} 
$$
\returnType{Type: Polynomial DecimalExpansion}

\spadcommand{q := differentiate(p, x) }
$$
{{0.5} \  x}+{0.{\overline 6}} 
$$
\returnType{Type: Polynomial DecimalExpansion}

\spadcommand{g := gcd(p, q) }
$$
x+{1.{\overline 3}} 
$$
\returnType{Type: Polynomial DecimalExpansion}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Dequeue}

A Dequeue is a double-ended queue so elements can be added to either end.

Here we create an dequeue of integers from a list. Notice that the
order in the list is the order in the dequeue.
\begin{verbatim}
   a:Dequeue INT:= dequeue [1,2,3,4,5]
      [1,2,3,4,5]
\end{verbatim}
We can remove the top of the dequeue using dequeue!:
\begin{verbatim}
   dequeue! a
      1
\end{verbatim}
Notice that the use of dequeue! is destructive (destructive operations
in Axiom usually end with ! to indicate that the underylying data
structure is changed).
\begin{verbatim}
   a
      [2,3,4,5]
\end{verbatim}
The extract! operation is another name for the dequeue! operation and
has the same effect. This operation treats the dequeue as a BagAggregate:
\begin{verbatim}
   extract! a
      2
\end{verbatim}
and you can see that it also has destructively modified the dequeue:
\begin{verbatim}
   a
      [3,4,5]
\end{verbatim}
Next we use enqueue! to add a new element to the end of the dequeue:
\begin{verbatim}
   enqueue!(9,a)
      9
\end{verbatim}
Again, the enqueue! operation is destructive so the dequeue is changed:
\begin{verbatim}
   a
      [3,4,5,9]
\end{verbatim}
Another name for enqueue! is insert!, which treats the dequeue as a 
BagAggregate:
\begin{verbatim}
   insert!(8,a)
      [3,4,5,9,8]
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9,8]
\end{verbatim}
The front operation returns the item at the front of the dequeue:
\begin{verbatim}
   front a
      3
\end{verbatim}
The back operation returns the item at the back of the dequeue:
\begin{verbatim}
   back a
      8
\end{verbatim}
The bottom! operation returns the item at the back of the dequeue:
\begin{verbatim}
   bottom! a
      8
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9]
\end{verbatim}
The depth function returns the number of elements in the dequeue:
\begin{verbatim}
   depth a
      4
\end{verbatim}
The height function returns the number of elements in the dequeue:
\begin{verbatim}
   height a
      4
\end{verbatim}
The insertBottom! function adds the element at the end:
\begin{verbatim}
   insertBottom!(6,a)
      6
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9,6]
\end{verbatim}
The extractBottom! function removes the element at the end:
\begin{verbatim}
   extractBottom! a
      6
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9]
\end{verbatim}
The insertTop! function adds the element at the top:
\begin{verbatim}
   insertTop!(7,a)
      7
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [7,3,4,5,9]
\end{verbatim}
The extractTop! function adds the element at the top:
\begin{verbatim}
   extractTop! a
      7
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9]
\end{verbatim}
The top function returns the top element:
\begin{verbatim}
   top a
      3
\end{verbatim}
and it does not modifies the dequeue:
\begin{verbatim}
   a
      [3,4,5,9]
\end{verbatim}
The top! function returns the top element:
\begin{verbatim}
   top! a
      3
\end{verbatim}
and it modifies the dequeue:
\begin{verbatim}
   a
      [4,5,9]
\end{verbatim}
The reverse! operation destructively reverses the elements of the dequeue:
\begin{verbatim}
   reverse! a
      [9,5,4]
\end{verbatim}
The rotate! operation moves the top element to the bottom:
\begin{verbatim}
   rotate! a
      [5,4,9]
\end{verbatim}
The inspect function returns the top of the dequeue without modification,
viewed as a BagAggregate:
\begin{verbatim}
   inspect a
      5
\end{verbatim}
The empty? operation returns true only if there are no element on the
dequeue, otherwise it returns false:
\begin{verbatim}
   empty? a
      false
\end{verbatim}
The \# (length) operation:
\begin{verbatim}
   #a
       3
\end{verbatim}
The length operation does the same thing:
\begin{verbatim}
   length a
       3
\end{verbatim}
The less? predicate will compare the dequeue length to an integer:
\begin{verbatim}
   less?(a,9)
        true
\end{verbatim}
The more? predicate will compare the dequeue length to an integer:
\begin{verbatim}
   more?(a,9)
        false
\end{verbatim}
The size? operation will compare the dequeue length to an integer:
\begin{verbatim}
   size?(a,#a)
        true
\end{verbatim}
and since the last computation must alwasy be true we try:
\begin{verbatim}
   size?(a,9)
        false
\end{verbatim}
The parts function will return  the dequeue as a list of its elements:
\begin{verbatim}
   parts a
        [5,4,9]
\end{verbatim}
If we have a BagAggregate of elements we can use it to construct a dequeue:
\begin{verbatim}
   bag([1,2,3,4,5])$Dequeue(INT)
        [1,2,3,4,5]
\end{verbatim}
The empty function will construct an empty dequeue of a given type:
\begin{verbatim}
   b:=empty()$(Dequeue INT)
        []
\end{verbatim}
and the empty? predicate allows us to find out if a dequeue is empty:
\begin{verbatim}
   empty? b
        true
\end{verbatim}
The sample function returns a sample, empty dequeue:
\begin{verbatim}
   sample()$Dequeue(INT)
        []
\end{verbatim}
We can copy a dequeue and it does not share storage so subsequent
modifications of the original dequeue will not affect the copy:
\begin{verbatim}
   c:=copy a
        [5,4,9]
\end{verbatim}
The eq? function is only true if the lists are the same reference,
so even though c is a copy of a, they are not the same:
\begin{verbatim}
   eq?(a,c)
        false
\end{verbatim}
However, a clearly shares a reference with itself:
\begin{verbatim}
   eq?(a,a)
        true
\end{verbatim}
But we can compare a and c for equality:
\begin{verbatim}
   (a=c)@Boolean
        true
\end{verbatim}
and clearly a is equal to itself:
\begin{verbatim}
   (a=a)@Boolean
        true
\end{verbatim}
and since a and c are equal, they are clearly NOT not-equal:
\begin{verbatim}
   a~=c
        false
\end{verbatim}
We can use the any? function to see if a predicate is true for any element:
\begin{verbatim}
   any?(x+->(x=4),a)
        true
\end{verbatim}
or false for every element:
\begin{verbatim}
   any?(x+->(x=11),a)
        false
\end{verbatim}
We can use the every? function to check every element satisfies a predicate:
\begin{verbatim}
   every?(x+->(x=11),a)
        false
\end{verbatim}
We can count the elements that are equal to an argument of this type:
\begin{verbatim}
   count(4,a)
        1
\end{verbatim}
or we can count against a boolean function:
\begin{verbatim}
   count(x+->(x>2),a)
        3
\end{verbatim}
You can also map a function over every element, returning a new dequeue:
\begin{verbatim}
   map(x+->x+10,a)
        [15,14,19]
\end{verbatim}
Notice that the orignal dequeue is unchanged:
\begin{verbatim}
   a
        [5,4,9]
\end{verbatim}
You can use map! to map a function over every element and change
the original dequeue since map! is destructive:
\begin{verbatim}
   map!(x+->x+10,a)
       [15,14,19]
\end{verbatim}
Notice that the orignal dequeue has been changed:
\begin{verbatim}
   a
       [15,14,19]
\end{verbatim}
The member function can also get the element of the dequeue as a list:
\begin{verbatim}
   members a
       [15,14,19]
\end{verbatim}
and using member? we can test if the dequeue holds a given element:
\begin{verbatim}
   member?(14,a)
       true
\end{verbatim}

See \domainref{Stack}, \domainref{ArrayStack}, \domainref{Queue},
\domainref{Dequeue}, \domainref{Heap}.

%Original Page 352

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{DistributedMultivariatePolynomial}

\hyphenation{Homo-gen-eous-Dis-tributed-Multi-var-i-ate-Pol-y-nomial}

{\tt DistributedMultivariatePolynomial} which is abbreviated as {\tt DMP}\\
and {\tt Homogeneous\-Distributed\-MultivariatePolynomial},\\ 
which is abbreviated
as {\tt HDMP}, are very similar to {\tt Multivariate\-Polynomial} except that 
they are represented and displayed in a non-recursive manner.

\spadcommand{(d1,d2,d3) : DMP([z,y,x],FRAC INT) }
\returnType{Type: Void}

The constructor {\tt DMP} orders its monomials lexicographically while
{\tt HDMP} orders them by total order refined by reverse lexicographic
order.

\spadcommand{d1 := -4*z + 4*y**2*x + 16*x**2 + 1 }
$$
-{4 \  z}+{4 \  {y \sp 2} \  x}+{{16} \  {x \sp 2}}+1 
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\spadcommand{d2 := 2*z*y**2 + 4*x + 1 }
$$
{2 \  z \  {y \sp 2}}+{4 \  x}+1 
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\spadcommand{d3 := 2*z*x**2 - 2*y**2 - x }
$$
{2 \  z \  {x \sp 2}} -{2 \  {y \sp 2}} -x 
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

These constructors are mostly used in Gr\"{o}bner basis calculations.

\spadcommand{groebner [d1,d2,d3] }
$$
\begin{array}{@{}l}
\displaystyle
\left[
{z -
{{\frac{1568}{2745}} \  {x \sp 6}} -
{{\frac{1264}{305}} \  {x \sp 5}}+
{{\frac{6}{305}} \  {x \sp 4}}+
{{\frac{182}{549}} \  {x \sp 3}} 
-{{\frac{2047}{610}} \  {x \sp 2}} -
{{\frac{103}{2745}} \  x} -
{\frac{2857}{10980}}}, 
\right.
\\
\\
\displaystyle
{{y \sp 2}+
{{\frac{112}{2745}} \  {x \sp 6}} -
{{\frac{84}{305}} \  {x \sp 5}} -
{{\frac{1264}{305}} \  {x \sp 4}} -
{{\frac{13}{549}} \  {x \sp 3}}+
{{\frac{84}{305}} \  {x \sp 2}}+
{{\frac{1772}{2745}} \  x}+
{\frac{2}{2745}}}, 
\\
\\
\displaystyle
\left.
{{x \sp 7}+
{{\frac{29}{4}} \  {x \sp 6}} -
{{\frac{17}{16}} \  {x \sp 4}} -
{{\frac{11}{8}} \  {x \sp 3}}+
{{\frac{1}{32}} \  {x \sp 2}}+
{{\frac{15}{16}} \  x}+
{\frac{1}{4}}} 
\right]
\end{array}
$$
\returnType{Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\spadcommand{(n1,n2,n3) : HDMP([z,y,x],FRAC INT) }
\returnType{Type: Void}

\spadcommand{n1 := d1 }
$$
{4 \  {y \sp 2} \  x}+{{16} \  {x \sp 2}} -{4 \  z}+1 
$$
\returnType{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\spadcommand{n2 := d2 }
$$
{2 \  z \  {y \sp 2}}+{4 \  x}+1 
$$
\returnType{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\spadcommand{n3 := d3 }
$$
{2 \  z \  {x \sp 2}} -{2 \  {y \sp 2}} -x 
$$
\returnType{Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

%Original Page 353

Note that we get a different Gr\"{o}bner basis when we use the 
{\tt HDMP} polynomials, as expected.

\spadcommand{groebner [n1,n2,n3] }
$$
\begin{array}{@{}l}
\displaystyle
\left[
{{y \sp 4}+
{2 \  {x \sp 3}} -
{{\frac{3}{2}} \  {x \sp 2}}+
{{\frac{1}{2}} \  z} -
{\frac{1}{8}}}, 
\right.
\\
\\
\displaystyle
{{x \sp 4}+
{{\frac{29}{4}} \  {x \sp 3}} -
{{\frac{1}{8}} \  {y \sp 2}} -
{{\frac{7}{4}} \  z \  x} -
{{\frac{9}{16}} \  x} -
{\frac{1}{4}}}, 
\\
\\
\displaystyle
{{z \  {y \sp 2}}+
{2 \  x}+
{\frac{1}{2}}}, 
\\
\\
\displaystyle
{{{y \sp 2} \  x}+
{4 \  {x \sp 2}} -
z+
{\frac{1}{4}}},
\\
\\
\displaystyle
{{z \  {x \sp 2}} -
{y \sp 2} -
{{\frac{1}{2}} \  x}},
\\
\\
\displaystyle
\left.
{{z \sp 2} -
{4 \  {y \sp 2}}+
{2 \  {x \sp 2}} -
{{\frac{1}{4}} \  z} -
{{\frac{3}{2}} \  x}} 
\right]
\end{array}
$$
\returnType{Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

{\tt GeneralDistributedMultivariatePolynomial} is somewhat
more flexible in the sense that as well as accepting a list of
variables to specify the variable ordering, it also takes a
predicate on exponent vectors to specify the term ordering.
With this polynomial type the user can experiment with the effect
of using completely arbitrary term orderings.
This flexibility is mostly important for algorithms such as
Gr\"{o}bner basis calculations which can be very
sensitive to term ordering.

For more information on related topics, see\\
\sectionref{ugIntroVariables},
\sectionref{ugTypesConvert},\\
\domainref{Polynomial}, \domainref{UnivariatePolynomial},\\ 
and \domainref{MultivariatePolynomial}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{DoubleFloat}

Axiom provides two kinds of floating point numbers.  The domain 
{\tt Float} (abbreviation {\tt FLOAT}) implements a model of arbitrary
precision floating point numbers.  The domain {\tt DoubleFloat}
(abbreviation {\tt DFLOAT}) is intended to make available hardware
floating point arithmetic in Axiom.  The actual model of floating
point {\tt DoubleFloat} that provides is system-dependent.  For
example, on the IBM system 370 Axiom uses IBM double precision which
has fourteen hexadecimal digits of precision or roughly sixteen
decimal digits.  Arbitrary precision floats allow the user to specify
the precision at which arithmetic operations are computed.  Although
this is an attractive facility, it comes at a cost. Arbitrary-precision 
floating-point arithmetic typically takes twenty to two hundred times 
more time than hardware floating point.

The usual arithmetic and elementary functions are available for 
{\tt DoubleFloat}.  Use {\tt )show DoubleFloat} to get a list of operations
or the HyperDoc browse facility to get more extensive documentation
about {\tt DoubleFloat}.

By default, floating point numbers that you enter into Axiom are of
type {\tt Float}.

\spadcommand{2.71828}
$$
2.71828 
$$
\returnType{Type: Float}

You must therefore tell Axiom that you want to use {\tt DoubleFloat}
values and operations.  The following are some conservative guidelines
for getting Axiom to use {\tt DoubleFloat}.

To get a value of type {\tt DoubleFloat}, use a target with {\tt @}, \ldots

\spadcommand{2.71828@DoubleFloat}
$$
2.71828 
$$
\returnType{Type: DoubleFloat}

a conversion, \ldots

\spadcommand{2.71828 :: DoubleFloat}
$$
2.71828 
$$
\returnType{Type: DoubleFloat}

or an assignment to a declared variable.  It is more efficient if you
use a target rather than an explicit or implicit conversion.

\spadcommand{eApprox : DoubleFloat := 2.71828 }
$$
2.71828 
$$
\returnType{Type: DoubleFloat}

You also need to declare functions that work with {\tt DoubleFloat}.

\spadcommand{avg : List DoubleFloat -> DoubleFloat }
\returnType{Type: Void}

\begin{verbatim}
avg l ==
  empty? l => 0 :: DoubleFloat
  reduce(_+,l) / #l
\end{verbatim}
\returnType{Type: Void}

%\spadcommand{avg [] }
% this complains but succeeds

\spadcommand{avg [3.4,9.7,-6.8] }
\begin{verbatim}
   Compiling function avg with type List Float -> DoubleFloat 

\end{verbatim}
$$
2.1 
$$
\returnType{Type: DoubleFloat}

Use package-calling for operations from {\tt DoubleFloat} unless
the arguments themselves are already of type {\tt DoubleFloat}.

\spadcommand{cos(3.1415926)\$DoubleFloat}
$$
-{0.999999999999999} 
$$
\returnType{Type: DoubleFloat}

\spadcommand{cos(3.1415926 :: DoubleFloat)}
$$
-{0.999999999999999} 
$$
\returnType{Type: DoubleFloat}

By far, the most common usage of {\tt DoubleFloat} is for functions to
be graphed.  For more information about Axiom's numerical and
graphical facilities, see Section
\sectionref{ugGraph}, \sectionref{ugProblemNumeric}, and \domainref{Float}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{EqTable} 

The {\tt EqTable} domain provides tables where the keys are compared
using \spadfunFrom{eq?}{EqTable}.  Keys are considered equal only if
they are the same instance of a structure.  This is useful if the keys
are themselves updatable structures.  Otherwise, all operations are
the same as for type {\tt Table}.  See 
\domainref{Table} for general information about tables.

The operation \spadfunFrom{table}{EqTable} is here used to create a table
where the keys are lists of integers.

\spadcommand{e: EqTable(List Integer, Integer) := table() }
$$
table() 
$$
\returnType{Type: EqTable(List Integer,Integer)}

%Original Page 354

These two lists are equal according to \spadopFrom{=}{List}, but not
according to \spadfunFrom{eq?}{List}.

\spadcommand{l1 := [1,2,3] }
$$
\left[
1, 2, 3 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{l2 := [1,2,3] }
$$
\left[
1, 2, 3 
\right]
$$
\returnType{Type: List PositiveInteger}

Because the two lists are not \spadfunFrom{eq?}{List}, separate values
can be stored under each.

\spadcommand{e.l1 := 111    }
$$
111 
$$
\returnType{Type: PositiveInteger}

\spadcommand{e.l2 := 222    }
$$
222 
$$
\returnType{Type: PositiveInteger}

\spadcommand{e.l1}
$$
111 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Equation}

The {\tt Equation} domain provides equations as mathematical objects.
These are used, for example, as the input to various
\spadfunFrom{solve}{TransSolvePackage} operations.

Equations are created using the equals symbol, \spadopFrom{=}{Equation}.

\spadcommand{eq1 := 3*x + 4*y = 5 }
$$
{{4 \  y}+{3 \  x}}=5 
$$
\returnType{Type: Equation Polynomial Integer}

\spadcommand{eq2 := 2*x + 2*y = 3 }
$$
{{2 \  y}+{2 \  x}}=3 
$$
\returnType{Type: Equation Polynomial Integer}

The left- and right-hand sides of an equation are accessible using
the operations \spadfunFrom{lhs}{Equation} and \spadfunFrom{rhs}{Equation}.

\spadcommand{lhs eq1 }
$$
{4 \  y}+{3 \  x} 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{rhs eq1 }
$$
5 
$$
\returnType{Type: Polynomial Integer}

%Original Page 355

Arithmetic operations are supported and operate on both sides of the
equation.

\spadcommand{eq1 + eq2   }
$$
{{6 \  y}+{5 \  x}}=8 
$$
\returnType{Type: Equation Polynomial Integer}

\spadcommand{eq1 * eq2   }
$$
{{8 \  {y \sp 2}}+{{14} \  x \  y}+{6 \  {x \sp 2}}}={15} 
$$
\returnType{Type: Equation Polynomial Integer}

\spadcommand{2*eq2 - eq1 }
$$
x=1 
$$
\returnType{Type: Equation Polynomial Integer}

Equations may be created for any type so the arithmetic operations
will be defined only when they make sense.  For example, exponentiation 
is not defined for equations involving non-square matrices.

\spadcommand{eq1**2 }
$$
{{{16} \  {y \sp 2}}+{{24} \  x \  y}+{9 \  {x \sp 2}}}={25} 
$$
\returnType{Type: Equation Polynomial Integer}

Note that an equals symbol is also used to {\it test} for equality of
values in certain contexts.  For example, {\tt x+1} and {\tt y} are
unequal as polynomials.

\spadcommand{if x+1 = y then "equal" else "unequal"}
$$
\mbox{\tt "unequal"} 
$$
\returnType{Type: String}

\spadcommand{eqpol := x+1 = y }
$$
{x+1}=y 
$$
\returnType{Type: Equation Polynomial Integer}

If an equation is used where a {\tt Boolean} value is required, then
it is evaluated using the equality test from the operand type.

\spadcommand{if eqpol then "equal" else "unequal" }
$$
\mbox{\tt "unequal"} 
$$
\returnType{Type: String}

If one wants a {\tt Boolean} value rather than an equation, all one
has to do is ask!

\spadcommand{eqpol::Boolean }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{EuclideanGroebnerBasisPackage}

Example to call euclideanGroebner:
\begin{verbatim}
  a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
  a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
  a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
  an:=[a1,a2,a3]
  euclideanGroebner(an)
\end{verbatim}
This will return the weak euclidean Groebner basis set.
All reductions are total reductions.

You can get more information by providing a second argument.
To get the reduced critical pairs do:
\begin{verbatim}
  euclideanGroebner(an,"redcrit")
\end{verbatim}
You can get other information by calling:
\begin{verbatim}
  euclideanGroebner(an,"info")
\end{verbatim}
which returns:
\begin{verbatim}
   ci  =>  Leading monomial  for critpair calculation
   tci =>  Number of terms of polynomial i
   cj  =>  Leading monomial  for critpair calculation
   tcj =>  Number of terms of polynomial j
   c   =>  Leading monomial of critpair polynomial
   tc  =>  Number of terms of critpair polynomial
   rc  =>  Leading monomial of redcritpair polynomial
   trc =>  Number of terms of redcritpair polynomial
   tH  =>  Number of polynomials in reduction list H
   tD  =>  Number of critpairs still to do
\end{verbatim}
The three argument form returns all of the information:
\begin{verbatim}
  euclideanGroebner(an,"info","redcrit")
\end{verbatim}

The term ordering is determined by the polynomial type used. 
Suggested types include
\begin{verbatim}
   DistributedMultivariatePolynomial
   HomogeneousDistributedMultivariatePolynomial
   GeneralDistributedMultivariatePolynomial
\end{verbatim} 

See 
\domainref{EuclideanGroebnerBasisPackage},\\
\domainref{DistributedMultivariatePolynomial},\\
\domainref{HomogeneousDistributedMultivariatePolynomial},\\
\domainref{GeneralDistributedMultivariatePolynomial},\\ 
and \domainref{GroebnerPackage}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Exit}

A function that does not return directly to its caller has {\tt Exit}
as its return type.  The operation {\tt error} is an example of one
which does not return to its caller.  Instead, it causes a return to
top-level.

\spadcommand{n := 0 }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

%Original Page 356

The function {\tt gasp} is given return type {\tt Exit} since it is
guaranteed never to return a value to its caller.

\begin{verbatim}
gasp(): Exit ==
    free n
    n := n + 1
    error "Oh no!"
 
Function declaration gasp : () -> Exit has been added to workspace.

\end{verbatim}
\returnType{Type: Void}

The return type of {\tt half} is determined by resolving the types of
the two branches of the {\tt if}.

\begin{verbatim}
half(k) ==
  if odd? k then gasp()
  else k quo 2
\end{verbatim}

Because {\tt gasp} has the return type {\tt Exit}, the type of 
{\tt if} in {\tt half} is resolved to be {\tt Integer}.

\spadcommand{half 4 }
\begin{verbatim}
   Compiling function gasp with type () -> Exit 
   Compiling function half with type PositiveInteger -> Integer 
\end{verbatim}
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{half 3 }
\begin{verbatim}
   Error signalled from user code in function gasp: 
      Oh no!
\end{verbatim}

\spadcommand{n }
$$
1 
$$
\returnType{Type: NonNegativeInteger}

For functions which return no value at all, use {\tt Void}. 
\domainref{Void} for more information.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Expression}

{\tt Expression} is a constructor that creates domains whose objects
can have very general symbolic forms.  Here are some examples:

This is an object of type {\tt Expression Integer}.

\spadcommand{sin(x) + 3*cos(x)**2}
$$
{\sin \left({x} \right)}+{3\  {{\cos \left({x} \right)}\sp 2}} 
$$
\returnType{Type: Expression Integer}

This is an object of type {\tt Expression Float}.

\spadcommand{tan(x) - 3.45*x}
$$
{\tan \left({x} \right)}-{{3.45} \  x} 
$$
\returnType{Type: Expression Float}

This object contains symbolic function applications, sums,
products, square roots, and a quotient.

\spadcommand{(tan sqrt 7 - sin sqrt 11)**2 / (4 - cos(x - y))}
$$
\frac{-{{\tan \left({{\sqrt {7}}} \right)}\sp 2}+
{2 \  {\sin \left({{\sqrt {{11}}}} \right)}
\  {\tan \left({{\sqrt {7}}} \right)}}
-{{\sin \left({{\sqrt {{11}}}} \right)}\sp 2}} 
{{\cos \left({{y -x}} \right)}-4} 
$$
\returnType{Type: Expression Integer}

As you can see, {\tt Expression} actually takes an argument domain.
The {\it coefficients} of the terms within the expression belong to
the argument domain.  {\tt Integer} and {\tt Float}, along with 
{\tt Complex Integer} and {\tt Complex Float} are the most common
coefficient domains.

The choice of whether to use a {\tt Complex} coefficient domain or not
is important since Axiom can perform some simplifications on
real-valued objects

\spadcommand{log(exp  x)@Expression(Integer)} 
$$
x 
$$
\returnType{Type: Expression Integer}

... which are not valid on complex ones.

\spadcommand{log(exp  x)@Expression(Complex Integer)} 
$$
\log \left({{e \sp x}} \right)
$$
\returnType{Type: Expression Complex Integer}

Many potential coefficient domains, such as {\tt AlgebraicNumber}, are
not usually used because {\tt Expression} can subsume them.

\spadcommand{sqrt 3 + sqrt(2 + sqrt(-5)) }
$$
{\sqrt {{{\sqrt {-5}}+2}}}+{\sqrt {3}} 
$$
\returnType{Type: AlgebraicNumber}

\spadcommand{\% :: Expression Integer }
$$
{\sqrt {{{\sqrt {-5}}+2}}}+{\sqrt {3}} 
$$
\returnType{Type: Expression Integer}

Note that we sometimes talk about ``an object of type {\tt
Expression}.'' This is not really correct because we should say, for
example, ``an object of type {\tt Expression Integer}'' or ``an object
of type {\tt Expression Float}.''  By a similar abuse of language,
when we refer to an ``expression'' in this section we will mean an
object of type {\tt Expression R} for some domain {\tt R}.

The Axiom documentation contains many examples of the use of {\tt
Expression}.  For the rest of this section, we'll give you some
pointers to those examples plus give you some idea of how to
manipulate expressions.

It is important for you to know that {\tt Expression} creates domains
that have category {\tt Field}.  Thus you can invert any non-zero
expression and you shouldn't expect an operation like {\tt factor} to
give you much information.  You can imagine expressions as being
represented as quotients of ``multivariate'' polynomials where the
``variables'' are kernels (see \domainref{Kernel}.  A kernel can
either be a symbol such as {\tt x} or a symbolic function application
like {\tt sin(x + 4)}.  The second example is actually a nested kernel
since the argument to {\tt sin} contains the kernel {\tt x}.

\spadcommand{height mainKernel sin(x + 4)}
$$
2 
$$
\returnType{Type: PositiveInteger}

Actually, the argument to {\tt sin} is an expression, and so the
structure of {\tt Expression} is recursive.  
\domainref{Kernel} demonstrates how to extract the kernels in an expression.

Use the HyperDoc Browse facility to see what operations are applicable
to expression.  At the time of this writing, there were 262 operations
with 147 distinct name in {\tt Expression Integer}.  For example,
\spadfunFrom{numer}{Expression} and \spadfunFrom{denom}{Expression}
extract the numerator and denominator of an expression.

\spadcommand{e := (sin(x) - 4)**2 / ( 1 - 2*y*sqrt(- y) ) }
$$
\frac{-{{\sin \left({x} \right)}\sp 2}+
{8 \  {\sin \left({x} \right)}}
-{16}}{{2 \  y \  {\sqrt {-y}}} -1} 
$$
\returnType{Type: Expression Integer}

\spadcommand{numer e }
$$
-{{\sin \left({x} \right)}\sp 2}+
{8 \  {\sin \left({x} \right)}}
-{16} 
$$
\returnType{Type: 
SparseMultivariatePolynomial(Integer,Kernel Expression Integer)}

\spadcommand{denom e }
$$
{2 \  y \  {\sqrt {-y}}} -1 
$$
\returnType{Type: 
SparseMultivariatePolynomial(Integer,Kernel Expression Integer)}

Use \spadfunFrom{D}{Expression} to compute partial derivatives.

\spadcommand{D(e, x) }
$$
\frac{{{\left( 
{4 \  y \  {\cos \left({x} \right)}\  {\sin \left({x} \right)}}-
{{16} \  y \  {\cos \left({x} \right)}}\right)}\  {\sqrt {-y}}} -
{2 \  {\cos \left({x} \right)}\  {\sin \left({x} \right)}}+
{8\  {\cos \left({x} \right)}}}
{{4 \  y \  {\sqrt {-y}}}+{4 \  {y \sp 3}} -1} 
$$
\returnType{Type: Expression Integer}

See \sectionref{ugIntroCalcDeriv}
for more examples of expressions and derivatives.

\spadcommand{D(e, [x, y], [1, 2]) }
$$
\frac{\left(
\begin{array}{@{}l}
{{\left( {{\left( -{{2304} \  {y \sp 7}}+{{960} \  {y \sp 4}} \right)}
\  {\cos \left({x} \right)}\  {\sin \left({x} \right)}}+
{{\left({{9216} \  {y \sp 7}} -{{3840} \  {y \sp 4}} \right)}
\  {\cos \left({x} \right)}}\right)}\  {\sqrt {-y}}}+
\\
\\
\displaystyle
{{\left( -{{960} \  {y \sp 9}}+{{2160} \  {y \sp 6}} -{{180} \  {y \sp 3}} -3 
\right)}\  {\cos \left({x} \right)}\  {\sin \left({x} \right)}}+
\\
\\
\displaystyle
{{\left(
{{3840} \  {y \sp 9}} -{{8640} \  {y \sp 6}}+{{720} \  {y \sp 3}}+{12} 
\right)}\  {\cos \left({x} \right)}}
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
{{\left( {{256} \  {y \sp {12}}} -{{1792} \  {y \sp 9}}+{{1120} \  {y 
\sp 6}} -{{112} \  {y \sp 3}}+1 \right)}\  {\sqrt {-y}}} -
\\
\\
\displaystyle
{{1024} \  {y \sp {11}}}+{{1792} \  {y \sp 8}} -{{448} \  
{y \sp 5}}+{{16} \  {y \sp 2}} 
\end{array}
\right)}
$$
\returnType{Type: Expression Integer}

See 
\sectionref{ugIntroCalcLimits} and 
\sectionref{ugIntroSeries} for more examples of expressions and
calculus.  Differential equations involving expressions are discussed
in \sectionref{ugProblemDEQ} on page~\pageref{ugProblemDEQ}.
Chapter 8 has many advanced examples: see
\sectionref{ugProblemIntegration}
for a discussion of Axiom's integration facilities.

When an expression involves no ``symbol kernels'' (for example, 
{\tt x}), it may be possible to numerically evaluate the expression.

If you suspect the evaluation will create a complex number, use 
{\tt complexNumeric}.

\spadcommand{complexNumeric(cos(2 - 3*\%i))}
$$
-{4.1896256909\ 688072301}+{{9.1092278937\ 55336598} \  i} 
$$
\returnType{Type: Complex Float}

If you know it will be real, use {\tt numeric}.

\spadcommand{numeric(tan 3.8)}
$$
0.7735560905\ 0312607286 
$$
\returnType{Type: Float}

The {\tt numeric} operation will display an error message if the
evaluation yields a calue with an non-zero imaginary part.  Both of
these operations have an optional second argument {\tt n} which
specifies that the accuracy of the approximation be up to {\tt n}
decimal places.

When an expression involves no ``symbolic application'' kernels, it
may be possible to convert it a polynomial or rational function in the
variables that are present.

\spadcommand{e2 := cos(x**2 - y + 3) }
$$
\cos \left({{y -{x \sp 2} -3}} \right)
$$
\returnType{Type: Expression Integer}

\spadcommand{e3 := asin(e2) - \%pi/2 }
$$
-y+{x \sp 2}+3 
$$
\returnType{Type: Expression Integer}

\spadcommand{e3 :: Polynomial Integer }
$$
-y+{x \sp 2}+3 
$$
\returnType{Type: Polynomial Integer}

This also works for the polynomial types where specific variables
and their ordering are given.

\spadcommand{e3 :: DMP([x, y], Integer) }
$$
{x \sp 2} -y+3 
$$
\returnType{Type: DistributedMultivariatePolynomial([x,y],Integer)}

Finally, a certain amount of simplication takes place as expressions
are constructed.

\spadcommand{sin \%pi}
$$
0 
$$
\returnType{Type: Expression Integer}

\spadcommand{cos(\%pi / 4)}
$$
\frac{\sqrt {2}}{2} 
$$
\returnType{Type: Expression Integer}

For simplications that involve multiple terms of the expression, use
{\tt simplify}.

\spadcommand{tan(x)**6 + 3*tan(x)**4 + 3*tan(x)**2 + 1 }
$$
{{\tan \left({x} \right)}\sp 6}+
{3 \  {{\tan \left({x} \right)}\sp 4}}+
{3 \  {{\tan \left({x} \right)}\sp 2}}+1 
$$
\returnType{Type: Expression Integer}

\spadcommand{simplify \% }
$$
\frac{1}{{\cos \left({x} \right)}\sp 6} 
$$
\returnType{Type: Expression Integer}

See \sectionref{ugUserRules} for
examples of how to write your own rewrite rules for expressions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Factored}

{\tt Factored} creates a domain whose objects are kept in factored
form as long as possible.  Thus certain operations like
\spadopFrom{*}{Factored} (multiplication) and
\spadfunFrom{gcd}{Factored} are relatively easy to do.  Others, such
as addition, require somewhat more work, and the result may not be
completely factored unless the argument domain {\tt R} provides a
\spadfunFrom{factor}{Factored} operation.  Each object consists of a
unit and a list of factors, where each factor consists of a member of
{\tt R} (the {\em base}), an exponent, and a flag indicating what is
known about the base.  A flag may be one of ``{\tt nil}'', ``{\tt sqfr}'',
``{\tt irred}'' or ``{\tt prime}'', which mean that nothing is known about
the base, it is square-free, it is irreducible, or it is prime,
respectively.  The current restriction to factored objects of integral
domains allows simplification to be performed without worrying about
multiplication order.

%Original Page 357

\subsection{Decomposing Factored Objects}

In this section we will work with a factored integer.

\spadcommand{g := factor(4312) }
$$
{2 \sp 3} \  {7 \sp 2} \  {11} 
$$
\returnType{Type: Factored Integer}

Let's begin by decomposing {\tt g} into pieces.  The only possible
units for integers are {\tt 1} and {\tt -1}.

\spadcommand{unit(g) }
$$
1 
$$
\returnType{Type: PositiveInteger}

There are three factors.

\spadcommand{numberOfFactors(g) }
$$
3 
$$
\returnType{Type: PositiveInteger}

We can make a list of the bases, \ldots

\spadcommand{[nthFactor(g,i) for i in 1..numberOfFactors(g)] }
$$
\left[
2, 7, {11} 
\right]
$$
\returnType{Type: List Integer}

and the exponents, \ldots

\spadcommand{[nthExponent(g,i) for i in 1..numberOfFactors(g)] }
$$
\left[
3, 2, 1 
\right]
$$
\returnType{Type: List Integer}

and the flags.  You can see that all the bases (factors) are prime.

\spadcommand{[nthFlag(g,i) for i in 1..numberOfFactors(g)] }
$$
\left[
\mbox{\tt "prime"} , \mbox{\tt "prime"} , \mbox{\tt "prime"} 
\right]
$$
\returnType{Type: List Union("nil","sqfr","irred","prime")}

A useful operation for pulling apart a factored object into a list
of records of the components is \spadfunFrom{factorList}{Factored}.

\spadcommand{factorList(g) }
$$
\begin{array}{@{}l}
\left[
{\left[ {flg= \mbox{\tt "prime"} }, {fctr=2}, {xpnt=3} \right]},
\right.
\\
\\
\displaystyle
{\left[ {flg= \mbox{\tt "prime"} }, {fctr=7}, {xpnt=2} \right]},
\\
\\
\left.
\displaystyle
{\left[ {flg= \mbox{\tt "prime"} }, {fctr={11}}, {xpnt=1} \right]}
\right]
\end{array}
$$
\returnType{Type: 
List Record(flg: Union("nil","sqfr","irred","prime"),
fctr: Integer,xpnt: Integer)}

%Original Page 358

If you don't care about the flags, use \spadfunFrom{factors}{Factored}.

\spadcommand{factors(g) }
$$
\begin{array}{@{}l}
\left[
{\left[ {factor=2}, {exponent=3} \right]},
\right.
\\
\\
\displaystyle
{\left[ {factor=7}, {exponent=2} \right]},
\\
\\
\displaystyle
\left.
{\left[ {factor={11}}, {exponent=1} \right]}
\right]
\end{array}
$$
\returnType{Type: List Record(factor: Integer,exponent: Integer)}

Neither of these operations returns the unit.

\spadcommand{first(\%).factor }
$$
2 
$$
\returnType{Type: PositiveInteger}

\subsection{Expanding Factored Objects}

Recall that we are working with this factored integer.

\spadcommand{g := factor(4312) }
$$
{2 \sp 3} \  {7 \sp 2} \  {11} 
$$
\returnType{Type: Factored Integer}

To multiply out the factors with their multiplicities, use
\spadfunFrom{expand}{Factored}.

\spadcommand{expand(g) }
$$
4312 
$$
\returnType{Type: PositiveInteger}

If you would like, say, the distinct factors multiplied together but
with multiplicity one, you could do it this way.

\spadcommand{reduce(*,[t.factor for t in factors(g)]) }
$$
154 
$$
\returnType{Type: PositiveInteger}

\subsection{Arithmetic with Factored Objects}

We're still working with this factored integer.

\spadcommand{g := factor(4312) }
$$
{2 \sp 3} \  {7 \sp 2} \  {11} 
$$
\returnType{Type: Factored Integer}

We'll also define this factored integer.

\spadcommand{f := factor(246960) }
$$
{2 \sp 4} \  {3 \sp 2} \  5 \  {7 \sp 3} 
$$
\returnType{Type: Factored Integer}

%Original Page 359

Operations involving multiplication and division are particularly
easy with factored objects.

\spadcommand{f * g }
$$
{2 \sp 7} \  {3 \sp 2} \  5 \  {7 \sp 5} \  {11} 
$$
\returnType{Type: Factored Integer}

\spadcommand{f**500 }
$$
{2 \sp {2000}} \  {3 \sp {1000}} \  {5 \sp {500}} \  {7 \sp {1500}} 
$$
\returnType{Type: Factored Integer}

\spadcommand{gcd(f,g) }
$$
{2 \sp 3} \  {7 \sp 2} 
$$
\returnType{Type: Factored Integer}

\spadcommand{lcm(f,g) }
$$
{2 \sp 4} \  {3 \sp 2} \  5 \  {7 \sp 3} \  {11} 
$$
\returnType{Type: Factored Integer}

If we use addition and subtraction things can slow down because
we may need to compute greatest common divisors.

\spadcommand{f + g }
$$
{2 \sp 3} \  {7 \sp 2} \  {641} 
$$
\returnType{Type: Factored Integer}

\spadcommand{f - g }
$$
{2 \sp 3} \  {7 \sp 2} \  {619} 
$$
\returnType{Type: Factored Integer}

Test for equality with {\tt 0} and {\tt 1} by using
\spadfunFrom{zero?}{Factored} and \spadfunFrom{one?}{Factored},
respectively.

\spadcommand{zero?(factor(0))}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{zero?(g) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{one?(factor(1))}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{one?(f) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Another way to get the zero and one factored objects is to use
package calling (see \sectionref{ugTypesPkgCall}).

\spadcommand{0\$Factored(Integer)}
$$
0 
$$
\returnType{Type: Factored Integer}

%Original Page 360

\spadcommand{1\$Factored(Integer)}
$$
1 
$$
\returnType{Type: Factored Integer}

\subsection{Creating New Factored Objects}

The \spadfunFrom{map}{Factored} operation is used to iterate across
the unit and bases of a factored object.  See \domainref{FactoredFunctions2}
for a discussion of \spadfunFrom{map}{Factored}.

The following four operations take a base and an exponent and create a
factored object.  They differ in handling the flag component.

\spadcommand{nilFactor(24,2) }
$$
{24} \sp 2 
$$
\returnType{Type: Factored Integer}

This factor has no associated information.

\spadcommand{nthFlag(\%,1) }
$$
\mbox{\tt "nil"} 
$$
\returnType{Type: Union("nil",...)}

This factor is asserted to be square-free.

\spadcommand{sqfrFactor(30,2) }
$$
{30} \sp 2 
$$
\returnType{Type: Factored Integer}

This factor is asserted to be irreducible.

\spadcommand{irreducibleFactor(13,10) }
$$
{13} \sp {10} 
$$
\returnType{Type: Factored Integer}

This factor is asserted to be prime.

\spadcommand{primeFactor(11,5) }
$$
{11} \sp 5 
$$
\returnType{Type: Factored Integer}

A partial inverse to \spadfunFrom{factorList}{Factored} is
\spadfunFrom{makeFR}{Factored}.

\spadcommand{h := factor(-720) }
$$
-{{2 \sp 4} \  {3 \sp 2} \  5} 
$$
\returnType{Type: Factored Integer}

The first argument is the unit and the second is a list of records as
returned by \spadfunFrom{factorList}{Factored}.

\spadcommand{h - makeFR(unit(h),factorList(h)) }
$$
0 
$$
\returnType{Type: Factored Integer}

%Original Page 361

\subsection{Factored Objects with Variables}

Some of the operations available for polynomials are also available
for factored polynomials.

\spadcommand{p := (4*x*x-12*x+9)*y*y + (4*x*x-12*x+9)*y + 28*x*x - 84*x + 63 }
$$
{{\left( {4 \  {x \sp 2}} -{{12} \  x}+9 
\right)}
\  {y \sp 2}}+{{\left( {4 \  {x \sp 2}} -{{12} \  x}+9 
\right)}
\  y}+{{28} \  {x \sp 2}} -{{84} \  x}+{63} 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{fp := factor(p) }
$$
{{\left( {2 \  x} -3 
\right)}
\sp 2} \  {\left( {y \sp 2}+y+7 
\right)}
$$
\returnType{Type: Factored Polynomial Integer}

You can differentiate with respect to a variable.

\spadcommand{D(p,x) }
$$
{{\left( {8 \  x} -{12} 
\right)}
\  {y \sp 2}}+{{\left( {8 \  x} -{12} 
\right)}
\  y}+{{56} \  x} -{84} 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{D(fp,x) }
$$
4 \  {\left( {2 \  x} -3 
\right)}
\  {\left( {y \sp 2}+y+7 
\right)}
$$
\returnType{Type: Factored Polynomial Integer}

\spadcommand{numberOfFactors(\%) }
$$
3 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{FactoredFunctions2}

The {\tt FactoredFunctions2} package implements one operation,
\spadfunFrom{map}{FactoredFunctions2}, for applying an operation to every
base in a factored object and to the unit.

\spadcommand{double(x) == x + x }
\returnType{Type: Void}

\spadcommand{f := factor(720) }
$$
{2 \sp 4} \  {3 \sp 2} \  5 
$$
\returnType{Type: Factored Integer}

Actually, the \spadfunFrom{map}{FactoredFunctions2} operation used
in this example comes from {\tt Factored} itself, since {\tt double} 
takes an integer argument and returns an integer result.

\spadcommand{map(double,f) }
$$
2 \  {4 \sp 4} \  {6 \sp 2} \  {10} 
$$
\returnType{Type: Factored Integer}

%Original Page 362

If we want to use an operation that returns an object that has a type
different from the operation's argument,
the \spadfunFrom{map}{FactoredFunctions2} in {\tt Factored}
cannot be used and we use the one in {\tt FactoredFunctions2}.

\spadcommand{makePoly(b) == x + b }
\returnType{Type: Void}

In fact, the ``2'' in the name of the package means that we might
be using factored objects of two different types.

\spadcommand{g := map(makePoly,f) }
$$
{\left( x+1 \right)}
\  {{\left( x+2 \right)}\sp 4} 
\  {{\left( x+3 \right)}\sp 2} 
\  {\left( x+5 \right)}
$$
\returnType{Type: Factored Polynomial Integer}

It is important to note that both versions of
\spadfunFrom{map}{FactoredFunctions2} destroy any information known
about the bases (the fact that they are prime, for instance).

The flags for each base are set to ``nil'' in the object returned
by \spadfunFrom{map}{FactoredFunctions2}.

\spadcommand{nthFlag(g,1) }
$$
\mbox{\tt "nil"} 
$$
\returnType{Type: Union("nil",...)}

For more information about factored objects and their use, see
\domainref{Factored} and \sectionref{ugProblemGalois}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{File}

The {\tt File(S)} domain provides a basic interface to read and
write values of type {\tt S} in files.

Before working with a file, it must be made accessible to Axiom with
the \spadfunFrom{open}{File} operation.

\spadcommand{ifile:File List Integer:=open("/tmp/jazz1","output")  }
$$
\mbox{\tt "/tmp/jazz1"} 
$$
\returnType{Type: File List Integer}

The \spadfunFrom{open}{File} function arguments are a {\tt FileName}
and a {\tt String} specifying the mode.  If a full pathname is not
specified, the current default directory is assumed.  The mode must be
one of ``{\tt input}'' or ``{\tt output}''.  If it is not specified, 
``{\tt input}'' is assumed.  Once the file has been opened, you can read or
write data.

The operations \spadfunFrom{read}{File} and \spadfunFrom{write}{File} are
provided.

\spadcommand{write!(ifile, [-1,2,3])}
$$
\left[
-1, 2, 3 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{write!(ifile, [10,-10,0,111])}
$$
\left[
{10}, -{10}, 0, {111} 
\right]
$$
\returnType{Type: List Integer}

%Original Page 363

\spadcommand{write!(ifile, [7])}
$$
\left[
7 
\right]
$$
\returnType{Type: List Integer}

You can change from writing to reading (or vice versa) by reopening a file.

\spadcommand{reopen!(ifile, "input")}
$$
\mbox{\tt "/tmp/jazz1"} 
$$
\returnType{Type: File List Integer}

\spadcommand{read! ifile}
$$
\left[
-1, 2, 3 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{read! ifile}
$$
\left[
{10}, -{10}, 0, {111} 
\right]
$$
\returnType{Type: List Integer}

The \spadfunFrom{read}{File} operation can cause an error if one tries
to read more data than is in the file.  To guard against this
possibility the \spadfunFrom{readIfCan}{File} operation should be
used.

\spadcommand{readIfCan! ifile  }
$$
\left[
7 
\right]
$$
\returnType{Type: Union(List Integer,...)}

\spadcommand{readIfCan! ifile  }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

You can find the current mode of the file, and the file's name.

\spadcommand{iomode ifile}
$$
\mbox{\tt "input"} 
$$
\returnType{Type: String}

\spadcommand{name ifile}
$$
\mbox{\tt "/tmp/jazz1"} 
$$
\returnType{Type: FileName}

When you are finished with a file, you should close it.

\spadcommand{close! ifile}
$$
\mbox{\tt "/tmp/jazz1"} 
$$
\returnType{Type: File List Integer}

\spadcommand{)system rm /tmp/jazz1}

A limitation of the underlying LISP system is that not all values can
be represented in a file.  In particular, delayed values containing
compiled functions cannot be saved.

For more information on related topics, see 
\domainref{TextFile}, \domainref{KeyedAccessFile}, 
\domainref{Library}, and \domainref{FileName}.

%Original Page 364

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{FileName}
 
The {\tt FileName} domain provides an interface to the computer's file
system.  Functions are provided to manipulate file names and to test
properties of files.
 
The simplest way to use file names in the Axiom interpreter is to rely
on conversion to and from strings.  The syntax of these strings
depends on the operating system.

\spadcommand{fn: FileName }
\returnType{Type: Void}

On Linux, this is a proper file syntax:

\spadcommand{fn := "/tmp/fname.input" }
$$
\mbox{\tt "/tmp/fname.input"} 
$$
\returnType{Type: FileName}

Although it is very convenient to be able to use string notation
for file names in the interpreter, it is desirable to have a portable
way of creating and manipulating file names from within programs.

A measure of portability is obtained by considering a file name
to consist of three parts: the {\it directory}, the {\it name},
and the {\it extension}.

\spadcommand{directory fn }
$$
\mbox{\tt "/tmp"} 
$$
\returnType{Type: String}

\spadcommand{name fn }
$$
\mbox{\tt "fname"} 
$$
\returnType{Type: String}

\spadcommand{extension fn }
$$
\mbox{\tt "input"} 
$$
\returnType{Type: String}

The meaning of these three parts depends on the operating system.
For example, on CMS the file ``{\tt SPADPROF INPUT M}''
would have directory ``{\tt M}'', name ``{\tt SPADPROF}'' and
extension ``{\tt INPUT}''.
 
It is possible to create a filename from its parts.

\spadcommand{fn := filename("/u/smwatt/work", "fname", "input") }
$$
\mbox{\tt "/u/smwatt/work/fname.input"} 
$$
\returnType{Type: FileName}

%Original Page 365

When writing programs, it is helpful to refer to directories via
variables.

\spadcommand{objdir := "/tmp" }
$$
\mbox{\tt "/tmp"} 
$$
\returnType{Type: String}

\spadcommand{fn := filename(objdir, "table", "spad") }
$$
\mbox{\tt "/tmp/table.spad"} 
$$
\returnType{Type: FileName}

If the directory or the extension is given as an empty string, then
a default is used.  On AIX, the defaults are the current directory
and no extension.

\spadcommand{fn := filename("", "letter", "") }
$$
\mbox{\tt "letter"} 
$$
\returnType{Type: FileName}
 
Three tests provide information about names in the file system.

The \spadfunFrom{exists?}{FileName} operation tests whether the named
file exists.

\spadcommand{exists? "/etc/passwd"}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The operation \spadfunFrom{readable?}{FileName} tells whether the named file
can be read.  If the file does not exist, then it cannot be read.

\spadcommand{readable? "/etc/passwd"}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{readable? "/etc/security/passwd"}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{readable? "/ect/passwd"}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Likewise, the operation \spadfunFrom{writable?}{FileName} tells
whether the named file can be written.  If the file does not exist,
the test is determined by the properties of the directory.

\spadcommand{writable? "/etc/passwd"}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{writable? "/dev/null"}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{writable? "/etc/DoesNotExist"}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%Original Page 366

\spadcommand{writable? "/tmp/DoesNotExist"}
$$
{\tt true} 
$$
\returnType{Type: Boolean}
 
The \spadfunFrom{new}{FileName} operation constructs the name of a new
writable file.  The argument sequence is the same as for
\spadfunFrom{filename}{FileName}, except that the name part is
actually a prefix for a constructed unique name.

The resulting file is in the specified directory
with the given extension, and the same defaults are used.

\spadcommand{fn := new(objdir, "xxx", "yy") }
$$
\mbox{\tt "/tmp/xxx82404.yy"} 
$$
\returnType{Type: FileName}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{FlexibleArray}

The {\tt FlexibleArray} domain constructor creates one-dimensional
arrays of elements of the same type.  Flexible arrays are an attempt
to provide a data type that has the best features of both
one-dimensional arrays (fast, random access to elements) and lists
(flexibility).  They are implemented by a fixed block of storage.
When necessary for expansion, a new, larger block of storage is
allocated and the elements from the old storage area are copied into
the new block.

Flexible arrays have available most of the operations provided by 
{\tt OneDimensionalArray} (see 
\domainref{OneDimensionalArray} and \domainref{Vector}).
Since flexible arrays are also of category 
{\tt ExtensibleLinearAggregate}, they have operations {\tt concat!}, 
{\tt delete!}, {\tt insert!}, {\tt merge!}, {\tt remove!}, 
{\tt removeDuplicates!}, and {\tt select!}.  In addition, the operations
{\tt physicalLength} and {\tt physicalLength!} provide user-control
over expansion and contraction.

A convenient way to create a flexible array is to apply the operation
{\tt flexibleArray} to a list of values.

\spadcommand{flexibleArray [i for i in 1..6]}
$$
\left[
1, 2, 3, 4, 5, 6 
\right]
$$
\returnType{Type: FlexibleArray PositiveInteger}

Create a flexible array of six zeroes.

\spadcommand{f : FARRAY INT := new(6,0)}
$$
\left[
0, 0, 0, 0, 0, 0 
\right]
$$
\returnType{Type: FlexibleArray Integer}

For $i=1\ldots 6$ set the $i$-th element to $i$.  Display {\tt f}.

\spadcommand{for i in 1..6 repeat f.i := i; f}
$$
\left[
1, 2, 3, 4, 5, 6 
\right]
$$
\returnType{Type: FlexibleArray Integer}

%Original Page 367

Initially, the physical length is the same as the number of elements.

\spadcommand{physicalLength f}
$$
6 
$$
\returnType{Type: PositiveInteger}

Add an element to the end of {\tt f}.

\spadcommand{concat!(f,11)}
$$
\left[
1, 2, 3, 4, 5, 6, {11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

See that its physical length has grown.

\spadcommand{physicalLength f}
$$
10 
$$
\returnType{Type: PositiveInteger}

Make {\tt f} grow to have room for {\tt 15} elements.

\spadcommand{physicalLength!(f,15)}
$$
\left[
1, 2, 3, 4, 5, 6, {11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Concatenate the elements of {\tt f} to itself.  The physical length
allows room for three more values at the end.

\spadcommand{concat!(f,f)}
$$
\left[
1, 2, 3, 4, 5, 6, {11}, 1, 2, 3, 4, 5, 6, 
{11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Use {\tt insert!} to add an element to the front of a flexible array.

\spadcommand{insert!(22,f,1)}
$$
\left[
{22}, 1, 2, 3, 4, 5, 6, {11}, 1, 2, 3, 4, 
5, 6, {11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Create a second flexible array from {\tt f} consisting of the elements
from index 10 forward.

\spadcommand{g := f(10..)}
$$
\left[
2, 3, 4, 5, 6, {11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Insert this array at the front of {\tt f}.

\spadcommand{insert!(g,f,1)}
$$
\left[
2, 3, 4, 5, 6, {11}, {22}, 1, 2, 3, 4, 5, 
6, {11}, 1, 2, 3, 4, 5, 6, {11} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Merge the flexible array {\tt f} into {\tt g} after sorting each in place.

\spadcommand{merge!(sort! f, sort! g)}
$$
\left[
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 
4, 5, 5, 5, 5, 6, 6, 6, 6, {11}, {11}, {11}, 
{11}, {22} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

Remove duplicates in place.

\spadcommand{removeDuplicates! f}
$$
\left[
1, 2, 3, 4, 5, 6, {11}, {22} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

%Original Page 368

Remove all odd integers.

\spadcommand{select!(i +-> even? i,f)}
$$
\left[
2, 4, 6, {22} 
\right]
$$
\returnType{Type: FlexibleArray Integer}

All these operations have shrunk the physical length of {\tt f}.

\spadcommand{physicalLength f}
$$
8 
$$
\returnType{Type: PositiveInteger}

To force Axiom not to shrink flexible arrays call the {\tt shrinkable}
operation with the argument {\tt false}.  You must package call this
operation.  The previous value is returned.

\spadcommand{shrinkable(false)\$FlexibleArray(Integer)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Float}

Axiom provides two kinds of floating point numbers.  The domain 
{\tt Float} (abbreviation {\tt FLOAT}) implements a model of arbitrary
precision floating point numbers.  The domain {\tt DoubleFloat}
(abbreviation {\tt DFLOAT}) is intended to make available hardware
floating point arithmetic in Axiom.  The actual model of floating
point that {\tt DoubleFloat} provides is system-dependent.  For
example, on the IBM system 370 Axiom uses IBM double precision which
has fourteen hexadecimal digits of precision or roughly sixteen
decimal digits.  Arbitrary precision floats allow the user to specify
the precision at which arithmetic operations are computed.  Although
this is an attractive facility, it comes at a cost.
Arbitrary-precision floating-point arithmetic typically takes twenty
to two hundred times more time than hardware floating point.

For more information about Axiom's numeric and graphic facilities, see
\sectionref{ugGraph}, \sectionref{ugProblemNumeric}, and
\domainref{DoubleFloat}.

\subsection{Introduction to Float}

Scientific notation is supported for input and output of floating
point numbers.  A floating point number is written as a string of
digits containing a decimal point optionally followed by the letter
``{\tt E}'', and then the exponent.

We begin by doing some calculations using arbitrary precision floats.
The default precision is twenty decimal digits.

\spadcommand{1.234}
$$
1.234 
$$
\returnType{Type: Float}

%Original Page 369

A decimal base for the exponent is assumed, so the number 
{\tt 1.234E2} denotes $1.234 \cdot 10^2$.

\spadcommand{1.234E2}
$$
123.4 
$$
\returnType{Type: Float}

The normal arithmetic operations are available for floating point numbers.

\spadcommand{sqrt(1.2 + 2.3 / 3.4 ** 4.5)}
$$
1.0996972790\ 671286226 
$$
\returnType{Type: Float}

\subsection{Conversion Functions}

You can use conversion (\sectionref{ugTypesConvert}) to
go back and forth between {\tt Integer}, {\tt Fraction Integer} and
{\tt Float}, as appropriate.

\spadcommand{i := 3 :: Float }
$$
3.0 
$$
\returnType{Type: Float}

\spadcommand{i :: Integer }
$$
3 
$$
\returnType{Type: Integer}

\spadcommand{i :: Fraction Integer }
$$
3 
$$
\returnType{Type: Fraction Integer}

Since you are explicitly asking for a conversion, you must take
responsibility for any loss of exactness.

\spadcommand{r := 3/7 :: Float }
$$
0.4285714285\ 7142857143 
$$
\returnType{Type: Float}

\spadcommand{r :: Fraction Integer }
$$
\frac{3}{7} 
$$
\returnType{Type: Fraction Integer}

This conversion cannot be performed: use \spadfunFrom{truncate}{Float}
or \spadfunFrom{round}{Float} if that is what you intend.

\spadcommand{r :: Integer }
\begin{verbatim}
   Cannot convert from type Float to Integer for value
   0.4285714285 7142857143
\end{verbatim}

The operations \spadfunFrom{truncate}{Float} and \spadfunFrom{round}{Float}
truncate  \ldots

\spadcommand{truncate 3.6}
$$
3.0 
$$
\returnType{Type: Float}

%Original Page 370

and round to the nearest integral {\tt Float} respectively.

\spadcommand{round 3.6}
$$
4.0 
$$
\returnType{Type: Float}

\spadcommand{truncate(-3.6)}
$$
-{3.0} 
$$
\returnType{Type: Float}

\spadcommand{round(-3.6)}
$$
-{4.0} 
$$
\returnType{Type: Float}

The operation \spadfunFrom{fractionPart}{Float} computes the
fractional part of {\tt x}, that is, {\tt x - truncate x}.

\spadcommand{fractionPart 3.6}
$$
0.6 
$$
\returnType{Type: Float}

The operation \spadfunFrom{digits}{Float} allows the user to set the
precision.  It returns the previous value it was using.

\spadcommand{digits 40 }
$$
20 
$$
\returnType{Type: PositiveInteger}

\spadcommand{sqrt 0.2}
$$
0.4472135954\ 9995793928\ 1834733746\ 2552470881 
$$
\returnType{Type: Float}

\spadcommand{pi()\$Float }
$$
3.1415926535\ 8979323846\ 2643383279\ 502884197 
$$
\returnType{Type: Float}

The precision is only limited by the computer memory available.
Calculations at 500 or more digits of precision are not difficult.

\spadcommand{digits 500 }
$$
40 
$$
\returnType{Type: PositiveInteger}

\spadcommand{pi()\$Float }
$$
\begin{array}{@{}l}
3.1415926535\ 8979323846\ 2643383279\ 5028841971\ 6939937510\ 5820974944 
\\
\displaystyle
\ \ 5923078164\ 0628620899\ 8628034825\ 3421170679\ 8214808651\ 3282306647
\\
\displaystyle
\ \ 0938446095\ 5058223172\ 5359408128\ 4811174502\ 8410270193\ 8521105559
\\
\displaystyle
\ \ 6446229489\ 5493038196\ 4428810975\ 6659334461\ 2847564823\ 3786783165
\\
\displaystyle
\ \ 2712019091\ 4564856692\ 3460348610\ 4543266482\ 1339360726\ 0249141273
\\
\displaystyle
\ \ 7245870066\ 0631558817\ 4881520920\ 9628292540\ 9171536436\ 7892590360
\\
\displaystyle
\ \ 0113305305\ 4882046652\ 1384146951\ 9415116094\ 3305727036\ 5759591953
\\
\displaystyle
\ \ 0921861173\ 8193261179\ 3105118548\ 0744623799\ 6274956735\ 1885752724
\\
\displaystyle
\ \ 8912279381\ 830119491 
\end{array}
$$
\returnType{Type: Float}

%Original Page 371

Reset \spadfunFrom{digits}{Float} to its default value.

\spadcommand{digits 20}
$$
500 
$$
\returnType{Type: PositiveInteger}

Numbers of type {\tt Float} are represented as a record of two
integers, namely, the mantissa and the exponent where the base of the
exponent is binary.  That is, the floating point number {\tt (m,e)}
represents the number $m \cdot 2^e$.  A consequence of using a binary
base is that decimal numbers can not, in general, be represented
exactly.

\subsection{Output Functions}

A number of operations exist for specifying how numbers of type 
{\tt Float} are to be displayed.  By default, spaces are inserted every ten
digits in the output for readability.\footnote{Note that you cannot
include spaces in the input form of a floating point number, though
you can use underscores.}

Output spacing can be modified with the \spadfunFrom{outputSpacing}{Float} 
operation.  This inserts no spaces and then displays the value of {\tt x}.

\spadcommand{outputSpacing 0; x := sqrt 0.2 }
$$
0.44721359549995793928 
$$
\returnType{Type: Float}

Issue this to have the spaces inserted every {\tt 5} digits.

\spadcommand{outputSpacing 5; x }
$$
0.44721\ 35954\ 99957\ 93928 
$$
\returnType{Type: Float}

By default, the system displays floats in either fixed format
or scientific format, depending on the magnitude of the number.

\spadcommand{y := x/10**10 }
$$
0.44721\ 35954\ 99957\ 93928\ {\rm E\ }-10 
$$
\returnType{Type: Float}

A particular format may be requested with the operations
\spadfunFrom{outputFloating}{Float} and \spadfunFrom{outputFixed}{Float}.

\spadcommand{outputFloating(); x  }
$$
0.44721\ 35954\ 99957\ 93928\ {\rm E\ }0 
$$
\returnType{Type: Float}

\spadcommand{outputFixed(); y  }
$$
0.00000\ 00000\ 44721\ 35954\ 99957\ 93928 
$$
\returnType{Type: Float}

Additionally, you can ask for {\tt n} digits to be displayed after the
decimal point.

\spadcommand{outputFloating 2; y  }
$$
0.45\ {\rm E\ } -10 
$$
\returnType{Type: Float}

%Original Page 372

\spadcommand{outputFixed 2; x  }
$$
0.45 
$$
\returnType{Type: Float}

This resets the output printing to the default behavior.

\spadcommand{outputGeneral()}
\returnType{Type: Void}

\subsection{An Example: Determinant of a Hilbert Matrix}
\label{ugxFloatHilbert}

Consider the problem of computing the determinant of a {\tt 10} by
{\tt 10} Hilbert matrix.  The $(i,j)$-th entry of a Hilbert
matrix is given by {\tt 1/(i+j+1)}.

First do the computation using rational numbers to obtain the
exact result.

\spadcommand{a: Matrix Fraction Integer := matrix [ [1/(i+j+1) for j in 0..9] for i in 0..9] }
$$
\left[
\begin{array}{cccccccccc}
1 & {\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & 
{\frac{1}{6}} & 
{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} \\ 
{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & 
{\frac{1}{6}} & 
{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & 
{\frac{1}{11}} \\ 
{\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & {\frac{1}{6}} & 
{\frac{1}{7}} & 
{\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & 
{\frac{1}{12}} \\ 
{\frac{1}{4}} & {\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} & 
{\frac{1}{8}} & 
{\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & 
{\frac{1}{13}} \\ 
{\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} & {\frac{1}{8}} & 
{\frac{1}{9}} & 
{\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & 
{\frac{1}{14}} \\ 
{\frac{1}{6}} & {\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & 
{\frac{1}{10}} & 
{\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & {\frac{1}{14}} & 
{\frac{1}{15}} \\ 
{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & 
{\frac{1}{11}} & 
{\frac{1}{12}} & {\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & 
{\frac{1}{16}} \\ 
{\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & 
{\frac{1}{12}} 
& {\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & 
{\frac{1}{17}} \\ 
{\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & 
{\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & 
{\frac{1}{17}} & {\frac{1}{18}} \\ 
{\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & 
{\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & {\frac{1}{17}} & 
{\frac{1}{18}} & {\frac{1}{19}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

This version of \spadfunFrom{determinant}{Matrix} uses Gaussian elimination.

\spadcommand{d:= determinant a }
$$
\frac{1}{46206893947914691316295628839036278726983680000000000} 
$$
\returnType{Type: Fraction Integer}

\spadcommand{d :: Float }
$$
0.21641\ 79226\ 43149\ 18691\ {\rm E\ } -52 
$$
\returnType{Type: Float}

Now use hardware floats. Note that a semicolon (;) is used to prevent
the display of the matrix.

\spadcommand{b: Matrix DoubleFloat := matrix [ [1/(i+j+1\$DoubleFloat) for j in 0..9] for i in 0..9]; }
\returnType{Type: Matrix DoubleFloat}

%Original Page 373

The result given by hardware floats is correct only to four
significant digits of precision.  In the jargon of numerical analysis,
the Hilbert matrix is said to be ``ill-conditioned.''

\spadcommand{determinant b }
$$
2.1643677945721411e-53 
$$
\returnType{Type: DoubleFloat}

Now repeat the computation at a higher precision using {\tt Float}.

\spadcommand{digits 40 }
$$
20 
$$
\returnType{Type: PositiveInteger}

\spadcommand{c: Matrix Float := matrix [ [1/(i+j+1\$Float) for j in 0..9] for i in 0..9];  }
\returnType{Type: Matrix Float}

\spadcommand{determinant c }
$$
0.21641\ 79226\ 43149\ 18690\ 60594\ 98362\ 26174\ 36159\ {\rm E\ } -52 
$$
\returnType{Type: Float}

Reset \spadfunFrom{digits}{Float} to its default value.

\spadcommand{digits 20}
$$
40 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Fraction}

The {\tt Fraction} domain implements quotients.  The elements must
belong to a domain of category {\tt IntegralDomain}: multiplication
must be commutative and the product of two non-zero elements must not
be zero.  This allows you to make fractions of most things you would
think of, but don't expect to create a fraction of two matrices!  The
abbreviation for {\tt Fraction} is {\tt FRAC}.

Use \spadopFrom{/}{Fraction} to create a fraction.

\spadcommand{a := 11/12 }
$$
\frac{11}{12} 
$$
\returnType{Type: Fraction Integer}

\spadcommand{b := 23/24 }
$$
\frac{23}{24} 
$$
\returnType{Type: Fraction Integer}

The standard arithmetic operations are available.

\spadcommand{3 - a*b**2 + a + b/a }
$$
\frac{313271}{76032} 
$$
\returnType{Type: Fraction Integer}

%Original Page 374

Extract the numerator and denominator by using
\spadfunFrom{numer}{Fraction} and \spadfunFrom{denom}{Fraction},
respectively.

\spadcommand{numer(a) }
$$
11 
$$
\returnType{Type: PositiveInteger}

\spadcommand{denom(b) }
$$
24 
$$
\returnType{Type: PositiveInteger}

Operations like \spadfunFrom{max}{Fraction},
\spadfunFrom{min}{Fraction}, \spadfunFrom{negative?}{Fraction},
\spadfunFrom{positive?}{Fraction} and \spadfunFrom{zero?}{Fraction}
are all available if they are provided for the numerators and
denominators.  
See \domainref{Integer} for examples.

Don't expect a useful answer from \spadfunFrom{factor}{Fraction},
\spadfunFrom{gcd}{Fraction} or \spadfunFrom{lcm}{Fraction} if you apply
them to fractions.

\spadcommand{r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1) }
$$
\frac{{x \sp 2}+{2 \  x}+1}{{x \sp 2} -{2 \  x}+1} 
$$
\returnType{Type: Fraction Polynomial Integer}

Since all non-zero fractions are invertible, these operations have trivial
definitions.

\spadcommand{factor(r) }
$$
\frac{{x \sp 2}+{2 \  x}+1}{{x \sp 2} -{2 \  x}+1} 
$$
\returnType{Type: Factored Fraction Polynomial Integer}

Use \spadfunFrom{map}{Fraction} to apply \spadfunFrom{factor}{Fraction} to
the numerator and denominator, which is probably what you mean.

\spadcommand{map(factor,r) }
$$
\frac{{\left( x+1 \right)}\sp 2}{{\left( x -1 \right)}\sp 2} 
$$
\returnType{Type: Fraction Factored Polynomial Integer}

Other forms of fractions are available.  Use {\tt continuedFraction}
to create a continued fraction.

\spadcommand{continuedFraction(7/12)}
$$
\zag{1}{1}+ \zag{1}{1}+ \zag{1}{2}+ \zag{1}{2} 
$$
\returnType{Type: ContinuedFraction Integer}

Use {\tt partialFraction} to create a partial fraction.
See \domainref{ContinuedFraction} and and \domainref{PartialFraction}
for additional information and examples.

\spadcommand{partialFraction(7,12)}
$$
1 -{\frac{3}{2 \sp 2}}+{\frac{1}{3}} 
$$
\returnType{Type: PartialFraction Integer}

Use conversion to create alternative views of fractions with objects
moved in and out of the numerator and denominator.

\spadcommand{g := 2/3 + 4/5*\%i }
$$
{\frac{2}{3}}+{{\frac{4}{5}} \  i} 
$$
\returnType{Type: Complex Fraction Integer}

%Original Page 375

Conversion is discussed in detail in \sectionref{ugTypesConvert}.

\spadcommand{g :: FRAC COMPLEX INT }
$$
\frac{{10}+{{12} \  i}}{15} 
$$
\returnType{Type: Fraction Complex Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{FullPartialFractionExpansion}

The domain {\tt FullPartialFractionExpansion} implements
factor-free conversion of quotients to full partial fractions.

Our examples will all involve quotients of univariate polynomials
with rational number coefficients.

\spadcommand{Fx := FRAC UP(x, FRAC INT) }
$$
\mbox{\rm Fraction UnivariatePolynomial(x,Fraction Integer)} 
$$
\returnType{Type: Domain}

Here is a simple-looking rational function.

\spadcommand{f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2) }
$$
\frac{36}{{x \sp 5} -{2 \  {x \sp 4}} -{2 \  {x \sp 3}}+{4 \  {x \sp 2}}+x -2} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

We use \spadfunFrom{fullPartialFraction}{FullPartialFractionExpansion}
to convert it to an object of type\\ 
{\tt FullPartialFractionExpansion}.

\spadcommand{g := fullPartialFraction f }
$$
{\frac{4}{x -2}} -{\frac{4}{x+1}}+
{\sum \sb{\displaystyle {{{ \%A \sp 2} -1}=0}} 
{\frac{-{3 \  \%A} -6}{{\left( x - \%A \right)}\sp 2}}} 
$$
\returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

Use a coercion to change it back into a quotient.

\spadcommand{g :: Fx }
$$
\frac{36}{{x \sp 5} -{2 \  {x \sp 4}} -{2 \  {x \sp 3}}+{4 \  {x \sp 2}}+x -2} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

Full partial fractions differentiate faster than rational functions.

\spadcommand{g5 := D(g, 5) }
$$
-{\frac{480}{{\left( x -2 \right)}\sp 6}}+
{\frac{480}{{\left( x+1 \right)}\sp 6}}+
{\sum \sb{\displaystyle {{{ \%A \sp 2} -1}=0}} 
{\frac{{{2160} \   \%A}+{4320}}{{\left( x - \%A \right)}\sp 7}}} 
$$
\returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

\spadcommand{f5 := D(f, 5) }
$$
\frac{\left(
\begin{array}{@{}l}
-{{544320} \  {x \sp {10}}}+
{{4354560} \  {x \sp 9}} -
{{14696640} \  {x \sp 8}}+
{{28615680} \  {x \sp 7}} -
\\
\\
\displaystyle
{{40085280} \  {x \sp 6}}+
{{46656000} \  {x \sp 5}} -
{{39411360} \  {x \sp 4}}+
{{18247680} \  {x \sp 3}} -
\\
\\
\displaystyle
{{5870880} \  {x \sp 2}}+
{{3317760} \  x}+{246240}
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
{x \sp {20}} -
{{12} \  {x \sp {19}}}+
{{53} \  {x \sp {18}}} -
{{76} \  {x \sp {17}}} -
{{159} \  {x \sp {16}}}+
{{676} \  {x \sp {15}}} -
{{391} \  {x \sp {14}}} -
\\
\\
\displaystyle
{{1596} \  {x \sp {13}}}+
{{2527} \  {x \sp {12}}}+
{{1148} \  {x \sp {11}}} -
{{4977} \  {x \sp {10}}}+
{{1372} \  {x \sp 9}}+
\\
\\
\displaystyle
{{4907} \  {x \sp 8}} -
{{3444} \  {x \sp 7}} 
-{{2381} \  {x \sp 6}}+
{{2924} \  {x \sp 5}}+
{{276} \  {x \sp 4}} -
\\
\\
\displaystyle
{{1184} \  {x \sp 3}}+
{{208} \  {x \sp 2}}+
{{192} \  x} -
{64} 
\end{array}
\right)}
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

We can check that the two forms represent the same function.

\spadcommand{g5::Fx - f5 }
$$
0 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

Here are some examples that are more complicated.

\spadcommand{f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3) }
$$
\frac{{x \sp 6} -{x \sp 5}} 
{{x \sp 7} -
{4 \  {x \sp 6}}+
{3 \  {x \sp 5}}+
{9 \  {x \sp 3}} -
{6 \  {x \sp 2}} -
{4 \  x} - 8}
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{g := fullPartialFraction f }
$$
\begin{array}{@{}l}
\displaystyle
{\frac{\frac{1952}{2401}}{x -2}}+
{\frac{\frac{464}{343}}{{\left( x -2 \right)}\sp 2}}+
{\frac{\frac{32}{49}}{{\left( x -2 \right)}\sp 3}}+
\\
\\
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} 
{\frac{-{{\frac{179}{2401}} \  \%A}+{\frac{135}{2401}}}{x - \%A}}}+
\\
\\
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} 
{\frac{{{\frac{37}{1029}} \   \%A}+
{\frac{20}{1029}}}{{\left( x - \%A \right)}\sp 2}}} 
\end{array}
$$
\returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

\spadcommand{g :: Fx - f }
$$
0 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{f : Fx := (2*x**7-7*x**5+26*x**3+8*x) / (x**8-5*x**6+6*x**4+4*x**2-8) }
$$
\frac{{2 \  {x \sp 7}} -{7 \  {x \sp 5}}+{{26} \  {x \sp 3}}+{8 \  x}} 
{{x \sp 8} -{5 \  {x \sp 6}}+{6 \  {x \sp 4}}+{4 \  {x \sp 2}} -8} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{g := fullPartialFraction f }
$$
\begin{array}{@{}l}
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2} -2}=0}} 
{\frac{\frac{1}{2}}{x -  \%A}}}+
\\
\\
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2} -2}=0}} 
{\frac{1}{{\left( x -  \%A \right)}\sp 3}}}+
\\
\\
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2}+1}=0}} 
{\frac{\frac{1}{2}}{x - \%A}}} 
\end{array}
$$
\returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

\spadcommand{g :: Fx - f }
$$
0 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 + 10*x**17 + 17*x**16 + 22*x**15 + 30*x**14 + 36*x**13 + 40*x**12 + 47*x**11 + 46*x**10 + 49*x**9 + 43*x**8 + 38*x**7 + 32*x**6 + 23*x**5 + 19*x**4 + 10*x**3 + 7*x**2 + 2*x + 1)}
$$
\frac{x \sp 3} 
{\left(
\begin{array}{@{}l}
{x \sp {21}}+
{2 \  {x \sp {20}}}+
{4 \  {x \sp {19}}}+
{7 \  {x \sp {18}}}+
{{10} \  {x \sp {17}}}+
{{22} \  {x \sp {15}}}+
{{30} \  {x \sp {14}}}+
\\
\\
\displaystyle
{{36} \  {x \sp {13}}}+
{{40} \  {x \sp {12}}}+
{{47} \  {x \sp {11}}}+
{{46} \  {x \sp {10}}}+
{{49} \  {x \sp 9}}+
{{43} \  {x \sp 8}}+
{{38} \  {x \sp 7}}+
\\
\\
\displaystyle
{{32} \  {x \sp 6}}+
{{23} \  {x \sp 5}}+
{{19} \  {x \sp 4}}+
{{10} \  {x \sp 3}}+
{7 \  {x \sp 2}}+
{2 \  x}+
1
\end{array}
\right)}
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{g := fullPartialFraction f }
$$
\begin{array}{@{}l}
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2}+1}=0}} 
{\frac{{\frac{1}{2}} \  \%A}{x - \%A}}}+
{\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} 
{\frac{{{\frac{1}{9}} \   \%A} -{\frac{19}{27}}}{x - \%A}}}+
\\
\\
\displaystyle
{\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} 
{\frac{{{\frac{1}{27}} \  \%A} -{\frac{1}{27}}} 
{{\left( x - \%A \right)}\sp 2}}}+
\\
\\
\displaystyle
\sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}}
\displaystyle
\frac{\left(
\begin{array}{@{}l}
\displaystyle
-{{\frac{96556567040}{912390759099}} \  { \%A \sp 4}}+
{{\frac{420961732891}{912390759099}} \  { \%A \sp 3}} -
\\
\\
\displaystyle
{{\frac{59101056149}{912390759099}} \  { \%A \sp 2}} -
{{\frac{373545875923}{912390759099}} \   \%A}+
\\
\\
\displaystyle
{\frac{529673492498}{912390759099}}
\end{array}
\right)}
{x - \%A}+
\\
\\
\displaystyle
\sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}}
\displaystyle
\frac{\left(
\begin{array}{@{}l}
\displaystyle
-{{\frac{5580868}{94070601}} \  { \%A \sp 4}} -
{{\frac{2024443}{94070601}} \  { \%A \sp 3}}+
{{\frac{4321919}{94070601}} \  { \%A \sp 2}} -
\\
\\
\displaystyle
{{\frac{84614}{1542141}} \  \%A} -
{\frac{5070620}{94070601}} 
\end{array}
\right)}
{{\left( x - \%A \right)}\sp 2}+
\\
\\
\displaystyle
\sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}} 
\displaystyle
\frac{\left(
\begin{array}{@{}l}
\displaystyle
{{\frac{1610957}{94070601}} \  { \%A \sp 4}}+
{{\frac{2763014}{94070601}} \  { \%A \sp 3}} -
{{\frac{2016775}{94070601}} \  { \%A \sp 2}}+
\\
\\
\displaystyle
{{\frac{266953}{94070601}} \  \%A}+
{\frac{4529359}{94070601}}
\end{array}
\right)}
{{\left( x - \%A \right)}\sp 3} 
\end{array}
$$
\returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))}

This verification takes much longer than the conversion to
partial fractions.

\spadcommand{g :: Fx - f }
$$
0 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)}

For more information, see the paper: Bronstein, M and Salvy, B.
``Full Partial Fraction Decomposition of Rational Functions,'' 
{\it Proceedings of ISSAC'93, Kiev}, ACM Press.  Also see
\domainref{PartialFraction} for standard partial fraction decompositions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{GeneralDistributedMultivariatePolynomial}

{\tt DistributedMultivariatePolynomial} which is abbreviated as DMP and 
{\tt Homogeneous\-DistributedMultivariatePolynomial}, which is abbreviated
as HDMP, are very similar to MultivariatePolynomial except that 
they are represented and displayed in a non-recursive manner.
\begin{verbatim}
  (d1,d2,d3) : DMP([z,y,x],FRAC INT) 
\end{verbatim}
\returnType{Type: Void}
The constructor DMP orders its monomials lexicographically while
HDMP orders them by total order refined by reverse lexicographic
order.
\begin{verbatim}
  d1 := -4*z + 4*y**2*x + 16*x**2 + 1 
\end{verbatim}
$$
{4 \ z}+{4 \ {y^2} \ x}+{{16} \ {x^2}}+1
$$
\returnType{Type: DistributeMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  d2 := 2*z*y**2 + 4*x + 1 
\end{verbatim}
$$
{2 \ z \ {y^2}}+{4 \ x}+1
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}

\begin{verbatim}
  d3 := 2*z*x**2 - 2*y**2 - x 
\end{verbatim}
$$
{2 \ z \ {x^2}} -{2 \ {y^2}} -x
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
These constructors are mostly used in Groebner basis calculations.
\begin{verbatim}
  groebner [d1,d2,d3]
        1568  6   1264  5    6   4   182  3   2047  2    103      2857
   [z - ---- x  - ---- x  + --- x  + --- x  - ---- x  - ---- x - -----,
        2745       305      305      549       610      2745     10980
     2    112  6    84  5   1264  4    13  3    84  2   1772       2
    y  + ---- x  - --- x  - ---- x  - --- x  + --- x  + ---- x + ----,
         2745      305       305      549      305      2745     2745
     7   29  6   17  4   11  3    1  2   15     1
    x  + -- x  - -- x  - -- x  + -- x  + -- x + -]
          4      16       8      32      16     4
\end{verbatim}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{z - {{ \frac{{1568}}{{2745}} \ {x^6}} - {{ \frac{{1264}}{{305}}} \
{x^5}}+{{ \frac{6}{{305}}} \ {x^4}}+{{ \frac{{182}}{{549}}} \ {x^3}} - {{
\frac{{2047}}{{610}}} \ {x^2}} - {{ \frac{{103}}{{2745}}} \ x} -{
\frac{{2857}}{{10980}}}}},
\right.
\\
\displaystyle
\left.
\: {{y^2}+{{ \frac{{112}}{{2745}}} \ {x^6}} -{{
\frac{{84}}{{305}}} \ {x^5}} -{{ \frac{{1264}}{{305}}} \ {x^4}} -{{
\frac{{13}}{{549}}} \ {x^3}}+{{ \frac{{84}}{{305}}} \ {x^2}}+{{
\frac{{1772}}{{2745}}} \ x}+{ \frac{2}{{2745}}}},
\right.
\\
\displaystyle
\left.
\: {{x^7}}+{{
\frac{{29}}{{4}} \ {x^6}} -{{ \frac{{17}}{{16}}} \ {x^4}} -{{
\frac{{11}}{8}} \ {x^3}}+{{ \frac{1}{{32}}} \ {x^2}}+{{ \frac{{15}}{{16}}}
\ x}+{ \frac{1}{4}}}
\right]
\end{array}
$$
\returnType{
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  (n1,n2,n3) : HDMP([z,y,x],FRAC INT)
\end{verbatim}
\returnType{Type: Void}
\begin{verbatim}
  n1 := d1
\end{verbatim}
$$
{4 \ {y^2} \ x}+{{16} \ {x^2}} -{4 \ z}+1
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  n2 := d2
\end{verbatim}
$$
{2 \ z \ {y^2}}+{4 \ x}+1
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  n3 := d3
\end{verbatim}
$$
{2 \ z \ {x^2}} -{2 \ {y^2}} -x
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
Note that we get a different Groebner basis when we use the HDMP
polynomials, as expected.
\begin{verbatim}
  groebner [n1,n2,n3]
\end{verbatim}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{{y^4}+{2 \ {x^3}} -{{ \frac{3}{2}} \ {x^2}}+{{ \frac{1}{2}} \ z} -{
\frac{1}{8}}},
\: {{x^4}+{{ \frac{{29}}{4}} \ {x^3}} -{{ \frac{1}{8}} \
{y^2}} -{{ \frac{7}{4}} \ z \ x} -{{ \frac{9}{{16}}} \ x} -{
\frac{1}{4}}},
\right.
\\
\displaystyle
\left.
\: {{z \ {y^2}}+{2 \ x}+{ \frac{1}{2}}}, \: {{{y^2} \ x}+{4
\ {x^2}} -z+{ \frac{1}{4}}},
\right.
\\
\displaystyle
\left.
\: {{z \ {x^2}} -{y^2} -{{ \frac{1}{2}} \
x}}, \: {{z^2} -{4 \ {y^2}}+{2 \ {x^2}} -{{ \frac{1}{4}} \ z} -{{
\frac{3}{2}} \ x}}
\right]
\end{array}
$$
\returnType{
Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x],
Fraction Integer)}
{\tt GeneralDistributedMultivariatePolynomial} is somewhat more flexible in
the sense that as well as accepting a list of variables to specify the
variable ordering, it also takes a predicate on exponent vectors to
specify the term ordering.  With this polynomial type the user can
experiment with the effect of using completely arbitrary term orderings.  
This flexibility is mostly important for algorithms such as Groebner 
basis calculations which can be very sensitive to term ordering.

See 
\domainref{Polynomial}\\
\domainref{UnivariatePolynomial}\\
\domainref{MultivariatePolynomial}\\
\domainref{HomogeneousDistributedMultivariatePolynomial}, and\\
\domainref{DistributedMultivariatePolynomial}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{GeneralSparseTable}

Sometimes when working with tables there is a natural value to use as
the entry in all but a few cases.  The {\tt GeneralSparseTable}
constructor can be used to provide any table type with a default value
for entries.  See \domainref{Table} for general information about tables.  

Suppose we launched a fund-raising campaign to raise fifty thousand dollars.
To record the contributions, we want a table with strings as keys
(for the names) and integer entries (for the amount).
In a data base of cash contributions, unless someone
has been explicitly entered, it is reasonable to assume they have made
a zero dollar contribution.

This creates a keyed access file with default entry {\tt 0}.

\spadcommand{patrons: GeneralSparseTable(String, Integer, KeyedAccessFile(Integer), 0) := table() ; }
\returnType{Type: GeneralSparseTable(String,Integer,KeyedAccessFile Integer,0)}


Now {\tt patrons} can be used just as any other table.
Here we record two gifts.

\spadcommand{patrons."Smith" := 10500 }
$$
10500 
$$
\returnType{Type: PositiveInteger}

\spadcommand{patrons."Jones" := 22000 }
$$
22000 
$$
\returnType{Type: PositiveInteger}

Now let us look up the size of the contributions from Jones and Stingy.

\spadcommand{patrons."Jones"  }
$$
22000 
$$
\returnType{Type: PositiveInteger}

\spadcommand{patrons."Stingy" }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

Have we met our seventy thousand dollar goal?

\spadcommand{reduce(+, entries patrons) }
$$
32500 
$$
\returnType{Type: PositiveInteger}

%Original Page 376

So the project is cancelled and we can delete the data base:

\spadcommand{)system rm -r kaf*.sdata }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{GroebnerFactorizationPackage}

Solving systems of polynomial equations with the Gr\"{o}bner basis
algorithm can often be very time consuming because, in general, the
algorithm has exponential run-time.  These systems, which often come
from concrete applications, frequently have symmetries which are not
taken advantage of by the algorithm.  However, it often happens in
this case that the polynomials which occur during the Gr\"{o}bner
calculations are reducible.  Since Axiom has an excellent polynomial
factorization algorithm, it is very natural to combine the Gr\"{o}bner
and factorization algorithms.

{\tt GroebnerFactorizationPackage} exports the
\spadfunFrom{groebnerFactorize}{GroebnerFactorizationPackage}
operation which implements a modified Gr\"{o}bner basis algorithm.  In
this algorithm, each polynomial that is to be put into the partial
list of the basis is first factored.  The remaining calculation is
split into as many parts as there are irreducible factors.  Call these
factors $p_1, \ldots,p_n.$ In the branches corresponding to $p_2,
\ldots,p_n,$ the factor $p_1$ can be divided out, and so on.  This
package also contains operations that allow you to specify the
polynomials that are not zero on the common roots of the final
Gr\"{o}bner basis.

Here is an example from chemistry.  In a theoretical model of the
cyclohexan ${\rm C}_6{\rm H}_{12}$, the six carbon atoms each sit in
the center of gravity of a tetrahedron that has two hydrogen atoms and
two carbon atoms at its corners.  We first normalize and set the
length of each edge to 1.  Hence, the distances of one fixed carbon
atom to each of its immediate neighbours is 1.  We will denote the
distances to the other three carbon atoms by $x$, $y$ and $z$.

A.~Dress developed a theory to decide whether a set of points
and distances between them can be realized in an $n$-dimensional space.
Here, of course, we have $n = 3$.

\spadcommand{mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) := [ [0,1,1,1,1,1], [1,0,1,8/3,x,8/3], [1,1,0,1,8/3,y], [1,8/3,1,0,1,8/3], [1,x,8/3,1,0,1], [1,8/3,y,8/3,1,0] ] }
$$
\left[
\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\ 
1 & 0 & 1 & {\frac{8}{3}} & x & {\frac{8}{3}} \\ 
1 & 1 & 0 & 1 & {\frac{8}{3}} & y \\ 
1 & {\frac{8}{3}} & 1 & 0 & 1 & {\frac{8}{3}} \\ 
1 & x & {\frac{8}{3}} & 1 & 0 & 1 \\ 
1 & {\frac{8}{3}} & y & {\frac{8}{3}} & 1 & 0 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(6,DistributedMultivariatePolynomial([x,y,z],Fraction Integer))}

%Original Page 377

For the cyclohexan, the distances have to satisfy this equation.

\spadcommand{eq := determinant mfzn }
$$
\begin{array}{@{}l}
\displaystyle
-{{x \sp 2} \  {y \sp 2}}+
{{\frac{22}{3}} \  {x \sp 2} \  y} -
{{\frac{25}{9}} \  {x \sp 2}}+
{{\frac{22}{3}} \  x \  {y \sp 2}} -
{{\frac{388}{9}} \  x \  y} -
\\
\\
\displaystyle
{{\frac{250}{27}} \  x} -
{{\frac{25}{9}} \  {y \sp 2}} -
{{\frac{250}{27}} \  y}+
{\frac{14575}{81}} 
\end{array}
$$
\returnType{Type: DistributedMultivariatePolynomial([x,y,z],Fraction Integer)}

They also must satisfy the equations
given by cyclic shifts of the indeterminates.

\spadcommand{groebnerFactorize [eq, eval(eq, [x,y,z], [y,z,x]), eval(eq, [x,y,z], [z,x,y])] }
$$
\begin{array}{@{}l}
\left[

\begin{array}{@{}l}
\displaystyle
\left[ 
{x \  y}+
{x \  z} -
{{\frac{22}{3}} \  x}+
{y \  z} -
{{\frac{22}{3}} \  y} -
{{\frac{22}{3}} \  z}+
{\frac{121}{3}}, 
\right.
\\
\\
\displaystyle
{x \  {z \sp 2}} -
{{\frac{22}{3}} \  x \  z}+
{{\frac{25}{9}} \  x}+
{y \  {z \sp 2}} -
{{\frac{22}{3}} \ y \  z}+
{{\frac{25}{9}} \  y} -
{{\frac{22}{3}} \  {z \sp 2}}+
{{\frac{388}{9}} \  z}+
{\frac{250}{27}}, 
\\
\\
\displaystyle
\left.
\begin{array}{@{}l}
\displaystyle
{{y \sp 2} \  {z \sp 2}} -
{{\frac{22}{3}} \  {y \sp 2} \  z}+
{{\frac{25}{9}} \  {y \sp 2}} -
{{\frac{22}{3}} \  y \  {z \sp 2}}+
{{\frac{388}{9}} \  y \  z}+
{{\frac{250}{27}} \  y}+
\\
\\
\displaystyle
{{\frac{25}{9}} \  {z \sp 2}}+
{{\frac{250}{27}} \  z} -
{\frac{14575}{81}}
\end{array}
\right],
\end{array}
\right.
\\
\\
\displaystyle
{\left[ 
{x+y -{\frac{21994}{5625}}}, 
{{y \sp 2} -{{\frac{21994}{5625}} \  y}+{\frac{4427}{675}}}, 
{z -{\frac{463}{87}}} 
\right]},
\\
\\
\displaystyle
{\left[ 
{{x \sp 2} -
{{\frac{1}{2}} \  x \  z} -
{{\frac{11}{2}} \  x} -
{{\frac{5}{6}} \  z}+
{\frac{265}{18}}}, 
{y -z}, 
{{z \sp 2} -{{\frac{38}{3}} \  z}+{\frac{265}{9}}} 
\right]},
\\
\\
\displaystyle
{\left[ 
{x -{\frac{25}{9}}}, 
{y -{\frac{11}{3}}}, 
{z -{\frac{11}{3}}} \right]},
\\
\\
\displaystyle
{\left[ 
{x -{\frac{11}{3}}}, 
{y -{\frac{11}{3}}}, 
{z -{\frac{11}{3}}} 
\right]},
\\
\\
\displaystyle
{\left[ 
{x+{\frac{5}{3}}}, 
{y+{\frac{5}{3}}}, 
{z+{\frac{5}{3}}} 
\right]},
\\
\\
\displaystyle
\left.
{\left[ 
{x -{\frac{19}{3}}}, 
{y+{\frac{5}{3}}}, 
{z+{\frac{5}{3}}} 
\right]}
\right]
\end{array}
$$
\returnType{Type: List List 
DistributedMultivariatePolynomial([x,y,z],Fraction Integer)}

The union of the solutions of this list is the solution of our
original problem.  If we impose positivity conditions, we get two
relevant ideals.  One ideal is zero-dimensional, namely $x = y = z = 11/3$, 
and this determines the ``boat'' form of the cyclohexan.  The
other ideal is one-dimensional, which means that we have a solution
space given by one parameter.  This gives the ``chair'' form of the
cyclohexan.  The parameter describes the angle of the ``back of the
chair.''

\spadfunFrom{groebnerFactorize}{GroebnerFactorizationPackage} has an
optional {\tt Boolean}-valued second argument.  When it is {\tt true}
partial results are displayed, since it may happen that the
calculation does not terminate in a reasonable time.  See the source
code for {\tt GroebnerFactorizationPackage} in {\bf groebf.input} 
for more details about the algorithms used.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{GroebnerPackage}

Example to call groebner:
\begin{verbatim}
  s1:DMP[w,p,z,t,s,b]RN:= 45*p + 35*s - 165*b - 36
  s2:DMP[w,p,z,t,s,b]RN:= 35*p + 40*z + 25*t - 27*s
  s3:DMP[w,p,z,t,s,b]RN:= 15*w + 25*p*s + 30*z - 18*t - 165*b**2
  s4:DMP[w,p,z,t,s,b]RN:= -9*w + 15*p*t + 20*z*s
  s5:DMP[w,p,z,t,s,b]RN:= w*p + 2*z*t - 11*b**3
  s6:DMP[w,p,z,t,s,b]RN:= 99*w - 11*b*s + 3*b**2
  s7:DMP[w,p,z,t,s,b]RN:= b**2 + 33/50*b + 2673/10000

  sn7:=[s1,s2,s3,s4,s5,s6,s7]

  groebner(sn7,info)
\end{verbatim}
groebner calculates a minimal Groebner Basis
all reductions are TOTAL reductions

To get the reduced critical pairs do:
\begin{verbatim}
  groebner(sn7,"redcrit")
\end{verbatim}
You can get other information by calling:
\begin{verbatim}
  groebner(sn7,"info")
\end{verbatim}
which returns:
\begin{verbatim}
      ci  =>  Leading monomial  for critpair calculation
      tci =>  Number of terms of polynomial i
      cj  =>  Leading monomial  for critpair calculation
      tcj =>  Number of terms of polynomial j
      c   =>  Leading monomial of critpair polynomial
      tc  =>  Number of terms of critpair polynomial
      rc  =>  Leading monomial of redcritpair polynomial
      trc =>  Number of terms of redcritpair polynomial
      tF  =>  Number of polynomials in reduction list F
      tD  =>  Number of critpairs still to do
\end{verbatim} 
See 
\domainref{GroebnerPackage}\\
\domainref{DistributedMultivariatePolynomial}\\
\domainref{HomogeneousDistributedMultivariatePolynomial}\\
\domainref{EuclideanGroebnerBasisPackage}

%Original Page 378

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Heap}

The domain {\tt Heap(S)} implements a priority queue of objects of
type {\tt S} such that the operation {\tt extract!} removes and
returns the maximum element.  The implementation represents heaps as
flexible arrays (see \domainref{FlexibleArray}.)
The representation and algorithms give complexity of $O(\log(n))$ 
for insertion and extractions, and $O(n)$ for construction.

Create a heap of six elements.

\spadcommand{h := heap [-4,9,11,2,7,-7]}
$$
\left[
{11}, 7, 9, -4, 2, -7 
\right]
$$
\returnType{Type: Heap Integer}

Use {\tt insert!} to add an element.

\spadcommand{insert!(3,h)}
$$
\left[
{11}, 7, 9, -4, 2, -7, 3 
\right]
$$
\returnType{Type: Heap Integer}

The operation {\tt extract!} removes and returns the maximum element.

\spadcommand{extract! h}
$$
11 
$$
\returnType{Type: PositiveInteger}

The internal structure of {\tt h} has been appropriately adjusted.

\spadcommand{h}
$$
\left[
9, 7, 3, -4, 2, -7 
\right]
$$
\returnType{Type: Heap Integer}

Now {\tt extract!} elements repeatedly until none are left, collecting
the elements in a list.

\spadcommand{[extract!(h) while not empty?(h)]}
$$
\left[
9, 7, 3, 2, -4, -7 
\right]
$$
\returnType{Type: List Integer}

Another way to produce the same result is by defining a {\tt heapsort}
function.

\spadcommand{heapsort(x) == (empty? x => []; cons(extract!(x),heapsort x))}
\returnType{Type: Void}

Create another sample heap.

\spadcommand{h1 := heap [17,-4,9,-11,2,7,-7]}
$$
\left[
{17}, 2, 9, -{11}, -4, 7, -7 
\right]
$$
\returnType{Type: Heap Integer}

%Original Page 379

Apply {\tt heapsort} to present elements in order.

\spadcommand{heapsort h1}
$$
\left[
{17}, 9, 7, 2, -4, -7, -{11} 
\right]
$$
\returnType{Type: List Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{HexadecimalExpansion}

All rationals have repeating hexadecimal expansions.  The operation
\spadfunFrom{hex}{HexadecimalExpansion} returns these expansions of
type {\tt HexadecimalExpansion}.  Operations to access the individual
numerals of a hexadecimal expansion can be obtained by converting the
value to {\tt RadixExpansion(16)}.  More examples of expansions are
available in the 
\domainref{DecimalExpansion}, \domainref{BinaryExpansion}, and
\domainref{RadixExpansion}.

This is a hexadecimal expansion of a rational number.

\spadcommand{r := hex(22/7) }
$$
3.{\overline {249}} 
$$
\returnType{Type: HexadecimalExpansion}

Arithmetic is exact.

\spadcommand{r + hex(6/7) }
$$
4 
$$
\returnType{Type: HexadecimalExpansion}

The period of the expansion can be short or long \ldots

\spadcommand{[hex(1/i) for i in 350..354] }
$$
\begin{array}{@{}l}
\left[
{0.0{\overline {\rm 0BB3EE721A54D88}}}, 
{0.{\overline {\rm 00BAB6561}}}, 
{0.{00}{\overline {\rm BA2E8}}}, 
\right.
\\
\\
\displaystyle
\left.
{0.{\overline {\rm 00B9A7862A0FF465879D5F}}}, 
{0.0{\overline {\rm 0B92143FA36F5E02E4850FE8DBD78}}} 
\right]
\end{array}
$$
\returnType{Type: List HexadecimalExpansion}

or very long!

\spadcommand{hex(1/1007) }
$$
\begin{array}{@{}l}
0.{\overline 
{\rm 0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CC}}
\\
\displaystyle
\ \ {\overline
{\rm A5C071E40926E54E8DDAE24196C0B2F8A0AAD60DBA57F5D4C8}}
\\
\displaystyle
\ \ {\overline
{\rm 536262210C74F1}}
\end{array}
$$
\returnType{Type: HexadecimalExpansion}

These numbers are bona fide algebraic objects.

\spadcommand{p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9)  }
$$
{{0.4} \  {x \sp 2}}+{{0.{\overline {\rm A}}} \  x}+{0.{\overline {\rm 71C}}} 
$$
\returnType{Type: Polynomial HexadecimalExpansion}

\spadcommand{q := D(p, x) }
$$
{{0.8} \  x}+{0.{\overline {\rm A}}} 
$$
\returnType{Type: Polynomial HexadecimalExpansion}

\spadcommand{g := gcd(p, q)}
$$
x+{1.{\overline 5}} 
$$
\returnType{Type: Polynomial HexadecimalExpansion}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{HomogeneousDistributedMultivariatePolynomial}

{\tt DistributedMultivariatePolynomial} which is abbreviated as DMP and 
{\tt Homogeneous\-DistributedMultivariatePolynomial}, which is abbreviated
as HDMP, are very similar to MultivariatePolynomial except that 
they are represented and displayed in a non-recursive manner.
\begin{verbatim}
  (d1,d2,d3) : DMP([z,y,x],FRAC INT) 
\end{verbatim}
\returnType{Type: Void}
The constructor DMP orders its monomials lexicographically while
HDMP orders them by total order refined by reverse lexicographic
order.
\begin{verbatim}
  d1 := -4*z + 4*y**2*x + 16*x**2 + 1 
\end{verbatim}
$$
-{4 \ z}+{4 \ {y^2} \ x}+{{16} \ {x^2}}+1
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  d2 := 2*z*y**2 + 4*x + 1 
\end{verbatim}
$$
{2 \ z \ {y^2}}+{4 \ x}+1
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  d3 := 2*z*x**2 - 2*y**2 - x 
\end{verbatim}
$$
{2 \ z \ {x^2}} -{2 \ {y^2}} -x
$$
\returnType{Type: DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
These constructors are mostly used in Groebner basis calculations.
\begin{verbatim}
  groebner [d1,d2,d3]
\end{verbatim}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{z -{{ \frac{{1568}}{2745}}} \ {x^6}} -{{ \frac{{1264}}{{305}} \
{x^5}}+{{ \frac{6}{{305}}} \ {x^4}}+{{ \frac{{182}}{{549}}} \ {x^3}} -{{
\frac{{2047}}{{610}}} \ {x^2}} -{{ \frac{{103}}{{2745}}} \ x} -{
\frac{{2857}}{{10980}}}},
\right.
\\
\displaystyle
\left.
\: {{y^2}+{{ \frac{{112}}{{2745}}} \ {x^6}} -{{
\frac{{84}}{{305}}} \ {x^5}} -{{ \frac{{1264}}{{305}}} \ {x^4}} -{{
\frac{{13}}{{549}}} \ {x^3}}+{{ \frac{{84}}{{305}}} \ {x^2}}+{{
\frac{{1772}}{{2745}}} \ x}+{ \frac{2}{{2745}}}},
\right.
\\
\displaystyle
\left.
\: {{x^7}+{{
\frac{{29}}{4}} \ {x^6}} -{{ \frac{{17}}{{16}}} \ {x^4}} -{{
\frac{{11}}{8}} \ {x^3}}+{{ \frac{1}{{32}}} \ {x^2}}+{{ \frac{{15}}{{16}}}
\ x}+{ \frac{1}{4}}}
\right]
\end{array}
$$
\returnType{
Type: List DistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  (n1,n2,n3) : HDMP([z,y,x],FRAC INT)
\end{verbatim}
\returnType{Type: Void}
\begin{verbatim}
  n1 := d1
\end{verbatim}
$$
{4 \ {y^2} \ x}+{{16} \ {x^2}} -{4 \ z}+1
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  n2 := d2
\end{verbatim}
$$
{2 \ z \ {y^2}}+{4 \ x}+1
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
  n3 := d3
\end{verbatim}
$$
{2 \ z \ {x^2}} -{2 \ {y^2}} -x
$$
\returnType{
Type: HomogeneousDistributedMultivariatePolynomial([z,y,x],Fraction Integer)}
\begin{verbatim}
Note that we get a different Groebner basis when we use the HDMP
polynomials, as expected.
\begin{verbatim}
  groebner [n1,n2,n3]
\end{verbatim}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{{y^4}+{2 \ {x^3}} -{{ \frac{3}{2}} \ {x^2}}+{{ \frac{1}{2}} \ z} -{
\frac{1}{8}}},
\: {{x^4}+{{ \frac{{29}}{4}} \ {x^3}} -{{ \frac{1}{8}} \
{y^2}} -{{ \frac{7}{4}} \ z \ x} -{{ \frac{9}{{16}}} \ x} -{
\frac{1}{4}}},
\right.
\\
\displaystyle
\left.
\: {{z \ {y^2}}+{2 \ x}+{ \frac{1}{2}}}, \: {{{y^2} \ x}+{4
\ {x^2}} -z+{ \frac{1}{4}}},
\right.
\\
\displaystyle
\left.
\: {{z \ {x^2}} -{y^2} -{{ \frac{1}{2}} \
x}}, \: {{z^2} -{4 \ {y^2}}+{2 \ {x^2}} -{{ \frac{1}{4}} \ z} -{{
\frac{3}{2}} \ x}}
\right]
\end{array}
$$
\returnType{
Type: List HomogeneousDistributedMultivariatePolynomial([z,y,x],
Fraction Integer)}
{\tt GeneralDistributedMultivariatePolynomial} is somewhat more flexible in
the sense that as well as accepting a list of variables to specify the
variable ordering, it also takes a predicate on exponent vectors to
specify the term ordering.  With this polynomial type the user can
experiment with the effect of using completely arbitrary term orderings.  
This flexibility is mostly important for algorithms such as Groebner 
basis calculations which can be very sensitive to term ordering.

See 
\domainref{Polynomial},\\
\domainref{UnivariatePolynomial},\\
\domainref{MultivariatePolynomial},\\
\domainref{DistributedMultivariatePolynomial}, and\\
\domainref{GeneralDistributedMultivariatePolynomial}

%Original Page 380

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Integer}

Axiom provides many operations for manipulating arbitrary precision
integers.  In this section we will show some of those that come from
{\tt Integer} itself plus some that are implemented in other packages.
More examples of using integers are in the following sections:
\sectionref{ugIntroNumbers},
\domainref{IntegerNumberTheoryFunctions},
\domainref{DecimalExpansion}, \domainref{BinaryExpansion}, 
\domainref{HexadecimalExpansion}, and \domainref{RadixExpansion}.

\subsection{Basic Functions}

The size of an integer in Axiom is only limited by the amount of
computer storage you have available.  The usual arithmetic operations
are available.

\spadcommand{2**(5678 - 4856 + 2 * 17)}
$$
\begin{array}{@{}l}
48048107704350081471815409251259243912395261398716822634738556100
\\
\displaystyle
88084200076308293086342527091412083743074572278211496076276922026
\\
\displaystyle
43343568752733498024953930242542523045817764949544214392905306388
\\
\displaystyle
478705146745768073877141698859815495632935288783334250628775936
\end{array}
$$
\returnType{Type: PositiveInteger}

There are a number of ways of working with the sign of an integer.
Let's use this {\tt x} as an example.

\spadcommand{x := -101 }
$$
-{101} 
$$
\returnType{Type: Integer}

First of all, there is the absolute value function.

\spadcommand{abs(x) }
$$
101 
$$
\returnType{Type: PositiveInteger}

The \spadfunFrom{sign}{Integer} operation returns {\tt -1} if its argument
is negative, {\tt 0} if zero and {\tt 1} if positive.

\spadcommand{sign(x) }
$$
-1 
$$
\returnType{Type: Integer}

%Original Page 381

You can determine if an integer is negative in several other ways.

\spadcommand{x < 0 }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{x <= -1 }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{negative?(x) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Similarly, you can find out if it is positive.

\spadcommand{x > 0 }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{x >= 1 }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{positive?(x) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

This is the recommended way of determining whether an integer is zero.

\spadcommand{zero?(x) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\boxer{4.6in}{
Use the \spadfunFrom{zero?}{Integer} operation whenever you are
testing any mathematical object for equality with zero.  This is
usually more efficient that using {\tt =} (think of matrices: it is
easier to tell if a matrix is zero by just checking term by term than
constructing another ``zero'' matrix and comparing the two matrices
term by term) and also avoids the problem that {\tt =} is usually used
for creating equations.\\
}

This is the recommended way of determining whether an integer is equal
to one.

\spadcommand{one?(x) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%Original Page 382

This syntax is used to test equality using \spadopFrom{=}{Integer}.
It says that you want a {\tt Boolean} ({\tt true} or {\tt false})
answer rather than an equation.

\spadcommand{(x = -101)@Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The operations \spadfunFrom{odd?}{Integer} and
\spadfunFrom{even?}{Integer} determine whether an integer is odd or
even, respectively.  They each return a {\tt Boolean} object.

\spadcommand{odd?(x) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{even?(x) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

The operation \spadfunFrom{gcd}{Integer} computes the greatest common
divisor of two integers.

\spadcommand{gcd(56788,43688)}
$$
4 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{lcm}{Integer} computes their least common multiple.

\spadcommand{lcm(56788,43688)}
$$
620238536 
$$
\returnType{Type: PositiveInteger}

To determine the maximum of two integers, use \spadfunFrom{max}{Integer}.

\spadcommand{max(678,567)}
$$
678 
$$
\returnType{Type: PositiveInteger}

To determine the minimum, use \spadfunFrom{min}{Integer}.

\spadcommand{min(678,567)}
$$
567 
$$
\returnType{Type: PositiveInteger}

The {\tt reduce} operation is used to extend binary operations to more
than two arguments.  For example, you can use {\tt reduce} to find the
maximum integer in a list or compute the least common multiple of all
integers in the list.

\spadcommand{reduce(max,[2,45,-89,78,100,-45])}
$$
100 
$$
\returnType{Type: PositiveInteger}

\spadcommand{reduce(min,[2,45,-89,78,100,-45])}
$$
-{89} 
$$
\returnType{Type: Integer}

\spadcommand{reduce(gcd,[2,45,-89,78,100,-45])}
$$
1 
$$
\returnType{Type: PositiveInteger}

%Original Page 383

\spadcommand{reduce(lcm,[2,45,-89,78,100,-45])}
$$
1041300 
$$
\returnType{Type: PositiveInteger}

The infix operator ``/'' is {\it not} used to compute the quotient of
integers.  Rather, it is used to create rational numbers as described
in \domainref{Fraction}.

\spadcommand{13 / 4}
$$
\frac{13}{4} 
$$
\returnType{Type: Fraction Integer}

The infix operation \spadfunFrom{quo}{Integer} computes the integer
quotient.

\spadcommand{13 quo 4}
$$
3 
$$
\returnType{Type: PositiveInteger}

The infix operation \spadfunFrom{rem}{Integer} computes the integer
remainder.

\spadcommand{13 rem 4}
$$
1 
$$
\returnType{Type: PositiveInteger}

One integer is evenly divisible by another if the remainder is zero.
The operation \spadfunFrom{exquo}{Integer} can also be used.  See
\sectionref{ugTypesUnions} for an example.

\spadcommand{zero?(167604736446952 rem 2003644)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The operation \spadfunFrom{divide}{Integer} returns a record of the
quotient and remainder and thus is more efficient when both are needed.

\spadcommand{d := divide(13,4) }
$$
\left[
{quotient=3}, {remainder=1} 
\right]
$$
\returnType{Type: Record(quotient: Integer,remainder: Integer)}

\spadcommand{d.quotient }
$$
3 
$$
\returnType{Type: PositiveInteger}

Records are discussed in detail in \sectionref{ugTypesRecords}.

\spadcommand{d.remainder }
$$
1 
$$
\returnType{Type: PositiveInteger}

\subsection{Primes and Factorization}

Use the operation \spadfunFrom{factor}{Integer} to factor integers.
It returns an object of type {\tt Factored Integer}.
See \domainref{Factored} 
for a discussion of the manipulation of factored objects.

\spadcommand{factor 102400}
$$
{2 \sp {12}} \  {5 \sp 2} 
$$
\returnType{Type: Factored Integer}

%Original Page 384

The operation \spadfunFrom{prime?}{Integer} returns {\tt true} or 
{\tt false} depending on whether its argument is a prime.

\spadcommand{prime? 7}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{prime? 8}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

The operation \spadfunFrom{nextPrime}{IntegerPrimesPackage} returns the
least prime number greater than its argument.

\spadcommand{nextPrime 100}
$$
101 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{prevPrime}{IntegerPrimesPackage} returns
the greatest prime number less than its argument.

\spadcommand{prevPrime 100}
$$
97 
$$
\returnType{Type: PositiveInteger}

To compute all primes between two integers (inclusively), use the
operation \spadfunFrom{primes}{IntegerPrimesPackage}.

\spadcommand{primes(100,175)}
$$
\left[
{173}, {167}, {163}, {157}, {151}, {149}, {139}, {137}, 
{131}, {127}, {113}, {109}, {107}, {103}, {101} 
\right]
$$
\returnType{Type: List Integer}

You might sometimes want to see the factorization of an integer
when it is considered a {\it Gaussian integer}.
See \domainref{Complex} for more details.

\spadcommand{factor(2 :: Complex Integer)}
$$
-{i \  {{\left( 1+i 
\right)}
\sp 2}} 
$$
\returnType{Type: Factored Complex Integer}

\subsection{Some Number Theoretic Functions}

Axiom provides several number theoretic operations for integers.
More examples are in \domainref{IntegerNumberTheoryFunctions}.


The operation \spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions}
computes the Fibonacci numbers.  The algorithm has running time
$O\,(\log^3(n))$ for argument {\tt n}.

\spadcommand{[fibonacci(k) for k in 0..]}
$$
\left[
0, 1, 1, 2, 3, 5, 8, {13}, {21}, {34}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

The operation \spadfunFrom{legendre}{IntegerNumberTheoryFunctions}
computes the Legendre symbol for its two integer arguments where the
second one is prime.  If you know the second argument to be prime, use
\spadfunFrom{jacobi}{IntegerNumberTheoryFunctions} instead where no
check is made.

\spadcommand{[legendre(i,11) for i in 0..10]}
$$
\left[
0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1 
\right]
$$
\returnType{Type: List Integer}

%Original Page 385

The operation \spadfunFrom{jacobi}{IntegerNumberTheoryFunctions}
computes the Jacobi symbol for its two integer arguments.  By
convention, {\tt 0} is returned if the greatest common divisor of the
numerator and denominator is not {\tt 1}.

\spadcommand{[jacobi(i,15) for i in 0..9]}
$$
\left[
0, 1, 1, 0, 1, 0, 0, -1, 1, 0 
\right]
$$
\returnType{Type: List Integer}

The operation \spadfunFrom{eulerPhi}{IntegerNumberTheoryFunctions}
computes the values of Euler's $\phi$-function where $\phi(n)$ equals
the number of positive integers less than or equal to {\tt n} that are
relatively prime to the positive integer {\tt n}.

\spadcommand{[eulerPhi i for i in 1..]}
$$
\left[
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

The operation \spadfunFrom{moebiusMu}{IntegerNumberTheoryFunctions}
computes the M\"{o}bius $\mu$ function.

\spadcommand{[moebiusMu i for i in 1..]}
$$
\left[
1, -1, -1, 0, -1, 1, -1, 0, 0, 1, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

Although they have somewhat limited utility, Axiom provides Roman numerals.

\spadcommand{a := roman(78) }
$$
{\rm LXXVIII }
$$
\returnType{Type: RomanNumeral}

\spadcommand{b := roman(87) }
$$
{\rm LXXXVII }
$$
\returnType{Type: RomanNumeral}

\spadcommand{a + b }
$$
{\rm CLXV }
$$
\returnType{Type: RomanNumeral}

\spadcommand{a * b }
$$
{\rm MMMMMMDCCLXXXVI }
$$
\returnType{Type: RomanNumeral}

\spadcommand{b rem a }
$$
{\rm IX }
$$
\returnType{Type: RomanNumeral}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{IntegerLinearDependence}

The elements $v_1, \dots,v_n$ of a module {\tt M} over a ring {\tt R}
are said to be {\it linearly dependent over {\tt R}} if there exist
$c_1,\dots,c_n$ in {\tt R}, not all $0$, such that $c_1 v_1 +
\dots c_n v_n = 0$.  If such $c_i$'s exist, they form what is called a
{\it linear dependence relation over {\tt R}} for the $v_i$'s.

The package {\tt IntegerLinearDependence} provides functions
for testing whether some elements of a module over the integers are
linearly dependent over the integers, and to find the linear
dependence relations, if any.

%Original Page 386

Consider the domain of two by two square matrices with integer entries.

\spadcommand{M := SQMATRIX(2,INT) }
$$
SquareMatrix(2,Integer) 
$$
\returnType{Type: Domain}

Now create three such matrices.

\spadcommand{m1: M := squareMatrix matrix [ [1, 2], [0, -1] ] }
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
0 & -1 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{m2: M := squareMatrix matrix [ [2, 3], [1, -2] ] }
$$
\left[
\begin{array}{cc}
2 & 3 \\ 
1 & -2 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{m3: M := squareMatrix matrix [ [3, 4], [2, -3] ] }
$$
\left[
\begin{array}{cc}
3 & 4 \\ 
2 & -3 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

This tells you whether {\tt m1}, {\tt m2} and {\tt m3} are linearly
dependent over the integers.

\spadcommand{linearlyDependentOverZ? vector [m1, m2, m3] }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Since they are linearly dependent, you can ask for the dependence relation.

\spadcommand{c := linearDependenceOverZ vector [m1, m2, m3] }
$$
\left[
1, -2, 1 
\right]
$$
\returnType{Type: Union(Vector Integer,...)}

This means that the following linear combination should be {\tt 0}.

\spadcommand{c.1 * m1 + c.2 * m2 + c.3 * m3 }
$$
\left[
\begin{array}{cc}
0 & 0 \\ 
0 & 0 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

When a given set of elements are linearly dependent over {\tt R}, this
also means that at least one of them can be rewritten as a linear
combination of the others with coefficients in the quotient field of
{\tt R}.

To express a given element in terms of other elements, use the operation
\spadfunFrom{solveLinearlyOverQ}{IntegerLinearDependence}.

\spadcommand{solveLinearlyOverQ(vector [m1, m3], m2) }
$$
\left[
{\frac{1}{2}}, {\frac{1}{2}} 
\right]
$$
\returnType{Type: Union(Vector Fraction Integer,...)}

%Original Page 387

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{IntegerNumberTheoryFunctions}

The {\tt IntegerNumberTheoryFunctions} package contains a variety of
operations of interest to number theorists.  Many of these operations
deal with divisibility properties of integers.  (Recall that an
integer {\tt a} divides an integer {\tt b} if there is an integer 
{\tt c} such that {\tt b = a * c}.)

The operation \spadfunFrom{divisors}{IntegerNumberTheoryFunctions}
returns a list of the divisors of an integer.

\spadcommand{div144 := divisors(144) }
$$
\left[
1, 2, 3, 4, 6, 8, 9, {12}, {16}, {18}, {24}, 
{36}, {48}, {72}, {144} 
\right]
$$
\returnType{Type: List Integer}

You can now compute the number of divisors of {\tt 144} and the sum of
the divisors of {\tt 144} by counting and summing the elements of the
list we just created.

\spadcommand{\#(div144) }
$$
15 
$$
\returnType{Type: PositiveInteger}

\spadcommand{reduce(+,div144) }
$$
403 
$$
\returnType{Type: PositiveInteger}

Of course, you can compute the number of divisors of an integer 
{\tt n}, usually denoted {\tt d(n)}, and the sum of the divisors of an
integer {\tt n}, usually denoted {\tt $\sigma$(n)}, without ever
listing the divisors of {\tt n}.

In Axiom, you can simply call the operations
\spadfunFrom{numberOfDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{sumOfDivisors}{IntegerNumberTheoryFunctions}.

\spadcommand{numberOfDivisors(144)}
$$
15 
$$
\returnType{Type: PositiveInteger}

\spadcommand{sumOfDivisors(144)}
$$
403 
$$
\returnType{Type: PositiveInteger}

The key is that {\tt d(n)} and {\tt $\sigma$(n)} are ``multiplicative
functions.''  This means that when {\tt n} and {\tt m} are relatively
prime, that is, when {\tt n} and {\tt m} have no prime factor in
common, then {\tt d(nm) = d(n) d(m)} and {\tt $\sigma$(nm) =
$\sigma$(n) $\sigma$(m)}.  Note that these functions are trivial to
compute when {\tt n} is a prime power and are computed for general
{\tt n} from the prime factorization of {\tt n}.  Other examples of
multiplicative functions are {\tt $\sigma_k$(n)}, the sum of the
$k$-th powers of the divisors of {\tt n} and $\varphi(n)$, the
number of integers between 1 and {\tt n} which are prime to {\tt n}.
The corresponding Axiom operations are called
\spadfunFrom{sumOfKthPowerDivisors}{IntegerNumberTheoryFunctions} and
\spadfunFrom{eulerPhi}{IntegerNumberTheoryFunctions}.

An interesting function is {\tt $\mu$(n)}, the M\"{o}bius $\mu$
function, defined as follows: {\tt $\mu$(1) = 1}, {\tt $\mu$(n) = 0},
when {\tt n} is divisible by a square, and {\tt $\mu = {(-1)}^k$, when
{\tt n} is the product of {\tt k} distinct primes.  The corresponding
Axiom operation is \spadfunFrom{moebiusMu}{IntegerNumberTheoryFunctions}.  

This function occurs in the following theorem:

%Original Page 388

\noindent

{\bf Theorem} (M\"{o}bius Inversion Formula): \newline Let {\tt f(n)}
be a function on the positive integers and let {\tt F(n)} be defined
by 
\[F(n) = \sum_{d \mid n} f(n)\] sum of {\tt f(n)} over
{\tt d | n}} where the sum is taken over the positive divisors of 
{\tt n}.  Then the values of {\tt f(n)} can be recovered from the values of
{\tt F(n)}: 
\[f(n) = \sum_{d \mid n} \mu(n) F({\frac{n}{d}})\]
where again the sum is taken over the positive divisors of {\tt n}.

When {\tt f(n) = 1}, then {\tt F(n) = d(n)}.  Thus, if you sum $\mu(d)
\cdot d(n/d)$ over the positive divisors {\tt d} of {\tt n}, you
should always get {\tt 1}.

\spadcommand{f1(n) == reduce(+,[moebiusMu(d) * numberOfDivisors(quo(n,d)) for d in divisors(n)]) }
\returnType{Type: Void}

\spadcommand{f1(200) }
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{f1(846) }
$$
1 
$$
\returnType{Type: PositiveInteger}

Similarly, when {\tt f(n) = n}, then {\tt F(n) = $\sigma$(n)}.  Thus,
if you sum {\tt $\mu$(d) $\cdot$ $\sigma$(n/d)} over the positive
divisors {\tt d} of {\tt n}, you should always get {\tt n}.

\spadcommand{f2(n) == reduce(+,[moebiusMu(d) * sumOfDivisors(quo(n,d)) for d in divisors(n)]) }
\returnType{Type: Void}

\spadcommand{f2(200) }
$$
200 
$$
\returnType{Type: PositiveInteger}

\spadcommand{f2(846) }
$$
846 
$$
\returnType{Type: PositiveInteger}

The M\"obius inversion formula is derived from the multiplication of
formal Dirichlet series. A Dirichlet series is an infinite series of
the form:
\[\sum_{n=1}^\infty a(n)n^{-s}\]

%Original Page 389

When
\[\sum_{n=1}^\infty a(n)n^{-s} \cdot \sum_{n=1}^\infty b(n)n^{-s} =
  \sum_{n=1}^\infty c(n)n^{-s} \]
then 
\[c(n) = \sum_{d \mid n} a(d)b(n/d)\]
Recall that the Riemann $\zeta$ function is defined by
\[
\zeta(s) = \prod_p (1-p^{-s})^{-1} = \sigma_{n=1}^\infty n^{-s}
\]
where the product is taken over the set of (positive) primes. Thus,
\[
\zeta(s)^{-1} = \prod_p(1-p^{-s}) = \sigma_{n=1}^\infty\mu(n)n^{-s}
\]
Now if 
\[
F(n) = \sum_{(d \mid n)}f(d)
\]
then
\[
\sum{f(n)n^{-s}} \cdot \zeta(s) = \sum{F(n)n^{-s}}
\]
thus
\[
\zeta(s)^{-1} \cdot \sum{F(n)n^{-s}} = \sum{f(n)n^{-s}}
\]
and
\[
f(n) = \sum_{(d \mid n)} \mu(d)F(n/d)
\]

The Fibonacci numbers are defined by $F(1) = F(2) = 1$ and
$F(n) = F(n-1) + F(n-2)$ for $n = 3,4,\ldots$.

The operation \spadfunFrom{fibonacci}{IntegerNumberTheoryFunctions}
computes the $n$-th Fibonacci number.

\spadcommand{fibonacci(25)}
$$
75025 
$$
\returnType{Type: PositiveInteger}

\spadcommand{[fibonacci(n) for n in 1..15]}
$$
\left[
1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55}, {89}, 
{144}, {233}, {377}, {610} 
\right]
$$
\returnType{Type: List Integer}

Fibonacci numbers can also be expressed as sums of binomial coefficients.

\spadcommand{fib(n) == reduce(+,[binomial(n-1-k,k) for k in 0..quo(n-1,2)]) }
\returnType{Type: Void}

\spadcommand{fib(25) }
$$
75025 
$$
\returnType{Type: PositiveInteger}

\spadcommand{[fib(n) for n in 1..15] }
$$
\left[
1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55}, {89}, 
{144}, {233}, {377}, {610} 
\right]
$$
\returnType{Type: List Integer}

%Original Page 390

Quadratic symbols can be computed with the operations
\spadfunFrom{legendre}{IntegerNumberTheoryFunctions} and
\spadfunFrom{jacobi}{IntegerNumberTheoryFunctions}.  The Legendre
symbol $\left({\frac{a}{p}}\right)$ is defined for integers $a$ and
$p$ with $p$ an odd prime number.  By definition, 
$\left({\frac{a}{p}}\right)$ = +1, when $a$ is a square $({\rm mod\ }p)$,
$\left({\frac{a}{p}}\right)$ = -1, when $a$ is not a square $({\rm mod\ }p)$,
and $\left({\frac{a}{p}}\right)$ = 0, when $a$ is divisible by $p$.

You compute $\left({\frac{a}{p}}\right)$ via the command {\tt legendre(a,p)}.

\spadcommand{legendre(3,5)}
$$
-1 
$$
\returnType{Type: Integer}

\spadcommand{legendre(23,691)}
$$
-1 
$$
\returnType{Type: Integer}

The Jacobi symbol $\left({\frac{a}{n}}\right)$ is the usual extension of
the Legendre symbol, where {\tt n} is an arbitrary integer.  The most
important property of the Jacobi symbol is the following: if {\tt K}
is a quadratic field with discriminant {\tt d} and quadratic character
$\chi$, then $\chi(n) = (d/n)$.  Thus, you can use the Jacobi symbol
to compute, say, the class numbers of imaginary quadratic fields from
a standard class number formula.

This function computes the class number of the imaginary quadratic
field with discriminant {\tt d}.

\spadcommand{h(d) == quo(reduce(+, [jacobi(d,k) for k in 1..quo(-d, 2)]), 2 - jacobi(d,2)) }
\returnType{Type: Void}

\spadcommand{h(-163) }   
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{h(-499) }   
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{h(-1832) }
$$
26 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Kernel}

A {\it kernel} is a symbolic function application (such as {\tt sin(x+ y)}) 
or a symbol (such as {\tt x}).  More precisely, a non-symbol
kernel over a set {\it S} is an operator applied to a given list of
arguments from {\it S}.  The operator has type {\tt BasicOperator}
(see \domainref{BasicOperator}
and the kernel object is usually part of an expression object (see 
\domainref{Expression}.

Kernels are created implicitly for you when you create expressions.

\spadcommand{x :: Expression Integer}
$$
x 
$$
\returnType{Type: Expression Integer}

You can directly create a ``symbol'' kernel by using the
\spadfunFrom{kernel}{Kernel} operation.

\spadcommand{kernel x}
$$
x 
$$
\returnType{Type: Kernel Expression Integer}

This expression has two different kernels.

\spadcommand{sin(x) + cos(x) }
$$
{\sin 
\left(
{x} 
\right)}+{\cos
\left(
{x} 
\right)}
$$
\returnType{Type: Expression Integer}

The operator \spadfunFrom{kernels}{Expression} returns a list of the
kernels in an object of type {\tt Expression}.

\spadcommand{kernels \% }
$$
\left[
{\sin 
\left(
{x} 
\right)},
{\cos 
\left(
{x} 
\right)}
\right]
$$
\returnType{Type: List Kernel Expression Integer}

This expression also has two different kernels.

\spadcommand{sin(x)**2 + sin(x) + cos(x) }
$$
{{\sin 
\left(
{x} 
\right)}
\sp 2}+{\sin 
\left(
{x} 
\right)}+{\cos
\left(
{x} 
\right)}
$$
\returnType{Type: Expression Integer}

The {\tt sin(x)} kernel is used twice.

\spadcommand{kernels \% }
$$
\left[
{\sin 
\left(
{x} 
\right)},
{\cos 
\left(
{x} 
\right)}
\right]
$$
\returnType{Type: List Kernel Expression Integer}

An expression need not contain any kernels.

\spadcommand{kernels(1 :: Expression Integer)}
$$
\left[\ 
\right]
$$
\returnType{Type: List Kernel Expression Integer}

If one or more kernels are present, one of them is
designated the {\it main} kernel.

\spadcommand{mainKernel(cos(x) + tan(x))}
$$
\tan 
\left(
{x} 
\right)
$$
\returnType{Type: Union(Kernel Expression Integer,...)}

Kernels can be nested. Use \spadfunFrom{height}{Kernel} to determine
the nesting depth.

\spadcommand{height kernel x}
$$
1 
$$
\returnType{Type: PositiveInteger}

This has height 2 because the {\tt x} has height 1 and then we apply
an operator to that.

\spadcommand{height mainKernel(sin x)}
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{height mainKernel(sin cos x)}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{height mainKernel(sin cos (tan x + sin x))}
$$
4 
$$
\returnType{Type: PositiveInteger}

Use the \spadfunFrom{operator}{Kernel} operation to extract the
operator component of the kernel.  The operator has type {\tt BasicOperator}.

\spadcommand{operator mainKernel(sin cos (tan x + sin x))}
$$
\sin 
$$
\returnType{Type: BasicOperator}

Use the \spadfunFrom{name}{Kernel} operation to extract the name of
the operator component of the kernel.  The name has type {\tt Symbol}.
This is really just a shortcut for a two-step process of extracting
the operator and then calling \spadfunFrom{name}{BasicOperator} on
the operator.

\spadcommand{name mainKernel(sin cos (tan x + sin x))}
$$
\sin 
$$
\returnType{Type: Symbol}

Axiom knows about functions such as {\tt sin}, {\tt cos} and so on and
can make kernels and then expressions using them.  To create a kernel
and expression using an arbitrary operator, use
\spadfunFrom{operator}{BasicOperator}.

Now {\tt f} can be used to create symbolic function applications.

\spadcommand{f := operator 'f }
$$
f 
$$
\returnType{Type: BasicOperator}

\spadcommand{e := f(x, y, 10) }
$$
f 
\left(
{x, y, {10}} 
\right)
$$
\returnType{Type: Expression Integer}

Use the \spadfunFrom{is?}{Kernel} operation to learn if the
operator component of a kernel is equal to a given operator.

\spadcommand{is?(e, f) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

You can also use a symbol or a string as the second argument to
\spadfunFrom{is?}{Kernel}.

\spadcommand{is?(e, 'f) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Use the \spadfunFrom{argument}{Kernel} operation to get a list containing
the argument component of a kernel.

\spadcommand{argument mainKernel e }
$$
\left[
x, y, {10} 
\right]
$$
\returnType{Type: List Expression Integer}

Conceptually, an object of type {\tt Expression} can be thought of a
quotient of multivariate polynomials, where the ``variables'' are
kernels.  The arguments of the kernels are again expressions and so
the structure recurses.  See \domainref{Expression} for examples of
using kernels to take apart expression objects.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{KeyedAccessFile}

The domain {\tt KeyedAccessFile(S)} provides files which can be used
as associative tables.  Data values are stored in these files and can
be retrieved according to their keys.  The keys must be strings so
this type behaves very much like the {\tt StringTable(S)} domain.  The
difference is that keyed access files reside in secondary storage
while string tables are kept in memory.  For more information on
table-oriented operations, see the description of {\tt Table}.

%Original Page 391

Before a keyed access file can be used, it must first be opened.
A new file can be created by opening it for output.

\spadcommand{ey: KeyedAccessFile(Integer) := open("/tmp/editor.year", "output")  }
$$
\mbox{\tt "/tmp/editor.year"} 
$$
\returnType{Type: KeyedAccessFile Integer}

Just as for vectors, tables or lists, values are saved in a keyed access file
by setting elements.

\spadcommand{ey."Char"     := 1986 }
$$
1986 
$$
\returnType{Type: PositiveInteger}

\spadcommand{ey."Caviness" := 1985 }
$$
1985 
$$
\returnType{Type: PositiveInteger}

\spadcommand{ey."Fitch"    := 1984 }
$$
1984 
$$
\returnType{Type: PositiveInteger}

Values are retrieved using application, in any of its syntactic forms.

\spadcommand{ey."Char"}
$$
1986 
$$
\returnType{Type: PositiveInteger}

\spadcommand{ey("Char")}
$$
1986 
$$
\returnType{Type: PositiveInteger}

\spadcommand{ey "Char"}
$$
1986 
$$
\returnType{Type: PositiveInteger}

Attempting to retrieve a non-existent element in this way causes an error.
If it is not known whether a key exists, you should use the
\spadfunFrom{search}{KeyedAccessFile} operation.

\spadcommand{search("Char", ey)   }
$$
1986 
$$
\returnType{Type: Union(Integer,...)}

\spadcommand{search("Smith", ey)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

%Original Page 392

When an entry is no longer needed, it can be removed from the file.

\spadcommand{remove!("Char", ey)  }
$$
1986 
$$
\returnType{Type: Union(Integer,...)}

The \spadfunFrom{keys}{KeyedAccessFile} operation returns a list of all the
keys for a given file.

\spadcommand{keys ey  }
$$
\left[
\mbox{\tt "Fitch"} , \mbox{\tt "Caviness"} 
\right]
$$
\returnType{Type: List String}

The \spadfunFrom{\#}{KeyedAccessFile} operation gives the
number of entries.

\spadcommand{\#ey}
$$
2 
$$
\returnType{Type: PositiveInteger}

The table view of keyed access files provides safe operations.  That
is, if the Axiom program is terminated between file operations, the
file is left in a consistent, current state.  This means, however,
that the operations are somewhat costly.  For example, after each
update the file is closed.

Here we add several more items to the file, then check its contents.

\spadcommand{KE := Record(key: String, entry: Integer)  }
$$
\mbox{\rm Record(key: String,entry: Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{reopen!(ey, "output")  }
$$
\mbox{\tt "/tmp/editor.year"} 
$$
\returnType{Type: KeyedAccessFile Integer}

If many items are to be added to a file at the same time, then
it is more efficient to use the \spadfunFrom{write}{KeyedAccessFile} operation.

\spadcommand{write!(ey, ["van Hulzen", 1983]\$KE)  }
$$
\left[
{key= \mbox{\tt "van Hulzen"} }, {entry={1983}} 
\right]
$$
\returnType{Type: Record(key: String,entry: Integer)}

\spadcommand{write!(ey, ["Calmet", 1982]\$KE)}
$$
\left[
{key= \mbox{\tt "Calmet"} }, {entry={1982}} 
\right]
$$
\returnType{Type: Record(key: String,entry: Integer)}

\spadcommand{write!(ey, ["Wang", 1981]\$KE)}
$$
\left[
{key= \mbox{\tt "Wang"} }, {entry={1981}} 
\right]
$$
\returnType{Type: Record(key: String,entry: Integer)}

\spadcommand{close! ey}
$$
\mbox{\tt "/tmp/editor.year"} 
$$
\returnType{Type: KeyedAccessFile Integer}

%Original Page 393

The \spadfunFrom{read}{KeyedAccessFile} operation is also available
from the file view, but it returns elements in a random order.  It is
generally clearer and more efficient to use the
\spadfunFrom{keys}{KeyedAccessFile} operation and to extract elements
by key.

\spadcommand{keys ey}
$$
\left[
\mbox{\tt "Wang"} , \mbox{\tt "Calmet"} , \mbox{\tt "van Hulzen"} , 
\mbox{\tt "Fitch"} , \mbox{\tt "Caviness"} 
\right]
$$
\returnType{Type: List String}

\spadcommand{members ey}
$$
\left[
{1981}, {1982}, {1983}, {1984}, {1985} 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{)system rm -r /tmp/editor.year}

For more information on related topics, see 
\domainref{File}, \domainref{TextFile}, and \domainref{Library}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LexTriangularPackage}

The {\tt LexTriangularPackage} package constructor provides an
implementation of the {\em lexTriangular} algorithm (D. Lazard
``Solving Zero-dimensional Algebraic Systems'', J. of Symbol. Comput.,
1992).  This algorithm decomposes a zero-dimensional variety into
zero-sets of regular triangular sets.  Thus the input system must have
a finite number of complex solutions.  Moreover, this system needs to
be a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring {\bf R} of the
polynomials, which must be a {\tt GcdDomain} and their set of
variables given by {\bf ls} a {\tt List Symbol}.  The type of the
input polynomials must be\\ 
{\tt NewSparseMultivariatePolynomial(R,V)}
where {\bf V} is {\tt OrderedVariableList(ls)}.  The abbreviation for
{\tt LexTriangularPackage} is {\tt LEXTRIPK}.  The main operations are
\spadfunFrom{lexTriangular}{LexTriangularPackage} and
\spadfunFrom{squareFreeLexTriangular}{LexTriangularPackage}.  The
later provide decompositions by means of square-free regular
triangular sets, built with the {\tt SREGSET} constructor, whereas the
former uses the {\tt REGSET} constructor.  Note that these
constructors also implement another algorithm for solving algebraic
systems by means of regular triangular sets; in that case no
computations of Groebner bases are needed and the input system may
have any dimension (i.e. it may have an infinite number of solutions).

The implementation of the {\em lexTriangular} algorithm provided in
the {\tt LexTriangularPackage} constructor differs from that reported
in ``Computations of gcd over algebraic towers of simple extensions'' by
M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995).
Indeed, the \spadfunFrom{squareFreeLexTriangular}{LexTriangularPackage} 
operation removes all multiplicities of the solutions (i.e. the computed
solutions are pairwise different) and the
\spadfunFrom{lexTriangular}{LexTriangularPackage} operation may keep
some multiplicities; this later operation runs generally faster than
the former.

The interest of the {\em lexTriangular} algorithm is due to the
following experimental remark.  For some examples, a triangular
decomposition of a zero-dimensional variety can be computed faster via
a lexicographical Groebner basis computation than by using a direct
method (like that of {\tt SREGSET} and {\tt REGSET}).  This happens
typically when the total degree of the system relies essentially on
its smallest variable (like in the {\em Katsura} systems).  When this
is not the case, the direct method may give better timings (like in
the {\em Rose} system).

Of course, the direct method can also be applied to a lexicographical
Groebner basis.  However, the {\em lexTriangular} algorithm takes
advantage of the structure of this basis and avoids many unnecessary
computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of
solutions, see also the {\tt ZeroDimensionalSolvePackage}.  It allows
to use both strategies (the lexTriangular algorithm and the direct
method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is
detailed in the example of the {\tt RegularTriangularSet} constructor.

Since the {\tt LEXTRIPK} package constructor is limited to
zero-dimensional systems, it provides a
\spadfunFrom{zeroDimensional?}{LexTriangularPackage} operation to
check whether this requirement holds.  There is also a
\spadfunFrom{groebner}{LexTriangularPackage} operation to compute the
lexicographical Groebner basis of a set of polynomials with type {\tt
NewSparseMultivariatePolynomial(R,V)}.  The elimination ordering is
that given by {\bf ls} (the greatest variable being the first element
of {\bf ls}).  This basis is computed by the {\em FLGM} algorithm
(Faugere et al. ``Efficient Computation of Zero-Dimensional Groebner
Bases by Change of Ordering'' , J. of Symbol. Comput., 1993)
implemented in the {\tt LinGroebnerPackage} package constructor.
Once a lexicographical Groebner basis is computed,
then one can call the operations 
\spadfunFrom{lexTriangular}{LexTriangularPackage}
and \spadfunFrom{squareFreeLexTriangular}{LexTriangularPackage}.
Note that these operations admit an optional argument
to produce normalized triangular sets.
There is also a \spadfunFrom{zeroSetSplit}{LexTriangularPackage} operation
which does all the job from the input system;
an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the {\tt LEXTRIPK} constructor
by a famous example, the {\em cyclic-6 root} system.

Define the coefficient ring.

\spadcommand{R := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

Define the list of variables,

\spadcommand{ls : List Symbol := [a,b,c,d,e,f] }
$$
\left[
a, b, c, d, e, f 
\right]
$$
\returnType{Type: List Symbol}

and make it an ordered set.

\spadcommand{V := OVAR(ls)  }
$$
\mbox{\rm OrderedVariableList [a,b,c,d,e,f]} 
$$
\returnType{Type: Domain}

Define the polynomial ring.

\spadcommand{P := NSMP(R, V)}
$$
\mbox{\rm NewSparseMultivariatePolynomial(Integer,OrderedVariableList 
[a,b,c,d,e,f])} 
$$
\returnType{Type: Domain}

Define the polynomials.

\spadcommand{p1: P :=  a*b*c*d*e*f - 1  }
$$
{f \  e \  d \  c \  b \  a} -1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f +a*c*d*e*f +b*c*d*e*f   }
$$
{{\left( {{\left( {{\left( {{\left( e+f 
\right)}
\  d}+{f \  e} 
\right)}
\  c}+{f \  e \  d} 
\right)}
\  b}+{f \  e \  d \  c} 
\right)}
\  a}+{f \  e \  d \  c \  b} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{p3: P :=  a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e + c*d*e*f  }
$$
{{\left( {{\left( {{\left( d+f 
\right)}
\  c}+{f \  e} 
\right)}
\  b}+{f \  e \  d} 
\right)}
\  a}+{e \  d \  c \  b}+{f \  e \  d \  c} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f   }
$$
{{\left( {{\left( c+f 
\right)}
\  b}+{f \  e} 
\right)}
\  a}+{d \  c \  b}+{e \  d \  c}+{f \  e \  d} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{p5: P := a*b + a*f + b*c + c*d + d*e + e*f  }
$$
{{\left( b+f 
\right)}
\  a}+{c \  b}+{d \  c}+{e \  d}+{f \  e} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{p6: P := a + b + c + d + e + f   }
$$
a+b+c+d+e+f 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

\spadcommand{lp := [p1, p2, p3, p4, p5, p6]}
$$
\begin{array}{@{}l}
\left[
{{f \  e \  d \  c \  b \  a} -1}, 
\right.
\\
\\
\displaystyle
{{{\left( 
{{\left( 
{{\left( 
{{\left( e+f \right)}
\  d}+{f \  e} 
\right)}
\  c}+{f \  e \  d} 
\right)}
\  b}+{f \  e \  d \  c} 
\right)}
\  a}+{f \  e \  d \  c \  b}}, 
\\
\\
\displaystyle
{{{\left( 
{{\left( 
{{\left( d+f 
\right)}
\  c}+{f \  e} 
\right)}
\  b}+{f \  e \  d} 
\right)}
\  a}+{e \  d \  c \  b}+{f \  e \  d \  c}}, 
\\
\\
\displaystyle
{{{\left( 
{{\left( c+f 
\right)}
\  b}+{f \  e} 
\right)}
\  a}+{d \  c \  b}+{e \  d \  c}+{f \  e \  d}},
\\
\\
\displaystyle
{{{\left( b+f 
\right)}
\  a}+{c \  b}+{d \  c}+{e \  d}+{f \  e}}, 
\\
\\
\displaystyle
\left.
{a+b+c+d+e+f} 
\right]
\end{array}
$$
\returnType{Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

Now call {\tt LEXTRIPK} .

\spadcommand{lextripack :=  LEXTRIPK(R,ls)}
$$
LexTriangularPackage(Integer,[a,b,c,d,e,f]) 
$$
\returnType{Type: Domain}

Compute the lexicographical Groebner basis of the system.
This may take between 5 minutes and one hour, depending on your machine.

\spadcommand{lg := groebner(lp)\$lextripack}

$$
\left[
{a+b+c+d+e+f}, 
\right.
$$
$$
\begin{array}{@{}l}
{{3968379498283200} \  {b \sp 2}}+
{{15873517993132800} \  f \  b}+
\\
\displaystyle
{{3968379498283200} \  {d \sp 2}}+
{{15873517993132800} \  f \  d}+
\\
\displaystyle
{{3968379498283200} \  {f \sp 3} \  {e \sp 5}} -
{{15873517993132800} \  {f \sp 4} \  {e \sp 4}}+
\\
\displaystyle
{{23810276989699200} \  {f \sp 5} \  {e \sp 3}}+
\left( 
{{206355733910726400} \  {f \sp 6}}+
\right.
\\
\displaystyle
\left.
{230166010900425600} 
\right)\  {e \sp 2}+
\left( 
-{{729705987316687} \  {f \sp {43}}}+
\right.
\\
\displaystyle
{{1863667496867205421} \  {f \sp {37}}}+
{{291674853771731104461} \  {f \sp {31}}}+
\\
\displaystyle
{{365285994691106921745} \  {f \sp {25}}}+
{{549961185828911895} \  {f \sp {19}}} -
\\
\displaystyle
{{365048404038768439269} \  {f \sp {13}}} -
{{292382820431504027669} \  {f \sp 7}} -
\\
\displaystyle
\left.
{{2271898467631865497} \  f} 
\right)\  e -
{{3988812642545399} \  {f \sp {44}}}+
\\
\displaystyle
{{10187423878429609997} \  {f \sp {38}}}+
{{1594377523424314053637} \  {f \sp {32}}}+
\\
\displaystyle
{{1994739308439916238065} \  {f \sp {26}}}+
{{1596840088052642815} \  {f \sp {20}}} -
\\
\displaystyle
{{1993494118301162145413} \  {f \sp {14}}} -
{{1596049742289689815053} \  {f \sp 8}} -
\\
\displaystyle
{{11488171330159667449} \  {f \sp 2}}, \hbox{\hskip 8.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{23810276989699200} \  c} -
{{23810276989699200} \  f} 
\right)\  b+
\\
\displaystyle
{{23810276989699200} \  {c \sp 2}}+
{{71430830969097600} \  f \  c} -
\\
\displaystyle
{{23810276989699200} \  {d \sp 2}} -
{{95241107958796800} \  f \  d} -
\\
\displaystyle
{{55557312975964800} \  {f \sp 3} \  {e \sp 5}}+
{{174608697924460800} \  {f \sp 4} \  {e \sp 4}} -
\\
\displaystyle
{{174608697924460800} \  {f \sp 5} \  {e \sp 3}}+
\left( 
-{{2428648252949318400} \  {f \sp 6}} -
\right.
\\
\displaystyle
\left.
{2611193709870345600} 
\right)\  {e \sp 2}+
\left( 
{{8305444561289527} \  {f \sp {43}}} -
\right.
\\
\displaystyle
{{21212087151945459641} \  {f \sp {37}}} -
{{3319815883093451385381} \  {f \sp {31}}} -
\\
\displaystyle
{{4157691646261657136445} \  {f \sp {25}}} -
{{6072721607510764095} \  {f \sp {19}}}+
\\
\displaystyle
{{4154986709036460221649} \  {f \sp {13}}}+
{{3327761311138587096749} \  {f \sp 7}}+
\\
\displaystyle
\left.
{{25885340608290841637} \  f} 
\right)\  e+
{{45815897629010329} \  {f \sp {44}}} -
\\
\displaystyle
{{117013765582151891207} \  {f \sp {38}}} -
{{18313166848970865074187} \  {f \sp {32}}}-
\\
\displaystyle
{{22909971239649297438915} \  {f \sp {26}}} -
{{16133250761305157265} \  {f \sp {20}}}+
\\
\displaystyle
{{22897305857636178256623} \  {f \sp {14}}}+
{{18329944781867242497923} \  {f \sp 8}}+
\\
\displaystyle
{{130258531002020420699} \  {f \sp 2}}, \hbox{\hskip 8.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{7936758996566400} \  d} -
{{7936758996566400} \  f} 
\right)\  b -
\\
\displaystyle
{{7936758996566400} \  f \  d} -
{{7936758996566400} \  {f \sp 3} \  {e \sp 5}}+
\\
\displaystyle
{{23810276989699200} \  {f \sp 4} \  {e \sp 4}} -
{{23810276989699200} \  {f \sp 5} \  {e \sp 3}}+
\\
\displaystyle
\left( 
-{{337312257354072000} \  {f \sp 6}} -
{369059293340337600} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( 
{{1176345388640471} \  {f \sp {43}}} -
{{3004383582891473073} \  {f \sp {37}}} -
\right.
\\
\displaystyle
{{470203502707246105653} \  {f \sp {31}}} -
{{588858183402644348085} \  {f \sp {25}}} -
\\
\displaystyle
{{856939308623513535} \  {f \sp {19}}}+
{{588472674242340526377} \  {f \sp {13}}}+
\\
\displaystyle
\left.
{{471313241958371103517} \  {f \sp 7}}+
{{3659742549078552381} \  f} 
\right)\  e+
\\
\displaystyle
{{6423170513956901} \  {f \sp {44}}} -
{{16404772137036480803} \  {f \sp {38}}} -
\\
\displaystyle
{{2567419165227528774463} \  {f \sp {32}}} -
{{3211938090825682172335} \  {f \sp {26}}} -
\\
\displaystyle
{{2330490332697587485} \  {f \sp {20}}}+
{{3210100109444754864587} \  {f \sp {14}}}+
\\
\displaystyle
{{2569858315395162617847} \  {f \sp 8}}+
{{18326089487427735751} \  {f \sp 2}}, \hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{11905138494849600} \  e} -
{{11905138494849600} \  f} 
\right)\  b -
\\
\displaystyle
{{3968379498283200} \  {f \sp 3} \  {e \sp 5}}+
{{15873517993132800} \  {f \sp 4} \  {e \sp 4}} -
\\
\displaystyle
{{27778656487982400} \  {f \sp 5} \  {e \sp 3}}+
\left( 
-{{208339923659868000} \  {f \sp 6}} -
\right.
\\
\displaystyle
\left.
{240086959646133600} 
\right)\  {e \sp 2}+
\left( 
{{786029984751110} \  {f \sp {43}}} -
\right.
\\
\displaystyle
{{2007519008182245250} \  {f \sp {37}}} -
{{314188062908073807090} \  {f \sp {31}}} -
\\
\displaystyle
{{393423667537929575250} \  {f \sp {25}}} -
{{550329120654394950} \  {f \sp {19}}}+
\\
\displaystyle
{{393196408728889612770} \  {f \sp {13}}}+
{{314892372799176495730} \  {f \sp 7}}+
\\
\displaystyle
\left.
{{2409386515146668530} \  f} 
\right)\  e+
{{4177638546747827} \  {f \sp {44}}} -
\\
\displaystyle
{{10669685294602576381} \  {f \sp {38}}} -
{{1669852980419949524601} \  {f \sp {32}}} -
\\
\displaystyle
{{2089077057287904170745} \  {f \sp {26}}} -
{{1569899763580278795} \  {f \sp {20}}}+
\\
\displaystyle
{{2087864026859015573349} \  {f \sp {14}}}+
{{1671496085945199577969} \  {f \sp 8}}+
\\
\displaystyle
{{11940257226216280177} \  {f \sp 2}}, \hbox{\hskip 8.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{11905138494849600} \  {f \sp 6}} -{11905138494849600} 
\right)\  b -
\\
\displaystyle
{{15873517993132800} \  {f \sp 2} \  {e \sp 5}}+
{{39683794982832000} \  {f \sp 3} \  {e \sp 4}} -
\\
\displaystyle
{{39683794982832000} \  {f \sp 4} \  {e \sp 3}}+
\left( -{{686529653202993600} \  {f \sp {11}}} -
\right.
\\
\displaystyle
\left.
{{607162063237329600} \  {f \sp 5}} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( {{65144531306704} \  {f \sp {42}}} -
{{166381280901088652} \  {f \sp {36}}} -
\right.
\\
\displaystyle
{{26033434502470283472} \  {f \sp {30}}} -
{{31696259583860650140} \  {f \sp {24}}}+
\\
\displaystyle
{{971492093167581360} \  {f \sp {18}}}+
{{32220085033691389548} \  {f \sp {12}}}+
\\
\displaystyle
\left.
{{25526177666070529808} \  {f \sp 6}}+
{138603268355749244} 
\right)\  e+
\\
\displaystyle
{{167620036074811} \  {f \sp {43}}} -
{{428102417974791473} \  {f \sp {37}}} -
\\
\displaystyle
{{66997243801231679313} \  {f \sp {31}}} -
{{83426716722148750485} \  {f \sp {25}}}+
\\
\displaystyle
{{203673895369980765} \  {f \sp {19}}}+
{{83523056326010432457} \  {f \sp {13}}}+
\\
\displaystyle
{{66995789640238066937} \  {f \sp 7}}+
{{478592855549587901} \  f}, \hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
{{801692827936} \  {c \sp 3}}+
{{2405078483808} \  f \  {c \sp 2}} -
\\
\displaystyle
{{2405078483808} \  {f \sp 2} \  c} -
{{13752945467} \  {f \sp {45}}}+
\\
\displaystyle
{{35125117815561} \  {f \sp {39}}}+
{{5496946957826433} \  {f \sp {33}}}+
\\
\displaystyle
{{6834659447749117} \  {f \sp {27}}} -
{{44484880462461} \  {f \sp {21}}} -
\\
\displaystyle
{{6873406230093057} \  {f \sp {15}}} -
{{5450844938762633} \  {f \sp 9}}+
\\
\displaystyle
{{1216586044571} \  {f \sp 3}},\hbox{\hskip 9.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( {{23810276989699200} \  d} -
{{23810276989699200} \  f} 
\right)\  c+
\\
\displaystyle
{{23810276989699200} \  {d \sp 2}}+
{{71430830969097600} \  f \  d}+
\\
\displaystyle
{{7936758996566400} \  {f \sp 3} \  {e \sp 5}} -
{{31747035986265600} \  {f \sp 4} \  {e \sp 4}}+
\\
\displaystyle
{{31747035986265600} \  {f \sp 5} \  {e \sp 3}}+
\left( {{404774708824886400} \  {f \sp 6}}+
\right.
\\
\displaystyle
\left.
{396837949828320000} 
\right)\  {e \sp 2}+
\left( 
-{{1247372229446701} \  {f \sp {43}}}+
\right.
\\
\displaystyle
{{3185785654596621203} \  {f \sp {37}}}+
{{498594866849974751463} \  {f \sp {31}}}+
\\
\displaystyle
{{624542545845791047935} \  {f \sp {25}}}+
{{931085755769682885} \  {f \sp {19}}} -
\\
\displaystyle
{{624150663582417063387} \  {f \sp {13}}} -
{{499881859388360475647} \  {f \sp 7}} -
\\
\displaystyle
\left.
{{3926885313819527351} \  f} 
\right)\  e -
{{7026011547118141} \  {f \sp {44}}}+
\\
\displaystyle
{{17944427051950691243} \  {f \sp {38}}}+
{{2808383522593986603543} \  {f \sp {32}}}+
\\
\displaystyle
{{3513624142354807530135} \  {f \sp {26}}}+
{{2860757006705537685} \  {f \sp {20}}} -
\\
\displaystyle
{{3511356735642190737267} \  {f \sp {14}}} -
{{2811332494697103819887} \  {f \sp 8}} -
\\
\displaystyle
{{20315011631522847311} \  {f \sp 2}}, \hbox{\hskip 8.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{7936758996566400} \  e} -{{7936758996566400} \  f} 
\right)\  c+
\\
\displaystyle
\left( 
-{{4418748183673} \  {f \sp {43}}}+
\right.
\\
\displaystyle
{{11285568707456559} \  {f \sp {37}}}+
{{1765998617294451019} \  {f \sp {31}}}+
\\
\displaystyle
{{2173749283622606155} \  {f \sp {25}}} -
{{55788292195402895} \  {f \sp {19}}} -
\\
\displaystyle
{{2215291421788292951} \  {f \sp {13}}} -
{{1718142665347430851} \  {f \sp 7}}+
\\
\displaystyle
\left.
{{30256569458230237} \  f} 
\right)\  e+
{{4418748183673} \  {f \sp {44}}} -
\\
\displaystyle
{{11285568707456559} \  {f \sp {38}}} -
{{1765998617294451019} \  {f \sp {32}}} -
\\
\displaystyle
{{2173749283622606155} \  {f \sp {26}}}+
{{55788292195402895} \  {f \sp {20}}}+
\\
\displaystyle
{{2215291421788292951} \  {f \sp {14}}}+
{{1718142665347430851} \  {f \sp 8}} -
\\
\displaystyle
{{30256569458230237} \  {f \sp 2}}, \hbox{\hskip 9.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{72152354514240} \  {f \sp 6}} -
{72152354514240} 
\right)\  c+
\\
\displaystyle
{{40950859449} \  {f \sp {43}}} -
{{104588980990367} \  {f \sp {37}}} -
\\
\displaystyle
{{16367227395575307} \  {f \sp {31}}} -
{{20268523416527355} \  {f \sp {25}}}+
\\
\displaystyle
{{442205002259535} \  {f \sp {19}}}+
{{20576059935789063} \  {f \sp {13}}}+
\\
\displaystyle
{{15997133796970563} \  {f \sp 7}} -
{{275099892785581} \  f}, \hbox{\hskip 5.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
{{1984189749141600} \  {d \sp 3}}+
{{5952569247424800} \  f \  {d \sp 2}} -
\\
\displaystyle
{{5952569247424800} \  {f \sp 2} \  d} -
{{3968379498283200} \  {f \sp 4} \  {e \sp 5}}+
\\
\displaystyle
{{15873517993132800} \  {f \sp 5} \  {e \sp 4}}+
{{17857707742274400} \  {e \sp 3}}+
\\
\displaystyle
\left( 
-{{148814231185620000} \  {f \sp 7}} -
{{162703559429611200} \  f} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( 
-{{390000914678878} \  {f \sp {44}}}+
{{996062704593756434} \  {f \sp {38}}}+
\right.
\\
\displaystyle
{{155886323972034823914} \  {f \sp {32}}}+
{{194745956143985421330} \  {f \sp {26}}}+
\\
\displaystyle
{{6205077595574430} \  {f \sp {20}}} -
{{194596512653299068786} \  {f \sp {14}}} -
\\
\displaystyle
\left.
{{155796897940756922666} \  {f \sp 8}} -
{{1036375759077320978} \  {f \sp 2}} 
\right)\  e -
\\
\displaystyle
{{374998630035991} \  {f \sp {45}}}+
{{957747106595453993} \  {f \sp {39}}}+
\\
\displaystyle
{{149889155566764891693} \  {f \sp {33}}}+
{{187154171443494641685} \  {f \sp {27}}} -
\\
\displaystyle
{{127129015426348065} \  {f \sp {21}}} -
{{187241533243115040417} \  {f \sp {15}}} -
\\
\displaystyle
{{149719983567976534037} \  {f \sp 9}} -
{{836654081239648061} \  {f \sp 3}}, \hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{5952569247424800} \  e} -
{{5952569247424800} \  f} 
\right)\  d -
\\
\displaystyle
{{3968379498283200} \  {f \sp 3} \  {e \sp 5}}+
{{9920948745708000} \  {f \sp 4} \  {e \sp 4}} -
\\
\displaystyle
{{3968379498283200} \  {f \sp 5} \  {e \sp 3}}+
\left( 
-{{148814231185620000} \  {f \sp 6}} -
\right.
\\
\displaystyle
\left.
{150798420934761600} 
\right)\  {e \sp 2}+
\left( 
{{492558110242553} \  {f \sp {43}}} -
\right.
\\
\displaystyle
{{1257992359608074599} \  {f \sp {37}}} -
{{196883094539368513959} \  {f \sp {31}}} -
\\
\displaystyle
{{246562115745735428055} \  {f \sp {25}}} -
{{325698701993885505} \  {f \sp {19}}}+
\\
\displaystyle
{{246417769883651808111} \  {f \sp {13}}}+
{{197327352068200652911} \  {f \sp 7}}+
\\
\displaystyle
\left.
{{1523373796389332143} \  f} 
\right)\  e+
{{2679481081803026} \  {f \sp {44}}} -
\\
\displaystyle
{{6843392695421906608} \  {f \sp {38}}} -
{{1071020459642646913578} \  {f \sp {32}}} -
\\
\displaystyle
{{1339789169692041240060} \  {f \sp {26}}} -
{{852746750910750210} \  {f \sp {20}}}+
\\
\displaystyle
{{1339105101971878401312} \  {f \sp {14}}}+
{{1071900289758712984762} \  {f \sp 8}}+
\\
\displaystyle
{{7555239072072727756} \  {f \sp 2}}, \hbox{\hskip 8.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{11905138494849600} \  {f \sp 6}} -
{11905138494849600} 
\right)\  d -
\\
\displaystyle
{{7936758996566400} \  {f \sp 2} \  {e \sp 5}}+
{{31747035986265600} \  {f \sp 3} \  {e \sp 4}} -
\\
\displaystyle
{{31747035986265600} \  {f \sp 4} \  {e \sp 3}}+
\\
\displaystyle
\left( -{{420648226818019200} \  {f \sp {11}}} -
{{404774708824886400} \  {f \sp 5}} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( 
{{15336187600889} \  {f \sp {42}}} -
{{39169739565161107} \  {f \sp {36}}} -
\right.
\\
\displaystyle
{{6127176127489690827} \  {f \sp {30}}} -
{{7217708742310509615} \  {f \sp {24}}}+
\\
\displaystyle
{{538628483890722735} \  {f \sp {18}}}+
{{7506804353843507643} \  {f \sp {12}}}+
\\
\displaystyle
\left.
{{5886160769782607203} \  {f \sp 6}}+
{63576108396535879} 
\right)\  e+
\\
\displaystyle
{{71737781777066} \  {f \sp {43}}} -
{{183218856207557938} \  {f \sp {37}}} -
\\
\displaystyle
{{28672874271132276078} \  {f \sp {31}}} -
{{35625223686939812010} \  {f \sp {25}}}+
\\
\displaystyle
{{164831339634084390} \  {f \sp {19}}}+
{{35724160423073052642} \  {f \sp {13}}}+
\\
\displaystyle
{{28627022578664910622} \  {f \sp 7}}+
{{187459987029680506} \  f}, \hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
{{1322793166094400} \  {e \sp 6}} -
{{3968379498283200} \  f \  {e \sp 5}}+
\\
\displaystyle
{{3968379498283200} \  {f \sp 2} \  {e \sp 4}} -
{{5291172664377600} \  {f \sp 3} \  {e \sp 3}}+
\\
\displaystyle
\left( -{{230166010900425600} \  {f \sp {10}}} -
{{226197631402142400} \  {f \sp 4}} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( 
-{{152375364610443885} \  {f \sp {47}}}+
{{389166626064854890415} \  {f \sp {41}}}+
\right.
\\
\displaystyle
{{60906097841360558987335} \  {f \sp {35}}}+
{{76167367934608798697275} \  {f \sp {29}}}+
\\
\displaystyle
{{27855066785995181125} \  {f \sp {23}}} -
{{76144952817052723145495} \  {f \sp {17}}} -
\\
\displaystyle
\left.
{{60933629892463517546975} \  {f \sp {11}}} -
{{411415071682002547795} \  {f \sp 5}} 
\right)\  e -
\\
\displaystyle
{{209493533143822} \  {f \sp {42}}}+
{{535045979490560586} \  {f \sp {36}}}+
\\
\displaystyle
{{83737947964973553146} \  {f \sp {30}}}+
{{104889507084213371570} \  {f \sp {24}}}+
\\
\displaystyle
{{167117997269207870} \  {f \sp {18}}} -
{{104793725781390615514} \  {f \sp {12}}} -
\\
\displaystyle
{{83842685189903180394} \  {f \sp 6}} -
{569978796672974242}, \hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( {{25438330117200} \  {f \sp 6}}+
{25438330117200} 
\right)\  {e \sp 3}+
\\
\displaystyle
\left( {{76314990351600} \  {f \sp 7}}+
{{76314990351600} \  f} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( -{{1594966552735} \  {f \sp {44}}}+
{{4073543370415745} \  {f \sp {38}}}+
\right.
\\
\displaystyle
{{637527159231148925} \  {f \sp {32}}}+
{{797521176113606525} \  {f \sp {26}}}+
\\
\displaystyle
{{530440941097175} \  {f \sp {20}}} -
{{797160527306433145} \  {f \sp {14}}} -
\\
\displaystyle
\left.
{{638132320196044965} \  {f \sp 8}} -
{{4510507167940725} \  {f \sp 2}} 
\right)\  e -
\\
\displaystyle
{{6036376800443} \  {f \sp {45}}}+
{{15416903421476909} \  {f \sp {39}}}+
\\
\displaystyle
{{2412807646192304449} \  {f \sp {33}}}+
{{3017679923028013705} \  {f \sp {27}}}+
\\
\displaystyle
{{1422320037411955} \  {f \sp {21}}} -
{{3016560402417843941} \  {f \sp {15}}} -
\\
\displaystyle
{{2414249368183033161} \  {f \sp 9}} -
{{16561862361763873} \  {f \sp 3}}, \hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{1387545279120} \  {f \sp {12}}} -
{1387545279120} 
\right)\  {e \sp 2}+
\\
\displaystyle
\left( {{4321823003} \  {f \sp {43}}} -
{{11037922310209} \  {f \sp {37}}} -
\right.
\\
\displaystyle
{{1727510711947989} \  {f \sp {31}}} -
{{2165150991154425} \  {f \sp {25}}} -
\\
\displaystyle
{{5114342560755} \  {f \sp {19}}}+
{{2162682824948601} \  {f \sp {13}}}+
\\
\displaystyle
\left.
{{1732620732685741} \  {f \sp 7}}+
{{13506088516033} \  f} 
\right)\  e+
\\
\displaystyle
{{24177661775} \  {f \sp {44}}} -
{{61749727185325} \  {f \sp {38}}} -
\\
\displaystyle
{{9664106795754225} \  {f \sp {32}}} -
{{12090487758628245} \  {f \sp {26}}} -
\\
\displaystyle
{{8787672733575} \  {f \sp {20}}}+
{{12083693383005045} \  {f \sp {14}}}+
\\
\displaystyle
{{9672870290826025} \  {f \sp 8}}+
{{68544102808525} \  {f \sp 2}}, \hbox{\hskip 5.0cm}
\end{array}
$$
$$
\left.
\begin{array}{@{}l}
{f \sp {48}} -
{{2554} \  {f \sp {42}}} -
{{399710} \  {f \sp {36}}}-
{{499722} \  {f \sp {30}}}+
\\
\displaystyle
{{499722} \  {f \sp {18}}}+
{{399710} \  {f \sp {12}}}+
{{2554} \  {f \sp 6}} -
1 \hbox{\hskip 6.0cm}
\end{array}
\right]
$$
\returnType{Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

Apply lexTriangular to compute a decomposition into regular triangular sets.
This should not take more than 5 seconds.

\spadcommand{lexTriangular(lg,false)\$lextripack}
$$
\begin{array}{@{}l}
\left[
\begin{array}{@{}l}
\left\{ 
{{f \sp 6}+1}, 
{{e \sp 6} -
{3 \  f \  {e \sp 5}}+
{3 \  {f \sp 2} \  {e \sp 4}} -
{4 \  {f \sp 3} \  {e \sp 3}}+
{3 \  {f \sp 4} \  {e \sp 2}} -
{3 \  {f \sp 5} \  e} -1}, 
\right.
\\
\displaystyle
{{3 \  d}+{{f \sp 2} \  {e \sp 5}} -
{4 \  {f \sp 3} \  {e \sp 4}}+
{4 \  {f \sp 4} \  {e \sp 3}} -
{2 \  {f \sp 5} \  {e \sp 2}} -
{2 \  e}+{2 \  f}}, 
{c+f}, 
\\
\displaystyle
{{3 \  b}+
{2 \  {f \sp 2} \  {e \sp 5}} -
{5 \  {f \sp 3} \  {e \sp 4}}+
{5 \  {f \sp 4} \  {e \sp 3}} -
{{10} \  {f \sp 5} \  {e \sp 2}} -
{4 \  e}+{7 \  f}}, 
\\
\displaystyle
\left.
{a -{{f \sp 2} \  {e \sp 5}}+
{3 \  {f \sp 3} \  {e \sp 4}} -
{3 \  {f \sp 4} \  {e \sp 3}}+
{4 \  {f \sp 5} \  {e \sp 2}}+
{3 \  e} -{3 \  f}} 
\right\},
\end{array}
\right.
\\
\\
\displaystyle
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{d -f}, 
{{c \sp 2}+
{4 \  f \  c}+
{f \sp 2}}, 
{{{\left( 
c -f 
\right)}\  b} -
{f \  c} -
{5 \  {f \sp 2}}}, 
{a+b+c+{3 \  f}} 
\right\},
\\
\\
\displaystyle
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{d -f}, 
{c -f}, 
{{b \sp 2}+
{4 \  f \  b}+
{f \sp 2}}, 
{a+b+{4 \  f}} 
\right\},
\\
\\
\displaystyle
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{{d \sp 2}+
{4 \  f \  d}+
{f \sp 2}}, 
{{{\left( d -f \right)}\  c} -
{f \  d} -
{5 \  {f \sp 2}}}, 
{b -f}, 
{a+c+d+{3 \  f}} 
\right\},
\\
\\
\displaystyle
\begin{array}{@{}l}
\left\{ 
{{f \sp {36}} -
{{2554} \  {f \sp {30}}} -
{{399709} \  {f \sp {24}}} -
{{502276} \  {f \sp {18}}} -
{{399709} \  {f \sp {12}}} -
{{2554} \  {f \sp 6}}+1}, 
\right.
\\
\displaystyle
\left( 
{{161718564} \  {f \sp {12}}} -
{161718564} 
\right)\  {e \sp 2}+
\left( 
-{{504205} \  {f \sp {31}}}+
{{1287737951} \  {f \sp {25}}}+
\right.
\\
\displaystyle
\left.
{{201539391380} \  {f \sp {19}}}+
{{253982817368} \  {f \sp {13}}}+
{{201940704665} \  {f \sp 7}}+
{{1574134601} \  f} 
\right)\  e -
\\
\displaystyle
{{2818405} \  {f \sp {32}}}+
{{7198203911} \  {f \sp {26}}}+
{{1126548149060} \  {f \sp {20}}}+
\\
\displaystyle
{{1416530563364} \  {f \sp {14}}}+
{{1127377589345} \  {f \sp 8}}+
{{7988820725} \  {f \sp 2}},  
\\
\displaystyle
\left( 
{{693772639560} \  {f \sp 6}} -
{693772639560} 
\right)\  d -
{{462515093040} \  {f \sp 2} \  {e \sp 5}}+
\\
\displaystyle
{{1850060372160} \  {f \sp 3} \  {e \sp 4}} -
{{1850060372160} \  {f \sp 4} \  {e \sp 3}}+
\left( 
-{{24513299931120} \  {f \sp {11}}} -
\right.
\\
\displaystyle
\left.
{{23588269745040} \  {f \sp 5}} 
\right)\  {e \sp 2}+
\left( 
-{{890810428} \  {f \sp {30}}}+
{{2275181044754} \  {f \sp {24}}}+
\right.
\\
\displaystyle
{{355937263869776} \  {f \sp {18}}}+
{{413736880104344} \  {f \sp {12}}}+
{{342849304487996} \  {f \sp 6}}+
\\
\displaystyle
\left.
{3704966481878} 
\right)\  e -
{{4163798003} \  {f \sp {31}}}+
{{10634395752169} \  {f \sp {25}}}+
\\
\displaystyle
{{1664161760192806} \  {f \sp {19}}}+
{{2079424391370694} \  {f \sp {13}}}+
{{1668153650635921} \  {f \sp 7}}+
\\
\displaystyle
{{10924274392693} \  f}, 
\left( 
{{12614047992} \  {f \sp 6}} -
{12614047992} 
\right)\  c -
\\
\displaystyle
{{7246825} \  {f \sp {31}}}+
{{18508536599} \  {f \sp {25}}}+
{{2896249516034} \  {f \sp {19}}}+
\\
\displaystyle
{{3581539649666} \  {f \sp {13}}}+
{{2796477571739} \  {f \sp 7}} -
{{48094301893} \  f}, 
\\
\displaystyle
\left( 
{{693772639560} \  {f \sp 6}} -
{693772639560} 
\right)\  b -
{{925030186080} \  {f \sp 2} \  {e \sp 5}}+
\\
\displaystyle
{{2312575465200} \  {f \sp 3} \  {e \sp 4}} -
{{2312575465200} \  {f \sp 4} \  {e \sp 3}}+
\left( 
-{{40007555547960} \  {f \sp {11}}} -
\right.
\\
\displaystyle
\left.
{{35382404617560} \  {f \sp 5}} 
\right)\  {e \sp 2}+
\left( 
-{{3781280823} \  {f \sp {30}}}+
{{9657492291789} \  {f \sp {24}}}+
\right.
\\
\displaystyle
{{1511158913397906} \  {f \sp {18}}}+
{{1837290892286154} \  {f \sp {12}}}+
{{1487216006594361} \  {f \sp 6}}+
\\
\displaystyle
\left.
{8077238712093} 
\right)\  e -
{{9736390478} \  {f \sp {31}}}+
{{24866827916734} \  {f \sp {25}}}+
\\
\displaystyle
{{3891495681905296} \  {f \sp {19}}}+
{{4872556418871424} \  {f \sp {13}}}+
{{3904047887269606} \  {f \sp 7}}+
\\
\displaystyle
\left.
{{27890075838538} \  f}, 
{a+b+c+d+e+f} 
\right\},
\end{array}
\\
\\
\displaystyle
\left.
\left\{ 
{{f \sp 6} -1}, 
{{e \sp 2}+
{4 \  f \  e}+
{f \sp 2}},  
{{{\left( e -f \right)}\  d} -
{f \  e} -
{5 \  {f \sp 2}}}, 
{c -f}, 
{b -f}, 
{a+d+e+{3 \  f}} 
\right\}

\right]
\end{array}
$$
\returnType{Type: List RegularChain(Integer,[a,b,c,d,e,f])}

Note that the first set of the decomposition is normalized (all
initials are integer numbers) but not the second one (normalized
triangular sets are defined in the description of the 
{\tt NormalizedTriangularSetCategory} constructor).

So apply now lexTriangular to produce normalized triangular sets.

\spadcommand{lts := lexTriangular(lg,true)\$lextripack   }
$$
\begin{array}{@{}l}
\left[
\begin{array}{@{}l}
\left\{ 
{{f \sp 6}+1}, 
{{e \sp 6} -
{3 \  f \  {e \sp 5}}+
{3 \  {f \sp 2} \  {e \sp 4}} -
{4 \  {f \sp 3} \  {e \sp 3}}+
{3 \  {f \sp 4} \  {e \sp 2}} -
{3 \  {f \sp 5} \  e} -1}, 
\right.
\\
\displaystyle
{{3 \  d}+
{{f \sp 2} \  {e \sp 5}} -
{4 \  {f \sp 3} \  {e \sp 4}}+
{4 \  {f \sp 4} \  {e \sp 3}} -
{2 \  {f \sp 5} \  {e \sp 2}} -
{2 \  e}+{2 \  f}}, 
{c+f}, 
\\
\displaystyle
{{3 \  b}+
{2 \  {f \sp 2} \  {e \sp 5}}-
{5 \  {f \sp 3} \  {e \sp 4}}+
{5 \  {f \sp 4} \  {e \sp 3}} -
{{10} \  {f \sp 5} \  {e \sp 2}} -
{4 \  e}+{7 \  f}}, 
\\
\displaystyle
\left.
{a -{{f \sp 2} \  {e \sp 5}}+
{3 \  {f \sp 3} \  {e \sp 4}} -
{3 \  {f \sp 4} \  {e \sp 3}}+
{4 \  {f \sp 5} \  {e \sp 2}}+
{3 \  e} -
{3 \  f}} 
\right\},
\end{array}
\right.
\\
\\
\displaystyle
{\left\{ {{f \sp 6} -1}, {e -f}, {d -f}, {{c \sp 2}+{4 \  f \  
c}+{f \sp 2}}, {b+c+{4 \  f}}, {a -f} 
\right\}},
\\
\\
\displaystyle
{\left\{ {{f \sp 6} -1}, {e -f}, {d -f}, {c -f}, {{b \sp 2}+{4 
\  f \  b}+{f \sp 2}}, {a+b+{4 \  f}} 
\right\}},
\\
\\
\displaystyle
{\left\{ {{f \sp 6} -1}, {e -f}, {{d \sp 2}+{4 \  f \  d}+{f \sp 
2}}, {c+d+{4 \  f}}, {b -f}, {a -f} 
\right\}},
\\
\\
\displaystyle
\begin{array}{@{}l}
\left\{ 
{{f \sp {36}} -
{{2554} \  {f \sp {30}}} -
{{399709} \  {f \sp {24}}} -
{{502276} \  {f \sp {18}}} -
{{399709} \  {f \sp {12}}} -
{{2554} \  {f \sp 6}}+
1},
\right.
\\
\displaystyle
{{1387545279120} \  {e \sp 2}}+
\left( 
{{4321823003} \  {f \sp {31}}} -
{{11037922310209} \  {f \sp {25}}} -
\right.
\\
\displaystyle
{{1727506390124986} \  {f \sp {19}}} -
{{2176188913464634} \  {f \sp {13}}} -
{{1732620732685741} \  {f \sp 7}} -
\\
\displaystyle
\left.
{{13506088516033} \  f} 
\right)\  e+
{{24177661775} \  {f \sp {32}}} -
{{61749727185325} \  {f \sp {26}}} -
\\
\displaystyle
{{9664082618092450} \  {f \sp {20}}} -
{{12152237485813570} \  {f \sp {14}}} -
{{9672870290826025} \  {f \sp 8}} -
\\
\displaystyle
{{68544102808525} \  {f \sp 2}}, 
\\
\displaystyle
{{1387545279120} \  d}+
\left( 
-{{1128983050} \  {f \sp {30}}}+
{{2883434331830} \  {f \sp {24}}}+
\right.
\\
\displaystyle
{{451234998755840} \  {f \sp {18}}}+
{{562426491685760} \  {f \sp {12}}}+
{{447129055314890} \  {f \sp 6}} -
\\
\displaystyle
\left.
{165557857270} 
\right)\  e -
{{1816935351} \  {f \sp {31}}}+
{{4640452214013} \  {f \sp {25}}}+
\\
\displaystyle
{{726247129626942} \  {f \sp {19}}}+
{{912871801716798} \  {f \sp {13}}}+
{{726583262666877} \  {f \sp 7}}+
\\
\displaystyle
{{4909358645961} \  f}, 
\\
\displaystyle
{{1387545279120} \  c}+
{{778171189} \  {f \sp {31}}} -
{{1987468196267} \  {f \sp {25}}} -
\\
\displaystyle
{{310993556954378} \  {f \sp {19}}} -
{{383262822316802} \  {f \sp {13}}} -
{{300335488637543} \  {f \sp 7}}+
\\
\displaystyle
{{5289595037041} \  f}, 
\\
\displaystyle
{{1387545279120} \  b}+
\left( 
{{1128983050} \  {f \sp {30}}} -
{{2883434331830} \  {f \sp {24}}} -
\right.
\\
\displaystyle
{{451234998755840} \  {f \sp {18}}}-
{{562426491685760} \  {f \sp {12}}} -
{{447129055314890} \  {f \sp 6}}+
\\
\displaystyle
\left.
{165557857270} 
\right)\  e -
{{3283058841} \  {f \sp {31}}}+
{{8384938292463} \  {f \sp {25}}}+
\\
\displaystyle
{{1312252817452422} \  {f \sp {19}}}+
{{1646579934064638} \  {f \sp {13}}}+
{{1306372958656407} \  {f \sp 7}}+
\\
\displaystyle
{{4694680112151} \  f}, 
\\
\displaystyle
{{1387545279120} \  a}+
{{1387545279120} \  e}+
{{4321823003} \  {f \sp {31}}} -
\\
\displaystyle
{{11037922310209} \  {f \sp {25}}} -
{{1727506390124986} \  {f \sp {19}}} -
{{2176188913464634} \  {f \sp {13}}} -
\\
\displaystyle
\left.
{{1732620732685741} \  {f \sp 7}} -
{{13506088516033} \  f} 
\right\},
\end{array}
\\
\\
\displaystyle
\left.
\left\{ 
{{f \sp 6} -1}, 
{{e \sp 2}+{4 \  f \  e}+{f \sp 2}}, 
{d+e+{4 \  f}}, 
{c -f}, 
{b -f}, 
{a -f} 
\right\}
\right]
\end{array}
$$
\returnType{Type: List RegularChain(Integer,[a,b,c,d,e,f])}

We check that all initials are constant.

\spadcommand{[ [init(p) for p in (ts :: List(P))] for ts in lts]  }
$$
\begin{array}{@{}l}
\left[
{\left[ 1, 3, 1, 3, 1, 1 \right]},
{\left[ 1, 1, 1, 1, 1, 1 \right]},
{\left[ 1, 1, 1, 1, 1, 1 \right]},
{\left[ 1, 1, 1, 1, 1, 1 \right]},
\right.
\\
\displaystyle
\left[ {1387545279120}, {1387545279120}, {1387545279120}, 
\right.
\\
\displaystyle
\left.
{1387545279120}, {1387545279120}, 1 \right],
\\
\displaystyle
\left.
{\left[ 1, 1, 1, 1, 1, 1\right]}
\right]
\end{array}
$$
\returnType{Type: List List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])}

Note that each triangular set in {\bf lts} is a lexicographical
Groebner basis.  Recall that a point belongs to the variety associated
with {\bf lp} if and only if it belongs to that associated with one
triangular set {\bf ts} in {\bf lts}.

By running the \spadfunFrom{squareFreeLexTriangular}{LexTriangularPackage} 
operation, we retrieve the above decomposition.

\spadcommand{squareFreeLexTriangular(lg,true)\$lextripack  }
$$
\begin{array}{@{}l}
\left[
\left\{ 
{{f \sp 6}+1}, 
{{e \sp 6} -
{3 \  f \  {e \sp 5}}+
{3 \  {f \sp 2} \  {e \sp 4}} -
{4 \  {f \sp 3} \  {e \sp 3}}+
{3 \  {f \sp 4} \  {e \sp 2}} -
{3 \  {f \sp 5} \  e} -1}, 
\right.
\right.
\\
\displaystyle
{{3 \  d}+
{{f \sp 2} \  {e \sp 5}} -
{4 \  {f \sp 3} \  {e \sp 4}}+
{4 \  {f \sp 4} \  {e \sp 3}} -
{2 \  {f \sp 5} \  {e \sp 2}} -
{2 \  e}+
{2 \  f}}, 
\\
\displaystyle
{c+f}, 
{{3 \  b}+
{2 \  {f \sp 2} \  {e \sp 5}} -
{5 \  {f \sp 3} \  {e \sp 4}}+
{5 \  {f \sp 4} \  {e \sp 3}} -
{{10} \  {f \sp 5} \  {e \sp 2}} -
{4 \  e}+{7 \  f}}, 
\\
\displaystyle
\left.
{a -
{{f \sp 2} \  {e \sp 5}}+
{3 \  {f \sp 3} \  {e \sp 4}} -
{3 \  {f \sp 4} \  {e \sp 3}}+
{4 \  {f \sp 5} \  {e \sp 2}}+
{3 \  e} -{3 \  f}} 
\right\},\hbox{\hskip 4.0cm}
\end{array}
$$
$$
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{d -f}, 
{{c \sp 2}+
{4 \  f \  c}+
{f \sp 2}}, 
{b+c+{4 \  f}}, 
{a -f} 
\right\},\hbox{\hskip 3.5cm}
$$
$$
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{d -f}, 
{c -f}, 
{{b \sp 2}+
{4 \  f \  b}+
{f \sp 2}}, 
{a+b+{4 \  f}} 
\right\},\hbox{\hskip 3.5cm}
$$
$$
\left\{ 
{{f \sp 6} -1}, 
{e -f}, 
{{d \sp 2}+
{4 \  f \  d}+
{f \sp 2}}, 
{c+d+{4 \  f}}, 
{b -f}, 
{a -f} 
\right\},\hbox{\hskip 3.5cm}
$$
$$
\begin{array}{@{}l}
\left\{ 
{{f \sp {36}} -
{{2554} \  {f \sp {30}}} -
{{399709} \  {f \sp {24}}} -
{{502276} \  {f \sp {18}}} -
{{399709} \  {f \sp {12}}} -
{{2554} \  {f \sp 6}}+1}, 
\right.
\\
\displaystyle
{{1387545279120} \  {e \sp 2}}+
\left( {{4321823003} \  {f \sp {31}}} -
{{11037922310209} \  {f \sp {25}}} -
\right.
\\
\displaystyle
{{1727506390124986} \  {f \sp {19}}} -
{{2176188913464634} \  {f \sp {13}}} -
{{1732620732685741} \  {f \sp 7}} -
\\
\displaystyle
\left.
{{13506088516033} \  f} 
\right)\  e+
{{24177661775} \  {f \sp {32}}} -
{{61749727185325} \  {f \sp {26}}}-
\\
\displaystyle
{{9664082618092450} \  {f \sp {20}}} -
{{12152237485813570} \  {f \sp {14}}} -
{{9672870290826025} \  {f \sp 8}} -
\\
\displaystyle
{{68544102808525} \  {f \sp 2}}, 
\\
\displaystyle
{{1387545279120} \  d}+
\left( -{{1128983050} \  {f \sp {30}}}+
{{2883434331830} \  {f \sp {24}}}+
\right.
\\
\displaystyle
{{451234998755840} \  {f \sp {18}}}+
{{562426491685760} \  {f \sp {12}}}+
{{447129055314890} \  {f \sp 6}} -
\\
\displaystyle
\left.
{165557857270} 
\right)\  e -
{{1816935351} \  {f \sp {31}}}+
{{4640452214013} \  {f \sp {25}}}+
\\
\displaystyle
{{726247129626942} \  {f \sp {19}}}+
{{912871801716798} \  {f \sp {13}}}+
{{726583262666877} \  {f \sp 7}}+
\\
\displaystyle
{{4909358645961} \  f},
\\
\displaystyle
{{1387545279120} \  c}+
{{778171189} \  {f \sp {31}}} -
{{1987468196267} \  {f \sp {25}}} -
\\
\displaystyle
{{310993556954378} \  {f \sp {19}}} -
{{383262822316802} \  {f \sp {13}}} -
{{300335488637543} \  {f \sp 7}}+
\\
\displaystyle
{{5289595037041} \  f}, 
\\
\displaystyle
{{1387545279120} \  b}+
\left( 
{{1128983050} \  {f \sp {30}}} -
{{2883434331830} \  {f \sp {24}}} -
\right.
\\
\displaystyle
{{451234998755840} \  {f \sp {18}}} -
{{562426491685760} \  {f \sp {12}}} -
{{447129055314890} \  {f \sp 6}}+
\\
\displaystyle
\left.
{165557857270} 
\right)\  e -
{{3283058841} \  {f \sp {31}}}+
{{8384938292463} \  {f \sp {25}}}+
\\
\displaystyle
{{1312252817452422} \  {f \sp {19}}}+
{{1646579934064638} \  {f \sp {13}}}+
{{1306372958656407} \  {f \sp 7}}+
\\
\displaystyle
{{4694680112151} \  f}, 
{{1387545279120} \  a}+
{{1387545279120} \  e}+
\\
\displaystyle
{{4321823003} \  {f \sp {31}}} -
{{11037922310209} \  {f \sp {25}}} -
{{1727506390124986} \  {f \sp {19}}} -
\\
\displaystyle
\left.
{{2176188913464634} \  {f \sp {13}}} -
{{1732620732685741} \  {f \sp 7}} -
{{13506088516033} \  f} 
\right\},\hbox{\hskip 1.5cm}
\end{array}
$$
$$
\left.
\left\{ 
{{f \sp 6} -1}, 
{{e \sp 2}+
{4 \  f \  e}+
{f \sp 2}}, 
{d+e+{4 \  f}}, 
{c -f}, 
{b -f}, 
{a -f} 
\right\}
\right]\hbox{\hskip 3.5cm}
$$
\returnType{Type: List SquareFreeRegularTriangularSet(Integer,IndexedExponents OrderedVariableList [a,b,c,d,e,f],OrderedVariableList [a,b,c,d,e,f],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f]))}

Thus the solutions given by {\bf lts} are pairwise different.

We count them as follows.

\spadcommand{reduce(+,[degree(ts) for ts in lts]) }
$$
156 
$$
\returnType{Type: PositiveInteger}

We can investigate the triangular decomposition {\bf lts} by using the
{\tt ZeroDimensionalSolve\-Package}.

This requires to add an extra variable (smaller than the others) as follows.

\spadcommand{ls2 : List Symbol := concat(ls,new()\$Symbol)  }
$$
\left[
a, b, c, d, e, f, \%A 
\right]
$$
\returnType{Type: List Symbol}

Then we call the package.

\spadcommand{zdpack := ZDSOLVE(R,ls,ls2)    }
$$
ZeroDimensionalSolvePackage(Integer,[a,b,c,d,e,f],[a,b,c,d,e,f,%A]) 
$$
\returnType{Type: Domain}

We compute a univariate representation of the variety associated with
the input system as follows.

\spadcommand{concat [univariateSolve(ts)\$zdpack for ts in lts]  }
$$
\begin{array}{@{}l}
\left[
\left[ 
{complexRoots={{? \sp 4} -{{13} \  {? \sp 2}}+{49}}}, 
\right.
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{7 \  a}+{ \%A \sp 3} -{6 \  \%A}}, 
{{{21} \  b}+{  \%A \sp 3}+ \%A}, 
\right.
\\
\displaystyle
{{{21} \  c} -{2 \  { \%A \sp 3}}+{{19} \  \%A}}, 
{{7 \  d} -{ \%A \sp 3}+{6 \  \%A}}, 
{{{21} \  e} -{ \%A \sp 3} - \%A}, 
\\
\displaystyle
\left.
\left.
{{{21} \  f}+{2 \  { \%A \sp 3}} -{{19} \  \%A}} 
\right]
\right],\hbox{\hskip 7.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4}+{{11} \  {? \sp 2}}+{49}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{35} \  a}+{3 \  { \%A \sp 3}}+{{19} \  \%A}}, 
{{{35} \  b}+{ \%A \sp 3}+{{18} \  \%A}}, 
{{{35} \  c} -{2 \  { \%A \sp 3}} - \%A}, 
\right.
\\
\displaystyle
\left.
\left.
{{{35} \  d} -{3 \  { \%A \sp 3}} -{{19} \  \%A}}, 
{{{35} \  e} -{ \%A \sp 3} -{{18} \  \%A}}, 
{{{35} \  f}+{2 \  { \%A \sp 3}}+ \%A} 
\right]
\right],\hbox{\hskip 2.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{? \sp 8} -{{12} \  {? \sp 7}}+{{58} \  {? \sp 6}} -{{120} \  {? \sp 5}}+
\right.
\\
\displaystyle
{{207} \  {? \sp 4}} -
{{360} \  {? \sp 3}}+
{{802} \  {? \sp 2}} -
{{1332} \  ?}+{1369}, 
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{43054532} \  a}+{{33782} \  { \%A \sp 7}} -
{{546673} \  { \%A \sp 6}}+
{{3127348} \  { \%A \sp 5}} -{{6927123} \  { \%A \sp 4}}+
\right.
\\
\displaystyle
{{4365212} \  { \%A \sp 3}} -
{{25086957} \  { \%A \sp 2}}+
{{39582814} \  \%A} -{107313172}, 
\\
\displaystyle
{{43054532} \  b} -{{33782} \  { \%A \sp 7}}+
{{546673} \  { \%A \sp 6}} -
{{3127348} \  { \%A \sp 5}}+
\\
\displaystyle
{{6927123} \  { \%A \sp 4}} -
{{4365212} \  { \%A \sp 3}}+
{{25086957} \  { \%A \sp 2}} -
\\
\displaystyle
{{39582814} \  \%A}+{107313172}, 
\\
\displaystyle
{{21527266} \  c} -{{22306} \  { \%A \sp 7}}+
{{263139} \  { \%A \sp 6}} -
{{1166076} \  { \%A \sp 5}}+{{1821805} \  { \%A \sp 4}} -
\\
\displaystyle
{{2892788} \  { \%A \sp 3}}+
{{10322663} \  { \%A \sp 2}} -
{{9026596} \  \%A}+{12950740}, 
\\
\displaystyle
{{43054532} \  d}+
{{22306} \  { \%A \sp 7}} -
{{263139} \  { \%A \sp 6}}+
\\
\displaystyle
{{1166076} \  { \%A \sp 5}} -
{{1821805} \  { \%A \sp 4}}+
{{2892788} \  { \%A \sp 3}} -
\\
\displaystyle
{{10322663} \  { \%A \sp 2}}+
{{30553862} \  \%A} -{12950740}, 
\\
\displaystyle
{{43054532} \  e} -
{{22306} \  { \%A \sp 7}}+
{{263139} \  { \%A \sp 6}} -
\\
\displaystyle
{{1166076} \  { \%A \sp 5}}+
{{1821805} \  { \%A \sp 4}} -
{{2892788} \  { \%A \sp 3}}+
\\
\displaystyle
{{10322663} \  { \%A \sp 2}} -
{{30553862} \  \%A}+{12950740}, 
\\
\displaystyle
{{21527266} \  f}+
{{22306} \  { \%A \sp 7}} -
{{263139} \  { \%A \sp 6}}+
\\
\displaystyle
{{1166076} \  { \%A \sp 5}} -
{{1821805} \  { \%A \sp 4}}+
{{2892788} \  { \%A \sp 3}} -
\\
\displaystyle
\left.
\left.
{{10322663} \  { \%A \sp 2}}+
{{9026596} \  \%A} -{12950740} 
\right]
\right],\hbox{\hskip 5.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{? \sp 8}+
{{12} \  {? \sp 7}}+
{{58} \  {? \sp 6}}+
{{120} \  {? \sp 5}}+
\right.
\\
\displaystyle
{{207} \  {? \sp 4}}+
{{360} \  {? \sp 3}}+
{{802} \  {? \sp 2}}+
{{1332} \  ?}+{1369}, 
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{43054532} \  a}+
{{33782} \  { \%A \sp 7}}+
{{546673} \  { \%A \sp 6}}+
{{3127348} \  { \%A \sp 5}}+
\right.
\\
\displaystyle
{{6927123} \  { \%A \sp 4}}+
{{4365212} \  { \%A \sp 3}}+
{{25086957} \  { \%A \sp 2}}+
{{39582814} \  \%A}+{107313172}, 
\\
\displaystyle
{{43054532} \  b} -
{{33782} \  { \%A \sp 7}} -
{{546673} \  { \%A \sp 6}} -
{{3127348} \  { \%A \sp 5}} -
\\
\displaystyle
{{6927123} \  { \%A \sp 4}} -
{{4365212} \  { \%A \sp 3}} -
{{25086957} \  { \%A \sp 2}} -
{{39582814} \  \%A} -
{107313172}, 
\\
\displaystyle
{{21527266} \  c} -
{{22306} \  { \%A \sp 7}} -
{{263139} \  { \%A \sp 6}} -
{{1166076} \  { \%A \sp 5}} -
\\
\displaystyle
{{1821805} \  { \%A \sp 4}} -
{{2892788} \  {  \%A \sp 3}} -
{{10322663} \  { \%A \sp 2}} -
{{9026596} \  \%A} -
{12950740}, 
\\
\displaystyle
{{43054532} \  d}+
{{22306} \  { \%A \sp 7}}+
{{263139} \  { \%A \sp 6}}+
{{1166076} \  { \%A \sp 5}}+
\\
\displaystyle
{{1821805} \  { \%A \sp 4}}+
{{2892788} \  {  \%A \sp 3}}+
{{10322663} \  { \%A \sp 2}}+
{{30553862} \  \%A}+
{12950740}, 
\\
\displaystyle
{{43054532} \  e} -
{{22306} \  { \%A \sp 7}} -
{{263139} \  { \%A \sp 6}} -
{{1166076} \  { \%A \sp 5}} -
\\
\displaystyle
{{1821805} \  { \%A \sp 4}} -
{{2892788} \  {  \%A \sp 3}} -
{{10322663} \  { \%A \sp 2}} -
{{30553862} \  \%A} -
{12950740}, 
\\
\displaystyle
{{21527266} \  f}+
{{22306} \  { \%A \sp 7}}+
{{263139} \  { \%A \sp 6}}+
{{1166076} \  { \%A \sp 5}}+
\\
\displaystyle
\left.
\left.
{{1821805} \  { \%A \sp 4}}+
{{2892788} \  {  \%A \sp 3}}+
{{10322663} \  { \%A \sp 2}}+
{{9026596} \  \%A}+
{12950740}
\right]
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4} -{? \sp 2}+1}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ 
{a - \%A}, 
{b+{ \%A \sp 3} - \%A}, 
{c+{ \%A \sp 3}}, 
{d+ \%A}, 
{e -{ \%A \sp 3}+ \%A}, 
{f -{ \%A \sp 3}} 
\right]
\right],\hbox{\hskip 1.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 8}+{4 \  {? \sp 6}}+{{12} \  {? \sp 4}}+{{16} \  {? \sp 2}}+4}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{4 \  a} -
{2 \  { \%A \sp 7}} -
{7 \  { \%A \sp 5}} -
{{20} \  { \%A \sp 3}} -
{{22} \  \%A}}, 
\right.
\\
\displaystyle
{{4 \  b}+
{2 \  { \%A \sp 7}}+
{7 \  { \%A \sp 5}}+
{{20} \  { \%A \sp 3}}+
{{22} \   \%A}}, 
\\
\displaystyle
{{4 \  c}+
{ \%A \sp 7}+
{3 \  { \%A \sp 5}}+
{{10} \  { \%A \sp 3}}+
{{10} \  \%A}}, 
\\
\displaystyle
{{4 \  d}+{ \%A \sp 7}+
{3 \  { \%A \sp 5}}+{{10} \  {  \%A \sp 3}}+
{6 \  \%A}},
\\
\displaystyle
{{4 \  e} -
{ \%A \sp 7} -
{3 \  { \%A \sp 5}} -
{{10} \  { \%A \sp 3}} -
{6 \  \%A}}, 
\\
\displaystyle
\left.
\left.
{{4 \  f} -
{ \%A \sp 7} -
{3 \  { \%A \sp 5}} -
{{10} \  { \%A \sp 3}} -
{{10} \  \%A}} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4}+{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}+{{36} \  ?}+{36}},
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\right.
\\
\displaystyle
{{6 \  b}+{ \%A \sp 3}+{5 \  {  \%A \sp 2}}+{{24} \  \%A}+6}, 
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4} -{6 \  {? \sp 3}}+{{30} \  {? \sp 2}} -{{36} \  ?}+{36}},
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\right.
\\
\displaystyle
{{6 \  b}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{24} \  \%A} -6}, 
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3}+{5 \  { \%A \sp 2}}+6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2}+{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ 
{a+1}, {b - \%A -5}, {c+ \%A+1}, {d+1}, {e+1}, {f+1} 
\right]
\right],\hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ 
{a -1}, {b - \%A+5}, {c+ \%A -1}, {d -1}, {e -1}, {f -1} 
\right]
\right],\hbox{\hskip 4.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4}+{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}+{{36} \  ?}+{36}},
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{6 \  a}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{24} \  \%A}+6}, 
\right.
\\
\displaystyle
{{{30} \  b} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -6}, 
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \   \%A} -6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4} -{6 \  {? \sp 3}}+{{30} \  {? \sp 2}} -{{36} \  ?}+{36}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{6 \  a}+{ \%A \sp 3} -{5 \  {  \%A \sp 2}}+{{24} \  \%A} -6}, 
\right.
\\
\displaystyle
{{{30} \  b} -{ \%A \sp 3}+{5 \  { \%A \sp 2}}+6}, 
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2}+{6 \  ?}+6}, 
\right.
\\
\displaystyle
\left.
coordinates=
\left[ 
{a - \%A -5}, {b+ \%A+1}, {c+1}, {d+1}, {e+1}, {f+1} 
\right]
\right],\hbox{\hskip 2.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{6 \  ?}+6}, 
\right.
\\
\displaystyle
\left.
coordinates=
\left[ 
{a - \%A+5}, {b+ \%A -1}, {c -1}, {d -1}, {e -1}, {f -1} 
\right]
\right],\hbox{\hskip 2.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4}+{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}+{{36} \  ?}+{36}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\right.
\\
\displaystyle
{{{30} \  b} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
{{6 \  c}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{24} \  \%A}+6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4} -{6 \  {? \sp 3}}+{{30} \  {? \sp 2}} -{{36} \  ?}+{36}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\right.
\\
\displaystyle
{{{30} \  b} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
{{6 \  c}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{24} \  \%A} -6}, 
\\
\displaystyle
{{{30} \  d} -{ \%A \sp 3}+{5 \  { \%A \sp 2}}+6}, 
\\
\displaystyle
{{{30} \  e} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  f} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6} 
\right]
\right],\hbox{\hskip 6.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2}+{6 \  ?}+6}, 
\right.
\\
\displaystyle
\left.
coordinates=
\left[ 
{a+1}, {b+1}, {c - \%A -5}, {d+ \%A+1}, {e+1}, {f+1} 
\right]
\right],\hbox{\hskip 2.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{6 \  ?}+6}, 
\right.
\\
\displaystyle
\left.
coordinates=
\left[ 
{a -1}, {b -1}, {c - \%A+5}, {d+ \%A -1}, {e -1}, {f -1} 
\right]
\right],\hbox{\hskip 2.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{? \sp 8}+
{6 \  {? \sp 7}}+
{{16} \  {? \sp 6}}+
{{24} \  {? \sp 5}}+
{{18} \  {? \sp 4}} -
{8 \  {? \sp 2}}+
4, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{2 \  a}+
{2 \  { \%A \sp 7}}+
{9 \  { \%A \sp 6}}+
{{18} \  { \%A \sp 5}}+
{{19} \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}} -
{{10} \  { \%A \sp 2}} -
{2 \  \%A}+
4, 
\right.
\\
\displaystyle
{2 \  b}+
{2 \  { \%A \sp 7}}+
{9 \  { \%A \sp 6}}+
{{18} \  { \%A \sp 5}}+
{{19} \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}} -
{{10} \  { \%A \sp 2}} -
{4 \  \%A}+
4, 
\\
\displaystyle
{2 \  c} -
{ \%A \sp 7} -
{4 \  { \%A \sp 6}} -
{8 \  { \%A \sp 5}} -
{9 \  { \%A \sp 4}} -
{4 \  { \%A \sp 3}} -
{2 \   \%A} -
4, 
\\
\displaystyle
{2 \  d}+
{ \%A \sp 7}+
{4 \  { \%A \sp 6}}+
{8 \  { \%A \sp 5}}+
{9 \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}}+
{2 \  \%A}+
4, 
\\
\displaystyle
{2 \  e} -
{2 \  { \%A \sp 7}} -
{9 \  { \%A \sp 6}} -
{{18} \  { \%A \sp 5}} -
{{19} \  { \%A \sp 4}} -
{4 \  { \%A \sp 3}}+
{{10} \  { \%A \sp 2}}+
{4 \  \%A} -
4, 
\\
\displaystyle
\left.
\left.
{2 \  f} -
{2 \  { \%A \sp 7}} -
{9 \  { \%A \sp 6}} -
{{18} \  { \%A \sp 5}} -
{{19} \  { \%A \sp 4}} -
{4 \  { \%A \sp 3}}+
{{10} \  { \%A \sp 2}}+
{2 \  \%A} -
4 
\right]
\right],\hbox{\hskip 1.0cm} %mmmm
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
\right.
\\
\displaystyle
{? \sp 8}+{{12} \  {? \sp 7}}+
{{64} \  {? \sp 6}}+
{{192} \  {? \sp 5}}+
{{432} \  {? \sp 4}}+
{{768} \  {? \sp 3}}+
{{1024} \  {? \sp 2}}+
{{768} \  ?}+
{256}, 
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{1408} \  a} -
{{19} \  { \%A \sp 7}} -
{{200} \  { \%A \sp 6}} -
{{912} \  { \%A \sp 5}} -
{{2216} \  { \%A \sp 4}} -
\right.
\\
\displaystyle
{{4544} \  { \%A \sp 3}} -
{{6784} \  { \%A \sp 2}} -
{{6976} \  \%A} -
{1792}, 
\\
\displaystyle
{{1408} \  b} -
{{37} \  { \%A \sp 7}} -
{{408} \  { \%A \sp 6}} -
{{1952} \  { \%A \sp 5}} -
{{5024} \  { \%A \sp 4}} -
\\
\displaystyle
{{10368} \  { \%A \sp 3}} -
{{16768} \  { \%A \sp 2}} -
{{17920} \  \%A} -
{5120}, 
\\
\displaystyle
{{1408} \  c}+
{{37} \  { \%A \sp 7}}+
{{408} \  { \%A \sp 6}}+
{{1952} \  { \%A \sp 5}}+
{{5024} \  { \%A \sp 4}}+
\\
\displaystyle
{{10368} \  { \%A \sp 3}}+
{{16768} \  { \%A \sp 2}}+
{{17920} \  \%A}+
{5120}, 
\\
\displaystyle
{{1408} \  d}+
{{19} \  { \%A \sp 7}}+
{{200} \  { \%A \sp 6}}+
{{912} \  { \%A \sp 5}}+
{{2216} \  { \%A \sp 4}}+
\\
\displaystyle
{{4544} \  { \%A \sp 3}}+
{{6784} \  { \%A \sp 2}}+
{{6976} \  \%A}+
{1792}, 
\\
\displaystyle
{{2 \  e}+ \%A}, 
\\
\displaystyle
\left.
\left.
{{2 \  f} - \%A} 
\right]
\right],\hbox{\hskip 10.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 8}+
{4 \  {? \sp 6}}+
{{12} \  {? \sp 4}}+
{{16} \  {? \sp 2}}+
4}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{4 \  a} -
{ \%A \sp 7} -
{3 \  { \%A \sp 5}} -
{{10} \  { \%A \sp 3}} -
{6 \  \%A}}, 
\right.
\\
\displaystyle
{{4 \  b} -
{  \%A \sp 7} -
{3 \  { \%A \sp 5}} -
{{10} \  { \%A \sp 3}} -
{{10} \  \%A}}, 
\\
\displaystyle
{{4 \  c} -
{2 \  { \%A \sp 7}} -
{7 \  { \%A \sp 5}} -
{{20} \  { \%A \sp 3}} -
{{22} \  \%A}}, 
\\
\displaystyle
{{4 \  d}+
{2 \  { \%A \sp 7}}+
{7 \  { \%A \sp 5}}+
{{20} \  { \%A \sp 3}}+
{{22} \  \%A}}, 
\\
\displaystyle
{{4 \  e}+
{ \%A \sp 7}+
{3 \  { \%A \sp 5}}+
{{10} \  { \%A \sp 3}}+
{{10} \  \%A}}, 
\\
\displaystyle
\left.
\left.
{{4 \  f}+
{ \%A \sp 7}+
{3 \  {  \%A \sp 5}}+
{{10} \  { \%A \sp 3}}+
{6 \  \%A}} 
\right]
\right],\hbox{\hskip 5.9cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 8}+{{16} \  {? \sp 6}} -{{96} \  {? \sp 4}}+
{{256} \  {? \sp 2}}+{256}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{512} \  a} -
{  \%A \sp 7} -
{{12} \  { \%A \sp 5}}+
{{176} \  { \%A \sp 3}} -
{{448} \  \%A}}, 
\right.
\\
\displaystyle
{{{128} \  b} -
{ \%A \sp 7} -
{{16} \  { \%A \sp 5}}+
{{96} \  { \%A \sp 3}} 
-{{256} \  \%A}}, 
\\
\displaystyle
{{{128} \  c}+
{ \%A \sp 7}+
{{16} \  { \%A \sp 5}} -
{{96} \  { \%A \sp 3}}+
{{256} \  \%A}}, 
\\
\displaystyle
{{{512} \  d}+
{ \%A \sp 7}+
{{12} \  {  \%A \sp 5}} -
{{176} \  { \%A \sp 3}}+
{{448} \  \%A}}, 
\\
\displaystyle
{{2 \  e}+ \%A}, 
\\
\displaystyle
\left.
\left.
{{2 \  f} - \%A} 
\right]
\right],\hbox{\hskip 10.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
\right.
\\
\displaystyle
{{? \sp 8} -
{{12} \  {? \sp 7}}+
{{64} \  {? \sp 6}} -
{{192} \  {? \sp 5}}+
{{432} \  {? \sp 4}} -
{{768} \  {? \sp 3}}+
{{1024} \  {? \sp 2}} -
{{768} \  ?}+
{256}}, 
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{1408} \  a} -
{{19} \  { \%A \sp 7}}+
{{200} \  { \%A \sp 6}} -
{{912} \  { \%A \sp 5}}+
{{2216} \  { \%A \sp 4}} -
\right.
\\
\displaystyle
{{4544} \  { \%A \sp 3}}+
{{6784} \  { \%A \sp 2}} -
{{6976} \  \%A}+
{1792}, 
\\
\displaystyle
{{1408} \  b} -
{{37} \  { \%A \sp 7}}+
{{408} \  { \%A \sp 6}} -
{{1952} \  { \%A \sp 5}}+
{{5024} \  { \%A \sp 4}} -
\\
\displaystyle
{{10368} \  { \%A \sp 3}}+
{{16768} \  { \%A \sp 2}} -
{{17920} \   \%A}+
{5120}, 
\\
\displaystyle
{{1408} \  c}+
{{37} \  { \%A \sp 7}} -
{{408} \  { \%A \sp 6}}+
{{1952} \  { \%A \sp 5}} -
{{5024} \  { \%A \sp 4}}+
\\
\displaystyle
{{10368} \  { \%A \sp 3}} -
{{16768} \  { \%A \sp 2}}+
{{17920} \  \%A} -
{5120}, 
\\
\displaystyle
{{1408} \  d}+
{{19} \  { \%A \sp 7}} -
{{200} \  { \%A \sp 6}}+
{{912} \  { \%A \sp 5}} -
{{2216} \  { \%A \sp 4}}+
\\
\displaystyle
{{4544} \  { \%A \sp 3}} -
{{6784} \  { \%A \sp 2}}+
{{6976} \  \%A} -
{1792}, 
\\
\displaystyle
{{2 \  e}+ \%A}, 
\\
\displaystyle
\left.
\left.
{{2 \  f} - \%A} 
\right]
\right],\hbox{\hskip 10.0cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 8} -
{6 \  {? \sp 7}}+
{{16} \  {? \sp 6}} -
{{24} \  {? \sp 5}}+
{{18} \  {? \sp 4}} -
{8 \  {? \sp 2}}+
4}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{2 \  a}+
{2 \  { \%A \sp 7}} -
{9 \  { \%A \sp 6}}+
{{18} \  { \%A \sp 5}} -
{{19} \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}}+
{{10} \  { \%A \sp 2}} -
{2 \  \%A} -
4},
\right.
\\
\displaystyle
{{2 \  b}+
{2 \  { \%A \sp 7}} -
{9 \  { \%A \sp 6}}+
{{18} \  { \%A \sp 5}} -
{{19} \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}}+
{{10} \  { \%A \sp 2}} -
{4 \  \%A} -
4},
\\
\displaystyle
{{2 \  c} -
{ \%A \sp 7}+
{4 \  { \%A \sp 6}} -
{8 \  { \%A \sp 5}}+
{9 \  { \%A \sp 4}} -
{4 \  { \%A \sp 3}} -
{2 \   \%A}+
4}, 
\\
\displaystyle
{{2 \  d}+
{ \%A \sp 7} -
{4 \  { \%A \sp 6}}+
{8 \  { \%A \sp 5}} -
{9 \  { \%A \sp 4}}+
{4 \  { \%A \sp 3}}+
{2 \  \%A} -
4}, 
\\
\displaystyle
{{2 \  e} -
{2 \  { \%A \sp 7}}+
{9 \  { \%A \sp 6}} -
{{18} \  { \%A \sp 5}}+
{{19} \  { \%A \sp 4}} -
{4 \  { \%A \sp 3}} -
{{10} \  { \%A \sp 2}}+
{4 \  \%A}+
4},
\\
\displaystyle
\left.
\left.
{{2 \  f} -
{2 \  { \%A \sp 7}}+
{9 \  { \%A \sp 6}} -
{{18} \  { \%A \sp 5}}+
{{19} \  {  \%A \sp 4}} -
{4 \  { \%A \sp 3}} -
{{10} \  { \%A \sp 2}}+
{2 \  \%A}+
4} 
\right]
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4}+{{12} \  {? \sp 2}}+{144}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{12} \  a} -{ \%A \sp 2} -{12}}, 
{{{12} \  b} -{  \%A \sp 2} -{12}}, 
{{{12} \  c} -{ \%A \sp 2} -{12}}, 
\right.
\\
\displaystyle
\left.
\left.
{{{12} \  d} -{  \%A \sp 2} -{12}}, 
{{6 \  e}+{ \%A \sp 2}+{3 \  \%A}+{12}}, 
{{6 \  f}+{  \%A \sp 2} -{3 \  \%A}+{12}} 
\right]
\right],\hbox{\hskip 2.4cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4}+{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}+{{36} \  ?}+{36}},
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{6 \  a} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{24} \  \%A} -6}, 
{{{30} \  b}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{30} \  \%A}+6}, 
\right.
\\
\displaystyle
{{{30} \  c}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{30} \  \%A}+6}, 
{{{30} \  d}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{30} \  \%A}+6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  e}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{30} \   \%A}+6}, 
{{{30} \  f}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+6} 
\right]
\right],\hbox{\hskip 2.4cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots=
{{? \sp 4} -{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}-{{36} \  ?}+{36}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{6 \  a} -{ \%A \sp 3}+{5 \  {  \%A \sp 2}} -{{24} \  \%A}+6}, 
{{{30} \  b}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{30} \  \%A} -6}, 
\right.
\\
\displaystyle
{{{30} \  c}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{30} \  \%A} -6}, 
{{{30} \  d}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{30} \  \%A} -6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  e}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{30} \  \%A} -6}, 
{{{30} \  f}+{ \%A \sp 3} -{5 \  { \%A \sp 2}} -6} 
\right]
\right],\hbox{\hskip 2.4cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4}+{{12} \  {? \sp 2}}+{144}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{12} \  a}+{ \%A \sp 2}+{12}}, {{{12} \  b}+{ \%A \sp 2}+{12}}, 
{{{12} \  c}+{ \%A \sp 2}+{12}}, {{{12} \  d}+{ \%A \sp 2}+{12}}, 
\right.
\\
\displaystyle
\left.
\left.
{{6 \  e} -{ \%A \sp 2}+{3 \  \%A} -{12}}, 
{{6 \  f} -{ \%A \sp 2} -{3 \  \%A} -{12}} 
\right]
\right],\hbox{\hskip 3.7cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{12}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ {a -1}, {b -1}, {c -1}, {d -1}, {{2 \  e}+ \%A+4}, {{2 \  f} - \%A+4} 
\right]
\right],\hbox{\hskip 3.7cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2}+{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ {a+  \%A+5}, {b -1}, {c -1}, {d -1}, {e -1}, {f - \%A -1} 
\right]
\right],\hbox{\hskip 3.9cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ 
{a+ \%A -5}, {b+1}, {c+1}, {d+1}, {e+1}, {f - \%A+1} 
\right]
\right],\hbox{\hskip 3.9cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{12}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ {a+1}, {b+1}, {c+1}, {d+1}, {{2 \  e}+ \%A -4}, {{2 \  f} - \%A -4} 
\right]
\right],\hbox{\hskip 3.3cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4}+{6 \  {? \sp 3}}+{{30} \  {? \sp 2}}+{{36} \  ?}+{36}},
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
{{{30} \  b} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
\right.
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6}, 
{{6 \  d}+{ \%A \sp 3}+{5 \  { \%A \sp 2}}+{{24} \  \%A}+6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  e} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -6}, 
{{{30} \  f} -{ \%A \sp 3} -{5 \  { \%A \sp 2}} -{{30} \  \%A} -6} 
\right]
\right],\hbox{\hskip 1.7cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 4} -{6 \  {? \sp 3}}+{{30} \  {? \sp 2}} -{{36} \  ?}+{36}}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{{30} \  a} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
{{{30} \  b} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
\right.
\\
\displaystyle
{{{30} \  c} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6}, 
{{6 \  d}+{ \%A \sp 3} -{5 \  { \%A \sp 2}}+{{24} \   \%A} -6}, 
\\
\displaystyle
\left.
\left.
{{{30} \  e} -{ \%A \sp 3}+{5 \  { \%A \sp 2}}+6}, 
{{{30} \  f} -{ \%A \sp 3}+{5 \  { \%A \sp 2}} -{{30} \  \%A}+6} 
\right]
\right],\hbox{\hskip 1.7cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2}+{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ 
{a+1}, {b+1}, {c+1}, {d - \%A -5}, {e+ \%A+1}, {f+1} 
\right]
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\left.
\begin{array}{@{}l}
\left[ 
complexRoots={{? \sp 2} -{6 \  ?}+6}, 
\right.
\\
\displaystyle
coordinates=
\\
\displaystyle
\left.
\left[ {a -1}, {b -1}, {c -1}, {d - \%A+5}, {e+ \%A -1}, {f -1} 
\right]
\right]\hbox{\hskip 3.5cm}
\end{array}
\right]
$$
\returnType{Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)}

Since the \spadfunFrom{univariateSolve}{ZeroDimensionalSolvePackage}
operation may split a regular set, it returns a list. This explains
the use of \spadfunFrom{concat}{List}.

Look at the last item of the result. It consists of two parts.  For
any complex root {\bf ?} of the univariate polynomial in the first
part, we get a tuple of univariate polynomials (in {\bf a}, ..., 
{\bf f} respectively) by replacing {\bf \%A} by {\bf ?} in the second part.
Each of these tuples {\bf t} describes a point of the variety
associated with {\bf lp} by equaling to zero the polynomials in {\bf t}.

Note that the way of reading these univariate representations is explained also
in the example illustrating the {\tt ZeroDimensionalSolvePackage} constructor.

Now, we compute the points of the variety with real coordinates.

\spadcommand{concat [realSolve(ts)\$zdpack for ts in lts]  }
$$
\left[
{\left[ 
{ \%B{23}}, { \%B{23}}, { \%B{23}}, { \%B{27}}, 
{-{ \%B{27}} -{4 \  { \%B{23}}}}, { \%B{23}} 
\right]},
\right.\hbox{\hskip 3.5cm}
$$
$$
{\left[ 
{ \%B{23}}, { \%B{23}}, { \%B{23}}, { \%B{28}}, 
{-{  \%B{28}} -{4 \  { \%B{23}}}}, { \%B{23}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ 
{ \%B{24}}, { \%B{24}}, { \%B{24}}, { \%B{25}}, 
{-{  \%B{25}} -{4 \  { \%B{24}}}}, { \%B{24}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ 
{ \%B{24}}, { \%B{24}}, { \%B{24}}, { \%B{26}}, 
{-{  \%B{26}} -{4 \  { \%B{24}}}}, { \%B{24}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{29}}, { \%B{29}}, { \%B{29}}, { \%B{29}}, 
{  \%B{33}}, {-{ \%B{33}} -{4 \  { \%B{29}}}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ 
{ \%B{29}}, { \%B{29}}, { \%B{29}}, { \%B{29}}, 
{  \%B{34}}, {-{ \%B{34}} -{4 \  { \%B{29}}}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{30}}, { \%B{30}}, { \%B{30}}, { \%B{30}}, 
{  \%B{31}}, {-{ \%B{31}} -{4 \  { \%B{30}}}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{30}}, { \%B{30}}, { \%B{30}}, { \%B{30}}, 
{  \%B{32}}, {-{ \%B{32}} -{4 \  { \%B{30}}}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{35}}, { \%B{35}}, { \%B{39}}, 
{-{ \%B{39}} -{4 \  {  \%B{35}}}}, { \%B{35}}, { \%B{35}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{35}}, { \%B{35}}, { \%B{40}}, {-{ \%B{40}} -{4 \  { 
 \%B{35}}}}, { \%B{35}}, { \%B{35}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{36}}, { \%B{36}}, { \%B{37}}, {-{ \%B{37}} -{4 \  { 
 \%B{36}}}}, { \%B{36}}, { \%B{36}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{36}}, { \%B{36}}, { \%B{38}}, {-{ \%B{38}} -{4 \  { 
 \%B{36}}}}, { \%B{36}}, { \%B{36}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{41}}, 
\right.
\\
\displaystyle
{ \%B{51}}, 
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{41}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{41}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{41}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{41}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{41}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{41}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{41}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{41}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{41}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{41}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{41}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{41}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{41}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{41}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{41}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{41}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{41}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{41}}}, 
\\
\\
\displaystyle
-{ \%B{51}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{41}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{41}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{41}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{41}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{41}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{41}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{41}}, { \%B{52}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{41}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{41}} \sp {25}}} -
{{\frac{25769893181}{49235160}} \  {{ \%B{41}} \sp {19}}} -
\\
\\
\displaystyle
{{\frac{1975912990729}{3003344760}} \  {{ \%B{41}} \sp {13}}} -
{{\frac{1048460696489}{2002229840}} \  {{ \%B{41}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{41}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{41}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{41}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{41}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{41}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{41}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{41}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{41}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{41}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{41}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{41}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{41}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{41}}}, 
\\
\\
\displaystyle
-{ \%B{52}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{41}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{41}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{41}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{41}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{41}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{41}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{42}}, { \%B{49}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{42}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{42}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{42}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{42}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{42}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{42}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{42}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{42}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{42}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{42}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{42}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{42}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{42}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{42}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{42}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{42}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{42}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{42}}}, 
\\
\\
\displaystyle
-{ \%B{49}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{42}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{42}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{42}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{42}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{42}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{42}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{42}}, { \%B{50}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{42}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{42}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{42}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{42}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{42}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{42}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{42}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{42}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{42}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{42}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{42}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{42}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{42}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{42}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{42}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{42}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{42}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{42}}}, 
\\
\\
\displaystyle
-{ \%B{50}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{42}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{42}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{42}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{42}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{42}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{42}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{43}}, { \%B{47}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{43}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{43}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{43}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{43}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{43}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{43}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{43}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{43}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{43}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{43}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{43}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{43}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{43}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{43}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{43}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{43}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{43}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{43}}}, 
\\
\\
\displaystyle
-{ \%B{47}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{43}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{43}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{43}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{43}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{43}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{43}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{43}}, { \%B{48}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{43}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{43}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{43}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{43}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{43}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{43}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{43}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{43}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{43}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{43}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{43}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{43}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{43}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{43}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{43}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{43}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{43}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{43}}}, 
\\
\\
\displaystyle
-{ \%B{48}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{43}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{43}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{43}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{43}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{43}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{43}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{44}}, { \%B{45}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{44}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{44}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{44}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{44}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{44}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{44}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{44}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{44}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{44}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{44}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{44}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{44}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{44}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{44}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{44}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{44}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{44}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{44}}}, 
\\
\\
\displaystyle
-{ \%B{45}} -{{\frac{4321823003}{1387545279120}} \  {{ \%B{44}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{44}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{44}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{44}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{44}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{44}}}
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{44}}, { \%B{46}}, 
\right.
\\
\\
\displaystyle
{{\frac{7865521}{6006689520}} \  {{ \%B{44}} \sp {31}}} -
{{\frac{6696179241}{2002229840}} \  {{ \%B{44}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{25769893181}{49235160}} \  {{ \%B{44}} \sp {19}}} -
{{\frac{1975912990729}{3003344760}} \  {{ \%B{44}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{1048460696489}{2002229840}} \  {{ \%B{44}} \sp 7}} -
{{\frac{21252634831}{6006689520}} \  { \%B{44}}}, 
\\
\\
\displaystyle
-{{\frac{778171189}{1387545279120}} \  {{ \%B{44}} \sp {31}}}+
{{\frac{1987468196267}{1387545279120}} \  {{ \%B{44}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{155496778477189}{693772639560}} \  {{ \%B{44}} \sp {19}}}+
{{\frac{191631411158401}{693772639560}} \  {{ \%B{44}} \sp {13}}}+
\\
\\
\displaystyle
{{\frac{300335488637543}{1387545279120}} \  {{ \%B{44}} \sp 7}} -
{{\frac{755656433863}{198220754160}} \  { \%B{44}}}, 
\\
\\
\displaystyle
{{\frac{1094352947}{462515093040}} \  {{ \%B{44}} \sp {31}}} -
{{\frac{2794979430821}{462515093040}} \  {{  \%B{44}} \sp {25}}} -
\\
\\
\displaystyle
{{\frac{218708802908737}{231257546520}} \  {{ \%B{44}} \sp {19}}} -
{{\frac{91476663003591}{77085848840}} \  {{ \%B{44}} \sp {13}}} -
\\
\\
\displaystyle
{{\frac{145152550961823}{154171697680}} \  {{ \%B{44}} \sp 7}} -
{{\frac{1564893370717}{462515093040}} \  { \%B{44}}}, 
\\
\\
\displaystyle
-{ \%B{46}} -
{{\frac{4321823003}{1387545279120}} \  {{ \%B{44}} \sp {31}}}+
{{\frac{180949546069}{22746643920}} \  {{ \%B{44}} \sp {25}}}+
\\
\\
\displaystyle
{{\frac{863753195062493}{693772639560}} \  {{ \%B{44}} \sp {19}}}+
{{\frac{1088094456732317}{693772639560}} \  {{ \%B{44}} \sp {13}}}+
\\
\\
\displaystyle
\left.
{{\frac{1732620732685741}{1387545279120}} \  {{ \%B{44}} \sp 7}}+
{{\frac{13506088516033}{1387545279120}} \  { \%B{44}}} 
\right],\hbox{\hskip 3.5cm}
\end{array}
$$
$$
{\left[ { \%B{53}}, { \%B{57}}, {-{ \%B{57}} -{4 \  { \%B{53}}}}, 
{ \%B{53}}, { \%B{53}}, { \%B{53}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{53}}, { \%B{58}}, {-{ \%B{58}} -{4 \  { \%B{53}}}}, 
{ \%B{53}}, { \%B{53}}, { \%B{53}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
{\left[ { \%B{54}}, { \%B{55}}, {-{ \%B{55}} -{4 \  { \%B{54}}}}, 
{ \%B{54}}, { \%B{54}}, { \%B{54}} 
\right]},\hbox{\hskip 3.5cm}
$$
$$
\left.
{\left[ { \%B{54}}, { \%B{56}}, {-{ \%B{56}} -{4 \  { \%B{54}}}}, 
{ \%B{54}}, { \%B{54}}, { \%B{54}} 
\right]}\hbox{\hskip 3.5cm}
\right]
$$
\returnType{Type: List List RealClosure Fraction Integer}

We obtain 24 points given by lists of elements in the {\tt RealClosure} 
of {\tt Fraction} of {\bf R}.  In each list, the first value corresponds 
to the indeterminate {\bf f}, the second to {\bf e} and so on.  See 
{\tt ZeroDimensionalSolvePackage} to learn more about the 
\spadfunFrom{realSolve}{ZeroDimensionalSolvePackage} operation.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LazardSetSolvingPackage}

The {\tt LazardSetSolvingPackage} package constructor solves
polynomial systems by means of Lazard triangular sets.  However one
condition is relaxed: Regular triangular sets whose saturated ideals
have positive dimension are not necessarily normalized.

The decompositions are computed in two steps.  First the algorithm of
Moreno Maza (implemented in the {\tt RegularTriangularSet} domain
constructor) is called.  Then the resulting decompositions are
converted into lists of square-free regular triangular sets and the
redundant components are removed.  Moreover, zero-dimensional regular
triangular sets are normalized.

Note that the way of understanding triangular decompositions 
is detailed in the example of the {\tt RegularTriangularSet}
constructor.

The {\tt LazardSetSolvingPackage} constructor takes six arguments.
The first one, {\bf R}, is the coefficient ring of the polynomials; it
must belong to the category {\tt GcdDomain}.  The second one, {\bf E},
is the exponent monoid of the polynomials; it must belong to the
category {\tt OrderedAbelianMonoidSup}.  the third one, {\bf V}, is
the ordered set of variables; it must belong to the category {\tt
OrderedSet}.  The fourth one is the polynomial ring; it must belong to
the category {\tt RecursivePolynomialCategory(R,E,V)}.  The fifth one
is a domain of the category {\tt RegularTriangularSetCategory(R,E,V,P)} 
and the last one is a domain of
the category {\tt SquareFreeRegularTriangularSetCategory(R,E,V,P)}.
The abbreviation for {\tt LazardSetSolvingPackage} is {\tt LAZM3PK}.

{\bf N.B.} For the purpose of solving zero-dimensional algebraic systems,
see also\\ {\tt LexTriangular\-Package}
and {\tt ZeroDimensionalSolvePackage}.
These packages are easier to call than {\tt LAZM3PK}.
Moreover, the {\tt ZeroDimensionalSolvePackage} 
package  provides operations
to compute either the complex roots or the real roots.

We illustrate now the use of the {\tt LazardSetSolvingPackage} package 
constructor with two examples (Butcher and Vermeer).

Define the coefficient ring.

\spadcommand{R := Integer}
$$
Integer 
$$
\returnType{Type: Domain}

Define the list of variables,

\spadcommand{ls : List Symbol := [b1,x,y,z,t,v,u,w] }
$$
\left[
b1, x, y, z, t, v, u, w 
\right]
$$
\returnType{Type: List Symbol}

and make it an ordered set:

\spadcommand{V := OVAR(ls)}
$$
\mbox{\rm OrderedVariableList [b1,x,y,z,t,v,u,w]} 
$$
\returnType{Type: Domain}

then define the exponent monoid.

\spadcommand{E := IndexedExponents V  }
$$
\mbox{\rm IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w]} 
$$
\returnType{Type: Domain}

Define the polynomial ring.

\spadcommand{P := NSMP(R, V)}
$$
\begin{array}{@{}l}
{\rm NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w])} 
\end{array}
$$
\returnType{Type: Domain}

Let the variables be polynomial.

\spadcommand{b1: P := 'b1}
$$
b1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{x: P := 'x  }
$$
x 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{y: P := 'y  }
$$
y 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{z: P := 'z}
$$
z 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{t: P := 't}
$$
t 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{u: P := 'u}
$$
u 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{v: P := 'v}
$$
v 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{w: P := 'w}
$$
w 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

Now call the {\tt RegularTriangularSet} domain constructor.

\spadcommand{T := REGSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm RegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList[b1,x,y,z,t,v,u,w]))}
\end{array}
$$
\returnType{Type: Domain}

Define a polynomial system (the Butcher example).

\spadcommand{p0 := b1 + y + z - t - w}
$$
b1+y+z -t -w 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p1 := 2*z*u + 2*y*v + 2*t*w - 2*w**2 - w - 1}
$$
{2 \  v \  y}+{2 \  u \  z}+{2 \  w \  t} -{2 \  {w \sp 2}} -w -1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p2 := 3*z*u**2 + 3*y*v**2 - 3*t*w**2 + 3*w**3 + 3*w**2 - t + 4*w}
$$
{3 \  {v \sp 2} \  y}+{3 \  {u \sp 2} \  z}+{{\left( -{3 \  {w \sp 2}} -1 
\right)}
\  t}+{3 \  {w \sp 3}}+{3 \  {w \sp 2}}+{4 \  w} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p3 := 6*x*z*v - 6*t*w**2 + 6*w**3 - 3*t*w + 6*w**2 - t + 4*w}
$$
{6 \  v \  z \  x}+{{\left( -{6 \  {w \sp 2}} -{3 \  w} -1 
\right)}
\  t}+{6 \  {w \sp 3}}+{6 \  {w \sp 2}}+{4 \  w} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p4 := 4*z*u**3+ 4*y*v**3+ 4*t*w**3- 4*w**4 - 6*w**3+ 4*t*w- 10*w**2- w- 1}
$$
{4 \  {v \sp 3} \  y}+{4 \  {u \sp 3} \  z}+{{\left( {4 \  {w \sp 3}}+{4 \  
w} 
\right)}
\  t} -{4 \  {w \sp 4}} -{6 \  {w \sp 3}} -{{10} \  {w \sp 2}} -w -1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p5 := 8*x*z*u*v +8*t*w**3 -8*w**4 +4*t*w**2 -12*w**3 +4*t*w -14*w**2 -3*w -1}
$$
{8 \  u \  v \  z \  x}+{{\left( {8 \  {w \sp 3}}+{4 \  {w \sp 2}}+{4 \  w} 
\right)}
\  t} -{8 \  {w \sp 4}} -{{12} \  {w \sp 3}} -{{14} \  {w \sp 2}} -{3 \  w} 
-1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p6 := 12*x*z*v**2+12*t*w**3 -12*w**4 +12*t*w**2 -18*w**3 +8*t*w -14*w**2 -w -1}
$$
{{12} \  {v \sp 2} \  z \  x}+{{\left( {{12} \  {w \sp 3}}+{{12} \  {w \sp 
2}}+{8 \  w} 
\right)}
\  t} -{{12} \  {w \sp 4}} -{{18} \  {w \sp 3}} -{{14} \  {w \sp 2}} -w -1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{p7 := -24*t*w**3 + 24*w**4 - 24*t*w**2 + 36*w**3 - 8*t*w + 26*w**2 + 7*w + 1}
$$
{{\left( -{{24} \  {w \sp 3}} -{{24} \  {w \sp 2}} -{8 \  w} 
\right)}
\  t}+{{24} \  {w \sp 4}}+{{36} \  {w \sp 3}}+{{26} \  {w \sp 2}}+{7 \  w}+1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{lp := [p0, p1, p2, p3, p4, p5, p6, p7]}
$$
\begin{array}{@{}l}
\left[
{b1+y+z -t -w}, 
\right.
\\
\displaystyle
{{2 \  v \  y}+
{2 \  u \  z}+
{2 \  w \  t} -
{2 \  {w \sp 2}} -
w -
1},
\\
\displaystyle
{{3 \  {v \sp 2} \  y}+
{3 \  {u \sp 2} \  z}+
{{\left( -{3 \  {w \sp 2}} -1 \right)}\  t}+
{3 \  {w \sp 3}}+
{3 \  {w \sp 2}}+
{4 \  w}},
\\
\displaystyle
{{6 \  v \  z \  x}+
{{\left( -{6 \  {w \sp 2}} -
{3 \  w} -1 \right)}\  t}+
{6 \  {w \sp 3}}+
{6 \  {w \sp 2}}+
{4 \  w}},
\\
\displaystyle
{{4 \  {v \sp 3} \  y}+
{4 \  {u \sp 3} \  z}+
{{\left( {4 \  {w \sp 3}}+{4 \  w} \right)}\  t} -
{4 \  {w \sp 4}} -
{6 \  {w \sp 3}} -
{{10} \  {w \sp 2}} -
w -
1},
\\
\displaystyle
{{8 \  u \  v \  z \  x}+
{{\left( {8 \  {w \sp 3}}+{4 \  {w \sp 2}}+{4 \  w} \right)}\  t} -
{8 \  {w \sp 4}} -
{{12} \  {w \sp 3}} -
{{14} \  {w \sp 2}} -
{3 \  w} 
-1},
\\
\displaystyle
{{{12} \  {v \sp 2} \  z \  x}+
{{\left( {{12} \  {w \sp 3}}+{{12} \  {w \sp 2}}+{8 \  w} \right)}\  t} -
{{12} \  {w \sp 4}} -
{{18} \  {w \sp 3}} -
{{14} \  {w \sp 2}} -
w -
1},
\\
\displaystyle
\left.
{{{\left( -{{24} \  {w \sp 3}} -{{24} \  {w \sp 2}} -{8 \  w} \right)}\  t}+
{{24} \  {w \sp 4}}+
{{36} \  {w \sp 3}}+
{{26} \  {w \sp 2}}+
{7 \  w}+
1} 
\right]
\end{array}
$$
\returnType{Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

First of all, let us solve this system in the sense of Lazard by means
of the {\tt REGSET} constructor:

\spadcommand{lts := zeroSetSplit(lp,false)\$T}
$$
\begin{array}{@{}l}
\left[
{\left\{ {w+1}, u, v, {t+1}, {b1+y+z+2} \right\}},
{\left\{ {w+1}, v, {t+1}, z, {b1+y+2} \right\}},
\right.
\\
\displaystyle
{\left\{ {w+1}, {t+1}, z, y, {b1+2} \right\}},
{\left\{ {w+1}, {v -u}, {t+1}, {y+z}, x, {b1+2} \right\}},
\\
\displaystyle
{\left\{ {w+1}, u, {t+1}, y, x, {b1+z+2} \right\}},
\\
\displaystyle
\left\{ 
{{{144} \  {w \sp 5}}+{{216} \  {w \sp 4}}+{{96} \  {w \sp 3}}+{6 
\  {w \sp 2}} -{{11} \  w} -1}, 
\right.
\\
\displaystyle
{{{\left( {{12} \  {w \sp 2}}+{9 \  w}+1 \right)}\  u} -
{{72} \  {w \sp 5}} -
{{108} \  {w \sp 4}} -
{{42} \  {w \sp 3}} -
{9 \  {w \sp 2}} -
{3 \  w}}, 
\\
\displaystyle
{{{\left( {{12} \  {w \sp 2}}+{9 \  w}+1 \right)}\  v}+
{{36} \  {w \sp 4}}+
{{54} \  {w \sp 3}}+
{{18} \  {w \sp 2}}}, 
\\
\displaystyle
{{{\left( {{24} \  {w \sp 3}}+{{24} \  {w \sp 2}}+{8 \  w} \right)}\  t} -
{{24} \  {w \sp 4}} -
{{36} \  {w \sp 3}} -
{{26} \  {w \sp 2}} -
{7 \  w} -1}, 
\\
\displaystyle
{{\left( {{12} \  u \  v} -{{12} \  {u \sp 2}} \right)}\  z}+
{{\left( {{12} \  w \  v}+{{12} \  {w \sp 2}}+4 \right)}\  t}+
{{\left( {3 \  w} -5 \right)}\  v}+
\\
\displaystyle
\ \ {{36} \  {w \sp 4}}+
{{42} \  {w \sp 3}}+
{6 \  {w \sp 2}} -
{{16} \  w}, 
\\
\displaystyle
{{2 \  v \  y}+
{2 \  u \  z}+
{2 \  w \  t} -
{2 \  {w \sp 2}} -
w -1}, 
\\
\displaystyle
\left.
\left.
{{6 \  v \  z \  x}+
{{\left( -{6 \  {w \sp 2}} -{3 \  w} -1 \right)}\  t}+
{6 \  {w \sp 3}}+
{6 \  {w \sp 2}}+
{4 \  w}}, 
{b1+y+z -t -w} 
\right\}
\right]
\end{array}
$$
\returnType{Type: List 
RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],
OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(
Integer,OrderedVariableList [b1,x,y,z,t,v,u,w]))}

We can get the dimensions of each component
of a decomposition as follows.

\spadcommand{[coHeight(ts) for ts in lts] }
$$
\left[
3, 3, 3, 2, 2, 0 
\right]
$$
\returnType{Type: List NonNegativeInteger}

The first five sets have a simple shape.  However, the last one, which
has dimension zero, can be simplified by using Lazard triangular sets.

Thus we call the {\tt SquareFreeRegularTriangularSet} domain constructor,

\spadcommand{ST := SREGSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm SquareFreeRegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList[b1,x,y,z,t,v,u,w]))} 
\end{array}
$$
\returnType{Type: Domain}

and set the {\tt LAZM3PK} package constructor to our situation.

\spadcommand{pack := LAZM3PK(R,E,V,P,T,ST)}
$$
\begin{array}{@{}l}
{\rm LazardSetSolvingPackage(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList[b1,x,y,z,t,v,u,w]),}
\\
\displaystyle
{\rm \ \ RegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList[b1,x,y,z,t,v,u,w])),}
\\
\displaystyle
{\rm \ \ SquareFreeRegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [b1,x,y,z,t,v,u,w],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList[b1,x,y,z,t,v,u,w])))} 
\end{array}
$$
\returnType{Type: Domain}

We are ready to solve the system by means of Lazard triangular sets:

\spadcommand{zeroSetSplit(lp,false)\$pack}
$$
\begin{array}{@{}l}
\left[
{\left\{ {w+1}, {t+1}, z, y, {b1+2} \right\}},
\right.
\\
\displaystyle
{\left\{ {w+1}, v, {t+1}, z, {b1+y+2} \right\}},
\\
\displaystyle
{\left\{ {w+1}, u, v, {t+1}, {b1+y+z+2} \right\}},
\\
\displaystyle
{\left\{ {w+1}, {v -u}, {t+1}, {y+z}, x, {b1+2} \right\}},
\\
\displaystyle
{\left\{ {w+1}, u, {t+1}, y, x, {b1+z+2} \right\}},
\\
\displaystyle
\left\{ 
{{{144} \  {w \sp 5}}+
{{216} \  {w \sp 4}}+
{{96} \  {w \sp 3}}+
{6 \  {w \sp 2}} -
{{11} \  w} -1}, 
\right.
\\
\displaystyle
{u -{{24} \  {w \sp 4}} -
{{36} \  {w \sp 3}} -
{{14} \  {w \sp 2}}+w+1}, 
\\
\displaystyle
{{3 \  v} -{{48} \  {w \sp 4}} -
{{60} \  {w \sp 3}} -
{{10} \  {w \sp 2}}+
{8 \  w}+2}, 
\\
\displaystyle
{t -{{24} \  {w \sp 4}} -
{{36} \  {w \sp 3}} -
{{14} \  {w \sp 2}} -w+1}, 
{{486} \  z} -
{{2772} \  {w \sp 4}} -
\\
\displaystyle
\ \ {{4662} \  {w \sp 3}} -
{{2055} \  {w \sp 2}}+
{{30} \  w}+{127}, 
\\
\displaystyle
{{{2916} \  y} -
{{22752} \  {w \sp 4}} -
{{30312} \  {w \sp 3}} -
{{8220} \  {w \sp 2}}+
{{2064} \  w}+{1561}}, 
\\
\displaystyle
{{{356} \  x} -
{{3696} \  {w \sp 4}} -
{{4536} \  {w \sp 3}} -
{{968} \  {w \sp 2}}+
{{822} \  w}+{371}}, 
\\
\displaystyle
\left.
\left.
{{{2916} \  b1} -
{{30600} \  {w \sp 4}} -
{{46692} \  {w \sp 3}} -
{{20274} \  {w \sp 2}} -
{{8076} \  w}+{593}} 
\right\}
\right]
\end{array}
$$
\returnType{Type: List 
SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],
OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1,x,y,z,t,v,u,w]))}

We see the sixth triangular set is {\em nicer} now: each one of its
polynomials has a constant initial.

We follow with the Vermeer example. The ordering is the usual one
for this system.

Define the polynomial system.

\spadcommand{f0 := (w - v) ** 2 + (u - t) ** 2 - 1}
$$
{t \sp 2} -{2 \  u \  t}+{v \sp 2} -{2 \  w \  v}+{u \sp 2}+{w \sp 2} -1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{f1 := t ** 2 - v ** 3}
$$
{t \sp 2} -{v \sp 3} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{f2 := 2 * t * (w - v) + 3 * v ** 2 * (u - t)}
$$
{{\left( -{3 \  {v \sp 2}} -{2 \  v}+{2 \  w} 
\right)}
\  t}+{3 \  u \  {v \sp 2}} 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{f3 := (3 * z * v ** 2 - 1) * (2 * z * t - 1)}
$$
{6 \  {v \sp 2} \  t \  {z \sp 2}}+{{\left( -{2 \  t} -{3 \  {v \sp 2}} 
\right)}
\  z}+1 
$$
\returnType{Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

\spadcommand{lf := [f0, f1, f2, f3]}
$$
\begin{array}{@{}l}
\left[
{{t \sp 2} -{2 \  u \  t}+{v \sp 2} -{2 \  w \  v}+{u \sp 2}+{w \sp 2} -1}, 
\right.
\\
\displaystyle
{{t \sp 2} -{v \sp 3}}, 
\\
\displaystyle
{{{\left( -{3 \  {v \sp 2}} -{2 \  v}+{2 \  w} \right)}\  t}+
{3 \  u \  {v \sp 2}}}, 
\\
\displaystyle
\left.
{{6 \  {v \sp 2} \  t \  {z \sp 2}}+
{{\left( -{2 \  t} -{3 \  {v \sp 2}}\right)}\  z}+1} 
\right]
\end{array}
$$
\returnType{Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [b1,x,y,z,t,v,u,w])}

First of all, let us solve this system in the sense of Kalkbrener by
means of the {\tt REGSET} constructor:

\spadcommand{zeroSetSplit(lf,true)\$T}
$$
\begin{array}{@{}l}
\left[
\left\{ 
{{729} \  {u \sp 6}}+
{{\left( 
-{{1458} \  {w \sp 3}}+
{{729} \  {w \sp 2}} -
{{4158} \  w} -{1685} 
\right)}\  {u \sp 4}}+
\right.
\right.
\\
\displaystyle
{{\left( {{729} \  {w \sp 6}} -
{{1458} \  {w \sp 5}} -{{2619} \  {w \sp 4}} -
{{4892} \  {w \sp 3}} -{{297} \  {w \sp 2}}+
{{5814} \  w}+{427} 
\right)}\  {u \sp 2}}+
\\
\displaystyle
{{729} \  {w \sp 8}}+
{{216} \  {w \sp 7}} -
{{2900} \  {w \sp 6}} -
{{2376} \  {w \sp 5}}+
{{3870} \  {w \sp 4}}+
\\
\displaystyle
\ \ {{4072} \  {w \sp 3}} -
{{1188} \  {w \sp 2}} -
{{1656} \  w}+{529}, 
\\
\displaystyle
\left( 
{{2187} \  {u \sp 4}}+
\left( 
-{{4374} \  {w \sp 3}} -
{{972} \  {w \sp 2}} -
{{12474} \  w} 
-{2868} 
\right)\  {u \sp 2}+
\right.
\\
\displaystyle
\left.
{{2187} \  {w \sp 6}} -
{{1944} \  {w \sp 5}} -
{{10125} \  {w \sp 4}} -
{{4800} \  {w \sp 3}}+
{{2501} \  {w \sp 2}}+
{{4968} \  w} -{1587} 
\right)\  v+
\\
\displaystyle
\left( 
{{1944} \  {w \sp 3}} -
{{108} \  {w \sp 2}} 
\right)\  {u \sp 2}+
\\
\displaystyle
{{972} \  {w \sp 6}}+
{{3024} \  {w \sp 5}} -
{{1080} \  {w \sp 4}}+
{{496} \  {w \sp 3}}+
{{1116} \  {w \sp 2}}, 
\\
\displaystyle
{{{\left( 
{3 \  {v \sp 2}}+
{2 \  v} -
{2 \  w} 
\right)}\  t} -
{3 \  u \  {v \sp 2}}}, 
\\
\displaystyle
\left.
\left.
\left( 
\left( 
{4 \  v} -{4 \  w} 
\right)\  t -
{6 \  u \  {v \sp 2}} 
\right)\  {z \sp 2}+
\left( 
{2 \  t}+
{3 \  {v \sp 2}} 
\right)
\  z -1 
\right\}
\right]
\end{array}
$$
\returnType{Type: List 
RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],
OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1,x,y,z,t,v,u,w]))}

We have obtained one regular chain (i.e. regular triangular set) with
dimension 1.  This set is in fact a characterist set of the (radical
of) of the ideal generated by the input system {\bf lf}.  Thus we have
only the {\em generic points} of the variety associated with {\bf lf}
(for the elimination ordering given by {\bf ls}).

So let us get now a full description of this variety.

Hence, we solve this system in the sense of Lazard by means of the {\tt REGSET}
constructor:

\spadcommand{zeroSetSplit(lf,false)\$T}
$$
\begin{array}{@{}l}
\left[
\left\{ 
{{729} \  {u \sp 6}}+
\left( 
-{{1458} \  {w \sp 3}}+
{{729} \  {w \sp 2}} -
{{4158} \  w} -
{1685} 
\right)\  {u \sp 4}+
\right.
\right.
\\
\displaystyle
\left( 
{{729} \  {w \sp 6}} -
{{1458} \  {w \sp 5}} -
{{2619} \  {w \sp 4}} -
{{4892} \  {w \sp 3}} -
{{297} \  {w \sp 2}}+
{{5814} \  w}+
{427} 
\right)\  {u \sp 2}+
\\
\displaystyle
{{729} \  {w \sp 8}}+
{{216} \  {w \sp 7}} -
{{2900} \  {w \sp 6}} -
{{2376} \  {w \sp 5}}+
{{3870} \  {w \sp 4}}+
{{4072} \  {w \sp 3}} -
\\
\displaystyle
{{1188} \  {w \sp 2}} -
{{1656} \  w}+
{529}, 
\\
\displaystyle
\left( 
{{2187} \  {u \sp 4}}+
\left( 
-{{4374} \  {w \sp 3}} -
{{972} \  {w \sp 2}} -
{{12474} \  w} -
{2868} 
\right)\  {u \sp 2}+
\right.
\\
\displaystyle
\left.
{{2187} \  {w \sp 6}} -
{{1944} \  {w \sp 5}} -
{{10125} \  {w \sp 4}} -
{{4800} \  {w \sp 3}}+
{{2501} \  {w \sp 2}}+
{{4968} \  w} -
{1587} 
\right)\  v+
\\
\displaystyle
\left( 
{{1944} \  {w \sp 3}} -
{{108} \  {w \sp 2}} 
\right)\  {u \sp 2}+
\\
\displaystyle
{{972} \  {w \sp 6}}+
{{3024} \  {w \sp 5}} -
{{1080} \  {w \sp 4}}+
{{496} \  {w \sp 3}}+
{{1116} \  {w \sp 2}}, 
\\
\displaystyle
\left( 
{3 \  {v \sp 2}}+
{2 \  v} -
{2 \  w} 
\right)\  t -
{3 \  u \  {v \sp 2}}, 
\\
\displaystyle
\left.
\left( 
\left( 
{4 \  v} -
{4 \  w} 
\right)\  t -
{6 \  u \  {v \sp 2}} 
\right)\  {z \sp 2}+
\left( 
{2 \  t}+
{3 \  {v \sp 2}} 
\right)
\  z -1
\right\},
\\
\displaystyle
\left\{ 
{{27} \  {w \sp 4}}+
{4 \  {w \sp 3}} -
{{54} \  {w \sp 2}} -
{{36} \  w}+
{23}, 
\right.
\\
\displaystyle
u, 
\\
\displaystyle
\left( 
{{12} \  w}+
2 
\right)\  v -
{9 \  {w \sp 2}} -
{2 \  w}+
9, 
\\
\displaystyle
{6 \  {t \sp 2}} -
{2 \  v} -
{3 \  {w \sp 2}}+
{2 \  w}+3, 
\\
\displaystyle
\left.
{{2 \  t \  z} -1}
\right\},
\\
\displaystyle
\left\{ 
{{{59049} \  {w \sp 6}}+
{{91854} \  {w \sp 5}} -
{{45198} \  {w \sp 4}}+
{{145152} \  {w \sp 3}}+
{{63549} \  {w \sp 2}}+
{{60922} \  w}+{21420}}, 
\right.
\\
\displaystyle
\left( 
{{31484448266904} \  {w \sp 5}} -
{{18316865522574} \  {w \sp 4}}+
{{23676995746098} \  {w \sp 3}}+
{{6657857188965} \  {w \sp 2}}+
\right.
\\
\displaystyle
\left.
{{8904703998546} \  w}+
{3890631403260} 
\right)\  {u \sp 2}+
{{94262810316408} \  {w \sp 5}} -
{{82887296576616} \  {w \sp 4}}+
\\
\displaystyle
{{89801831438784} \  {w \sp 3}}+
{{28141734167208} \  {w \sp 2}}+
{{38070359425432} \  w}+
{16003865949120},
\\
\displaystyle
\left( 
{{243} \  {w \sp 2}}+
{{36} \  w}+
{85} 
\right)\  {v \sp 2}+
\left( 
-{{81} \  {u \sp 2}} -
{{162} \  {w \sp 3}}+
{{36} \  {w \sp 2}}+
{{154} \  w}+
{72} 
\right)\  v -
{{72} \  {w \sp 3}}+
{4 \  {w \sp 2}}, 
\\
\displaystyle
\left( 
{3 \  {v \sp 2}}+
{2 \  v} -
{2 \  w} 
\right)\  t -
{3 \  u \  {v \sp 2}}, 
\\
\displaystyle
\left.
\left( 
\left( 
{4 \  v} -
{4 \  w} 
\right)\  t -
{6 \  u \  {v \sp 2}} 
\right)\  {z \sp 2}+
\left( {2 \  t}+
{3 \  {v \sp 2}} 
\right)\  z
-1
\right\},
\\
\displaystyle
\left\{ 
{{{27} \  {w \sp 4}}+
{4 \  {w \sp 3}} -
{{54} \  {w \sp 2}} -
{{36} \  w}+
{23}}, u, 
\right.
\\
\displaystyle
{{{\left( 
{{12} \  w}+
2 
\right)}\  v} -
{9 \  {w \sp 2}} -
{2 \  w}+9}, 
\\
\displaystyle
{{6 \  {t \sp 2}} -
{2 \  v} -{3 \  {w \sp 2}}+
{2 \  w}+
3}, 
\\
\displaystyle
\left.
\left.
{{3 \  {v \sp 2} \  z} 
-1}
\right\}
\right]
\end{array}
$$
\returnType{Type: List 
RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],
OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1,x,y,z,t,v,u,w]))}

We retrieve our regular chain of dimension 1 and we get three regular
chains of dimension 0 corresponding to the {\em degenerated cases}.
We want now to simplify these zero-dimensional regular chains by using
Lazard triangular sets.  Moreover, this will allow us to prove that
the above decomposition has no redundant component.  {\bf N.B.}
Generally, decompositions computed by the {\tt REGSET} constructor do
not have redundant components.  However, to be sure that no redundant
component occurs one needs to use the {\tt SREGSET} or {\tt LAZM3PK}
constructors.

So let us solve the input system in the sense of Lazard by means of
the {\tt LAZM3PK} constructor:

\spadcommand{zeroSetSplit(lf,false)\$pack  }
$$
\begin{array}{@{}l}
\left[
\left\{ 
{{729} \  {u \sp 6}}+
\left( 
-{{1458} \  {w \sp 3}}+
{{729} \  {w \sp 2}} -
{{4158} \  w} -
{1685} 
\right)\  {u \sp 4}+
\right.
\right.
\\
\displaystyle
\ \ \left( 
{{729} \  {w \sp 6}} -
{{1458} \  {w \sp 5}} -
{{2619} \  {w \sp 4}} -
{{4892} \  {w \sp 3}} -
{{297} \  {w \sp 2}}+
{{5814} \  w}+{427} 
\right)\  {u \sp 2}+
\\
\displaystyle
\ \ {{729} \  {w \sp 8}}+
{{216} \  {w \sp 7}} -
{{2900} \  {w \sp 6}} -
{{2376} \  {w \sp 5}}+
{{3870} \  {w \sp 4}}+
{{4072} \  {w \sp 3}} -
\\
\displaystyle
\ \ {{1188} \  {w \sp 2}} -
{{1656} \  w}+{529}, 
\\
\displaystyle
\left( 
{{2187} \  {u \sp 4}}+
\left( 
-{{4374} \  {w \sp 3}} -
{{972} \  {w \sp 2}} -
{{12474} \  w} 
-{2868} 
\right)\  {u \sp 2}+
\right.
\\
\displaystyle
\left.
\ \ {{2187} \  {w \sp 6}} -
{{1944} \  {w \sp 5}} -
{{10125} \  {w \sp 4}} -
{{4800} \  {w \sp 3}}+
{{2501} \  {w \sp 2}}+
{{4968} \  w} -
{1587} 
\right)\  v+
\\
\displaystyle
\left( 
{{1944} \  {w \sp 3}} -
{{108} \  {w \sp 2}} 
\right)\  {u \sp 2}+
{{972} \  {w \sp 6}}+
{{3024} \  {w \sp 5}} -
{{1080} \  {w \sp 4}}+
{{496} \  {w \sp 3}}+
{{1116} \  {w \sp 2}}, 
\\
\displaystyle
\left( 
{3 \  {v \sp 2}}+
{2 \  v} -
{2 \  w} 
\right)\  t -
{3 \  u \  {v \sp 2}}, 
\\
\displaystyle
\left.
\left( 
\left( 
{4 \  v} -
{4 \  w} 
\right)\  t -
{6 \  u \  {v \sp 2}} 
\right)\  {z \sp 2}+
\left( 
{2 \  t}+
{3 \  {v \sp 2}} 
\right)\  z -1 
\right\},
\\
\displaystyle
\left\{ 
{{81} \  {w \sp 2}}+
{{18} \  w}+
{28}, 
{{729} \  {u \sp 2}} -
{{1890} \  w} -
{533}, 
{{81} \  {v \sp 2}}+
\left( 
-{{162} \  w}+
{27} 
\right)\  v -
\right.
\\
\displaystyle
{{72} \  w} -
{112}, 
\\
\displaystyle
{{{11881} \  t}+
\left( {{972} \  w}+{2997} 
\right)\  u \  v+
{{\left( -{{11448} \  w} -{11536} 
\right)}\  u}}, 
\\
\displaystyle
{{641237934604288} \  {z \sp 2}}+
\left( 
\left( 
\left( 
{{78614584763904} \  w}+
{26785578742272} 
\right)\  u+
\right.
\right.
\\
\displaystyle
\left.
\ \ {{236143618655616} \  w}+
{70221988585728} 
\right)\  v+
\left( 
{{358520253138432} \  w}+
\right.
\\
\displaystyle
\left.
\left.
\ \ {101922133759488} 
\right)\  u+
{{142598803536000} \  w}+
{54166419595008} 
\right)\  z+
\\
\displaystyle
\ \ \left( 
{{32655103844499} \  w} -
{44224572465882} 
\right)\  u \  v+
\\
\displaystyle
\left.
\left( 
{{43213900115457} \  w} -
{32432039102070} 
\right)\  u 
\right\},
\\
\displaystyle
\left\{ 
{{27} \  {w \sp 4}}+
{4 \  {w \sp 3}} -
{{54} \  {w \sp 2}} -
{{36} \  w}+
{23}, 
u, 
{{218} \  v} -
{{162} \  {w \sp 3}}+
{3 \  {w \sp 2}}+
{{160} \  w}+
{153}, 
\right.
\\
\displaystyle
\ \ {{109} \  {t \sp 2}} -
{{27} \  {w \sp 3}} -
{{54} \  {w \sp 2}}+
{{63} \  w}+
{80}, 
\\
\displaystyle
\left.
\ \ {{1744} \  z}+
\left( 
-{{1458} \  {w \sp 3}}+
{{27} \  {w \sp 2}}+
{{1440} \  w}+
{505} 
\right)\  t 
\right\},
\\
\displaystyle
\left\{ 
{{27} \  {w \sp 4}}+
{4 \  {w \sp 3}} -
{{54} \  {w \sp 2}} -
{{36} \  w}+{23}, 
u, 
{{218} \  v} -
{{162} \  {w \sp 3}}+
{3 \  {w \sp 2}}+
{{160} \  w}+
{153}, 
\right.
\\
\displaystyle
\left.
\ \ {{109} \  {t \sp 2}} -
{{27} \  {w \sp 3}} -
{{54} \  {w \sp 2}}+
{{63} \  w}+{80}, 
{{1308} \  z}+
{{162} \  {w \sp 3}} -
{3 \  {w \sp 2}} -
{{814} \  w} -
{153} 
\right\},
\\
\displaystyle
\left\{ 
{{729} \  {w \sp 4}}+
{{972} \  {w \sp 3}} -
{{1026} \  {w \sp 2}}+
{{1684} \  w}+
{765}, 
{{81} \  {u \sp 2}}+
{{72} \  {w \sp 2}}+
{{16} \  w} -{72}, 
\right.
\\
\displaystyle
\ \ {{702} \  v} -
{{162} \  {w \sp 3}} -
{{225} \  {w \sp 2}}+
{{40} \  w} -
{99}, 
\\
\displaystyle
\ \ {{11336} \  t}+
\left( 
{{324} \  {w \sp 3}} -
{{603} \  {w \sp 2}} -
{{1718} \  w} -
{1557} 
\right)\  u, 
\\
\displaystyle
\ \ {{595003968} \  {z \sp 2}}+
\left( 
\left( 
-{{963325386} \  {w \sp 3}} -
{{898607682} \  {w \sp 2}}+
{{1516286466} \  w} -
\right.
\right.
\\
\displaystyle
\left.
\ \ {3239166186} 
\right)\  u -
{{1579048992} \  {w \sp 3}} -
{{1796454288} \  {w \sp 2}}+
{{2428328160} \  w} -
\\
\displaystyle
\left.
{4368495024} 
\right)\  z+
\left( 
{{9713133306} \  {w \sp 3}}+
{{9678670317} \  {w \sp 2}} -
{{16726834476} \  w}+
\right.
\\
\displaystyle
\left.
\left.
\left.
{28144233593} 
\right)\  u
\right\}
\right]
\end{array}
$$
\returnType{Type: List 
SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [b1,x,y,z,t,v,u,w],
OrderedVariableList [b1,x,y,z,t,v,u,w],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [b1,x,y,z,t,v,u,w]))}

Due to square-free factorization, we obtained now four
zero-dimensional regular chains.  Moreover, each of them is normalized
(the initials are constant).  Note that these zero-dimensional
components may be investigated further with the \\
{\tt ZeroDimensionalSolvePackage} package constructor.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Library}
 
The {\tt Library} domain provides a simple way to store Axiom values
in a file.  This domain is similar to {\tt KeyedAccessFile} but fewer
declarations are needed and items of different types can be saved
together in the same file.

To create a library, you supply a file name.

\spadcommand{stuff := library "/tmp/Neat.stuff" }
$$
\mbox{\tt "/tmp/Neat.stuff"} 
$$
\returnType{Type: Library}

Now values can be saved by key in the file.
The keys should be mnemonic, just as the field names are for records.
They can be given either as strings or symbols.

\spadcommand{stuff.int := 32**2}
$$
1024 
$$
\returnType{Type: PositiveInteger}

\spadcommand{stuff."poly" := x**2 + 1}
$$
{x \sp 2}+1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{stuff.str := "Hello"}
$$
\mbox{\tt "Hello"} 
$$
\returnType{Type: String}

You obtain the set of available keys using the 
\spadfunFrom{keys}{Library} operation.

\spadcommand{keys stuff}
$$
\left[
\mbox{\tt "str"} , \mbox{\tt "poly"} , \mbox{\tt "int"} 
\right]
$$
\returnType{Type: List String}

%Original Page 394

You extract values  by giving the desired key in this way.

\spadcommand{stuff.poly}
$$
{x \sp 2}+1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{stuff("poly")}
$$
{x \sp 2}+1 
$$
\returnType{Type: Polynomial Integer}

When the file is no longer needed, you should remove it from the
file system.

\spadcommand{)system rm -rf /tmp/Neat.stuff  }
 
For more information on related topics, see 
\domainref{File}, \domainref{TextFile}, and \domainref{KeyedAccessFile}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LieExponentials}

\spadcommand{ a: Symbol := 'a }
$$
a 
$$
\returnType{Type: Symbol}

\spadcommand{ b: Symbol := 'b }
$$
b 
$$
\returnType{Type: Symbol}

Declarations of domains

\spadcommand{ coef     := Fraction(Integer) }
$$
\mbox{\rm Fraction Integer} 
$$
\returnType{Type: Domain}

\spadcommand{ group    := LieExponentials(Symbol, coef, 3)  }
$$
\mbox{\rm LieExponentials(Symbol,Fraction Integer,3)} 
$$
\returnType{Type: Domain}

\spadcommand{ lpoly    := LiePolynomial(Symbol, coef)  }
$$
\mbox{\rm LiePolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{ poly     := XPBWPolynomial(Symbol, coef)  }
$$
\mbox{\rm XPBWPolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

Calculations

\spadcommand{ ea := exp(a::lpoly)\$group}
$$
e \sp {\left[ a 
\right]}
$$
\returnType{Type: LieExponentials(Symbol,Fraction Integer,3)}

\spadcommand{ eb := exp(b::lpoly)\$group}
$$
e \sp {\left[ b 
\right]}
$$
\returnType{Type: LieExponentials(Symbol,Fraction Integer,3)}

\spadcommand{ g: group := ea*eb}
$$
{e \sp {\left[ b 
\right]}}
\  {e \sp {\left( {\frac{1}{2}} \  {\left[ a \  {b \sp 2} 
\right]}
\right)}}
\  {e \sp {\left[ a \  b 
\right]}}
\  {e \sp {\left( {\frac{1}{2}} \  {\left[ {a \sp 2} \  b 
\right]}
\right)}}
\  {e \sp {\left[ a 
\right]}}
$$
\returnType{Type: LieExponentials(Symbol,Fraction Integer,3)}

\spadcommand{ g :: poly  }
$$
\begin{array}{@{}l}
1+
{\left[ a \right]}+
{\left[b \right]}+
{{\frac{1}{2}} \  {\left[ a \right]}\  {\left[ a \right]}}+
{\left[a \  b \right]}+
{{\left[b \right]}\  {\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ b \right]}\  {\left[ b \right]}}+
{{\frac{1}{6}} \  {\left[ a \right]}\  {\left[ a \right]}\  
{\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ {a \sp 2} \  b \right]}}+
\\
\\
\displaystyle
{{\left[a \  b \right]}\  {\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ a \  {b \sp 2} \right]}}+
{{\frac{1}{2}} \  {\left[ b \right]}\  {\left[ a \right]}\  
{\left[ a \right]}}+
{{\left[b \right]}\  {\left[ a \  b \right]}}+
{{\frac{1}{2}} \  {\left[ b \right]}\  {\left[ b \right]}\  
{\left[ a \right]}}+
{{\frac{1}{6}} \  {\left[ b \right]}\  {\left[ b \right]}\  {\left[ b \right]}}
\end{array}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{ log(g)\$group  }
$$
{\left[ a 
\right]}+{\left[
b 
\right]}+{{\frac{1}{2}} \  {\left[ a \  b 
\right]}}+{{\frac{1}{12}} \  {\left[ {a \sp 2} \  b 
\right]}}+{{\frac{1}{12}} \  {\left[ a \  {b \sp 2} 
\right]}}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{ g1: group := inv(g)   }
$$
{e \sp {\left( -{\left[ b 
\right]}
\right)}}
\  {e \sp {\left( -{\left[ a 
\right]}
\right)}}
$$
\returnType{Type: LieExponentials(Symbol,Fraction Integer,3)}

\spadcommand{ g*g1  }
$$
1 
$$
\returnType{Type: LieExponentials(Symbol,Fraction Integer,3)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LiePolynomial}

Declaration of domains

\spadcommand{RN    := Fraction Integer }
$$
\mbox{\rm Fraction Integer} 
$$
\returnType{Type: Domain}

\spadcommand{Lpoly := LiePolynomial(Symbol,RN)  }
$$
\mbox{\rm LiePolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{Dpoly := XDPOLY(Symbol,RN)  }
$$
\mbox{\rm XDistributedPolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{Lword := LyndonWord Symbol }
$$
\mbox{\rm LyndonWord Symbol} 
$$
\returnType{Type: Domain}

Initialisation

\spadcommand{a:Symbol := 'a }
$$
a 
$$
\returnType{Type: Symbol}

\spadcommand{b:Symbol := 'b }
$$
b 
$$
\returnType{Type: Symbol}

\spadcommand{c:Symbol := 'c }
$$
c 
$$
\returnType{Type: Symbol}

\spadcommand{aa: Lpoly := a   }
$$
\left[
a 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{bb: Lpoly := b   }
$$
\left[
b 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{cc: Lpoly := c   }
$$
\left[
c 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{p : Lpoly := [aa,bb]}
$$
\left[
a \  b 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{q : Lpoly := [p,bb]}
$$
\left[
a \  {b \sp 2} 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

All the Lyndon words of order 4

\spadcommand{liste : List Lword := LyndonWordsList([a,b], 4)}
$$
\left[
{\left[ a 
\right]},
{\left[ b 
\right]},
{\left[ a \  b 
\right]},
{\left[ {a \sp 2} \  b 
\right]},
{\left[ a \  {b \sp 2} 
\right]},
{\left[ {a \sp 3} \  b 
\right]},
{\left[ {a \sp 2} \  {b \sp 2} 
\right]},
{\left[ a \  {b \sp 3} 
\right]}
\right]
$$
\returnType{Type: List LyndonWord Symbol}

\spadcommand{r: Lpoly := p + q + 3*LiePoly(liste.4)\$Lpoly}
$$
{\left[ a \  b 
\right]}+{3
\  {\left[ {a \sp 2} \  b 
\right]}}+{\left[
a \  {b \sp 2} 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{s:Lpoly := [p,r]}
$$
-{3 \  {\left[ {a \sp 2} \  b \  a \  b 
\right]}}+{\left[
a \  b \  a \  {b \sp 2} 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{t:Lpoly  := s  + 2*LiePoly(liste.3) - 5*LiePoly(liste.5)}
$$
{2 \  {\left[ a \  b 
\right]}}
-{5 \  {\left[ a \  {b \sp 2} 
\right]}}
-{3 \  {\left[ {a \sp 2} \  b \  a \  b 
\right]}}+{\left[
a \  b \  a \  {b \sp 2} 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{degree t }
$$
5 
$$
\returnType{Type: PositiveInteger}

\spadcommand{mirror t }
$$
-{2 \  {\left[ a \  b 
\right]}}
-{5 \  {\left[ a \  {b \sp 2} 
\right]}}
-{3 \  {\left[ {a \sp 2} \  b \  a \  b 
\right]}}+{\left[
a \  b \  a \  {b \sp 2} 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

Jacobi Relation

\spadcommand{Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == [ [p,q]\$Lpoly, r] + [ [q,r]\$Lpoly, p] + [ [r,p]\$Lpoly, q]  }
\begin{verbatim}
Function declaration Jacobi : (
  LiePolynomial(Symbol,  Fraction Integer),
  LiePolynomial(Symbol,Fraction Integer),
  LiePolynomial(Symbol,Fraction Integer)) -> 
    LiePolynomial(Symbol,Fraction Integer) 
  has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

Tests

\spadcommand{test: Lpoly := Jacobi(a,b,b)  }
$$
0 
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{test: Lpoly := Jacobi(p,q,r)  }
$$
0 
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{test: Lpoly := Jacobi(r,s,t)  }
$$
0 
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

Evaluation

\spadcommand{eval(p, a, p)\$Lpoly}
$$
\left[
a \  {b \sp 2} 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{eval(p, [a,b], [2*bb, 3*aa])\$Lpoly }
$$
-{6 \  {\left[ a \  b 
\right]}}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{r: Lpoly := [p,c]  }
$$
{\left[ a \  b \  c 
\right]}+{\left[
a \  c \  b 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])\$Lpoly  }
$$
-{\left[ a \  b \  c 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])\$Lpoly  }
$$
-{\left[ a \  c \  b 
\right]}
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{r + r1 + r2 }
$$
0 
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LinearOrdinaryDifferentialOperator}

{\tt LinearOrdinaryDifferentialOperator(A, diff)} is the domain of
linear ordinary differential operators with coefficients in a ring
{\tt A} with a given derivation.

\subsection{Differential Operators with Series Coefficients}

\noindent
{\bf Problem:}
Find the first few coefficients of {\tt exp(x)/x**i} of {\tt Dop phi} where
\begin{verbatim}
Dop := D**3 + G/x**2 * D + H/x**3 - 1
phi := sum(s[i]*exp(x)/x**i, i = 0..)
\end{verbatim}

\noindent
{\bf Solution:}

Define the differential.

\spadcommand{Dx: LODO(EXPR INT, f +-> D(f, x)) }
\returnType{Type: Void}

\spadcommand{Dx := D() }
$$
D 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator(Expression Integer,theMap NIL)}

Now define the differential operator {\tt Dop}.

\spadcommand{Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1 }
$$
{D \sp 3}+{{\frac{G}{x \sp 2}} \  D}+{\frac{-{x \sp 3}+H}{x \sp 3}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator(Expression Integer,theMap NIL)}

\spadcommand{n == 3 }
\returnType{Type: Void}

\spadcommand{phi == reduce(+,[subscript(s,[i])*exp(x)/x**i for i in 0..n]) }
\returnType{Type: Void}

\spadcommand{phi1 ==  Dop(phi) / exp x }
\returnType{Type: Void}

\spadcommand{phi2 == phi1 *x**(n+3) }
\returnType{Type: Void}

\spadcommand{phi3 == retract(phi2)@(POLY INT) }
\returnType{Type: Void}

\spadcommand{pans == phi3 ::UP(x,POLY INT) }
\returnType{Type: Void}

\spadcommand{pans1 == [coefficient(pans, (n+3-i) :: NNI) for i in 2..n+1] }
\returnType{Type: Void}

\spadcommand{leq == solve(pans1,[subscript(s,[i]) for i in 1..n]) }
\returnType{Type: Void}

Evaluate this for several values of {\tt n}.

\spadcommand{leq }
\begin{verbatim}
   Compiling body of rule n to compute value of type PositiveInteger 
   Compiling body of rule phi to compute value of type Expression 
      Integer 
   Compiling body of rule phi1 to compute value of type Expression 
      Integer 
   Compiling body of rule phi2 to compute value of type Expression 
      Integer 
   Compiling body of rule phi3 to compute value of type Polynomial 
      Integer 
   Compiling body of rule pans to compute value of type 
      UnivariatePolynomial(x,Polynomial Integer) 
   Compiling body of rule pans1 to compute value of type List 
      Polynomial Integer 
   Compiling body of rule leq to compute value of type List List 
      Equation Fraction Polynomial Integer 
   Compiling function G83347 with type Integer -> Boolean 
\end{verbatim}

\spadcommand{n==4 }
$$
\begin{array}{@{}l}
\left[
\left[ 
{{s \sb {1}}={\frac{{s \sb {0}} \  G}{3}}}, 
{{s \sb {2}}=
{\frac{{3 \  {s \sb {0}} \  H}+
{{s \sb {0}} \  {G \sp 2}}+
{6 \  {s \sb {0}} \  G}}{18}}}, 
\right.
\right.
\\
\\
\displaystyle
\left.
\left.
{{s \sb {3}}=
{\frac{{{\left( {9 \  {s \sb {0}} \  G}+
{{54} \  {s \sb {0}}} \right)}\  H}+
{{s \sb {0}} \  {G \sp 3}}+
{{18} \  {s \sb {0}} \  {G \sp 2}}+
{{72} \  {s \sb {0}} \  G}}{162}}} 
\right]
\right]
\end{array}
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

\spadcommand{leq }
$$
\begin{array}{@{}l}
\left[
\left[ 
{{s \sb {1}}={\frac{{s \sb {0}} \  G}{3}}}, 
{{s \sb {2}}=
{\frac{{3 \  {s \sb {0}} \  H}+
{{s \sb {0}} \  {G \sp 2}}+{6 \  {s \sb {0}} \  G}}{18}}}, 
\right.
\right.
\\
\\
\displaystyle
\left.
\left.
{{s \sb {3}}=
{\frac{{{\left( {9 \  {s \sb {0}} \  G}+
{{54} \  {s \sb {0}}} \right)}\  H}+
{{s \sb {0}} \  {G \sp 3}}+
{{18} \  {s \sb {0}} \  {G \sp 2}}+
{{72} \  {s \sb {0}} \  G}}{162}}} 
\right]
\right]
\end{array}
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

\spadcommand{n==7 }
\begin{verbatim}
   Compiled code for n has been cleared.
   Compiled code for leq has been cleared.
   Compiled code for pans1 has been cleared.
   Compiled code for phi2 has been cleared.
   Compiled code for phi has been cleared.
   Compiled code for phi3 has been cleared.
   Compiled code for phi1 has been cleared.
   Compiled code for pans has been cleared.
   1 old definition(s) deleted for function or rule n 
\end{verbatim}
\returnType{Type: Void}

\spadcommand{leq }
\begin{verbatim}
Compiling body of rule n to compute value of type PositiveInteger 

+++ |*0;n;1;G82322| redefined
Compiling body of rule phi to compute value of type Expression 
  Integer 

+++ |*0;phi;1;G82322| redefined
Compiling body of rule phi1 to compute value of type Expression 
  Integer 

+++ |*0;phi1;1;G82322| redefined
Compiling body of rule phi2 to compute value of type Expression 
  Integer 

+++ |*0;phi2;1;G82322| redefined
Compiling body of rule phi3 to compute value of type Polynomial 
  Integer 

+++ |*0;phi3;1;G82322| redefined
Compiling body of rule pans to compute value of type 
  UnivariatePolynomial(x,Polynomial Integer) 

+++ |*0;pans;1;G82322| redefined
Compiling body of rule pans1 to compute value of type List 
  Polynomial Integer 

+++ |*0;pans1;1;G82322| redefined
Compiling body of rule leq to compute value of type List List 
  Equation Fraction Polynomial Integer 

+++ |*0;leq;1;G82322| redefined
\end{verbatim}
$$
\left[
\left[ 
{{s \sb {1}}={\frac{{s \sb {0}} \  G}{3}}}, 
\right.
\right.\hbox{\hskip 10.0cm}
$$
$$
{s \sb {2}}=
{{3 \  {s \sb {0}} \  H}+
{{s \sb {0}} \  {G \sp 2}}+
\frac{6 \  {s \sb {0}} \  G}{18}}, \hbox{\hskip 8.0cm}
$$
$$
{s \sb {3}}=
{\left( 
{9 \  {s \sb {0}} \  G}+
{{54} \  {s \sb {0}}} 
\right)\  H+
{{s \sb {0}} \  {G \sp 3}}+
{{18} \  {s \sb {0}} \  {G \sp 2}}+
\frac{{72} \  {s \sb {0}} \  G}{162}}, \hbox{\hskip 6.0cm}
$$
$$
{s \sb {4}}=
{\frac{\left(
\begin{array}{@{}l}
{{27} \  {s \sb {0}} \  {H \sp 2}}+
\left( 
{{18} \  {s \sb {0}} \  {G \sp 2}}+
{{378} \  {s \sb {0}} \  G}+
{{1296} \  {s \sb {0}}} 
\right)\  H+
\\
\\
\displaystyle
{{s \sb {0}} \  {G \sp 4}}+
{{36} \  {s \sb {0}} \  {G \sp 3}}+
{{396} \  {s \sb {0}} \  {G \sp 2}}+
{{1296} \  {s \sb {0}} \  G}
\end{array}
\right)}
{1944}}, \hbox{\hskip 4.0cm}
$$
$$
{s \sb {5}}=
{\frac{\left(
\begin{array}{@{}l}
\left( 
{{135} \  {s \sb {0}} \  G}+
{{2268} \  {s \sb {0}}} 
\right)\  {H \sp 2}+
\\
\\
\displaystyle
\left( 
{{30} \  {s \sb {0}} \  {G \sp 3}}+
{{1350} \  {s \sb {0}} \  {G \sp 2}}+
{{16416} \  {s \sb {0}} \  G}+
{{38880} \  {s \sb {0}}} 
\right)\  H+
\\
\\
\displaystyle
{{s \sb {0}} \  {G \sp 5}}+
{{60} \  {s \sb {0}} \  {G \sp 4}}+
{{1188} \  {s \sb {0}} \  {G \sp 3}}+
{{9504} \  {s \sb {0}} \  {G \sp 2}}+
{{25920} \  {s \sb {0}} \  G} 
\end{array}
\right)}
{29160}}, \hbox{\hskip 2.0cm}
$$
$$
{s \sb {6}}=
{\frac{\left(
\begin{array}{@{}l}
{{405} \  {s \sb {0}} \  {H \sp 3}}+
\\
\\
\displaystyle
{{\left( {{405} \  {s \sb {0}} \  {G \sp 2}}+
{{18468} \  {s \sb {0}} \  G}+
{{174960} \  {s \sb {0}}} \right)}\  {H \sp 2}}+
\\
\\
\displaystyle
\left( 
{{45} \  {s \sb {0}} \  {G \sp 4}}+
{{3510} \  {s \sb {0}} \  {G \sp 3}}+
{{88776} \  {s \sb {0}} \  {G \sp 2}}+
{{777600} \  {s \sb {0}} \  G}+
\right.
\\
\displaystyle
\left.
{{1166400} \  {s \sb {0}}} 
\right)\  H+
\\
\\
\displaystyle
{{s \sb {0}} \  {G \sp 6}}+
{{90} \  {s \sb {0}} \  {G \sp 5}}+
{{2628} \  {s \sb {0}} \  {G \sp 4}}+
{{27864} \  {s \sb {0}} \  {G \sp 3}}+
{{90720} \  {s \sb {0}} \  {G \sp 2}} 
\end{array}
\right)}
{524880}}, \hbox{\hskip 1.0cm}
$$
$$
\left.
\left.
{s \sb {7}}=
{\frac{\left(
\begin{array}{@{}l}
\left( 
{{2835} \  {s \sb {0}} \  G}+
{{91854} \  {s \sb {0}}} 
\right)\  {H \sp 3}+
\\
\\
\displaystyle
\left( 
{{945} \  {s \sb {0}} \  {G \sp 3}}+
{{81648} \  {s \sb {0}} \  {G \sp 2}}+
{{2082996} \  {s \sb {0}} \  G}+
{{14171760} \  {s \sb {0}}} 
\right)\  {H \sp 2}+
\\
\\
\displaystyle
\left( 
{{63} \  {s \sb {0}} \  {G \sp 5}}+
{{7560} \  {s \sb {0}} \  {G \sp 4}}+
{{317520} \  {s \sb {0}} \  {G \sp 3}}+
{{5554008} \  {s \sb {0}} \  {G \sp 2}}+
\right.
\\
\displaystyle
\left.
{{34058880} \  {s \sb {0}} \  G} 
\right)\  H+
\\
\\
\displaystyle
{{s \sb {0}} \  {G \sp 7}}+
{{126} \  {s \sb {0}} \  {G \sp 6}}+
{{4788} \  {s \sb {0}} \  {G \sp 5}}+
{{25272} \  {s \sb {0}} \  {G \sp 4}} -
{{1744416} \  {s \sb {0}} \  {G \sp 3}} -
\\
\displaystyle
{{26827200} \  {s \sb {0}} \  {G \sp 2}} -
{{97977600} \  {s \sb {0}} \  G} 
\end{array}
\right)}
{11022480}}
\right]
\right]
$$
\returnType{Type: List List Equation Fraction Polynomial Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LinearOrdinaryDifferentialOperator1}

{\tt LinearOrdinaryDifferentialOperator1(A)} is the domain of linear
ordinary differential operators with coefficients in the differential ring
{\tt A}.

%Original Page 396

\subsection{Differential Operators with Rational Function Coefficients}

This example shows differential operators with rational function
coefficients.  In this case operator multiplication is non-commutative and,
since the coefficients form a field, an operator division algorithm exists.

We begin by defining {\tt RFZ} to be the rational functions in
{\tt x} with integer coefficients and {\tt Dx} to be the differential
operator for {\tt d/dx}.

\spadcommand{RFZ := Fraction UnivariatePolynomial('x, Integer) }
$$
\mbox{\rm Fraction UnivariatePolynomial(x,Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{x : RFZ := 'x }
$$
x 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Integer)}

\spadcommand{Dx : LODO1 RFZ := D()}
$$
D 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

Operators are created using the usual arithmetic operations.

\spadcommand{b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x  }
$$
{3 \  {x \sp 2} \  {D \sp 2}}+{2 \  D}+{\frac{1}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

\spadcommand{a : LODO1 RFZ := b*(5*x*Dx + 7)}
$$
{{15} \  {x \sp 3} \  {D \sp 3}}+{{\left( {{51} \  {x \sp 2}}+{{10} \  x} 
\right)}
\  {D \sp 2}}+{{29} \  D}+{\frac{7}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

Operator multiplication corresponds to functional composition.

\spadcommand{p := x**2 + 1/x**2 }
$$
\frac{{x \sp 4}+1}{x \sp 2} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Integer)}

Since operator coefficients depend on {\tt x}, the multiplication is
not commutative.

\spadcommand{(a*b - b*a) p }
$$
\frac{-{{75} \  {x \sp 4}}+{{540} \  x} -{75}}{x \sp 4} 
$$
\returnType{Type: Fraction UnivariatePolynomial(x,Integer)}

%Original Page 397

When the coefficients of operator polynomials come from a field, as in
this case, it is possible to define operator division.  Division on
the left and division on the right yield different results when the
multiplication is non-commutative.

The results of
\spadfunFrom{leftDivide}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{rightDivide}{LinearOrdinaryDifferentialOperator1} are
quotient-remainder pairs satisfying: \newline

{\tt leftDivide(a,b) = [q, r]} such that  {\tt a = b*q + r} \newline
{\tt rightDivide(a,b) = [q, r]} such that  {\tt a = q*b + r} \newline

In both cases, the
\spadfunFrom{degree}{LinearOrdinaryDifferentialOperator1} of the
remainder, {\tt r}, is less than the degree of {\tt b}.

\spadcommand{ld := leftDivide(a,b) }
$$
\left[
{quotient={{5 \  x \  D}+7}}, {remainder=0} 
\right]
$$
\returnType{Type: 
Record(quotient: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer),
remainder: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer))}

\spadcommand{a = b * ld.quotient + ld.remainder }
$$
\begin{array}{@{}l}
{{{15} \  {x \sp 3} \  {D \sp 3}}+
{{\left( 
{{51} \  {x \sp 2}}+
{{10} \  x} 
\right)}
\  {D \sp 2}}+
{{29} \  D}+
{\frac{7}{x}}}=
\\
\\
\displaystyle
{{{15} \  {x \sp 3} \  {D \sp 3}}+
{{\left( {{51} \  {x \sp 2}}+
{{10} \  x} 
\right)}
\  {D \sp 2}}+
{{29} \  D}+{\frac{7}{x}}} 
\end{array}
$$
\returnType{Type: 
Equation LinearOrdinaryDifferentialOperator1 
Fraction UnivariatePolynomial(x,Integer)}

The operations of left and right division
are so-called because the quotient is obtained by dividing
{\tt a} on that side by {\tt b}.

\spadcommand{rd := rightDivide(a,b) }
$$
\left[
{quotient={{5 \  x \  D}+7}}, {remainder={{{10} \  D}+{\frac{5}{x}}}} 
\right]
$$
\returnType{Type: 
Record(quotient: 
LinearOrdinaryDifferentialOperator1 Fraction 
UnivariatePolynomial(x,Integer),
remainder: 
LinearOrdinaryDifferentialOperator1 Fraction 
UnivariatePolynomial(x,Integer))}

%Original Page 398

\spadcommand{a = rd.quotient * b + rd.remainder }
$$
\begin{array}{@{}l}
{{{15} \  {x \sp 3} \  {D \sp 3}}+
{{\left( {{51} \  {x \sp 2}}+{{10} \  x} 
\right)}
\  {D \sp 2}}+
{{29} \  D}+
{\frac{7}{x}}}=
\\
\\
\displaystyle
{{{15} \  {x \sp 3} \  {D \sp 3}}+
{{\left( {{51} \  {x \sp 2}}+
{{10} \  x} 
\right)}
\  {D \sp 2}}+
{{29} \  D}+
{\frac{7}{x}}} 
\end{array}
$$
\returnType{Type: Equation 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

Operations
\spadfunFrom{rightQuotient}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{rightRemainder}{LinearOrdinaryDifferentialOperator1} are
available if only one of the quotient or remainder are of interest to
you.  This is the quotient from right division.

\spadcommand{rightQuotient(a,b) }
$$
{5 \  x \  D}+7 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

This is the remainder from right division.
The corresponding ``left'' functions
\spadfunFrom{leftQuotient}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{leftRemainder}{LinearOrdinaryDifferentialOperator1}
are also available.

\spadcommand{rightRemainder(a,b) }
$$
{{10} \  D}+{\frac{5}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

For exact division, the operations
\spadfunFrom{leftExactQuotient}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{rightExactQuotient}{LinearOrdinaryDifferentialOperator1} are supplied.
These return the quotient but only if the remainder is zero.
The call {\tt rightExact\-Quotient(a,b)} would yield an error.

\spadcommand{leftExactQuotient(a,b) }
$$
{5 \  x \  D}+7 
$$
\returnType{Type: 
Union(LinearOrdinaryDifferentialOperator1 
Fraction UnivariatePolynomial(x,Integer),...)}

The division operations allow the computation of left and right greatest
common divisors (\spadfunFrom{leftGcd}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{rightGcd}{LinearOrdinaryDifferentialOperator1}) via remainder
sequences, and consequently the computation of left and right least common
multiples (\spadfunFrom{rightLcm}{LinearOrdinaryDifferentialOperator1} and
\spadfunFrom{leftLcm}{LinearOrdinaryDifferentialOperator1}).

\spadcommand{e := leftGcd(a,b) }
$$
{3 \  {x \sp 2} \  {D \sp 2}}+{2 \  D}+{\frac{1}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

Note that a greatest common divisor doesn't necessarily divide {\tt a}
and {\tt b} on both sides.  Here the left greatest common divisor does
not divide {\tt a} on the right.

\spadcommand{leftRemainder(a, e) }
$$
0 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

\spadcommand{rightRemainder(a, e) }
$$
{{10} \  D}+{\frac{5}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

Similarly, a least common multiple is not necessarily divisible from
both sides.

%Original Page 399

% NOTE: the book has a different answer
\spadcommand{f := rightLcm(a,b) }
$$
{{15} \  {x \sp 3} \  {D \sp 3}}+
{{\left( 
{{51} \  {x \sp 2}}+
{{10} \  x} 
\right)}
\  {D \sp 2}}+
{{29} \  D}+{\frac{7}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

% NOTE: the book has a different answer
\spadcommand{rightRemainder(f, b) }
$$
{{10} \  D}+{\frac{5}{x}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

% NOTE: the book has a different answer
\spadcommand{leftRemainder(f, b) }
$$
0 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LinearOrdinaryDifferentialOperator2}

{\tt LinearOrdinaryDifferentialOperator2(A, M)} is the domain of
linear ordinary differential operators with coefficients in the
differential ring {\tt A} and operating on {\tt M}, an {\tt A}-module.
This includes the cases of operators which are polynomials in {\tt D}
acting upon scalar or vector expressions of a single variable.  The
coefficients of the operator polynomials can be integers, rational
functions, matrices or elements of other domains.

\subsection{Differential Operators with Constant Coefficients}

This example shows differential operators with rational
number coefficients operating on univariate polynomials.

We begin by making type assignments so we can conveniently refer
to univariate polynomials in {\tt x} over the rationals.

\spadcommand{Q  := Fraction Integer }
$$
\mbox{\rm Fraction Integer} 
$$
\returnType{Type: Domain}

\spadcommand{PQ := UnivariatePolynomial('x, Q) }
$$
\mbox{\rm UnivariatePolynomial(x,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{x: PQ := 'x }
$$
x 
$$
\returnType{Type: UnivariatePolynomial(x,Fraction Integer)}

Now we assign {\tt Dx} to be the differential operator
\spadfunFrom{D}{LinearOrdinaryDifferentialOperator2}
corresponding to {\tt d/dx}.

\spadcommand{Dx: LODO2(Q, PQ) := D() }
$$
D 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))}

%Original Page 399

New operators are created as polynomials in {\tt D()}.

\spadcommand{a := Dx  + 1 }
$$
D+1 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))}

\spadcommand{b := a + 1/2*Dx**2 - 1/2 }
$$
{{\frac{1}{2}} \  {D \sp 2}}+D+{\frac{1}{2}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))}

To apply the operator {\tt a} to the value {\tt p} the usual function
call syntax is used.

\spadcommand{p := 4*x**2 + 2/3 }
$$
{4 \  {x \sp 2}}+{\frac{2}{3}} 
$$
\returnType{Type: UnivariatePolynomial(x,Fraction Integer)}

\spadcommand{a p }
$$
{4 \  {x \sp 2}}+{8 \  x}+{\frac{2}{3}} 
$$
\returnType{Type: UnivariatePolynomial(x,Fraction Integer)}

Operator multiplication is defined by the identity {\tt (a*b) p = a(b(p))}

\spadcommand{(a * b) p = a b p }
$$
{{2 \  {x \sp 2}}+{{12} \  x}+{\frac{37}{3}}}={{2 \  {x \sp 2}}+{{12} \  
x}+{\frac{37}{3}}} 
$$
\returnType{Type: Equation UnivariatePolynomial(x,Fraction Integer)}

Exponentiation follows from multiplication.

\spadcommand{c := (1/9)*b*(a + b)**2 }
$$
{{\frac{1}{72}} \  {D \sp 6}}
+{{\frac{5}{36}} \  {D \sp 5}}
+{{\frac{13}{24}} \  {D \sp 4}}
+{{\frac{19}{18}} \  {D \sp 3}}
+{{\frac{79}{72}} \  {D \sp 2}}
+{{\frac{7}{12}} \  D}
+{\frac{1}{8}} 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
Fraction Integer,
UnivariatePolynomial(x,Fraction Integer))}

Finally, note that operator expressions may be applied directly.

\spadcommand{(a**2 - 3/4*b + c) (p + 1) }
$$
{3 \  {x \sp 2}}+{{\frac{44}{3}} \  x}+{\frac{541}{36}} 
$$
\returnType{Type: UnivariatePolynomial(x,Fraction Integer)}

%Original Page 401

\subsection{
Differential Operators with Matrix Coefficients Operating on Vectors}

This is another example of linear ordinary differential operators with
non-commutative multiplication.  Unlike the rational function case,
the differential ring of square matrices (of a given dimension) with
univariate polynomial entries does not form a field.  Thus the number
of operations available is more limited.

%Original Page 402

In this section, the operators have three by three
matrix coefficients with polynomial entries.

\spadcommand{PZ   := UnivariatePolynomial(x,Integer)}
$$
UnivariatePolynomial(x,Integer) 
$$
\returnType{Type: Domain}

\spadcommand{x:PZ := 'x }
$$
x 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

\spadcommand{Mat  := SquareMatrix(3,PZ)}
$$
SquareMatrix(3,UnivariatePolynomial(x,Integer)) 
$$
\returnType{Type: Domain}

The operators act on the vectors considered as a {\tt Mat}-module.

\spadcommand{Vect := DPMM(3, PZ, Mat, PZ)}
$$
\begin{array}{@{}l}
{\rm DirectProductMatrixModule(3,}
\\
\displaystyle
{\rm \ \ UnivariatePolynomial(x,Integer),}
\\
\displaystyle
{\rm \ \ SquareMatrix(3,UnivariatePolynomial(x,Integer)),}
\\
\displaystyle
{\rm \ \ UnivariatePolynomial(x,Integer))}
\end{array}
$$
\returnType{Type: Domain}

\spadcommand{Modo := LODO2(Mat, Vect)}
$$
\begin{array}{@{}l}
{\rm LinearOrdinaryDifferentialOperator2(}
\\
\displaystyle
{\rm \ \ SquareMatrix(3,UnivariatePolynomial(x,Integer)),}
\\
\displaystyle
{\rm \ \ DirectProductMatrixModule(3,}
\\
\displaystyle
{\rm \ \ UnivariatePolynomial(x,Integer),}
\\
\displaystyle
{\rm \ \ SquareMatrix(3,UnivariatePolynomial(x,Integer)),}
\\
\displaystyle
{\rm \ \ UnivariatePolynomial(x,Integer)))}
\end{array}
$$
\returnType{Type: Domain}

The matrix {\tt m} is used as a coefficient and the vectors {\tt p}
and {\tt q} are operated upon.

\spadcommand{m:Mat := matrix [ [x**2,1,0],[1,x**4,0],[0,0,4*x**2] ]}
$$
\left[
\begin{array}{ccc}
{x \sp 2} & 1 & 0 \\ 
1 & {x \sp 4} & 0 \\ 
0 & 0 & {4 \  {x \sp 2}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(3,UnivariatePolynomial(x,Integer))}

\spadcommand{p:Vect := directProduct [3*x**2+1,2*x,7*x**3+2*x]}
$$
\left[
{{3 \  {x \sp 2}}+1}, {2 \  x}, {{7 \  {x \sp 3}}+{2 \  x}} 
\right]
$$
\returnType{Type: 
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))}

\spadcommand{q: Vect := m * p}
$$
\left[
{{3 \  {x \sp 4}}+{x \sp 2}+{2 \  x}}, {{2 \  {x \sp 5}}+{3 \  {x \sp 
2}}+1}, {{{28} \  {x \sp 5}}+{8 \  {x \sp 3}}} 
\right]
$$
\returnType{Type: 
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))}

%Original Page 403

Now form a few operators.

\spadcommand{Dx : Modo := D()}
$$
D 
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))}

\spadcommand{a : Modo := Dx  + m}
$$
D+{\left[ 
\begin{array}{ccc}
{x \sp 2} & 1 & 0 \\ 
1 & {x \sp 4} & 0 \\ 
0 & 0 & {4 \  {x \sp 2}} 
\end{array}
\right]}
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))}

\spadcommand{b : Modo := m*Dx  + 1}
$$
{{\left[ 
\begin{array}{ccc}
{x \sp 2} & 1 & 0 \\ 
1 & {x \sp 4} & 0 \\ 
0 & 0 & {4 \  {x \sp 2}} 
\end{array}
\right]}
\  D}+{\left[ 
\begin{array}{ccc}
1 & 0 & 0 \\ 
0 & 1 & 0 \\ 
0 & 0 & 1 
\end{array}
\right]}
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))}

\spadcommand{c := a*b }
$$
\begin{array}{@{}l}
{{\left[ 
\begin{array}{ccc}
{x \sp 2} & 1 & 0 \\ 
1 & {x \sp 4} & 0 \\ 
0 & 0 & {4 \  {x \sp 2}} 
\end{array}
\right]}
\  {D \sp 2}}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{ccc}
{{x \sp 4}+{2 \  x}+2} & {{x \sp 4}+{x \sp 2}} & 0 \\ 
{{x \sp 4}+{x \sp 2}} & {{x \sp 8}+{4 \  {x \sp 3}}+2} & 0 \\ 
0 & 0 & {{{16} \  {x \sp 4}}+{8 \  x}+1} 
\end{array}
\right]}
\  D}+
\\
\\
\displaystyle
{\left[ 
\begin{array}{ccc}
{x \sp 2} & 1 & 0 \\ 
1 & {x \sp 4} & 0 \\ 
0 & 0 & {4 \  {x \sp 2}} 
\end{array}
\right]}
\end{array}
$$
\returnType{Type: 
LinearOrdinaryDifferentialOperator2(
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer)))}

%Original Page 404

These operators can be applied to vector values.

\spadcommand{a p }
$$
\left[
{{3 \  {x \sp 4}}+{x \sp 2}+{8 \  x}}, {{2 \  {x \sp 5}}+{3 \  {x \sp 
2}}+3}, {{{28} \  {x \sp 5}}+{8 \  {x \sp 3}}+{{21} \  {x \sp 2}}+2} 
\right]
$$
\returnType{Type: 
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))}

\spadcommand{b p }
$$
\left[
{{6 \  {x \sp 3}}+{3 \  {x \sp 2}}+3}, {{2 \  {x \sp 4}}+{8 \  x}}, 
{{{84} \  {x \sp 4}}+{7 \  {x \sp 3}}+{8 \  {x \sp 2}}+{2 \  x}} 
\right]
$$
\returnType{Type: 
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))}

\spadcommand{(a + b + c) (p + q) }
$$
\begin{array}{@{}l}
\left[
{{{10} \  {x \sp 8}}+
{{12} \  {x \sp 7}}+
{{16} \  {x \sp 6}}+
{{30} \  {x \sp 5}}+
{{85} \  {x \sp 4}}+
{{94} \  {x \sp 3}}+
{{40} \  {x \sp 2}}+
{{40} \  x}+
{17}}, 
\right.
\\
\\
\displaystyle
{{10} \  {x \sp {12}}}+
{{10} \  {x \sp 9}}+
{{12} \  {x \sp 8}}+
{{92} \  {x \sp 7}}+
{6 \  {x \sp 6}}+
{{32} \  {x \sp 5}}+
{{72} \  {x \sp 4}}+
{{28} \  {x \sp 3}}+
{{49} \  {x \sp 2}}+
\\
\displaystyle
{{32} \  x}+
{19}, 
\\
\\
\displaystyle
\left.
{{{2240} \  {x \sp 8}}+
{{224} \  {x \sp 7}}+
{{1280} \  {x \sp 6}}+
{{3508} \  {x \sp 5}}+
{{492} \  {x \sp 4}}+
{{751} \  {x \sp 3}}+
{{98} \  {x \sp 2}}+
{{18} \  x}+
4} 
\right]
\end{array}
$$
\returnType{Type: 
DirectProductMatrixModule(3,
UnivariatePolynomial(x,Integer),
SquareMatrix(3,
UnivariatePolynomial(x,Integer)),
UnivariatePolynomial(x,Integer))}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{List}

A \index{list} is a finite collection of elements in a specified
order that can contain duplicates.  A list is a convenient structure
to work with because it is easy to add or remove elements and the
length need not be constant.  There are many different kinds of lists
in Axiom, but the default types (and those used most often) are
created by the {\tt List} constructor.  For example, there are objects
of type {\tt List Integer}, {\tt List Float} and {\tt List Polynomial
Fraction Integer}.  Indeed, you can even have {\tt List List List
Boolean} (that is, lists of lists of lists of Boolean values).  You
can have lists of any type of Axiom object.

%Original Page 405

\subsection{Creating Lists}

The easiest way to create a list with, for example, the elements
{\tt 2, 4, 5, 6} is to enclose the elements with square
brackets and separate the elements with commas.

The spaces after the commas are optional, but they do improve the
readability.

\spadcommand{[2, 4, 5, 6]}
$$
\left[
2, 4, 5, 6 
\right]
$$
\returnType{Type: List PositiveInteger}

To create a list with the single element {\tt 1}, you can use
either {\tt [1]} or the operation \spadfunFrom{list}{List}.

\spadcommand{[1]}
$$
\left[
1 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{list(1)}
$$
\left[
1 
\right]
$$
\returnType{Type: List PositiveInteger}

Once created, two lists {\tt k} and {\tt m} can be concatenated by
issuing {\tt append(k,m)}.  \spadfunFrom{append}{List} does {\it not}
physically join the lists, but rather produces a new list with the
elements coming from the two arguments.

\spadcommand{append([1,2,3],[5,6,7])}
$$
\left[
1, 2, 3, 5, 6, 7 
\right]
$$
\returnType{Type: List PositiveInteger}

Use \spadfunFrom{cons}{List} to append an element onto the front of a
list.

\spadcommand{cons(10,[9,8,7])}
$$
\left[
{10}, 9, 8, 7 
\right]
$$
\returnType{Type: List PositiveInteger}

\subsection{Accessing List Elements}

To determine whether a list has any elements, use the operation
\spadfunFrom{empty?}{List}.

\spadcommand{empty? [x+1]}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

Alternatively, equality with the list constant \spadfunFrom{nil}{List} can
be tested.

\spadcommand{([] = nil)@Boolean}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

We'll use this in some of the following examples.

\spadcommand{k := [4,3,7,3,8,5,9,2] }
$$
\left[
4, 3, 7, 3, 8, 5, 9, 2 
\right]
$$
\returnType{Type: List PositiveInteger}

%Original Page 406

Each of the next four expressions extracts the \spadfunFrom{first}{List}
element of {\tt k}.

\spadcommand{first k }
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{k.first }
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{k.1 }
$$
4 
$$
\returnType{Type: PositiveInteger}

\spadcommand{k(1) }
$$
4 
$$
\returnType{Type: PositiveInteger}

The last two forms generalize to {\tt k.i} and {\tt k(i)},
respectively, where $ 1 \leq i \leq n$ and {\tt n} equals the length
of {\tt k}.

This length is calculated by \spadopFrom{\#}{List}.

\spadcommand{n := \#k }
$$
8 
$$
\returnType{Type: PositiveInteger}

Performing an operation such as {\tt k.i} is sometimes referred to as
{\it indexing into k} or {\it elting into k}.  The latter phrase comes
about because the name of the operation that extracts elements is
called \spadfunFrom{elt}{List}.  That is, {\tt k.3} is just
alternative syntax for {\tt elt(k,3)}.  It is important to remember
that list indices begin with 1.  If we issue {\tt k := [1,3,2,9,5]}
then {\tt k.4} returns {\tt 9}.  It is an error to use an index that
is not in the range from {\tt 1} to the length of the list.

The last element of a list is extracted by any of the
following three expressions.

\spadcommand{last k }
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{k.last }
$$
2 
$$
\returnType{Type: PositiveInteger}

This form computes the index of the last element and then extracts the
element from the list.

\spadcommand{k.(\#k) }
$$
2 
$$
\returnType{Type: PositiveInteger}

%Original Page 407

\subsection{Changing List Elements}

We'll use this in some of the following examples.

\spadcommand{k := [4,3,7,3,8,5,9,2] }
$$
\left[
4, 3, 7, 3, 8, 5, 9, 2 
\right]
$$
\returnType{Type: List PositiveInteger}

List elements are reset by using the {\tt k.i} form on the left-hand
side of an assignment.  This expression resets the first element of
{\tt k} to {\tt 999}.

\spadcommand{k.1 := 999 }
$$
999 
$$
\returnType{Type: PositiveInteger}

As with indexing into a list, it is an error to use an index that is
not within the proper bounds.  Here you see that {\tt k} was modified.

\spadcommand{k }
$$
\left[
{999}, 3, 7, 3, 8, 5, 9, 2 
\right]
$$
\returnType{Type: List PositiveInteger}

The operation that performs the assignment of an element to a
particular position in a list is called \spadfunFrom{setelt}{List}.
This operation is {\it destructive} in that it changes the list.  In
the above example, the assignment returned the value {\tt 999} and
{\tt k} was modified.  For this reason, lists are called
\index{mutable} objects: it is possible to change part of a list
(mutate it) rather than always returning a new list reflecting the
intended modifications.

Moreover, since lists can share structure, changes to one list can
sometimes affect others.

\spadcommand{k := [1,2] }
$$
\left[
1, 2 
\right]
$$
\returnType{Type: List PositiveInteger}

\spadcommand{m := cons(0,k) }
$$
\left[
0, 1, 2 
\right]
$$
\returnType{Type: List Integer}

Change the second element of {\tt m}.

\spadcommand{m.2 := 99 }
$$
99 
$$
\returnType{Type: PositiveInteger}

See, {\tt m} was altered.

\spadcommand{m }
$$
\left[
0, {99}, 2 
\right]
$$
\returnType{Type: List Integer}

But what about {\tt k}?  It changed too!

\spadcommand{k  }
$$
\left[
{99}, 2 
\right]
$$
\returnType{Type: List PositiveInteger}

%Original Page 408

\subsection{Other Functions}

An operation that is used frequently in list processing is that
which returns all elements in a list after the first element.

\spadcommand{k := [1,2,3] }
$$
\left[
1, 2, 3 
\right]
$$
\returnType{Type: List PositiveInteger}

Use the \spadfunFrom{rest}{List} operation to do this.

\spadcommand{rest k }
$$
\left[
2, 3 
\right]
$$
\returnType{Type: List PositiveInteger}

To remove duplicate elements in a list {\tt k}, use
\spadfunFrom{removeDuplicates}{List}.

\spadcommand{removeDuplicates [4,3,4,3,5,3,4]}
$$
\left[
4, 3, 5 
\right]
$$
\returnType{Type: List PositiveInteger}

To get a list with elements in the order opposite to those in
a list {\tt k}, use \spadfunFrom{reverse}{List}.

\spadcommand{reverse [1,2,3,4,5,6]}
$$
\left[
6, 5, 4, 3, 2, 1 
\right]
$$
\returnType{Type: List PositiveInteger}

To test whether an element is in a list, use
\spadfunFrom{member?}{List}: {\tt member?(a,k)} returns {\tt true} or
{\tt false} depending on whether {\tt a} is in {\tt k} or not.

\spadcommand{member?(1/2,[3/4,5/6,1/2])}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{member?(1/12,[3/4,5/6,1/2])}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

As an exercise, the reader should determine how to get a list
containing all but the last of the elements in a given non-empty list
{\tt k}.\footnote{{\tt reverse(rest(reverse(k)))} works.}

\subsection{Dot, Dot}

Certain lists are used so often that Axiom provides an easy way of
constructing them.  If {\tt n} and {\tt m} are integers, then 
{\tt expand [n..m]} creates a list containing {\tt n, n+1, ... m}.  If 
{\tt n > m} then the list is empty.  It is actually permissible to leave
off the {\tt m} in the dot-dot construction (see below).

The dot-dot notation can be used more than once in a list construction
and with specific elements being given.  Items separated by dots are
called {\it segments.}

\spadcommand{[1..3,10,20..23]}
$$
\left[
{1..3}, {{10}..{10}}, {{20}..{23}} 
\right]
$$
\returnType{Type: List Segment PositiveInteger}

%Original Page 409

Segments can be expanded into the range of items between the
endpoints by using \spadfunFrom{expand}{Segment}.

\spadcommand{expand [1..3,10,20..23]}
$$
\left[
1, 2, 3, {10}, {20}, {21}, {22}, {23} 
\right]
$$
\returnType{Type: List Integer}

What happens if we leave off a number on the right-hand side of
\spadopFrom{..}{UniversalSegment}?

\spadcommand{expand [1..]}
$$
\left[
1, 2, 3, 4, 5, 6, 7, 8, 9, {10}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

What is created in this case is a {\tt Stream} which is a
generalization of a list.  See \domainref{Stream} for more information.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{LyndonWord}

Initialisations

\spadcommand{a:Symbol :='a }
$$
a 
$$
\returnType{Type: Symbol}

\spadcommand{b:Symbol :='b }
$$
b 
$$
\returnType{Type: Symbol}

\spadcommand{c:Symbol :='c }
$$
c 
$$
\returnType{Type: Symbol}

\spadcommand{lword:= LyndonWord(Symbol) }
$$
\mbox{\rm LyndonWord Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{magma := Magma(Symbol) }
$$
\mbox{\rm Magma Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{word   := OrderedFreeMonoid(Symbol) }
$$
\mbox{\rm OrderedFreeMonoid Symbol} 
$$
\returnType{Type: Domain}

All Lyndon words of with a, b, c to order 3

\spadcommand{LyndonWordsList1([a,b,c],3)\$lword     }
$$
\begin{array}{@{}l}
\left[
{\left[ 
{\left[ a \right]},
{\left[ b \right]},
{\left[ c \right]}
\right]},
{\left[ 
{\left[ a \  b \right]}, {\left[ a \  c \right]},{\left[ b \  c \right]}
\right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ {\left[ {a \sp 2} \  b 
\right]},
{\left[ {a \sp 2} \  c 
\right]},
{\left[ a \  {b \sp 2} 
\right]},
{\left[ a \  b \  c 
\right]},
{\left[ a \  c \  b 
\right]},
{\left[ a \  {c \sp 2} 
\right]},
{\left[ {b \sp 2} \  c 
\right]},
{\left[ b \  {c \sp 2} 
\right]}
\right]}
\right]
\end{array}
$$
\returnType{Type: OneDimensionalArray List LyndonWord Symbol}

All Lyndon words of with a, b, c to order 3 in flat list

\spadcommand{LyndonWordsList([a,b,c],3)\$lword}
$$
\begin{array}{@{}l}
\left[
{\left[ a \right]},
{\left[ b \right]},
{\left[ c \right]},
{\left[ a \  b \right]},
{\left[ a \  c \right]},
{\left[ b \  c \right]},
{\left[ {a \sp 2} \  b \right]},
{\left[ {a \sp 2} \  c \right]},
{\left[ a \  {b \sp 2} \right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ a \  b \  c \right]},
{\left[ a \  c \  b \right]},
{\left[ a \  {c \sp 2} \right]},
{\left[ {b \sp 2} \  c \right]},
{\left[ b \  {c \sp 2} \right]}
\right]
\end{array}
$$
\returnType{Type: List LyndonWord Symbol}

All Lyndon words of with a, b to order 5

\spadcommand{lw := LyndonWordsList([a,b],5)\$lword    }
$$
\begin{array}{@{}l}
\left[
\displaystyle
{\left[ a \right]},
{\left[ b \right]},
{\left[ a \  b \right]},
{\left[ {a \sp 2} \  b \right]},
{\left[ a \  {b \sp 2} \right]},
{\left[ {a \sp 3} \  b \right]},
{\left[ {a \sp 2} \  {b \sp 2} \right]},
{\left[ a \  {b \sp 3} \right]},
{\left[ {a \sp 4} \  b \right]},
\right.
\\
\\
\displaystyle
\left.
{\left[ {a \sp 3} \  {b \sp 2} \right]},
{\left[ {a \sp 2} \  b \  a \  b \right]},
{\left[ {a \sp 2} \  {b \sp 3} \right]},
{\left[ a \  b \  a \  {b \sp 2} \right]},
{\left[ a \  {b \sp 4} \right]}
\right]
\end{array}
$$
\returnType{Type: List LyndonWord Symbol}

\spadcommand{w1 : word := lw.4 :: word   }
$$
{a \sp 2} \  b 
$$
\returnType{Type: OrderedFreeMonoid Symbol}

\spadcommand{w2 : word := lw.5 :: word   }
$$
a \  {b \sp 2} 
$$
\returnType{Type: OrderedFreeMonoid Symbol}

Let's try factoring

\spadcommand{factor(a::word)\$lword }
$$
\left[
{\left[ a 
\right]}
\right]
$$
\returnType{Type: List LyndonWord Symbol}

\spadcommand{factor(w1*w2)\$lword }
$$
\left[
{\left[ {a \sp 2} \  b \  a \  {b \sp 2} 
\right]}
\right]
$$
\returnType{Type: List LyndonWord Symbol}

\spadcommand{factor(w2*w2)\$lword }
$$
\left[
{\left[ a \  {b \sp 2} 
\right]},
{\left[ a \  {b \sp 2} 
\right]}
\right]
$$
\returnType{Type: List LyndonWord Symbol}

\spadcommand{factor(w2*w1)\$lword }
$$
\left[
{\left[ a \  {b \sp 2} 
\right]},
{\left[ {a \sp 2} \  b 
\right]}
\right]
$$
\returnType{Type: List LyndonWord Symbol}

Checks and coercions

\spadcommand{lyndon?(w1)\$lword }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{lyndon?(w1*w2)\$lword }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{lyndon?(w2*w1)\$lword }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{lyndonIfCan(w1)\$lword }
$$
\left[
{a \sp 2} \  b 
\right]
$$
\returnType{Type: Union(LyndonWord Symbol,...)}

\spadcommand{lyndonIfCan(w2*w1)\$lword }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

\spadcommand{lyndon(w1)\$lword }
$$
\left[
{a \sp 2} \  b 
\right]
$$
\returnType{Type: LyndonWord Symbol}

\spadcommand{lyndon(w1*w2)\$lword }
$$
\left[
{a \sp 2} \  b \  a \  {b \sp 2} 
\right]
$$
\returnType{Type: LyndonWord Symbol}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Magma}

Initialisations

\spadcommand{x:Symbol :='x }
$$
x 
$$
\returnType{Type: Symbol}

\spadcommand{y:Symbol :='y }
$$
y 
$$
\returnType{Type: Symbol}

\spadcommand{z:Symbol :='z }
$$
z 
$$
\returnType{Type: Symbol}

\spadcommand{word := OrderedFreeMonoid(Symbol) }
$$
\mbox{\rm OrderedFreeMonoid Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{tree := Magma(Symbol) }
$$
\mbox{\rm Magma Symbol} 
$$
\returnType{Type: Domain}

Let's make some trees

\spadcommand{a:tree := x*x  }
$$
\left[
x, x 
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{b:tree := y*y  }
$$
\left[
y, y 
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{c:tree := a*b  }
$$
\left[
{\left[ x, x 
\right]},
{\left[ y, y 
\right]}
\right]
$$
\returnType{Type: Magma Symbol}

Query the trees

\spadcommand{left c }
$$
\left[
x, x 
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{right c }
$$
\left[
y, y 
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{length c }
$$
4 
$$
\returnType{Type: PositiveInteger}

Coerce to the monoid

\spadcommand{c::word }
$$
{x \sp 2} \  {y \sp 2} 
$$
\returnType{Type: OrderedFreeMonoid Symbol}

Check ordering

\spadcommand{a < b }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{a < c }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{b < c }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Navigate the tree

\spadcommand{first c }
$$
x 
$$
\returnType{Type: Symbol}

\spadcommand{rest c }
$$
\left[
x, {\left[ y, y 
\right]}
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{rest rest c  }
$$
\left[
y, y 
\right]
$$
\returnType{Type: Magma Symbol}

Check ordering

\spadcommand{ax:tree := a*x  }
$$
\left[
{\left[ x, x 
\right]},
x 
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{xa:tree := x*a  }
$$
\left[
x, {\left[ x, x 
\right]}
\right]
$$
\returnType{Type: Magma Symbol}

\spadcommand{xa < ax }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{lexico(xa,ax) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{MakeFunction}

It is sometimes useful to be able to define a function given by
the result of a calculation.

Suppose that you have obtained the following expression after several
computations and that you now want to tabulate the numerical values of
{\tt f} for {\tt x} between {\tt -1} and {\tt +1} with increment 
{\tt 0.1}.

\spadcommand{expr := (x - exp x + 1)**2 * (sin(x**2) * x + 1)**3 }
$$
\begin{array}{@{}l}
{{\left( 
{{x \sp 3} \  {{e \sp x} \sp 2}}+
{{\left( -{2 \  {x \sp 4}} -{2 \ {x \sp 3}} 
\right)}\  {e \sp x}}+
{x \sp 5}+
{2 \  {x \sp 4}}+
{x \sp 3} 
\right)}\  {{\sin 
\left(
{{x \sp 2}} 
\right)}\sp 3}}+
\\
\\
\displaystyle
{{\left( 
{3 \  {x \sp 2} \  {{e \sp x} \sp 2}}+
{{\left( -{6 \  {x \sp 3}} -
{6 \  {x \sp 2}} 
\right)}\  {e \sp x}}+
{3 \  {x \sp 4}}+
{6 \  {x \sp 3}}+
{3 \  {x \sp 2}} 
\right)}
\  {{\sin 
\left(
{{x \sp 2}} 
\right)}\sp 2}}+
\\
\\
\displaystyle
{{\left( 
{3 \  x \  {{e \sp x} \sp 2}}+
{{\left( -{6 \  {x \sp 2}} -{6\  x} 
\right)}\  {e \sp x}}+
{3 \  {x \sp 3}}+
{6 \  {x \sp 2}}+
{3 \  x} 
\right)}\  {\sin 
\left(
{{x \sp 2}} 
\right)}}+
{{e\sp x} \sp 2}+
\\
\\
\displaystyle
{{\left( 
-{2 \  x} -
2 
\right)}\  {e \sp x}}+
{x \sp 2}+{2 \  x}+
1 
\end{array}
$$
\returnType{Type: Expression Integer}

You could, of course, use the function \spadfunFrom{eval}{Expression}
within a loop and evaluate {\tt expr} twenty-one times, but this would
be quite slow.  A better way is to create a numerical function {\tt f}
such that {\tt f(x)} is defined by the expression {\tt expr} above,
but without retyping {\tt expr}!  The package {\tt MakeFunction}
provides the operation \spadfunFrom{function}{MakeFunction} which does
exactly this.

Issue this to create the function {\tt f(x)} given by {\tt expr}.

\spadcommand{function(expr, f, x) }
$$
f 
$$
\returnType{Type: Symbol}

To tabulate {\tt expr}, we can now quickly evaluate {\tt f} 21 times.

\spadcommand{tbl := [f(0.1 * i - 1) for i in 0..20]; }
$$
\begin{array}{@{}l}
\left[
{0.0005391844\ 0362701574}, 
{0.0039657551\ 1844206653}, 
\right.
\\
\displaystyle
{0.0088545187\ 4833983689\ 2}, 
{0.0116524883\ 0907069695}, 
\\
\displaystyle
{0.0108618220\ 9245751364\ 5}, 
{0.0076366823\ 2120869965\ 06}, 
\\
\displaystyle
{0.0040584985\ 7597822062\ 55},  
{0.0015349542\ 8910500836\ 48}, 
\\
\displaystyle
{0.0003424903\ 1549879905\ 716},  
{0.0000233304\ 8276098819\ 6001}, 
\\
\displaystyle
{0.0},
{0.0000268186\ 8782862599\ 4229}, 
\\
\displaystyle
{0.0004691571\ 3720051642\ 621}, 
{0.0026924576\ 5968519586\ 08}, 
\\
\displaystyle
{0.0101486881\ 7369135148\ 8}, 
{0.0313833725\ 8543810564\ 3},
\\
\displaystyle
{0.0876991144\ 5154615297\ 9},
{0.2313019789\ 3439968362},
\\
\displaystyle
{0.5843743955\ 958098772},
{1.4114930171\ 992819197},
\\
\displaystyle
\left.
{3.2216948276\ 75164252} 
\right]
\end{array}
$$
\returnType{Type: List Float}

%Original Page 410

Use the list {\tt [x1,...,xn]} as the
third argument to \spadfunFrom{function}{MakeFunction}
to create a multivariate function {\tt f(x1,...,xn)}.

\spadcommand{e := (x - y + 1)**2 * (x**2 * y + 1)**2 }
$$
\begin{array}{@{}l}
{{x \sp 4} \  {y \sp 4}}+
{{\left( 
-{2 \  {x \sp 5}} -
{2 \  {x \sp 4}}+
{2 \  {x \sp 2}} 
\right)}\  {y \sp 3}}+
{{\left( 
{x \sp 6}+
{2 \  {x \sp 5}}+
{x \sp 4} -
{4 \  {x \sp 3}} -
{4 \  {x \sp 2}}+
1 
\right)}\  {y \sp 2}}+
\\
\\
\displaystyle
{{\left( {2 \  {x \sp 4}}+
{4 \  {x \sp 3}}+
{2 \  {x \sp 2}} -
{2 \  x} -
2 
\right)}\  y}+
{x \sp 2}+
{2 \  x}+
1 
\end{array}
$$
\returnType{Type: Polynomial Integer}

\spadcommand{function(e, g, [x, y]) }
$$
g 
$$
\returnType{Type: Symbol}

In the case of just two variables, they can be given as arguments
without making them into a list.

\spadcommand{function(e, h, x, y) }
$$
h 
$$
\returnType{Type: Symbol}

Note that the functions created by \spadfunFrom{function}{MakeFunction}
are not limited to floating point numbers, but can be applied to any type
for which they are defined.

\spadcommand{m1 := squareMatrix [ [1, 2], [3, 4] ] }
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
3 & 4 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{m2 := squareMatrix [ [1, 0], [-1, 1] ] }
$$
\left[
\begin{array}{cc}
1 & 0 \\ 
-1 & 1 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{h(m1, m2) }
$$
\left[
\begin{array}{cc}
-{7836} & {8960} \\ 
-{17132} & {19588} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

For more information, see \sectionref{ugUserMake}.

%Original Page 411

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{MappingPackage1}

Function are objects of type {\tt Mapping}.  In this section we
demonstrate some library operations from the packages 
{\tt MappingPackage1}, {\tt MappingPackage2}, and {\tt MappingPackage3}
that manipulate and create functions.  Some terminology: a 
{\it nullary} function takes no arguments, a {\it unary} function takes 
one argument, and a {\it binary} function takes two arguments.

We begin by creating an example function that raises a
rational number to an integer exponent.

\spadcommand{power(q: FRAC INT, n: INT): FRAC INT == q**n }
\begin{verbatim}
Function declaration power : (Fraction Integer,Integer) -> 
   Fraction Integer has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

\spadcommand{power(2,3) }
\begin{verbatim}
Compiling function power with type (Fraction Integer,Integer) -> 
   Fraction Integer 
\end{verbatim}
$$
8 
$$
\returnType{Type: Fraction Integer}

The \spadfunFrom{twist}{MappingPackage3} operation transposes the
arguments of a binary function.  Here {\tt rewop(a, b)} is 
{\tt power(b, a)}.

\spadcommand{rewop := twist power }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: ((Integer,Fraction Integer) -> Fraction Integer)}

This is $2^3.$

\spadcommand{rewop(3, 2) }
$$
8 
$$
\returnType{Type: Fraction Integer}

Now we define {\tt square} in terms of {\tt power}.

\spadcommand{square: FRAC INT -> FRAC INT }
\returnType{Type: Void}

The \spadfunFrom{curryRight}{MappingPackage3} operation creates a
unary function from a binary one by providing a constant argument on
the right.

\spadcommand{square:= curryRight(power, 2) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (Fraction Integer -> Fraction Integer)}

Likewise, the \spadfunFrom{curryLeft}{MappingPackage3} operation
provides a constant argument on the left.

\spadcommand{square 4 }
$$
16 
$$
\returnType{Type: Fraction Integer}

The \spadfunFrom{constantRight}{MappingPackage3} operation creates
(in a trivial way) a binary function from a unary one:
{\tt constantRight(f)} is the function {\tt g} such that
{\tt g(a,b)= f(a).}

\spadcommand{squirrel:= constantRight(square)\$MAPPKG3(FRAC INT,FRAC INT,FRAC INT) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)}

%Original Page 412

Likewise, {\tt constantLeft(f)} is the function {\tt g} such that 
{\tt g(a,b)= f(b).}

\spadcommand{squirrel(1/2, 1/3) }
$$
\frac{1}{4} 
$$
\returnType{Type: Fraction Integer}

The \spadfunFrom{curry}{MappingPackage2} operation makes a unary
function nullary.

\spadcommand{sixteen := curry(square, 4/1) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (() -> Fraction Integer)}

\spadcommand{sixteen() }
$$
16 
$$
\returnType{Type: Fraction Integer}

The \spadopFrom{*}{MappingPackage3} operation constructs composed
functions.

\spadcommand{square2:=square*square }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (Fraction Integer -> Fraction Integer)}

\spadcommand{square2  3 }
$$
81 
$$
\returnType{Type: Fraction Integer}

Use the \spadopFrom{**}{MappingPackage1} operation to create functions
that are {\tt n}-fold iterations of other functions.

\spadcommand{sc(x: FRAC INT): FRAC INT == x + 1 }
\begin{verbatim}
Function declaration sc : Fraction Integer -> 
   Fraction Integer has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

This is a list of {\tt Mapping} objects.

\spadcommand{incfns := [sc**i for i in 0..10] }
$$
\begin{array}{@{}l}
\left[
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\right.
\\
\displaystyle
\left.
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)}, 
\mbox{theMap(...)} 
\right]
\end{array}
$$
\returnType{Type: List (Fraction Integer -> Fraction Integer)}

This is a list of applications of those functions.

\spadcommand{[f 4 for f in incfns] }
$$
\left[
4, 5, 6, 7, 8, 9, {10}, {11}, {12}, {13}, {14} 
\right]
$$
\returnType{Type: List Fraction Integer}

%Original Page 413

Use the \spadfunFrom{recur}{MappingPackage1}
operation for recursion:

{\tt g := recur f} means {\tt g(n,x) == f(n,f(n-1,...f(1,x))).}

\spadcommand{times(n:NNI, i:INT):INT == n*i }
\begin{verbatim}
Function declaration times : (NonNegativeInteger,Integer) -> 
   Integer has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

\spadcommand{r := recur(times) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: ((NonNegativeInteger,Integer) -> Integer)}

This is a factorial function.

\spadcommand{fact := curryRight(r, 1) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (NonNegativeInteger -> Integer)}

\spadcommand{fact 4 }
$$
24 
$$
\returnType{Type: PositiveInteger}

Constructed functions can be used within other functions.

\begin{verbatim}
mto2ton(m, n) ==
  raiser := square**n
  raiser m
\end{verbatim}
\returnType{Type: Void}

This is $3^{2^3}.$

\spadcommand{mto2ton(3, 3) }
\begin{verbatim}
   Compiling function mto2ton with type (PositiveInteger,
      PositiveInteger) -> Fraction Integer 
\end{verbatim}
$$
6561 
$$
\returnType{Type: Fraction Integer}

Here {\tt shiftfib} is a unary function that modifies its argument.

\begin{verbatim}
shiftfib(r: List INT) : INT ==
  t := r.1
  r.1 := r.2
  r.2 := r.2 + t
  t

Function declaration shiftfib : List Integer -> Integer 
   has been added to workspace.
\end{verbatim}
\returnType{Type: Void}

By currying over the argument we get a function with private state.

\spadcommand{fibinit: List INT := [0, 1] }
$$
\left[
0, 1 
\right]
$$
\returnType{Type: List Integer}

%Original Page 414

\spadcommand{fibs := curry(shiftfib, fibinit) }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: (() -> Integer)}

\spadcommand{[fibs() for i in 0..30] }
$$
\begin{array}{@{}l}
\left[
0, 1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55}, 
{89}, {144}, {233}, {377}, {610}, {987}, {1597}, 
\right.
\\
\displaystyle
{2584}, {4181}, {6765}, {10946}, {17711}, {28657}, {46368}, 
{75025}, {121393}, {196418}, 
\\
\displaystyle
\left.
{317811}, {514229}, {832040} 
\right]
\end{array}
$$
\returnType{Type: List Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Matrix}

The {\tt Matrix} domain provides arithmetic operations on matrices
and standard functions from linear algebra.
This domain is similar to the {\tt TwoDimensionalArray} domain, except
that the entries for {\tt Matrix} must belong to a {\tt Ring}.

\subsection{Creating Matrices}

There are many ways to create a matrix from a collection of values or
from existing matrices.

If the matrix has almost all items equal to the same value, use
\spadfunFrom{new}{Matrix} to create a matrix filled with that value
and then reset the entries that are different.

\spadcommand{m : Matrix(Integer) := new(3,3,0) }
$$
\left[
\begin{array}{ccc}
0 & 0 & 0 \\ 
0 & 0 & 0 \\ 
0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

To change the entry in the second row, third column to {\tt 5}, use
\spadfunFrom{setelt}{Matrix}.

\spadcommand{setelt(m,2,3,5) }
$$
5 
$$
\returnType{Type: PositiveInteger}

An alternative syntax is to use assignment.

\spadcommand{m(1,2) := 10 }
$$
10 
$$
\returnType{Type: PositiveInteger}

The matrix was {\it destructively modified}.

\spadcommand{m }
$$
\left[
\begin{array}{ccc}
0 & {10} & 0 \\ 
0 & 0 & 5 \\ 
0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

%Original Page 415

If you already have the matrix entries as a list of lists, use
\spadfunFrom{matrix}{Matrix}.

\spadcommand{matrix [ [1,2,3,4],[0,9,8,7] ]}
$$
\left[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\ 
0 & 9 & 8 & 7 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

If the matrix is diagonal, use \spadfunFrom{diagonalMatrix}{Matrix}.

\spadcommand{dm := diagonalMatrix [1,x**2,x**3,x**4,x**5] }
$$
\left[
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\ 
0 & {x \sp 2} & 0 & 0 & 0 \\ 
0 & 0 & {x \sp 3} & 0 & 0 \\ 
0 & 0 & 0 & {x \sp 4} & 0 \\ 
0 & 0 & 0 & 0 & {x \sp 5} 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

Use \spadfunFrom{setRow}{Matrix} and \spadfunFrom{setColumn}{Matrix}
to change a row or column of a matrix.

\spadcommand{setRow!(dm,5,vector [1,1,1,1,1]) }
$$
\left[
\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\ 
0 & {x \sp 2} & 0 & 0 & 0 \\ 
0 & 0 & {x \sp 3} & 0 & 0 \\ 
0 & 0 & 0 & {x \sp 4} & 0 \\ 
1 & 1 & 1 & 1 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

\spadcommand{setColumn!(dm,2,vector [y,y,y,y,y]) }
$$
\left[
\begin{array}{ccccc}
1 & y & 0 & 0 & 0 \\ 
0 & y & 0 & 0 & 0 \\ 
0 & y & {x \sp 3} & 0 & 0 \\ 
0 & y & 0 & {x \sp 4} & 0 \\ 
1 & y & 1 & 1 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

Use \spadfunFrom{copy}{Matrix} to make a copy of a matrix.

\spadcommand{cdm := copy(dm) }
$$
\left[
\begin{array}{ccccc}
1 & y & 0 & 0 & 0 \\ 
0 & y & 0 & 0 & 0 \\ 
0 & y & {x \sp 3} & 0 & 0 \\ 
0 & y & 0 & {x \sp 4} & 0 \\ 
1 & y & 1 & 1 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

This is useful if you intend to modify a matrix destructively but
want a copy of the original.

\spadcommand{setelt(dm,4,1,1-x**7) }
$$
-{x \sp 7}+1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{[dm,cdm] }
$$
\left[
{\left[ 
\begin{array}{ccccc}
1 & y & 0 & 0 & 0 \\ 
0 & y & 0 & 0 & 0 \\ 
0 & y & {x \sp 3} & 0 & 0 \\ 
{-{x \sp 7}+1} & y & 0 & {x \sp 4} & 0 \\ 
1 & y & 1 & 1 & 1 
\end{array}
\right]},
{\left[ 
\begin{array}{ccccc}
1 & y & 0 & 0 & 0 \\ 
0 & y & 0 & 0 & 0 \\ 
0 & y & {x \sp 3} & 0 & 0 \\ 
0 & y & 0 & {x \sp 4} & 0 \\ 
1 & y & 1 & 1 & 1 
\end{array}
\right]}
\right]
$$
\returnType{Type: List Matrix Polynomial Integer}

%Original Page 416

Use \spadfunFrom{subMatrix}{Matrix} to extract part of an existing
matrix.  The syntax is {\tt subMatrix({\it m, firstrow, lastrow,
firstcol, lastcol})}.

\spadcommand{subMatrix(dm,2,3,2,4) }
$$
\left[
\begin{array}{ccc}
y & 0 & 0 \\ 
y & {x \sp 3} & 0 
\end{array}
\right]
$$
\returnType{Type: Matrix Polynomial Integer}

To change a submatrix, use \spadfunFrom{setsubMatrix}{Matrix}.

\spadcommand{d := diagonalMatrix [1.2,-1.3,1.4,-1.5] }
$$
\left[
\begin{array}{cccc}
{1.2} & {0.0} & {0.0} & {0.0} \\ 
{0.0} & -{1.3} & {0.0} & {0.0} \\ 
{0.0} & {0.0} & {1.4} & {0.0} \\ 
{0.0} & {0.0} & {0.0} & -{1.5} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}

If {\tt e} is too big to fit where you specify, an error message is
displayed.  Use \spadfunFrom{subMatrix}{Matrix} to extract part of
{\tt e}, if necessary.

\spadcommand{e := matrix [ [6.7,9.11],[-31.33,67.19] ] }
$$
\left[
\begin{array}{cc}
{6.7} & {9.11} \\ 
-{31.33} & {67.19} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}

This changes the submatrix of {\tt d} whose upper left corner is
at the first row and second column and whose size is that of {\tt e}.

\spadcommand{setsubMatrix!(d,1,2,e) }
$$
\left[
\begin{array}{cccc}
{1.2} & {6.7} & {9.11} & {0.0} \\ 
{0.0} & -{31.33} & {67.19} & {0.0} \\ 
{0.0} & {0.0} & {1.4} & {0.0} \\ 
{0.0} & {0.0} & {0.0} & -{1.5} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}

\spadcommand{d }
$$
\left[
\begin{array}{cccc}
{1.2} & {6.7} & {9.11} & {0.0} \\ 
{0.0} & -{31.33} & {67.19} & {0.0} \\ 
{0.0} & {0.0} & {1.4} & {0.0} \\ 
{0.0} & {0.0} & {0.0} & -{1.5} 
\end{array}
\right]
$$
\returnType{Type: Matrix Float}

Matrices can be joined either horizontally or vertically to make
new matrices.

\spadcommand{a := matrix [ [1/2,1/3,1/4],[1/5,1/6,1/7] ] }
$$
\left[
\begin{array}{ccc}
\displaystyle {\frac{1}{2}} & \displaystyle {\frac{1}{3}} & 
\displaystyle {\frac{1}{4}} \\ 
\\
\displaystyle {\frac{1}{5}} & \displaystyle {\frac{1}{6}} & 
\displaystyle {\frac{1}{7}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

%Original Page 417

\spadcommand{b := matrix [ [3/5,3/7,3/11],[3/13,3/17,3/19] ] }
$$
\left[
\begin{array}{ccc}
{\displaystyle \frac{3}{5}} & \displaystyle {\frac{3}{7}} & 
 \displaystyle {\frac{3}{11}} \\ 
\\
 \displaystyle {\frac{3}{13}} & \displaystyle {\frac{3}{17}} & 
 \displaystyle {\frac{3}{19}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

Use \spadfunFrom{horizConcat}{Matrix} to append them side to side.
The two matrices must have the same number of rows.

\spadcommand{horizConcat(a,b) }
$$
\left[
\begin{array}{cccccc}
 \displaystyle {\frac{1}{2}} & \displaystyle {\frac{1}{3}} & 
 \displaystyle {\frac{1}{4}} & \displaystyle {\frac{3}{5}} & 
 \displaystyle {\frac{3}{7}} & \displaystyle {\frac{3}{11}} \\ 
\\
 \displaystyle {\frac{1}{5}} & \displaystyle {\frac{1}{6}} & 
 \displaystyle {\frac{1}{7}} & \displaystyle {\frac{3}{13}} & 
 \displaystyle {\frac{3}{17}} & \displaystyle {\frac{3}{19}}
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

Use \spadfunFrom{vertConcat}{Matrix} to stack one upon the other.
The two matrices must have the same number of columns.

\spadcommand{vab := vertConcat(a,b) }
$$
\left[
\begin{array}{ccc}
\displaystyle 
{\displaystyle \frac{1}{2}} & \displaystyle {\frac{1}{3}} & 
 \displaystyle {\frac{1}{4}} \\ 
\\
{\displaystyle \frac{1}{5}} & \displaystyle {\frac{1}{6}} & 
 \displaystyle {\frac{1}{7}} \\ 
\\
{\displaystyle \frac{3}{5}} & \displaystyle {\frac{3}{7}} & 
 \displaystyle {\frac{3}{11}} \\ 
\\
{\displaystyle \frac{3}{13}} & \displaystyle {\frac{3}{17}} & 
 \displaystyle {\frac{3}{19}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

The operation \spadfunFrom{transpose}{Matrix} is used to create a new
matrix by reflection across the main diagonal.

\spadcommand{transpose vab }
$$
\left[
\begin{array}{cccc}
{\displaystyle \frac{1}{2}} & \displaystyle {\frac{1}{5}} & 
 \displaystyle {\frac{3}{5}} & \displaystyle {\frac{3}{13}} \\ 
\\
{\displaystyle \frac{1}{3}} & \displaystyle {\frac{1}{6}} & 
 \displaystyle {\frac{3}{7}} & \displaystyle {\frac{3}{17}} \\ 
\\
{\displaystyle \frac{1}{4}} & \displaystyle {\frac{1}{7}} & 
 \displaystyle {\frac{3}{11}} & \displaystyle {\frac{3}{19}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

\subsection{Operations on Matrices}

Axiom provides both left and right scalar multiplication.

\spadcommand{m := matrix [ [1,2],[3,4] ] }
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
3 & 4 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

\spadcommand{4 * m * (-5)}
$$
\left[
\begin{array}{cc}
-{20} & -{40} \\ 
-{60} & -{80} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

You can add, subtract, and multiply matrices provided, of course, that
the matrices have compatible dimensions.  If not, an error message is
displayed.

\spadcommand{n := matrix([ [1,0,-2],[-3,5,1] ]) }
$$
\left[
\begin{array}{ccc}
1 & 0 & -2 \\ 
-3 & 5 & 1 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

%Original Page 418

This following product is defined but {\tt n * m} is not.

\spadcommand{m * n }
$$
\left[
\begin{array}{ccc}
-5 & {10} & 0 \\ 
-9 & {20} & -2 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

The operations \spadfunFrom{nrows}{Matrix} and
\spadfunFrom{ncols}{Matrix} return the number of rows and columns of a
matrix.  You can extract a row or a column of a matrix using the
operations \spadfunFrom{row}{Matrix} and \spadfunFrom{column}{Matrix}.
The object returned is a {\tt Vector}.

Here is the third column of the matrix {\tt n}.

\spadcommand{vec := column(n,3)  }
$$
\left[
-2, 1 
\right]
$$
\returnType{Type: Vector Integer}

You can multiply a matrix on the left by a ``row vector'' and on the right
by a ``column vector.''

\spadcommand{vec * m }
$$
\left[
1, 0 
\right]
$$
\returnType{Type: Vector Integer}

Of course, the dimensions of the vector and the matrix must be compatible
or an error message is returned.

\spadcommand{m * vec }
$$
\left[
0, -2 
\right]
$$
\returnType{Type: Vector Integer}

The operation \spadfunFrom{inverse}{Matrix} computes the inverse of a
matrix if the matrix is invertible, and returns {\tt "failed"} if not.

This Hilbert matrix is invertible.

\spadcommand{hilb := matrix([ [1/(i + j) for i in 1..3] for j in 1..3]) }
$$
\left[
\begin{array}{ccc}
\displaystyle
{\frac{1}{2}} & \displaystyle {\frac{1}{3}} & \displaystyle {\frac{1}{4}} \\
\\ 
\displaystyle
{\frac{1}{3}} & \displaystyle {\frac{1}{4}} & \displaystyle {\frac{1}{5}} \\ 
\\
\displaystyle
{\frac{1}{4}} & \displaystyle {\frac{1}{5}} & \displaystyle {\frac{1}{6}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction Integer}

\spadcommand{inverse(hilb) }
$$
\left[
\begin{array}{ccc}
{72} & -{240} & {180} \\ 
-{240} & {900} & -{720} \\ 
{180} & -{720} & {600} 
\end{array}
\right]
$$
\returnType{Type: Union(Matrix Fraction Integer,...)}

This matrix is not invertible.

\spadcommand{mm := matrix([ [1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16] ]) }
$$
\left[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\ 
5 & 6 & 7 & 8 \\ 
9 & {10} & {11} & {12} \\ 
{13} & {14} & {15} & {16} 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

\spadcommand{inverse(mm) }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

%Original Page 419

The operation \spadfunFrom{determinant}{Matrix} computes the
determinant of a matrix provided that the entries of the matrix belong
to a {\tt CommutativeRing}.

The above matrix {\tt mm} is not invertible and, hence, must have
determinant {\tt 0}.

\spadcommand{determinant(mm) }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

The operation \spadfunFrom{trace}{SquareMatrix} computes the trace of
a {\em square} matrix.

\spadcommand{trace(mm) }
$$
34 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{rank}{Matrix} computes the {\it rank} of a
matrix: the maximal number of linearly independent rows or columns.

\spadcommand{rank(mm) }
$$
2 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{nullity}{Matrix} computes the {\it nullity} of
a matrix: the dimension of its null space.

\spadcommand{nullity(mm) }
$$
2 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{nullSpace}{Matrix} returns a list
containing a basis for the null space of a matrix.  Note that the
nullity is the number of elements in a basis for the null space.

\spadcommand{nullSpace(mm) }
$$
\left[
{\left[ 1, -2, 1, 0 
\right]},
{\left[ 2, -3, 0, 1 
\right]}
\right]
$$
\returnType{Type: List Vector Integer}

The operation \spadfunFrom{rowEchelon}{Matrix} returns the row echelon
form of a matrix.  It is easy to see that the rank of this matrix is
two and that its nullity is also two.

\spadcommand{rowEchelon(mm) }
$$
\left[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\ 
0 & 4 & 8 & {12} \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: Matrix Integer}

For more information on related topics, see 
\sectionref{ugIntroTwoDim}, 
\sectionref{ugProblemEigen},\\
\sectionref{ugxFloatHilbert},
\domainref{Permanent}, 
\domainref{Vector},\\ 
\domainref{OneDimensionalArray},
and \domainref{TwoDimensionalArray}.

%Original Page 420

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Multiset}

The domain {\tt Multiset(R)} is similar to {\tt Set(R)} except that
multiplicities (counts of duplications) are maintained and displayed.
Use the operation \spadfunFrom{multiset}{Multiset} to create multisets
from lists.  All the standard operations from sets are available for
multisets.  An element with multiplicity greater than one has the
multiplicity displayed first, then a colon, and then the element.

Create a multiset of integers.

\spadcommand{s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]}
$$
\left\{
7, {2 \mbox{\rm : } 5}, {3 \mbox{\rm : } 3}, 1, {10}, 6, {4 
\mbox{\rm : } 4}, {2 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset PositiveInteger}

The operation {\tt insert!} adds an element to a multiset.

\spadcommand{insert!(3,s)}
$$
\left\{
7, {2 \mbox{\rm : } 5}, {4 \mbox{\rm : } 3}, 1, {10}, 6, {4 
\mbox{\rm : } 4}, {2 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset PositiveInteger}

Use {\tt remove!} to remove an element.  If a third argument is
present, it specifies how many instances to remove. Otherwise all
instances of the element are removed.  Display the resulting multiset.

\spadcommand{remove!(3,s,1); s}
$$
\left\{
7, {2 \mbox{\rm : } 5}, {3 \mbox{\rm : } 3}, 1, {10}, 6, {4 
\mbox{\rm : } 4}, {2 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset PositiveInteger}

\spadcommand{remove!(5,s); s}
$$
\left\{
7, {3 \mbox{\rm : } 3}, 1, {10}, 6, {4 \mbox{\rm : } 4}, {2 
\mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset PositiveInteger}

The operation {\tt count} returns the number of copies of a given value.

\spadcommand{count(5,s)}
$$
0 
$$
\returnType{Type: NonNegativeInteger}

A second multiset.

\spadcommand{t := multiset [2,2,2,-9]}
$$
\left\{
-9, {3 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset Integer}

The {\tt union} of two multisets is additive.

\spadcommand{U := union(s,t)}
$$
\left\{
7, {3 \mbox{\rm : } 3}, 1, -9, {10}, 6, {4 \mbox{\rm : } 
4}, {5 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset Integer}

The {\tt intersect} operation gives the elements that are in
common, with additive multiplicity.

\spadcommand{I := intersect(s,t)}
$$
\left\{
{5 \mbox{\rm : } 2} 
\right\}
$$
\returnType{Type: Multiset Integer}

The {\tt difference} of {\tt s} and {\tt t} consists of the elements
that {\tt s} has but {\tt t} does not.  Elements are regarded as
indistinguishable, so that if {\tt s} and {\tt t} have any element in
common, the {\tt difference} does not contain that element.

\spadcommand{difference(s,t)}
$$
\left\{
7, {3 \mbox{\rm : } 3}, 1, {10}, 6, {4 \mbox{\rm : } 4} 
\right\}
$$
\returnType{Type: Multiset Integer}

The {\tt symmetricDifference} is the {\tt union} of {\tt difference(s, t)} 
and {\tt difference(t, s)}.

\spadcommand{S := symmetricDifference(s,t)}
$$
\left\{
7, {3 \mbox{\rm : } 3}, 1, -9, {10}, 6, {4 \mbox{\rm : } 4} 
\right\}
$$
\returnType{Type: Multiset Integer}

%Original Page 421

Check that the {\tt union} of the {\tt symmetricDifference} and
the {\tt intersect} equals the {\tt union} of the elements.

\spadcommand{(U = union(S,I))@Boolean}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Check some inclusion relations.

\spadcommand{t1 := multiset [1,2,2,3]; [t1 < t, t1 < s, t < s, t1 <= s]}
$$
\left[
{\tt false}, {\tt true}, {\tt false}, {\tt true} 
\right]
$$
\returnType{Type: List Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{MultivariatePolynomial}

The domain constructor {\tt MultivariatePolynomial} is similar to {\tt
Polynomial} except that it specifies the variables to be used.  {\tt
Polynomial} are available for {\tt MultivariatePolynomial}.  The
abbreviation for {\tt MultivariatePolynomial} is {\tt MPOLY}.  The
type expressions\\ \centerline{{{\tt MultivariatePolynomial([x,y],Integer)}}} 
and\\ \centerline{{{\tt MPOLY([x,y],INT)}}} refer to the domain of 
multivariate polynomials in the variables {\tt x} and {\tt y} where the 
coefficients are restricted to be integers.  The first variable specified 
is the main variable and the display of the polynomial reflects this.

This polynomial appears with terms in descending powers of the
variable {\tt x}.

\spadcommand{m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2 }
$$
{x \sp 4} -{2 \  {y \sp 3} \  {x \sp 3}}+{{\left( {y \sp 6}+{6 \  y} 
\right)}
\  {x \sp 2}} -{6 \  {y \sp 4} \  x}+{9 \  {y \sp 2}} 
$$
\returnType{Type: MultivariatePolynomial([x,y],Integer)}

It is easy to see a different variable ordering by doing a conversion.

\spadcommand{m :: MPOLY([y,x],INT) }
$$
{{x \sp 2} \  {y \sp 6}} -{6 \  x \  {y \sp 4}} -{2 \  {x \sp 3} \  {y \sp 
3}}+{9 \  {y \sp 2}}+{6 \  {x \sp 2} \  y}+{x \sp 4} 
$$
\returnType{Type: MultivariatePolynomial([y,x],Integer)}

You can use other, unspecified variables, by using {\tt Polynomial} in
the coefficient type of {\tt MPOLY}.

\spadcommand{p : MPOLY([x,y],POLY INT) }
\returnType{Type: Void}

\spadcommand{p := (a**2*x - b*y**2 + 1)**2 }
$$
{{a \sp 4} \  {x \sp 2}}+
{{\left( 
-{2 \  {a \sp 2} \  b \  {y \sp 2}}+
{2 \  {a \sp 2}} 
\right)}\  x}+
{{b \sp 2} \  {y \sp 4}} -
{2 \  b \  {y \sp 2}}+
1 
$$
\returnType{Type: MultivariatePolynomial([x,y],Polynomial Integer)}

Conversions can be used to re-express such polynomials in terms of
the other variables.  For example, you can first push all the
variables into a polynomial with integer coefficients.

\spadcommand{p :: POLY INT }
$$
{{b \sp 2} \  {y \sp 4}}+
{{\left( 
-{2 \  {a \sp 2} \  b \  x} -
{2 \  b} 
\right)}\  {y \sp 2}}+
{{a \sp 4} \  {x \sp 2}}+
{2 \  {a \sp 2} \  x}+
1 
$$
\returnType{Type: Polynomial Integer}

%Original Page 422

Now pull out the variables of interest.

\spadcommand{\% :: MPOLY([a,b],POLY INT) }
$$
{{x \sp 2} \  {a \sp 4}}+
{{\left( 
-{2 \  x \  {y \sp 2} \  b}+
{2 \  x} 
\right)}\  {a \sp 2}}+
{{y \sp 4} \  {b \sp 2}} -
{2 \  {y \sp 2} \  b}+
1 
$$
\returnType{Type: MultivariatePolynomial([a,b],Polynomial Integer)}

\boxer{4.6in}{
\noindent {\bf Restriction:}
\begin{quotation}\noindent
Axiom does not allow you to create types where\\
{\tt Multivariate\-Polynomial} is contained in the coefficient type of
{\tt Polynomial}. Therefore,\\
{\tt MPOLY([x,y],POLY INT)} is legal but
{\tt POLY MPOLY([x,y],INT)} is not.
\end{quotation}
.
}

Multivariate polynomials may be combined with univariate polynomials
to create types with special structures.

\spadcommand{q : UP(x, FRAC MPOLY([y,z],INT)) }
\returnType{Type: Void}

This is a polynomial in {\tt x} whose coefficients are quotients of
polynomials in {\tt y} and {\tt z}.

\spadcommand{q := (x**2 - x*(z+1)/y +2)**2 }
$$
{x \sp 4}+{{\frac{-{2 \  z} -2}{y}} \  {x \sp 3}}+
{{\frac{{4 \  {y \sp 2}}+{z \sp 2}+{2 \  z}+1}{y \sp 2}} \  {x \sp 2}}+
{{\frac{-{4 \  z} -4}{y}} \  x}+4 
$$
\returnType{Type: 
UnivariatePolynomial(x,Fraction MultivariatePolynomial([y,z],Integer))}

Use conversions for structural rearrangements.  {\tt z} does not
appear in a denominator and so it can be made the main variable.

\spadcommand{q :: UP(z, FRAC MPOLY([x,y],INT)) }
$$
{{\frac{x \sp 2}{y \sp 2}} \  {z \sp 2}}+
{{\frac{-{2 \  y \  {x \sp 3}}+{2 \  {x \sp 2}} -
{4 \  y \  x}}{y \sp 2}} \  z}+
{\frac{{{y \sp 2} \  {x \sp 4}} -
{2 \  y \  {x \sp 3}}+{{\left( {4 \  {y \sp 2}}+1 
\right)}\  {x \sp 2}} -{4 \  y \  x}+{4 \  {y \sp 2}}}{y \sp 2}} 
$$
\returnType{Type: 
UnivariatePolynomial(z,Fraction MultivariatePolynomial([x,y],Integer))}

Or you can make a multivariate polynomial in {\tt x} and {\tt z}
whose coefficients are fractions in polynomials in {\tt y}.

\spadcommand{q :: MPOLY([x,z], FRAC UP(y,INT)) }
$$
\begin{array}{@{}l}
{x \sp 4}+{{\left( -{{\frac{2}{y}} \  z} -{\frac{2}{y}} \right)}
\  {x \sp 3}}+{{\left( 
{{\frac{1}{y \sp 2}} \  {z \sp 2}}+
{{\frac{2}{y \sp 2}} \  z}+
{\frac{{4 \  {y \sp 2}}+1}{y \sp 2}} 
\right)}\  {x \sp 2}}+
\\
\\
\displaystyle
{{\left( -{{\frac{4}{y}} \  z} -{\frac{4}{y}} \right)}\  x}+4 
\end{array}
$$
\returnType{Type: 
MultivariatePolynomial([x,z],Fraction UnivariatePolynomial(y,Integer))}

A conversion like {\tt q :: MPOLY([x,y], FRAC UP(z,INT))} is not
possible in this example because {\tt y} appears in the denominator of
a fraction.  As you can see, Axiom provides extraordinary flexibility
in the manipulation and display of expressions via its conversion
facility.

For more information on related topics, see \domainref{Polynomial},\\ 
\domainref{UnivariatePolynomial}, and\\
\domainref{DistributedMultivariatePolynomial}.

%Original Page 423

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{None}

The {\tt None} domain is not very useful for interactive work but it
is provided nevertheless for completeness of the Axiom type system.

Probably the only place you will ever see it is if you enter an
empty list with no type information.

\spadcommand{[ ]}
$$
\left[\ 
\right]
$$
\returnType{Type: List None}
Such an empty list can be converted into an empty list
of any other type.

\spadcommand{[ ] :: List Float}
$$
\left[\ 
\right]
$$
\returnType{Type: List Float}

If you wish to produce an empty list of a particular
type directly, such as {\tt List NonNegative\-Integer}, do it this way.

\spadcommand{[ ]\$List(NonNegativeInteger)}
$$
\left[\ 
\right]
$$
\returnType{Type: List NonNegativeInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{NottinghamGroup}

If F is a finite field with $p^n$  elements, then we may form the group
of all formal power series $\{t(1+a_1 t+a_2 t+...)\}$ where $u(0)=0$ and 
$u^{'}(0)=1$ and $a_i \in F$.
The group operation is substitution (composition).
This is called the Nottingham Group. 

The Nottingham Group is the projective limit of finite p-groups.
Every finite p-group can be embedded in the Nottingham Group.
\begin{verbatim}
x:=monomial(1,1)$UFPS PF 1783
\end{verbatim}
$$
x
$$
\returnType{Type: UnivariateFormalPowerSeries(PrimeField(1783))}
\begin{verbatim}
s:=retract(sin x)$NOTTING PF 1783
\end{verbatim}
$$
x+{{297} \ {x^3}}+{{1679} \ {x^5}}+{{427} \ {x^7}}+{{316} \ {x^9}}+{O
\left(
{{x^{11}}}
\right)}
$$
\returnType{Type: NottinghamGroup(PrimeField(1783))}
\begin{verbatim}
s^2
\end{verbatim}
$$
x+{{594} \ {x^3}}+{{535} \ {x^5}}+{{1166} \ {x^7}}+{{1379} \ {x^9}}+{O
\left({{x^{11}}}
\right)}
$$
\returnType{Type: NottinghamGroup(PrimeField(1783))}
\begin{verbatim}
s^-1
\end{verbatim}
$$
x+{{1486} \ {x^3}}+{{847} \ {x^5}}+{{207} \ {x^7}}+{{1701} \ {x^9}}+{O
\left(
{{x^{11}}}
\right)}
$$
\returnType{Type: NottinghamGroup(PrimeField(1783))}
\begin{verbatim}
s^-1*s
\end{verbatim}
$$
x+{O
\left(
{{x^{11}}}
\right)}
$$
\returnType{Type: NottinghamGroup(PrimeField(1783))}
\begin{verbatim}
s*s^-1
\end{verbatim}
$$
x+{O
\left(
{{x^{11}}}
\right)}
$$
\returnType{Type: NottinghamGroup(PrimeField(1783))}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Octonion}

The Octonions, also called the Cayley-Dixon algebra, defined over a
commutative ring are an eight-dimensional non-associative algebra.
Their construction from quaternions is similar to the construction
of quaternions from complex numbers (see \domainref{Quaternion}).

As {\tt Octonion} creates an eight-dimensional algebra, you have to
give eight components to construct an octonion.

\spadcommand{oci1 := octon(1,2,3,4,5,6,7,8) }
$$
1+{2 \  i}+{3 \  j}+{4 \  k}+{5 \  E}+{6 \  I}+{7 \  J}+{8 \  K} 
$$
\returnType{Type: Octonion Integer}

\spadcommand{oci2 := octon(7,2,3,-4,5,6,-7,0) }
$$
7+{2 \  i}+{3 \  j} -{4 \  k}+{5 \  E}+{6 \  I} -{7 \  J} 
$$
\returnType{Type: Octonion Integer}

Or you can use two quaternions to create an octonion.

\spadcommand{oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0)) }
$$
-7 -{{12} \  i}+{3 \  j} -{{10} \  k}+{5 \  E}+{6 \  I}+{9 \  J} 
$$
\returnType{Type: Octonion Integer}

You can easily demonstrate the non-associativity of multiplication.

\spadcommand{(oci1 * oci2) * oci3 - oci1 * (oci2 * oci3) }
$$
{{2696} \  i} -{{2928} \  j} -{{4072} \  k}+{{16} \  E} -{{1192} \  I}+{{832} 
\  J}+{{2616} \  K} 
$$
\returnType{Type: Octonion Integer}

%Original Page 424

As with the quaternions, we have a real part, the imaginary parts {\tt
i}, {\tt j}, {\tt k}, and four additional imaginary parts {\tt E},
{\tt I}, {\tt J} and {\tt K}.  These parts correspond to the canonical
basis {\tt (1,i,j,k,E,I,J,K)}.

For each basis element there is a component operation to extract
the coefficient of the basis element for a given octonion.

\spadcommand{[real oci1, imagi oci1, imagj oci1, imagk oci1, imagE oci1, imagI oci1, imagJ oci1, imagK oci1] }
$$
\left[
1, 2, 3, 4, 5, 6, 7, 8 
\right]
$$
\returnType{Type: List PositiveInteger}

A basis with respect to the quaternions is given by {\tt (1,E)}.
However, you might ask, what then are the commuting rules?  To answer
this, we create some generic elements.

We do this in Axiom by simply changing the ground ring from {\tt
Integer} to {\tt Polynomial Integer}.

\spadcommand{q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk) }
$$
q1+{qi \  i}+{qj \  j}+{qk \  k} 
$$
\returnType{Type: Quaternion Polynomial Integer}

\spadcommand{E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0) }
$$
E 
$$
\returnType{Type: Octonion Polynomial Integer}

Note that quaternions are automatically converted to octonions in the
obvious way.

\spadcommand{q * E }
$$
{q1 \  E}+{qi \  I}+{qj \  J}+{qk \  K} 
$$
\returnType{Type: Octonion Polynomial Integer}

\spadcommand{E * q }
$$
{q1 \  E} -{qi \  I} -{qj \  J} -{qk \  K} 
$$
\returnType{Type: Octonion Polynomial Integer}

\spadcommand{q * 1\$(Octonion Polynomial Integer) }
$$
q1+{qi \  i}+{qj \  j}+{qk \  k} 
$$
\returnType{Type: Octonion Polynomial Integer}

\spadcommand{1\$(Octonion Polynomial Integer) * q }
$$
q1+{qi \  i}+{qj \  j}+{qk \  k} 
$$
\returnType{Type: Octonion Polynomial Integer}

Finally, we check that the \spadfunFrom{norm}{Octonion}, defined as
the sum of the squares of the coefficients, is a multiplicative map.

\spadcommand{o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK) }
$$
o1+{oi \  i}+{oj \  j}+{ok \  k}+{oE \  E}+{oI \  I}+{oJ \  J}+{oK \  K} 
$$
\returnType{Type: Octonion Polynomial Integer}

%Original Page 425

\spadcommand{norm o }
$$
{ok \sp 2}+{oj \sp 2}+{oi \sp 2}+{oK \sp 2}+{oJ \sp 2}+{oI \sp 2}+{oE \sp 
2}+{o1 \sp 2} 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK) }
$$
p1+{pi \  i}+{pj \  j}+{pk \  k}+{pE \  E}+{pI \  I}+{pJ \  J}+{pK \  K} 
$$
\returnType{Type: Octonion Polynomial Integer}

Since the result is {\tt 0}, the norm is multiplicative.

\spadcommand{norm(o*p)-norm(p)*norm(o) }
$$
0 
$$
\returnType{Type: Polynomial Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{OneDimensionalArray}

The {\tt OneDimensionalArray} domain is used for storing data in a
one-dimensional indexed data structure.  Such an array is a
homogeneous data structure in that all the entries of the array must
belong to the same Axiom domain.  Each array has a fixed length
specified by the user and arrays are not extensible.  The indexing of
one-dimensional arrays is one-based.  This means that the ``first''
element of an array is given the index {\tt 1}.  See also
\domainref{Vector} and \domainref{FlexibleArray}.

To create a one-dimensional array, apply the operation 
{\tt oneDimensionalArray} to a list.

\spadcommand{oneDimensionalArray [i**2 for i in 1..10]}
$$
\left[
1, 4, 9, {16}, {25}, {36}, {49}, {64}, {81}, {100} 
\right]
$$
\returnType{Type: OneDimensionalArray PositiveInteger}

Another approach is to first create {\tt a}, a one-dimensional array
of 10 {\tt 0}'s.  {\tt OneDimensional\-Array} has the convenient
abbreviation {\tt ARRAY1}.

\spadcommand{a : ARRAY1 INT := new(10,0)}
$$
\left[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Set each {\tt i}th element to i, then display the result.

\spadcommand{for i in 1..10 repeat a.i := i; a}
$$
\left[
1, 2, 3, 4, 5, 6, 7, 8, 9, {10} 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Square each element by mapping the function $i \mapsto i^2$ onto each
element.

\spadcommand{map!(i +-> i ** 2,a); a}
$$
\left[
1, 4, 9, {16}, {25}, {36}, {49}, {64}, {81}, {100} 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

%Original Page 426

Reverse the elements in place.

\spadcommand{reverse! a}
$$
\left[
{100}, {81}, {64}, {49}, {36}, {25}, {16}, 9, 4, 1 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Swap the {\tt 4}th and {\tt 5}th element.

\spadcommand{swap!(a,4,5); a}
$$
\left[
{100}, {81}, {64}, {36}, {49}, {25}, {16}, 9, 4, 1 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Sort the elements in place.

\spadcommand{sort! a }
$$
\left[
1, 4, 9, {16}, {25}, {36}, {49}, {64}, {81}, {100} 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Create a new one-dimensional array {\tt b} containing the last 5
elements of {\tt a}.

\spadcommand{b := a(6..10)}
$$
\left[
{36}, {49}, {64}, {81}, {100} 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

Replace the first 5 elements of {\tt a} with those of {\tt b}.

\spadcommand{copyInto!(a,b,1)}
$$
\left[
{36}, {49}, {64}, {81}, {100}, {36}, {49}, {64}, 
{81}, {100} 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Operator}

Given any ring {\tt R}, the ring of the {\tt Integer}-linear operators
over {\tt R} is called {\tt Operator(R)}.  To create an operator over
{\tt R}, first create a basic operator using the operation 
{\tt operator}, and then convert it to {\tt Operator(R)} for the {\tt R}
you want.

We choose {\tt R} to be the two by two matrices over the integers.

\spadcommand{R := SQMATRIX(2, INT)}
$$
SquareMatrix(2,Integer) 
$$
\returnType{Type: Domain}

Create the operator {\tt tilde} on {\tt R}.

\spadcommand{t := operator("tilde") :: OP(R) }
$$
tilde 
$$
\returnType{Type: Operator SquareMatrix(2,Integer)}

Since {\tt Operator} is unexposed we must either package-call operations
from it, or expose it explicitly.  For convenience we will do the latter.

Expose {\tt Operator}.

\spadcommand{)set expose add constructor Operator }
\begin{verbatim}
   Operator is now explicitly exposed in frame G82322 
\end{verbatim}

To attach an evaluation function (from {\tt R} to {\tt R}) to an
operator over {\tt R}, use {\tt evaluate(op, f)} where {\tt op} is an
operator over {\tt R} and {\tt f} is a function {\tt R -> R}.  This
needs to be done only once when the operator is defined.  Note that
{\tt f} must be {\tt Integer}-linear (that is, 
{\tt f(ax+y) = a f(x) + f(y)} for any integer {\tt a}, and any {\tt x} 
and {\tt y} in {\tt R}).

We now attach the transpose map to the above operator {\tt t}.

\spadcommand{evaluate(t, m +-> transpose m)}
$$
tilde 
$$
\returnType{Type: Operator SquareMatrix(2,Integer)}

%Original Page 427

Operators can be manipulated formally as in any ring: {\tt +} is
the pointwise addition and {\tt *} is composition.  Any element
{\tt x} of {\tt R} can be converted to an operator 
$op_x$ over {\tt R}, and the evaluation function of
$op_x$ is left-multiplication by {\tt x}.

Multiplying on the left by this matrix swaps the two rows.

\spadcommand{s : R := matrix [ [0, 1], [1, 0] ]}
$$
\left[
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

Can you guess what is the action of the following operator?

\spadcommand{rho := t * s}
$$
tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}
$$
\returnType{Type: Operator SquareMatrix(2,Integer)}

Hint: applying {\tt rho} four times gives the identity, so
{\tt rho**4-1} should return 0 when applied to any two by two matrix.

\spadcommand{z := rho**4 - 1}
$$
-1+{tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}
\  tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}
\  tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}
\  tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}}
$$
\returnType{Type: Operator SquareMatrix(2,Integer)}

Now check with this matrix.

\spadcommand{m:R := matrix [ [1, 2], [3, 4] ]}
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
3 & 4 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{z m}
$$
\left[
\begin{array}{cc}
0 & 0 \\ 
0 & 0 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

As you have probably guessed by now, {\tt rho} acts on matrices
by rotating the elements clockwise.

\spadcommand{rho m}
$$
\left[
\begin{array}{cc}
3 & 1 \\ 
4 & 2 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{rho rho m}
$$
\left[
\begin{array}{cc}
4 & 3 \\ 
2 & 1 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

\spadcommand{(rho**3) m}
$$
\left[
\begin{array}{cc}
2 & 4 \\ 
1 & 3 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}

%Original Page 428

Do the swapping of rows and transposition commute?  We can check by
computing their bracket.

\spadcommand{b := t * s - s * t}
$$
-{{\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}
\  tilde}+{tilde \  {\left[ 
\begin{array}{cc}
0 & 1 \\ 
1 & 0 
\end{array}
\right]}}
$$
\returnType{Type: Operator SquareMatrix(2,Integer)}

Now apply it to {\tt m}.

\spadcommand{b m }
$$
\left[
\begin{array}{cc}
1 & -3 \\ 
3 & -1 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Integer)}
 
Next we demonstrate how to define a differential operator on a
polynomial ring.

This is the recursive definition of the {\tt n}-th Legendre polynomial.

\begin{verbatim}
L n ==
  n = 0 => 1
  n = 1 => x
  (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
\end{verbatim}
\returnType{Type: Void}

Create the differential operator $\frac{d}{dx}$ on polynomials in {\tt x} 
over the rational numbers.

\spadcommand{dx := operator("D") :: OP(POLY FRAC INT) }
$$
D 
$$
\returnType{Type: Operator Polynomial Fraction Integer}

Now attach the map to it.

\spadcommand{evaluate(dx, p +-> D(p, 'x)) }
$$
D 
$$
\returnType{Type: Operator Polynomial Fraction Integer}

This is the differential equation satisfied by the {\tt n}-th
Legendre polynomial.

\spadcommand{E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1) }
\returnType{Type: Void}

Now we verify this for {\tt n = 15}.  Here is the polynomial.

\spadcommand{L 15 }
$$
\begin{array}{@{}l}
{{\frac{9694845}{2048}} \  {x \sp {15}}} -
{{\frac{35102025}{2048}} \  {x \sp {13}}}+
{{\frac{50702925}{2048}} \  {x \sp {11}}} -
{{\frac{37182145}{2048}} \  {x \sp 9}}+
{{\frac{14549535}{2048}} \  {x \sp 7}} -
\\
\\
\displaystyle
{{\frac{2909907}{2048}} \  {x \sp 5}}+
{{\frac{255255}{2048}} \  {x \sp 3}} -
{{\frac{6435}{2048}} \  x} 
\end{array}
$$
\returnType{Type: Polynomial Fraction Integer}

Here is the operator.

\spadcommand{E 15 }
$$
{240} -{2 \  x \  D} -{{\left( {x \sp 2} -1 
\right)}
\  {D \sp 2}} 
$$
\returnType{Type: Operator Polynomial Fraction Integer}

Here is the evaluation.

\spadcommand{(E 15)(L 15) }
$$
0 
$$
\returnType{Type: Polynomial Fraction Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{OrderedVariableList}

The domain {\tt OrderedVariableList} provides symbols which are
restricted to a particular list and have a definite ordering. Those
two features are specified by a {\tt List Symbol} object that is the
argument to the domain.

This is a sample ordering of three symbols.

\spadcommand{ls:List Symbol:=['x,'a,'z] }
$$
\left[
x, a, z 
\right]
$$
\returnType{Type: List Symbol}

Let's build the domain

\spadcommand{Z:=OVAR ls  }
$$
\mbox{\rm OrderedVariableList [x,a,z]} 
$$
\returnType{Type: Domain}

How many variables does it have?

\spadcommand{size()\$Z }
$$
3 
$$
\returnType{Type: NonNegativeInteger}

They are (in the imposed order)

\spadcommand{lv:=[index(i::PI)\$Z for i in 1..size()\$Z] }
$$
\left[
x, a, z 
\right]
$$
\returnType{Type: List OrderedVariableList [x,a,z]}

Check that the ordering is right

\spadcommand{sorted?(>,lv) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%Original Page 429

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{OrderlyDifferentialPolynomial}

Many systems of differential equations may be transformed to
equivalent systems of ordinary differential equations where the
equations are expressed polynomially in terms of the unknown
functions.  In Axiom, the domain constructors 
{\tt OrderlyDifferentialPolynomial} (abbreviated {\tt ODPOL}) and 
{\tt SequentialDifferentialPolynomial} (abbreviation {\tt SDPOL}) implement
two domains of ordinary differential polynomials over any differential
ring.  In the simplest case, this differential ring is usually either
the ring of integers, or the field of rational numbers.  However,
Axiom can handle ordinary differential polynomials over a field of
rational functions in a single indeterminate.

The two domains {\tt ODPOL} and {\tt SDPOL} are almost identical, the
only difference being the choice of a different ranking, which is an
ordering of the derivatives of the indeterminates.  The first domain
uses an orderly ranking, that is, derivatives of higher order are
ranked higher, and derivatives of the same order are ranked
alphabetically.  The second domain uses a sequential ranking, where
derivatives are ordered first alphabetically by the differential
indeterminates, and then by order.  A more general domain constructor,\\
{\tt DifferentialSparseMultivariatePolynomial} (abbreviation 
{\tt DSMP})\\ 
allows both a user-provided list of differential indeterminates
as well as a user-defined ranking.  We shall illustrate 
{\tt ODPOL(FRAC INT)}, which constructs a domain of ordinary differential
polynomials in an arbitrary number of differential indeterminates with
rational numbers as coefficients.

\spadcommand{dpol:= ODPOL(FRAC INT) }
$$
\mbox{\rm OrderlyDifferentialPolynomial Fraction Integer} 
$$
\returnType{Type: Domain}

A differential indeterminate {\tt w} may be viewed as an infinite
sequence of algebraic indeterminates, which are the derivatives of
{\tt w}.  To facilitate referencing these, Axiom provides the
operation \spadfunFrom{makeVariable}{OrderlyDifferentialPolynomial} to
convert an element of type {\tt Symbol} to a map from the natural
numbers to the differential polynomial ring.

\spadcommand{w := makeVariable('w)\$dpol }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: 
(NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)}

%Original Page 430

\spadcommand{z := makeVariable('z)\$dpol }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: 
(NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)}

The fifth derivative of {\tt w} can be obtained by applying the map
{\tt w} to the number {\tt 5.}  Note that the order of differentiation
is given as a subscript (except when the order is 0).

\spadcommand{w.5 }
$$
w \sb {5} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

\spadcommand{w 0 }
$$
w 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The first five derivatives of {\tt z} can be generated by a list.

\spadcommand{[z.i for i in 1..5] }
$$
\left[
{z \sb {1}}, {z \sb {2}}, {z \sb {3}}, {z \sb {4}}, {z \sb {5}} 
\right]
$$
\returnType{Type: List OrderlyDifferentialPolynomial Fraction Integer}

The usual arithmetic can be used to form a differential polynomial from
the derivatives.

\spadcommand{f:= w.4 - w.1 * w.1 * z.3 }
$$
{w \sb {4}} -{{{w \sb {1}} \sp 2} \  {z \sb {3}}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

\spadcommand{g:=(z.1)**3 * (z.2)**2 - w.2 }
$$
{{{z \sb {1}} \sp 3} \  {{z \sb {2}} \sp 2}} -{w \sb {2}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The operation \spadfunFrom{D}{OrderlyDifferentialPolynomial}
computes the derivative of any differential polynomial.

\spadcommand{D(f) }
$$
{w \sb {5}} -{{{w \sb {1}} \sp 2} \  {z \sb {4}}} -{2 \  {w \sb {1}} \  {w 
\sb {2}} \  {z \sb {3}}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The same operation can compute higher derivatives, like the
fourth derivative.

\spadcommand{D(f,4) }
$$
\begin{array}{@{}l}
{w \sb {8}} -
{{{w \sb {1}} \sp 2} \  {z \sb {7}}} -
{8 \  {w \sb {1}} \  {w \sb {2}} \  {z \sb {6}}}+
{{\left( 
-{{12} \  {w \sb {1}} \  {w \sb {3}}} -
{{12} \  {{w \sb {2}} \sp 2}} 
\right)}\  {z \sb {5}}} -
{2 \  {w \sb {1}} \  {z \sb {3}} \  {w \sb {5}}}+
\\
\\
\displaystyle
{{\left( 
-{8 \  {w \sb {1}} \  {w \sb {4}}} -
{{24} \  {w \sb {2}} \  {w \sb {3}}} 
\right)}
\  {z \sb {4}}} -
{8 \  {w \sb {2}} \  {z \sb {3}} \  {w \sb {4}}} -
{6 \  {{w \sb {3}} \sp 2} \  {z \sb {3}}} 
\end{array}
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The operation \spadfunFrom{makeVariable}{OrderlyDifferentialPolynomial}
creates a map to facilitate referencing the derivatives of {\tt f},
similar to the map {\tt w}.

\spadcommand{df:=makeVariable(f)\$dpol }
$$
\mbox{theMap(...)} 
$$
\returnType{Type: 
(NonNegativeInteger -> OrderlyDifferentialPolynomial Fraction Integer)}

%Original Page 431

The fourth derivative of f may be referenced easily.

\spadcommand{df.4 }
$$
\begin{array}{@{}l}
{w \sb {8}} -
{{{w \sb {1}} \sp 2} \  {z \sb {7}}} -
{8 \  {w \sb {1}} \  {w \sb {2}} \  {z \sb {6}}}+
{{\left( 
-{{12} \  {w \sb {1}} \  {w \sb {3}}} -
{{12} \  {{w \sb {2}} \sp 2}} 
\right)}
\  {z \sb {5}}} -
{2 \  {w \sb {1}} \  {z \sb {3}} \  {w \sb {5}}}+
\\
\\
\displaystyle
{{\left( 
-{8 \  {w \sb {1}} \  {w \sb {4}}} -
{{24} \  {w \sb {2}} \  {w \sb {3}}} 
\right)}\  {z \sb {4}}} -
{8 \  {w \sb {2}} \  {z \sb {3}} \  {w \sb {4}}} -
{6 \  {{w \sb {3}} \sp 2} \  {z \sb {3}}} 
\end{array}
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The operation \spadfunFrom{order}{OrderlyDifferentialPolynomial}
returns the order of a differential polynomial, or the order
in a specified differential indeterminate.

\spadcommand{order(g)  }
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{order(g, 'w)  }
$$
2 
$$
\returnType{Type: PositiveInteger}

The operation
\spadfunFrom{differentialVariables}{OrderlyDifferentialPolynomial} returns
a list of differential indeterminates occurring in a differential polynomial.

\spadcommand{differentialVariables(g)  }
$$
\left[
z, w 
\right]
$$
\returnType{Type: List Symbol}

The operation \spadfunFrom{degree}{OrderlyDifferentialPolynomial} returns
the degree, or the degree in the differential indeterminate specified.

\spadcommand{degree(g) }
$$
{{z \sb {2}} \sp 2} \  {{z \sb {1}} \sp 3} 
$$
\returnType{Type: IndexedExponents OrderlyDifferentialVariable Symbol}

\spadcommand{degree(g, 'w)  }
$$
1 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{weights}{OrderlyDifferentialPolynomial} returns
a list of weights of differential monomials appearing in differential
polynomial, or a list of weights in a specified differential
indeterminate.

\spadcommand{weights(g)  }
$$
\left[
7, 2 
\right]
$$
\returnType{Type: List NonNegativeInteger}

\spadcommand{weights(g,'w) }
$$
\left[
2 
\right]
$$
\returnType{Type: List NonNegativeInteger}

The operation \spadfunFrom{weight}{OrderlyDifferentialPolynomial} returns
the maximum weight of all differential monomials appearing in the
differential polynomial.

\spadcommand{weight(g)  }
$$
7 
$$
\returnType{Type: PositiveInteger}

%Original Page 432

A differential polynomial is {\em isobaric} if the weights of all
differential monomials appearing in it are equal.

\spadcommand{isobaric?(g) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

To substitute {\em differentially}, use
\spadfunFrom{eval}{OrderlyDifferentialPolynomial}.  Note that we must
coerce {\tt 'w} to {\tt Symbol}, since in {\tt ODPOL}, differential
indeterminates belong to the domain {\tt Symbol}.  Compare this result
to the next, which substitutes {\em algebraically} (no substitution is
done since {\tt w.0} does not appear in {\tt g}).

\spadcommand{eval(g,['w::Symbol],[f]) }
$$
-{w \sb {6}}+
{{{w \sb {1}} \sp 2} \  {z \sb {5}}}+
{4 \  {w \sb {1}} \  {w \sb {2}} \  {z \sb {4}}}+
{{\left( {2 \  {w \sb {1}} \  {w \sb {3}}}+
{2 \  {{w \sb {2}} \sp 2}} 
\right)}
\  {z \sb {3}}}+
{{{z \sb {1}} \sp 3} \  {{z \sb {2}} \sp 2}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

\spadcommand{eval(g,variables(w.0),[f]) }
$$
{{{z \sb {1}} \sp 3} \  {{z \sb {2}} \sp 2}} -{w \sb {2}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Since {\tt OrderlyDifferentialPolynomial} belongs to
{\tt PolynomialCategory}, all the operations defined in the latter
category, or in packages for the latter category, are available.

\spadcommand{monomials(g) }
$$
\left[
{{{z \sb {1}} \sp 3} \  {{z \sb {2}} \sp 2}}, -{w \sb {2}} 
\right]
$$
\returnType{Type: List OrderlyDifferentialPolynomial Fraction Integer}

\spadcommand{variables(g) }
$$
\left[
{z \sb {2}}, {w \sb {2}}, {z \sb {1}} 
\right]
$$
\returnType{Type: List OrderlyDifferentialVariable Symbol}

\spadcommand{gcd(f,g) }
$$
1 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

\spadcommand{groebner([f,g]) }
$$
\left[
{{w \sb {4}} -
{{{w \sb {1}} \sp 2} \  {z \sb {3}}}}, 
{{{{z \sb {1}} \sp 3} \  {{z \sb {2}} \sp 2}} -
{w \sb {2}}} 
\right]
$$
\returnType{Type: List OrderlyDifferentialPolynomial Fraction Integer}

The next three operations are essential for elimination procedures in
differential polynomial rings.  The operation
\spadfunFrom{leader}{OrderlyDifferentialPolynomial} returns the leader
of a differential polynomial, which is the highest ranked derivative
of the differential indeterminates that occurs.

\spadcommand{lg:=leader(g)  }
$$
z \sb {2} 
$$
\returnType{Type: OrderlyDifferentialVariable Symbol}

%Original Page 433

The operation \spadfunFrom{separant}{OrderlyDifferentialPolynomial} returns
the separant of a differential polynomial, which is the partial derivative
with respect to the leader.

\spadcommand{sg:=separant(g)  }
$$
2 \  {{z \sb {1}} \sp 3} \  {z \sb {2}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

The operation \spadfunFrom{initial}{OrderlyDifferentialPolynomial} returns
the initial, which is the leading coefficient when the given differential
polynomial is expressed as a polynomial in the leader.

\spadcommand{ig:=initial(g)  }
$$
{z \sb {1}} \sp 3 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Using these three operations, it is possible to reduce {\tt f} modulo
the differential ideal generated by {\tt g}.  The general scheme is to
first reduce the order, then reduce the degree in the leader.  First,
eliminate {\tt z.3} using the derivative of {\tt g}.

\spadcommand{g1 := D g }
$$
{2 \  {{z \sb {1}} \sp 3} \  {z \sb {2}} \  {z \sb {3}}} -
{w \sb {3}}+
{3 \  {{z \sb {1}} \sp 2} \  {{z \sb {2}} \sp 3}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Find its leader.

\spadcommand{lg1:= leader g1 }
$$
z \sb {3} 
$$
\returnType{Type: OrderlyDifferentialVariable Symbol}

Differentiate {\tt f} partially with respect to this leader.

\spadcommand{pdf:=D(f, lg1) }
$$
-{{w \sb {1}} \sp 2} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Compute the partial remainder of {\tt f} with respect to {\tt g}.

\spadcommand{prf:=sg * f- pdf * g1 }
$$
{2 \  {{z \sb {1}} \sp 3} \  {z \sb {2}} \  {w \sb {4}}} -
{{{w \sb {1}} \sp 2} \  {w \sb {3}}}+
{3 \  {{w \sb {1}} \sp 2} \  {{z \sb {1}} \sp 2} \  {{z \sb {2}} \sp 3}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Note that high powers of {\tt lg} still appear in {\tt prf}.  Compute
the leading coefficient of {\tt prf} as a polynomial in the leader of
{\tt g}.

\spadcommand{lcf:=leadingCoefficient univariate(prf, lg) }
$$
3 \  {{w \sb {1}} \sp 2} \  {{z \sb {1}} \sp 2} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

Finally, continue eliminating the high powers of {\tt lg} appearing in
{\tt prf} to obtain the (pseudo) remainder of {\tt f} modulo {\tt g}
and its derivatives.

\spadcommand{ig * prf - lcf * g * lg }
$$
{2 \  {{z \sb {1}} \sp 6} \  {z \sb {2}} \  {w \sb {4}}} -
{{{w \sb {1}} \sp 2} \  {{z \sb {1}} \sp 3} \  {w \sb {3}}}+
{3 \  {{w \sb {1}} \sp 2} \  {{z \sb {1}} \sp 2} 
\  {w \sb {2}} \  {z \sb {2}}} 
$$
\returnType{Type: OrderlyDifferentialPolynomial Fraction Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{PartialFraction}

A {\it partial fraction} is a decomposition of a quotient into a sum
of quotients where the denominators of the summands are powers of
primes.\footnote{Most people first encounter partial fractions when
they are learning integral calculus.  For a technical discussion of
partial fractions, see, for example, Lang's {\it Algebra.}} For
example, the rational number {\tt 1/6} is decomposed into {\tt 1/2-1/3}.  

%Original Page 434

You can compute partial fractions of quotients of objects from
domains belonging to the category {\tt EuclideanDomain}.  For example,
{\tt Integer}, {\tt Complex Integer}, and 
{\tt Univariate\-Polynomial(x, Fraction Integer)} 
all belong to {\tt EuclideanDomain}.  In the
examples following, we demonstrate how to decompose quotients of each
of these kinds of object into partial fractions.  Issue the system
command {\tt )show PartialFraction} to display the full list of
operations defined by {\tt PartialFraction}.

It is necessary that we know how to factor the denominator when we
want to compute a partial fraction.  Although the interpreter can
often do this automatically, it may be necessary for you to include a
call to {\tt factor}.  In these examples, it is not necessary to
factor the denominators explicitly.

The main operation for computing partial fractions is called
\spadfunFrom{partialFraction}{PartialFraction} and we use this to
compute a decomposition of {\tt 1 / 10!}.  The first argument to
\spadfunFrom{partialFraction}{PartialFraction} is the numerator of the
quotient and the second argument is the factored denominator.

\spadcommand{partialFraction(1,factorial 10) }
$$
{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} -{\frac{12}{5 \sp 2}}
+{\frac{1}{7}} 
$$
\returnType{Type: PartialFraction Integer}

Since the denominators are powers of primes, it may be possible
to expand the numerators further with respect to those primes. Use the
operation \spadfunFrom{padicFraction}{PartialFraction} to do this.

\spadcommand{f := padicFraction(\%) }
$$
{\frac{1}{2}}+{\frac{1}{2 \sp 4}}+{\frac{1}{2 \sp 5}}+{\frac{1}{2 \sp 6}}
+{\frac{1}{2 \sp 7}}+{\frac{1}{2 \sp 8}} -{\frac{2}{3 \sp 2}} 
-{\frac{1}{3 \sp 3}} -{\frac{2}{3 \sp 4}} -{\frac{2}{5}} 
-{\frac{2}{5 \sp 2}}+{\frac{1}{7}} 
$$
\returnType{Type: PartialFraction Integer}

The operation \spadfunFrom{compactFraction}{PartialFraction} returns
an expanded fraction into the usual form.  The compacted version is
used internally for computational efficiency.

\spadcommand{compactFraction(f) }
$$
{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} -{\frac{12}{5 \sp 2}}
+{\frac{1}{7}} 
$$
\returnType{Type: PartialFraction Integer}

You can add, subtract, multiply and divide partial fractions.  In
addition, you can extract the parts of the decomposition.
\spadfunFrom{numberOfFractionalTerms}{PartialFraction} computes the
number of terms in the fractional part.  This does not include the
whole part of the fraction, which you get by calling
\spadfunFrom{wholePart}{PartialFraction}.  In this example, the whole
part is just {\tt 0}.

\spadcommand{numberOfFractionalTerms(f) }
$$
12 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{nthFractionalTerm}{PartialFraction} returns
the individual terms in the decomposition.  Notice that the object
returned is a partial fraction itself.
\spadfunFrom{firstNumer}{PartialFraction} and
\spadfunFrom{firstDenom}{PartialFraction} extract the numerator and
denominator of the first term of the fraction.

%Original Page 435

\spadcommand{nthFractionalTerm(f,3) }
$$
\frac{1}{2 \sp 5} 
$$
\returnType{Type: PartialFraction Integer}

Given two gaussian integers (see \domainref{Complex}), you can
decompose their quotient into a partial fraction.

\spadcommand{partialFraction(1,- 13 + 14 * \%i) }
$$
-{\frac{1}{1+{2 \  i}}}+{\frac{4}{3+{8 \  i}}} 
$$
\returnType{Type: PartialFraction Complex Integer}

To convert back to a quotient, simply use a conversion.

\spadcommand{\% :: Fraction Complex Integer }
$$
-{\frac{i}{{14}+{{13} \  i}}} 
$$
\returnType{Type: Fraction Complex Integer}

To conclude this section, we compute the decomposition of
\begin{verbatim}
                   1
     -------------------------------
                   2       3       4
     (x + 1)(x + 2) (x + 3) (x + 4)
\end{verbatim}

The polynomials in this object have type
{\tt UnivariatePolynomial(x, Fraction Integer)}.

We use the \spadfunFrom{primeFactor}{Factored} operation (see
\domainref{Factored}) to create the denominator in factored form directly.

\spadcommand{u : FR UP(x, FRAC INT) := reduce(*,[primeFactor(x+i,i) for i in 1..4]) }
$$
{\left( x+1 \right)}
\  {{\left( x+2 \right)}\sp 2} 
\  {{\left( x+3 \right)}\sp 3} 
\  {{\left( x+4 \right)}\sp 4} 
$$
\returnType{Type: Factored UnivariatePolynomial(x,Fraction Integer)}

These are the compact and expanded partial fractions for the quotient.

\spadcommand{partialFraction(1,u) }
$$
\begin{array}{@{}l}
\displaystyle
{\frac{\frac{1}{648}}{x+1}}+
{\frac{{{\frac{1}{4}} \  x}+
{\frac{7}{16}}}{{\left( x+2 \right)}\sp 2}}+
{\frac{-{{\frac{17}{8}} \  {x \sp 2}} -{{12} \  x} -
{\frac{139}{8}}}{{\left( x+3 \right)}\sp 3}}+
\\
\\
\displaystyle
{\frac{{{\frac{607}{324}} \  {x \sp 3}}+
{{\frac{10115}{432}} \  {x \sp 2}}+
{{\frac{391}{4}} \  x}+
{\frac{44179}{324}}} 
{{\left( x+4 \right)}\sp 4}} 
\end{array}
$$
\returnType{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)}

%Original Page 436

\spadcommand{padicFraction \% }
$$
\begin{array}{@{}l}
\displaystyle
{\frac{\frac{1}{648}}{x+1}}+
{\frac{\frac{1}{4}}{x+2}} -
{\frac{\frac{1}{16}}{{\left( x+2 \right)}\sp 2}} -
{\frac{\frac{17}{8}}{x+3}}+
{\frac{\frac{3}{4}}{{\left( x+3 \right)}\sp 2}} -
{\frac{\frac{1}{2}}{{\left( x+3 \right)}\sp 3}}+
{\frac{\frac{607}{324}}{x+4}}+
\\
\\
\displaystyle
{\frac{\frac{403}{432}}{{\left( x+4 \right)}\sp 2}}+
{\frac{\frac{13}{36}}{{\left( x+4 \right)}\sp 3}}+
{\frac{\frac{1}{12}}{{\left( x+4 \right)}\sp 4}} 
\end{array}
$$
\returnType{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)}

All see \domainref{FullPartialFractionExpansion} for examples of
factor-free conversion of quotients to full partial fractions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Permanent}

The package {\tt Permanent} provides the function
\spadfunFrom{permanent}{Permanent} for square matrices.  The
\spadfunFrom{permanent}{Permanent} of a square matrix can be computed
in the same way as the determinant by expansion of minors except that
for the permanent the sign for each element is {\tt 1}, rather than
being {\tt 1} if the row plus column indices is positive and {\tt -1}
otherwise.  This function is much more difficult to compute
efficiently than the \spadfunFrom{determinant}{Matrix}.  An example of
the use of \spadfunFrom{permanent}{Permanent} is the calculation of
the $n$-th derangement number, defined to be the number of
different possibilities for {\tt n} couples to dance but never with
their own spouse.

Consider an {\tt n} by {\tt n} matrix with entries {\tt 0} on the
diagonal and {\tt 1} elsewhere.  Think of the rows as one-half of each
couple (for example, the males) and the columns the other half.  The
permanent of such a matrix gives the desired derangement number.

\begin{verbatim}
kn n ==
  r : MATRIX INT := new(n,n,1)
  for i in 1..n repeat
    r.i.i := 0
  r
\end{verbatim}
\returnType{Type: Void}

Here are some derangement numbers, which you see grow quite fast.

\spadcommand{permanent(kn(5) :: SQMATRIX(5,INT)) }
\begin{verbatim}
Compiling function kn with type PositiveInteger -> Matrix Integer 
\end{verbatim}
$$
44 
$$
\returnType{Type: PositiveInteger}

\spadcommand{[permanent(kn(n) :: SQMATRIX(n,INT)) for n in 1..13] }
\begin{verbatim}
Cannot compile conversion for types involving local variables. 
   In particular, could not compile the expression involving 
   :: SQMATRIX(n,INT) 
Axiom will attempt to step through and interpret the code.
\end{verbatim}
$$
\begin{array}{@{}l}
\left[
0, 1, 2, 9, {44}, {265}, {1854}, {14833}, {133496}, 
\right.
\\
\displaystyle
\left.
{1334961}, {14684570}, {176214841}, {2290792932} 
\right]
\end{array}
$$
\returnType{Type: List NonNegativeInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Permutation}


We represent a permutation as two lists of equal length representing preimages
and images of moved points. Fixed points do not occur in either of these
lists. This enables us to compute the set of fixed points and the set of moved
points easily.
\begin{verbatim} 
  p := coercePreimagesImages([ [1,2,3],[1,2,3] ])
    1
                      Type: Permutation PositiveInteger
\end{verbatim}
\begin{verbatim}
  movedPoints p
    {}
                      Type: Set PositiveInteger
\end{verbatim}
\begin{verbatim}
  even? p
    true
                       Type: Boolean
\end{verbatim}
\begin{verbatim}
  p := coercePreimagesImages([ [0,1,2,3],[3,0,2,1] ])$PERM ZMOD 4
    (1 0 3)
                       Type: Permutation IntegerMod 4
\end{verbatim}
\begin{verbatim}
  fixedPoints p
    {2}
                       Type: Set IntegerMod 4
\end{verbatim}
\begin{verbatim}
  q := coercePreimagesImages([ [0,1,2,3],[1,0] ])$PERM ZMOD 4
    (1 0)
                       Type: Permutation IntegerMod 4
\end{verbatim}
\begin{verbatim}
  fixedPoints(p*q)
    {2,0}
                       Type: Set IntegerMod 4
\end{verbatim}
\begin{verbatim}
  even?(p*q)
    false
                       Type: Boolean
\end{verbatim}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Polynomial}

The domain constructor {\tt Polynomial} (abbreviation: {\tt POLY})
provides polynomials with an arbitrary number of unspecified
variables.

%Original Page 437

It is used to create the default polynomial domains in Axiom.
Here the coefficients are integers.

\spadcommand{x + 1}
$$
x+1 
$$
\returnType{Type: Polynomial Integer}

Here the coefficients have type {\tt Float}.

\spadcommand{z - 2.3}
$$
z -{2.3} 
$$
\returnType{Type: Polynomial Float}

And here we have a polynomial in two variables with coefficients which
have type {\tt Fraction Integer}.

\spadcommand{y**2 - z + 3/4}
$$
-z+{y \sp 2}+{\frac{3}{4}} 
$$
\returnType{Type: Polynomial Fraction Integer}

The representation of objects of domains created by {\tt Polynomial}
is that of recursive univariate polynomials.\footnote{The term
{\tt univariate} means ``one variable.'' {\tt multivariate} means
``possibly more than one variable.''}

This recursive structure is sometimes obvious from the display of
a polynomial.

\spadcommand{y **2 + x*y + y }
$$
{y \sp 2}+{{\left( x+1 
\right)}
\  y} 
$$
\returnType{Type: Polynomial Integer}

In this example, you see that the polynomial is stored as a polynomial
in {\tt y} with coefficients that are polynomials in {\tt x} with
integer coefficients.  In fact, you really don't need to worry about
the representation unless you are working on an advanced application
where it is critical.  The polynomial types created from {\tt
DistributedMultivariatePolynomial} and\\
{\tt NewDistributedMultivariatePolynomial} (discussed in\\
\domainref{DistributedMultivariatePolynomial}) are stored and
displayed in a non-recursive manner.

You see a ``flat'' display of the above polynomial by converting to
one of those types.

\spadcommand{\% :: DMP([y,x],INT) }
$$
{y \sp 2}+{y \  x}+y 
$$
\returnType{Type: DistributedMultivariatePolynomial([y,x],Integer)}

We will demonstrate many of the polynomial facilities by using two
polynomials with integer coefficients.

By default, the interpreter expands polynomial expressions, even if they
are written in a factored format.

\spadcommand{p := (y-1)**2 * x * z }
$$
{\left( {x \  {y \sp 2}} -{2 \  x \  y}+x 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

See \domainref{Factored} to see how to create objects in 
factored form directly.

\spadcommand{q := (y-1) * x * (z+5) }
$$
{{\left( {x \  y} -x 
\right)}
\  z}+{5 \  x \  y} -{5 \  x} 
$$
\returnType{Type: Polynomial Integer}

%Original Page 438

The fully factored form can be recovered by using
\spadfunFrom{factor}{Polynomial}.

\spadcommand{factor(q) }
$$
x \  {\left( y -1 
\right)}
\  {\left( z+5 
\right)}
$$
\returnType{Type: Factored Polynomial Integer}

This is the same name used for the operation to factor integers.  Such
reuse of names is called \index{overloading} and makes it much easier
to think of solving problems in general ways.  Axiom facilities for
factoring polynomials created with {\tt Polynomial} are currently
restricted to the integer and rational number coefficient cases.
There are more complete facilities for factoring univariate
polynomials: see \sectionref{ugProblemFactor}.

The standard arithmetic operations are available for polynomials.

\spadcommand{p - q**2}
$$
\begin{array}{@{}l}
{{\left( 
-{{x \sp 2} \  {y \sp 2}}+
{2 \  {x \sp 2} \  y} -
{x \sp 2} 
\right)}\  {z \sp 2}}+
\\
\\
\displaystyle
{{\left( 
{{\left( 
-{{10} \  {x \sp 2}}+x 
\right)}\  {y \sp 2}}+
{{\left( 
{{20} \  {x \sp 2}} -
{2 \  x} 
\right)}\  y} 
-{{10} \  {x \sp 2}}+
x 
\right)}\  z} -
\\
\\
\displaystyle
{{25} \  {x \sp 2} \  {y \sp 2}}+
{{50} \  {x \sp 2} \  y} -
{{25} \  {x \sp 2}} 
\end{array}
$$
\returnType{Type: Polynomial Integer}

The operation \spadfunFrom{gcd}{Polynomial} is used to compute the
greatest common divisor of two polynomials.

\spadcommand{gcd(p,q) }
$$
{x \  y} -x 
$$
\returnType{Type: Polynomial Integer}

In the case of {\tt p} and {\tt q}, the gcd is obvious from their
definitions.  We factor the gcd to show this relationship better.

\spadcommand{factor \% }
$$
x \  {\left( y -1 
\right)}
$$
\returnType{Type: Factored Polynomial Integer}

The least common multiple is computed by using \spadfunFrom{lcm}{Polynomial}.

\spadcommand{lcm(p,q) }
$$
{{\left( {x \  {y \sp 2}} -{2 \  x \  y}+x 
\right)}
\  {z \sp 2}}+{{\left( {5 \  x \  {y \sp 2}} -{{10} \  x \  y}+{5 \  x} 
\right)}
\  z} 
$$
\returnType{Type: Polynomial Integer}

Use \spadfunFrom{content}{Polynomial} to compute the greatest common
divisor of the coefficients of the polynomial.

\spadcommand{content p }
$$
1 
$$
\returnType{Type: PositiveInteger}

Many of the operations on polynomials require you to specify a
variable.  For example, \spadfunFrom{resultant}{Polynomial} requires
you to give the variable in which the polynomials should be expressed.

%Original Page 439

This computes the resultant of the values of {\tt p} and {\tt q},
considering them as polynomials in the variable {\tt z}.  They do not
share a root when thought of as polynomials in {\tt z}.

\spadcommand{resultant(p,q,z) }
$$
{5 \  {x \sp 2} \  {y \sp 3}} -{{15} \  {x \sp 2} \  {y \sp 2}}+{{15} \  {x 
\sp 2} \  y} -{5 \  {x \sp 2}} 
$$
\returnType{Type: Polynomial Integer}

This value is {\tt 0} because as polynomials in {\tt x} the polynomials
have a common root.

\spadcommand{resultant(p,q,x) }
$$
0 
$$
\returnType{Type: Polynomial Integer}

The data type used for the variables created by {\tt Polynomial} is
{\tt Symbol}.  As mentioned above, the representation used by {\tt
Polynomial} is recursive and so there is a main variable for
nonconstant polynomials.

The operation \spadfunFrom{mainVariable}{Polynomial} returns this
variable.  The return type is actually a union of {\tt Symbol} and
{\tt "failed"}.

\spadcommand{mainVariable p }
$$
z 
$$
\returnType{Type: Union(Symbol,...)}

The latter branch of the union is be used if the polynomial has no
variables, that is, is a constant.

\spadcommand{mainVariable(1 :: POLY INT)}
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

You can also use the predicate \spadfunFrom{ground?}{Polynomial} to test
whether a polynomial is in fact a member of its ground ring.

\spadcommand{ground? p }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{ground?(1 :: POLY INT)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The complete list of variables actually used in a particular
polynomial is returned by \spadfunFrom{variables}{Polynomial}.  For
constant polynomials, this list is empty.

\spadcommand{variables p }
$$
\left[
z, y, x 
\right]
$$
\returnType{Type: List Symbol}

The \spadfunFrom{degree}{Polynomial} operation returns the
degree of a polynomial in a specific variable.

\spadcommand{degree(p,x) }
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{degree(p,y) }
$$
2 
$$
\returnType{Type: PositiveInteger}

%Original Page 440

\spadcommand{degree(p,z) }
$$
1 
$$
\returnType{Type: PositiveInteger}

If you give a list of variables for the second argument, a list
of the degrees in those variables is returned.

\spadcommand{degree(p,[x,y,z]) }
$$
\left[
1, 2, 1 
\right]
$$
\returnType{Type: List NonNegativeInteger}

The minimum degree of a variable in a polynomial is computed using
\spadfunFrom{minimumDegree}{Polynomial}.

\spadcommand{minimumDegree(p,z) }
$$
1 
$$
\returnType{Type: PositiveInteger}

The total degree of a polynomial is returned by
\spadfunFrom{totalDegree}{Polynomial}.

\spadcommand{totalDegree p }
$$
4 
$$
\returnType{Type: PositiveInteger}

It is often convenient to think of a polynomial as a leading monomial plus
the remaining terms.

\spadcommand{leadingMonomial p }
$$
x \  {y \sp 2} \  z 
$$
\returnType{Type: Polynomial Integer}

The \spadfunFrom{reductum}{Polynomial} operation returns a polynomial
consisting of the sum of the monomials after the first.

\spadcommand{reductum p }
$$
{\left( -{2 \  x \  y}+x 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

These have the obvious relationship that the original polynomial
is equal to the leading monomial plus the reductum.

\spadcommand{p - leadingMonomial p - reductum p }
$$
0 
$$
\returnType{Type: Polynomial Integer}

The value returned by \spadfunFrom{leadingMonomial}{Polynomial}
includes the coefficient of that term.  This is extracted by using
\spadfunFrom{leadingCoefficient}{Polynomial} on the original
polynomial.

\spadcommand{leadingCoefficient p }
$$
1 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{eval}{Polynomial} is used to substitute a value
for a variable in a polynomial.

\spadcommand{p  }
$$
{\left( {x \  {y \sp 2}} -{2 \  x \  y}+x 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

This value may be another variable, a constant or a polynomial.

\spadcommand{eval(p,x,w) }
$$
{\left( {w \  {y \sp 2}} -{2 \  w \  y}+w 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

%Original Page 441

\spadcommand{eval(p,x,1) }
$$
{\left( {y \sp 2} -{2 \  y}+1 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

Actually, all the things being substituted are just polynomials,
some more trivial than others.

\spadcommand{eval(p,x,y**2 - 1) }
$$
{\left( {y \sp 4} -{2 \  {y \sp 3}}+{2 \  y} -1 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

Derivatives are computed using the \spadfunFrom{D}{Polynomial} operation.

\spadcommand{D(p,x) }
$$
{\left( {y \sp 2} -{2 \  y}+1 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

The first argument is the polynomial and the second is the variable.

\spadcommand{D(p,y) }
$$
{\left( {2 \  x \  y} -{2 \  x} 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

Even if the polynomial has only one variable, you must specify it.

\spadcommand{D(p,z) }
$$
{x \  {y \sp 2}} -{2 \  x \  y}+x 
$$
\returnType{Type: Polynomial Integer}

Integration of polynomials is similar and the
\spadfunFrom{integrate}{Polynomial} operation is used.

Integration requires that the coefficients support division.
Consequently, Axiom converts polynomials over the integers to
polynomials over the rational numbers before integrating them.

\spadcommand{integrate(p,y) }
$$
{\left( {{\frac{1}{3}} \  x \  {y \sp 3}} -{x \  {y \sp 2}}+{x \  y} 
\right)}
\  z 
$$
\returnType{Type: Polynomial Fraction Integer}

It is not possible, in general, to divide two polynomials.  In our
example using polynomials over the integers, the operation
\spadfunFrom{monicDivide}{Polynomial} divides a polynomial by a monic
polynomial (that is, a polynomial with leading coefficient equal to
1).  The result is a record of the quotient and remainder of the
division.

You must specify the variable in which to express the polynomial.

\spadcommand{qr := monicDivide(p,x+1,x) }
$$
\left[
{quotient={{\left( {y \sp 2} -{2 \  y}+1 
\right)}
\  z}}, {remainder={{\left( -{y \sp 2}+{2 \  y} -1 
\right)}
\  z}} 
\right]
$$
\returnType{Type: Record(quotient: Polynomial Integer,remainder: Polynomial Integer)}

The selectors of the components of the record are {\tt quotient} and
{\tt remainder}.  Issue this to extract the remainder.

\spadcommand{qr.remainder }
$$
{\left( -{y \sp 2}+{2 \  y} -1 
\right)}
\  z 
$$
\returnType{Type: Polynomial Integer}

%Original Page 442

Now that we can extract the components, we can demonstrate the
relationship among them and the arguments to our original expression
{\tt qr := monicDivide(p,x+1,x)}.

\spadcommand{p - ((x+1) * qr.quotient + qr.remainder) }
$$
0 
$$
\returnType{Type: Polynomial Integer}

If the \spadopFrom{/}{Fraction} operator is used with polynomials, a
fraction object is created.  In this example, the result is an object
of type {\tt Fraction Polynomial Integer}.

\spadcommand{p/q }
$$
\frac{{\left( y -1 \right)}\  z}{z+5} 
$$
\returnType{Type: Fraction Polynomial Integer}

If you use rational numbers as polynomial coefficients, the\\
resulting object is of type {\tt Polynomial Fraction Integer}.

\spadcommand{(2/3) * x**2 - y + 4/5 }
$$
-y+{{\frac{2}{3}} \  {x \sp 2}}+{\frac{4}{5}} 
$$
\returnType{Type: Polynomial Fraction Integer}

This can be converted to a fraction of polynomials and back again, if
required.

\spadcommand{\% :: FRAC POLY INT }
$$
\frac{-{{15} \  y}+{{10} \  {x \sp 2}}+{12}}{15} 
$$
\returnType{Type: Fraction Polynomial Integer}

\spadcommand{\% :: POLY FRAC INT }
$$
-y+{{\frac{2}{3}} \  {x \sp 2}}+{\frac{4}{5}} 
$$
\returnType{Type: Polynomial Fraction Integer}

To convert the coefficients to floating point, map the {\tt numeric}
operation on the coefficients of the polynomial.

\spadcommand{map(numeric,\%) }
$$
-{{1.0} \  y}+{{0.6666666666 6666666667} \  {x \sp 2}}+{0.8} 
$$
\returnType{Type: Polynomial Float}

For more information on related topics, see
\domainref{UnivariatePolynomial}, \domainref{MultivariatePolynomial}, and
\domainref{DistributedMultivariatePolynomial}.  You can also issue
the system command {\tt )show Polynomial} to display the full list
of operations defined by {\tt Polynomial}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Quaternion}

The domain constructor {\tt Quaternion} implements quaternions over
commutative rings.  For information on related topics, see
\domainref{Complex} and \domainref{Octonion}.
You can also issue the system command
{\tt )show Quaternion} to display the full list of operations
defined by {\tt Quaternion}.

The basic operation for creating quaternions is
\spadfunFrom{quatern}{Quaternion}.
This is a quaternion over the rational numbers.

\spadcommand{q := quatern(2/11,-8,3/4,1) }
$$
{\frac{2}{11}} -{8 \  i}+{{\frac{3}{4}} \  j}+k 
$$
\returnType{Type: Quaternion Fraction Integer}

%Original Page 443

The four arguments are the real part, the {\tt i} imaginary part, the
{\tt j} imaginary part, and the {\tt k} imaginary part, respectively.

\spadcommand{[real q, imagI q, imagJ q, imagK q] }
$$
\left[
{\frac{2}{11}}, -8, {\frac{3}{4}}, 1 
\right]
$$
\returnType{Type: List Fraction Integer}

Because {\tt q} is over the rationals (and nonzero), you can invert it.

\spadcommand{inv q }
$$
{\frac{352}{126993}}+{{\frac{15488}{126993}} \  i} 
-{{\frac{484}{42331}} \  j} -{{\frac{1936}{126993}} \  k} 
$$
\returnType{Type: Quaternion Fraction Integer}

The usual arithmetic (ring) operations are available

\spadcommand{q**6 }
$$
-{\frac{2029490709319345}{7256313856}} -
{{\frac{48251690851}{1288408}} \  i}+
{{\frac{144755072553}{41229056}} \  j}+
{{\frac{48251690851}{10307264}} 
\  k} 
$$
\returnType{Type: Quaternion Fraction Integer}

\spadcommand{r := quatern(-2,3,23/9,-89); q + r }
$$
-{\frac{20}{11}} -{5 \  i}+{{\frac{119}{36}} \  j} -{{88} \  k} 
$$
\returnType{Type: Quaternion Fraction Integer}

In general, multiplication is not commutative.

\spadcommand{q * r - r * q}
$$
-{{\frac{2495}{18}} \  i} -{{1418} \  j} -{{\frac{817}{18}} \  k} 
$$
\returnType{Type: Quaternion Fraction Integer}

There are no predefined constants for the imaginary {\tt i, j},
and {\tt k} parts, but you can easily define them.

\spadcommand{i:=quatern(0,1,0,0); j:=quatern(0,0,1,0); k:=quatern(0,0,0,1) }
$$
k 
$$
\returnType{Type: Quaternion Integer}

These satisfy the normal identities.

\spadcommand{[i*i, j*j, k*k, i*j, j*k, k*i, q*i] }
$$
\left[
-1, -1, -1, k, i, j, {8+{{\frac{2}{11}} \  i}+j -{{\frac{3}{4}} \  k}} 
\right]
$$
\returnType{Type: List Quaternion Fraction Integer}

The norm is the quaternion times its conjugate.

\spadcommand{norm q }
$$
\frac{126993}{1936} 
$$
\returnType{Type: Fraction Integer}

\spadcommand{conjugate q  }
$$
{\frac{2}{11}}+{8 \  i} -{{\frac{3}{4}} \  j} -k 
$$
\returnType{Type: Quaternion Fraction Integer}

\spadcommand{q * \% }
$$
\frac{126993}{1936} 
$$
\returnType{Type: Quaternion Fraction Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Queue}

A queue is an aggregate structure which allows insertion at the back of
the queue, deletion at the front of the queue and inspection of the
front element. Queues are similar to a line of people where you can
join the line at the back, leave the line at the front, or see the
person in the front of the line.

Queues can be created from a list of elements using the {\bf queue}
function.

\spadcommand{a:Queue INT:= queue [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Queue Integer}

An empty queue can be created using the {\bf empty} function. 

\spadcommand{a:Queue INT:= empty()}
$$
[]
$$
\returnType{Type: Queue Integer}

The {\bf empty?} function will return {\tt true} if the queue contains
no elements.

\spadcommand{empty? a}
$$
true
$$
\returnType{Type: Boolean}

Queues modify their arguments so they use the exclamation mark ``!''
as part of the function name.

The {\bf dequeue!} operation removes the front element of the queue and
returns it.  The queue is one element smaller. The {\bf extract!} does
the same thing with a different name.

\spadcommand{a:Queue INT:= queue [1,2,3,4,5]}
$$ 
[1,2,3,4,5]
$$
\returnType{Type: Queue Integer}

\spadcommand{dequeue! a}
$$
1
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[2,3,4,5]
$$
\returnType{Type: Queue Integer}

The {\bf enqueue!} function adds a new element to the back of the
queue and returns the element that was pushed. The queue is one
element larger.  The {\bf insert!} function does the same thing with a
different name.

\spadcommand{a:Queue INT:= queue [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Queue Integer}

\spadcommand{enqueue!(9,a)}
$$
9
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[1,2,3,4,5,9]
$$
\returnType{Type: Queue Integer}

To read the top element without changing the queue use the {\bf front}
function.

\spadcommand{a:Queue INT:= queue [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Queue Integer}

\spadcommand{front a}
$$
1
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[1,2,3,4,5]
$$
\returnType{Type: Queue Integer}

For more information on related topics, see Stack
\sectionref{Stack}.

%Original Page 444

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{RadixExpansion}

It possible to expand numbers in general bases.

Here we expand {\tt 111} in base {\tt 5}.
This means
$$10^2+10^1+10^0 = 4 \cdot 5^2+2 \cdot 5^1 + 5^0$$

\spadcommand{111::RadixExpansion(5)}
$$
421 
$$
\returnType{Type: RadixExpansion 5}

You can expand fractions to form repeating expansions.

\spadcommand{(5/24)::RadixExpansion(2)}
$$
0.{001}{\overline {10}} 
$$
\returnType{Type: RadixExpansion 2}

\spadcommand{(5/24)::RadixExpansion(3)}
$$
0.0{\overline {12}} 
$$
\returnType{Type: RadixExpansion 3}

\spadcommand{(5/24)::RadixExpansion(8)}
$$
0.1{\overline {52}} 
$$
\returnType{Type: RadixExpansion 8}

\spadcommand{(5/24)::RadixExpansion(10)}
$$
0.{208}{\overline 3} 
$$
\returnType{Type: RadixExpansion 10}

For bases from 11 to 36 the letters A through Z are used.

\spadcommand{(5/24)::RadixExpansion(12)}
$$
0.{26} 
$$
\returnType{Type: RadixExpansion 12}

\spadcommand{(5/24)::RadixExpansion(16)}
$$
0.3{\overline 5} 
$$
\returnType{Type: RadixExpansion 16}

\spadcommand{(5/24)::RadixExpansion(36)}
$$
0.{\rm 7I} 
$$
\returnType{Type: RadixExpansion 36}

%Original Page 445

For bases greater than 36, the ragits are separated by blanks.

\spadcommand{(5/24)::RadixExpansion(38)}
$$
0 \  . \  7 \  {34} \  {31} \  {\overline {{25} \  {12}}} 
$$
\returnType{Type: RadixExpansion 38}

The {\tt RadixExpansion} type provides operations to obtain the
individual ragits.  Here is a rational number in base {\tt 8}.

\spadcommand{a := (76543/210)::RadixExpansion(8) }
$$
{554}.3{\overline {7307}} 
$$
\returnType{Type: RadixExpansion 8}

The operation \spadfunFrom{wholeRagits}{RadixExpansion} returns a list of the
ragits for the integral part of the number.

\spadcommand{w := wholeRagits a }
$$
\left[
5, 5, 4 
\right]
$$
\returnType{Type: List Integer}

The operations \spadfunFrom{prefixRagits}{RadixExpansion} and
\spadfunFrom{cycleRagits}{RadixExpansion} return lists of the initial
and repeating ragits in the fractional part of the number.

\spadcommand{f0 := prefixRagits a }
$$
\left[
3 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{f1 := cycleRagits a }
$$
\left[
7, 3, 0, 7 
\right]
$$
\returnType{Type: List Integer}

You can construct any radix expansion by giving the whole, prefix and
cycle parts.  The declaration is necessary to let Axiom know the base
of the ragits.

\spadcommand{u:RadixExpansion(8):=wholeRadix(w)+fractRadix(f0,f1) }
$$
{554}.3{\overline {7307}} 
$$
\returnType{Type: RadixExpansion 8}

If there is no repeating part, then the list {\tt [0]} should be used.

\spadcommand{v: RadixExpansion(12) := fractRadix([1,2,3,11], [0]) }
$$
0.{\rm 123B}{\rm {\overline 0}}
$$
\returnType{Type: RadixExpansion 12}

If you are not interested in the repeating nature of the expansion,
an infinite stream of ragits can be obtained using
\spadfunFrom{fractRagits}{RadixExpansion}.

\spadcommand{fractRagits(u) }
$$
\left[
3, 7, {\overline {3, 0, 7, 7}} 
\right]
$$
\returnType{Type: Stream Integer}

Of course, it's possible to recover the fraction representation:

\spadcommand{a :: Fraction(Integer) }
$$
\frac{76543}{210} 
$$
\returnType{Type: Fraction Integer}

More examples of expansions are available in
\domainref{DecimalExpansion},\\ 
\domainref{BinaryExpansion}, and
\domainref{HexadecimalExpansion}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{RealClosure}

The Real Closure 1.0 package provided by Renaud Rioboo
(Renaud.Rioboo@lip6.fr) consists of different packages, categories and
domains :

\begin{list}{}
\item The package {\tt RealPolynomialUtilitiesPackage}\\ 
which needs a
{\tt Field} {\em F} and a {\tt Univariate\-PolynomialCategory} domain
with coefficients in {\em F}. It computes some simple functions such
as Sturm and Sylvester sequences\\
(\spadfunFrom{sturmSequence}{RealPolynomialUtilitiesPackage},\\
\spadfunFrom{sylvesterSequence}{RealPolynomialUtilitiesPackage}).

\item The category {\tt RealRootCharacterizationCategory} provides abstract
functions to work with ``real roots'' of univariate polynomials. These
resemble variables with some functionality needed to compute important
operations.

\item The category {\tt RealClosedField} provides common operations
available over real closed fiels. These include finding all the roots
of a univariate polynomial, taking square (and higher) roots, ...

\item The domain {\tt RightOpenIntervalRootCharacterization}\\ 
is the main code that provides the functionality of \\
{\tt RealRootCharacterizationCategory} for the case of archimedean
fields. Abstract roots are encoded with a left closed right open
interval containing the root together with a defining polynomial for
the root.

\item The {\tt RealClosure} domain is the end-user code. It provides
usual arithmetic with real algebraic numbers, along with the
functionality of a real closed field. It also provides functions to
approximate a real algebraic number by an element of the base
field. This approximation may either be absolute
(\spadfunFrom{approximate}{RealClosure}) or relative
(\spadfunFrom{relativeApprox}{RealClosure}).

\end{list}

\centerline{CAVEATS}

Since real algebraic expressions are stored as depending on ``real
roots'' which are managed like variables, there is an ordering on
these. This ordering is dynamical in the sense that any new algebraic
takes precedence over older ones. In particular every creation
function raises a new ``real root''. This has the effect that when you
type something like {\tt sqrt(2) + sqrt(2)} you have two new variables
which happen to be equal. To avoid this name the expression such as in
{\tt s2 := sqrt(2) ; s2 + s2}

Also note that computing times depend strongly on the ordering you
implicitly provide. Please provide algebraics in the order which seems
most natural to you.

\centerline{LIMITATIONS}

This packages uses algorithms which are published in [1] and [2] which
are based on field arithmetics, in particular for polynomial gcd
related algorithms. This can be quite slow for high degree polynomials
and subresultants methods usually work best. Beta versions of the
package try to use these techniques in a better way and work
significantly faster. These are mostly based on unpublished algorithms
and cannot be distributed. Please contact the author if you have a
particular problem to solve or want to use these versions.

Be aware that approximations behave as post-processing and that all
computations are done exactly. They can thus be quite time consuming when
depending on several ``real roots''.

\centerline{REFERENCES}


[1]  R. Rioboo : Real Algebraic Closure of an ordered Field : Implementation 
     in Axiom. 
     In proceedings of the ISSAC'92 Conference, Berkeley 1992 pp. 206-215.

[2]  Z. Ligatsikas, R. Rioboo, M. F. Roy : Generic computation of the real
     closure of an ordered field.
     In Mathematics and Computers in Simulation Volume 42, Issue 4-6,
     November 1996.

\centerline{EXAMPLES}

We shall work with the real closure of the ordered field of 
rational numbers.

\spadcommand{Ran := RECLOS(FRAC INT) }
$$
\mbox{\rm RealClosure Fraction Integer} 
$$
\returnType{Type: Domain}

Some simple signs for square roots, these correspond to an extension
of degree 16 of the rational numbers. Examples provided by J. Abbot.

\spadcommand{fourSquares(a:Ran,b:Ran,c:Ran,d:Ran):Ran == sqrt(a)+sqrt(b) - sqrt(c)-sqrt(d)  }
\begin{verbatim}
Function declaration fourSquares : (RealClosure Fraction Integer,
   RealClosure Fraction Integer,RealClosure Fraction Integer,
   RealClosure Fraction Integer) -> RealClosure Fraction Integer has
   been added to workspace.
\end{verbatim}
\returnType{Type: Void}

These produce values very close to zero.

\spadcommand{squareDiff1 := fourSquares(73,548,60,586) }
$$
-{\sqrt {{586}}} -{\sqrt {{60}}}+{\sqrt {{548}}}+{\sqrt {{73}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff1)}
$$
\begin{array}{@{}l}
\displaystyle
{{\left( 
{{\left( 
{{54602} \  {\sqrt {{548}}}}+
{{149602} \  {\sqrt {{73}}}} 
\right)}
\  {\sqrt {{60}}}}+
{{49502} \  {\sqrt {{73}}} \  {\sqrt {{548}}}}+
{9900895} 
\right)}
\  {\sqrt {{586}}}}+
\\
\\
\displaystyle
{{\left( {{154702} \  {\sqrt {{73}}} \  {\sqrt {{548}}}}+
{30941947} 
\right)}
\  {\sqrt {{60}}}}+{{10238421} \  {\sqrt {{548}}}}+
{{28051871} \  {\sqrt {{73}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff1)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{squareDiff2 := fourSquares(165,778,86,990) }
$$
-{\sqrt {{990}}} -{\sqrt {{86}}}+{\sqrt {{778}}}+{\sqrt {{165}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff2)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
{{556778} \  {\sqrt {{778}}}}+
{{1209010} \  {\sqrt {{165}}}} 
\right)\  {\sqrt {{86}}}+
\right.
\\
\\
\displaystyle
\left.
{{401966} \  {\sqrt {{165}}} \  {\sqrt {{778}}}}+
{144019431} 
\right)\  {\sqrt {{990}}}+
\\
\\
\displaystyle
{{\left( {{1363822} \  {\sqrt {{165}}} \  {\sqrt {{778}}}}+
{488640503} 
\right)}
\  {\sqrt {{86}}}}+
\\
\\
\displaystyle
{{162460913} \  {\sqrt {{778}}}}+
{{352774119} \  {\sqrt {{165}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff2)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{squareDiff3 := fourSquares(217,708,226,692) }
$$
-{\sqrt {{692}}} -{\sqrt {{226}}}+{\sqrt {{708}}}+{\sqrt {{217}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff3)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
-{{34102} \  {\sqrt {{708}}}} -
{{61598} \  {\sqrt {{217}}}} 
\right)\  {\sqrt {{226}}} -
\right.
\\
\\
\displaystyle
\left.
{{34802} \  {\sqrt {{217}}} \  {\sqrt {{708}}}} -
{13641141} 
\right)\  {\sqrt {{692}}}+
\\
\\
\displaystyle
\left( -
{{60898} \  {\sqrt {{217}}} \  {\sqrt {{708}}}} -
{23869841} 
\right)\  {\sqrt {{226}}} -
\\
\\
\displaystyle
{{13486123} \  {\sqrt {{708}}}} -
{{24359809} \  {\sqrt {{217}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff3)}
$$
-1 
$$
\returnType{Type: Integer}

\spadcommand{squareDiff4 := fourSquares(155,836,162,820)  }
$$
-{\sqrt {{820}}} -{\sqrt {{162}}}+{\sqrt {{836}}}+{\sqrt {{155}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff4)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
-{{37078} \  {\sqrt {{836}}}} -
{{86110} \  {\sqrt {{155}}}} 
\right)\  {\sqrt {{162}}} -
\right.
\\
\\
\displaystyle
\left.
{{37906} \  {\sqrt {{155}}} \  {\sqrt {{836}}}} -
{13645107} 
\right)\  {\sqrt {{820}}}+
\\
\\
\displaystyle
\left( -{{85282} \  {\sqrt {{155}}} \  {\sqrt {{836}}}} -
{30699151} 
\right)\  {\sqrt {{162}}} -
\\
\\
\displaystyle
{{13513901} \  {\sqrt {{836}}}} -
{{31384703} \  {\sqrt {{155}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff4)}
$$
-1 
$$
\returnType{Type: Integer}

\spadcommand{squareDiff5 := fourSquares(591,772,552,818) }
$$
-{\sqrt {{818}}} -{\sqrt {{552}}}+{\sqrt {{772}}}+{\sqrt {{591}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff5)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
{{70922} \  {\sqrt {{772}}}}+
{{81058} \  {\sqrt {{591}}}} 
\right)\  {\sqrt {{552}}}+
\right.
\\
\\
\displaystyle
\left.
{{68542} \  {\sqrt {{591}}} \  {\sqrt {{772}}}}+
{46297673} 
\right)\  {\sqrt {{818}}}+
\\
\\
\displaystyle
\left( 
{{83438} \  {\sqrt {{591}}} \  {\sqrt {{772}}}}+
{56359389} 
\right)\  {\sqrt {{552}}}+
\\
\\
\displaystyle
{{47657051} \  {\sqrt {{772}}}}+
{{54468081} \  {\sqrt {{591}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff5)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{squareDiff6 := fourSquares(434,1053,412,1088) }
$$
-{\sqrt {{1088}}} -
{\sqrt {{412}}}+
{\sqrt {{1053}}}+
{\sqrt {{434}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff6)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
{{115442} \  {\sqrt {{1053}}}}+
{{179818} \  {\sqrt {{434}}}} 
\right)\  {\sqrt {{412}}}+
\right.
\\
\\
\displaystyle
\left.
{{112478} \  {\sqrt {{434}}} \  {\sqrt {{1053}}}}+
{76037291} 
\right)\  {\sqrt {{1088}}}+
\\
\\
\displaystyle
\left( 
{{182782} \  {\sqrt {{434}}} \  {\sqrt {{1053}}}}+
{123564147} 
\right)\  {\sqrt {{412}}}+
\\
\\
\displaystyle
{{77290639} \  {\sqrt {{1053}}}}+
{{120391609} \  {\sqrt {{434}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff6)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{squareDiff7 := fourSquares(514,1049,446,1152) }
$$
-{\sqrt {{1152}}} -{\sqrt {{446}}}+{\sqrt {{1049}}}+{\sqrt {{514}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff7)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
{{349522} \  {\sqrt {{1049}}}}+
{{499322} \  {\sqrt {{514}}}} 
\right)\  {\sqrt {{446}}}+
\right.
\\
\\
\displaystyle
\left.
{{325582} \  {\sqrt {{514}}} \  {\sqrt {{1049}}}}+
{239072537} 
\right)\  {\sqrt {{1152}}}+
\\
\\
\displaystyle
\left( 
{{523262} \  {\sqrt {{514}}} \  {\sqrt {{1049}}}}+
{384227549} 
\right)\  {\sqrt {{446}}}+
\\
\\
\displaystyle
{{250534873} \  {\sqrt {{1049}}}}+
{{357910443} \  {\sqrt {{514}}}} 
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff7)}
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{squareDiff8 := fourSquares(190,1751,208,1698) }
$$
-{\sqrt {{1698}}} -
{\sqrt {{208}}}+
{\sqrt {{1751}}}+
{\sqrt {{190}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{recip(squareDiff8)}
$$
\begin{array}{@{}l}
\displaystyle
\left( 
\left( 
-{{214702} \  {\sqrt {{1751}}}} -
{{651782} \  {\sqrt {{190}}}} 
\right)\  {\sqrt {{208}}} -
\right.
\\
\\
\displaystyle
\left.
{{224642} \  {\sqrt {{190}}} \  {\sqrt {{1751}}}} 
-{129571901} 
\right)\  {\sqrt {{1698}}}+
\\
\\
\displaystyle
\left( 
-{{641842} \  {\sqrt {{190}}} \  {\sqrt {{1751}}}} -
{370209881} 
\right)\  {\sqrt {{208}}} -
\\
\\
\displaystyle
{{127595865} \  {\sqrt {{1751}}}} -
{{387349387} \  {\sqrt {{190}}}}
\end{array}
$$
\returnType{Type: Union(RealClosure Fraction Integer,...)}

\spadcommand{sign(squareDiff8)}
$$
-1 
$$
\returnType{Type: Integer}

This should give three digits of precision

\spadcommand{relativeApprox(squareDiff8,10**(-3))::Float }
$$
-{0.2340527771\ 5937700123 E -10} 
$$
\returnType{Type: Float}

The sum of these 4 roots is 0

\spadcommand{l := allRootsOf((x**2-2)**2-2)\$Ran  }
$$
\left[
{ \%A{33}}, { \%A{34}}, { \%A{35}}, { \%A{36}} 
\right]
$$
\returnType{Type: List RealClosure Fraction Integer}

Check that they are all roots of the same polynomial

\spadcommand{removeDuplicates map(mainDefiningPolynomial,l) }
$$
\left[
{{? \sp 4} -{4 \  {? \sp 2}}+2} 
\right]
$$
\returnType{Type: 
List Union(SparseUnivariatePolynomial RealClosure Fraction Integer,"failed")}

We can see at a glance that they are separate roots

\spadcommand{map(mainCharacterization,l) }
$$
\left[
{{[-2}, {-1[}}, {{[-1}, {0[}}, {{[0}, {1[}}, {{[1}, 
{2[}} 
\right]
$$
\returnType{Type: 
List Union(
RightOpenIntervalRootCharacterization(
RealClosure Fraction Integer,
SparseUnivariatePolynomial RealClosure Fraction Integer),
"failed")}

Check the sum and product

\spadcommand{[reduce(+,l),reduce(*,l)-2] }
$$
\left[
0, 0 
\right]
$$
\returnType{Type: List RealClosure Fraction Integer}

A more complicated test that involve an extension of degree 256.
This is a way of checking nested radical identities.

\spadcommand{(s2, s5, s10) := (sqrt(2)\$Ran, sqrt(5)\$Ran, sqrt(10)\$Ran) }
$$
\sqrt {{10}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{eq1:=sqrt(s10+3)*sqrt(s5+2) - sqrt(s10-3)*sqrt(s5-2) = sqrt(10*s2+10) }
$$
{-{{\sqrt {{{\sqrt {{10}}} -3}}} 
\  {\sqrt {{{\sqrt {5}} -2}}}}+
{{\sqrt {{{\sqrt {{10}}}+3}}} 
\  {\sqrt {{{\sqrt {5}}+2}}}}}=
{\sqrt {{{{10} \  {\sqrt {2}}}+{10}}}} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{eq1::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{eq2:=sqrt(s5+2)*sqrt(s2+1) - sqrt(s5-2)*sqrt(s2-1) = sqrt(2*s10+2)}
$$
{-{{\sqrt {{{\sqrt {5}} -2}}} 
\  {\sqrt {{{\sqrt {2}} -1}}}}+
{{\sqrt {{{\sqrt {5}}+2}}} 
\  {\sqrt {{{\sqrt {2}}+1}}}}}=
{\sqrt {{{2 \  {\sqrt {{10}}}}+2}}} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{eq2::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

Some more examples from J. M. Arnaudies

\spadcommand{s3 := sqrt(3)\$Ran }
$$
\sqrt {3} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{s7:= sqrt(7)\$Ran }
$$
\sqrt {7} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{e1 := sqrt(2*s7-3*s3,3)   }
$$
\root {3} \of {{{2 \  {\sqrt {7}}} -{3 \  {\sqrt {3}}}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{e2 := sqrt(2*s7+3*s3,3)   }
$$
\root {3} \of {{{2 \  {\sqrt {7}}}+{3 \  {\sqrt {3}}}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

This should be null

\spadcommand{e2-e1-s3   }
$$
0 
$$
\returnType{Type: RealClosure Fraction Integer}

A quartic polynomial

\spadcommand{pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)  }
$$
{x \sp 4}+{{\frac{7}{3}} \  {x \sp 2}}+{{30} \  x} -{\frac{100}{3}} 
$$
\returnType{Type: UnivariatePolynomial(x,RealClosure Fraction Integer)}

Add some cubic roots

\spadcommand{r1 := sqrt(7633)\$Ran }
$$
\sqrt {{7633}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{alpha := sqrt(5*r1-436,3)/3  }
$$
{\frac{1}{3}} \  {\root {3} \of {{{5 \  {\sqrt {{7633}}}} -{436}}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{beta := -sqrt(5*r1+436,3)/3  }
$$
-{{\frac{1}{3}} \  {\root {3} \of {{{5 \  {\sqrt {{7633}}}}+{436}}}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

this should be null

\spadcommand{pol.(alpha+beta-1/3)   }
$$
0 
$$
\returnType{Type: RealClosure Fraction Integer}

A quintic polynomial

\spadcommand{qol : UP(x,Ran) := x**5+10*x**3+20*x+22 }
$$
{x \sp 5}+{{10} \  {x \sp 3}}+{{20} \  x}+{22} 
$$
\returnType{Type: UnivariatePolynomial(x,RealClosure Fraction Integer)}

Add some cubic roots

\spadcommand{r2 := sqrt(153)\$Ran }
$$
\sqrt {{153}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{alpha2 := sqrt(r2-11,5) }
$$
\root {5} \of {{{\sqrt {{153}}} -{11}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{beta2 := -sqrt(r2+11,5) }
$$
-{\root {5} \of {{{\sqrt {{153}}}+{11}}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

this should be null

\spadcommand{qol(alpha2+beta2) }
$$
0 
$$
\returnType{Type: RealClosure Fraction Integer}

Finally, some examples from the book Computer Algebra by 
Davenport, Siret and Tournier (page 77).
The last one is due to Ramanujan.

\spadcommand{dst1:=sqrt(9+4*s2)=1+2*s2 }
$$
{\sqrt {{{4 \  {\sqrt {2}}}+9}}}={{2 \  {\sqrt {2}}}+1} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{dst1::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{s6:Ran:=sqrt 6 }
$$
\sqrt {6} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{dst2:=sqrt(5+2*s6)+sqrt(5-2*s6) = 2*s3 }
$$
{{\sqrt {{-{2 \  {\sqrt {6}}}+5}}}+{\sqrt {{{2 \  {\sqrt {6}}}+5}}}}={2 \  
{\sqrt {3}}} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{dst2::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{s29:Ran:=sqrt 29 }
$$
\sqrt {{29}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{dst4:=sqrt(16-2*s29+2*sqrt(55-10*s29)) = sqrt(22+2*s5)-sqrt(11+2*s29)+s5 }
$$
{\sqrt {{{2 \  {\sqrt {{-{{10} \  {\sqrt {{29}}}}+{55}}}}} -
{2 \  {\sqrt {{29}}}}+
{16}}}}=
{-{\sqrt {{{2 \  {\sqrt {{29}}}}+{11}}}}+
{\sqrt {{{2 \  {\sqrt {5}}}+
{22}}}}+{\sqrt {5}}} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{dst4::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{dst6:=sqrt((112+70*s2)+(46+34*s2)*s5) = (5+4*s2)+(3+s2)*s5 }
$$
{\sqrt {{{{\left( {{34} \  {\sqrt {2}}}+{46} 
\right)}
\  {\sqrt {5}}}+{{70} \  {\sqrt {2}}}+{112}}}}={{{\left( {\sqrt {2}}+3 
\right)}
\  {\sqrt {5}}}+{4 \  {\sqrt {2}}}+5} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{dst6::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{f3:Ran:=sqrt(3,5) }
$$
\root {5} \of {3} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{f25:Ran:=sqrt(1/25,5) }
$$
\root {5} \of {{\frac{1}{25}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{f32:Ran:=sqrt(32/5,5) }
$$
\root {5} \of {{\frac{32}{5}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{f27:Ran:=sqrt(27/5,5) }
$$
\root {5} \of {{\frac{27}{5}}} 
$$
\returnType{Type: RealClosure Fraction Integer}

\spadcommand{dst5:=sqrt((f32-f27,3)) = f25*(1+f3-f3**2)}
$$
{\root {3} \of {{-{\root {5} \of {{\frac{27}{5}}}}+{\root {5} \of 
{{\frac{32}{5}}}}}}}=
{{\left( -{{\root {5} \of {3}} \sp 2}+{\root {5} \of {3}}+1 \right)}
\  {\root {5} \of {{\frac{1}{25}}}}} 
$$
\returnType{Type: Equation RealClosure Fraction Integer}

\spadcommand{dst5::Boolean }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{RealSolvePackage}
\begin{verbatim}
p := 4*x^3 - 3*x^2 + 2*x - 4
\end{verbatim}
$$
{4 \ {x^3}} -{3 \ {x^2}}+{2 \ x} -4
$$
\returnType{Type: Polynomial(Integer)}
\begin{verbatim}
ans1 := solve(p,0.01)$REALSOLV
\end{verbatim}
$$
\left[
{1.11328125}
\right]
$$
\returnType{Type: List(Float)}
\begin{verbatim}
ans2 := solve(p::POLY(FRAC(INT)),0.01)$REALSOLV
\end{verbatim}
$$
\left[
{1.11328125}
\right]
$$
\returnType{Type: List(Float)}
\begin{verbatim}
R := Integer
\end{verbatim}
$$
Integer
$$
\returnType{Type: Domain}
\begin{verbatim}
ls : List Symbol := [x,y,z,t]
\end{verbatim}
$$
\left[
x, \: y, \: z, \: t
\right]
$$
\returnType{Type: List(Symbol)}
\begin{verbatim}
ls2 : List Symbol := [x,y,z,t,new()$Symbol]
\end{verbatim}
$$
\left[
x, \: y, \: z, \: t, \: \%A
\right]
$$
\returnType{Type: List(Symbol)}
\begin{verbatim}
pack := ZDSOLVE(R,ls,ls2)
\end{verbatim}
$$
ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t,\%A])
$$
\returnType{Type: Domain}
\begin{verbatim}
p1 := x**2*y*z + y*z
\end{verbatim}
$$
{\left( {x^2}+1
\right)}
\ y \ z
$$
\returnType{Type: Polynomial(Integer)}
\begin{verbatim}
p2 := x**2*y**2*z + x + z
\end{verbatim}
$$
{{\left({{x^2} \ {y^2}}+1
\right)}
\ z}+x
$$
\returnType{Type: Polynomial(Integer)}
\begin{verbatim}
p3 := x**2*y**2*z**2 +  z + 1
\end{verbatim}
$$
{{x^2} \ {y^2} \ {z^2}}+z+1
$$
\returnType{Type: Polynomial(Integer)}
\begin{verbatim}
lp := [p1, p2, p3]
\end{verbatim}
$$
\left[
{{\left( {x^2}+1
\right)}
\ y \ z}, \: {{{\left( {{x^2} \ {y^2}}+1
\right)}
\ z}+x}, \: {{{x^2} \ {y^2} \ {z^2}}+z+1}
\right]
$$
\returnType{Type: List(Polynomial(Integer))}
\begin{verbatim}
lsv:List(Symbol):=[x,y,z]
\end{verbatim}
$$
\left[
x, \: y, \: z
\right]
$$
\returnType{Type: List(Symbol)}
\begin{verbatim}
ans3 := realSolve(lp,lsv,0.01)$REALSOLV
\end{verbatim}
$$
\left[
{\left[ {1.0}, \: {0.0}, \: -{1.0}
\right]}
\right]
$$
\returnType{Type: List(List(Float))}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{RegularTriangularSet}

The {\tt RegularTriangularSet} domain constructor implements regular
triangular sets.  These particular triangular sets were introduced by
M. Kalkbrener (1991) in his PhD Thesis under the name regular chains.
Regular chains and their related concepts are presented in the paper
``On the Theories of Triangular sets'' By P. Aubry, D. Lazard and
M. Moreno Maza (to appear in the Journal of Symbolic Computation).
The {\tt RegularTriangularSet} constructor also provides a new method
(by the third author) for solving polynomial system by means of
regular chains.  This method has two ways of solving.  One has the
same specifications as Kalkbrener's algorithm (1991) and the other is
closer to Lazard's method (Discr. App. Math, 1991).  Moreover, this
new method removes redundant component from the decompositions when
this is not {\em too expensive}.  This is always the case with
square-free regular chains.  So if you want to obtain decompositions
without redundant components just use the {\tt
SquareFreeRegularTriangularSet} domain constructor or the {\tt
LazardSetSolvingPackage} package constructor.  See also the {\tt
LexTriangularPackage} and {\tt ZeroDimensionalSolvePackage} for the
case of algebraic systems with a finite number of (complex) solutions.

One of the main features of regular triangular sets is that they
naturally define towers of simple extensions of a field.
This allows to perform with multivariate polynomials the 
same kind of operations as one can do in an {\tt EuclideanDomain}.

The {\tt RegularTriangularSet} constructor takes four arguments.  The
first one, {\bf R}, is the coefficient ring of the polynomials; it
must belong to the category {\tt GcdDomain}.  The second one, {\bf E},
is the exponent monoid of the polynomials; it must belong to the
category {\tt OrderedAbelianMonoidSup}.  the third one, {\bf V}, is
the ordered set of variables; it must belong to the category 
{\tt OrderedSet}.  The last one is the polynomial ring; it must belong to
the category \\
{\tt RecursivePolynomialCategory(R,E,V)}.  The
abbreviation for {\tt RegularTriangularSet} is {\tt REGSET}.  See also
the constructor {\tt RegularChain} which only takes two arguments, the
coefficient ring and the ordered set of variables; in that case,
polynomials are necessarily built with the 
{\tt NewSparseMultivariatePolynomial} domain constructor.

We shall explain now how to use the constructor {\tt REGSET} and how
to read the decomposition of a polynomial system by means of regular
sets.

Let us give some examples.  We start with an easy one
(Donati-Traverso) in order to understand the two ways of solving
polynomial systems provided by the {\tt REGSET} constructor.

Define the coefficient ring.

\spadcommand{R := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

Define the list of variables,

\spadcommand{ls : List Symbol := [x,y,z,t] }
$$
\left[
x, y, z, t 
\right]
$$
\returnType{Type: List Symbol}

and make it an ordered set;

\spadcommand{V := OVAR(ls)  }
$$
\mbox{\rm OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

then define the exponent monoid.

\spadcommand{E := IndexedExponents V  }
$$
\mbox{\rm IndexedExponents OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

Define the polynomial ring.

\spadcommand{P := NSMP(R, V)   }
$$
\mbox{\rm NewSparseMultivariatePolynomial(Integer,OrderedVariableList 
[x,y,z,t])} 
$$
\returnType{Type: Domain}

Let the variables be polynomial.

\spadcommand{x: P := 'x  }
$$
x 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

\spadcommand{y: P := 'y  }
$$
y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

\spadcommand{z: P := 'z  }
$$
z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

\spadcommand{t: P := 't  }
$$
t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

Now call the {\tt RegularTriangularSet} domain constructor.

\spadcommand{T := REGSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm RegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t]))} 
\end{array}
$$
\returnType{Type: Domain}

Define a polynomial system.

\spadcommand{p1 := x ** 31 - x ** 6 - x - y   }
$$
{x \sp {31}} -{x \sp 6} -x -y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p2 := x ** 8  - z   }
$$
{x \sp 8} -z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p3 := x ** 10 - t   }
$$
{x \sp {10}} -t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

\spadcommand{lp := [p1, p2, p3]    }
$$
\left[
{{x \sp {31}} -{x \sp 6} -x -y}, {{x \sp 8} -z}, {{x \sp {10}} -t} 
\right]
$$
\returnType{Type: 
List NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t])}

First of all, let us solve this system in the sense of Kalkbrener.

\spadcommand{zeroSetSplit(lp)\$T  }
$$
\left[
{\left\{ 
{{z \sp 5} -
{t \sp 4}}, 
{{t \  z \  {y \sp 2}}+
{2 \  {z \sp 3} \  y} -
{t \sp 8}+
{2 \  {t \sp 5}}+
{t \sp 3} -
{t \sp 2}}, 
{{{\left( {t \sp 4} 
-t 
\right)}\  x} -
{t \  y} -
{z \sp 2}} 
\right\}}
\right]
$$
\returnType{Type: 
List RegularTriangularSet(
Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t]))}

And now in the sense of Lazard (or Wu and other authors).

\spadcommand{lts := zeroSetSplit(lp,false)\$T   }
$$
\begin{array}{@{}l}
\left[
{\left\{ 
{{z \sp 5} -
{t \sp 4}}, 
{{t \  z \  {y \sp 2}}+
{2 \  {z \sp 3} \  y} -
{t \sp 8}+
{2 \  {t \sp 5}}+
{t \sp 3} -
{t \sp 2}}, 
{{{\left( 
{t \sp 4} -t 
\right)}\  x} -
{t \  y} -
{z \sp 2}} 
\right\}},
\right.
\\
\\
\displaystyle
\left.
{\left\{ 
{{t \sp 3} -1}, 
{{z \sp 5} -t}, 
{{t \  z \  {y \sp 2}}+
{2 \  {z \sp 3} \  y}+1}, 
{{z \  {x \sp 2}} -t} 
\right\}},
{\left\{ 
t, z, y, x 
\right\}}
\right]
\end{array}
$$
\returnType{Type: 
List RegularTriangularSet(
Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(
Integer,
OrderedVariableList [x,y,z,t]))}

We can see that the first decomposition is a subset of the second.
So how can both be correct ?

Recall first that polynomials from a domain of the category 
{\tt RecursivePolynomialCategory} are regarded as univariate polynomials in
their main variable.  For instance the second polynomial in the first
set of each decomposition has main variable {\bf y} and its initial
(i.e. its leading coefficient w.r.t. its main variable) is {\bf t z}.

Now let us explain how to read the second decomposition.  Note that
the non-constant initials of the first set are $t^4-t$ and $t z$.
Then the solutions described by this first set are the common zeros of
its polynomials that do not cancel the polynomials $t^4-t$ and $ty z$.
Now the solutions of the input system {\bf lp} satisfying these
equations are described by the second and the third sets of the
decomposition.  Thus, in some sense, they can be considered as
degenerated solutions.  The solutions given by the first set are
called the generic points of the system; they give the general form of
the solutions.  The first decomposition only provides these generic
points.  This latter decomposition is useful when they are many
degenerated solutions (which is sometimes hard to compute) and when
one is only interested in general informations, like the dimension of
the input system.

We can get the dimensions of each component
of a decomposition as follows.

\spadcommand{[coHeight(ts) for ts in lts] }
$$
\left[
1, 0, 0 
\right]
$$
\returnType{Type: List NonNegativeInteger}

Thus the first set has dimension one.  Indeed {\bf t} can take any
value, except {\bf 0} or any third root of {\bf 1}, whereas {\bf z} is
completely determined from {\bf t}, {\bf y} is given by {\bf z} and
{\bf t}, and finally {\bf x} is given by the other three variables.
In the second and the third sets of the second decomposition the four
variables are completely determined and thus these sets have dimension
zero.

We give now the precise specifications of each decomposition.  This
assume some mathematical knowledge.  However, for the non-expert user,
the above explanations will be sufficient to understand the other
features of the {\tt RSEGSET} constructor.

The input system {\bf lp} is decomposed in the sense of Kalkbrener as
finitely many regular sets {\bf T1,...,Ts} such that the radical ideal
generated by {\bf lp} is the intersection of the radicals of the
saturated ideals of {\bf T1,...,Ts}.  In other words, the affine
variety associated with {\bf lp} is the union of the closures
(w.r.t. Zarisky topology) of the regular-zeros sets of 
{\bf T1,...,Ts}.

{\bf N. B.} The prime ideals associated with the radical of the
saturated ideal of a regular triangular set have all the same
dimension; moreover these prime ideals can be given by characteristic
sets with the same main variables.  Thus a decomposition in the sense
of Kalkbrener is unmixed dimensional.  Then it can be viewed as a {\em
lazy} decomposition into prime ideals (some of these prime ideals
being merged into unmixed dimensional ideals).

Now we explain the other way of solving by means of regular triangular
sets.  The input system {\bf lp} is decomposed in the sense of Lazard
as finitely many regular triangular sets {\bf T1,...,Ts} such that the
affine variety associated with {\bf lp} is the union of the
regular-zeros sets of {\bf T1,...,Ts}.  Thus a decomposition in the
sense of Lazard is also a decomposition in the sense of Kalkbrener;
the converse is false as we have seen before.

When the input system has a finite number of solutions, both ways of
solving provide similar decompositions as we shall see with this
second example (Caprasse).

Define a polynomial system.

\spadcommand{f1 := y**2*z+2*x*y*t-2*x-z     }
$$
{{\left( {2 \  t \  y} -2 
\right)}
\  x}+{z \  {y \sp 2}} -z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{f2 :=   -x**3*z+ 4*x*y**2*z+ 4*x**2*y*t+ 2*y**3*t+ 4*x**2- 10*y**2+ 4*x*z- 10*y*t+ 2 }
$$
-{z \  {x \sp 3}}+
{{\left( 
{4 \  t \  y}+4 
\right)}\  {x \sp 2}}+
{{\left( 
{4 \  z \  {y \sp 2}}+
{4 \  z} 
\right)}\  x}+
{2 \  t \  {y \sp 3}} -
{{10} \  {y \sp 2}} -
{{10} \  t \  y}+2 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{f3 :=  2*y*z*t+x*t**2-x-2*z }
$$
{{\left( 
{t \sp 2} -1 
\right)}\  x}+
{2 \  t \  z \  y} -
{2 \  z} 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{f4 :=   -x*z**3+ 4*y*z**2*t+ 4*x*z*t**2+ 2*y*t**3+ 4*x*z+ 4*z**2-10*y*t- 10*t**2+2}
$$
{{\left( -{z \sp 3}+{{\left( {4 \  {t \sp 2}}+4 
\right)}
\  z} 
\right)}
\  x}+{{\left( {4 \  t \  {z \sp 2}}+{2 \  {t \sp 3}} -{{10} \  t} 
\right)}
\  y}+{4 \  {z \sp 2}} -{{10} \  {t \sp 2}}+2 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{lf := [f1, f2, f3, f4]}
$$
\begin{array}{@{}l}
\left[
{{{\left( 
{2 \  t \  y} -2 
\right)}\  x}+
{z \  {y \sp 2}} -z}, 
\right.
\\
\\
\displaystyle
{-{z \  {x \sp 3}}+
{{\left( 
{4 \  t \  y}+4 
\right)}\  {x \sp 2}}+
{{\left( 
{4 \  z \  {y \sp 2}}+
{4 \  z} 
\right)}\  x}+
{2 \  t \  {y \sp 3}} -
{{10} \  {y \sp 2}} -
{{10} \  t \  y}+2}, 
\\
\\
\displaystyle
{{{\left( 
{t \sp 2} -1 
\right)}\  x}+
{2 \  t \  z \  y} -
{2 \  z}}, 
\\
\\
\displaystyle
\left.
{{{\left( 
-{z \sp 3}+
{{\left( 
{4 \  {t \sp 2}}+4 
\right)}\  z} 
\right)}\  x}+
{{\left( 
{4 \  t \  {z \sp 2}}+
{2 \  {t \sp 3}} -
{{10} \  t} 
\right)}\  y}+
{4 \  {z \sp 2}} -
{{10} \  {t \sp 2}}+2} 
\right]
\end{array}
$$
\returnType{Type: List 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

First of all, let us solve this system in the sense of Kalkbrener.

\spadcommand{zeroSetSplit(lf)\$T  }
$$
\begin{array}{@{}l}
\left[
{\left\{ 
{{t \sp 2} -1}, 
{{z \sp 8} -{{16} \  {z \sp 6}}+{{256} \  {z \sp 2}} -{256}}, 
{{t \  y} -1}, 
{{{\left( {z \sp 3} -{8 \  z} \right)}\  x} -{8 \  {z \sp 2}}+{16}} 
\right\}},
\right.
\\
\\
\displaystyle
{\left\{ {{3 \  {t \sp 2}}+1}, 
{{z \sp 2} -{7 \  {t \sp 2}} -1},
{y+t}, 
{x+z} 
\right\}},
\\
\\
\displaystyle
{\left\{ {{t \sp 8} -{{10} \  {t \sp 6}}+{{10} \  {t \sp 2}} -1},
z,
{{{\left( {t \sp 3} -{5 \  t} \right)}\  y} -{5 \  {t \sp 2}}+1}, 
x 
\right\}},
\\
\\
\displaystyle
\left.
{\left\{ {{t \sp 2}+3}, 
{{z \sp 2} -4}, 
{y+t}, 
{x -z} 
\right\}}
\right]
\end{array}
$$
\returnType{Type: 
List RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

And now in the sense of Lazard (or Wu and other authors).

\spadcommand{lts2 := zeroSetSplit(lf,false)\$T   }
$$
\begin{array}{@{}l}
\left[
{\left\{ 
{{t \sp 8} -{{10} \  {t \sp 6}}+{{10} \  {t \sp 2}} -1}, 
z,  
{{{\left( {t \sp 3} -{5 \  t} \right)}\  y} -{5 \  {t \sp 2}}+1}, 
x 
\right\}},
\right.
\\
\\
\displaystyle
{\left\{ 
{{t \sp 2} -1}, 
{{z \sp 8} -{{16} \  {z \sp 6}}+{{256} \  {z \sp 2}} -{256}}, 
{{t \  y} -1}, 
{{{\left( {z \sp 3} -{8 \  z} \right)}\  x} -{8 \  {z \sp 2}}+{16}} 
\right\}},
\\
\\
\displaystyle
{\left\{ 
{{3 \  {t \sp 2}}+1}, 
{{z \sp 2} -{7 \  {t \sp 2}} -1},  
{y+t}, 
{x+z} 
\right\}},
\\
\\
\displaystyle
\left.
{\left\{ {{t \sp 2}+3}, 
{{z \sp 2} -4}, 
{y+t}, 
{x -z} 
\right\}}
\right]
\end{array}
$$
\returnType{Type: 
List RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

Up to the ordering of the components, both decompositions are identical.

Let us check that each component has a finite number of solutions.

\spadcommand{[coHeight(ts) for ts in lts2] }
$$
\left[
0, 0, 0, 0 
\right]
$$
\returnType{Type: List NonNegativeInteger}

Let us count the degrees of each component,

\spadcommand{degrees := [degree(ts) for ts in lts2]  }
$$
\left[
8, {16}, 4, 4 
\right]
$$
\returnType{Type: List NonNegativeInteger}

and compute their sum.

\spadcommand{reduce(+,degrees) }
$$
32 
$$
\returnType{Type: PositiveInteger}

We study now the options of the {\tt zeroSetSplit} operation.  As we
have seen yet, there is an optional second argument which is a boolean
value. If this value is {\tt true} (this is the default) then the
decomposition is computed in the sense of Kalkbrener, otherwise it is
computed in the sense of Lazard.

There is a second boolean optional argument that can be used (in that
case the first optional argument must be present).  This second option
allows you to get some information during the computations.

Therefore, we need to understand a little what is going on during the
computations.  An important feature of the algorithm is that the
intermediate computations are managed in some sense like the processes
of a Unix system.  Indeed, each intermediate computation may generate
other intermediate computations and the management of all these
computations is a crucial task for the efficiency.  Thus any
intermediate computation may be suspended, killed or resumed,
depending on algebraic considerations that determine priorities for
these processes.  The goal is of course to go as fast as possible
towards the final decomposition which means to avoid as much as
possible unnecessary computations.

To follow the computations, one needs to set to {\tt true} the second
argument.  Then a lot of numbers and letters are displayed.  Between a
{\tt [} and a {\tt ]} one has the state of the processes at a given
time.  Just after {\tt [} one can see the number of processes.  Then
each process is represented by two numbers between {\tt <} and 
{\tt >}.  A process consists of a list of polynomial {\bf ps} and a
triangular set {\bf ts}; its goal is to compute the common zeros of
{\bf ps} that belong to the regular-zeros set of {\bf ts}.  After the
processes, the number between pipes gives the total number of
polynomials in all the sets {\tt ps}.  Finally, the number between
braces gives the number of components of a decomposition that are
already computed. This number may decrease.

Let us take a third example (Czapor-Geddes-Wang) to see how this
information is displayed.

Define a polynomial system.

\spadcommand{u : R := 2   }
$$
2 
$$
\returnType{Type: Integer}

\spadcommand{q1 := 2*(u-1)**2+ 2*(x-z*x+z**2)+ y**2*(x-1)**2- 2*u*x+ 2*y*t*(1-x)*(x-z)+ 2*u*z*t*(t-y)+ u**2*t**2*(1-2*z)+ 2*u*t**2*(z-x)+ 2*u*t*y*(z-1)+ 2*u*z*x*(y+1)+ (u**2-2*u)*z**2*t**2+ 2*u**2*z**2+ 4*u*(1-u)*z+ t**2*(z-x)**2}
$$
\begin{array}{@{}l}
{{\left( 
{y \sp 2} -{2 \  t \  y}+{t \sp 2} 
\right)}\  {x \sp 2}}+
\\
\\
\displaystyle
{{\left( 
-{2 \  {y \sp 2}}+
{{\left( {{\left( {2 \  t}+4 
\right)}\  z}+
{2 \  t} 
\right)}\  y}+
{{\left( 
-{2 \  {t \sp 2}}+2 
\right)}\  z} -
{4 \  {t \sp 2}} -2 
\right)}\  x}+
\\
\\
\displaystyle
{y \sp 2}+
{{\left( 
-{2 \  t \  z} -
{4 \  t} 
\right)}\  y}+
{{\left( 
{t \sp 2}+
{10} 
\right)}\  {z \sp 2}} -
{8 \  z}+
{4 \  {t \sp 2}}+
2 
\end{array}
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{q2 := t*(2*z+1)*(x-z)+ y*(z+2)*(1-x)+ u*(u-2)*t+ u*(1-2*u)*z*t+ u*y*(x+u-z*x-1)+ u*(u+1)*z**2*t}
$$
{{\left( 
-{3 \  z \  y}+
{2 \  t \  z}+
t 
\right)}\  x}+
{{\left( 
z+4 
\right)}\  y}+
{4 \  t \  {z \sp 2}} -
{7 \  t \  z} 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{q3 := -u**2*(z-1)**2+ 2*z*(z-x)-2*(x-1)}
$$
{{\left( 
-{2 \  z} -2 
\right)}\  x} -
{2 \  {z \sp 2}}+
{8 \  z} -
2 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{q4 :=   u**2+4*(z-x**2)+3*y**2*(x-1)**2- 3*t**2*(z-x)**2 +3*u**2*t**2*(z-1)**2+u**2*z*(z-2)+6*u*t*y*(z+x+z*x-1)}
$$
\begin{array}{@{}l}
{{\left( 
{3 \  {y \sp 2}} -
{3 \  {t \sp 2}} -
4 
\right)}\  {x \sp 2}}+
{{\left( 
-{6 \  {y \sp 2}}+
{{\left( {{12} \  t \  z}+
{{12} \  t} 
\right)}\  y}+
{6 \  {t \sp 2} \  z} 
\right)}\  x}+
{3 \  {y \sp 2}}+
\\
\\
\displaystyle
{{\left( 
{{12} \  t \  z} -
{{12} \  t} 
\right)}\  y}+
{{\left( 
{9 \  {t \sp 2}}+
4 
\right)}\  {z \sp 2}}+
{{\left( 
-{{24} \  {t \sp 2}} -
4 
\right)}\  z}+
{{12} \  {t \sp 2}}+
4 
\end{array}
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{lq := [q1, q2, q3, q4]}
$$
\begin{array}{@{}l}
\left[
\left( 
{y \sp 2} -{2 \  t \  y}+{t \sp 2} \right)\  {x \sp 2}+
\right.
\\
\\
\displaystyle
\left( -{2 \  {y \sp 2}}+
\left( 
\left( {2 \  t}+4 
\right)\  z+{2 \  t} 
\right)\  y+
\left( -{2 \  {t \sp 2}}+2 
\right)\  z -{4 \  {t \sp 2}} -2 
\right)\  x+{y \sp 2}+
\\
\\
\displaystyle
\left( -{2 \  t \  z} -{4 \  t} 
\right)\  y+
\left( {t \sp 2}+{10} 
\right)\  {z \sp 2} -
{8 \  z}+
{4 \  {t \sp 2}}+
2, 
\\
\\
\displaystyle
\left( -{3 \  z \  y}+{2 \  t \  z}+t 
\right)\  x+
\left( z+4 
\right)\  y+
{4 \  t \  {z \sp 2}} -{7 \  t \  z},
\\
\\
\displaystyle
\left( -{2 \  z} -2 
\right)\  x -{2 \  {z \sp 2}}+{8 \  z} -2, 
\left( {3 \  {y \sp 2}} -{3 \  {t \sp 2}} -4 
\right)\  {x \sp 2}+
\\
\\
\displaystyle
\left( -{6 \  {y \sp 2}}+
\left( {{12} \  t \  z}+{{12} \  t} 
\right)\  y+{6 \  {t \sp 2} \  z} 
\right)\  x+{3 \  {y \sp 2}}+
\\
\\
\displaystyle
\left.
\left( {{12} \  t \  z} -{{12} \  t} 
\right)\  y+
\left( {9 \  {t \sp 2}}+4 
\right)\  {z \sp 2}+
\left( -{{24} \  {t \sp 2}} -4 
\right)\  z+{{12} \  {t \sp 2}}+4
\right]
\end{array}
$$
\returnType{Type: 
List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

Let us try the information option.  N.B. The timing should be between
1 and 10 minutes, depending on your machine.

\spadcommand{zeroSetSplit(lq,true,true)\$T  }
\begin{verbatim}
[1 <4,0> -> |4|; {0}]W[2 <5,0>,<3,1> -> |8|; {0}][2 <4,1>,<3,1> -> |7|; 
{0}][1 <3,1> -> |3|; {0}]G[2 <4,1>,<4,1> -> |8|; {0}]W[3 <5,1>,<4,1>,
<3,2> -> |12|; {0}]GI[3 <4,2>,<4,1>,<3,2> -> |11|; {0}]GWw[3 <4,1>,
<3,2>,<5,2> -> |12|; {0}][3 <3,2>,<3,2>,<5,2> -> |11|; {0}]GIwWWWw
[4 <3,2>,<4,2>,<5,2>,<2,3> -> |14|; {0}][4 <2,2>,<4,2>,<5,2>,<2,3> -> 
|13|; {0}]Gwww[5 <3,2>,<3,2>,<4,2>,<5,2>,<2,3> -> |17|; {0}]Gwwwwww
[8 <3,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}]Gwwwwww
[8 <4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |31|; {0}][8 
<3,3>,<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |30|; {0}][8 <2,3>,
\end{verbatim}
\begin{verbatim}
<4,2>,<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |29|; {0}][8 <1,3>,<4,2>,
<4,2>,<4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |28|; {0}][7 <4,2>,<4,2>,<4,2>,
<4,2>,<4,2>,<5,2>,<2,3> -> |27|; {0}][6 <4,2>,<4,2>,<4,2>,<4,2>,<5,2>,
<2,3> -> |23|; {0}][5 <4,2>,<4,2>,<4,2>,<5,2>,<2,3> -> |19|; {0}]
GIGIWwww[6 <5,2>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |23|; {0}][6 <4,3>,
<4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |22|; {0}]GIGI[6 <3,4>,<4,2>,<4,2>,
<5,2>,<3,3>,<2,3> -> |21|; {0}][6 <2,4>,<4,2>,<4,2>,<5,2>,<3,3>,<2,3> 
-> |20|; {0}]GGG[5 <4,2>,<4,2>,<5,2>,<3,3>,<2,3> -> |18|; {0}]GIGIWwwwW
[6 <5,2>,<4,2>,<5,2>,<3,3>,<3,3>,<2,3> -> |22|; {0}][6 <4,3>,<4,2>,
<5,2>,<3,3>,<3,3>,<2,3> -> |21|; {0}]GIwwWwWWWWWWWwWWWWwwwww[8 <4,2>,
\end{verbatim}
\begin{verbatim}
<5,2>,<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |27|; {0}][8 <3,3>,<5,2>,
<3,3>,<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |26|; {0}][8 <2,3>,<5,2>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,4>,<3,4> -> |25|; {0}]Gwwwwwwwwwwwwwwwwwwww[9 
<5,2>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |29|; {0}]
GI[9 <4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |28|; 
{0}][9 <3,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |27|; 
{0}][9 <2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,4>,<3,4> -> |26|; 
{0}]GGwwwwwwwwwwwwWWwwwwwwww[11 <3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {0}][11 <2,3>,<3,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {0}][11 <1,3>,<3,3>,
\end{verbatim}
\begin{verbatim}
<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |31|; {0}]
GGGwwwwwwwwwwwww[12 <2,3>,<2,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {0}]GGwwwwwwwwwwwww[13 <3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
|38|; {0}]Gwwwwwwwwwwwww[13 <2,3>,<3,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]GGGwwwwwwwwwwwww[15 
<3,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |46|; {0}][14 <4,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {0}]GIGGGGIGGI
[14 <3,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
\end{verbatim}
\begin{verbatim}
<3,3>,<3,4>,<3,4> -> |42|; {0}]GGG[14 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {0}]
[14 <1,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |40|; {0}]GGG[13 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]
Gwwwwwwwwwwwww[15 <3,3>,<3,3>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |48|; {0}]Gwwwwwwwwwwwww
[15 <4,3>,<4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |49|; {0}]GIGI[15 <3,4>,<4,3>,<3,3>,<4,3>,
<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
\end{verbatim}
\begin{verbatim}
|48|; {0}]G[14 <4,3>,<3,3>,<4,3>,<4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |45|; {0}][13 <3,3>,<4,3>,<4,3>,
<3,3>,<4,3>,<3,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; 
{0}]Gwwwwwwwwwwwww[13 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |42|; {0}]GIGGGGIGGI[13 <3,4>,<4,3>,
<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
|41|; {0}]GGGGGGGG[13 <2,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |40|; {0}][13 <1,4>,<4,3>,<4,3>,<3,3>,
<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {0}]
[13 <0,4>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,
\end{verbatim}
\begin{verbatim}
<3,4>,<3,4> -> |38|; {0}][12 <4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<3,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}][11 <4,3>,<3,3>,
<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |34|; {1}]
[10 <3,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
|30|; {1}][10 <2,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |29|; {1}]GGGwwwwwwwwwwwww[11 <3,3>,<3,3>,<4,3>,<3,3>,
<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |33|; {1}]
GGGwwwwwwwwwwwww[12 <4,3>,<3,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; {1}]Gwwwwwwwwwwwww
[12 <3,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,
\end{verbatim}
\begin{verbatim}
<3,4>,<3,4> -> |39|; {1}]GGwwwwwwwwwwwww[13 <5,3>,<4,3>,<4,3>,
<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
|44|; {1}]GIGGGGIGGIW[13 <4,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |43|; {1}]GGW[13 
<3,4>,<4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |42|; {1}]GGG[12 <4,3>,<4,3>,<4,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}]Gwwwwwwwwwwwww[12 
<4,3>,<4,3>,<5,3>,<3,3>,<4,3>,<3,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |40|; {1}]Gwwwwwwwwwwwww[13 <5,3>,<5,3>,<4,3>,<5,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |46|; {1}]GIGIW
\end{verbatim}
\begin{verbatim}
[13 <4,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |45|; {1}][13 <3,4>,<5,3>,<4,3>,<5,3>,<3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |44|; {1}][13 
<2,4>,<5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |43|; {1}]GG[12 <5,3>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |41|; {1}]GIGGGGIGGIW[12 
<4,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |40|; {1}]GGGGGGW[12 <3,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |39|; {1}][12 <2,4>,<4,3>,
<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |38|; 
\end{verbatim}
\begin{verbatim}
{1}][12 <1,4>,<4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |37|; {1}]GGG[11 <4,3>,<5,3>,<3,3>,<3,3>,<4,3>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |36|; {1}][10 <5,3>,<3,3>,<3,3>,
<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |32|; {1}][9 <3,3>,
<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |27|; {1}]W[9 
<2,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |26|; {1}]
[9 <1,4>,<3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |25|; 
{1}][8 <3,3>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |24|; {1}]
W[8 <2,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}][8 
<1,4>,<4,3>,<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][7 <4,3>,
\end{verbatim}
\begin{verbatim}
<2,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |21|; {1}]w[7 <3,4>,<2,3>,
<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |20|; {1}][7 <2,4>,<2,3>,<3,3>,
<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}][7 <1,4>,<2,3>,<3,3>,<3,3>,
<3,3>,<3,4>,<3,4> -> |18|; {1}][6 <2,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |17|; {1}]GGwwwwww[7 <3,3>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,
<3,4> -> |21|; {1}]GIW[7 <2,4>,<3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> 
-> |20|; {1}]GG[6 <3,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]
Gwwwwww[7 <4,3>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |23|; {1}]
GIW[7 <3,4>,<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |22|; {1}][6 
<4,3>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |19|; {1}]GIW[6 <3,4>,<3,3>,
\end{verbatim}
\begin{verbatim}
<3,3>,<3,3>,<3,4>,<3,4> -> |18|; {1}]GGW[6 <2,4>,<3,3>,<3,3>,<3,3>,
<3,4>,<3,4> -> |17|; {1}][6 <1,4>,<3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> 
|16|; {1}]GGG[5 <3,3>,<3,3>,<3,3>,<3,4>,<3,4> -> |15|; {1}]GIW[5 
<2,4>,<3,3>,<3,3>,<3,4>,<3,4> -> |14|; {1}]GG[4 <3,3>,<3,3>,<3,4>,
<3,4> -> |12|; {1}][3 <3,3>,<3,4>,<3,4> -> |9|; {1}]W[3 <2,4>,<3,4>,
<3,4> -> |8|; {1}][3 <1,4>,<3,4>,<3,4> -> |7|; {1}]G[2 <3,4>,<3,4> 
-> |6|; {1}]G[1 <3,4> -> |3|; {1}][1 <2,4> -> |2|; {1}][1 <1,4> -> 
|1|; {1}]
\end{verbatim}
\begin{verbatim}
   *** QCMPACK Statistics ***
      Table     size:  36
      Entries reused:  255

   *** REGSETGCD: Gcd Statistics ***
      Table     size:  125
      Entries reused:  0

   *** REGSETGCD: Inv Set Statistics ***
      Table     size:  30
      Entries reused:  0
\end{verbatim}
$$
\begin{array}{@{}l}
\left[
\left\{ 
{{960725655771966} \  {t \sp {24}}}+
{{386820897948702} \  {t \sp {23}}}+
\right.
\right.\hbox{\hskip 4.0cm}
\\
\displaystyle
{{8906817198608181} \  {t \sp {22}}}+
{{2704966893949428} \  {t \sp {21}}}+
\\
\displaystyle
{{37304033340228264} \  {t \sp {20}}}+
{{7924782817170207} \  {t \sp {19}}}+
\\
\displaystyle
{{93126799040354990} \  {t \sp {18}}}+
{{13101273653130910} \  {t \sp {17}}}+
\\
\displaystyle
{{156146250424711858} \  {t \sp {16}}}+
{{16626490957259119} \  {t \sp {15}}}+
\\
\displaystyle
{{190699288479805763} \  {t \sp {14}}}+
{{24339173367625275} \  {t \sp {13}}}+
\\
\displaystyle
{{180532313014960135} \  {t \sp {12}}}+
{{35288089030975378} \  {t \sp {11}}}+
\end{array}
$$
$$
\begin{array}{@{}l}
{{135054975747656285} \  {t \sp {10}}}+
{{34733736952488540} \  {t \sp 9}}+\hbox{\hskip 3.7cm}
\\
\displaystyle
{{75947600354493972} \  {t \sp 8}}+
{{19772555692457088} \  {t \sp 7}}+
\\
\displaystyle
{{28871558573755428} \  {t \sp 6}}+
{{5576152439081664} \  {t \sp 5}}+
\\
\displaystyle
{{6321711820352976} \  {t \sp 4}}+
{{438314209312320} \  {t \sp 3}}+
\\
\displaystyle
{{581105748367008} \  {t \sp 2}} -
{{60254467992576} \  t}+
\\
\displaystyle
{1449115951104}, 
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{26604210869491302385515265737052082361668474181372891857784} 
\  {t \sp {23}}}+
\right.
\\
\displaystyle
{{443104378424686086067294899528296664238693556855017735265295} 
\  {t \sp {22}}}+
\\
\displaystyle
{{279078393286701234679141342358988327155321305829547090310242} 
\  {t \sp {21}}}+
\\
\displaystyle
{{3390276361413232465107617176615543054620626391823613392185226} 
\  {t \sp {20}}}+
\\
\displaystyle
{{941478179503540575554198645220352803719793196473813837434129} 
\  {t \sp {19}}}+
\\
\displaystyle
{{11547855194679475242211696749673949352585747674184320988144390} 
\  {t \sp {18}}}+
\\
\displaystyle
{{1343609566765597789881701656699413216467215660333356417241432} 
\  {t \sp {17}}}+
\\
\displaystyle
{{23233813868147873503933551617175640859899102987800663566699334} 
\  {t \sp {16}}}+
\\
\displaystyle
{{869574020537672336950845440508790740850931336484983573386433} 
\  {t \sp {15}}}+
\\
\displaystyle
{{31561554305876934875419461486969926554241750065103460820476969} 
\  {t \sp {14}}}+
\end{array}
$$
$$
\begin{array}{@{}l}
{{1271400990287717487442065952547731879554823889855386072264931} 
\  {t \sp {13}}}+
\\
\displaystyle
{{31945089913863736044802526964079540198337049550503295825160523} 
\  {t \sp {12}}}+
\\
\displaystyle
{{3738735704288144509871371560232845884439102270778010470931960} 
\  {t \sp {11}}}+
\\
\displaystyle
{{25293997512391412026144601435771131587561905532992045692885927} 
\  {t \sp {10}}}+
\\
\displaystyle
{{5210239009846067123469262799870052773410471135950175008046524} 
\  {t \sp 9}}+
\\
\displaystyle
{{15083887986930297166259870568608270427403187606238713491129188} 
\  {t \sp 8}}+
\\
\displaystyle
{{3522087234692930126383686270775779553481769125670839075109000} 
\  {t \sp 7}}+
\\
\displaystyle
{{6079945200395681013086533792568886491101244247440034969288588} 
\  {t \sp 6}}+
\\
\displaystyle
{{1090634852433900888199913756247986023196987723469934933603680} 
\  {t \sp 5}}+
\\
\displaystyle
{{1405819430871907102294432537538335402102838994019667487458352} 
\  {t \sp 4}}+
\end{array}
$$
$$
\begin{array}{@{}l}
{{88071527950320450072536671265507748878347828884933605202432} 
\  {t \sp 3}}+
\\
\displaystyle
{{135882489433640933229781177155977768016065765482378657129440} 
\  {t \sp 2}} -
\\
\displaystyle
{{13957283442882262230559894607400314082516690749975646520320} 
\  t}+
\\
\displaystyle
\left.
{334637692973189299277258325709308472592117112855749713920} 
\right)\  z+
\\
\displaystyle
{{8567175484043952879756725964506833932149637101090521164936} 
\  {t \sp {23}}}+
\\
\displaystyle
{{149792392864201791845708374032728942498797519251667250945721} 
\  {t \sp {22}}}+
\\
\displaystyle
{{77258371783645822157410861582159764138123003074190374021550} 
\  {t \sp {21}}}+
\\
\displaystyle
{{1108862254126854214498918940708612211184560556764334742191654} 
\  {t \sp {20}}}+
\\
\displaystyle
{{213250494460678865219774480106826053783815789621501732672327} 
\  {t \sp {19}}}+
\end{array}
$$
$$
\begin{array}{@{}l}
{{3668929075160666195729177894178343514501987898410131431699882} 
\  {t \sp {18}}}+
\\
\displaystyle
{{171388906471001872879490124368748236314765459039567820048872} 
\  {t \sp {17}}}+
\\
\displaystyle
{{7192430746914602166660233477331022483144921771645523139658986} 
\  {t \sp {16}}} -
\\
\displaystyle
{{128798674689690072812879965633090291959663143108437362453385} 
\  {t \sp {15}}}+
\\
\displaystyle
{{9553010858341425909306423132921134040856028790803526430270671} 
\  {t \sp {14}}} -
\\
\displaystyle
{{13296096245675492874538687646300437824658458709144441096603} 
\  {t \sp {13}}}+
\\
\displaystyle
{{9475806805814145326383085518325333106881690568644274964864413} 
\  {t \sp {12}}}+
\\
\displaystyle
{{803234687925133458861659855664084927606298794799856265539336} 
\  {t \sp {11}}}+
\\
\displaystyle
{{7338202759292865165994622349207516400662174302614595173333825} 
\  {t \sp {10}}}+
\\
\displaystyle
{{1308004628480367351164369613111971668880538855640917200187108} 
\  {t \sp 9}}+
\end{array}
$$
$$
\begin{array}{@{}l}
{{4268059455741255498880229598973705747098216067697754352634748} 
\  {t \sp 8}}+
\\
\displaystyle
{{892893526858514095791318775904093300103045601514470613580600} 
\  {t \sp 7}}+
\\
\displaystyle
{{1679152575460683956631925852181341501981598137465328797013652} 
\  {t \sp 6}}+
\\
\displaystyle
{{269757415767922980378967154143357835544113158280591408043936} 
\  {t \sp 5}}+
\\
\displaystyle
{{380951527864657529033580829801282724081345372680202920198224} 
\  {t \sp 4}}+
\\
\displaystyle
{{19785545294228495032998826937601341132725035339452913286656} 
\  {t \sp 3}}+
\\
\displaystyle
{{36477412057384782942366635303396637763303928174935079178528} 
\  {t \sp 2}} -
\\
\displaystyle
{{3722212879279038648713080422224976273210890229485838670848} 
\  t}+
\\
\displaystyle
{89079724853114348361230634484013862024728599906874105856}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{{{\left( 
{3 \  {z \sp 3}} -
{{11} \  {z \sp 2}}+
{8 \  z}+4 
\right)}\  y}+
{2 \  t \  {z \sp 3}}+
{4 \  t \  {z \sp 2}} -
{5 \  t \  z} -t}, : 
\\
\\
\displaystyle
\left.
\left.
\left( 
z+1 
\right)\  x+
{z \sp 2} -
{4 \  z}+1 
\right\}
\right]
\end{array}
$$
\returnType{Type: 
List RegularTriangularSet(
Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

Between a sequence of processes, thus between a {\tt ]} and a {\tt [}
you can see capital letters {\tt W, G, I} and lower case letters 
{\tt i, w}. Each time a capital letter appears a non-trivial computation
has be performed and its result is put in a hash-table.  Each time a
lower case letter appears a needed result has been found in an
hash-table.  The use of these hash-tables generally speed up the
computations.  However, on very large systems, it may happen that
these hash-tables become too big to be handle by your Axiom
configuration.  Then in these exceptional cases, you may prefer
getting a result (even if it takes a long time) than getting nothing.
Hence you need to know how to prevent the {\tt RSEGSET} constructor
from using these hash-tables.  In that case you will be using the 
{\tt zeroSetSplit} with five arguments.  The first one is the input system
{\bf lp} as above.  The second one is a boolean value {\tt hash?}
which is {\tt true} iff you want to use hash-tables.  The third one is
boolean value {\tt clos?} which is {\tt true} iff you want to solve
your system in the sense of Kalkbrener, the other way remaining that
of Lazard.  The fourth argument is boolean value {\tt info?} which is
{\tt true} iff you want to display information during the
computations.  The last one is boolean value {\tt prep?} which is 
{\tt true} iff you want to use some heuristics that are performed on the
input system before starting the real algorithm.  The value of this
flag is {\tt true} when you are using {\tt zeroSetSplit} with less
than five arguments.  Note that there is no available signature for
{\tt zeroSetSplit} with four arguments.

We finish this section by some remarks about both ways of solving, in
the sense of Kalkbrener or in the sense of Lazard.  For problems with
a finite number of solutions, there are theoretically equivalent and
the resulting decompositions are identical, up to the ordering of the
components.  However, when solving in the sense of Lazard, the
algorithm behaves differently.  In that case, it becomes more
incremental than in the sense of Kalkbrener. That means the
polynomials of the input system are considered one after another
whereas in the sense of Kalkbrener the input system is treated more
globally.

This makes an important difference in positive dimension.  Indeed when
solving in the sense of Kalkbrener, the {\em Primeidealkettensatz} of
Krull is used.  That means any regular triangular containing more
polynomials than the input system can be deleted.  This is not
possible when solving in the sense of Lazard.  This explains why
Kalkbrener's decompositions usually contain less components than those
of Lazard.  However, it may happen with some examples that the
incremental process (that cannot be used when solving in the sense of
Kalkbrener) provide a more efficient way of solving than the global
one even if the {\em Primeidealkettensatz} is used.  Thus just try
both, with the various options, before concluding that you cannot
solve your favorite system with {\tt zeroSetSplit}.  There exist more
options at the development level that are not currently available in
this public version.  

%Original Page 446

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{RomanNumeral}

The Roman numeral package was added to Axiom in MCMLXXXVI for use in
denoting higher order derivatives.

For example, let {\tt f} be a symbolic operator.

\spadcommand{f := operator 'f }
$$
f 
$$
\returnType{Type: BasicOperator}

This is the seventh derivative of {\tt f} with respect to {\tt x}.

\spadcommand{D(f x,x,7) }
$$
{f \sb {{\ }} \sp {{\left( vii 
\right)}}}
\left(
{x} 
\right)
$$
\returnType{Type: Expression Integer}

You can have integers printed as Roman numerals by declaring variables to
be of type {\tt RomanNumeral} (abbreviation {\tt ROMAN}).

\spadcommand{a := roman(1978 - 1965) }
$$
XIII 
$$
\returnType{Type: RomanNumeral}

This package now has a small but devoted group of followers that claim
this domain has shown its efficacy in many other contexts.  They claim
that Roman numerals are every bit as useful as ordinary integers.

In a sense, they are correct, because Roman numerals form a ring and you
can therefore construct polynomials with Roman numeral coefficients,
matrices over Roman numerals, etc..

\spadcommand{x : UTS(ROMAN,'x,0) := x }
$$
x 
$$
\returnType{Type: UnivariateTaylorSeries(RomanNumeral,x,0)}

Was Fibonacci Italian or ROMAN?

\spadcommand{recip(1 - x - x**2) }
$$
\begin{array}{@{}l}
I+x+
{II \  {x \sp 2}}+
{III \  {x \sp 3}}+
{V \  {x \sp 4}}+
{VIII \  {x \sp 5}}+
{XIII \  {x \sp 6}}+
{XXI \  {x \sp 7}}+
\\
\\
\displaystyle
{XXXIV \  {x \sp 8}}+
{LV \  {x \sp 9}}+
{LXXXIX \  {x \sp {10}}}+
{O \left({{x \sp {11}}} \right)}
\end{array}
$$
\returnType{Type: Union(UnivariateTaylorSeries(RomanNumeral,x,0),...)}

You can also construct fractions with Roman numeral numerators and
denominators, as this matrix Hilberticus illustrates.

\spadcommand{m : MATRIX FRAC ROMAN }
\returnType{Type: Void}

%Original Page 447

\spadcommand{m := matrix [ [1/(i + j) for i in 1..3] for j in 1..3]  }
$$
\left[
\begin{array}{ccc}
{\frac{I}{II}} & {\frac{I}{III}} & {\frac{I}{IV}} \\ 
{\frac{I}{III}} & {\frac{I}{IV}} & {\frac{I}{V}} \\ 
{\frac{I}{IV}} & {\frac{I}{V}} & {\frac{I}{VI}} 
\end{array}
\right]
$$
\returnType{Type: Matrix Fraction RomanNumeral}

Note that the inverse of the matrix has integral {\tt ROMAN} entries.

\spadcommand{inverse m }
$$
\left[
\begin{array}{ccc}
LXXII & -CCXL & CLXXX \\ 
-CCXL & CM & -DCCXX \\ 
CLXXX & -DCCXX & DC 
\end{array}
\right]
$$
\returnType{Type: Union(Matrix Fraction RomanNumeral,...)}

Unfortunately, the spoil-sports say that the fun stops when the
numbers get big---mostly because the Romans didn't establish
conventions about representing very large numbers.

\spadcommand{y := factorial 10 }
$$
3628800 
$$
\returnType{Type: PositiveInteger}

You work it out!

\spadcommand{roman y }
$$
\begin{array}{@{}l}
{\rm ((((I))))((((I))))((((I))))(((I)))(((I)))(((I)))(((I)))}
\\
\displaystyle
{\rm (((I)))(((I))) ((I))((I)) MMMMMMMMDCCC} 
\end{array}
$$
\returnType{Type: RomanNumeral}

Issue the system command {\tt )show RomanNumeral} to display the full
list of operations defined by {\tt RomanNumeral}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Segment}

The {\tt Segment} domain provides a generalized interval type.

Segments are created using the {\tt ..} construct by indicating the
(included) end points.

\spadcommand{s := 3..10 }
$$
3..{10} 
$$
\returnType{Type: Segment PositiveInteger}

The first end point is called the \spadfunFrom{lo}{Segment} and the
second is called \spadfunFrom{hi}{Segment}.

\spadcommand{lo s }
$$
3 
$$
\returnType{Type: PositiveInteger}

These names are used even though the end points might belong to an
unordered set.

\spadcommand{hi s }
$$
10 
$$
\returnType{Type: PositiveInteger}

%Original Page 448

In addition to the end points, each segment has an integer ``increment.''
An increment can be specified using the ``{\tt by}'' construct.

\spadcommand{t := 10..3 by -2 }
$$
{{10}..3} \mbox{\rm\ by\ } -2 
$$
\returnType{Type: Segment PositiveInteger}

This part can be obtained using the \spadfunFrom{incr}{Segment} function.

\spadcommand{incr s }
$$
1 
$$
\returnType{Type: PositiveInteger}

Unless otherwise specified, the increment is {\tt 1}.

\spadcommand{incr t }
$$
-2 
$$
\returnType{Type: Integer}

A single value can be converted to a segment with equal end points.
This happens if segments and single values are mixed in a list.

\spadcommand{l := [1..3, 5, 9, 15..11 by -1] }
$$
\left[
{1..3}, {5..5}, {9..9}, {{{15}..{11}} \mbox{\rm by } -1} 
\right]
$$
\returnType{Type: List Segment PositiveInteger}

If the underlying type is an ordered ring, it is possible to perform
additional operations.  The \spadfunFrom{expand}{Segment} operation
creates a list of points in a segment.

\spadcommand{expand s }
$$
\left[
3, 4, 5, 6, 7, 8, 9, {10} 
\right]
$$
\returnType{Type: List Integer}

If {\tt k > 0}, then {\tt expand(l..h by k)} creates the list
{\tt [l, l+k, ..., lN]} where {\tt lN <= h < lN+k}.
If {\tt k < 0}, then {\tt lN >= h > lN+k}.

\spadcommand{expand t }
$$
\left[
{10}, 8, 6, 4 
\right]
$$
\returnType{Type: List Integer}

It is also possible to expand a list of segments.  This is equivalent
to appending lists obtained by expanding each segment individually.

\spadcommand{expand l }
$$
\left[
1, 2, 3, 5, 9, {15}, {14}, {13}, {12}, {11} 
\right]
$$
\returnType{Type: List Integer}

For more information on related topics, see
\domainref{SegmentBinding} and \\
\domainref{UniversalSegment}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{SegmentBinding}

The {\tt SegmentBinding} type is used to indicate a range for a named
symbol.

First give the symbol, then an {\tt =} and finally a segment of values.

\spadcommand{x = a..b}
$$
x={a..b} 
$$
\returnType{Type: SegmentBinding Symbol}

%Original Page 449

This is used to provide a convenient syntax for arguments to certain
operations.

\spadcommand{sum(i**2, i = 0..n)}
$$
\frac{{2 \  {n \sp 3}}+{3 \  {n \sp 2}}+n}{6} 
$$
\returnType{Type: Fraction Polynomial Integer}

\spadcommand{draw(x**2, x = -2..2)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/p449.eps}}
\begin{center}
$x^2, x = -2..2$
\end{center}
\end{minipage}

The left-hand side must be of type {\tt Symbol} but the
right-hand side can be a segment over any type.

\spadcommand{sb := y = 1/2..3/2 }
$$
y={{\left( \frac{1}{2} \right)}..{\left(\frac{3}{2} \right)}}
$$
\returnType{Type: SegmentBinding Fraction Integer}

The left- and right-hand sides can be obtained using the
\spadfunFrom{variable}{SegmentBinding} and
\spadfunFrom{segment}{SegmentBinding} operations.

\spadcommand{variable(sb) }
$$
y 
$$
\returnType{Type: Symbol}

\spadcommand{segment(sb)  }
$$
{\left( \frac{1}{2} \right)}..{\left(\frac{3}{2} \right)}
$$
\returnType{Type: Segment Fraction Integer}

For more information on related topics, see
\domainref{Segment} and \domainref{UniversalSegment}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Set}

The {\tt Set} domain allows one to represent explicit finite sets of values.
These are similar to lists, but duplicate elements are not allowed.

Sets can be created by giving a fixed set of values \ldots

\spadcommand{s := set [x**2-1, y**2-1, z**2-1] }
$$
\left\{
{{x \sp 2} -1}, {{y \sp 2} -1}, {{z \sp 2} -1} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

%Original Page 450

or by using a collect form, just as for lists.  In either case, the
set is formed from a finite collection of values.

\spadcommand{t := set [x**i - i+1 for i in 2..10 | prime? i] }
$$
\left\{
{{x \sp 2} -1}, {{x \sp 3} -2}, {{x \sp 5} -4}, {{x \sp 7} -6} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

The basic operations on sets are \spadfunFrom{intersect}{Set},
\spadfunFrom{union}{Set}, \spadfunFrom{difference}{Set}, and
\spadfunFrom{symmetricDifference}{Set}.

\spadcommand{i := intersect(s,t)}
$$
\left\{
{{x \sp 2} -1} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

\spadcommand{u := union(s,t)}
$$
\left\{
{{x \sp 2} -1}, {{x \sp 3} -2}, {{x \sp 5} -4}, {{x \sp 7} -6}, 
{{y \sp 2} -1}, {{z \sp 2} -1} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

The set {\tt difference(s,t)} contains those members of {\tt s} which
are not in {\tt t}.

\spadcommand{difference(s,t)}
$$
\left\{
{{y \sp 2} -1}, {{z \sp 2} -1} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

The set {\tt symmetricDifference(s,t)} contains those elements which are
in {\tt s} or {\tt t} but not in both.

\spadcommand{symmetricDifference(s,t)}
$$
\left\{
{{x \sp 3} -2}, {{x \sp 5} -4}, {{x \sp 7} -6}, {{y \sp 2} -1}, 
{{z \sp 2} -1} 
\right\}
$$
\returnType{Type: Set Polynomial Integer}

Set membership is tested using the \spadfunFrom{member?}{Set} operation.

\spadcommand{member?(y, s)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{member?((y+1)*(y-1), s)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

The \spadfunFrom{subset?}{Set} function determines whether one set is
a subset of another.

\spadcommand{subset?(i, s)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{subset?(u, s)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

When the base type is finite, the absolute complement of a set is
defined.  This finds the set of all multiplicative generators of 
{\tt PrimeField 11}---the integers mod {\tt 11.}

\spadcommand{gs := set [g for i in 1..11 | primitive?(g := i::PF 11)] }
$$
\left\{
2, 6, 7, 8 
\right\}
$$
\returnType{Type: Set PrimeField 11}

%Original Page 451

The following values are not generators.

\spadcommand{complement gs }
$$
\left\{
1, 3, 4, 5, 9, {10}, 0 
\right\}
$$
\returnType{Type: Set PrimeField 11}

Often the members of a set are computed individually; in addition,
values can be inserted or removed from a set over the course of a
computation.

There are two ways to do this:

\spadcommand{a := set [i**2 for i in 1..5] }
$$
\left\{
1, 4, 9, {16}, {25} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

One is to view a set as a data structure and to apply updating operations.

\spadcommand{insert!(32, a) }
$$
\left\{
1, 4, 9, {16}, {25}, {32} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

\spadcommand{remove!(25, a) }
$$
\left\{
1, 4, 9, {16}, {32} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

\spadcommand{a }
$$
\left\{
1, 4, 9, {16}, {32} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

The other way is to view a set as a mathematical entity and to
create new sets from old.

\spadcommand{b := b0 := set [i**2 for i in 1..5] }
$$
\left\{
1, 4, 9, {16}, {25} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

\spadcommand{b := union(b, {32})}
$$
\left\{
1, 4, 9, {16}, {25}, {32} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

\spadcommand{b := difference(b, {25})}
$$
\left\{
1, 4, 9, {16}, {32} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

\spadcommand{b0 }
$$
\left\{
1, 4, 9, {16}, {25} 
\right\}
$$
\returnType{Type: Set PositiveInteger}

For more information about lists, see \domainref{List}.

%Original Page 453

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{SingleInteger}

The {\tt SingleInteger} domain is intended to provide support in Axiom
for machine integer arithmetic.  It is generally much faster than
(bignum) {\tt Integer} arithmetic but suffers from a limited range of
values.  Since Axiom can be implemented on top of various dialects of
Lisp, the actual representation of small integers may not correspond
exactly to the host machines integer representation.

In the CCL implementation of Axiom (Release 2.1 onwards) the underlying
representation of {\tt SingleInteger} is the same as {\tt Integer}.  
The underlying Lisp primitives treat machine-word sized computations
specially.

You can discover the minimum and maximum values in your implementation
by using \spadfunFrom{min}{SingleInteger} and \spadfunFrom{max}{SingleInteger}.

\spadcommand{min()\$SingleInteger}
$$
-{134217728} 
$$
\returnType{Type: SingleInteger}

%Original Page 454

\spadcommand{max()\$SingleInteger}
$$
134217727 
$$
\returnType{Type: SingleInteger}

To avoid confusion with {\tt Integer}, which is the default type for
integers, you usually need to work with declared variables
(\sectionref{ugTypesDeclare}).
\ldots

\spadcommand{a := 1234 :: SingleInteger }
$$
1234 
$$
\returnType{Type: SingleInteger}

or use package calling (\sectionref{ugTypesPkgCall}).

\spadcommand{b := 124\$SingleInteger }
$$
124 
$$
\returnType{Type: SingleInteger}

You can add, multiply and subtract {\tt SingleInteger} objects,
and ask for the greatest common divisor ({\tt gcd}).

\spadcommand{gcd(a,b) }
$$
2 
$$
\returnType{Type: SingleInteger}

The least common multiple ({\tt lcm}) is also available.

\spadcommand{lcm(a,b) }
$$
76508 
$$
\returnType{Type: SingleInteger}

Operations \spadfunFrom{mulmod}{SingleInteger},
\spadfunFrom{addmod}{SingleInteger},
\spadfunFrom{submod}{SingleInteger}, and
\spadfunFrom{invmod}{SingleInteger} are similar---they provide
arithmetic modulo a given small integer.
Here is $5 * 6 {\tt mod} 13$.

\spadcommand{mulmod(5,6,13)\$SingleInteger}
$$
4 
$$
\returnType{Type: SingleInteger}

To reduce a small integer modulo a prime, use
\spadfunFrom{positiveRemainder}{SingleInteger}.

\spadcommand{positiveRemainder(37,13)\$SingleInteger}
$$
11 
$$
\returnType{Type: SingleInteger}

Operations
\spadfunFrom{And}{SingleInteger},
\spadfunFrom{Or}{SingleInteger},
\spadfunFrom{xor}{SingleInteger},
and \spadfunFrom{Not}{SingleInteger}
provide bit level operations on small integers.

\spadcommand{And(3,4)\$SingleInteger}
$$
0 
$$
\returnType{Type: SingleInteger}

Use {\tt shift(int,numToShift)} to shift bits, where {\tt i} is
shifted left if {\tt numToShift} is positive, right if negative.

\spadcommand{shift(1,4)\$SingleInteger}
$$
16 
$$
\returnType{Type: SingleInteger}

\spadcommand{shift(31,-1)\$SingleInteger}
$$
15 
$$
\returnType{Type: SingleInteger}

Many other operations are available for small integers, including many
of those provided for {\tt Integer}.  To see the other operations, use
the Browse HyperDoc facility (\sectionref{ugBrowse})

%Original Page 455

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{SparseTable}

The {\tt SparseTable} domain provides a general purpose table type
with default entries.

Here we create a table to save strings under integer keys.  The value
{\tt "Try again!"} is returned if no other value has been stored for a
key.

\spadcommand{t: SparseTable(Integer, String, "Try again!") := table() }
$$
table() 
$$
\returnType{Type: SparseTable(Integer,String,Try again!)}

Entries can be stored in the table.

\spadcommand{t.3 := "Number three" }
$$
\mbox{\tt "Number three"} 
$$
\returnType{Type: String}

\spadcommand{t.4 := "Number four" }
$$
\mbox{\tt "Number four"} 
$$
\returnType{Type: String}

These values can be retrieved as usual, but if a look up fails the
default entry will be returned.

\spadcommand{t.3 }
$$
\mbox{\tt "Number three"} 
$$
\returnType{Type: String}

\spadcommand{t.2 }
$$
\mbox{\tt "Try again!"} 
$$
\returnType{Type: String}

To see which values are explicitly stored, the
\spadfunFrom{keys}{SparseTable} and \spadfunFrom{entries}{SparseTable}
functions can be used.

\spadcommand{keys t }
$$
\left[
4, 3 
\right]
$$
\returnType{Type: List Integer}

\spadcommand{entries t }
$$
\left[
\mbox{\tt "Number four"} , \mbox{\tt "Number three"} 
\right]
$$
\returnType{Type: List String}

If a specific table representation is required, the 
{\tt GeneralSparseTable} constructor should be used.  The domain 
{\tt SparseTable(K, E, dflt)} is equivalent to\\
{\tt GeneralSparseTable(K, E, Table(K,E), dflt)}.  
For more information, see \domainref{Table} and \domainref{GeneralSparseTable}.

%Original Page 456

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{SquareMatrix}
 
The top level matrix type in Axiom is {\tt Matrix} (see
\domainref{Matrix}, which provides
basic arithmetic and linear algebra functions.  However, since the
matrices can be of any size it is not true that any pair can be added
or multiplied.  Thus {\tt Matrix} has little algebraic structure.
 
Sometimes you want to use matrices as coefficients for polynomials
or in other algebraic contexts.  In this case, {\tt SquareMatrix}
should be used.  The domain {\tt SquareMatrix(n,R)} gives the ring of
{\tt n} by {\tt n} square matrices over {\tt R}.
 
Since {\tt SquareMatrix} is not normally exposed at the top level,
you must expose it before it can be used.

\spadcommand{)set expose add constructor SquareMatrix }
\begin{verbatim}
   SquareMatrix is now explicitly exposed in frame G82322 
\end{verbatim}

Once {\tt SQMATRIX} has been exposed, values can be created using the
\spadfunFrom{squareMatrix}{SquareMatrix} function.

\spadcommand{m := squareMatrix [ [1,-\%i],[\%i,4] ] }
$$
\left[
\begin{array}{cc}
1 & -i \\ 
i & 4 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Complex Integer)}

The usual arithmetic operations are available.

\spadcommand{m*m - m }
$$
\left[
\begin{array}{cc}
1 & -{4 \  i} \\ 
{4 \  i} & {13} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Complex Integer)}

Square matrices can be used where ring elements are required.
For example, here is a matrix with matrix entries.

\spadcommand{mm := squareMatrix [ [m, 1], [1-m, m**2] ] }
$$
\left[
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
1 & -i \\ 
i & 4 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
1 & 0 \\ 
0 & 1 
\end{array}
\right]}
\\ 
{\left[ 
\begin{array}{cc}
0 & i \\ 
-i & -3 
\end{array}
\right]}
& {\left[ 
\begin{array}{cc}
2 & -{5 \  i} \\ 
{5 \  i} & {17} 
\end{array}
\right]}
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,SquareMatrix(2,Complex Integer))}

Or you can construct a polynomial with  square matrix coefficients.

\spadcommand{p := (x + m)**2 }
$$
{x \sp 2}+{{\left[ 
\begin{array}{cc}
2 & -{2 \  i} \\ 
{2 \  i} & 8 
\end{array}
\right]}
\  x}+{\left[ 
\begin{array}{cc}
2 & -{5 \  i} \\ 
{5 \  i} & {17} 
\end{array}
\right]}
$$
\returnType{Type: Polynomial SquareMatrix(2,Complex Integer)}

This value can be converted to a square matrix with polynomial coefficients.

\spadcommand{p::SquareMatrix(2, ?) }
$$
\left[
\begin{array}{cc}
{{x \sp 2}+{2 \  x}+2} & {-{2 \  i \  x} -{5 \  i}} \\ 
{{2 \  i \  x}+{5 \  i}} & {{x \sp 2}+{8 \  x}+{17}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Polynomial Complex Integer)}
 
For more information on related topics, see
\sectionref{ugTypesWritingModes}, \sectionref{ugTypesExpose},
and \domainref{Matrix}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{SquareFreeRegularTriangularSet}

The {\tt SquareFreeRegularTriangularSet} domain constructor implements
square-free regular triangular sets.  See the 
{\tt RegularTriangularSet} domain constructor for general regular
triangular sets.  Let {\em T} be a regular triangular set consisting
of polynomials {\em t1, ..., tm} ordered by increasing main variables.
The regular triangular set {\em T} is square-free if {\em T} is empty
or if {\em t1, ..., tm-1} is square-free and if the polynomial 
{\em tm} is square-free as a univariate polynomial with coefficients in the
tower of simple extensions associated with {\em t1, ..., tm-1}.

The main interest of square-free regular triangular sets is that their
associated towers of simple extensions are product of fields.
Consequently, the saturated ideal of a square-free regular triangular
set is radical.  This property simplifies some of the operations
related to regular triangular sets.  However, building square-free
regular triangular sets is generally more expensive than building
general regular triangular sets.

As the {\tt RegularTriangularSet} domain constructor, the 
{\tt SquareFreeRegularTriangular\-Set} domain constructor also implements a
method for solving polynomial systems by means of regular triangular
sets.  This is in fact the same method with some adaptations to take
into account the fact that the computed regular chains are
square-free.  Note that it is also possible to pass from a
decomposition into general regular triangular sets to a decomposition
into square-free regular triangular sets.  This conversion is used
internally by the {\tt LazardSetSolvingPackage} package constructor.

{\bf N.B.} When solving polynomial systems with the 
{\tt SquareFreeRegularTriangularSet} domain constructor or the 
{\tt LazardSetSolvingPackage} package constructor, decompositions have no
redundant components.  See also {\tt LexTriangularPackage} and 
{\tt ZeroDimensional\-SolvePackage} for the case of algebraic systems with a
finite number of (complex) solutions.

We shall explain now how to use the constructor 
{\tt SquareFreeRegularTriangularSet}.

This constructor takes four arguments.
The first one, {\bf R}, is the coefficient ring of the polynomials;
it must belong to the category {\tt GcdDomain}.
The second one, {\bf E}, is the exponent monoid of the polynomials;
it must belong to the category {\tt OrderedAbelianMonoidSup}.
the third one, {\bf V}, is the ordered set of variables;
it must belong to the category {\tt OrderedSet}.
The last one is the polynomial ring;
it must belong to the category \\
{\tt RecursivePolynomialCategory(R,E,V)}.
The abbreviation for \\
{\tt SquareFreeRegularTriangularSet} is
{\tt SREGSET}.

Note that the way of understanding triangular decompositions 
is detailed in the example of the {\tt RegularTriangularSet}
constructor.

Let us illustrate the use of this constructor with one example
(Donati-Traverso).  Define the coefficient ring.

\spadcommand{R := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

Define the list of variables,

\spadcommand{ls : List Symbol := [x,y,z,t] }
$$
\left[
x, y, z, t 
\right]
$$
\returnType{Type: List Symbol}

and make it an ordered set;

\spadcommand{V := OVAR(ls)  }
$$
\mbox{\rm OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

then define the exponent monoid.

\spadcommand{E := IndexedExponents V  }
$$
\mbox{\rm IndexedExponents OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

Define the polynomial ring.

\spadcommand{P := NSMP(R, V)}
$$
\mbox{\rm NewSparseMultivariatePolynomial(Integer,OrderedVariableList 
[x,y,z,t])} 
$$
\returnType{Type: Domain}

Let the variables be polynomial.

\spadcommand{x: P := 'x  }
$$
x 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{y: P := 'y  }
$$
y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{z: P := 'z  }
$$
z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{t: P := 't  }
$$
t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

Now call the {\tt SquareFreeRegularTriangularSet} domain constructor.

\spadcommand{ST := SREGSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm SquareFreeRegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t]))} 
\end{array}
$$
\returnType{Type: Domain}

Define a polynomial system.

\spadcommand{p1 := x ** 31 - x ** 6 - x - y}
$$
{x \sp {31}} -{x \sp 6} -x -y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p2 := x ** 8  - z}
$$
{x \sp 8} -z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p3 := x ** 10 - t}
$$
{x \sp {10}} -t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{lp := [p1, p2, p3]}
$$
\left[
{{x \sp {31}} -{x \sp 6} -x -y}, {{x \sp 8} -z}, {{x \sp {10}} -t} 
\right]
$$
\returnType{Type: 
List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

First of all, let us solve this system in the sense of Kalkbrener.

\spadcommand{zeroSetSplit(lp)\$ST}
$$
\left[
{\left\{ {{z \sp 5} -{t \sp 4}}, {{t \  z \  {y \sp 2}}+{2 \  {z \sp 3} \  
y} -{t \sp 8}+{2 \  {t \sp 5}}+{t \sp 3} -{t \sp 2}}, {{{\left( {t \sp 4} 
-t 
\right)}
\  x} -{t \  y} -{z \sp 2}} 
\right\}}
\right]
$$
\returnType{Type: 
List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

And now in the sense of Lazard (or Wu and other authors).

\spadcommand{zeroSetSplit(lp,false)\$ST}
$$
\begin{array}{@{}l}
\left[
{\left\{ 
{{z \sp 5} -{t \sp 4}}, 
{{t \  z \  {y \sp 2}}+
{2 \  {z \sp 3} \  y} -
{t \sp 8}+
{2 \  {t \sp 5}}+
{t \sp 3} -
{t \sp 2}}, 
{{{\left( {t \sp 4} -t \right)}\  x} -{t \  y} -{z \sp 2}} \right\}},
\right.
\\
\\
\displaystyle
\left.
{\left\{ {{t \sp 3} -1}, {{z \sp 5} -t}, {{t \  y}+{z \sp 2}}, 
{{z \  {x \sp 2}} -t} \right\}},
{\left\{ t, z, y, x \right\}}
\right]
\end{array}
$$
\returnType{Type: 
List SquareFreeRegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

Now to see the difference with the {\tt RegularTriangularSet} domain
constructor, we define:

\spadcommand{T := REGSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm RegularTriangularSet(Integer,}
\\
\displaystyle
{\rm IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm OrderedVariableList [x,y,z,t]))} 
\end{array}
$$
\returnType{Type: Domain}

and compute:

\spadcommand{lts := zeroSetSplit(lp,false)\$T}
$$
\begin{array}{@{}l}
\displaystyle
\left[
{\left\{ {{z \sp 5} -{t \sp 4}}, 
{{t \  z \  {y \sp 2}}+
{2 \  {z \sp 3} \  y} -
{t \sp 8}+
{2 \  {t \sp 5}}+
{t \sp 3} -
{t \sp 2}}, 
{{{\left( {t \sp 4} -t \right)}\  x} -{t \  y} -{z \sp 2}} \right\}},
\right.
\\
\\
\displaystyle
\left.
{\left\{ {{t \sp 3} -1}, {{z \sp 5} -t}, 
{{t \  z \  {y \sp 2}}+{2 \  {z \sp 3} \  y}+1}, 
{{z \  {x \sp 2}} -t} \right\}},
{\left\{ t, z, y, x \right\}}
\right]
\end{array}
$$
\returnType{Type: 
List RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

If you look at the second set in both decompositions in the sense of Lazard,
you will see that the polynomial with main variable {\bf y} is not the same.

Let us understand what has happened.

We define:

\spadcommand{ts := lts.2}
$$
\left\{
{{t \sp 3} -1}, {{z \sp 5} -t}, {{t \  z \  {y \sp 2}}+{2 \  {z \sp 3} 
\  y}+1}, {{z \  {x \sp 2}} -t} 
\right\}
$$
\returnType{Type: 
RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

\spadcommand{pol := select(ts,'y)\$T}
$$
{t \  z \  {y \sp 2}}+{2 \  {z \sp 3} \  y}+1 
$$
\returnType{Type: 
Union(
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]),...)}

\spadcommand{tower := collectUnder(ts,'y)\$T}
$$
\left\{
{{t \sp 3} -1}, {{z \sp 5} -t} 
\right\}
$$
\returnType{Type: 
RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

\spadcommand{pack := RegularTriangularSetGcdPackage(R,E,V,P,T)}
$$
\begin{array}{@{}l}
{\rm RegularTriangularSetGcdPackage(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t]),}
\\
\displaystyle
{\rm \ \ RegularTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t])))} 
\end{array}
$$
\returnType{Type: Domain}

Then we compute:

\spadcommand{toseSquareFreePart(pol,tower)\$pack}
$$
\left[
{\left[ 
{val={{t \  y}+{z \sp 2}}}, 
{tower={\left\{ {{t \sp 3} -1}, {{z \sp 5} -t} \right\}}}
\right]}
\right]
$$
\returnType{Type: 
List Record(val: 
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]),
tower: RegularTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])))}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Stack}

A stack is an aggregate structure which allows insertion, deletion, and
inspection of the ``top'' element. Stacks are similar to any pile of
paper where you can only add to the pile, remove the top paper from
the pile, or read the top paper. 

Stacks can be created from a list of elements using the {\bf stack}
function.

\spadcommand{a:Stack INT:= stack [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

An empty stack can be created using the {\bf empty} function. 

\spadcommand{a:Stack INT:= empty()}
$$
[]
$$
\returnType{Type: Stack Integer}

The {\bf empty?} function will return {\tt true} if the stack contains
no elements.

\spadcommand{empty? a}
$$
true
$$
\returnType{Type: Boolean}

Stacks modify their arguments so they use the exclamation mark ``!''
as part of the function name.

The {\bf pop!} function removes the top element of the stack and
returns it.  The stack is one element smaller. The {\bf extract!}
function does the same thing with a different name.

\spadcommand{a:Stack INT:= stack [1,2,3,4,5]}
$$ 
[1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

\spadcommand{pop! a}
$$
1
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[2,3,4,5]
$$
\returnType{Type: Stack Integer}

The {\bf push!} operation adds a new top element to the stack and returns
the element that was pushed. The stack is one element larger. 
The {\bf insert!} does the same thing with a different name.

\spadcommand{a:Stack INT:= stack [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

\spadcommand{push!(9,a)}
$$
9
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[9,1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

To read the top element without changing the stack use the {\bf top}
function.

\spadcommand{a:Stack INT:= stack [1,2,3,4,5]}
$$
[1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

\spadcommand{top a}
$$
1
$$
\returnType{Type: PositiveInteger}

\spadcommand{a}
$$
[1,2,3,4,5]
$$
\returnType{Type: Stack Integer}

For more information on related topics, see Queue
\sectionref{Queue}.

%Original Page 457

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Stream}

A {\tt Stream} object is represented as a list whose last element
contains the wherewithal to create the next element, should it ever be
required.

Let {\tt ints} be the infinite stream of non-negative integers.

\spadcommand{ints := [i for i in 0..] }
$$
\left[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

By default, ten stream elements are calculated.  This number may be
changed to something else by the system command {\tt )set streams
calculate}.  For the display purposes of this book, we have chosen a
smaller value.

More generally, you can construct a stream by specifying its initial
value and a function which, when given an element, creates the next element.

\spadcommand{f : List INT -> List INT }
\returnType{Type: Void}

\spadcommand{f x == [x.1 + x.2, x.1] }
\returnType{Type: Void}

\spadcommand{fibs := [i.2 for i in [generate(f,[1,1])]] }
\begin{verbatim}
   Compiling function f with type List Integer -> List Integer 
\end{verbatim}
$$
\left[
1, 1, 2, 3, 5, 8, {13}, {21}, {34}, {55}, 
\ldots 
\right]
$$
\returnType{Type: Stream Integer}

You can create the stream of odd non-negative integers by either filtering
them from the integers, or by evaluating an expression for each integer.

\spadcommand{[i for i in ints | odd? i] }
$$
\left[
1, 3, 5, 7, 9, {11}, {13}, {15}, {17}, {19}, 
\ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

\spadcommand{odds := [2*i+1 for i in ints]}
$$
\left[
1, 3, 5, 7, 9, {11}, {13}, {15}, {17}, {19}, 
\ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

You can accumulate the initial segments of a stream using the
\spadfunFrom{scan}{StreamFunctions2} operation.

\spadcommand{scan(0,+,odds) }
$$
\left[
1, 4, 9, {16}, {25}, {36}, {49}, {64}, {81}, 
{100}, \ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

The corresponding elements of two or more streams can be combined in
this way.

\spadcommand{[i*j for i in ints for j in odds] }
$$
\left[
0, 3, {10}, {21}, {36}, {55}, {78}, {105}, {136}, 
{171}, \ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

%Original Page 458

\spadcommand{map(*,ints,odds)}
$$
\left[
0, 3, {10}, {21}, {36}, {55}, {78}, {105}, {136}, 
{171}, \ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

Many operations similar to those applicable to lists are available for
streams.

\spadcommand{first ints }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

\spadcommand{rest ints }
$$
\left[
1, 2, 3, 4, 5, 6, 7, 8, 9, {10}, \ldots 
\right]
$$
\returnType{Type: Stream NonNegativeInteger}

\spadcommand{fibs 20 }
$$
6765 
$$
\returnType{Type: PositiveInteger}

The packages {\tt StreamFunctions1}, {\tt StreamFunctions2} and 
{\tt StreamFunctions3} export some useful stream manipulation operations.
For more information, see \sectionref{ugLangIts},
\sectionref{ugProblemSeries},
\domainref{ContinuedFraction}, and \domainref{List}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{String}

The type {\tt String} provides character strings.  Character strings
provide all the operations for a one-dimensional array of characters,
plus additional operations for manipulating text.  For more
information on related topics, see 
\domainref{Character} and \domainref{CharacterClass}.
You can also issue the system command
{\tt )show String} to display the full list of operations defined
by {\tt String}.

String values can be created using double quotes.

\spadcommand{hello := "Hello, I'm Axiom!" }
$$
\mbox{\tt "Hello, I'm Axiom!"} 
$$
\returnType{Type: String}

Note, however, that double quotes and underscores must be preceded by
an extra underscore.

\spadcommand{said  := "Jane said, \_"Look!\_"" }
$$
\mbox{\tt "Jane said, "Look!""} 
$$
\returnType{Type: String}

\spadcommand{saw   := "She saw exactly one underscore: \_\_." }
$$
\mbox{\tt "She saw exactly one underscore: \_."} 
$$
\returnType{Type: String}

%Original Page 459

It is also possible to use \spadfunFrom{new}{String} to create a
string of any size filled with a given character.  Since there are
many {\tt new} functions it is necessary to indicate the desired type.

\spadcommand{gasp: String := new(32, char "x") }
$$
\mbox{\tt "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"} 
$$
\returnType{Type: String}

The length of a string is given by \spadopFrom{\#}{List}.

\spadcommand{\#gasp }
$$
32 
$$
\returnType{Type: PositiveInteger}

Indexing operations allow characters to be extracted or replaced in strings.
For any string {\tt s}, indices lie in the range {\tt 1..\#s}.

\spadcommand{hello.2 }
$$
e 
$$
\returnType{Type: Character}

Indexing is really just the application of a string to a subscript,
so any application syntax works.

\spadcommand{hello 2  }
$$
e 
$$
\returnType{Type: Character}

\spadcommand{hello(2) }
$$
e 
$$
\returnType{Type: Character}

If it is important not to modify a given string, it should be copied
before any updating operations are used.

\spadcommand{hullo := copy hello }
$$
\mbox{\tt "Hello, I'm Axiom!"} 
$$
\returnType{Type: String}

\spadcommand{hullo.2 := char "u"; [hello, hullo] }
$$
\left[
\mbox{\tt "Hello, I'm Axiom!"} , \mbox{\tt "Hullo, I'm Axiom!"} 
\right]
$$
\returnType{Type: List String}

Operations are provided to split and join strings.  The
\spadfunFrom{concat}{String} operation allows several strings to be
joined together.

\spadcommand{saidsaw := concat ["alpha","---","omega"] }
$$
\mbox{\tt "alpha---omega"} 
$$
\returnType{Type: String}

There is a version of \spadfunFrom{concat}{String} that works with
two strings.

\spadcommand{concat("hello ","goodbye")}
$$
\mbox{\tt "hello goodbye"} 
$$
\returnType{Type: String}

Juxtaposition can also be used to concatenate strings.

\spadcommand{"This " "is " "several " "strings " "concatenated."}
$$
\mbox{\tt "This is several strings concatenated."} 
$$
\returnType{Type: String}

%Original Page 460

Substrings are obtained by giving an index range.

\spadcommand{hello(1..5) }
$$
\mbox{\tt "Hello"} 
$$
\returnType{Type: String}

\spadcommand{hello(8..) }
$$
\mbox{\tt "I'm Axiom!"} 
$$
\returnType{Type: String}

A string can be split into several substrings by giving a separation
character or character class.

\spadcommand{split(hello, char " ")}
$$
\left[
\mbox{\tt "Hello,"} , \mbox{\tt "I'm"} , \mbox{\tt "Axiom!"} 
\right]
$$
\returnType{Type: List String}

\spadcommand{other := complement alphanumeric(); }
\returnType{Type: CharacterClass}

\spadcommand{split(saidsaw, other)}
$$
\left[
\mbox{\tt "alpha"} , \mbox{\tt "omega"} 
\right]
$$
\returnType{Type: List String}

Unwanted characters can be trimmed from the beginning or end of a string
using the operations \spadfunFrom{trim}{String}, \spadfunFrom{leftTrim}{String}
and \spadfunFrom{rightTrim}{String}.

\spadcommand{trim("\#\# ++ relax ++ \#\#", char "\#")}
$$
\mbox{\tt " ++ relax ++ "} 
$$
\returnType{Type: String}

Each of these functions takes a string and a second argument to specify
the characters to be discarded.

\spadcommand{trim("\#\# ++ relax ++ \#\#", other) }
$$
\mbox{\tt "relax"} 
$$
\returnType{Type: String}

The second argument can be given either as a single character or as a
character class.

\spadcommand{leftTrim ("\#\# ++ relax ++ \#\#", other) }
$$
\mbox{\tt "relax ++ \#\#"} 
$$
\returnType{Type: String}

\spadcommand{rightTrim("\#\# ++ relax ++ \#\#", other) }
$$
\mbox{\tt "\#\# ++ relax"} 
$$
\returnType{Type: String}

Strings can be changed to upper case or lower case using the
operations \spadfunFrom{upperCase}{String}, and
\spadfunFrom{lowerCase}{String}.

\spadcommand{upperCase hello }
$$
\mbox{\tt "HELLO, I'M Axiom!"} 
$$
\returnType{Type: String}

%Original Page 461

The versions with the exclamation mark change the original string,
while the others produce a copy.

\spadcommand{lowerCase hello }
$$
\mbox{\tt "hello, i'm axiom!"} 
$$
\returnType{Type: String}

Some basic string matching is provided.  The function
\spadfunFrom{prefix?}{String} tests whether one string is an initial
prefix of another.

\spadcommand{prefix?("He", "Hello")}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{prefix?("Her", "Hello")}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

A similar function, \spadfunFrom{suffix?}{String}, tests for suffixes.

\spadcommand{suffix?("", "Hello")}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{suffix?("LO", "Hello")}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

The function \spadfunFrom{substring?}{String} tests for a substring
given a starting position.

\spadcommand{substring?("ll", "Hello", 3)}
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{substring?("ll", "Hello", 4)}
$$
{\tt false} 
$$
\returnType{Type: Boolean}

A number of \spadfunFrom{position}{String} functions locate things in strings.
If the first argument to position is a string, then {\tt position(s,t,i)}
finds the location of {\tt s} as a substring of {\tt t} starting the
search at position {\tt i}.

\spadcommand{n := position("nd", "underground",   1) }
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{n := position("nd", "underground", n+1)  }
$$
10 
$$
\returnType{Type: PositiveInteger}

If {\tt s} is not found, then {\tt 0} is returned ({\tt minIndex(s)-1}
in {\tt IndexedString}).

\spadcommand{n := position("nd", "underground", n+1) }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

%Original Page 462

To search for a specific character or a member of a character class,
a different first argument is used.

\spadcommand{position(char "d", "underground", 1)}
$$
3 
$$
\returnType{Type: PositiveInteger}

\spadcommand{position(hexDigit(), "underground", 1)}
$$
3 
$$
\returnType{Type: PositiveInteger}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{StringTable}

This domain provides a table type in which the keys are known to be
strings so special techniques can be used.  Other than performance,
the type {\tt StringTable(S)} should behave exactly the same way as
{\tt Table(String,S)}.  See \domainref{Table}
for general information about tables.

This creates a new table whose keys are strings.

\spadcommand{t: StringTable(Integer) := table()  }
$$
table() 
$$
\returnType{Type: StringTable Integer}

The value associated with each string key is the number of characters
in the string.

\begin{verbatim}
for s in split("My name is Ian Watt.",char " ")
  repeat
    t.s := #s
\end{verbatim}
\returnType{Type: Void}

\spadcommand{for key in keys t repeat output [key, t.key] }
\begin{verbatim}
   ["Ian",3]
   ["My",2]
   ["Watt.",5]
   ["name",4]
   ["is",2]
\end{verbatim}
\returnType{Type: Void}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Symbol}
 
Symbols are one of the basic types manipulated by Axiom.  The 
{\tt Symbol} domain provides ways to create symbols of many varieties.

The simplest way to create a symbol is to ``single quote'' an identifier.

\spadcommand{X: Symbol := 'x }
$$
x 
$$
\returnType{Type: Symbol}

%Original Page 463

This gives the symbol even if {\tt x} has been assigned a value.  If
{\tt x} has not been assigned a value, then it is possible to omit the
quote.

\spadcommand{XX: Symbol := x}
$$
x 
$$
\returnType{Type: Symbol}

Declarations must be used when working with symbols, because otherwise
the interpreter tries to place values in a more specialized type 
{\tt Variable}.

\spadcommand{A := 'a}
$$
a 
$$
\returnType{Type: Variable a}

\spadcommand{B := b}
$$
b 
$$
\returnType{Type: Variable b}

The normal way of entering polynomials uses this fact.

\spadcommand{x**2 + 1}
$$
{x \sp 2}+1 
$$
\returnType{Type: Polynomial Integer}

Another convenient way to create symbols is to convert a string.
This is useful when the name is to be constructed by a program.

\spadcommand{"Hello"::Symbol}
$$
Hello 
$$
\returnType{Type: Symbol}

Sometimes it is necessary to generate new unique symbols, for example,
to name constants of integration.  The expression {\tt new()}
generates a symbol starting with {\tt \%}.

\spadcommand{new()\$Symbol}
$$
 \%A 
$$
\returnType{Type: Symbol}

Successive calls to \spadfunFrom{new}{Symbol} produce different symbols.

\spadcommand{new()\$Symbol}
$$
 \%B 
$$
\returnType{Type: Symbol}

The expression {\tt new("s")} produces a symbol starting with {\tt \%s}.

\spadcommand{new("xyz")\$Symbol}
$$
 \%xyz0 
$$
\returnType{Type: Symbol}

A symbol can be adorned in various ways.  The most basic thing is
applying a symbol to a list of subscripts.

\spadcommand{X[i,j] }
$$
x \sb {i, j} 
$$
\returnType{Type: Symbol}

Somewhat less pretty is to attach subscripts, superscripts or arguments.

\spadcommand{U := subscript(u, [1,2,1,2]) }
$$
u \sb {1, 2, 1, 2} 
$$
\returnType{Type: Symbol}

%Original Page 464

\spadcommand{V := superscript(v, [n]) }
$$
v \sp {n} 
$$
\returnType{Type: Symbol}

\spadcommand{P := argscript(p, [t]) }
$$
{p \sb {}} 
\left(
{t} 
\right)
$$
\returnType{Type: Symbol}

It is possible to test whether a symbol has scripts using the
\spadfunFrom{scripted?}{Symbol} test.

\spadcommand{scripted? U }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{scripted? X }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

If a symbol is not scripted, then it may be converted to a string.

\spadcommand{string X }
$$
\mbox{\tt "x"} 
$$
\returnType{Type: String}

The basic parts can always be extracted using the
\spadfunFrom{name}{Symbol} and \spadfunFrom{scripts}{Symbol}
operations.

\spadcommand{name U }
$$
u 
$$
\returnType{Type: Symbol}

\spadcommand{scripts U }
$$
\left[
{sub={\left[ 1, 2, 1, 2 
\right]}},
{sup={\left[ 
\right]}},
{presup={\left[ 
\right]}},
{presub={\left[ 
\right]}},
{args={\left[ 
\right]}}
\right]
$$
\returnType{Type: 
Record(
sub: List OutputForm,
sup: List OutputForm,
presup: List OutputForm,
presub: List OutputForm,
args: List OutputForm)}

\spadcommand{name X }
$$
x 
$$
\returnType{Type: Symbol}

\spadcommand{scripts X }
$$
\left[
{sub={\left[ 
\right]}},
{sup={\left[ 
\right]}},
{presup={\left[ 
\right]}},
{presub={\left[ 
\right]}},
{args={\left[ 
\right]}}
\right]
$$
\returnType{Type: 
Record(
sub: List OutputForm,
sup: List OutputForm,
presup: List OutputForm,
presub: List OutputForm,
args: List OutputForm)}

%Original Page 465

The most general form is obtained using the
\spadfunFrom{script}{Symbol} operation.  This operation takes an
argument which is a list containing, in this order, lists of
subscripts, superscripts, presuperscripts, presubscripts and arguments
to a symbol.

\spadcommand{M := script(Mammoth, [ [i,j],[k,l],[0,1],[2],[u,v,w] ]) }
$$
{{} \sb {2} \sp {{0, 1}}Mammoth \sb {{i, j}} \sp {{k, l}}} 
\left(
{u, v, w} 
\right)
$$
\returnType{Type: Symbol}

\spadcommand{scripts M }
$$
\left[
{sub={\left[ i, j 
\right]}},
{sup={\left[ k, l 
\right]}},
{presup={\left[ 0, 1 
\right]}},
{presub={\left[ 2 
\right]}},
{args={\left[ u, v, w 
\right]}}
\right]
$$
\returnType{Type: 
Record(
sub: List OutputForm,
sup: List OutputForm,
presup: List OutputForm,
presub: List OutputForm,
args: List OutputForm)}

If trailing lists of scripts are omitted, they are assumed to be empty.

\spadcommand{N := script(Nut, [ [i,j],[k,l],[0,1] ]) }
$$
{} \sp {{0, 1}}Nut \sb {{i, j}} \sp {{k, l}} 
$$
\returnType{Type: Symbol}

\spadcommand{scripts N }
$$
\left[
{sub={\left[ i, j 
\right]}},
{sup={\left[ k, l 
\right]}},
{presup={\left[ 0, 1 
\right]}},
{presub={\left[ 
\right]}},
{args={\left[ 
\right]}}
\right]
$$
\returnType{Type: 
Record(
sub: List OutputForm,
sup: List OutputForm,
presup: List OutputForm,
presub: List OutputForm,
args: List OutputForm)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Table}

The {\tt Table} constructor provides a general structure for
associative storage.  This type provides hash tables in which data
objects can be saved according to keys of any type.  For a given
table, specific types must be chosen for the keys and entries.

In this example the keys to the table are polynomials with integer
coefficients.  The entries in the table are strings.

\spadcommand{t: Table(Polynomial Integer, String) := table() }
$$
table() 
$$
\returnType{Type: Table(Polynomial Integer,String)}

To save an entry in the table, the \spadfunFrom{setelt}{Table}
operation is used.  This can be called directly, giving the table a
key and an entry.

\spadcommand{setelt(t, x**2 - 1, "Easy to factor") }
$$
\mbox{\tt "Easy to factor"} 
$$
\returnType{Type: String}

Alternatively, you can use assignment syntax.

\spadcommand{t(x**3 + 1) := "Harder to factor" }
$$
\mbox{\tt "Harder to factor"} 
$$
\returnType{Type: String}

%Original Page 466

\spadcommand{t(x) := "The easiest to factor" }
$$
\mbox{\tt "The easiest to factor"} 
$$
\returnType{Type: String}

Entries are retrieved from the table by calling the
\spadfunFrom{elt}{Table} operation.

\spadcommand{elt(t, x) }
$$
\mbox{\tt "The easiest to factor"} 
$$
\returnType{Type: String}

This operation is called when a table is ``applied'' to a key using
this or the following syntax.

\spadcommand{t.x }
$$
\mbox{\tt "The easiest to factor"} 
$$
\returnType{Type: String}

\spadcommand{t x }
$$
\mbox{\tt "The easiest to factor"} 
$$
\returnType{Type: String}

Parentheses are used only for grouping.  They are needed if the key is
an infixed expression.

\spadcommand{t.(x**2 - 1) }
$$
\mbox{\tt "Easy to factor"} 
$$
\returnType{Type: String}

Note that the \spadfunFrom{elt}{Table} operation is used only when the
key is known to be in the table---otherwise an error is generated.

\spadcommand{t (x**3 + 1) }
$$
\mbox{\tt "Harder to factor"} 
$$
\returnType{Type: String}

You can get a list of all the keys to a table using the
\spadfunFrom{keys}{Table} operation.

\spadcommand{keys t }
$$
\left[
x, {{x \sp 3}+1}, {{x \sp 2} -1} 
\right]
$$
\returnType{Type: List Polynomial Integer}

If you wish to test whether a key is in a table, the
\spadfunFrom{search}{Table} operation is used.  This operation returns
either an entry or {\tt "failed"}.

\spadcommand{search(x, t) }
$$
\mbox{\tt "The easiest to factor"} 
$$
\returnType{Type: Union(String,...)}

\spadcommand{search(x**2, t) }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

The return type is a union so the success of the search can be tested
using {\tt case}.  

\spadcommand{search(x**2, t) case "failed" }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

%Original Page 467

The \spadfunFrom{remove!}{Table} operation is used to delete values from a
table.

\spadcommand{remove!(x**2-1, t)  }
$$
\mbox{\tt "Easy to factor"} 
$$
\returnType{Type: Union(String,...)}

If an entry exists under the key, then it is returned.  Otherwise
\spadfunFrom{remove}{Table} returns {\tt "failed"}.

\spadcommand{remove!(x-1, t) }
$$
\mbox{\tt "failed"} 
$$
\returnType{Type: Union("failed",...)}

The number of key-entry pairs can be found using the
\spadfunFrom{\#}{Table} operation.

\spadcommand{\#t }
$$
2 
$$
\returnType{Type: PositiveInteger}

Just as \spadfunFrom{keys}{Table} returns a list of keys to the table,
a list of all the entries can be obtained using the
\spadfunFrom{members}{Table} operation.

\spadcommand{members t }
$$
\left[
\mbox{\tt "The easiest to factor"} , \mbox{\tt "Harder to factor"} 
\right]
$$
\returnType{Type: List String}

A number of useful operations take functions and map them on to the
table to compute the result.  Here we count the entries which
have ``{\tt Hard}'' as a prefix.

\spadcommand{count(s: String +-> prefix?("Hard", s), t) }
$$
1 
$$
\returnType{Type: PositiveInteger}

Other table types are provided to support various needs.
\indent
\begin{list}{}
\item {\tt AssociationList} gives a list with a table view.
This allows new entries to be appended onto the front of the list
to cover up old entries.
This is useful when table entries need to be stacked or when
frequent list traversals are required.
See \domainref{AssociationList} for more information.
\item {\tt EqTable} gives tables in which keys are considered
equal only when they are in fact the same instance of a structure.
See \domainref{EqTable} for more information.
\item {\tt StringTable} should be used when the keys are known to
be strings.
See \domainref{StringTable} for more information.
\item {\tt SparseTable} provides tables with default
entries, so
lookup never fails.  The {\tt General\-SparseTable} constructor
can be used to make any table type behave this way.
See \domainref{SparseTable} for more information.
\item {\tt KeyedAccessFile} allows values to be saved in a file,\\
accessed as a table.
See \domainref{KeyedAccessFile} for more information.
\end{list}
\noindent

%Original Page 468

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{TextFile}

The domain {\tt TextFile} allows Axiom to read and write
character data and exchange text with other programs.
This type behaves in Axiom much like a {\tt File} of strings,
with additional operations to cause new lines.
We give an example of how to produce an upper case copy of a file.

This is the file from which we read the text.

\spadcommand{f1: TextFile := open("/etc/group", "input")   }
$$
\mbox{\tt "/etc/group"} 
$$
\returnType{Type: TextFile}

This is the file to which we write the text.

\spadcommand{f2: TextFile := open("/tmp/MOTD", "output")  }
$$
\mbox{\tt "/tmp/MOTD"} 
$$
\returnType{Type: TextFile}

Entire lines are handled using the \spadfunFrom{readLine}{TextFile} and
\spadfunFrom{writeLine}{TextFile} operations.

\spadcommand{l := readLine! f1 }
$$
\mbox{\tt "root:x:0:root"} 
$$
\returnType{Type: String}

\spadcommand{writeLine!(f2, upperCase l) }
$$
\mbox{\tt "ROOT:X:0:ROOT"} 
$$
\returnType{Type: String}

Use the \spadfunFrom{endOfFile?}{TextFile} operation to check if you
have reached the end of the file.

\begin{verbatim}
while not endOfFile? f1 repeat
    s := readLine! f1
    writeLine!(f2, upperCase s)
\end{verbatim}
\returnType{Type: Void}

The file {\tt f1} is exhausted and should be closed.

\spadcommand{close! f1  }
$$
\mbox{\tt "/etc/group"} 
$$
\returnType{Type: TextFile}

It is sometimes useful to write lines a bit at a time.  The
\spadfunFrom{write}{TextFile} operation allows this.

\spadcommand{write!(f2, "-The-")  }
$$
\mbox{\tt "-The-"} 
$$
\returnType{Type: String}

\spadcommand{write!(f2, "-End-")  }
$$
\mbox{\tt "-End-"} 
$$
\returnType{Type: String}

This ends the line.  This is done in a machine-dependent manner.

\spadcommand{writeLine! f2}
$$
\mbox{\tt ""} 
$$
\returnType{Type: String}

%Original Page 469

\spadcommand{close! f2}
$$
\mbox{\tt "/tmp/MOTD"} 
$$
\returnType{Type: TextFile}

Finally, clean up.

\spadcommand{)system rm /tmp/MOTD}

For more information on related topics,  see
\domainref{File}, \domainref{KeyedAccessFile}, and \domainref{Library}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{TwoDimensionalArray}

The {\tt TwoDimensionalArray} domain is used for storing data in a
two dimensional data structure indexed by row and by column.  Such an array
is a homogeneous data structure in that all the entries of the array
must belong to the same Axiom domain (although see
\sectionref{ugTypesAnyNone}. Each
array has a fixed number of rows and columns specified by the user and
arrays are not extensible.  In Axiom, the indexing of two-dimensional
arrays is one-based.  This means that both the ``first'' row of an
array and the ``first'' column of an array are given the index 
{\tt 1}.  Thus, the entry in the upper left corner of an array is in
position {\tt (1,1)}.

The operation \spadfunFrom{new}{TwoDimensionalArray} creates an array
with a specified number of rows and columns and fills the components
of that array with a specified entry.  The arguments of this operation
specify the number of rows, the number of columns, and the entry.

This creates a five-by-four array of integers, all of whose entries are
zero.

\spadcommand{arr : ARRAY2 INT := new(5,4,0) }
$$
\left[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

The entries of this array can be set to other integers using the
operation \spadfunFrom{setelt}{TwoDimensionalArray}.

Issue this to set the element in the upper left corner of this array to
{\tt 17}.

\spadcommand{setelt(arr,1,1,17) }
$$
17 
$$
\returnType{Type: PositiveInteger}

%Original Page 470

Now the first element of the array is {\tt 17.}

\spadcommand{arr }
$$
\left[
\begin{array}{cccc}
{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

Likewise, elements of an array are extracted using the operation
\spadfunFrom{elt}{TwoDimensionalArray}.

\spadcommand{elt(arr,1,1) }
$$
17 
$$
\returnType{Type: PositiveInteger}

Another way to use these two operations is as follows.  This sets the
element in position {\tt (3,2)} of the array to {\tt 15}.

\spadcommand{arr(3,2) := 15 }
$$
15 
$$
\returnType{Type: PositiveInteger}

This extracts the element in position {\tt (3,2)} of the array.

\spadcommand{arr(3,2) }
$$
15 
$$
\returnType{Type: PositiveInteger}

The operations \spadfunFrom{elt}{TwoDimensionalArray} and
\spadfunFrom{setelt}{TwoDimensionalArray} come equipped with an error
check which verifies that the indices are in the proper ranges.  For
example, the above array has five rows and four columns, so if you ask
for the entry in position {\tt (6,2)} with {\tt arr(6,2)} Axiom
displays an error message.  If there is no need for an error check,
you can call the operations \spadfunFrom{qelt}{TwoDimensionalArray}
and \spadfunFrom{qsetelt}{TwoDimensionalArray} which provide the same
functionality but without the error check.  Typically, these
operations are called in well-tested programs.

The operations \spadfunFrom{row}{TwoDimensionalArray} and
\spadfunFrom{column}{TwoDimensionalArray} extract rows and columns,
respectively, and return objects of {\tt OneDimensionalArray} with the
same underlying element type.

\spadcommand{row(arr,1) }
$$
\left[
{17}, 0, 0, 0 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

\spadcommand{column(arr,1) }
$$
\left[
{17}, 0, 0, 0, 0 
\right]
$$
\returnType{Type: OneDimensionalArray Integer}

You can determine the dimensions of an array by calling the operations
\spadfunFrom{nrows}{TwoDimensionalArray} and
\spadfunFrom{ncols}{TwoDimensionalArray}, which return the number of
rows and columns, respectively.

\spadcommand{nrows(arr) }
$$
5 
$$
\returnType{Type: PositiveInteger}

%Original Page 471

\spadcommand{ncols(arr) }
$$
4 
$$
\returnType{Type: PositiveInteger}

To apply an operation to every element of an array, use
\spadfunFrom{map}{TwoDimensionalArray}.  This creates a new array.
This expression negates every element.

\spadcommand{map(-,arr) }
$$
\left[
\begin{array}{cccc}
-{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & -{15} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

This creates an array where all the elements are doubled.

\spadcommand{map((x +-> x + x),arr) }
$$
\left[
\begin{array}{cccc}
{34} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & {30} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

To change the array destructively, use
\spadfunFrom{map}{TwoDimensionalArray} instead of
\spadfunFrom{map}{TwoDimensionalArray}.  If you need to make a copy of
any array, use \spadfunFrom{copy}{TwoDimensionalArray}.

\spadcommand{arrc := copy(arr) }
$$
\left[
\begin{array}{cccc}
{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & {15} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

\spadcommand{map!(-,arrc) }
$$
\left[
\begin{array}{cccc}
-{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & -{15} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

\spadcommand{arrc }
$$
\left[
\begin{array}{cccc}
-{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & -{15} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

%Original Page 472

\spadcommand{arr  }
$$
\left[
\begin{array}{cccc}
{17} & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & {15} & 0 & 0 \\ 
0 & 0 & 0 & 0 \\ 
0 & 0 & 0 & 0 
\end{array}
\right]
$$
\returnType{Type: TwoDimensionalArray Integer}

Use \spadfunFrom{member?}{TwoDimensionalArray} to see if a given element
is in an array.

\spadcommand{member?(17,arr) }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

\spadcommand{member?(10317,arr) }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

To see how many times an element appears in an array, use
\spadfunFrom{count}{TwoDimensionalArray}.

\spadcommand{count(17,arr) }
$$
1 
$$
\returnType{Type: PositiveInteger}

\spadcommand{count(0,arr) }
$$
18 
$$
\returnType{Type: PositiveInteger}

For more information about the operations available for {\tt
TwoDimensionalArray}, issue {\tt )show TwoDimensionalArray}.  For
information on related topics, see 
\domainref{Matrix} and \domainref{OneDimensionalArray}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{TwoDimensionalViewport}

We want to graph $x^3 * (a+b*x)$ on the interval $x=-1..1$
so we clear out the workspace.

We assign values to the constants
\begin{verbatim}
a:=0.5
\end{verbatim}
$$
0.5
$$
\returnType{Type: Float}
\begin{verbatim}
b:=0.5
\end{verbatim}
$$
0.5
$$
\returnType{Type: Float}

We draw the first case of the graph
\begin{verbatim}
y1:=draw(x^3*(a+b*x),x=-1..1,title=="2.2.10 explicit")
\end{verbatim}
$$
\mbox{\rm TwoDimensionalViewport: } \mbox{\tt "2.2.10 explicit"}
$$
\returnType{Type: TwDimensionalViewport}
which results in the image:\\
\includegraphics[scale=2.00]{ps/v0plot1.eps}

We fetch the graph of the first object
\begin{verbatim}
g1:=getGraph(y1,1)
\end{verbatim}
$$
\mbox{\rm Graph with } 1 \mbox{\rm point list}
$$
\returnType{Type: GraphImage}
We extract its points
\begin{verbatim}
pointLists g1
\end{verbatim}
$$
\begin{array}{@{}l}
\left[\left[\right.\right.\\
\quad{}{\left[ -{1.0}, {0.0}, {1.0}, {3.0} \right]}, \\
\quad{}{\left[ -{0.95833333333333337}, -{1.8336166570216028E-2}, {1.0},{3.0} \right]},\\
\quad{}{\left[ -{0.91666666666666674}, -{3.2093942901234518E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.87500000000000011}, -{4.18701171875E-2}, {1.0},  {3.0}\right]},\\
\quad{}{\left[ -{0.83333333333333348}, -{4.8225308641975301E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.79166666666666685}, -{5.1683967496141986E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.75000000000000022}, -{5.2734375E-2}, {1.0},  {3.0}\right]},\\
\quad{}{\left[ -{0.70833333333333359}, -{5.1828643422067916E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.66666666666666696}, -{4.9382716049382741E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.62500000000000033}, -{4.5776367187500042E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.5833333333333337}, -{4.1353202160493867E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.54166666666666707}, -{3.6420657310956832E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.50000000000000044}, -{3.1250000000000056E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.45833333333333376}, -{2.6076328607253136E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.41666666666666707}, -{2.1098572530864244E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.37500000000000039}, -{1.6479492187500042E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.3333333333333337}, -{1.2345679012345713E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.29166666666666702}, -{8.7875554591049648E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.25000000000000033}, -{5.8593750000000208E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.20833333333333368}, -{3.5792221257716214E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.16666666666666702}, -{1.9290123456790237E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{0.12500000000000036}, -{8.5449218750000705E-4}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ -{8.3333333333333703E-2}, -{2.6523919753086765E-4},{1.0},{3.0}\right]},\\
\quad{}{\left[ -{4.1666666666667039E-2},-{3.4661940586420673E-5},{1.0}, {3.0}\right]},\\
\quad{}{\left[ -{3.7470027081099033E-16},-{2.630401389437233E-47},{1.0},{3.0}\right]},\\
\quad{}{\left[ {4.166666666666629E-2,3}. {7676022376542178E-5}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {8.3333333333332954E-2}, {3.1346450617283515E-4}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.12499999999999961}, {1.0986328124999894E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.16666666666666627}, {2.7006172839505972E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.20833333333333293}, {5.463023244598731E-3}, {1.0},  {3.0}\right]},\\
\quad{}{\left[ {0.24999999999999958}, {9.765624999999948E-3}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.29166666666666624}, {1.6024365837191284E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.33333333333333293}, {2.469135802469126E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.37499999999999961}, {3.6254882812499882E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.4166666666666663}, {5.1239390432098617E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.45833333333333298}, {7.0205500096450435E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.49999999999999967}, {9.3749999999999792E-2}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.5416666666666663}, {0.12250584731867258}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.58333333333333293}, {0.15714216820987617}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.62499999999999956}, {0.1983642578124995}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.66666666666666619}, {0.24691358024691298}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.70833333333333282}, {0.30356776861496837}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.74999999999999944}, {0.369140624999999}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.79166666666666607}, {0.44448212046681984}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.8333333333333327}, {0.530478395061727}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.87499999999999933}, {0.62805175781249845}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.91666666666666596}, {0.73816068672839308}, {1.0}, {3.0}\right]},\\
\quad{}{\left[ {0.95833333333333259}, {0.86179982880015205}, {1.0}, {3.0}\right]}, \\
\quad{}{\left[ {1.0}, {1.0}, {1.0}, {3.0}\right]}\\
\left.\left.\right]\right]
\end{array}
$$
\returnType{Type: List List Point DoubleFloat}
Now we create a second graph with a changed parameter
\begin{verbatim}
b:=1.0
\end{verbatim}
$$
1.0
$$
\returnType{Type: Float}
We draw it
\begin{verbatim}
y2:=draw(x^3*(a+b*x),x=-1..1)
\end{verbatim}
$$
\mbox{\rm TwoDimensionalViewport: } \mbox{\tt "Axiom2D"}
$$
\returnType{Type: TwoDimensionalViewport}
which results in the image:\\
\includegraphics[scale=2.00]{ps/v0plot2.eps}

We fetch this new graph
\begin{verbatim}
g2:=getGraph(y2,1)
\end{verbatim}
$$
\mbox{\rm Graph with } 1 \mbox{\rm point list}
$$
\returnType{Type: GraphImage}
We get the points from this graph
\begin{verbatim}
  pointLists g2
\end{verbatim}
$$
\begin{array}{l}
\left[\left[\right.\right.\\
\quad{}{\left[ -{1.0}, {0.5}, {1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.95833333333333337}, {0.40339566454475323}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.91666666666666674}, {0.32093942901234584}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.87500000000000011}, {0.25122070312500017}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.83333333333333348}, {0.19290123456790137}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.79166666666666685}, {0.14471510898919768}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.75000000000000022}, {0.10546875000000019}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.70833333333333359}, {7.404091917438288E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.66666666666666696}, {4.938271604938288E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.62500000000000033}, {3.0517578125000125E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.5833333333333337}, {1.6541280864197649E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.54166666666666707}, {6.6219376929013279E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.50000000000000044}, {5.5511151231257827E-17}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.45833333333333376}, -{4.011742862654287E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.41666666666666707}, -{6.0281635802469057E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.37500000000000039}, -{6.5917968750000035E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.3333333333333337}, -{6.1728395061728461E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.29166666666666702}, -{5.1691502700617377E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.25000000000000033}, -{3.9062500000000104E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.20833333333333368}, -{2.6373215663580349E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.16666666666666702}, -{1.543209876543218E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{0.12500000000000036}, -{7.3242187500000564E-4}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{8.3333333333333703E-2}, -{2.4112654320987957E-4}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{4.1666666666667039E-2}, -{3.315489969135889E-5}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[-{3.7470027081099033E-16}, -{2.6304013894372324E-47}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{4.166666666666629E-2}, {3.9183063271603852E-5}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{8.3333333333332954E-2}, {3.3757716049382237E-4}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.12499999999999961}, {1.2207031249999879E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.16666666666666627}, {3.0864197530863957E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.20833333333333293}, {6.4049238040123045E-3}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.24999999999999958}, {1.1718749999999934E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.29166666666666624}, {1.9642771026234473E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.33333333333333293}, {3.0864197530864071E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.37499999999999961}, {4.6142578124999847E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.4166666666666663}, {6.6309799382715848E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.45833333333333298}, {9.2270085841049135E-2}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.49999999999999967}, {0.12499999999999971}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.5416666666666663}, {0.16554844232253049}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.58333333333333293}, {0.21503665123456736}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.62499999999999956}, {0.27465820312499928}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.66666666666666619}, {0.3456790123456781}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.70833333333333282}, {0.42943733121141858}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.74999999999999944}, {0.52734374999999845}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.79166666666666607}, {0.64088119695215873}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.8333333333333327}, {0.77160493827160281}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.87499999999999933}, {0.92114257812499756}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.91666666666666596}, {1.0911940586419722}, {1.0}, 
{3.0}\right]},\\
\quad{}{\left[{0.95833333333333259}, {1.2835316599151199}, {1.0}, 
{3.0}\right]}, \\
\quad{}{\left[{1.0}, {1.5}, {1.0}, {3.0}\right]}\\
\left.\left.\right]\right]
\end{array}
$$
\returnType{Type: List List Point DoubleFloat}
and we put these points, g2 onto the first graph y1 as graph 2
\begin{verbatim}
putGraph(y1,g2,2)
\end{verbatim}
\returnType{Type: Void}
And now we do the whole sequence again
\begin{verbatim}
b:=2.0
\end{verbatim}
$$
2.0
$$
\returnType{Type: Float}
\begin{verbatim}
y3:=draw(x^3*(a+b*x),x=-1..1)
\end{verbatim}
$$
\mbox{\rm TwoDimensionalViewport: } \mbox{\tt "Axiom2D"}
$$
\returnType{\rm TwoDimensionalViewport}
which results in the image:\\
\includegraphics[scale=2.00]{ps/v0plot3.eps}

\begin{verbatim}
g3:=getGraph(y3,1)
\end{verbatim}
$$
\mbox{\rm Graph with } 1 \mbox{\rm point list}
$$
\returnType{Type: GraphImage}
\vfill
\begin{verbatim}
pointLists g3
\end{verbatim}
$$
\begin{array}{l}
\left[\left[\right.\right.\\
\quad{}{\left[-{1.0}, {1.5}, {1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.95833333333333337}, {1.2468593267746917}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.91666666666666674}, {1.0270061728395066}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.87500000000000011}, {0.83740234375000044}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.83333333333333348}, {0.67515432098765471}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.79166666666666685}, {0.53751326195987703}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.75000000000000022}, {0.42187500000000056}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.70833333333333359}, {0.32578004436728447}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.66666666666666696}, {0.24691358024691412}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.62500000000000033}, {0.18310546875000044}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.5833333333333337}, {0.1323302469135807}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.54166666666666707}, {9.2707127700617648E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.50000000000000044}, {6.2500000000000278E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.45833333333333376}, {4.0117428626543411E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.41666666666666707}, {2.4112654320987775E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.37500000000000039}, {1.3183593750000073E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.3333333333333337}, {6.1728395061728877E-3}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.29166666666666702}, {2.0676601080247183E-3}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[-{0.25000000000000033}, {1.0408340855860843E-17}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{0.20833333333333368}, -{7.5352044753086191E-4}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{0.16666666666666702}, -{7.7160493827160663E-4}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{0.12500000000000036}, -{4.8828125000000282E-4}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{8.3333333333333703E-2}, -{1.9290123456790339E-4}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{4.1666666666667039E-2}, -{3.0140817901235325E-5}, 
{1.0},{3.0}\right]},\\
\quad{}{\left[-{3.7470027081099033E-16},-{2.6304013894372305E-47},
{1.0},{3.0}\right]},\\
\quad{}{\left[{4.166666666666629E-2}, {4.21971450617272E-5}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{8.3333333333332954E-2}, {3.8580246913579681E-4}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.12499999999999961}, {1.4648437499999848E-3}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.16666666666666627}, {3.8580246913579933E-3}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.20833333333333293}, {8.2887249228394497E-3}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.24999999999999958}, {1.562499999999991E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.29166666666666624}, {2.6879581404320851E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.33333333333333293}, {4.3209876543209694E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.37499999999999961}, {6.5917968749999764E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.4166666666666663}, {9.6450617283950296E-2}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.45833333333333298}, {0.13639925733024652}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.49999999999999967}, {0.18749999999999956}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.5416666666666663}, {0.25163363233024633}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.58333333333333293}, {0.33082561728394977}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.62499999999999956}, {0.42724609374999883}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.66666666666666619}, {0.5432098765432084}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.70833333333333282}, {0.68117645640431912}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.74999999999999944}, {0.84374999999999756}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.79166666666666607}, {1.0336793499228365}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.8333333333333327}, {1.2538580246913544}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.87499999999999933}, {1.507324218749996}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.91666666666666596}, {1.7972608024691306}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{0.95833333333333259}, {2.1269953221450555}, 
{1.0}, {3.0}\right]},\\
\quad{}{\left[{1.0}, {2.5}, {1.0}, {3.0}\right]}\\
\left.\left.\right]\right]
\end{array}
$$
\returnType{Type: List List Point DoubleFloat}
and put the third graphs points g3 onto the first graph y1 as graph 3
\begin{verbatim}
putGraph(y1,g3,3)
\end{verbatim}
\returnType{Type: Void}
Finally we show the combined result
\begin{verbatim}
vp:=makeViewport2D(y1)
\end{verbatim}
$$
\mbox{\rm TwoDimensionalViewport: } \mbox{\tt "2.2.10 explicit"}
$$
\returnType{Type: TwoDimensionalViewport}
which results in the image:\\
\includegraphics[scale=2.00]{ps/v0plot4.eps}\\
which shows all of the graphs in a single image.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{UnaryRecursiveAggregate}

A unary-recursive aggregate is a one where nodes may have either
0 or 1 children. This aggregate models, though not precisely, a linked
list possibly with a single cycle.

A node with one children models a non-empty list, with the value of the 
list designating the head, or first, of the list, and the child 
designating the tail, or rest, of the list. A node with no child then 
designates the empty list. Since these aggregates are recursive aggregates, 
they may be cyclic.

{\bf ELEMENT ACCESS}

You can get the first element by either

\spadcommand{first [1,4,2,-6,0,3,5,4,2,3]}
$$
1
$$
\returnType{Type: PositiveInteger}

or using the subscript form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1.first}
$$
1
$$
\returnType{Type: PositiveInteger}

You can get multiple elements with
\spadcommand{first([1,4,2,-6,0,3,5,4,2,3],3)}
$$
[1,4,2]
$$
\returnType{Type: List(Integer)}

Similary, you can get the all-but-first elements with
\spadcommand{rest [1,4,2,-6,0,3,5,4,2,3]}
$$
[4,2,- 6,0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}

or in subscript notation
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1.rest}
$$
[2,3]
$$
\returnType{Type: List(PositiveInteger)}
   
and all-but-n elements with
\spadcommand{rest([1,4,2,-6,0,3,5,4,2,3],3)}
$$
[- 6,0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}

The last element is available in function form as
\spadcommand{last [1,4,2,-6,0,3,5,4,2,3]}
$$
3
$$
\returnType{Type: PositiveInteger}
or subscript form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1.last}
$$
3
$$
\returnType{Type: PositiveInteger}
and the last-but-n elements with
\spadcommand{last([1,4,2,-6,0,3,5,4,2,3],3)}
$$
[4,2,3]
$$
\returnType{Type: List(Integer)}

You can get the last element as an aggregate with
\spadcommand{tail [1,4,2,-6,0,3,5,4,2,3]}
$$
[3]
$$
\returnType{Type: List(Integer)}

Specific elements are named with
\spadcommand{second [1,4,2,-6,0,3,5,4,2,3]}
$$
4
$$
\returnType{Type: PositiveInteger}
\spadcommand{third [1,4,2,-6,0,3,5,4,2,3]}
$$
2
$$
\returnType{Type: PositiveInteger}

{\bf AGGREGATION}

We can destructively set positions in the aggregate in function form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{setfirst!(t1,7)}
$$
7
$$
\returnType{Type: PositiveInteger}
\spadcommand{t1}
$$
[7,2,3]
$$
\returnType{Type: List(PositiveInteger)}
or in subscript form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1.first:=7}
$$
7
$$
\returnType{Type: PositiveInteger}
\spadcommand{t1}
$$
[7,2,3]
$$
\returnType{Type: List(PositiveInteger)}

We can destructively set the all-but-first to a new aggregate
in function form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{setrest!(t1,[4,5,6])}
$$
[4,5,6]
$$
\returnType{Type: PositiveInteger}
\spadcommand{t1}
$$
[1,4,5,6]
$$
\returnType{Type: List(PositiveInteger)}
or subscript form
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1.rest:=[4,5,6]}
$$
[4,5,6]
$$
\returnType{Type: PositiveInteger}
\spadcommand{t1}
$$
[1,4,5,6]
$$
\returnType{Type: List(PositiveInteger)}

We can destructively modify the last of the aggregate in function form
\spadcommand{t1:=[1,4,2,-6,0,3,5,4,2,3]}
$$
[1,4,2,- 6,0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}
\spadcommand{setlast!(t1,7)}
$$
7
$$
\returnType{Type: PositiveInteger}
\spadcommand{t1}
$$
[1,4,2,- 6,0,3,5,4,2,7]
$$
\returnType{Type: List(Integer)}

{\bf CONCATENATION}

The concat function has two forms. It accepts two aggregates
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2:=concat(t1,t1)}
$$
[1,2,3,1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2}
$$
[1,2,3,1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
or it accepts an aggregate element and an aggregate
\spadcommand{t2:=concat(4,t1)}
$$
[4,1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2}
$$
[4,1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
In both cases the operation is non-destructive to t1

There is a destructive form of concatenation of aggregates
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2:=[4,5,6]}
$$
[4,5,6]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{concat!(t1,t2)}
$$
[1,2,3,4,5,6]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1}
$$
[1,2,3,4,5,6]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2}
$$
[4,5,6]
$$
\returnType{Type: List(PositiveInteger)}
and a destructive form for elements
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{concat!(t1,7)}
$$
[1,2,3,7]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t1}
$$
[1,2,3,7]
$$
\returnType{Type: List(PositiveInteger)}

{\bf SPLITTING}

We can destructively split an aggregate into two aggregates with
\spadcommand{t1:=[1,4,2,-6,0,3,5,4,2,3]}
$$
[1,4,2,- 6,0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}
\spadcommand{t2:=split!(t1,4)}
$$
[0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}
\spadcommand{t1}
$$
[1,4,2,- 6]
$$
\returnType{Type: List(Integer)}
\spadcommand{t2}
$$
[0,3,5,4,2,3]
$$
\returnType{Type: List(Integer)}

{\bf CYCLES}

Destructive operations can create cycles in lists.
Here t1 contains t1 and we can get the start of the cycle:
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2:=concat!(t1,t1)}
$$
[\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{cycleEntry t2}
$$
[\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}
and its length
\spadcommand{cycleLength t2}
$$
3
$$
\returnType{Type: PositiveInteger}
and its tail
\spadcommand{cycleTail t2}
$$
[\overline{3,1,2}]
$$
\returnType{Type: List(PositiveInteger)}

We can also destructively break apart at the cycle start with
\spadcommand{t1:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t2:=concat!(t1,t1)}
$$
[\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t3:=[1,2,3]}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t4:=concat!(t3,t2)}
$$
[1,2,3,\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t5:=cycleSplit!(t4)}
$$
[\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t4}
$$
[1,2,3]
$$
\returnType{Type: List(PositiveInteger)}
\spadcommand{t5}
$$
[\overline{1,2,3}]
$$
\returnType{Type: List(PositiveInteger)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{UnivariatePolynomial}

The domain constructor {\tt UnivariatePolynomial} (abbreviated {\tt
UP}) creates domains of univariate polynomials in a specified
variable.  For example, the domain {\tt UP(a1,POLY FRAC INT)} provides
polynomials in the single variable {\tt a1} whose coefficients are
general polynomials with rational number coefficients.

\boxer{4.6in}{
\noindent {\bf Restriction:}
\begin{quotation}\noindent
Axiom does not allow you to create types where\\
{\tt UnivariatePolynomial} is contained in the coefficient type of\\
{\tt Polynomial}. Therefore,
{\tt UP(x,POLY INT)} is legal but {\tt POLY UP(x,INT)} is not.
\end{quotation}
.
}

%Original Page 473

{\tt UP(x,INT)} is the domain of polynomials in the single
variable {\tt x} with integer coefficients.

\spadcommand{(p,q) : UP(x,INT) }
\returnType{Type: Void}

\spadcommand{p := (3*x-1)**2 * (2*x + 8) }
$$
{{18} \  {x \sp 3}}+{{60} \  {x \sp 2}} -{{46} \  x}+8 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

\spadcommand{q := (1 - 6*x + 9*x**2)**2 }
$$
{{81} \  {x \sp 4}} -{{108} \  {x \sp 3}}+{{54} \  {x \sp 2}} -{{12} \  x}+1 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The usual arithmetic operations are available for univariate polynomials.

\spadcommand{p**2 + p*q  }
$$
{{1458} \  {x \sp 7}}+{{3240} \  {x \sp 6}} -{{7074} \  {x \sp 5}}+{{10584} \  
{x \sp 4}} -{{9282} \  {x \sp 3}}+{{4120} \  {x \sp 2}} -{{878} \  x}+{72} 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The operation \spadfunFrom{leadingCoefficient}{UnivariatePolynomial}
extracts the coefficient of the term of highest degree.

\spadcommand{leadingCoefficient p }
$$
18 
$$
\returnType{Type: PositiveInteger}

The operation \spadfunFrom{degree}{UnivariatePolynomial} returns
the degree of the polynomial.
Since the polynomial has only one variable, the variable is not supplied
to operations like \spadfunFrom{degree}{UnivariatePolynomial}.

\spadcommand{degree p }
$$
3 
$$
\returnType{Type: PositiveInteger}

The reductum of the polynomial, the polynomial obtained by subtracting
the term of highest order, is returned by
\spadfunFrom{reductum}{UnivariatePolynomial}.

\spadcommand{reductum p }
$$
{{60} \  {x \sp 2}} -{{46} \  x}+8 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The operation \spadfunFrom{gcd}{UnivariatePolynomial} computes the
greatest common divisor of two polynomials.

\spadcommand{gcd(p,q) }
$$
{9 \  {x \sp 2}} -{6 \  x}+1 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The operation \spadfunFrom{lcm}{UnivariatePolynomial} computes the
least common multiple.

\spadcommand{lcm(p,q) }
$$
{{162} \  {x \sp 5}}+{{432} \  {x \sp 4}} -{{756} \  {x \sp 3}}+{{408} \  {x 
\sp 2}} -{{94} \  x}+8 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

The operation \spadfunFrom{resultant}{UnivariatePolynomial} computes
the resultant of two univariate polynomials.  In the case of {\tt p}
and {\tt q}, the resultant is {\tt 0} because they share a common
root.

\spadcommand{resultant(p,q) }
$$
0 
$$
\returnType{Type: NonNegativeInteger}

%Original Page 474

To compute the derivative of a univariate polynomial with respect to its
variable, use \spadfunFrom{D}{UnivariatePolynomial}.

\spadcommand{D p }
$$
{{54} \  {x \sp 2}}+{{120} \  x} -{46} 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

Univariate polynomials can also be used as if they were functions.  To
evaluate a univariate polynomial at some point, apply the polynomial
to the point.

\spadcommand{p(2) }
$$
300 
$$
\returnType{Type: PositiveInteger}

The same syntax is used for composing two univariate polynomials, i.e.
substituting one polynomial for the variable in another.  This
substitutes {\tt q} for the variable in {\tt p}.

\spadcommand{p(q) }
$$
\begin{array}{@{}l}
\displaystyle
{{9565938} \  {x \sp {12}}} -
{{38263752} \  {x \sp {11}}}+
{{70150212} \  {x \sp {10}}} -
{{77944680} \  {x \sp 9}}+
{{58852170} \  {x \sp 8}} -
\\
\\
\displaystyle
{{32227632} \  {x \sp 7}}+
{{13349448} \  {x \sp 6}} -
{{4280688} \  {x \sp 5}}+
{{1058184} \  {x \sp 4}} -
\\
\\
\displaystyle
{{192672} \  {x \sp 3}}+
{{23328} \  {x \sp 2}} -
{{1536} \  x}+
{40} 
\end{array}
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

This substitutes {\tt p} for the variable in {\tt q}.

\spadcommand{q(p) }
$$
\begin{array}{@{}l}
\displaystyle
{{8503056} \  {x \sp {12}}}+
{{113374080} \  {x \sp {11}}}+
{{479950272} \  {x \sp {10}}}+
{{404997408} \  {x \sp 9}} -
\\
\\
\displaystyle
{{1369516896} \  {x \sp 8}} -
{{626146848} \  {x \sp 7}}+
{{2939858712} \  {x \sp 6}} -
{{2780728704} \  {x \sp 5}}+
\\
\\
\displaystyle
{{1364312160} \  {x \sp 4}} -
{{396838872} \  {x \sp 3}}+
{{69205896} \  {x \sp 2}} -
{{6716184} \  x}+
{279841} 
\end{array}
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

To obtain a list of coefficients of the polynomial, use
\spadfunFrom{coefficients}{UnivariatePolynomial}.

\spadcommand{l := coefficients p }
$$
\left[
{18}, {60}, -{46}, 8 
\right]
$$
\returnType{Type: List Integer}

From this you can use \spadfunFrom{gcd}{UnivariatePolynomial} and
\spadfunFrom{reduce}{List} to compute the content of the polynomial.

\spadcommand{reduce(gcd,l) }
$$
2 
$$
\returnType{Type: PositiveInteger}

Alternatively (and more easily), you can just call
\spadfunFrom{content}{UnivariatePolynomial}.

\spadcommand{content p }
$$
2 
$$
\returnType{Type: PositiveInteger}

Note that the operation
\spadfunFrom{coefficients}{UnivariatePolynomial} omits the zero
coefficients from the list.  Sometimes it is useful to convert a
univariate polynomial to a vector whose $i$-th position contains the
degree {\tt i-1} coefficient of the polynomial.

%Original Page 475

\spadcommand{ux := (x**4+2*x+3)::UP(x,INT) }
$$
{x \sp 4}+{2 \  x}+3 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

To get a complete vector of coefficients, use the operation
\spadfunFrom{vectorise}{UnivariatePolynomial}, which takes a
univariate polynomial and an integer denoting the length of the
desired vector.

\spadcommand{vectorise(ux,5) }
$$
\left[
3, 2, 0, 0, 1 
\right]
$$
\returnType{Type: Vector Integer}

It is common to want to do something to every term of a polynomial,
creating a new polynomial in the process.

This is a function for iterating across the terms of a polynomial,
squaring each term.

\spadcommand{squareTerms(p) ==   reduce(+,[t**2 for t in monomials p])}
\returnType{Type: Void}

Recall what {\tt p} looked like.

\spadcommand{p }
$$
{{18} \  {x \sp 3}}+{{60} \  {x \sp 2}} -{{46} \  x}+8 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

We can demonstrate {\tt squareTerms} on {\tt p}.

\spadcommand{squareTerms p }
\begin{verbatim}
Compiling function squareTerms with type 
  UnivariatePolynomial(x,Integer) -> 
    UnivariatePolynomial(x,Integer) 
\end{verbatim}
$$
{{324} \  {x \sp 6}}+{{3600} \  {x \sp 4}}+{{2116} \  {x \sp 2}}+{64} 
$$
\returnType{Type: UnivariatePolynomial(x,Integer)}

When the coefficients of the univariate polynomial belong to a
field,\footnote{For example, when the coefficients are rational
numbers, as opposed to integers.  The important property of a field is
that non-zero elements can be divided and produce another element. The
quotient of the integers 2 and 3 is not another integer.}  it is
possible to compute quotients and remainders.

\spadcommand{(r,s) : UP(a1,FRAC INT) }
\returnType{Type: Void}

\spadcommand{r := a1**2 - 2/3  }
$$
{a1 \sp 2} -{\frac{2}{3}} 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

%Original Page 476

\spadcommand{s := a1 + 4}
$$
a1+4 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

When the coefficients are rational numbers or rational expressions, the
operation \spadfunFrom{quo}{UnivariatePolynomial} computes the quotient
of two polynomials.

\spadcommand{r quo s }
$$
a1 -4 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

The operation \spadfunFrom{rem}{UnivariatePolynomial} computes the
remainder.

\spadcommand{r rem s }
$$
\frac{46}{3} 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

The operation \spadfunFrom{divide}{UnivariatePolynomial} can be used to
return a record of both components.

\spadcommand{d := divide(r, s) }
$$
\left[
{quotient={a1 -4}}, {remainder={\frac{46}{3}}} 
\right]
$$
\returnType{Type: 
Record(
quotient: UnivariatePolynomial(a1,Fraction Integer),
remainder: UnivariatePolynomial(a1,Fraction Integer))}

Now we check the arithmetic!

\spadcommand{r - (d.quotient * s + d.remainder) }
$$
0 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

It is also possible to integrate univariate polynomials when the
coefficients belong to a field.

\spadcommand{integrate r }
$$
{{\frac{1}{3}} \  {a1 \sp 3}} -{{\frac{2}{3}} \  a1} 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

\spadcommand{integrate s }
$$
{{\frac{1}{2}} \  {a1 \sp 2}}+{4 \  a1} 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Integer)}

One application of univariate polynomials is to see expressions in terms
of a specific variable.

We start with a polynomial in {\tt a1} whose coefficients
are quotients of polynomials in {\tt b1} and {\tt b2}.

\spadcommand{t : UP(a1,FRAC POLY INT) }
\returnType{Type: Void}

Since in this case we are not talking about using multivariate
polynomials in only two variables, we use {\tt Polynomial}.
We also use {\tt Fraction} because we want fractions.

\spadcommand{t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3) }
$$
{a1 \sp 2} -{{\frac{1}{b2}} \  a1}+{\frac{{b1 \sp 2} -b1}{b2+3}} 
$$
\returnType{Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)}

%Original Page 477

We push all the variables into a single quotient of polynomials.

\spadcommand{u : FRAC POLY INT := t }
$$
\frac{{{a1 \sp 2} \  {b2 \sp 2}}+{{\left( {b1 \sp 2} -b1+{3 \  {a1 \sp 2}} -a1 
\right)}\  b2} -{3 \  a1}}{{b2 \sp 2}+{3 \  b2}} 
$$
\returnType{Type: Fraction Polynomial Integer}

Alternatively, we can view this as a polynomial in the variable
This is a {\it mode-directed} conversion: you indicate
as much of the structure as you care about and let Axiom
decide on the full type and how to do the transformation.

\spadcommand{u :: UP(b1,?) }
$$
{{\frac{1}{b2+3}} \  {b1 \sp 2}} -{{\frac{1}{b2+3}} \  b1}
+{\frac{{{a1 \sp 2} \  b2} -a1}{b2}} 
$$
\returnType{Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)}

See \sectionref{ugProblemFactor} 
for a discussion of the factorization facilities
in Axiom for univariate polynomials.
For more information on related topics, see
\sectionref{ugIntroVariables},
\sectionref{ugTypesConvert},
\domainref{Polynomial}, \domainref{MultivariatePolynomial}, and
\domainref{DistributedMultivariatePolynomial}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{UnivariateSkewPolynomial}

Skew or Ore polynomial rings provide a unified framework to
compute with differential and difference equations.

In the following, let A be an integral domain, equipped with two
endomorphisms $\sigma$ and $\delta$ where:
\begin{itemize}
\item $\sigma$: A $->$ A is an injective ring endomorphism
\item $\delta$: A $->$ A, the pseudo-derivation with respect to $\sigma$, 
is an additive endomorphism with 
$$
     \delta(ab) = \sigma(a)\delta(b) + \delta(a)b
$$    
for all $a,b$ in A
\end{itemize}

The skew polynomial ring $[\Delta;\sigma,\delta]$ is the ring of 
polynomials in $\Delta$ with coefficients in A, with the usual addition,
while the product is given by
$$
 \Delta a = \sigma(a)\Delta + \delta(a)\quad{}{\rm\ for\ a\ in\ A}
$$
The two most important examples of skew polynomial rings are:
\begin{itemize}
\item $K(x)[D,1,\delta]$, where 1 is the identity on $K$ and $\delta$ is 
the usual derviative, is the ring of differential polynomials
\item $K_n [E,n,\mapsto n+1,0]$ is the ring of linear recurrence operators
with polynomial coefficients
\end{itemize}

The UnivariateSkewPolynomialCategory (OREPCAT) provides a unified
framework for polynomial rings in a non-central indeterminate over
some coefficient ring R. The commutation relations between the
indeterminate $x$ and the coefficient $t$ is given by 
$$ 
x r = \sigma(r) x + \delta(r)
$$
where $\sigma$ is a ring endomorphism of R
and $\delta$ is a $\sigma$-derivation of R
which is an additive map from R to R such that
$$  
\delta(rs) = \sigma(r) \delta(s) + \delta(r) s
$$
In case $\sigma$ is the identity map on R, a $\sigma$-derivation of R
is just called a derivation. Here are some examples

We start with a linear ordinary differential operator. First, we
define the coefficient ring to be expressions in one variable $x$
with fractional coefficients:

\spadcommand{F:=EXPR(FRAC(INT))}

Define Dx to be a derivative d/dx:

\spadcommand{Dx:F->F:=f+->D(f,['x])}

Define a skew polynomial ring over F with identity endomorphism as
$\sigma$ and derivation d/dx as $\delta$:

\spadcommand{D0:=OREUP('d,F,1,Dx)}

\spadcommand{u:D0:=(operator 'u)(x)}
$$
u 
\left(
{x} 
\right)
$$

\spadcommand{d:D0:='d}
$$
d 
$$

\spadcommand{a:D0:=u**3*d**3+u**2*d**2+u*d+1}
$$
{{{u 
\left(
{x} 
\right)}^3}
\  {d^3}}+{{{u 
\left(
{x} 
\right)}^2}
\  {d^2}}+{{u 
\left(
{x} 
\right)}
\  d}+1 
$$

\spadcommand{b:D0:=(u+1)*d**2+2*d}
$$
{{\left( {u 
\left(
{x} 
\right)}+1
\right)}
\  {d^2}}+{2 \  d} 
$$

\spadcommand{r:=rightDivide(a,b)}
$$
\left[
\begin{array}{c}
\displaystyle
{quotient={{{ \frac{{{u 
\left(
{x} 
\right)}^3}}{{{u
\left(
{x} 
\right)}+1}}}
\  d}+{ \frac{{-{{{u 
\left(
{x} 
\right)}^3}
\  {{u \sb {{\ }} \sp {,}} 
\left(
{x} 
\right)}}
-{{u 
\left(
{x} 
\right)}^3}+{{u
\left(
{x} 
\right)}^2}}}{{{{u
\left(
{x} 
\right)}^2}+{2
\  {u 
\left(
{x} 
\right)}}+1}}}}},\\
\displaystyle
\: {remainder={{{ \frac{{{2 \  {{u 
\left(
{x} 
\right)}^3}
\  {{u \sb {{\ }} \sp {,}} 
\left(
{x} 
\right)}}+{3
\  {{u 
\left(
{x} 
\right)}^3}}+{u
\left(
{x} 
\right)}}}{{{{u
\left(
{x} 
\right)}^2}+{2
\  {u 
\left(
{x} 
\right)}}+1}}}
\  d}+1}}
\end{array}
\right]
$$

\spadcommand{r.quotient}
$$
{{ \frac{{{u 
\left(
{x} 
\right)}^3}}{{{u
\left(
{x} 
\right)}+1}}}
\  d}+{ \frac{{-{{{u 
\left(
{x} 
\right)}^3}
\  {{u \sb {{\ }} \sp {,}} 
\left(
{x} 
\right)}}
-{{u 
\left(
{x} 
\right)}^3}+{{u
\left(
{x} 
\right)}^2}}}{{{{u
\left(
{x} 
\right)}^2}+{2
\  {u 
\left(
{x} 
\right)}}+1}}}
$$

\spadcommand{r.remainder}
$$
{{ \frac{{{2 \  {{u 
\left(
{x} 
\right)}^3}
\  {{u \sb {{\ }} \sp {,}} 
\left(
{x} 
\right)}}+{3
\  {{u 
\left(
{x} 
\right)}^3}}+{u
\left(
{x} 
\right)}}}{{{{u
\left(
{x} 
\right)}^2}+{2
\  {u 
\left(
{x} 
\right)}}+1}}}
\  d}+1 
$$

\subsection{A second example}
)clear all
 
As a second example, we consider the so-called Weyl algebra.

Define the coefficient ring to be an ordinary polynomial over integers
in one variable $t$
\begin{verbatim}
R:=UP('t,INT)
\end{verbatim}
Define a skew polynomial ring over R with identity map as $\sigma$
and derivation d/dt as $\delta$. The resulting algebra is then called
a Weyl algebra. This is a simple ring over a division ring that is
non-commutative, similar to the ring of matrices.

\spadcommand{R:=UP('t,INT)}

\spadcommand{W:=OREUP('x,R,1,D)}

\spadcommand{t:W:='t}
$$
t 
$$

\spadcommand{x:W:='x}
$$
x 
$$

Let 

\spadcommand{a:W:=(t-1)*x**4+(t**3+3*t+1)*x**2+2*t*x+t**3}
$$
{{\left( t -1 
\right)}
\  {x^4}}+{{\left( {t^3}+{3 \  t}+1 
\right)}
\  {x^2}}+{2 \  t \  x}+{t^3} 
$$

\spadcommand{b:W:=(6*t**4+2*t**2)*x**3+3*t**2*x**2}
$$
{{\left( {6 \  {t^4}}+{2 \  {t^2}} 
\right)}
\  {x^3}}+{3 \  {t^2} \  {x^2}} 
$$

Then

\spadcommand{a*b}
$$
\begin{array}{l}
{{\left( {6 \  {t^5}} -{6 \  {t^4}}+{2 \  {t^3}} -{2 \  {t^2}} 
\right)}
\  {x^7}}+{{\left( {{96} \  {t^4}} -{{93} \  {t^3}}+{{13} \  {t^2}} -{{16} \  
t} 
\right)}
\  {x^6}}+\\
{{\left( {6 \  {t^7}}+{{20} \  {t^5}}+{6 \  {t^4}}+{{438} \  {t^3}} 
-{{406} \  {t^2}} -{24} 
\right)}
\  {x^5}}+\\
{{\left( {{48} \  {t^6}}+{{15} \  {t^5}}+{{152} \  {t^4}}+{{61} \  
{t^3}}+{{603} \  {t^2}} -{{532} \  t} -{36} 
\right)}
\  {x^4}}+\\
{{\left( {6 \  {t^7}}+{{74} \  {t^5}}+{{60} \  {t^4}}+{{226} \  
{t^3}}+{{116} \  {t^2}}+{{168} \  t} -{140} 
\right)}
\  {x^3}}+\\
{{\left( {3 \  {t^5}}+{6 \  {t^3}}+{{12} \  {t^2}}+{{18} \  t}+6 
\right)}
\  {x^2}} 
\end{array}
$$

\spadcommand{a**3}
$$
\begin{array}{l}
{{\left( {t^3} -{3 \  {t^2}}+{3 \  t} -1 
\right)}
\  {x^{12}}}+{{\left( {3 \  {t^5}} -{6 \  {t^4}}+{{12} \  {t^3}} -{{15} \  
{t^2}}+{3 \  t}+3 
\right)}
\  {x^{10}}}+\\
{{\left( {6 \  {t^3}} -{{12} \  {t^2}}+{6 \  t} 
\right)}
\  {x^9}}+{{\left( {3 \  {t^7}} -{3 \  {t^6}}+{{21} \  {t^5}} -{{18} \  
{t^4}}+{{24} \  {t^3}} -{9 \  {t^2}} -{{15} \  t} -3 
\right)}
\  {x^8}}+\\
{{\left( {{12} \  {t^5}} -{{12} \  {t^4}}+{{36} \  {t^3}} -{{24} \  
{t^2}} -{{12} \  t} 
\right)}
\  {x^7}}+\\
{{\left( {t^9}+{{15} \  {t^7}} -{3 \  {t^6}}+{{45} \  {t^5}}+{6 \  
{t^4}}+{{36} \  {t^3}}+{{15} \  {t^2}}+{9 \  t}+1 
\right)}
\  {x^6}}+\\
{{\left( {6 \  {t^7}}+{{48} \  {t^5}}+{{54} \  {t^3}}+{{36} \  
{t^2}}+{6 \  t} 
\right)}
\  {x^5}}+\\
{{\left( {3 \  {t^9}}+{{21} \  {t^7}}+{3 \  {t^6}}+{{39} \  
{t^5}}+{{18} \  {t^4}}+{{39} \  {t^3}}+{{12} \  {t^2}} 
\right)}
\  {x^4}}+\\
{{\left( {{12} \  {t^7}}+{{36} \  {t^5}}+{{12} \  {t^4}}+{8 \  
{t^3}} 
\right)}
\  {x^3}}+\\
{{\left( {3 \  {t^9}}+{9 \  {t^7}}+{3 \  {t^6}}+{{12} \  {t^5}} 
\right)}
\  {x^2}}+{6 \  {t^7} \  x}+{t^9} 
\end{array}
$$


\subsection{A third example}
)clear all

As a third example, we construct a difference operator algebra over
the ring of EXPR(INT) by using an automorphism S defined by a
``shift'' operation S:EXPR(INT) $->$ EXPR(INT)
$$
   s(e)(n) = e(n+1)
$$
and an S-derivation defined by DF:EXPR(INT) $->$ EXPR(INT) as
$$
   DF(e)(n) = e(n+1)-e(n)
$$
Define S to be a ``shift'' operator, which acts on expressions with 
the discrete variable $n$:

\spadcommand{S:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])}

Define DF to be a ``difference'' operator, which acts on expressions
with a discrete variable $n$:

\spadcommand{DF:EXPR(INT)->EXPR(INT):=e+->eval(e,[n],[n+1])-e}

Then define the difference operator algebra D0:

\spadcommand{D0:=OREUP('D,EXPR(INT),morphism S,DF)}

\spadcommand{u:=(operator 'u)[n]}
$$
u 
\left(
{n} 
\right)
$$

\spadcommand{L:D0:='D+u}
$$
D+{u 
\left(
{n} 
\right)}
$$

\spadcommand{L**2}
$$
{D^2}+{2 \  {u 
\left(
{n} 
\right)}
\  D}+{{u 
\left(
{n} 
\right)}^2}
$$

\subsection{A fourth example}
)clear all

As a fourth example, we construct a skew polynomial ring by using an
inner derivation $\delta$ induced by a fixed $y$ in R:
$$
   \delta(r) = yr - ry
$$
First we should expose the constructor SquareMatrix so it is visible
in the interpreter:
\begin{verbatim}
)set expose add constructor SquareMatrix
\end{verbatim}

Define R to be the square matrix with integer entries:

\spadcommand{R:=SQMATRIX(2,INT)}
$$
SquareMatrix(2,Integer) 
$$

\spadcommand{y:R:=matrix [ [1,1],[0,1] ]}
$$
\left[
\begin{array}{cc}
1 & 1 \\ 
0 & 1 
\end{array}
\right]
$$

Define the inner derivative $\delta$:

\spadcommand{delta:R->R:=r+->y*r-r*y}

Define S to be a skew polynomial determined by $\sigma = 1$
and $\delta$ as an inner derivative:

\spadcommand{S:=OREUP('x,R,1,delta)}

\spadcommand{x:S:='x}
$$
x 
$$

\spadcommand{a:S:=matrix [ [2,3],[1,1] ]}
$$
\left[
\begin{array}{cc}
2 & 3 \\ 
1 & 1 
\end{array}
\right]
$$

\spadcommand{x**2*a}
$$
{{\left[ 
\begin{array}{cc}
2 & 3 \\ 
1 & 1 
\end{array}
\right]}
\  {x^2}}+{{\left[ 
\begin{array}{cc}
2 & -2 \\ 
0 & -2 
\end{array}
\right]}
\  x}+{\left[ 
\begin{array}{cc}
0 & -2 \\ 
0 & 0 
\end{array}
\right]}
$$

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{UniversalSegment}

The {\tt UniversalSegment} domain generalizes {\tt Segment}
by allowing segments without a ``hi'' end point.

\spadcommand{pints := 1..}
$$
1.. 
$$
\returnType{Type: UniversalSegment PositiveInteger}

\spadcommand{nevens := (0..) by -2 }
$$
{0..} \mbox{\rm\ by\ } -2 
$$
\returnType{Type: UniversalSegment NonNegativeInteger}

Values of type {\tt Segment} are automatically converted to
type {\tt UniversalSegment} when appropriate.

\spadcommand{useg: UniversalSegment(Integer) := 3..10 }
$$
3..{10} 
$$
\returnType{Type: UniversalSegment Integer}

The operation \spadfunFrom{hasHi}{UniversalSegment} is used to test
whether a segment has a {\tt hi} end point.

\spadcommand{hasHi pints  }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

\spadcommand{hasHi nevens }
$$
{\tt false} 
$$
\returnType{Type: Boolean}

%Original Page 478

\spadcommand{hasHi useg   }
$$
{\tt true} 
$$
\returnType{Type: Boolean}

All operations available on type {\tt Segment} apply to {\tt
UniversalSegment}, with the proviso that expansions produce streams
rather than lists.  This is to accommodate infinite expansions.

\spadcommand{expand pints }
$$
\left[
1, 2, 3, 4, 5, 6, 7, 8, 9, {10}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

\spadcommand{expand nevens }
$$
\left[
0, -2, -4, -6, -8, -{10}, -{12}, -{14}, -{16}, 
-{18}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

\spadcommand{expand [1, 3, 10..15, 100..]}
$$
\left[
1, 3, {10}, {11}, {12}, {13}, {14}, {15}, {100}, 
{101}, \ldots 
\right]
$$
\returnType{Type: Stream Integer}

For more information on related topics, see 
\domainref{Segment}, \domainref{SegmentBinding}, \domainref{List}, and
\domainref{Stream}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Vector}

The {\tt Vector} domain is used for storing data in a one-dimensional
indexed data structure.  A vector is a homogeneous data structure in
that all the components of the vector must belong to the same Axiom
domain.  Each vector has a fixed length specified by the user; vectors
are not extensible.  This domain is similar to the 
{\tt OneDimensionalArray} domain, except that when the components of a 
{\tt Vector} belong to a {\tt Ring}, arithmetic operations are provided.
For more examples of operations that are defined for both {\tt Vector}
and {\tt OneDimensionalArray}, see \domainref{OneDimensionalArray}.

As with the {\tt OneDimensionalArray} domain, a {\tt Vector} can
be created by calling the operation \spadfunFrom{new}{Vector}, its components
can be accessed by calling the operations \spadfunFrom{elt}{Vector} and
\spadfunFrom{qelt}{Vector}, and its components can be reset by calling the
operations \spadfunFrom{setelt}{Vector} and
\spadfunFrom{qsetelt}{Vector}.

This creates a vector of integers of length {\tt 5} all of whose
components are {\tt 12}.

\spadcommand{u : VECTOR INT := new(5,12) }
$$
\left[
{12}, {12}, {12}, {12}, {12} 
\right]
$$
\returnType{Type: Vector Integer}

%Original Page 479

This is how you create a vector from a list of its components.

\spadcommand{v : VECTOR INT := vector([1,2,3,4,5]) }
$$
\left[
1, 2, 3, 4, 5 
\right]
$$
\returnType{Type: Vector Integer}

Indexing for vectors begins at {\tt 1}.  The last element has index
equal to the length of the vector, which is computed by
\spadopFrom{\#}{Vector}.

\spadcommand{\#(v) }
$$
5 
$$
\returnType{Type: PositiveInteger}

This is the standard way to use \spadfunFrom{elt}{Vector} to extract
an element.  Functionally, it is the same as if you had typed {\tt
elt(v,2)}.

\spadcommand{v.2 }
$$
2 
$$
\returnType{Type: PositiveInteger}

This is the standard way to use \spadfunFrom{setelt}{Vector} to change
an element.  It is the same as if you had typed {\tt setelt(v,3,99)}.

\spadcommand{v.3 := 99 }
$$
99 
$$
\returnType{Type: PositiveInteger}

Now look at {\tt v} to see the change.  You can use
\spadfunFrom{qelt}{Vector} and \spadfunFrom{qsetelt}{Vector} (instead
of \spadfunFrom{elt}{Vector} and \spadfunFrom{setelt}{Vector},
respectively) but {\it only} when you know that the index is within
the valid range.

\spadcommand{v }
$$
\left[
1, 2, {99}, 4, 5 
\right]
$$
\returnType{Type: Vector Integer}

When the components belong to a {\tt Ring}, Axiom provides arithmetic
operations for {\tt Vector}.  These include left and right scalar
multiplication.

\spadcommand{5 * v }
$$
\left[
5, {10}, {495}, {20}, {25} 
\right]
$$
\returnType{Type: Vector Integer}

\spadcommand{v * 7 }
$$
\left[
7, {14}, {693}, {28}, {35} 
\right]
$$
\returnType{Type: Vector Integer}

\spadcommand{w : VECTOR INT := vector([2,3,4,5,6]) }
$$
\left[
2, 3, 4, 5, 6 
\right]
$$
\returnType{Type: Vector Integer}

Addition and subtraction are also available.

\spadcommand{v + w }
$$
\left[
3, 5, {103}, 9, {11} 
\right]
$$
\returnType{Type: Vector Integer}

Of course, when adding or subtracting, the two vectors must have the same
length or an error message is displayed.

\spadcommand{v - w }
$$
\left[
-1, -1, {95}, -1, -1 
\right]
$$
\returnType{Type: Vector Integer}

For more information about other aggregate domains, see the following:
\domainref{List}, \domainref{Matrix}, \domainref{OneDimensionalArray},
\domainref{Set}, \domainref{Table}, and \domainref{TwoDimensionalArray}.
Issue the system command {\tt )show Vector} to display the full list of
operations defined by {\tt Vector}.

%Original Page 480

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{Void}

When an expression is not in a value context, it is given type 
{\tt Void}.  For example, in the expression 
\begin{verbatim} 
  r := (a; b; if c then d else e; f) 
\end{verbatim} 
values are used only from the
subexpressions {\tt c} and {\tt f}: all others are thrown away.  The
subexpressions {\tt a}, {\tt b}, {\tt d} and {\tt e} are evaluated for
side-effects only and have type {\tt Void}.  There is a unique value
of type {\tt Void}.

You will most often see results of type {\tt Void} when you
declare a variable.

\spadcommand{a : Integer}
\returnType{Type: Void}

Usually no output is displayed for {\tt Void} results.
You can force the display of a rather ugly object by issuing
{\tt )set message void on}.

\spadcommand{)set message void on}

\spadcommand{b : Fraction Integer}
$$
\mbox{\tt "()"} 
$$
\returnType{Type: Void}

\spadcommand{)set message void off}

All values can be converted to type {\tt Void}.

\spadcommand{3::Void }
\returnType{Type: Void}

Once a value has been converted to {\tt Void}, it cannot be recovered.

\spadcommand{\% :: PositiveInteger }
\begin{verbatim}
Cannot convert from type Void to PositiveInteger for value "()"
\end{verbatim}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{WuWenTsunTriangularSet}

The {\tt WuWenTsunTriangularSet} domain constructor implements the
characteristic set method of Wu Wen Tsun.  This algorithm computes a
list of triangular sets from a list of polynomials such that the
algebraic variety defined by the given list of polynomials decomposes
into the union of the regular-zero sets of the computed triangular
sets.  The constructor takes four arguments.  The first one, {\bf R},
is the coefficient ring of the polynomials; it must belong to the
category {\tt IntegralDomain}.  The second one, {\bf E}, is the
exponent monoid of the polynomials; it must belong to the category
{\tt OrderedAbelianMonoidSup}.  The third one, {\bf V}, is the ordered
set of variables; it must belong to the category {\tt OrderedSet}.
The last one is the polynomial ring; it must belong to the category
{\tt RecursivePolynomialCategory(R,E,V)}.  The abbreviation for 
{\tt WuWenTsunTriangularSet} is {\tt WUTSET}.

Let us illustrate the facilities by an example.

Define the coefficient ring.

\spadcommand{R := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

Define the list of variables,

\spadcommand{ls : List Symbol := [x,y,z,t] }
$$
\left[
x, y, z, t 
\right]
$$
\returnType{Type: List Symbol}

and make it an ordered set;

\spadcommand{V := OVAR(ls)}
$$
\mbox{\rm OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

then define the exponent monoid.

\spadcommand{E := IndexedExponents V}
$$
\mbox{\rm IndexedExponents OrderedVariableList [x,y,z,t]} 
$$
\returnType{Type: Domain}

Define the polynomial ring.

\spadcommand{P := NSMP(R, V)}
$$
\mbox{\rm NewSparseMultivariatePolynomial(Integer,OrderedVariableList 
[x,y,z,t])} 
$$
\returnType{Type: Domain}

Let the variables be polynomial.

\spadcommand{x: P := 'x}
$$
x 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{y: P := 'y}
$$
y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{z: P := 'z}
$$
z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{t: P := 't}
$$
t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

Now call the {\tt WuWenTsunTriangularSet} domain constructor.

\spadcommand{T := WUTSET(R,E,V,P)}
$$
\begin{array}{@{}l}
{\rm WuWenTsunTriangularSet(Integer,}
\\
\displaystyle
{\rm \ \ IndexedExponents OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t],}
\\
\displaystyle
{\rm \ \ NewSparseMultivariatePolynomial(Integer,}
\\
\displaystyle
{\rm \ \ OrderedVariableList [x,y,z,t]))} 
\end{array}
$$
\returnType{Type: Domain}

Define a polynomial system.

\spadcommand{p1 := x ** 31 - x ** 6 - x - y}
$$
{x \sp {31}} -{x \sp 6} -x -y 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p2 := x ** 8  - z}
$$
{x \sp 8} -z 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{p3 := x ** 10 - t}
$$
{x \sp {10}} -t 
$$
\returnType{Type: 
NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

\spadcommand{lp := [p1, p2, p3]}
$$
\left[
{{x \sp {31}} -{x \sp 6} -x -y}, {{x \sp 8} -z}, {{x \sp {10}} -t} 
\right]
$$
\returnType{Type: 
List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [x,y,z,t])}

Compute a characteristic set of the system.

\spadcommand{characteristicSet(lp)\$T}
$$
\begin{array}{@{}l}
\left\{
{{z \sp 5} -{t \sp 4}}, 
\right.
\\
\\
\displaystyle
{{{t \sp 4} \  {z \sp 2} \  {y \sp 2}}+
{2 \  {t \sp 3} \  {z \sp 4} \  y}+
{{\left( -{t \sp 7}+{2 \  {t \sp 4}} -t \right)}\  {z \sp 6}}+
{{t \sp 6} \  z}}, 
\\
\\
\displaystyle
\left.
\left( 
{t \sp 3} -1 
\right)\  {z \sp 3} \  x -
{{z \sp 3} \  y} -
{t \sp 3} 
\right\}
\end{array}
$$
\returnType{Type: 
Union(
WuWenTsunTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t])),...)}

Solve the system.

\spadcommand{zeroSetSplit(lp)\$T}
$$
\begin{array}{@{}l}
\left[
{\left\{ t, z, y, x \right\}},
{\left\{ 
{{t \sp 3} -1}, 
{{z \sp 5} -{t \sp 4}}, 
{{{z \sp 3} \  y}+{t \sp 3}}, 
{{z \  {x \sp 2}} -t} 
\right\}},
\right.
\\
\\
\displaystyle
\left\{ 
{{z \sp 5} -{t \sp 4}}, 
{{t \sp 4} \  {z \sp 2} \  {y \sp 2}}+
{2 \  {t \sp 3} \  {z \sp 4} \  y}+
\left( 
-{t \sp 7}+{2 \  {t \sp 4}} -t 
\right)\  {z \sp 6}+
{{t \sp 6} \  z}, 
\right.
\\
\\
\displaystyle
\left.
\left.
\left( 
{t \sp 3} -1 \right)\  {z \sp 3} \  x -
{{z \sp 3} \  y} -{t \sp 3} 
\right\}
\right]
\end{array}
$$
\returnType{Type: 
List WuWenTsunTriangularSet(Integer,
IndexedExponents OrderedVariableList [x,y,z,t],
OrderedVariableList [x,y,z,t],
NewSparseMultivariatePolynomial(Integer,
OrderedVariableList [x,y,z,t]))}

The {\tt RegularTriangularSet} and {\tt SquareFreeRegularTriangularSet}\\ 
domain constructors, the {\tt LazardSetSolvingPackage} package\\ constructors as well as, {\tt SquareFreeRegularTriangularSet} and\\
{\tt ZeroDimensionalSolvePackage} package constructors also provide\\
operations to compute triangular decompositions of algebraic varieties.  

These five constructor use a special kind of
characteristic sets, called regular triangular sets.  These special
characteristic sets have better properties than the general ones.
Regular triangular sets and their related concepts are presented in
the paper ``On the Theories of Triangular sets'' By P. Aubry, D. Lazard
and M. Moreno Maza (to appear in the Journal of Symbolic Computation).
The decomposition algorithm (due to the third author) available in the
four above constructors provide generally better timings than the
characteristic set method.  In fact, the {\tt WUTSET} constructor
remains interesting for the purpose of manipulating characteristic
sets whereas the other constructors are more convenient for solving
polynomial systems.

Note that the way of understanding triangular decompositions 
is detailed in the example of the {\tt RegularTriangularSet}
constructor.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{XPBWPolynomial}

Initialisations

\spadcommand{a:Symbol := 'a }
$$
a 
$$
\returnType{Type: Symbol}

\spadcommand{b:Symbol := 'b }
$$
b 
$$
\returnType{Type: Symbol}

\spadcommand{RN := Fraction(Integer) }
$$
\mbox{\rm Fraction Integer} 
$$
\returnType{Type: Domain}

\spadcommand{word   := OrderedFreeMonoid Symbol }
$$
\mbox{\rm OrderedFreeMonoid Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{lword := LyndonWord(Symbol) }
$$
\mbox{\rm LyndonWord Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{base  := PoincareBirkhoffWittLyndonBasis Symbol }
$$
\mbox{\rm PoincareBirkhoffWittLyndonBasis Symbol} 
$$
\returnType{Type: Domain}

\spadcommand{dpoly := XDistributedPolynomial(Symbol, RN)  }
$$
\mbox{\rm XDistributedPolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{rpoly := XRecursivePolynomial(Symbol, RN)  }
$$
\mbox{\rm XRecursivePolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{lpoly := LiePolynomial(Symbol, RN)  }
$$
\mbox{\rm LiePolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{poly  := XPBWPolynomial(Symbol, RN)  }
$$
\mbox{\rm XPBWPolynomial(Symbol,Fraction Integer)} 
$$
\returnType{Type: Domain}

\spadcommand{liste : List lword := LyndonWordsList([a,b], 6)  }
$$
\begin{array}{@{}l}
\left[
{\left[ a \right]},
{\left[ b \right]},
{\left[ a \  b \right]},
{\left[ {a \sp 2} \  b \right]},
{\left[ a \  {b \sp 2} \right]},
{\left[ {a \sp 3} \  b \right]},
{\left[ {a \sp 2} \  {b \sp 2} \right]},
{\left[ a \  {b \sp 3} \right]},
{\left[ {a \sp 4} \  b \right]},
\right.
\\
\\
\displaystyle
{\left[ {a \sp 3} \  {b \sp 2} \right]},
{\left[ {a \sp 2} \  b \  a \  b \right]},
{\left[ {a \sp 2} \  {b \sp 3} \right]},
{\left[ a \  b \  a \  {b \sp 2} \right]},
{\left[ a \  {b \sp 4} \right]},
{\left[ {a \sp 5} \  b \right]},
{\left[ {a \sp 4} \  {b \sp 2} \right]},
\\
\\
\displaystyle
\left.
{\left[ {a \sp 3} \  b \  a \  b \right]},
{\left[ {a \sp 3} \  {b \sp 3} \right]},
{\left[ {a \sp 2} \  b \  a \  {b \sp 2} \right]},
{\left[ {a \sp 2} \  {b \sp 2} \  a \  b \right]},
{\left[ {a \sp 2} \  {b \sp 4} \right]},
{\left[ a \  b \  a \  {b \sp 3} \right]},
{\left[ a \  {b \sp 5} \right]}
\right]
\end{array}
$$
\returnType{Type: List LyndonWord Symbol}

Let's make some polynomials

\spadcommand{0\$poly }
$$
0 
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{1\$poly }
$$
1 
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{p : poly := a  }
$$
\left[
a 
\right]
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{q : poly := b  }
$$
\left[
b 
\right]
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{pq: poly := p*q  }
$$
{\left[ a \  b 
\right]}+{{\left[
b 
\right]}
\  {\left[ a 
\right]}}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

Coerce to distributed polynomial

\spadcommand{pq :: dpoly }
$$
a \  b 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Fraction Integer)}

Check some polynomial operations

\spadcommand{mirror pq }
$$
{\left[ b 
\right]}
\  {\left[ a 
\right]}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{listOfTerms pq }
$$
\left[
{\left[ {k={{\left[ b 
\right]}
\  {\left[ a 
\right]}}},
{c=1} 
\right]},
{\left[ {k={\left[ a \  b 
\right]}},
{c=1} 
\right]}
\right]
$$
\returnType{Type: 
List Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c: Fraction Integer)}

\spadcommand{reductum pq }
$$
\left[
a \  b 
\right]
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{leadingMonomial pq }
$$
{\left[ b 
\right]}
\  {\left[ a 
\right]}
$$
\returnType{Type: PoincareBirkhoffWittLyndonBasis Symbol}

\spadcommand{coefficients pq }
$$
\left[
1, 1 
\right]
$$
\returnType{Type: List Fraction Integer}

\spadcommand{leadingTerm pq }
$$
\left[
{k={{\left[ b 
\right]}
\  {\left[ a 
\right]}}},
{c=1} 
\right]
$$
\returnType{Type: 
Record(k: PoincareBirkhoffWittLyndonBasis Symbol,c: Fraction Integer)}

\spadcommand{degree pq }
$$
2 
$$
\returnType{Type: PositiveInteger}

\spadcommand{pq4:=exp(pq,4)  }
$$
\begin{array}{@{}l}
1+
{\left[ a \  b \right]}+
{{\left[b \right]}\  
{\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ a \  b \right]}\  
{\left[ a \  b \right]}}+
{{\frac{1}{2}} \  {\left[ a \  {b \sp 2} \right]}\  
{\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ b \right]}\  
{\left[ {a \sp 2} \  b \right]}}+
\\
\\
\displaystyle
{{\frac{3}{2}} \  {\left[ b \right]}\  
{\left[ a \  b \right]}\  
{\left[ a \right]}}+
{{\frac{1}{2}} \  {\left[ b \right]}\  
{\left[ b \right]}\  
{\left[ a \right]}\  
{\left[ a \right]}}
\end{array}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{log(pq4,4) - pq  }
$$
0 
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

Calculations with verification in {\tt XDistributedPolynomial}.

\spadcommand{lp1 :lpoly := LiePoly liste.10  }
$$
\left[
{a \sp 3} \  {b \sp 2} 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{lp2 :lpoly := LiePoly liste.11  }
$$
\left[
{a \sp 2} \  b \  a \  b 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{lp  :lpoly := [lp1, lp2]  }
$$
\left[
{a \sp 3} \  {b \sp 2} \  {a \sp 2} \  b \  a \  b 
\right]
$$
\returnType{Type: LiePolynomial(Symbol,Fraction Integer)}

\spadcommand{lpd1: dpoly := lp1  }
$$
{{a \sp 3} \  {b \sp 2}} -{2 \  {a \sp 2} \  b \  a \  b} -{{a \sp 2} \  {b 
\sp 2} \  a}+{4 \  a \  b \  a \  b \  a} -{a \  {b \sp 2} \  {a \sp 2}} -{2 
\  b \  a \  b \  {a \sp 2}}+{{b \sp 2} \  {a \sp 3}} 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Fraction Integer)}

\spadcommand{lpd2: dpoly := lp2  }
$$
\begin{array}{@{}l}
{{a \sp 2} \  b \  a \  b} -
{{a \sp 2} \  {b \sp 2} \  a} -
{3 \  a \  b \  {a \sp 2} \  b}+
{4 \  a \  b \  a \  b \  a} -
\\
\\
\displaystyle
{a \  {b \sp 2} \  {a \sp 2}}+
{2 \  b \  {a \sp 3} \  b} -
{3 \  b \  {a \sp 2} \  b \  a}+
{b \  a \  b \  {a \sp 2}} 
\end{array}
$$
\returnType{Type: XDistributedPolynomial(Symbol,Fraction Integer)}

\spadcommand{lpd : dpoly := lpd1 * lpd2 - lpd2 * lpd1  }
$$
\begin{array}{@{}l}
{{a \sp 3} \  {b \sp 2} \  {a \sp 2} \  b \  a \  b} -
{{a \sp 3} \  {b \sp 2} \  {a \sp 2} \  {b \sp 2} \  a} -
{3 \  {a \sp 3} \  {b \sp 2} \  a \  b \  {a \sp 2} \  b}+
{4 \  {a \sp 3} \  {b \sp 2} \  a \  b \  a \  b \  a} -
\\
\displaystyle
{{a \sp 3} \  {b \sp 2} \  a \  {b \sp 2} \  {a \sp 2}}+
{2 \  {a \sp 3} \  {b \sp 3} \  {a \sp 3} \  b} -
{3 \  {a \sp 3} \  {b \sp 3} \  {a \sp 2} \  b \  a}+
{{a \sp 3} \  {b \sp 3} \  a \  b \  {a \sp 2}} -
\\
\displaystyle
{{a \sp 2} \  b \  a \  b \  {a \sp 3} \  {b \sp 2}}+
{3 \  {a \sp 2} \  b \  a \  b \  {a \sp 2} \  {b \sp 2} \  a}+
{6 \  {a \sp 2} \  b \  a \  b \  a \  b \  {a \sp 2} \  b} -
{{12} \  {a \sp 2} \  b \  a \  b \  a \  b \  a \  b \  a}+
\\
\displaystyle
{3 \  {a \sp 2} \  b \  a \  b \  a \  {b \sp 2} \  {a \sp 2}} -
{4 \  {a \sp 2} \  b \  a \  {b \sp 2} \  {a \sp 3} \  b}+
{6 \  {a \sp 2} \  b \  a \  {b \sp 2} \  {a \sp 2} \  b \  a} -
{{a \sp 2} \  b \  a \  {b \sp 3} \  {a \sp 3}}+
\\
\displaystyle
{{a \sp 2} \  {b \sp 2} \  {a \sp 4} \  {b \sp 2}} -
{3 \  {a \sp 2} \  {b \sp 2} \  {a \sp 3} \  b \  a \  b}+
{3 \  {a \sp 2} \  {b \sp 2} \  {a \sp 2} \  b \  {a \sp 2} \  b} -
{2 \  {a \sp 2} \  {b \sp 2} \  a \  b \  {a \sp 3} \  b}+
\\
\displaystyle
{3 \  {a \sp 2} \  {b \sp 2} \  a \  b \  {a \sp 2} \  b \  a} -
{3 \  {a \sp 2} \  {b \sp 2} \  a \  b \  a \  b \  {a \sp 2}}+
{{a \sp 2} \  {b \sp 2} \  a \  {b \sp 2} \  {a \sp 3}}+
{3 \  a \  b \  {a \sp 2} \  b \  {a \sp 3} \  {b \sp 2}} -
\\
\displaystyle
{6 \  a \  b \  {a \sp 2} \  b \  {a \sp 2} \  b \  a \  b} -
{3 \  a \  b \  {a \sp 2} \  b \  {a \sp 2} \  {b \sp 2} \  a}+
{{12} \  a \  b \  {a \sp 2} \  b \  a \  b \  a \  b \  a} -
{3 \  a \  b \  {a \sp 2} \  b \  a \  {b \sp 2} \  {a \sp 2}} -
\\
\displaystyle
{6 \  a \  b \  {a \sp 2} \  {b \sp 2} \  a \  b \  {a \sp 2}}+
{3 \  a \  b \  {a \sp 2} \  {b \sp 3} \  {a \sp 3}} -
{4 \  a \  b \  a \  b \  {a \sp 4} \  {b \sp 2}}+
{{12} \  a \  b \  a \  b \  {a \sp 3} \  b \  a \  b} -
\\
\displaystyle
{{12} \  a \  b \  a \  b \  {a \sp 2} \  b \  {a \sp 2} \  b}+
{8 \  a \  b \  a \  b \  a \  b \  {a \sp 3} \  b} -
{{12} \  a \  b \  a \  b \  a \  b \  {a \sp 2} \  b \  a}+
\\
\displaystyle
{{12} \  a \  b \  a \  b \  a \  b \  a \  b \  {a \sp 2}} -
{4 \  a \  b \  a \  b \  a \  {b \sp 2} \  {a \sp 3}}+
{a \  {b \sp 2} \  {a \sp 5} \  {b \sp 2}} -
{3 \  a \  {b \sp 2} \  {a \sp 4} \  b \  a \  b}+
\\
\displaystyle
{3 \  a \  {b \sp 2} \  {a \sp 3} \  b \  {a \sp 2} \  b} -
{2 \  a \  {b \sp 2} \  {a \sp 2} \  b \  {a \sp 3} \  b}+
{3 \  a \  {b \sp 2} \  {a \sp 2} \  b \  {a \sp 2} \  b \  a} -
{3 \  a \  {b \sp 2} \  {a \sp 2} \  b \  a \  b \  {a \sp 2}}+
\\
\displaystyle
{a \  {b \sp 2} \  {a \sp 2} \  {b \sp 2} \  {a \sp 3}} -
{2 \  b \  {a \sp 3} \  b \  {a \sp 3} \  {b \sp 2}}+
{4 \  b \  {a \sp 3} \  b \  {a \sp 2} \  b \  a \  b}+
{2 \  b \  {a \sp 3} \  b \  {a \sp 2} \  {b \sp 2} \  a} -
\\
\displaystyle
{8 \  b \  {a \sp 3} \  b \  a \  b \  a \  b \  a}+
{2 \  b \  {a \sp 3} \  b \  a \  {b \sp 2} \  {a \sp 2}}+
{4 \  b \  {a \sp 3} \  {b \sp 2} \  a \  b \  {a \sp 2}} -
{2 \  b \  {a \sp 3} \  {b \sp 3} \  {a \sp 3}}+
\\
\displaystyle
{3 \  b \  {a \sp 2} \  b \  {a \sp 4} \  {b \sp 2}} -
{6 \  b \  {a \sp 2} \  b \  {a \sp 3} \  b \  a \  b} -
{3 \  b \  {a \sp 2} \  b \  {a \sp 3} \  {b \sp 2} \  a}+
{{12} \  b \  {a \sp 2} \  b \  {a \sp 2} \  b \  a \  b \  a} -
\\
\displaystyle
{3 \  b \  {a \sp 2} \  b \  {a \sp 2} \  {b \sp 2} \  {a \sp 2}} -
{6 \  b \  {a \sp 2} \  b \  a \  b \  a \  b \  {a \sp 2}}+
{3 \  b \  {a \sp 2} \  b \  a \  {b \sp 2} \  {a \sp 3}} -
{b \  a \  b \  {a \sp 5} \  {b \sp 2}}+
\\
\displaystyle
{3 \  b \  a \  b \  {a \sp 4} \  {b \sp 2} \  a}+
{6 \  b \  a \  b \  {a \sp 3} \  b \  {a \sp 2} \  b} -
{{12} \  b \  a \  b \  {a \sp 3} \  b \  a \  b \  a}+
{3 \  b \  a \  b \  {a \sp 3} \  {b \sp 2} \  {a \sp 2}} -
\\
\displaystyle
{4 \  b \  a \  b \  {a \sp 2} \  b \  {a \sp 3} \  b}+
{6 \  b \  a \  b \  {a \sp 2} \  b \  {a \sp 2} \  b \  a} -
{b \  a \  b \  {a \sp 2} \  {b \sp 2} \  {a \sp 3}}+
{{b \sp 2} \  {a \sp 5} \  b \  a \  b} -
\\
\displaystyle
{{b \sp 2} \  {a \sp 5} \  {b \sp 2} \  a} -
{3 \  {b \sp 2} \  {a \sp 4} \  b \  {a \sp 2} \  b}+
{4 \  {b \sp 2} \  {a \sp 4} \  b \  a \  b \  a} -
{{b \sp 2} \  {a \sp 4} \  {b \sp 2} \  {a \sp 2}}+
\\
\displaystyle
{2 \  {b \sp 2} \  {a \sp 3} \  b \  {a \sp 3} \  b} -
{3 \  {b \sp 2} \  {a \sp 3} \  b \  {a \sp 2} \  b \  a}+
{{b \sp 2} \  {a \sp 3} \  b \  a \  b \  {a \sp 2}} 
\end{array}
$$
\returnType{Type: XDistributedPolynomial(Symbol,Fraction Integer)}

\spadcommand{lp :: dpoly - lpd }
$$
0 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Fraction Integer)}

Calculations with verification in {\tt XRecursivePolynomial}.

\spadcommand{p := 3 * lp  }
$$
3 \  {\left[ {a \sp 3} \  {b \sp 2} \  {a \sp 2} \  b \  a \  b 
\right]}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{q := lp1  }
$$
\left[
{a \sp 3} \  {b \sp 2} 
\right]
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{pq:= p * q  }
$$
3 \  
{\left[ {a \sp 3} \  {b \sp 2} \  {a \sp 2} \  b \  a \  b 
\right]}\  
{\left[ {a \sp 3} \  {b \sp 2} 
\right]}
$$
\returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)}

\spadcommand{pr:rpoly := p :: rpoly  }
$$
\begin{array}{@{}l}
a \  
\left( a \  
\left( a \  b \  b \  
\left( a \  
\left( a \  b \  
\left( a \  b \  3+b \  a \  
\left( -3 
\right)
\right)+b\  
\right.
\right.
\right.
\right.
\\
\displaystyle
\left.
\left( a \  
\left( a \  b \  
\left( -9 
\right)+b\  a \  {12} 
\right)+b\  a \  a \  
\left( -3 
\right)
\right)
\right)+b\  a \  
\\
\displaystyle
\left.
\left( a \  
\left( a \  b \  6+b \  a \  
\left( -9 
\right)
\right)+b\  a \  a \  3
\right)
\right)+b\  
\left( a \  b \  
\left( a \  
\left( a \  
\right.
\right.
\right.
\\
\displaystyle
\left( a \  b \  b \  
\left( -3 
\right)+b\  b \  a \  9
\right)+b\  
\left( a \  
\left( a \  b \  {18}+b \  a \  
\left( -{36} 
\right)
\right)+b\  a \  a \  9
\right.
\\
\displaystyle
\left.
\left.
\right)
\right)+b\  
\left( a \  a \  
\left( a \  b \  
\left( -{12} 
\right)+b\  a \  {18}
\right)+b\  a \  a \  a \  
\left( -3 
\right)
\right)
\\
\displaystyle
\left.
\right)+b\  a \  
\left( a \  
\left( a \  
\left( a \  b \  b \  3+b \  a \  b \  
\left( -9 
\right)
\right)+b\  a \  a \  b \  9
\right)+b\  
\left( a \  
\right.
\right.
\\
\displaystyle
\left.
\left.
\left( a \  
\left( a \  b \  
\left( -6 
\right)+b\  a \  9
\right)+b\  a \  a \  
\left( -9 
\right)
\right)+b\  a \  a \  a \  3
\right)
\right)
\\
\displaystyle
\left.
\left.
\right)
\right)+b\  
\left( a \  
\left( a \  b \  
\left( a \  
\left( a \  
\left( a \  b \  b \  9+b \  
\left( a \  b \  
\left( -{18} 
\right)+b\  a \  
\right.
\right.
\right.
\right.
\right.
\right.
\\
\displaystyle
\left.
\left.
\left.
\left( -9 
\right)
\right)
\right)+b\  
\left( a \  b \  a \  {36}+b \  a \  a \  
\left( -9 
\right)
\right)
\right)+b\  
\left( a \  b \  a \  a \  
\right.
\\
\displaystyle
\left.
\left.
\left( -{18} 
\right)+b\  a \  a \  a \  9
\right)
\right)+b\  a \  
\left( a \  
\left( a \  
\left( a \  b \  b \  
\left( -{12} 
\right)+b\  a \  b \  {36}
\right)+b\  a \  a \  b \  
\right.
\right.
\\
\displaystyle
\left.
\left( -{36} 
\right)
\right)+b\  
\left( a \  
\left( a \  
\left( a \  b \  {24}+b \  a \  
\left( -{36} 
\right)
\right)+b\  a \  a \  {36}
\right)+b\  a \  a \  a \  
\right.
\\
\displaystyle
\left.
\left.
\left.
\left( -{12} 
\right)
\right)
\right)
\right)+b\  a \  a \  
\left( a \  
\left( a \  
\left( a \  b \  b \  3+b \  a \  b \  
\left( -9 
\right)
\right.
\right.
\right.
\\
\displaystyle
\left.
\left.
\right)+b\  a \  a \  b \  9
\right)+b\  
\left( a \  
\left( a \  
\left( a \  b \  
\left( -6 
\right)+b\  a \  9
\right)+b\  a \  a \  
\left( -9 
\right)
\right.
\right.
\\
\displaystyle
\left.
\left.
\left.
\left.
\left.
\right)+b\  a \  a \  a \  3
\right)
\right)
\right)
\right)+b\  
\left( a \  
\left( a \  
\left( a \  b \  
\left( a \  
\left( a \  
\right.
\right.
\right.
\right.
\right.
\\
\displaystyle
\left( a \  b \  b \  
\left( -6 
\right)+b\  
\left( a \  b \  {12}+b \  a \  6
\right)
\right)+b\  
\left( a \  b \  a \  
\left( -{24} 
\right)+b\  a \  a \  6
\right)
\\
\displaystyle
\left.
\left.
\right)+b\  
\left( a \  b \  a \  a \  {12}+b \  a \  a \  a \  
\left( -6 
\right)
\right)
\right)+b\  a \  
\left( a \  
\left( a \  
\left( a \  b \  b \  9+b \  
\left( a \  b \  
\left( -{18} 
\right.
\right.
\right.
\right.
\right.
\\
\displaystyle
\left.
\left.
\left.
\left.
\right)+b\  a \  
\left( -9 
\right)
\right)
\right)+b\  
\left( a \  b \  a \  {36}+b \  a \  a \  
\left( -9 
\right)
\right)
\right)+b\  
\left( a \  b \  a \  a \  
\right.
\\
\displaystyle
\left.
\left.
\left.
\left( -{18} 
\right)+b\  a \  a \  a \  9
\right)
\right)
\right)+b\  a \  a \  
\left( a \  
\left( a \  
\left( a \  b \  b \  
\left( -3 
\right)+b\  b \  a \  9
\right.
\right.
\right.
\\
\displaystyle
\left.
\left.
\right)+b\  
\left( a \  
\left( a \  b \  {18}+b \  a \  
\left( -{36} 
\right)
\right)+b\  a \  a \  9
\right)
\right)+b\  
\left( a \  a \  
\left( a \  b \  
\right.
\right.
\\
\displaystyle
\left.
\left.
\left.
\left.
\left( -{12} 
\right)+b\  a \  {18} 
\right)+b\  a \  a \  a \  
\left( -3 
\right)
\right)
\right)
\right)+b\  a \  a \  a \  
\left( a \  
\right.
\\
\displaystyle
\left( a \  b \  
\left( a \  b \  3+b \  a \  
\left( -3 
\right)
\right)+b\  
\left( a \  
\left( a \  b \  
\left( -9 
\right)+b\  a \  {12}
\right)+b\  a \  a \  
\right.
\right.
\\
\displaystyle
\left.
\left.
\left.
\left.
\left( -3 
\right)
\right)
\right)+b\  a \  
\left( a \  
\left( a \  b \  6+b \  a \  
\left( -9 
\right)
\right)+b\  a \  a \  3
\right)
\right)
\right)
\end{array}
$$
\returnType{Type: XRecursivePolynomial(Symbol,Fraction Integer)}

\spadcommand{qr:rpoly := q :: rpoly  }
$$
\begin{array}{@{}l}
a \  
\left( a \  
\left( a \  b \  b \  1+b \  
\left( a \  b \  
\left( -2 
\right)+b\  a \  
\left( -1 
\right)
\right)
\right)+
\right.
\\
\\
\displaystyle
\left.
b\  
\left( a \  b \  a \  4+b \  a \  a \  
\left( -1 
\right)
\right)
\right)+
\\
\\
\displaystyle
b\  
\left( a \  b \  a \  a \  
\left( -2 
\right)+b\  a \  a \  a \  1 
\right)
\end{array}
$$
\returnType{Type: XRecursivePolynomial(Symbol,Fraction Integer)}

\spadcommand{pq :: rpoly - pr*qr  }
$$
0 
$$
\returnType{Type: XRecursivePolynomial(Symbol,Fraction Integer)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{XPolynomial}

The {\tt XPolynomial} domain constructor implements multivariate
polynomials whose set of variables is {\tt Symbol}.  These variables
do not commute.  The only parameter of this construtor is the
coefficient ring which may be non-commutative.  However, coefficients
and variables commute.  The representation of the polynomials is
recursive.  The abbreviation for {\tt XPolynomial} is {\tt XPOLY}.

Constructors like {\tt XPolynomialRing}, {\tt XRecursivePolynomial}\\ 
as well as {\tt XDistributedPolynomial}, {\tt LiePolynomial} and\\ 
{\tt XPBWPolynomial} implement multivariate polynomials in\\ 
non-commutative variables.

We illustrate now some of the facilities of the 
{\tt XPOLY} domain constructor.

Define a polynomial ring over the integers.

\spadcommand{poly := XPolynomial(Integer) }
$$
\mbox{\rm XPolynomial Integer} 
$$
\returnType{Type: Domain}

Define a first polynomial,

\spadcommand{pr: poly := 2*x + 3*y-5   }
$$
-5+{x \  2}+{y \  3} 
$$
\returnType{Type: XPolynomial Integer}

and a second one.

\spadcommand{pr2: poly := pr*pr   }
$$
{25}+{x \  {\left( -{20}+{x \  4}+{y \  6} 
\right)}}+{y
\  {\left( -{30}+{x \  6}+{y \  9} 
\right)}}
$$
\returnType{Type: XPolynomial Integer}

Rewrite {\bf pr} in a distributive way,

\spadcommand{pd  := expand pr}
$$
-5+{2 \  x}+{3 \  y} 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Integer)}

compute its square,

\spadcommand{pd2 := pd*pd    }
$$
{25} -{{20} \  x} -{{30} \  y}+{4 \  {x \sp 2}}+{6 \  x \  y}+{6 \  y \  
x}+{9 \  {y \sp 2}} 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Integer)}

and checks that:

\spadcommand{expand(pr2) - pd2  }
$$
0 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Integer)}

We define:

\spadcommand{qr :=  pr**3  }
$$
\begin{array}{@{}l}
-{125}+{x \  
{\left( {150}+{x \  
{\left( -{60}+{x \  8}+{y \  {12}} 
\right)}}+{y\  
{\left( -{90}+{x \  {12}}+{y \  {18}} 
\right)}}
\right)}}+
\\
\\
\displaystyle
{y\  
{\left( {225}+{x \  
{\left( -{90}+{x \  {12}}+{y \  {18}} 
\right)}}+{y\  
{\left( -{135}+{x \  {18}}+{y \  {27}} 
\right)}}
\right)}}
\end{array}
$$
\returnType{Type: XPolynomial Integer}

and:

\spadcommand{qd :=  pd**3  }
$$
\begin{array}{@{}l}
-{125}+
{{150} \  x}+
{{225} \  y} -
{{60} \  {x \sp 2}} -
{{90} \  x \  y} -
{{90} \  y \  x} -
{{135} \  {y \sp 2}}+
{8 \  {x \sp 3}}+
{{12} \  {x \sp 2} \  y}+
\\
\\
\displaystyle
{{12} \  x \  y \  x}+
{{18} \  x \  {y \sp 2}}+
{{12} \  y \  {x \sp 2}}+
{{18} \  y \  x \  y}+
{{18} \  {y \sp 2} \  x}+
{{27} \  {y \sp 3}} 
\end{array}
$$
\returnType{Type: XDistributedPolynomial(Symbol,Integer)}

We truncate {\bf qd} at degree {\bf 3}:

\spadcommand{ trunc(qd,2) }
$$
-{125}+{{150} \  x}+{{225} \  y} -{{60} \  {x \sp 2}} -{{90} \  x \  y} 
-{{90} \  y \  x} -{{135} \  {y \sp 2}} 
$$
\returnType{Type: XDistributedPolynomial(Symbol,Integer)}

The same for {\bf qr}:

\spadcommand{trunc(qr,2) }
$$
-{125}+{x \  {\left( {150}+{x \  {\left( -{60} 
\right)}}+{y
\  {\left( -{90} 
\right)}}
\right)}}+{y
\  {\left( {225}+{x \  {\left( -{90} 
\right)}}+{y
\  {\left( -{135} 
\right)}}
\right)}}
$$
\returnType{Type: XPolynomial Integer}

We define:

\spadcommand{Word := OrderedFreeMonoid Symbol }
$$
\mbox{\rm OrderedFreeMonoid Symbol} 
$$
\returnType{Type: Domain}

and:

\spadcommand{w: Word := x*y**2  }
$$
x \  {y \sp 2} 
$$
\returnType{Type: OrderedFreeMonoid Symbol}

We can compute the right-quotient of {\bf qr} by {\bf r}:

\spadcommand{rquo(qr,w)  }
$$
18 
$$
\returnType{Type: XPolynomial Integer}

and the shuffle-product of {\bf pr} by {\bf r}:

\spadcommand{sh(pr,w::poly)  }
$$
{x \  {\left( {x \  y \  y \  4}+{y \  {\left( {x \  y \  2}+{y \  {\left( 
-5+{x \  2}+{y \  9} 
\right)}}
\right)}}
\right)}}+{y
\  x \  y \  y \  3} 
$$
\returnType{Type: XPolynomial Integer}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{XPolynomialRing}

The {\tt XPolynomialRing} domain constructor implements generalized
polynomials with coefficients from an arbitrary {\tt Ring} (not
necessarily commutative) and whose exponents are words from an
arbitrary {\tt OrderedMonoid} (not necessarily commutative too).  Thus
these polynomials are (finite) linear combinations of words.

This constructor takes two arguments.  The first one is a {\tt Ring}
and the second is an {\tt OrderedMonoid}.  The abbreviation for 
{\tt XPolynomialRing} is {\tt XPR}.

Other constructors like {\tt XPolynomial}, {\tt XRecursivePolynomial}\\
{\tt XDistributedPolynomial}, {\tt LiePolynomial} and\\ 
{\tt XPBWPolynomial} implement multivariate polynomials in\\ 
non-commutative variables.

We illustrate now some of the facilities of the {\tt XPR} domain constructor.

Define the free ordered monoid generated by the symbols.

\spadcommand{Word := OrderedFreeMonoid(Symbol) }
$$
\mbox{\rm OrderedFreeMonoid Symbol} 
$$
\returnType{Type: Domain}

Define the linear combinations of these words with integer coefficients.

\spadcommand{poly:= XPR(Integer,Word)  }
$$
\mbox{\rm XPolynomialRing(Integer,OrderedFreeMonoid Symbol)} 
$$
\returnType{Type: Domain}

Then we define a first element from {\bf poly}.

\spadcommand{p:poly := 2 * x - 3 * y + 1  }
$$
1+{2 \  x} -{3 \  y} 
$$
\returnType{Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)}

And a second one.

\spadcommand{q:poly := 2 * x + 1  }
$$
1+{2 \  x} 
$$
\returnType{Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)}

We compute their sum,

\spadcommand{p + q}
$$
2+{4 \  x} -{3 \  y} 
$$
\returnType{Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)}

their product,

\spadcommand{p * q}
$$
1+{4 \  x} -{3 \  y}+{4 \  {x \sp 2}} -{6 \  y \  x} 
$$
\returnType{Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)}

and see that variables do not commute.

\spadcommand{(p+q)**2-p**2-q**2-2*p*q}
$$
-{6 \  x \  y}+{6 \  y \  x} 
$$
\returnType{Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)}

Now we define a ring of square matrices,

\spadcommand{M := SquareMatrix(2,Fraction Integer)  }
$$
\mbox{\rm SquareMatrix(2,Fraction Integer)} 
$$
\returnType{Type: Domain}

and the linear combinations of words with these  matrices as coefficients.

\spadcommand{poly1:= XPR(M,Word)   }
$$
\begin{array}{@{}l}
{\rm XPolynomialRing(SquareMatrix(2,Fraction Integer),}
\\
\displaystyle
{\rm \ \ OrderedFreeMonoid Symbol)} 
\end{array}
$$
\returnType{Type: Domain}

Define a first matrix,

\spadcommand{m1:M := matrix [ [i*j**2 for i in 1..2] for j in 1..2]  }
$$
\left[
\begin{array}{cc}
1 & 2 \\ 
4 & 8 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Integer)}

a second one,

\spadcommand{m2:M := m1 - 5/4   }
$$
\left[
\begin{array}{cc}
-{\frac{1}{4}} & 2 \\ 
4 & {\frac{27}{4}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Integer)}

and a third one.

\spadcommand{m3: M := m2**2   }
$$
\left[
\begin{array}{cc}
{\frac{129}{16}} & {13} \\ 
{26} & {\frac{857}{16}} 
\end{array}
\right]
$$
\returnType{Type: SquareMatrix(2,Fraction Integer)}

Define a polynomial,

\spadcommand{pm:poly1   := m1*x + m2*y + m3*z - 2/3     }
$$
{\left[ 
\begin{array}{cc}
-{\frac{2}{3}} & 0 \\ 
0 & -{\frac{2}{3}} 
\end{array}
\right]}+{{\left[
\begin{array}{cc}
1 & 2 \\ 
4 & 8 
\end{array}
\right]}
\  x}+{{\left[ 
\begin{array}{cc}
-{\frac{1}{4}} & 2 \\ 
4 & {\frac{27}{4}} 
\end{array}
\right]}
\  y}+{{\left[ 
\begin{array}{cc}
{\frac{129}{16}} & {13} \\ 
{26} & {\frac{857}{16}} 
\end{array}
\right]}
\  z} 
$$
\returnType{Type: 
XPolynomialRing(
SquareMatrix(2,Fraction Integer),
OrderedFreeMonoid Symbol)}

a second one,

\spadcommand{qm:poly1 := pm - m1*x   }
$$
{\left[ 
\begin{array}{cc}
-{\frac{2}{3}} & 0 \\ 
0 & -{\frac{2}{3}} 
\end{array}
\right]}+{{\left[
\begin{array}{cc}
-{\frac{1}{4}} & 2 \\ 
4 & {\frac{27}{4}} 
\end{array}
\right]}
\  y}+{{\left[ 
\begin{array}{cc}
{\frac{129}{16}} & {13} \\ 
{26} & {\frac{857}{16}} 
\end{array}
\right]}
\  z} 
$$
\returnType{Type: 
XPolynomialRing(
SquareMatrix(2,Fraction Integer),
OrderedFreeMonoid Symbol)}

and the following power.

\spadcommand{qm**3 }
$$
\begin{array}{@{}l}
{\left[ 
\begin{array}{cc}
-{\frac{8}{27}} & 0 \\ 
0 & -{\frac{8}{27}} 
\end{array}
\right]}+
{{\left[
\begin{array}{cc}
-{\frac{1}{3}} & {\frac{8}{3}} \\ 
{\frac{16}{3}} & 9 
\end{array}
\right]}\  y}+
{{\left[ 
\begin{array}{cc}
{\frac{43}{4}} & {\frac{52}{3}} \\ 
{\frac{104}{3}} & {\frac{857}{12}} 
\end{array}
\right]}\  z}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
-{\frac{129}{8}} & -{26} \\ 
-{52} & -{\frac{857}{8}} 
\end{array}
\right]}\  {y \sp 2}}+
{{\left[ 
\begin{array}{cc}
-{\frac{3199}{32}} & -{\frac{831}{4}} \\ 
-{\frac{831}{2}} & -{\frac{26467}{32}} 
\end{array}
\right]}\  y \  z}+
{{\left[ 
\begin{array}{cc}
-{\frac{3199}{32}} & -{\frac{831}{4}} \\ 
-{\frac{831}{2}} & -{\frac{26467}{32}} 
\end{array}
\right]}\  z \  y}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
-{\frac{103169}{128}} & -{\frac{6409}{4}} \\ 
-{\frac{6409}{2}} & -{\frac{820977}{128}} 
\end{array}
\right]}\  {z \sp 2}}+
{{\left[ 
\begin{array}{cc}
{\frac{3199}{64}} & {\frac{831}{8}} \\ 
{\frac{831}{4}} & {\frac{26467}{64}} 
\end{array}
\right]}\  {y \sp 3}}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
{\frac{103169}{256}} & {\frac{6409}{8}} \\ 
{\frac{6409}{4}} & {\frac{820977}{256}} 
\end{array}
\right]}\  {y \sp 2} \  z}+
{{\left[ 
\begin{array}{cc}
{\frac{103169}{256}} & {\frac{6409}{8}} \\ 
{\frac{6409}{4}} & {\frac{820977}{256}} 
\end{array}
\right]}\  y \  z \  y}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ 
{\frac{795341}{64}} & {\frac{25447787}{1024}} 
\end{array}
\right]}\  y \  {z \sp 2}}+
{{\left[ 
\begin{array}{cc}
{\frac{103169}{256}} & {\frac{6409}{8}} \\ 
{\frac{6409}{4}} & {\frac{820977}{256}} 
\end{array}
\right]}\  z \  {y \sp 2}}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ 
{\frac{795341}{64}} & {\frac{25447787}{1024}} 
\end{array}
\right]}\  z \  y \  z}+
{{\left[ 
\begin{array}{cc}
{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ 
{\frac{795341}{64}} & {\frac{25447787}{1024}} 
\end{array}
\right]}\  {z \sp 2} \  y}+
\\
\\
\displaystyle
{{\left[ 
\begin{array}{cc}
{\frac{98625409}{4096}} & {\frac{12326223}{256}} \\ 
{\frac{12326223}{128}} & {\frac{788893897}{4096}} 
\end{array}
\right]}\  {z \sp 3}} 
\end{array}
$$
\returnType{Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\domainhead{ZeroDimensionalSolvePackage}

The {\tt ZeroDimensionalSolvePackage} package constructor provides
operations for computing symbolically the complex or real roots of
zero-dimensional algebraic systems.

The package provides {\bf no} multiplicity information (i.e. some
returned roots may be double or higher) but only distinct roots are
returned.

Complex roots are given by means of univariate representations of
irreducible regular chains.  These representations are computed by the
\spadfunFrom{univariateSolve}{ZeroDimensionalSolvePackage} operation
(by calling the {\tt InternalRationalUnivariateRepresentationPackage}
package constructor which does the job).

Real roots are given by means of tuples of coordinates lying in the
{\tt RealClosure} of the coefficient ring.  They are computed by the
\spadfunFrom{realSolve}{ZeroDimensionalSolvePackage} and
\spadfunFrom{positiveSolve}{ZeroDimensionalSolvePackage} operations.
The former computes all the solutions of the input system with real
coordinates whereas the later concentrate on the solutions with
(strictly) positive coordinates.  In both cases, the computations are
performed by the {\tt RealClosure} constructor.

Both computations of complex roots and real roots rely on triangular
decompositions.  These decompositions can be computed in two different
ways.  First, by a applying the
\spadfunFrom{zeroSetSplit}{RegularTriangularSet} operation from the
{\tt REGSET} domain constructor.  In that case, no Groebner bases are
computed.  This strategy is used by default.  Secondly, by applying
the \spadfunFrom{zeroSetSplit}{LexTriangularPackage} from 
{\tt LEXTRIPK}.  To use this later strategy with the operations
\spadfunFrom{univariateSolve}{ZeroDimensionalSolvePackage},
\spadfunFrom{realSolve}{ZeroDimensionalSolvePackage} and
\spadfunFrom{positiveSolve}{ZeroDimensionalSolvePackage} one just
needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions 
is detailed in the example of the {\tt RegularTriangularSet}
constructor.

The {\tt ZeroDimensionalSolvePackage} constructor takes three
arguments.  The first one {\bf R} is the coefficient ring; it must
belong to the categories {\tt OrderedRing}, {\tt EuclideanDomain},
{\tt CharacteristicZero} and {\tt RealConstant}.  This means
essentially that {\bf R} is {\tt Integer} or {\tt Fraction(Integer)}.
The second argument {\bf ls} is the list of variables involved in the
systems to solve.  The third one MUST BE {\bf concat(ls,s)} where 
{\bf s} is an additional symbol used for the univariate representations.
The abbreviation for {\tt ZeroDimensionalSolvePackage} is {\tt ZDSOLVE}.

We illustrate now how to use the constructor {\tt ZDSOLVE} by two
examples: the {\em Arnborg and Lazard} system and the {\em L-3} system
(Aubry and Moreno Maza).  Note that the use of this package is also
demonstrated in the example of the {\tt LexTriangularPackage}
constructor.

Define the coefficient ring.

\spadcommand{R := Integer }
$$
Integer 
$$
\returnType{Type: Domain}

Define the lists of variables:

\spadcommand{ls : List Symbol := [x,y,z,t] }
$$
\left[
x, y, z, t 
\right]
$$
\returnType{Type: List Symbol}

and:

\spadcommand{ls2 : List Symbol := [x,y,z,t,new()\$Symbol] }
$$
\left[
x, y, z, t, \%A 
\right]
$$
\returnType{Type: List Symbol}

Call the package:

\spadcommand{pack := ZDSOLVE(R,ls,ls2)}
$$
ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t,%A]) 
$$
\returnType{Type: Domain}

Define a polynomial system (Arnborg-Lazard)

\spadcommand{p1 := x**2*y*z + x*y**2*z + x*y*z**2 + x*y*z + x*y + x*z + y*z }
$$
{x \  y \  {z \sp 2}}+{{\left( {x \  {y \sp 2}}+{{\left( {x \sp 2}+x+1 
\right)}
\  y}+x 
\right)}
\  z}+{x \  y} 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{p2 := x**2*y**2*z + x*y**2*z**2 + x**2*y*z + x*y*z + y*z + x + z }
$$
{x \  {y \sp 2} \  {z \sp 2}}+{{\left( {{x \sp 2} \  {y \sp 2}}+{{\left( {x 
\sp 2}+x+1 
\right)}
\  y}+1 
\right)}
\  z}+x 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{p3 := x**2*y**2*z**2 + x**2*y**2*z + x*y**2*z + x*y*z + x*z + z + 1 }
$$
{{x \sp 2} \  {y \sp 2} \  {z \sp 2}}+{{\left( {{\left( {x \sp 2}+x 
\right)}
\  {y \sp 2}}+{x \  y}+x+1 
\right)}
\  z}+1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{lp := [p1, p2, p3]}
$$
\begin{array}{@{}l}
\left[
{{x \  y \  {z \sp 2}}+{{\left( {x \  {y \sp 2}}+{{\left( {x \sp 2}+x+1 
\right)}
\  y}+x 
\right)}
\  z}+{x \  y}}, 
\right.
\\
\\
\displaystyle
{{x \  {y \sp 2} \  {z \sp 2}}+{{\left( {{x \sp 2} \  {y 
\sp 2}}+{{\left( {x \sp 2}+x+1 
\right)}
\  y}+1 
\right)}
\  z}+x}, 
\\
\\
\displaystyle
\left.
{{{x \sp 2} \  {y \sp 2} \  {z \sp 2}}+{{\left( {{\left( {x \sp 
2}+x 
\right)}
\  {y \sp 2}}+{x \  y}+x+1 
\right)}
\  z}+1} 
\right]
\end{array}
$$
\returnType{Type: List Polynomial Integer}

Note that these polynomials do not involve the variable {\bf t};
we will use it in the second example.

First compute a decomposition into regular chains (i.e. regular
triangular sets).

\spadcommand{triangSolve(lp)\$pack  }
$$
\begin{array}{@{}l}
\left[
\left\{ 
{z \sp {20}} -
{6 \  {z \sp {19}}} -
{{41} \  {z \sp {18}}}+
{{71} \  {z \sp {17}}}+
{{106} \  {z \sp {16}}}+
{{92} \  {z \sp {15}}}+
{{197} \  {z \sp {14}}}+
\right.
\right.
\\
\\
\displaystyle
{{145} \  {z \sp {13}}}+
{{257} \  {z \sp {12}}}+
{{278} \  {z \sp {11}}}+
{{201} \  {z \sp {10}}}+
{{278} \  {z \sp 9}}+
{{257} \  {z \sp 8}}+
{{145} \  {z \sp 7}}+
\\
\\
\displaystyle
{{197} \  {z \sp 6}}+
{{92} \  {z \sp 5}}+
{{106} \  {z \sp 4}}+
{{71} \  {z \sp 3}} -
{{41} \  {z \sp 2}} -
{6 \  z}+1,
\\
\\
\displaystyle
\left( {{14745844} \  {z \sp {19}}}+
{{50357474} \  {z \sp {18}}} -
{{130948857} \  {z \sp {17}}} -
{{185261586} \  {z \sp {16}}} -
\right.
\\
\\
\displaystyle
{{180077775} \  {z \sp {15}}} -
{{338007307} \  {z \sp {14}}} -
{{275379623} \  {z \sp {13}}} -
{{453190404} \  {z \sp {12}}} -
\\
\\
\displaystyle
{{474597456} \  {z \sp {11}}} -
{{366147695} \  {z \sp {10}}} -
{{481433567} \  {z \sp 9}} -
{{430613166} \  {z \sp 8}} -
\\
\\
\displaystyle
{{261878358} \  {z \sp 7}} -
{{326073537} \  {z \sp 6}} -
{{163008796} \  {z \sp 5}} -
{{177213227} \  {z \sp 4}} -
\\
\\
\displaystyle
\left.
{{104356755} \  {z \sp 3}}+
{{65241699} \  {z \sp 2}}+
{{9237732} \  z} -
{1567348} 
\right)\  y+
\\
\\
\displaystyle
{{1917314} \  {z \sp {19}}}+
{{6508991} \  {z \sp {18}}} -
{{16973165} \  {z \sp {17}}} -
{{24000259} \  {z \sp {16}}} -
\\
\\
\displaystyle
{{23349192} \  {z \sp {15}}} -
{{43786426} \  {z \sp {14}}} -
{{35696474} \  {z \sp {13}}} -
{{58724172} \  {z \sp {12}}} -
\\
\\
\displaystyle
{{61480792} \  {z \sp {11}}} -
{{47452440} \  {z \sp {10}}} -
{{62378085} \  {z \sp 9}} -
{{55776527} \  {z \sp 8}} -
\\
\\
\displaystyle
{{33940618} \  {z \sp 7}} -
{{42233406} \  {z \sp 6}} -
{{21122875} \  {z \sp 5}} -
{{22958177} \  {z \sp 4}} -
\\
\\
\displaystyle
{{13504569} \  {z \sp 3}}+
{{8448317} \  {z \sp 2}}+
{{1195888} \  z} -
{202934}, 
\\
\\
\displaystyle
\left.
\left.
\left( 
\left( {z \sp 3} -{2 \  z} 
\right)\  {y \sp 2}+
\left( -{z \sp 3} -
{z \sp 2} -
{2 \  z} -
1 
\right)\  y -
{z \sp 2} -z+1 
\right)\  x+
{z \sp 2} -1 
\right\}
\right]
\end{array}
$$
\returnType{Type: List RegularChain(Integer,[x,y,z,t])}

We can see easily from this decomposition (consisting of a single
regular chain) that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

\spadcommand{univariateSolve(lp)\$pack}
$$
\begin{array}{@{}l}
\left[
\left[ 
complexRoots=
{? \sp {12}} -
{{12} \  {? \sp {11}}}+
{{24} \  {? \sp {10}}}+
{4 \  {? \sp 9}} -
{9 \  {? \sp 8}}+
{{27} \  {? \sp 7}} -
\right.
\right.
\\
\\
\displaystyle
{{21} \  {? \sp 6}}+
{{27} \  {? \sp 5}} -
{9 \  {? \sp 4}}+
{4 \  {? \sp 3}}+
{{24} \  {? \sp 2}} -
{{12} \  ?}+1, 
\\
\\
\displaystyle
coordinates=
\\
\displaystyle
\left[ 
{{63} \  x}+
{{62} \  { \%A \sp {11}}} -
{{721} \  { \%A \sp {10}}}+
{{1220} \  { \%A \sp 9}}+
{{705} \  {  \%A \sp 8}} -
{{285} \  { \%A \sp 7}}+
\right.
\\
\\
\displaystyle
{{1512} \  { \%A \sp 6}} -
{{735} \  {  \%A \sp 5}}+
{{1401} \  { \%A \sp 4}} -
{{21} \  { \%A \sp 3}}+
{{215} \  { \%A \sp 2}}+
{{1577} \  \%A} -{142}, 
\\
\\
\displaystyle
{63} \  y -
{{75} \  { \%A \sp {11}}}+
{{890} \  { \%A \sp {10}}} -
{{1682} \  { \%A \sp 9}} -
{{516} \  { \%A \sp 8}}+
{{588} \  { \%A \sp 7}} -
{{1953} \  { \%A \sp 6}}+
\\
\\
\displaystyle
{{1323} \  { \%A \sp 5}} -
{{1815} \  { \%A \sp 4}}+
{{426} \  { \%A \sp 3}} -
{{243} \  { \%A \sp 2}} -
{{1801} \  \%A}+{679}, 
\\
\\
\displaystyle
\left.
\left.
{z - \%A} 
\right]
\right],
\\
\\
\displaystyle
\left[ 
complexRoots={{? \sp 6}+{? \sp 5}+{? \sp 4}+{? \sp 3}+{? \sp 2}+?+1}, 
\right.
\\
\displaystyle
\left.
\left.
{coordinates=
{\left[ {x -{ \%A \sp 5}}, {y -{ \%A \sp 3}},  {z - \%A} 
\right]}}
\right],
\right.
\\
\\
\displaystyle
\left.
\left.
{\left[ 
{complexRoots={{? \sp 2}+{5 \  ?}+1}}, 
{coordinates={\left[ {x -1}, {y -1}, {z - \%A} 
\right]}}
\right]}
\right]
\right.
\end{array}
$$
\returnType{Type: 
List Record(
complexRoots: SparseUnivariatePolynomial Integer,
coordinates: List Polynomial Integer)}

We see that the zeros of our regular chain are split into three components.
This is due to the use of univariate polynomial factorization.

Each of these components consist of two parts.  The first one is an
irreducible univariate polynomial {\bf p(?)} which defines a simple
algebraic extension of the field of fractions of {\bf R}.  The second
one consists of multivariate polynomials {\bf pol1(x,\%A)}, 
{\bf pol2(y,\%A)} and {\bf pol3(z,\%A)}.  Each of these polynomials involve
two variables: one is an indeterminate {\bf x}, {\bf y} or {\bf z} of
the input system {\bf lp} and the other is {\bf \%A} which represents
any root of {\bf p(?)}.  Recall that this {\bf \%A} is the last
element of the third parameter of {\tt ZDSOLVE}.  Thus any complex
root {\bf ?} of {\bf p(?)} leads to a solution of the input system
{\bf lp} by replacing {\bf \%A} by this {\bf ?} in {\bf pol1(x,\%A)},
{\bf pol2(y,\%A)} and {\bf pol3(z,\%A)}.  Note that the polynomials
{\bf pol1(x,\%A)}, {\bf pol2(y,\%A)} and {\bf pol3(z,\%A)} have degree
one w.r.t. {\bf x}, {\bf y} or {\bf z} respectively.  This is always
the case for all univariate representations.  Hence the operation 
{\bf univariateSolve} replaces a system of multivariate polynomials by a
list of univariate polynomials, what justifies its name.  Another
example of univariate representations illustrates the 
{\tt LexTriangularPackage} package constructor.

We now compute the solutions with real coordinates:

\spadcommand{lr := realSolve(lp)\$pack   }
$$
\begin{array}{@{}l}
\left[
\left[ 
{ \%B1}, 
\right.
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B1} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B1} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B1} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B1} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B1} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B1} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B1} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B1} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B1} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B1} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B1} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B1} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B1} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B1} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B1} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B1} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B1} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B1} \sp 2}} -
{{\frac{8270}{343}} \  { \%B1}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B1} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B1} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B1} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B1} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B1} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B1} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B1} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B1} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B1} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B1} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B1} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B1} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B1} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B1} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B1} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B1} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B1} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B1} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B1}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B2}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B2} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B2} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B2} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B2} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B2} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B2} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B2} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B2} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B2} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B2} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B2} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B2} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B2} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B2} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B2} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B2} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B2} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B2} \sp 2}} -
{{\frac{8270}{343}} \  { \%B2}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B2} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B2} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B2} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B2} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B2} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B2} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B2} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B2} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B2} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B2} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B2} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B2} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B2} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B2} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B2} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B2} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B2} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B2} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B2}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B3}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B3} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B3} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B3} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B3} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B3} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B3} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B3} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B3} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B3} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B3} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B3} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B3} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B3} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B3} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B3} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B3} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B3} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B3} \sp 2}} -
{{\frac{8270}{343}} \  { \%B3}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B3} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B3} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B3} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B3} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B3} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B3} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B3} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B3} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B3} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B3} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B3} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B3} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B3} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B3} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B3} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B3} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B3} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B3} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B3}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B4}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B4} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B4} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B4} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B4} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B4} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B4} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B4} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B4} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B4} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B4} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B4} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B4} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B4} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B4} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B4} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B4} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B4} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B4} \sp 2}} -
{{\frac{8270}{343}} \  { \%B4}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B4} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B4} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B4} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B4} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B4} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B4} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B4} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B4} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B4} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B4} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B4} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B4} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B4} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B4} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B4} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B4} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B4} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B4} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B4}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B5}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B5} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B5} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B5} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B5} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B5} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B5} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B5} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B5} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B5} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B5} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B5} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B5} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B5} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B5} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B5} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B5} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B5} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B5} \sp 2}} -
{{\frac{8270}{343}} \  { \%B5}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B5} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B5} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B5} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B5} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B5} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B5} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B5} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B5} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B5} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B5} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B5} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B5} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B5} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B5} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B5} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B5} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B5} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B5} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B5}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B6}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B6} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B6} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B6} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B6} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B6} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B6} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B6} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B6} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B6} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B6} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B6} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B6} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B6} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B6} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B6} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B6} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B6} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B6} \sp 2}} -
{{\frac{8270}{343}} \  { \%B6}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B6} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B6} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B6} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B6} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B6} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B6} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B6} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B6} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B6} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B6} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B6} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B6} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B6} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B6} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B6} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B6} \sp 4}} -
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B6} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B6} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B6}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B7}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B7} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B7} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B7} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B7} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B7} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B7} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B7} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B7} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B7} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B7} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B7} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B7} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B7} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B7} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B7} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B7} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B7} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B7} \sp 2}} -
{{\frac{8270}{343}} \  { \%B7}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B7} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B7} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B7} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B7} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B7} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B7} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B7} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B7} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B7} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B7} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B7} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B7} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B7} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B7} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B7} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B7} \sp 4}} -
\\
\\
\displaystyle
\left.
{{\frac{801511}{26117}} \  {{ \%B7} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B7} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B7}}+
{\frac{377534}{705159}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B8}, 
\right.
\\
\\
\displaystyle
{{\frac{1184459}{1645371}} \  {{ \%B8} \sp {19}}} -
{{\frac{2335702}{548457}} \  {{ \%B8} \sp {18}}} -
{{\frac{5460230}{182819}} \  {{ \%B8} \sp {17}}}+
{{\frac{79900378}{1645371}} \  {{ \%B8} \sp {16}}}+
\\
\\
\displaystyle
{{\frac{43953929}{548457}} \  {{ \%B8} \sp {15}}}+
{{\frac{13420192}{182819}} \  {{ \%B8} \sp {14}}}+
{{\frac{553986}{3731}} \  {{ \%B8} \sp {13}}}+
{{\frac{193381378}{1645371}} \  {{ \%B8} \sp {12}}}+
\\
\\
\displaystyle
{{\frac{35978916}{182819}} \  {{ \%B8} \sp {11}}}+
{{\frac{358660781}{1645371}} \  {{  \%B8} \sp {10}}}+
{{\frac{271667666}{1645371}} \  {{ \%B8} \sp 9}}+
{{\frac{118784873}{548457}} \  {{ \%B8} \sp 8}}+
\\
\\
\displaystyle
{{\frac{337505020}{1645371}} \  {{ \%B8} \sp 7}}+
{{\frac{1389370}{11193}} \  {{ \%B8} \sp 6}}+
{{\frac{688291}{4459}} \  {{ \%B8} \sp 5}}+
{{\frac{3378002}{42189}} \  {{ \%B8} \sp 4}}+
\\
\\
\displaystyle
{{\frac{140671876}{1645371}} \  {{ \%B8} \sp 3}}+
{{\frac{32325724}{548457}} \  {{ \%B8} \sp 2}} -
{{\frac{8270}{343}} \  { \%B8}} -
{\frac{9741532}{1645371}}, 
\\
\\
\displaystyle
-{{\frac{91729}{705159}} \  {{  \%B8} \sp {19}}}+
{{\frac{487915}{705159}} \  {{ \%B8} \sp {18}}}+
{{\frac{4114333}{705159}} \  {{ \%B8} \sp {17}}} -
{{\frac{1276987}{235053}} \  {{ \%B8} \sp {16}}} -
\\
\\
\displaystyle
{{\frac{13243117}{705159}} \  {{ \%B8} \sp {15}}} -
{{\frac{16292173}{705159}} \  {{ \%B8} \sp {14}}} -
{{\frac{26536060}{705159}} \  {{ \%B8} \sp {13}}} -
{{\frac{722714}{18081}} \  {{ \%B8} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{5382578}{100737}} \  {{ \%B8} \sp {11}}} -
{{\frac{15449995}{235053}} \  {{ \%B8} \sp {10}}} -
{{\frac{14279770}{235053}} \  {{  \%B8} \sp 9}} -
{{\frac{6603890}{100737}} \  {{ \%B8} \sp 8}} -
\\
\\
\displaystyle
{{\frac{409930}{6027}} \  {{ \%B8} \sp 7}} -
{{\frac{37340389}{705159}} \  {{ \%B8} \sp 6}} -
{{\frac{34893715}{705159}} \  {{ \%B8} \sp 5}} -
{{\frac{26686318}{705159}} \  {{ \%B8} \sp 4}} -
\\
\\
\displaystyle
\left.
\left.
{{\frac{801511}{26117}} \  {{ \%B8} \sp 3}} -
{{\frac{17206178}{705159}} \  {{ \%B8} \sp 2}} -
{{\frac{4406102}{705159}} \  { \%B8}}+
{\frac{377534}{705159}} 
\right]
\right]
\end{array}
$$
\returnType{Type: List List RealClosure Fraction Integer}
The number of real solutions for the input system is:

\spadcommand{\# lr }
$$
8 
$$
\returnType{Type: PositiveInteger}

Each of these real solutions is given by a list of elements in 
{\tt RealClosure(R)}.  In these 8 lists, the first element is a value of
{\bf z}, the second of {\bf y} and the last of {\bf x}.  This is
logical since by setting the list of variables of the package to 
{\bf [x,y,z,t]} we mean that the elimination ordering on the variables is
{\bf t < z < y < x }.  Note that each system treated by the 
{\tt ZDSOLVE} package constructor needs only to be zero-dimensional
w.r.t. the variables involved in the system it-self and not
necessarily w.r.t. all the variables used to define the package.

We can approximate these real numbers as follows. 
This computation takes between 30 sec. and 5 min, depending on your machine.

\spadcommand{[ [approximate(r,1/1000000) for r in point] for point in lr] }
$$
\begin{array}{@{}l}
\left[
\left[ 
\displaystyle
-{\frac{10048059}{2097152}}, 
\right.
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
450305731698538794352439791383896641459673197621176821933588120838
\\
\displaystyle
551631405892456717609142362969577740309983336076104889822891657813
\\
\displaystyle
709430983859733113720258484693913237615701950676035760116591745498
\\
\displaystyle
681538209878909485152342039281129312614132985654697714546466149548
\\
\displaystyle
782591994118844704172244049192156726354215802806143775884436463441
\\
\displaystyle
0045253024786561923163288214175
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
450305728302524548851651180698582663508310069375732046528055470686
\\
\displaystyle
564494957750991686720188943809040835481793171859386279762455151898
\\
\displaystyle
357079304877442429148870882984032418920030143612331486020082144373
\\
\displaystyle
379075531124363291986489542170422894957129001611949880795702366386
\\
\displaystyle
544306939202714897968826671232335604349152343406892427528041733857
\\
\displaystyle
4817381189277066143312396681216,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
210626076882347507389479868048601659624960714869068553876368371502
\\
\displaystyle
063968085864965079005588950564689330944709709993780218732909532589
\\
\displaystyle
878524724902071750498366048207515661873872451468533306001120296463
\\
\displaystyle
516638135154325598220025030528398108683711061484230702609121129792
\\
\displaystyle
987689628568183047905476005638076266490561846205530604781619178201
\\
\displaystyle
15887037891389881895
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
210626060949846419247211380481647417534196295329643410241390314236
\\
\displaystyle
875796768527388858559097596521177886218987288195394364024629735706
\\
\displaystyle
195981232610365979902512686325867656720234210687703171018424748418
\\
\displaystyle
142328892183768123706270847029570621848592886740077193782849920092
\\
\displaystyle
376059331416890100066637389634759811822855673103707202647449677622
\\
\displaystyle
83837629939232800768
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
-{\frac{2563013}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
-261134617679192778969861769323775771923825996306354178192275233
\\
\displaystyle
044018989966807292833849076862359320744212592598673381593224350480
\\
\displaystyle
9294837523030237337236806668167446173001727271353311571242897
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
11652254005052225305839819160045891437572266102768589900087901348
\\
\displaystyle
199149409224137539839713940195234333204081399281531888294957554551
\\
\displaystyle
63963417619308395977544797140231469234269034921938055593984,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
3572594550275917221096588729615788272998517054675603239578198141
\\
\displaystyle
006034091735282826590621902304466963941971038923304526273329316373
\\
\displaystyle
7574500619789892286110976997087250466235373
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
10395482693455989368770712448340260558008145511201705922005223665
\\
\displaystyle
917594096594864423391410294529502651799899601048118758225302053465
\\
\displaystyle
051315812439017247289173865014702966308864
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
-{\frac{1715967}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
-421309353378430352108483951797708239037726150396958622482899843
\\
\displaystyle
660603065607635937456481377349837660312126782256580143620693951995
\\
\displaystyle
146518222580524697287410022543952491
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
94418141441853744586496920343492240524365974709662536639306419607
\\
\displaystyle
958058825854931998401916999176594432648246411351873835838881478673
\\
\displaystyle
4019307857605820364195856822304768,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
7635833347112644222515625424410831225347475669008589338834162172
\\
\displaystyle
501904994376346730876809042845208919919925302105720971453918982731
\\
\displaystyle
3890725914035
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
26241887640860971997842976104780666339342304678958516022785809785
\\
\displaystyle
037845492057884990196406022669660268915801035435676250390186298871
\\
\displaystyle
4128491675648
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
-{\frac{437701}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
1683106908638349588322172332654225913562986313181951031452750161
\\
\displaystyle
441497473455328150721364868355579646781603507777199075077835213366
\\
\displaystyle
48453365491383623741304759
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
16831068680952133890017099827059136389630776687312261111677851880
\\
\displaystyle
049074252262986803258878109626141402985973669842648879989083770687
\\
\displaystyle
9999845423381649008099328,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
4961550109835010186422681013422108735958714801003760639707968096
\\
\displaystyle
64691282670847283444311723917219104249213450966312411133
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
49615498727577383155091920782102090298528971186110971262363840408
\\
\displaystyle
2937659261914313170254867464792718363492160482442215424
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
{\frac{222801}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
-899488488040242826510759512197069142713604569254197827557300186
\\
\displaystyle
521375992158813771669612634910165522019514299493229913718324170586
\\
\displaystyle
7672383477
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
11678899986650263721777651006918885827089699602299347696908357524
\\
\displaystyle
570777794164352094737678665077694058889427645877185424342556259924
\\
\displaystyle
56372224,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
-238970488813315687832080154437380839561277150920849101984745299
\\
\displaystyle
188550954651952546783901661359399969388664003628357055232115503787
\\
\displaystyle
1291458703265
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
53554872736450963260904032866899319059882254446854114332215938336
\\
\displaystyle
811929575628336714686542903407469936562859255991176021204461834431
\\
\displaystyle
45479421952
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
{\frac{765693}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
8558969219816716267873244761178198088724698958616670140213765754
\\
\displaystyle
322002303251685786118678330840203328837654339523418704917749518340
\\
\displaystyle
772512899000391009630373148561
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
29414424455330107909764284113763934998155802159458569179064525354
\\
\displaystyle
957230138568189417023302287798901412962367211381542319972389173221
\\
\displaystyle
567119652444639331719460159488,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
-205761823058257210124765032486024256111130258154358880884392366
\\
\displaystyle
276754938224165936271229077761280019292142057440894808519374368858
\\
\displaystyle
27622246433251878894899015
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
26715982033257355380979523535014502205763137598908350970917225206
\\
\displaystyle
427101987719026671839489062898637147596783602924839492046164715377
\\
\displaystyle
77775324180661095366656
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
{\frac{5743879}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
1076288816968906847955546394773570208171456724942618614023663123
\\
\displaystyle
574768960850434263971398072546592772662158833449797698617455397887
\\
\displaystyle
562900072984768000608343553189801693408727205047612559889232757563
\\
\displaystyle
830528688953535421809482771058917542602890060941949620874083007858
\\
\displaystyle
36666945350176624841488732463225
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
31317689570803179466484619400235520441903766134585849862285496319
\\
\displaystyle
161966016162197817656155325322947465296482764305838108940793745664
\\
\displaystyle
607578231468885811955560292085152188388832003186584074693994260632
\\
\displaystyle
605898286123092315966691297079864813198515719429272303406229340239
\\
\displaystyle
234867030420681530440845099008,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\frac{\left(
\begin{array}{@{}l}
-211328669918575091836412047556545843787017248986548599438982813
\\
\displaystyle
533526444466528455752649273493169173140787270143293550347334817207
\\
\displaystyle
609872054584900878007756416053431789468836611952973998050294416266
\\
\displaystyle
855009812796195049621022194287808935967492585059442776850225178975
\\
\displaystyle
8706752831632503615
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
16276155849379875802429066243471045808891444661684597180431538394
\\
\displaystyle
083725255333098080703636995855022160112110871032636095510260277694
\\
\displaystyle
140873911481262211681397816825874380753225914661319399754572005223
\\
\displaystyle
498385689642856344480185620382723787873544601061061415180109356172
\\
\displaystyle
051706396253618176
\end{array}
\right)}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
\displaystyle
{\frac{19739877}{2097152}}, 
\right.
\\
\\
\displaystyle
\frac{\left(
\begin{array}{@{}l}
-299724993683270330379901580486152094921504038750070717770128576
\\
\displaystyle
672019253057942247895356602435986014310154780163808277161116037221
\\
\displaystyle
287484777803580987284314922548423836585801362934170532170258233335
\\
\displaystyle
091800960178993702398593530490046049338987383703085341034708990888
\\
\displaystyle
081485398113201846458245880061539477074169948729587596021075021589
\\
\displaystyle
194881447685487103153093129546733219013370267109820090228230051075
\\
\displaystyle
18607185928457030277807397796525813862762239286996106809728023675
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
23084332748522785907289100811918110239065041413214326461239367948
\\
\displaystyle
739333192706089607021381934176478983606202295191766329376317868514
\\
\displaystyle
550147660272062590222525055517418236888968838066366025744317604722
\\
\displaystyle
402920931967294751602472688341211418933188487286618444349272872851
\\
\displaystyle
128970807675528648950565858640331785659103870650061128015164035227
\\
\displaystyle
410373609905560544769495270592270708095930494912575195547088792595
\\
\displaystyle
9552929920110858560812556635485429471554031675979542656381353984,
\end{array}
\right)}
\end{array}
$$
$$
\begin{array}{@{}l}
\left.
\left.
\frac{\left(
\begin{array}{@{}l}
-512818926354822848909627639786894008060093841066308045940796633
\\
\displaystyle
584500926410949052045982531625008472301004703502449743652303892581
\\
\displaystyle
895928931293158470135392762143543439867426304729390912285013385199
\\
\displaystyle
069649023156609437199433379507078262401172758774998929661127731837
\\
\displaystyle
229462420711653791043655457414608288470130554391262041935488541073
\\
\displaystyle
594015777589660282236457586461183151294397397471516692046506185060
\\
\displaystyle
376287516256195847052412587282839139194642913955
\end{array}
\right)}
{\left(
\begin{array}{@{}l}
22882819397784393305312087931812904711836310924553689903863908242
\\
\displaystyle
435094636442362497730806474389877391449216077946826538517411890917
\\
\displaystyle
117418681451149783372841918224976758683587294866447308566225526872
\\
\displaystyle
092037244118004814057028371983106422912756761957746144438159967135
\\
\displaystyle
026293917497835900414708601277523729964886277426724876224800632688
\\
\displaystyle
088893248918508424949343473376030759399802682084829048596781777514
\\
\displaystyle
4465749979827872616963053217673201717237252096
\end{array}
\right)}
\right]
\right]
\end{array}
$$
\returnType{Type: List List Fraction Integer}

We can also concentrate on the solutions with real (strictly) positive
coordinates:

\spadcommand{lpr := positiveSolve(lp)\$pack   }
$$
\left[
\right]
$$
\returnType{Type: List List RealClosure Fraction Integer}

Thus we have checked that the input system has no solution with
strictly positive coordinates.

Let us define another polynomial system ({\em L-3}).

\spadcommand{f0 := x**3 + y + z + t- 1 }
$$
z+y+{x \sp 3}+t -1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{f1 := x + y**3 + z + t -1 }
$$
z+{y \sp 3}+x+t -1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{f2 := x + y + z**3 + t-1 }
$$
{z \sp 3}+y+x+t -1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{f3 := x + y + z + t**3 -1 }
$$
z+y+x+{t \sp 3} -1 
$$
\returnType{Type: Polynomial Integer}

\spadcommand{lf := [f0, f1, f2, f3]}
$$
\begin{array}{@{}l}
\left[
{z+y+{x \sp 3}+t -1}, 
{z+{y \sp 3}+x+t -1}, 
\right.
\\
\\
\displaystyle
\left.
{{z \sp 3}+y+x+t -1},  
{z+y+x+{t \sp 3} -1} 
\right]
\end{array}
$$
\returnType{Type: List Polynomial Integer}

First compute a decomposition into regular chains (i.e. regular
triangular sets).

\spadcommand{lts := triangSolve(lf)\$pack   }
$$
\begin{array}{@{}l}
\left[
\left\{ {{t \sp 2}+t+1}, {{z \sp 3} -z -{t \sp 3}+t}, 
\left( {3 \  z}+{3 \  {t \sp 3}} -3 
\right)\  {y \sp 2}+
\left( {3 \  {z \sp 2}}+
\left( {6 \  {t \sp 3}} -6 
\right)\  z+
{3 \  {t \sp 6}} -
\right.
\right.
\right.
\\
\displaystyle
\left.
{6 \  {t \sp 3}}+3 
\right)\  y+
{{\left( {3 \  {t \sp 3}} -3 
\right)}\  {z \sp 2}}+
{{\left( {3 \  {t \sp 6}} -{6 \  {t \sp 3}}+3 
\right)}\  z}+
{t \sp 9} -
{3 \  {t \sp 6}}+
{5 \  {t \sp 3}} -
{3 \  t}, 
\\
\displaystyle
\left.
{x+y+z} 
\right\},
\left\{ 
{t \sp {16}} 
-{6 \  {t \sp {13}}}+
{9 \  {t \sp {10}}}+
{4 \  {t \sp 7}}+
{{15} \  {t \sp 4}} -
{{54} \  {t \sp 2}}+
{27}, 
\right.
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{4907232} \  {t \sp {15}}}+
{{40893984} \  {t \sp {14}}} -
{{115013088} \  {t \sp {13}}}+
{{22805712} \  {t \sp {12}}}+
{{36330336} \  {t \sp {11}}}+
\right.
\\
\displaystyle
{{162959040} \  {t \sp {10}}} -
{{159859440} \  {t \sp 9}} -
{{156802608} \  {t \sp 8}}+
{{117168768} \  {t \sp 7}}+
\\
\displaystyle
{{126282384} \  {t \sp 6}} -
{{129351600} \  {t \sp 5}}+
{{306646992} \  {t \sp 4}}+
{{475302816} \  {t \sp 3}} -
\\
\displaystyle
\left.
{{1006837776} \  {t \sp 2}} -
{{237269088} \  t}+
{480716208} 
\right)\  z+
\end{array}
$$
$$
\begin{array}{@{}l}
{{48} \  {t \sp {54}}} -
{{912} \  {t \sp {51}}}+
{{8232} \  {t \sp {48}}} -
{{72} \  {t \sp {46}}} -
{{46848} \  {t \sp {45}}}+
{{1152} \  {t \sp {43}}}+
{{186324} \  {t \sp {42}}} -\hbox{\hskip 1.0cm}
\\
\displaystyle
{{3780} \  {t \sp {40}}} -
{{543144} \  {t \sp {39}}} -
{{3168} \  {t \sp {38}}} -
{{21384} \  {t \sp {37}}}+
{{1175251} \  {t \sp {36}}}+
{{41184} \  {t \sp {35}}}+
\\
\displaystyle
{{278003} \  {t \sp {34}}}-
{{1843242} \  {t \sp {33}}} -
{{301815} \  {t \sp {32}}} -
{{1440726} \  {t \sp {31}}}+
{{1912012} \  {t \sp {30}}}+
\\
\displaystyle
{{1442826} \  {t \sp {29}}}+
{{4696262} \  {t \sp {28}}} -
{{922481} \  {t \sp {27}}} -
{{4816188} \  {t \sp {26}}} -
{{10583524} \  {t \sp {25}}} -
\\
\displaystyle
{{208751} \  {t \sp {24}}}+
{{11472138} \  {t \sp {23}}}+
{{16762859} \  {t \sp {22}}} -
{{857663} \  {t \sp {21}}} -
{{19328175} \  {t \sp {20}}} -
\\
\displaystyle
{{18270421} \  {t \sp {19}}}+
{{4914903} \  {t \sp {18}}}+
{{22483044} \  {t \sp {17}}}+
{{12926517} \  {t \sp {16}}} -
{{8605511} \  {t \sp {15}}} -
\\
\displaystyle
{{17455518} \  {t \sp {14}}} -
{{5014597} \  {t \sp {13}}}+
{{8108814} \  {t \sp {12}}}+
{{8465535} \  {t \sp {11}}}+
{{190542} \  {t \sp {10}}} -
\\
\displaystyle
{{4305624} \  {t \sp 9}} -
{{2226123} \  {t \sp 8}}+
{{661905} \  {t \sp 7}}+
{{1169775} \  {t \sp 6}}+
{{226260} \  {t \sp 5}} -
\\
\displaystyle
{{209952} \  {t \sp 4}} -
{{141183} \  {t \sp 3}}+
{{27216} \  t}, 
\end{array}
$$
$$
\begin{array}{@{}l}
\left( {3 \  z}+{3 \  {t \sp 3}} -3 \right)\  {y \sp 2}+
\left( {3 \  {z \sp 2}}+
\left( {6 \  {t \sp 3}} -6 \right)\  z+
{3 \  {t \sp 6}} -{6 \  {t \sp 3}}+3 \right)\  y+
\left( {3 \  {t \sp 3}} -3 \right)\  {z \sp 2}+
\\
\displaystyle
\left.
\left( {3 \  {t \sp 6}} -{6 \  {t \sp 3}}+3 \right)\  z+
{t \sp 9} -{3 \  {t \sp 6}}+{5 \  {t \sp 3}} -{3 \  t}, 
{x+y+z+{t \sp 3} -1} 
\right\},
\\
\displaystyle
{\left\{ t, {z -1}, {{y \sp 2} -1}, {x+y} \right\}},
{\left\{ {t -1}, z, {{y \sp 2} -1}, {x+y} \right\}},
{\left\{ {t -1}, {{z \sp 2} -1}, {{z \  y}+1}, x \right\}},
\\
\displaystyle
\left\{ 
{t \sp {16}} -{6 \  {t \sp {13}}}+
{9 \  {t \sp {10}}}+
{4 \  {t \sp 7}}+
{{15} \  {t \sp 4}} -
{{54} \  {t \sp 2}}+
{27}, 
\right.
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{4907232} \  {t \sp {29}}}+
{{40893984} \  {t \sp {28}}} -
{{115013088} \  {t \sp {27}}} -
{{1730448} \  {t \sp {26}}} -
{{168139584} \  {t \sp {25}}}+
\right.
\\
\displaystyle
{{738024480} \  {t \sp {24}}} -
{{195372288} \  {t \sp {23}}}+
{{315849456} \  {t \sp {22}}} -
{{2567279232} \  {t \sp {21}}}+
\\
\displaystyle
{{937147968} \  {t \sp {20}}}+
{{1026357696} \  {t \sp {19}}}+
{{4780488240} \  {t \sp {18}}} -
{{2893767696} \  {t \sp {17}}} -
\\
\displaystyle
{{5617160352} \  {t \sp {16}}} -
{{3427651728} \  {t \sp {15}}}+
{{5001100848} \  {t \sp {14}}}+
{{8720098416} \  {t \sp {13}}}+
\\
\displaystyle
{{2331732960} \  {t \sp {12}}} -
{{499046544} \  {t \sp {11}}} -
{{16243306272} \  {t \sp {10}}} -
{{9748123200} \  {t \sp 9}}+
\\
\displaystyle
{{3927244320} \  {t \sp 8}}+
{{25257280896} \  {t \sp 7}}+
{{10348032096} \  {t \sp 6}} -
{{17128672128} \  {t \sp 5}} -
\\
\displaystyle
{{14755488768} \  {t \sp 4}}+
{{544086720} \  {t \sp 3}}+
{{10848188736} \  {t \sp 2}}+
{{1423614528} \  t} -
\\
\displaystyle
\left.
{2884297248} 
\right) z -
\end{array}
$$
$$
\begin{array}{@{}l}
{{48} \  {t \sp {68}}}+
{{1152} \  {t \sp {65}}} -
{{13560} \  {t \sp {62}}}+
{{360} \  {t \sp {60}}}+
{{103656} \  {t \sp {59}}} -
{{7560} \  {t \sp {57}}} -
{{572820} \  {t \sp {56}}}+
\\
\displaystyle
{{71316} \  {t \sp {54}}}+
{{2414556} \  {t \sp {53}}}+
{{2736} \  {t \sp {52}}} -
{{402876} \  {t \sp {51}}} -
{{7985131} \  {t \sp {50}}} -
{{49248} \  {t \sp {49}}}+
\\
\displaystyle
{{1431133} \  {t \sp {48}}}+
{{20977409} \  {t \sp {47}}}+
{{521487} \  {t \sp {46}}} -
{{2697635} \  {t \sp {45}}} -
{{43763654} \  {t \sp {44}}} -
\\
\displaystyle
{{3756573} \  {t \sp {43}}} -
{{2093410} \  {t \sp {42}}}+
{{71546495} \  {t \sp {41}}}+
{{19699032} \  {t \sp {40}}}+
{{35025028} \  {t \sp {39}}} -
\\
\displaystyle
{{89623786} \  {t \sp {38}}} -
{{77798760} \  {t \sp {37}}} -
{{138654191} \  {t \sp {36}}}+
{{87596128} \  {t \sp {35}}}+
{{235642497} \  {t \sp {34}}}+
\\
\displaystyle
{{349607642} \  {t \sp {33}}} 
-{{93299834} \  {t \sp {32}}} -
{{551563167} \  {t \sp {31}}} -
{{630995176} \  {t \sp {30}}}+
\\
\displaystyle
{{186818962} \  {t \sp {29}}}+
{{995427468} \  {t \sp {28}}}+
{{828416204} \  {t \sp {27}}} -
{{393919231} \  {t \sp {26}}} -
\\
\displaystyle
{{1076617485} \  {t \sp {25}}} -
{{1609479791} \  {t \sp {24}}}+
{{595738126} \  {t \sp {23}}}+
{{1198787136} \  {t \sp {22}}}+
\\
\displaystyle
{{4342832069} \  {t \sp {21}}} -
{{2075938757} \  {t \sp {20}}} -
{{4390835799} \  {t \sp {19}}} 
-{{4822843033} \  {t \sp {18}}}+
\\
\displaystyle
{{6932747678} \  {t \sp {17}}}+
{{6172196808} \  {t \sp {16}}}+
{{1141517740} \  {t \sp {15}}} -
{{4981677585} \  {t \sp {14}}} -
\\
\displaystyle
{{9819815280} \  {t \sp {13}}} -
{{7404299976} \  {t \sp {12}}} -
{{157295760} \  {t \sp {11}}}+
{{29124027630} \  {t \sp {10}}}+
\\
\displaystyle
{{14856038208} \  {t \sp 9}} -
{{16184101410} \  {t \sp 8}} -
{{26935440354} \  {t \sp 7}} -
{{3574164258} \  {t \sp 6}}+
\\
\displaystyle
{{10271338974} \  {t \sp 5}}+
{{11191425264} \  {t \sp 4}}+
{{6869861262} \  {t \sp 3}} -
{{9780477840} \  {t \sp 2}} -
\\
\displaystyle
{{3586674168} \  t}+
{2884297248}, 
\end{array}
$$
$$
\begin{array}{@{}l}
\left( {3 \  {z \sp 3}}+
{{\left( {6 \  {t \sp 3}} -6 
\right)}\  {z \sp 2}}+
\left( {6 \  {t \sp 6}} -{{12} \  {t \sp 3}}+3 
\right)\  z+{2 \  {t \sp 9}} -{6 \  {t \sp 6}}+{t \sp 3}+{3 \  t} 
\right)\  y+
\hbox{\hskip 1.0cm}
\\
\\
\displaystyle
{{\left( {3 \  {t \sp 3}} -3 \right)}\  {z \sp 3}}+
{{\left( {6 \  {t \sp 6}} -{{12} \  {t \sp 3}}+6 \right)}\  {z \sp 2}}+
{{\left( {4 \  {t \sp 9}} -{{12} \  {t \sp 6}}+{{11} \  {t \sp 3}} -3 
\right)}\  z}+
\\
\\
\displaystyle
\left.
{t \sp {12}} -
{4 \  {t \sp 9}}+
{5 \  {t \sp 6}} -
{2 \  {t \sp 3}}, 
{x+y+z+{t \sp 3} -1} 
\right\},
\\
\\
\displaystyle
\left\{ {t -1}, {{z \sp 2} -1}, y, {x+z} \right\},
\left\{ 
{t \sp 8}+
{t \sp 7}+
{t \sp 6} -
{2 \  {t \sp 5}} -
{2 \  {t \sp 4}} -
{2 \  {t \sp 3}}+
{{19} \  {t \sp 2}}+
{{19} \  t} -8, 
\right.
\end{array}
$$
$$
\begin{array}{@{}l}
\left( 
{{2395770} \  {t \sp 7}}+
{{3934440} \  {t \sp 6}} -
{{3902067} \  {t \sp 5}} -
{{10084164} \  {t \sp 4}} -
{{1010448} \  {t \sp 3}}+
{{32386932} \  {t \sp 2}}+
\right.
\\
\\
\displaystyle
\left.
{{22413225} \  t} -
{10432368} 
\right)\  z -
{{463519} \  {t \sp 7}}+
{{3586833} \  {t \sp 6}}+
{{9494955} \  {t \sp 5}} -
{{8539305} \  {t \sp 4}} -
\\
\\
\displaystyle
{{33283098} \  {t \sp 3}}+
{{35479377} \  {t \sp 2}}+
{{46263256} \  t} -
{17419896}, 
\end{array}
$$
$$
\begin{array}{@{}l}
\left( {3 \  {z \sp 4}}+
\left( {9 \  {t \sp 3}} -9 \right)\  {z \sp 3}+
\left( {{12} \  {t \sp 6}} -{{24} \  {t \sp 3}}+9 \right)\  {z \sp 2}+
\left( -{{152} \  {t \sp 3}}+{{219} \  t} -{67} \right)\  z -
\right.
\\
\\
\displaystyle
\left.
{{41} \  {t \sp 6}}+{{57} \  {t \sp 4}}+{{25} \  {t \sp 3}} -{{57} \  t}+{16} 
\right)\  y+
{{\left( {3 \  {t \sp 3}} -3 \right)}\  {z \sp 4}}+
{{\left( {9 \  {t \sp 6}} -{{18} \  {t \sp 3}}+9 \right)}\  {z \sp 3}}+
\\
\\
\displaystyle
{{\left( -{{181} \  {t \sp 3}}+{{270} \  t} -{89} \right)}\  {z \sp 2}}+
{{\left( -{{92} \  {t \sp 6}}+{{135} \  {t \sp 4}}+
{{49} \  {t \sp 3}} -{{135} \  t}+{43} \right)}\  z}+
\\
\\
\displaystyle
\left.
{{27} \  {t \sp 7}} -
{{27} \  {t \sp 6}} -
{{54} \  {t \sp 4}}+
{{396} \  {t \sp 3}} -
{{486} \  t}+{144}, 
{x+y+z+{t \sp 3} -1} 
\right\},
\\
\\
\displaystyle
{\left\{ t, {z -{t \sp 3}+1}, {y -1}, {x -1} \right\}},
{\left\{ {t -1}, z, y, x \right\}},
{\left\{ t, {z -1}, y, x \right\}},
{\left\{ t, z, {y -1}, x \right\}},
\\
\\
\displaystyle
\left.
{\left\{ t, z, y, {x -1} \right\}}
\right]
\end{array}
$$
\returnType{Type: List RegularChain(Integer,[x,y,z,t])}

Then we compute a univariate representation.

\spadcommand{univariateSolve(lf)\$pack  }
$$
\begin{array}{@{}l}
\left[
{\left[ {complexRoots=?}, {coordinates=
\left[ {x -1}, {y -1}, 
{z+1}, {t - \%A} 
\right]}
\right]},
\right.
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates={\left[ x, {y -1}, z, 
{t - \%A} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={? -1}}, {coordinates={\left[ x, y, z, 
{t - \%A} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates={\left[ {x -1}, y, z, 
{t - \%A} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates={\left[ x, y, {z -1}, 
{t - \%A} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={? -2}}, {coordinates={\left[ {x -1}, {y+1}, 
z, {t -1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates={\left[ {x+1}, {y -1}, z, 
{t -1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={? -1}}, {coordinates={\left[ {x -1}, {y+1}, 
{z -1}, t 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={?+1}}, {coordinates={\left[ {x+1}, {y -1}, 
{z -1}, t 
\right]}}
\right]},
\\
\displaystyle
\left[ {complexroots={{? \sp 6} -{2 \  {? \sp 3}}+{3 \  {? \sp 2}} -3}}, 
coordinates=
\left[ {{2 \  x}+{ \%A \sp 3}+ \%A -1}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{{2 \  y}+{ \%A \sp 3}+ \%A -1}, {z - \%A}, {t - \%A} 
\right]
\right],
\\
\displaystyle
\left[ 
{complexRoots={{? \sp 5}+{3 \  {? \sp 3}} -{2 \  {? \sp 2}}+{3 \  ?} -3}}, 
coordinates=
\left[ {x - \%A}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{y - \%A}, {z+{ \%A \sp 3}+{2 \  \%A} -1}, {t - \%A} 
\right]
\right],
\\
\displaystyle
\left[ 
{complexRoots={{? \sp 4} -{? \sp 3} -{2 \  {? \sp 2}}+3}}, 
coordinates=
\left[ {x+{ \%A \sp 3} - \%A -1}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{y+{ \%A \sp 3} - \%A -1}, 
{z -{ \%A \sp 3}+{2 \  \%A}+1}, 
{t - \%A} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots={?+1}}, coordinates=
\left[ {x -1}, {y -1}, z, {t - \%A} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots={{? \sp 6}+{2 \  {? \sp 3}}+{3 \  {? \sp 2}} -3}}, 
coordinates=
\left[ 
{{2 \  x} -{ \%A \sp 3} - \%A -1}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{y+ \%A}, 
{{2 \  z} -{ \%A \sp 3} - \%A -1}, {t+ \%A} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots={{? \sp 6}+{{12} \  {? \sp 4}}+{{20} \  {? \sp 3}} 
-{{45} \  {? \sp 2}} -{{42} \  ?} -{953}}}, 
coordinates=
\right.
\\
\displaystyle
\left.
\left[ 
{{{12609} \  x}+
{{23} \  { \%A \sp 5}}+
{{49} \  { \%A \sp 4}} -
{{46} \  { \%A \sp 3}}+
{{362} \  { \%A \sp 2}} -
{{5015} \  \%A} -{8239}}, 
\right.
\right.
\\
\displaystyle
{{{25218} \  y}+
{{23} \  { \%A \sp 5}}+
{{49} \  { \%A \sp 4}} -
{{46} \  { \%A \sp 3}}+
{{362} \  { \%A \sp 2}}+
{{7594} \  \%A} -
{8239}}, 
\\
\displaystyle
{{{25218} \  z}+
{{23} \  { \%A \sp 5}}+
{{49} \  { \%A \sp 4}} -
{{46} \  { \%A \sp 3}}+
{{362} \  { \%A \sp 2}}+
{{7594} \  \%A} -{8239}}, 
\\
\displaystyle
\left.
\left.
{{{12609} \  t}+
{{23} \  { \%A \sp 5}}+
{{49} \  { \%A \sp 4}} -
{{46} \  { \%A \sp 3}}+
{{362} \  { \%A \sp 2}} -
{{5015} \  \%A} -
{8239}} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 5}+{{12} \  {? \sp 3}} -{{16} \  {? \sp 2}}+{{48} \  ?} -{96}}}, 
coordinates=
\left[ {8 \  x}+{ \%A \sp 3}+
\right.
\right.
\\
\displaystyle
\left.
\left.
{8 \   \%A} -8, {{2 \  y} - \%A}, {{2 \  z} - \%A}, {{2 \  t} - \%A} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 5}+{? \sp 4} -{5 \  {? \sp 3}} -{3 \  {? \sp 2}}+{9 \  ?}+3}}, 
coordinates=
\left[ {2 \  x} -{ \%A \sp 3}+
\right.
\right.
\\
\displaystyle
\left.
\left.
{2 \  \%A} -1, 
{{2 \  y}+{ \%A \sp 3} -{4 \  \%A}+1}, {{2 \  z} -{ \%A \sp 3}+
{2 \  \%A} -1}, {{2 \  t} -{ \%A \sp 3}+{2 \  \%A} -1} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 4} -{3 \  {? \sp 3}}+{4 \  {? \sp 2}} -{6 \  ?}+{13}}}, 
coordinates=
\left[ {9 \  x} -{2 \  { \%A \sp 3}}+
\right.
\right.
\\
\displaystyle
{4 \  { \%A \sp 2}} - \%A+2, 
{9 \  y}+{ \%A \sp 3} -
{2 \  { \%A \sp 2}}+
{5 \  \%A} -1, 
{9 \  z}+
{ \%A \sp 3} -
{2 \  { \%A \sp 2}}+
\\
\displaystyle
\left.
\left.
{5 \  \%A} -1, {{9 \  t}+{ \%A \sp 3} -{2 \  { \%A \sp 2}} -{4 \  \%A} -1} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots={{? \sp 4} -{{11} \  {? \sp 2}}+{37}}}, 
coordinates=
\left[ {{3 \  x} -{ \%A \sp 2}+7}, {6 \  y}+{ \%A \sp 2}+
\right.
\right.
\\
\displaystyle
\left.
\left.
{3 \  \%A} -7, {{3 \  z} -{ \%A \sp 2}+7}, 
{{6 \  t}+{ \%A \sp 2} -{3 \   \%A} -7} 
\right]
\right],
\\
\displaystyle
{\left[ {complexRoots={?+1}}, {coordinates=
{\left[ {x -1}, y, {z 
-1}, {t+1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={?+2}}, {coordinates=
{\left[ x, {y -1}, {z -1}, {t+1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={? -2}}, {coordinates=
{\left[ x, {y -1}, {z+1}, {t -1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates=
{\left[ x, {y+1}, {z -1}, {t -1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots={? -2}}, {coordinates=
{\left[ {x -1}, y, {z+1}, {t -1} 
\right]}}
\right]},
\\
\displaystyle
{\left[ {complexRoots=?}, {coordinates=
{\left[ {x+1}, y, {z -1}, {t -1} 
\right]}}
\right]},
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 4}+{5 \  {? \sp 3}}+{{16} \  {? \sp 2}}+{{30} \  ?}+{57}}}, 
coordinates=
\left[ {{{151} \  x}+{15} \  { \%A \sp 3}}+
\right.
\right.
\\
\displaystyle
{{54} \  { \%A \sp 2}}+
{{104} \  \%A}+{93}, 
{{{151} \  y} -{{10} \  { \%A \sp 3}} -
{{36} \  { \%A \sp 2}} -{{19} \  \%A} -
{62}}, 
\\
\displaystyle
\left.
\left.
{{{151} \  z} -{5 \  { \%A \sp 3}} -
{{18} \  { \%A \sp 2}} -{{85} \  \%A} -
{31}}, 
{{{151} \  t} -{5 \  { \%A \sp 3}} -
{{18} \  { \%A \sp 2}} -{{85} \  \%A} 
-{31}} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots={{? \sp 4} -{? \sp 3} -{2 \  {? \sp 2}}+3}}, 
coordinates=
\left[ {x -{ \%A \sp 3}+{2 \  \%A}+1}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{y+{ \%A \sp 3} - \%A -1}, {z - \%A}, {t+{ \%A \sp 3} - \%A -1} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 4}+{2 \  {? \sp 3}} -{8 \  {? \sp 2}}+{48}}}, 
coordinates=
\left[ {{8 \  x} -{ \%A \sp 3}+{4 \  \%A} -8}, 
\right.
\right.
\\
\displaystyle
\left.
\left.
{{2 \  y}+ \%A}, {{8 \  z}+{ \%A \sp 3} -{8 \  \%A}+8}, 
{{8 \  t} -{ \%A \sp 3}+{4 \  \%A} -8} 
\right]
\right],
\\
\displaystyle
\left[ {complexRoots=
{{? \sp 5}+{? \sp 4} -{2 \  {? \sp 3}} -{4 \  {? \sp 2}}+{5 \  ?}+8}}, 
\right.
\\
\displaystyle
\left.
coordinates=
\left[ 
{{3 \  x}+{ \%A \sp 3} -1}, 
{{3 \  y}+{ \%A \sp 3} -1}, 
{{3 \  z}+{ \%A \sp 3} -1}, 
{t - \%A} 
\right]
\right],
\\
\displaystyle
\left.
\left[ 
{complexRoots={{? \sp 3}+{3 \  ?} -1}}, 
coordinates=
\left[ {x - \%A}, {y - \%A}, {z - \%A}, {t - \%A} 
\right]
\right]
\right]
\end{array}
$$
\returnType{Type: 
List Record(
complexRoots: SparseUnivariatePolynomial Integer,
coordinates: List Polynomial Integer)}

Note that this computation is made from the input system {\bf lf}.

However it is possible to reuse a pre-computed regular chain as follows:

\spadcommand{ts := lts.1  }
$$
\begin{array}{@{}l}
\left\{
{{t \sp 2}+t+1}, 
{{z \sp 3} -z -{t \sp 3}+t}, 
\right.
\\
\\
\displaystyle
\left( {3 \  z}+{3 \  {t \sp 3}} -3 
\right)\  {y \sp 2}+
\left( {3 \  {z \sp 2}}+
\left( {6 \  {t \sp 3}} -6 
\right)\  z+{3 \  {t \sp 6}} -{6 \  {t \sp 3}}+3 
\right)\  y+
\\
\\
\displaystyle
\left.
\left( {3 \  {t \sp 3}} -3 
\right)\  {z \sp 2}+
\left( {3 \  {t \sp 6}} -{6 \  {t \sp 3}}+3 
\right)\  z+
{t \sp 9} -{3 \  {t \sp 6}}+{5 \  {t \sp 3}} -{3 \  t}, 
{x+y+z} 
\right\}
\end{array}
$$
\returnType{Type: RegularChain(Integer,[x,y,z,t])}

\spadcommand{univariateSolve(ts)\$pack  }
$$
\begin{array}{@{}l}
\left[
\left[ 
{complexRoots=
{{? \sp 4}+{5 \  {? \sp 3}}+{{16} \  {? \sp 2}}+{{30} \  ?}+{57}}}, 
p\right.
\right.
\\
\displaystyle
coordinates=
\left[ 
{{{151} \  x}+
{{15} \  { \%A \sp 3}}+
{{54} \  { \%A \sp 2}}+
{{104} \  \%A}+{93}}, 
\right.
\\
\displaystyle
{{151} \  y} -
{{10} \  { \%A \sp 3}} -
{{36} \  { \%A \sp 2}} -
{{19} \  \%A} -{62}, 
\\
\displaystyle
{{{151} \  z} -
{5 \  {  \%A \sp 3}} -
{{18} \  { \%A \sp 2}} -
{{85} \  \%A} -{31}}, 
\\
\displaystyle
\left.
\left.
{{{151} \  t} -
{5 \  { \%A \sp 3}} -
{{18} \  { \%A \sp 2}} -
{{85} \  \%A} -{31}} 
\right]
\right],
\\
\\
\displaystyle
\left[ {complexRoots={{? \sp 4} -{? \sp 3} -{2 \  {? \sp 2}}+3}}, 
\right.
\\
\displaystyle
coordinates=
\left[ 
{x -{ \%A \sp 3}+{2 \  \%A}+1}, 
{y+{ \%A \sp 3} - \%A -1}, 
\right.
\\
\displaystyle
\left.
\left.
{z - \%A}, 
{t+{ \%A \sp 3} - \%A -1} 
\right]
\right],
\\
\\
\displaystyle
\left[ 
{complexRoots={{? \sp 4}+{2 \  {? \sp 3}} -{8 \  {? \sp 2}}+{48}}}, 
\right.
\\
\displaystyle
coordinates=
\left[ 
{{8 \  x} -{ \%A \sp 3}+{4 \  \%A} -8}, 
{{2 \  y}+ \%A}, 
\right.
\\
\displaystyle
\left.
\left.
\left.
{{8 \  z}+{ \%A \sp 3} -{8 \  \%A}+8}, 
{{8 \  t} -{  \%A \sp 3}+{4 \  \%A} -8} 
\right]
\right]
\right]
\end{array}
$$
\returnType{Type: List Record(
complexRoots: SparseUnivariatePolynomial Integer,
coordinates: List Polynomial Integer)}

\spadcommand{realSolve(ts)\$pack   }
$$
\left[
\right]
$$
\returnType{Type: List List RealClosure Fraction Integer}

We compute now the full set of points with real coordinates:

\spadcommand{lr2 := realSolve(lf)\$pack    }
$$
\begin{array}{@{}l}
\left[
{\left[ 0, -1, 1, 1 \right]},
{\left[ 0, 0, 1, 0 \right]},
{\left[ 1, 0, 0, 0 \right]},
{\left[ 0, 0, 0, 1 \right]},
{\left[ 0, 1, 0, 0 \right]},\hbox{\hskip 4.5cm}
\right.
\\
\\
\displaystyle
{\left[ 1, 0, { \%B{37}}, -{ \%B{37}} \right]},
{\left[ 1, 0, { \%B{38}}, -{ \%B{38}} \right]},
\\
\\
\displaystyle
{\left[ 0, 1, { \%B{35}}, -{ \%B{35}} \right]},
{\left[ 0, 1, { \%B{36}}, -{ \%B{36}} \right]},
{\left[ -1, 0, 1, 1 \right]},
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{32}}, 
{{\frac{1}{27}} \  {{ \%B{32}} \sp {15}}}+
{{\frac{2}{27}} \  {{ \%B{32}} \sp {14}}}+
{{\frac{1}{27}} \  {{ \%B{32}} \sp {13}}} -
{{\frac{4}{27}} \  {{ \%B{32}} \sp {12}}} -
{{\frac{11}{27}} \  {{  \%B{32}} \sp {11}}} -
\right.
\\
\\
\displaystyle
{{\frac{4}{27}} \  {{ \%B{32}} \sp {10}}}+
{{\frac{1}{27}} \  {{ \%B{32}} \sp 9}}+
{{\frac{14}{27}} \  {{ \%B{32}} \sp 8}}+
{{\frac{1}{27}} \  {{ \%B{32}} \sp 7}}+
{{\frac{2}{9}} \  {{ \%B{32}} \sp 6}}+
\\
\\
\displaystyle
{{\frac{1}{3}} \  {{ \%B{32}} \sp 5}}+
{{\frac{2}{9}} \  {{ \%B{32}} \sp 4}}+
{{  \%B{32}} \sp 3}+
{{\frac{4}{3}} \  {{ \%B{32}} \sp 2}} -
{ \%B{32}} 
-2, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{32}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp {13}}}+
{{\frac{2}{27}} \  {{  \%B{32}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{32}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{32}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{32}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{32}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{32}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{32}} \sp 4}} -
{{ \%B{32}} \sp 3} -{{\frac{2}{3}} \  
{{  \%B{32}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{32}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{32}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{32}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{32}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{  \%B{32}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{32}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{32}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{32}} \sp 6}} -
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{32}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{32}} \sp 4}} -
{{ \%B{32}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{32}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{32}}}+
{\frac{3}{2}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{33}}, 
{{\frac{1}{27}} \  {{ \%B{33}} \sp {15}}}+
{{\frac{2}{27}} \  {{ \%B{33}} \sp {14}}}+
{{\frac{1}{27}} \  {{ \%B{33}} \sp {13}}} -
{{\frac{4}{27}} \  {{ \%B{33}} \sp {12}}} -
{{\frac{11}{27}} \  {{  \%B{33}} \sp {11}}} -
\right.
\\
\\
\displaystyle
{{\frac{4}{27}} \  {{ \%B{33}} \sp {10}}}+
{{\frac{1}{27}} \  {{ \%B{33}} \sp 9}}+
{{\frac{14}{27}} \  {{ \%B{33}} \sp 8}}+
{{\frac{1}{27}} \  {{ \%B{33}} \sp 7}}+
{{\frac{2}{9}} \  {{ \%B{33}} \sp 6}}+
\\
\\
\displaystyle
{{\frac{1}{3}} \  {{ \%B{33}} \sp 5}}+
{{\frac{2}{9}} \  {{ \%B{33}} \sp 4}}+
{{  \%B{33}} \sp 3}+
{{\frac{4}{3}} \  {{ \%B{33}} \sp 2}} -
{ \%B{33}} -2, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{33}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp {13}}}+
{{\frac{2}{27}} \  {{  \%B{33}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{33}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{33}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{33}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{33}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{33}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{33}} \sp 4}} -
{{ \%B{33}} \sp 3} -
{{\frac{2}{3}} \  {{  \%B{33}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{33}}}+{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{33}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{33}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{33}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{  \%B{33}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{33}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{33}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{33}} \sp 6}} -
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{33}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{33}} \sp 4}} -
{{ \%B{33}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{33}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{33}}}+
{\frac{3}{2}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{34}}, 
{{\frac{1}{27}} \  {{ \%B{34}} \sp {15}}}+
{{\frac{2}{27}} \  {{ \%B{34}} \sp {14}}}+
{{\frac{1}{27}} \  {{ \%B{34}} \sp {13}}} -
{{\frac{4}{27}} \  {{ \%B{34}} \sp {12}}} -
{{\frac{11}{27}} \  {{  \%B{34}} \sp {11}}} -
\right.
\\
\\
\displaystyle
{{\frac{4}{27}} \  {{ \%B{34}} \sp {10}}}+
{{\frac{1}{27}} \  {{ \%B{34}} \sp 9}}+
{{\frac{14}{27}} \  {{ \%B{34}} \sp 8}}+
{{\frac{1}{27}} \  {{ \%B{34}} \sp 7}}+
{{\frac{2}{9}} \  {{ \%B{34}} \sp 6}}+
\\
\\
\displaystyle
{{\frac{1}{3}} \  {{ \%B{34}} \sp 5}}+
{{\frac{2}{9}} \  {{ \%B{34}} \sp 4}}+
{{  \%B{34}} \sp 3}+
{{\frac{4}{3}} \  {{ \%B{34}} \sp 2}} -
{ \%B{34}} -2, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{34}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp {13}}}+
{{\frac{2}{27}} \  {{  \%B{34}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{34}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{34}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{34}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{34}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{34}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{34}} \sp 4}} -
{{ \%B{34}} \sp 3} -
{{\frac{2}{3}} \  {{  \%B{34}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{34}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
-{{\frac{1}{54}} \  {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{34}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{34}} \sp {12}}}+
{{\frac{11}{54}} \  {{ \%B{34}} \sp {11}}}+
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{  \%B{34}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{34}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{34}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{34}} \sp 6}} -
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{34}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{34}} \sp 4}} -
{{ \%B{34}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{34}} \sp 2}}+
{{\frac{1}{2}} \  { \%B{34}}}+
{\frac{3}{2}}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
{\left[ -1, 1, 0, 1 \right]},
{\left[ -1, 1, 1, 0 \right]},
\\
\\
\displaystyle
\left[ 
{ \%B{23}}, 
-{{\frac{1}{54}} \  {{ \%B{23}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{23}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{23}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{23}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{23}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{23}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{23}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{23}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{23}} \sp 4}} -
{{  \%B{23}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{23}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{23}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{30}}, 
-{ \%B{30}}+
{{\frac{1}{54}} \  {{  \%B{23}} \sp {15}}}+\hbox{\hskip 1.0cm}
{{\frac{1}{27}} \  {{ \%B{23}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{23}} \sp {12}}} -
{{\frac{11}{54}} \  {{ \%B{23}} \sp {11}}} -
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{23}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{23}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp 7}}+
{{\frac{1}{9}} \  {{ \%B{23}} \sp 6}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{23}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{23}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{23}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{23}}} -
{\frac{1}{2}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{23}}, 
-{{\frac{1}{54}} \  {{ \%B{23}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{23}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{23}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{23}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{23}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{23}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{23}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{23}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{23}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{23}} \sp 4}} -
{{  \%B{23}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{23}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{23}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{31}}, 
-{ \%B{31}}+{{\frac{1}{54}} \  {{  \%B{23}} \sp {15}}}+
{{\frac{1}{27}} \  {{ \%B{23}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{23}} \sp {12}}} -
\\
\\
\displaystyle
{{\frac{11}{54}} \  {{ \%B{23}} \sp {11}}} -
{{\frac{2}{27}} \  {{ \%B{23}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{23}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{23}} \sp 7}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{9}} \  {{ \%B{23}} \sp 6}}+
{{\frac{1}{6}} \  {{ \%B{23}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{23}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{23}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{23}}} -
{\frac{1}{2}} 
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{24}}, 
-{{\frac{1}{54}} \  {{ \%B{24}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{24}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{24}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{24}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{24}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{24}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{24}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{24}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{24}} \sp 4}} -
{{  \%B{24}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{24}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{24}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{28}}, 
-{ \%B{28}}+{{\frac{1}{54}} \  {{  \%B{24}} \sp {15}}}+
{{\frac{1}{27}} \  {{ \%B{24}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{24}} \sp {12}}} -
{{\frac{11}{54}} \  {{ \%B{24}} \sp {11}}} -
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{24}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{24}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp 7}}+
{{\frac{1}{9}} \  {{ \%B{24}} \sp 6}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{24}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{24}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{24}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{24}}} -
{\frac{1}{2}}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{24}}, 
-{{\frac{1}{54}} \  {{ \%B{24}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{24}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{24}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{24}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{24}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{24}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{24}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{24}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{24}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{24}} \sp 4}} -
{{  \%B{24}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{24}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{24}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{29}}, 
-{ \%B{29}}+
{{\frac{1}{54}} \  {{  \%B{24}} \sp {15}}}+
{{\frac{1}{27}} \  {{ \%B{24}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{24}} \sp {12}}} -
{{\frac{11}{54}} \  {{ \%B{24}} \sp {11}}} -
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{24}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{24}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{24}} \sp 7}}+
{{\frac{1}{9}} \  {{ \%B{24}} \sp 6}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{24}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{24}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{24}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{24}}} -
{\frac{1}{2}}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{25}}, 
-{{\frac{1}{54}} \  {{ \%B{25}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{25}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{25}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{25}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{25}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{25}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{25}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{25}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{25}} \sp 4}} -
{{  \%B{25}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{25}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{25}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{26}}, 
-{ \%B{26}}+
{{\frac{1}{54}} \  {{  \%B{25}} \sp {15}}}+
{{\frac{1}{27}} \  {{ \%B{25}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{25}} \sp {12}}} -
{{\frac{11}{54}} \  {{ \%B{25}} \sp {11}}} -
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{25}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{25}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp 7}}+
{{\frac{1}{9}} \  {{ \%B{25}} \sp 6}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{25}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{25}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{25}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{25}}} -
{\frac{1}{2}}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
\left[ 
{ \%B{25}}, 
-{{\frac{1}{54}} \  {{ \%B{25}} \sp {15}}} -
{{\frac{1}{27}} \  {{ \%B{25}} \sp {14}}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp {13}}}+
{{\frac{2}{27}} \  {{ \%B{25}} \sp {12}}}+
{{\frac{11}{54}} \  {{  \%B{25}} \sp {11}}}+
\right.
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{25}} \sp {10}}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp 9}} -
{{\frac{7}{27}} \  {{ \%B{25}} \sp 8}} -
{{\frac{1}{54}} \  {{ \%B{25}} \sp 7}} -
{{\frac{1}{9}} \  {{ \%B{25}} \sp 6}} -
\\
\\
\displaystyle
{{\frac{1}{6}} \  {{ \%B{25}} \sp 5}} -
{{\frac{1}{9}} \  {{ \%B{25}} \sp 4}} -
{{  \%B{25}} \sp 3} -
{{\frac{2}{3}} \  {{ \%B{25}} \sp 2}}+
{{\frac{1}{2}} \  {  \%B{25}}}+
{\frac{3}{2}}, 
\end{array}
$$
$$
\begin{array}{@{}l}
{ \%B{27}}, 
-{ \%B{27}}+
{{\frac{1}{54}} \  {{  \%B{25}} \sp {15}}}+
{{\frac{1}{27}} \  {{ \%B{25}} \sp {14}}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp {13}}} -
{{\frac{2}{27}} \  {{ \%B{25}} \sp {12}}} -
{{\frac{11}{54}} \  {{ \%B{25}} \sp {11}}} -
\\
\\
\displaystyle
{{\frac{2}{27}} \  {{ \%B{25}} \sp {10}}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp 9}}+
{{\frac{7}{27}} \  {{ \%B{25}} \sp 8}}+
{{\frac{1}{54}} \  {{ \%B{25}} \sp 7}}+
{{\frac{1}{9}} \  {{ \%B{25}} \sp 6}}+
\\
\\
\displaystyle
\left.
{{\frac{1}{6}} \  {{ \%B{25}} \sp 5}}+
{{\frac{1}{9}} \  {{ \%B{25}} \sp 4}}+
{{\frac{2}{3}} \  {{ \%B{25}} \sp 2}} -
{{\frac{1}{2}} \  { \%B{25}}} -
{\frac{1}{2}}
\right],
\end{array}
$$
$$
\begin{array}{@{}l}
{\left[ 1, { \%B{21}}, -{ \%B{21}}, 0 \right]},
{\left[ 1, { \%B{22}}, -{ \%B{22}}, 0 \right]},
{\left[ 1, { \%B{19}}, 0, -{ \%B{19}} \right]},
{\left[ 1, { \%B{20}}, 0, -{ \%B{20}} \right]},
\\
\\
\displaystyle
\left[ 
{ \%B{17}}, 
-{{\frac{1}{3}} \  {{ \%B{17}} \sp 3}}+{\frac{1}{3}}, 
-{{\frac{1}{3}} \  {{ \%B{17}} \sp 3}}+{\frac{1}{3}}, 
-{{\frac{1}{3}} \  {{ \%B{17}} \sp 3}}+{\frac{1}{3}}
\right],
\\
\\
\displaystyle
\left.
\left[ 
{ \%B{18}}, 
{-{{\frac{1}{3}} \  {{ \%B{18}} \sp 3}}+{\frac{1}{3}}}, 
{-{{\frac{1}{3}} \  {{ \%B{18}} \sp 3}}+{\frac{1}{3}}}, 
{-{{\frac{1}{3}} \  {{ \%B{18}} \sp 3}}+{\frac{1}{3}}} 
\right]
\right]
\end{array}
$$
\returnType{Type: List List RealClosure Fraction Integer}

The number of real solutions for the input system is:

\spadcommand{\#lr2 }
$$
27 
$$
\returnType{Type: PositiveInteger}

Another example of computation of real solutions illustrates the 
{\tt LexTriangularPackage} package constructor.

We concentrate now on the solutions with real (strictly) positive
coordinates:

\spadcommand{lpr2 := positiveSolve(lf)\$pack   }
$$
\left[
{\left[ { \%B{40}}, {-{{\frac{1}{3}} \  {{ \%B{40}} \sp 3}}+{\frac{1}{3}}}, 
{-{{\frac{1}{3}} \  {{ \%B{40}} \sp 3}}+{\frac{1}{3}}}, {-{{\frac{1}{3}} \  {{ 
 \%B{40}} \sp 3}}+{\frac{1}{3}}} 
\right]}
\right]
$$
\returnType{Type: List List RealClosure Fraction Integer}

Finally, we approximate the coordinates of this point with 20 exact digits:

\spadcommand{[approximate(r,1/10**21)::Float for r in lpr2.1] }
$$
\begin{array}{@{}l}
\left[
{0.3221853546\ 2608559291}, 
{0.3221853546\ 2608559291}, 
\right.
\\
\displaystyle
\left.
{0.3221853546\ 2608559291}, 
{0.3221853546 2608559291} 
\right]
\end{array}
$$
\returnType{Type: List Float}


%Original Page 483

\chapter{Interactive Programming}
\label{ugIntProg}

Programming in the interpreter is easy.
So is the use of Axiom's graphics facility.
Both are rather flexible and allow you to use them for many
interesting applications.
However, both require learning some basic ideas and skills.

All graphics examples in the gallery section are either
produced directly by interactive commands or by interpreter
programs.
Four of these programs are introduced here.
By the end of this chapter you will know enough about graphics and
programming in the interpreter to not only understand all these
examples, but to tackle interesting and difficult problems on your
own.
The appendix on graphics lists all the remaining commands and
programs used to create these images.

\section{Drawing Ribbons Interactively}
\label{ugIntProgDrawing}

We begin our discussion of interactive graphics with the creation
of a useful facility: plotting ribbons of two-graphs in
three-space.
Suppose you want to draw the two-di\-men\-sion\-al graphs of $n$
functions $f_i(x), 1 \leq i \leq n,$ all over some fixed range of $x$.
One approach is to create a two-di\-men\-sion\-al graph for each one, then
superpose one on top of the other.
What you will more than likely get is a jumbled mess.
Even if you make each function a different color, the result is
likely to be confusing.

A better approach is to display each of the $f_i(x)$ in three
\index{ribbon}
dimensions as a ``ribbon'' of some appropriate width along the
$y$-direction, laying down each  ribbon next to the
previous one.
A ribbon is simply a function of $x$ and $y$ depending
only on $x$.

%Original Page 484

We illustrate this for $f_i(x)$ defined as simple powers of
$x$ for $x$ ranging between $-1$ and $1$.

Draw the ribbon for $z = x^2$.

\spadgraph{draw(x**2,x=-1..1,y=0..1)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbon1.eps}}
\begin{center}
$x^2,x=-1..1,y=0..1$
\end{center}
\end{minipage}

Now that was easy!
What you get is a ``wire-mesh'' rendition of the ribbon.
That's fine for now.
Notice that the mesh-size is small in both the $x$ and the
$y$ directions.
Axiom normally computes points in both these directions.
This is unnecessary.
One step is all we need in the $y$-direction.
To have Axiom economize on $y$-points, we re-draw the
ribbon with option $var2Steps == 1$.

Re-draw the ribbon, but with option $var2Steps == 1$
so that only $1$ step is computed in the
$y$ direction.

\spadgraph{vp := draw(x**2,x=-1..1,y=0..1,var2Steps==1) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbon2.eps}}
\begin{center}
$x^2, x=-1..1,y=0..1, var2Steps==1$
\end{center}
\end{minipage}

The operation has created a viewport, that is, a graphics window
on your screen.
We assigned the viewport to $vp$ and now we manipulate
its contents.


Graphs are objects, like numbers and algebraic expressions.
You may want to do some experimenting with graphs.
For example, say
\begin{verbatim}
showRegion(vp, "on")
\end{verbatim}
to put a bounding box around the ribbon.
Try it!
Issue $rotate(vp, -45, 90)$ to rotate the
figure $-45$ longitudinal degrees and $90$ latitudinal
degrees.

%Original Page 485

Here is a different rotation.
This turns the graph so you can view it along the $y$-axis.

\spadcommand{rotate(vp, 0, -90)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbon2r.eps}}
\begin{center}
$rotate(vp, 0, -90)$
\end{center}
\end{minipage}

There are many other things you can do.
In fact, most everything you can do interactively using the
three-di\-men\-sion\-al control panel (such as translating, zooming, resizing,
coloring, perspective and lighting selections) can also be done
directly by operations (see \sectionref{ugGraph} for more details).

When you are done experimenting, say $reset(vp)$ to restore the
picture to its original position and settings.


Let's add another ribbon to our picture---one
for $x^3$.
Since $y$ ranges from $0$ to $1$ for the
first ribbon, now let $y$ range from $1$ to
$2$.
This puts the second ribbon next to the first one.

How do you add a second ribbon to the viewport?
One method is
to extract the ``space'' component from the
viewport using the operation
\spadfunFrom{subspace}{ThreeDimensionalViewport}.
You can think of the space component as the object inside the
window (here, the ribbon).
Let's call it $sp$.
To add the second ribbon, you draw the second ribbon using the
option $space == sp$.

Extract the space component of $vp$.

\spadcommand{sp := subspace(vp)}

%Original Page 486

Add the ribbon for
$x^3$ alongside that for
$x^2$.

\spadgraph{vp := draw(x**3,x=-1..1,y=1..2,var2Steps==1, space==sp)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbons.eps}}
\begin{center}
$x^3, x=-1..1, y=1..2, var2Steps==1, space==sp$
\end{center}
\end{minipage}

Unless you moved the original viewport, the new viewport covers
the old one.
You might want to check that the old object is still there by
moving the top window.

Let's show quadrilateral polygon outlines on the ribbons and then
enclose the ribbons in a box.

Show quadrilateral polygon outlines.

\spadcommand{drawStyle(vp,"shade");outlineRender(vp,"on")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbons2.eps}}
\begin{center}
$drawStyle(vp,"shade");outlineRender(vp,"on")$
\end{center}
\end{minipage}

Enclose the ribbons in a box.

\spadcommand{rotate(vp,20,-60); showRegion(vp,"on")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbons2b.eps}}
\begin{center}
$rotate(vp,20,-60); showRegion(vp,"on")$
\end{center}
\end{minipage}

%Original Page 487

This process has become tedious!
If we had to add two or three more ribbons, we would have to
repeat the above steps several more times.
It is time to write an interpreter program to help us take care of
the details.
\vfill
\newpage
\section{A Ribbon Program}
\label{ugIntProgRibbon}

The above approach creates a new viewport for each additional ribbon.
A better approach is to build one object composed of all ribbons
before creating a viewport.  To do this, use {\bf makeObject} rather
than {\bf draw}.  The operations have similar formats, but {\bf draw}
returns a viewport and {\bf makeObject} returns a space object.

We now create a function {\bf drawRibbons} of two arguments:
$flist$, a list of formulas for the ribbons you want to draw,
and $xrange$, the range over which you want them drawn.
Using this function, you can just say
\begin{verbatim}
drawRibbons([x**2, x**3], x=-1..1)
\end{verbatim}
to do all of the work required in the last section.
Here is the {\bf drawRibbons} program.
Invoke your favorite editor and create a file called {\bf ribbon.input}
containing the following program.

\begin{figure}
\line(1,0){380}
\begin{verbatim}
drawRibbons(flist, xrange) ==
  sp := createThreeSpace()                     Create empty space $sp$.
  y0 := 0                                      The initial ribbon position.
  for f in flist repeat                        For each function $f$,
    makeObject(f, xrange, y=y0..y0+1,          create and add a ribbon
       space==sp, var2Steps == 1)              for $f$ to the space $sp$.
    y0 := y0 + 1                               The next ribbon position.
  vp := makeViewport3D(sp, "Ribbons")          Create viewport.
  drawStyle(vp, "shade")                       Select shading style.
  outlineRender(vp, "on")                      Show polygon outlines.
  showRegion(vp,"on")                          Enclose in a box.
  n := # flist                                 The number of ribbons
  zoom(vp,n,1,n)                               Zoom in x- and z-directions.
  rotate(vp,0,75)                              Change the angle of view.
  vp                                           Return the viewport.
\end{verbatim}
\caption{The first {\bf drawRibbons} function.}
\label{fig-ribdraw1}
\line(1,0){380}
\end{figure}

Here are some remarks on the syntax used in the {\bf drawRibbons} function
(consult \sectionref{ugUser} for more details).
Unlike most other programming languages which use semicolons,
parentheses, or {\it begin}--{\it end} brackets to delineate the
structure of programs, the structure of an Axiom program is
determined by indentation.
The first line of the function definition always begins in column 1.
All other lines of the function are indented with respect to the first
line and form a {\it pile} (see \sectionref{ugLangBlocks}).

%Original Page 488

The definition of {\bf drawRibbons}
consists of a pile of expressions to be executed one after
another.
Each expression of the pile is indented at the same level.
Lines 4-7 designate one single expression:
since lines 5-7 are indented with respect to the others, these
lines are treated as a continuation of line 4.
Also since lines 5 and 7 have the same indentation level, these
lines designate a pile within the outer pile.

The last line of a pile usually gives the value returned by the
pile.
Here it is also the value returned by the function.
Axiom knows this is the last line of the function because it
is the last line of the file.
In other cases, a new expression beginning in column one signals
the end of a function.

The line {\bf drawStyle}{\tt (vp,"shade")} is given after the viewport
has been created to select the draw style.
We have also used the \spadfunFrom{zoom}{ThreeDimensionalViewport}
option.
Without the zoom, the viewport region would be scaled equally in
all three coordinate directions.

Let's try the function {\bf drawRibbons}.
First you must read the file to give Axiom the function definition.

Read the input file.

\spadcommand{)read ribbon }

Draw ribbons for $x, x^2,\dots, x^5$
for $-1 \leq x \leq 1$

\spadgraph{drawRibbons([x**i for i in 1..5],x=-1..1) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/ribbons5.eps}}
\begin{center}
$[x^i {rm\ for\ i\ in\ 1..5}], x=-1..1$
\end{center}
\end{minipage}

\section{Coloring and Positioning Ribbons}
\label{ugIntProgColor}
%

Before leaving the ribbon example, we  make two improvements.
Normally, the color given to each point in the space is a
function of its height within a bounding box.
The points at the bottom of the
box are red, those at the top are purple.

To change the normal coloring, you can give
an option $colorFunction == {\it function}$.
When Axiom goes about displaying the data, it
determines the range of colors used for all points within the box.
Axiom then distributes these numbers uniformly over the number of hues.
Here we use the simple color function
$(x,y) \mapsto i$ for the
$i$-th ribbon.

Also, we add an argument $yrange$ so you can give the range of
$y$ occupied by the ribbons.
For example, if the $yrange$ is given as
$y=0..1$ and there are $5$ ribbons to be displayed, each
ribbon would have width $0.2$ and would appear in the
range $0 \leq y \leq 1$.

Refer to lines 4-9.
Line 4 assigns to $yVar$ the variable part of the
$yrange$ (after all, it need not be $y$).
Suppose that $yrange$ is given as $t = a..b$ where $a$ and
$b$ have numerical values.
Then line 5 assigns the value of $a$ to the variable $y0$.
Line 6 computes the width of the ribbon by dividing the difference of
$a$ and $b$ by the number, $num$, of ribbons.
The result is assigned to the variable $width$.
Note that in the for-loop in line 7, we are iterating in parallel; it is
not a nested loop.

%Original Page 489

\begin{figure}
\line(1,0){380}
\begin{verbatim}
drawRibbons(flist, xrange, yrange) ==
  sp := createThreeSpace()                     Create empty space $sp$.
  num := # flist                               The number of ribbons.
  yVar := variable yrange                      The ribbon variable.
  y0:Float    := lo segment yrange             The first ribbon coordinate.
  width:Float := (hi segment yrange - y0)/num  The width of a ribbon.
  for f in flist for color in 1..num repeat    For each function $f$,
    makeObject(f, xrange, yVar = y0..y0+width, create and add ribbon to
      var2Steps == 1, colorFunction == (x,y) +-> color, _
      space == sp)                             $sp$ of a different color.
    y0 := y0 + width                           The next ribbon coordinate.
  vp := makeViewport3D(sp, "Ribbons")          Create viewport.
  drawStyle(vp, "shade")                       Select shading style.
  outlineRender(vp, "on")                      Show polygon outlines.
  showRegion(vp, "on")                         Enclose in a box.
  vp                                           Return the viewport.
\end{verbatim}
\hrule
\caption{The final {\bf drawRibbons} function.}
\label{fig-ribdraw2}
\line(1,0){380}
\end{figure}

\section{Points, Lines, and Curves}
\label{ugIntProgPLC}
%
What you have seen so far is a high-level program using the
graphics facility.
We now turn to the more basic notions of points, lines, and curves
in three-di\-men\-sion\-al graphs.
These facilities use small floats (objects
of type {\tt DoubleFloat}) for data.
Let us first give names to the small float values $0$ and
$1$.

The small float 0.

\spadcommand{zero := 0.0@DFLOAT }

The small float 1.

\spadcommand{one  := 1.0@DFLOAT }

The {\tt @} sign means ``of the type.'' Thus $zero$ is
$0.0$ of the type {\tt DoubleFloat}.
You can also say $0.0::DFLOAT$.

%Original Page 490

Points can have four small float components: $x, y, z$ coordinates and an
optional color.
A ``curve'' is simply a list of points connected by straight line
segments.

Create the point $origin$ with color zero, that is, the lowest color
on the color map.

\spadcommand{origin := point [zero,zero,zero,zero] }

Create the point $unit$ with color zero.

\spadcommand{unit := point [one,one,one,zero] }

Create the curve (well, here, a line) from
$origin$ to $unit$.

\spadcommand{line := [origin, unit]  }


We make this line segment into an arrow by adding an arrowhead.
The arrowhead extends to,
say, $p3$ on the left, and to, say, $p4$ on the right.
To describe an arrow, you tell Axiom to draw the two curves
$[p1, p2, p3]$ and $[p2, p4].$
We also decide through experimentation on
values for $arrowScale$, the ratio of the size of
the arrowhead to the stem of the arrow, and $arrowAngle$,
the angle between the arrowhead and the arrow.

Invoke your favorite editor and create
an input file called {\bf arrows.input}.

This input file first defines the values of
%$origin$,$unit$,
$arrowAngle$ and $arrowScale$, then
defines the function {\bf makeArrow}$(p_1, p_2)$ to
draw an arrow from point $p_1$ to $p_2$.

\line(1,0){380}
\begin{verbatim}
arrowAngle := %pi-%pi/10.0@DFLOAT              The angle of the arrowhead.
arrowScale := 0.2@DFLOAT                       The size of the arrowhead
                                               relative to the stem.
makeArrow(p1, p2) ==
  delta := p2 - p1                             The arrow.
  len := arrowScale * length delta             length of the arrowhead.
  theta := atan(delta.1, delta.2)              angle from the x-axis
  c1 := len*cos(theta + arrowAngle)            x-coord of left endpoint
  s1 := len*sin(theta + arrowAngle)            y-coord of left endpoint
  c2 := len*cos(theta - arrowAngle)            x-coord of right endpoint
  s2 := len*sin(theta - arrowAngle)            y-coord of right endpoint
  z  := p2.3*(1 - arrowScale)                  z-coord of both endpoints
  p3 := point [p2.1 + c1, p2.2 + s1, z, p2.4]  left endpoint of head
  p4 := point [p2.1 + c2, p2.2 + s2, z, p2.4]  right endpoint of head
  [ [p1, p2, p3], [p2, p4] ]                   arrow as a list of curves
\end{verbatim}
\line(1,0){380}

%Original Page 491

Read the file and then create
an arrow from the point $origin$ to the point $unit$.

Read the input file defining {\bf makeArrow}.

\spadcommand{)read arrows}

Construct the arrow (a list of two curves).

\spadcommand{arrow := makeArrow(origin,unit)}
\[
\left[
 \left[
  \left[0.0, 0.0, 0.0, 0.0\right],
  \left[1.0, 1.0, 1.0, 1.0\right],
 \right.
\right.
\]
\[
\left.
 \left.
  \left[0.69134628604607973, 
        0.842733077659504,
        0.80000000000000004,
        0.0
  \right]
 \right],
\right.
\]
\[
\left.
 \left[
  \left[1.0, 1.0, 1.0, 1.0
  \right],
  \left[0.842733077659504,
        0.69134628604607973,
        0.80000000000000004, 
        0.0
  \right]
 \right]
\right]
\]
\returnType{Type: List List Point DoubleFloat}

Create an empty object $sp$ of type $ThreeSpace$.

\spadcommand{sp := createThreeSpace()}
\returnType{Type: ThreeSpace DoubleFloat}

Add each curve of the arrow to the space $sp$.

\spadcommand{for a in arrow repeat sp := curve(sp,a)}
\returnType{Type: Void}

Create a three-di\-men\-sion\-al viewport containing that space.

\spadgraph{vp := makeViewport3D(sp,"Arrow")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/arrow.eps}}
\begin{center}
$makeViewport3D(sp,"Arrow")$
\end{center}
\end{minipage}

Here is a better viewing angle.

\spadcommand{rotate(vp,200,-60)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/arrowr.eps}}
\begin{center}
$rotate(vp,200,-60)$
\end{center}
\end{minipage}

%Original Page 492

\section{A Bouquet of Arrows}
\label{ugIntProgColorArr}

%Axiom gathers up all the points of a graph and looks at the range
%of color values given as integers.
%If theses color values range from a minimum value of $a$ to a maximum
%value of $b$, then the $a$ values are colored red (the
%lowest color in our spectrum), and $b$ values are colored
%purple (the highest color), and those in the middle are colored
%green.
%When all the points are the same color as above, Axiom
%chooses green.

Let's draw a ``bouquet'' of arrows.
Each arrow is identical. The arrowheads are
uniformly placed on a circle parallel to the $xy$-plane.
Thus the position of each arrow differs only
by the angle $\theta$,
$0 \leq \theta < 2\pi$,
between the arrow and
the $x$-axis on the $xy$-plane.

Our bouquet is rather special: each arrow has a different
color (which won't be evident here, unfortunately).
This is arranged by letting the color of each successive arrow be
denoted by $\theta$.
In this way, the color of arrows ranges from red to green to violet.
Here is a program to draw a bouquet of $n$ arrows.

\line(1,0){380}
\begin{verbatim}
drawBouquet(n,title) ==
  angle := 0.0@DFLOAT                          The initial angle
  sp := createThreeSpace()                     Create empty space $sp$
  for i in 0..n-1 repeat                       For each index i, create:
    start := point [0.0@DFLOAT,0.0@DFLOAT,0.0@DFLOAT,angle] 
                                               the point at base of arrow;
    end   := point [cos angle, sin angle, 1.0@DFLOAT, angle]
                                               the point at tip of arrow;
    arrow := makeArrow(start,end)              the $i$th arrow
    for a in makeArrow(start,end) repeat       For each arrow component,
      curve(sp,a)                              add the component to $sp$
    angle := angle + 2*%pi/n                   The next angle
  makeViewport3D(sp,title)                     Create the viewport from $sp$
\end{verbatim}
\line(1,0){380}

Read the input file.

\spadcommand{)read bouquet}

A bouquet of a dozen arrows.

\spadgraph{drawBouquet(12,"A Dozen Arrows")}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/bouquet.eps}}
\begin{center}
$drawBouquet(12,"A\ Dozen\ Arrows")$
\end{center}
\end{minipage}

\section{Diversion: When Things Go Wrong}
\label{ugIntProgDivTwo}
%
%Up to now, if you have typed in all the programs exactly as they are in
%the book, you have encountered no errors.
%In practice, however, it is easy to make mistakes.
%Computers are unforgiving: your program must be letter-for-letter correct
%or you will encounter some error.
%
%One thing that can go wrong is that you can create a syntactically
%incorrect program.
%As pointed out in Diversion 1, the meaning of Axiom programs is
%affected by indentation.
%
%The Axiom parser will ensure that all parentheses, brackets, and
%braces balance, and that commas and operators appear in the correct
%context.
%For example, change line ??
%to ??
%and run.
%
%A common mistake is to misspell an identifier or operation name.
%These are generally easy to spot since the interpreter will tell you the
%name of the operation together with the type and number of arguments which
%it is trying to find.
%
%Another mistake is to either to omit an argument or to give too many.
%Again Axiom will notify you of the offending operation.
%
%Indentation makes your programs more readable.
%However there are several ways to create a syntactically valid program.
%A most common problem occurs when a line is either indented improperly.
%% either or what?
%If this is a first line of a pile, then all the other lines will act as an
%inner pile to the first line.
%If it is a line of the pile other than the first line, Axiom then
%thinks that this line is a continuation of the previous line.
%More frequently than not, a syntactically correct expression is created.
%Almost never however will this be a semantically correct.
%Only when the program is run will an error be discovered.
%For example, change line ??
%to ??
%and run.

%Original Page 493

\section{Drawing Complex Vector Fields}
\label{ugIntProgVecFields}

We now put our arrows to good use drawing complex vector fields.
These vector fields give a representation of complex-valued
functions of complex variables.
Consider a Cartesian coordinate grid of points $(x, y)$ in
the plane, and some complex-valued function $f$ defined on
this grid.
At every point on this grid, compute the value of $f(x +
iy)$ and call it $z$.
Since $z$ has both a real and imaginary value for a given
$(x,y)$ grid point, there are four dimensions to plot.
What do we do?
We represent the values of $z$ by arrows planted at each
grid point.
Each arrow represents the value of $z$ in polar coordinates
$(r,\theta)$.
The length of the arrow is proportional to $r$.
Its direction is given by $\theta$.

The code for drawing vector fields is in the file {\bf vectors.input}.
We discuss its contents from top to bottom.

Before showing you the code, we have two small
matters to take care of.
First, what if the function has large spikes, say, ones that go off
to infinity?
We define a variable $clipValue$ for this purpose. When
$r$ exceeds the value of $clipValue$, then the value of
$clipValue$ is used instead of that for $r$.
For convenience, we define a function $clipFun(x)$ which uses
$clipValue$ to ``clip'' the value of $x$.

\line(1,0){380}
\begin{verbatim}
clipValue : DFLOAT := 6                          Maximum value allowed
clipFun(x) == min(max(x,-clipValue),clipValue)
\end{verbatim}
\line(1,0){380}

Notice that we identify $clipValue$ as a small float but do
not declare the type of the function {\bf clipFun}.
As it turns out, {\bf clipFun} is called with a
small float value.
This declaration ensures that {\bf clipFun} never does a
conversion when it is called.

The second matter concerns the possible ``poles'' of a
function, the actual points where the spikes have infinite
values.

%Original Page 494

Axiom uses normal {\tt DoubleFloat} arithmetic  which
does not directly handle infinite values.
If your function has poles, you must adjust your step size to
avoid landing directly on them (Axiom calls {\bf error}
when asked to divide a value by $0$, for example).

We set the variables $realSteps$ and $imagSteps$ to
hold the number of steps taken in the real and imaginary
directions, respectively.
Most examples will have ranges centered around the origin.
To avoid a pole at the origin, the number of points is taken
to be odd.

\line(1,0){380}
\begin{verbatim}
realSteps: INT := 25      Number of real steps
imagSteps: INT := 25      Number of imaginary steps
)read arrows
\end{verbatim}
\line(1,0){380}

Now define the function {\bf drawComplexVectorField} to draw the arrows.
It is good practice to declare the type of the main function in
the file.
This one declaration is usually sufficient to ensure that other
lower-level functions are compiled with the correct types.

\line(1,0){380}
\begin{verbatim}
C := Complex DoubleFloat
S := Segment DoubleFloat
drawComplexVectorField: (C -> C, S, S) -> VIEW3D
\end{verbatim}
\line(1,0){380}

The first argument is a function mapping complex small floats into
complex small floats.
The second and third arguments give the range of real and
imaginary values as segments like $a..b$.
The result is a three-di\-men\-sion\-al viewport.
Here is the full function definition:

\line(1,0){380}
\begin{verbatim}
drawComplexVectorField(f, realRange,imagRange) ==
  -- The real step size
  delReal := (hi(realRange)-lo(realRange))/realSteps 
  -- The imaginary step size
  delImag := (hi(imagRange)-lo(imagRange))/imagSteps 
  sp := createThreeSpace()                       Create empty space $sp$
  real := lo(realRange)                          The initial real value
  for i in 1..realSteps+1 repeat                 Begin real iteration
    imag := lo(imagRange)                        initial imaginary value
    for j in 1..imagSteps+1 repeat               Begin imaginary iteration
      z := f complex(real,imag)                  value of $f$ at the point
      arg := argument z                          direction of the arrow
      len := clipFun sqrt norm z                 length of the arrow
      p1 :=  point [real, imag, 0.0@DFLOAT, arg] base point of the arrow
      scaleLen := delReal * len                  scaled length of the arrow
      p2 := point [p1.1 + scaleLen*cos(arg),     tip point of the arrow
                   p1.2 + scaleLen*sin(arg),0.0@DFLOAT, arg]
      arrow := makeArrow(p1, p2)                 Create the arrow
      for a in arrow repeat curve(sp, a)         Add arrow to space $sp$
      imag := imag + delImag                     The next imaginary value
    real := real + delReal                       The next real value
  makeViewport3D(sp, "Complex Vector Field")     Draw it
\end{verbatim}
\line(1,0){380}

%Original Page 495

As a first example, let us draw $f(z) == sin(z)$.
There is no need to create a user function: just pass the
\spadfunFrom{sin}{Complex DoubleFloat} from {\tt Complex DoubleFloat}.

Read the file.

\spadcommand{)read vectors }

Draw the complex vector field of $sin(x)$.

\spadgraph{drawComplexVectorField(sin,-2..2,-2..2) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/vectorsin.eps}}
\begin{center}
$drawBouquet(12,"A\ Dozen\ Arrows")$
\end{center}
\end{minipage}

\section{Drawing Complex Functions}
\label{ugIntProgCompFuns}

Here is another way to graph a complex function of complex
arguments.
For each complex value $z$, compute $f(z)$, again
expressing the value in polar coordinates $(r,\theta{})$.
We draw the complex valued function, again considering the
$(x,y)$-plane as the complex plane, using $r$ as the
height (or $z$-coordinate) and $\theta$ as the color.
This is a standard plot---we learned how to do this in
\sectionref{ugGraph} ---
but here we write a new program to illustrate
the creation of polygon meshes, or grids.

Call this function {\bf drawComplex}.
It displays the points using the ``mesh'' of points.
The function definition is in three parts.

\line(1,0){380}
\begin{verbatim}
drawComplex: (C -> C, S, S) -> VIEW3D
drawComplex(f, realRange, imagRange) ==                
  -- The real step size
  delReal := (hi(realRange)-lo(realRange))/realSteps   
  -- The imaginary step size
  delImag := (hi(imagRange)-lo(imagRange))/imagSteps   
  -- Initial list of list of points $llp$
  llp:List List Point DFLOAT := []
\end{verbatim}
\line(1,0){380}

Variables $delReal$ and $delImag$ give the step
sizes along the real and imaginary directions as computed by the values
of the global variables $realSteps$ and $imagSteps$.
The mesh is represented by a list of lists of points $llp$,
initially empty.
Now $[ ]$ alone is ambiguous, so
to set this initial value
you have to tell Axiom what type of empty list it is.
Next comes the loop which builds $llp$.

\line(1,0){380}
\begin{verbatim}
  real := lo(realRange)                  The initial real value
  for i in 1..realSteps+1 repeat         Begin real iteration
    imag := lo(imagRange)                initial imaginary value
    lp := []$(List Point DFLOAT)         initial list of points $lp$
    for j in 1..imagSteps+1 repeat       Begin imaginary iteration
      z := f complex(real,imag)          value of $f$ at the point
      pt := point [real,imag, 
                   clipFun sqrt norm z,  Create a point
                   argument z]
      lp := cons(pt,lp)                  Add the point to $lp$
      imag := imag + delImag             The next imaginary value
    real := real + delReal               The next real value
    llp := cons(lp, llp)                 Add $lp$ to $llp$
\end{verbatim}
\line(1,0){380}

%Original Page 496

The code consists of both an inner and outer loop.
Each pass through the inner loop adds one list $lp$ of points
to the list of lists of points $llp$.
The elements of $lp$ are collected in reverse order.

\line(1,0){380}
\begin{verbatim}
  makeViewport3D(mesh(llp), "Complex Function")    Create a mesh and display
\end{verbatim}
\line(1,0){380}

The operation {\bf mesh} then creates an object of type
{\tt ThreeSpace(DoubleFloat)} from the list of lists of points.
This is then passed to {\bf makeViewport3D} to display the
image.

Now add this function directly to your {\bf vectors.input}
file and re-read the file using read vectors.
We try {\bf drawComplex} using
a user-defined function $f$.

Read the file.

\spadcommand{)read vectors }

This one has a pole at $z=0$.

\spadcommand{f(z) == exp(1/z)}

Draw it with an odd number of steps to avoid the pole.

\spadgraph{drawComplex(f,-2..2,-2..2)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/complexexp.eps}}
\begin{center}
$drawComplex(f,-2..2,-2..2)$
\end{center}
\end{minipage}

%Original Page 497

\section{Functions Producing Functions}
\label{ugIntProgFunctions}

In \sectionref{ugUserMake},
you learned how to use the operation
{\bf function} to create a function from symbolic formulas.
Here we introduce a similar operation which not only
creates functions, but functions from functions.

The facility we need is provided by the package
{\tt MakeUnaryCompiledFunction(E,S,T)}.
\index{MakeUnaryCompiledFunction}
This package produces a unary (one-argument) compiled
function from some symbolic data
generated by a previous computation.\footnote{%
{\tt MakeBinaryCompiledFunction} is available for binary
functions.}
\index{MakeBinaryCompiledFunction}
The $E$ tells where the symbolic data comes from;
the $S$ and $T$ give Axiom the
source and target type of the function, respectively.
The compiled function produced  has type
\spadsig{$S$}{$T$}.
To produce a compiled function with definition $p(x) == expr$, call
$compiledFunction(expr, x)$ from this package.
The function you get has no name.
You must to assign the function to the variable $p$ to give it that name.
%

Do some computation.

\spadcommand{(x+1/3)**5}

Convert this to an anonymous function of $x$.
Assign it to the variable $p$ to give the function a name.

\spadcommand{p := compiledFunction(\%,x)\$MakeUnaryCompiledFunction(POLY FRAC INT,DFLOAT,DFLOAT)}

Apply the function.

\spadcommand{p(sin(1.3))}

For a more sophisticated application, read on.

\section{Automatic Newton Iteration Formulas}
\label{ugIntProgNewton}

This setting is needed to get Newton's iterations to converge.

\spadcommand{)set streams calculate 10}

We resume
our continuing saga of arrows and complex functions.
Suppose we want to investigate the behavior of Newton's iteration function
\index{Newton iteration}
in the complex plane.
Given a function $f$, we want to find the complex values
$z$ such that $f(z) = 0$.

The first step is to produce a Newton iteration formula for
a given $f$:
$x_{n+1} = x_n - {\frac{f(x_n)}{f'(x_n)}}.$
We represent this formula by a function $g$
that performs the computation on the right-hand side, that is,
$x_{n+1} = {g}(x_n)$.

The type {\tt Expression Integer} (abbreviated {\tt EXPR
INT}) is used to represent general symbolic expressions in
Axiom.
\index{Expression}
To make our facility as general as possible, we assume
$f$ has this type.
Given $f$, we want
to produce a Newton iteration function $g$ which,
given a complex point $x_n$, delivers the next
Newton iteration point $x_{n+1}$.

%Original Page 498

This time we write an input file called {\bf newton.input}. We need to\\ 
import {\tt MakeUnaryCompiledFunction} (discussed in the last section),\\ 
call it with appropriate types, and then define the function $newtonStep$\\ 
which references it. Here is the function $newtonStep$:

\line(1,0){380}
\begin{verbatim}
C := Complex DoubleFloat                       The complex numbers
complexFunPack:=MakeUnaryCompiledFunction(EXPR INT,C,C)
                                               Package for making functions

newtonStep(f) ==                               Newton's iteration function
  fun  := complexNumericFunction f             Function for $f$
  deriv := complexDerivativeFunction(f,1)      Function for $f'$
  (x:C):C +->                                  Return the iterator function
    x - fun(x)/deriv(x)                        

complexNumericFunction f ==                    Turn an expression $f$ into a
  v := theVariableIn f                         function
  compiledFunction(f, v)$complexFunPack

complexDerivativeFunction(f,n) ==              Create an nth derivative
  v := theVariableIn f                         function
  df := D(f,v,n)
  compiledFunction(df, v)$complexFunPack

theVariableIn f ==                             Returns the variable in $f$
  vl := variables f                            The list of variables
  nv := # vl                                   The number of variables
  nv > 1 => error "Expression is not univariate."
  nv = 0 => 'x                                 Return a dummy variable
  first vl
\end{verbatim}
\line(1,0){380}

Do you see what is going on here?
A formula $f$ is passed into the function {\bf newtonStep}.
First, the function turns $f$ into a compiled program mapping
complex numbers into complex numbers.  Next, it does the same thing
for the derivative of $f$.  Finally, it returns a function which
computes a single step of Newton's iteration.

The function {\bf complexNumericFunction} extracts the variable
from the expression $f$ and then turns $f$ into a function
which maps complex numbers into complex numbers. The function
{\bf complexDerivativeFunction} does the same thing for the
derivative of $f$.  The function {\bf theVariableIn}
extracts the variable from the expression $f$, calling the function
{\bf error} if $f$ has more than one variable.
It returns the dummy variable $x$ if $f$ has no variables.

Let's now apply {\bf newtonStep} to the formula for computing
cube roots of two.

%Original Page 499

Read the input file with the definitions.

\spadcommand{)read newton}

\spadcommand{)read vectors }

The cube root of two.

\spadcommand{f := x**3 - 2}

Get Newton's iteration formula.

\spadcommand{g := newtonStep f}

Let $a$ denote the result of
applying Newton's iteration once to the complex number $1 + \%i$.

\spadcommand{a := g(1.0 + \%i)}

Now apply it repeatedly. How fast does it converge?

\spadcommand{[(a := g(a)) for i in 1..]}

Check the accuracy of the last iterate.

\spadcommand{a**3}

%Original Page 500

In MappingPackage1, we show how functions can be
manipulated as objects in Axiom.
A useful operation to consider here is $*$, which means
composition.
For example $g*g$ causes the Newton iteration formula
to be applied twice.
Correspondingly, $g**n$ means to apply the iteration formula
$n$ times.

Apply $g$ twice to the point $1 + \%i$.
\spadcommand{(g*g) (1.0 + \%i)}

Apply $g$ 11 times.

\spadcommand{(g**11) (1.0 + \%i)}

Look now at the vector field and surface generated
after two steps of Newton's formula for the cube root of two.
The poles in these pictures represent bad starting values, and the
flat areas are the regions of convergence to the three roots.
%

The vector field.

\spadgraph{drawComplexVectorField(g**3,-3..3,-3..3)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/vectorroot.eps}}
\begin{center}
$drawComplexVectorField(g^3,-3..3,-3..3)$
\end{center}
\end{minipage}

The surface.

\spadgraph{drawComplex(g**3,-3..3,-3..3)}

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/complexroot.eps}}
\begin{center}
$drawComplex(g^3,-3..3,-3..3)$
\end{center}
\end{minipage}

%\setcounter{chapter}{10} % Chapter 11

\hyphenation{
In-dexed-Aggre-gate
Lin-ear-Aggre-gate
shallowly-Mutable
draw-Vector-Field
set-Real-Steps
set-Imag-Steps
set-Clip-Value
}

Here and throughout the book we should use the terminology
``type of a function'', rather than talking about source and target.
A function is just an object that has a mapping type.

%Original Page 501

\chapter{Packages}
\label{ugPackages}

Packages provide the bulk of
\index{package}
Axiom's algorithmic library, from numeric packages for computing
special functions to symbolic facilities for
\index{constructor!package}
differential equations, symbolic integration, and limits.
\index{package!constructor}

In \sectionref{ugIntProg},
we developed several useful functions for drawing
vector fields and complex functions.
We now show you how you can add these functions to the
Axiom library to make them available for general use.

The way we created the functions in \sectionref{ugIntProg} 
is typical of how
you, as an advanced Axiom user, may interact with Axiom.
You have an application.
You go to your editor and create an input file defining some
functions for the application.
Then you run the file and try the functions.
Once you get them all to work, you will often want to extend them,
add new features, perhaps write additional functions.

Eventually, when you have a useful set of functions for your application,
you may want to add them to your local Axiom library.
To do this, you embed these function definitions in a package and add
that package to the library.

To introduce new packages, categories, and domains into the system,
you need to use the Axiom compiler to convert the constructors
into executable machine code.
An existing compiler in Axiom is available on an ``as-is''
basis.
A new, faster compiler will be available in version 2.0
of Axiom.

\begin{figure}
\line(1,0){380}
\label{pak-cdraw}
\begin{verbatim}
C      ==> Complex DoubleFloat            All constructors used in a file
S      ==> Segment DoubleFloat            must be spelled out in full
INT    ==> Integer                        unless abbreviated by macros
DFLOAT ==> DoubleFloat                    like these at the top of
VIEW3D ==> ThreeDimensionalViewport       a file
CURVE  ==> List List Point DFLOAT

)abbrev package DRAWCX DrawComplex        Identify kinds and abbreviations
                                          Type definition begins here
DrawComplex(): Exports == Implementation where 

  Exports == with                                    Export part begins
    drawComplex: (C -> C,S,S,Boolean) -> VIEW3D      Exported Operations
    drawComplexVectorField: (C -> C,S,S) -> VIEW3D
    setRealSteps: INT -> INT
    setImagSteps: INT -> INT
    setClipValue: DFLOAT-> DFLOAT

  -- Implementation part begins
  Implementation == add
    arrowScale : DFLOAT := (0.2)::DFLOAT --relative size Local variable 1
    arrowAngle : DFLOAT := pi()-pi()/(20::DFLOAT)        Local variable 2
    realSteps  : INT := 11 --# real steps                Local variable 3
    imagSteps  : INT := 11 --# imaginary steps           Local variable 4
    clipValue  : DFLOAT  := 10::DFLOAT --maximum vector length
                                                         Local variable 5

    setRealSteps(n) == realSteps := n        Exported function definition 1
    setImagSteps(n) == imagSteps := n        Exported function definition 2
    setClipValue(c) == clipValue := c        Exported function definition 3

    clipFun: DFLOAT -> DFLOAT --Clip large magnitudes.
    clipFun(x) == min(max(x, -clipValue), clipValue)
                                             Local function definition 1

    makeArrow: (Point DFLOAT,Point DFLOAT,DFLOAT,DFLOAT) -> CURVE
    makeArrow(p1, p2, len, arg) == ...       Local function definition 2

    drawComplex(f, realRange, imagRange, arrows?) == ...
                                          Exported function definition 4
\end{verbatim}
\caption{The DrawComplex package.}
\label{fig-pak-cdraw}
\line(1,0){380}
\end{figure}

%Original Page 502

\section{Names, Abbreviations, and File Structure}
\label{ugPackagesNames}
%
Each package has a name and an abbreviation.
For a package of the complex draw functions from
\sectionref{ugIntProg}, we choose the name {\tt DrawComplex}
and
\index{abbreviation!constructor}
abbreviation {\tt DRAWCX}.\footnote{An abbreviation can be any string
of
\index{constructor!abbreviation}
between two and seven capital letters and digits, beginning with a letter.
See \sectionref{ugTypesWritingAbbr} for more information.}
To be sure that you have not chosen a name or abbreviation already used by
the system, issue the system command {\tt )show} for both the name and
the abbreviation.
\index{show}

Once you have named the package and its abbreviation, you can choose any new
filename you like with extension ``{\bf .spad}'' to hold the
definition of your package.
We choose the name {\bf drawpak.spad}.
If your application involves more than one package, you
can put them all in the same file.
Axiom assumes no relationship between the name of a library file, and
the name or abbreviation of a package.

%Original Page 503

Near the top of the ``{\bf .spad}'' file, list all the
abbreviations for the packages
using {\tt )abbrev}, each command beginning in column one.
Macros giving names to Axiom expressions can also be placed near the
top of the file.
The macros are only usable from their point of definition until the
end of the file.

Consider the definition of
{\tt DrawComplex} in \figureref{fig-pak-cdraw}.
After the macro
\index{macro}
definition
\begin{verbatim}
S      ==> Segment DoubleFloat
\end{verbatim}
the name
{\tt S} can be used in the file as a
shorthand for {\tt Segment DoubleFloat}.\footnote{The interpreter also allows
{\tt macro} for macro definitions.}
The abbreviation command for the package
\begin{verbatim}
)abbrev package DRAWCX DrawComplex
\end{verbatim}
is given after the macros (although it could precede them).

\section{Syntax}
\label{ugPackagesSyntax}
%
The definition of a package has the syntax:
\begin{center}
\frenchspacing{\it PackageForm {\tt :} 
Exports\quad{\tt ==}\quad Implementation}
\end{center}
The syntax for defining a package constructor is the same as that
\index{syntax}
for defining any function in Axiom.
In practice, the definition extends over many lines so that this syntax is
not practical.
Also, the type of a package is expressed by the operator $with$
\index{with}
followed by an explicit list of operations.
A preferable way to write the definition of a package is with a $where$
\index{where}
expression:

The definition of a package usually has the form: \newline
{\tt%
{\it PackageForm} : Exports  ==  Implementation where \newline
\hspace*{.75pc} {\it optional type declarations}\newline
\hspace*{.75pc} Exports  ==   with \newline
\hspace*{2.0pc}   {\it list of exported operations}\newline
\hspace*{.75pc} Implementation == add \newline
\hspace*{2.0pc}   {\it list of function definitions for exported operations}
}

The {\tt DrawComplex} package takes no parameters and exports five
operations, each a separate item of a {\it pile}.
Each operation is described as a {\it declaration}: a name, followed
by a colon ({\tt :}), followed by the type of the operation.
All operations have types expressed as mappings with
the syntax

%Original Page 504

\begin{center}
{\it
source\quad{\tt ->}\quad target
}
\end{center}

\section{Abstract Datatypes}
\label{ugPackagesAbstract}

A constructor as defined in Axiom is called an {\it abstract
datatype} in the computer science literature.
Abstract datatypes separate ``specification'' (what operations are
provided) from ``implementation'' (how the operations are implemented).
The {\tt Exports} (specification) part of a constructor 
is said to be ``public'' (it
provides the user interface to the package) whereas the {\tt Implementation}
part is ``private'' (information here is effectively hidden---programs
cannot take advantage of it).

The {\tt Exports} part specifies what operations the package provides to users.
As an author of a package, you must ensure that
the {\tt Implementation} part provides a function for each
operation in the {\tt Exports} part.\footnote{The {\tt DrawComplex}
package enhances the facility
described in \sectionref{ugIntProgCompFuns} by allowing a
complex function to have
arrows emanating from the surface to indicate the direction of the
complex argument.}

An important difference between interactive programming and the
use of packages is in the handling of global variables such as
$realSteps$ and $imagSteps$.
In interactive programming, you simply change the values of
variables by {\it assignment}.
With packages, such variables are local to the package---their
values can only be set using functions exported by the package.
In our example package, we provide two functions
{\bf setRealSteps} and {\bf setImagSteps} for
this purpose.

Another local variable is $clipValue$ which can be changed using
the exported operation {\bf setClipValue}.
This value is referenced by the internal function {\bf clipFun} that
decides whether to use the computed value of the function at a point or,
if the magnitude of that value is too large, the
value assigned to $clipValue$ (with the
appropriate sign).

\section{Capsules}
\label{ugPackagesCapsules}
%
The part to the right of {\tt add} in the {\tt Implementation}
\index{add}
part of the definition is called a {\it capsule}.
The purpose of a capsule is:
\begin{itemize}
\item to define a function for each exported operation, and
\item to define a {\it local environment} for these functions to run.
\end{itemize}

%Original Page 505

What is a local environment?
First, what is an environment?
\index{environment}
Think of the capsule as an input file that Axiom reads from top to
bottom.
Think of the input file as having a {\bf )clear all} at the top
so that initially no variables or functions are defined.
When this file is read, variables such as $realSteps$ and
$arrowSize$ in {\tt DrawComplex} are set to initial values.
Also, all the functions defined in the capsule are compiled.
These include those that are exported (like $drawComplex$), and
those that are not (like $makeArrow$).
At the end, you get a set of name-value pairs:
variable names (like $realSteps$ and $arrowSize$)
are paired with assigned values, while
operation names (like $drawComplex$ and $makeArrow$)
are paired with function values.

This set of name-value pairs is called an {\it environment}.
Actually, we call this environment the ``initial environment'' of a package:
it is the environment that exists immediately after the package is
first built.
Afterwards, functions of this capsule can
access or reset a variable in the environment.
The environment is called {\it local} since any changes to the value of a
variable in this environment can be seen {\it only} by these functions.

Only the functions from the package can change the variables in the local
environment.
When two functions are called successively from a package,
any changes caused by the first function called
are seen by the second.

Since the environment is local to the package, its names
don't get mixed
up with others in the system or your workspace.
If you happen to have a variable called $realSteps$ in your
workspace, it does not affect what the
{\tt DrawComplex} functions do in any way.

The functions in a package are compiled into machine code.
Unlike function definitions in input files that may be compiled repeatedly
as you use them with varying argument types,
functions in packages have a unique type (generally parameterized by
the argument parameters of a package) 
and a unique compilation residing on disk.

The capsule itself is turned into a compiled function.
This so-called {\it capsule function} is what builds the initial environment
spoken of above.
If the package has arguments (see below), then each call to the package
constructor with a distinct pair of arguments
builds a distinct package, each with its own local environment.

\section{Input Files vs. Packages}
\label{ugPackagesInputFiles}
%
A good question at this point would 
be ``Is writing a package more difficult than
writing an input file?''

The programs in input files are designed for flexibility and ease-of-use.
Axiom can usually work out all of your types as it reads your program
and does the computations you request.
Let's say that you define a one-argument function without giving its type.
When you first apply the function to a value, this
value is understood by Axiom as identifying the type for the
argument parameter.
Most of the time Axiom goes through the body of your function and
figures out the target type that you have in mind.
Axiom sometimes fails to get it right.
Then---and only then---do you need a declaration to tell Axiom what
type you want.

%Original Page 506

Input files are usually written to be read by Axiom---and by you.
\index{file!input!vs. package}
Without suitable documentation and declarations, your input files
\index{package!vs. input file}
are likely incomprehensible to a colleague---and to you some
months later!

Packages are designed for legibility, as well as
run-time efficiency.
There are few new concepts you need to learn to write
packages. Rather, you just have to be explicit about types
and type conversions.
The types of all functions are pre-declared so that Axiom---and the reader---
knows precisely what types of arguments can be passed to and from
the functions (certainly you don't want a colleague to guess or to
have to work this out from context!).
The types of local variables are also declared.
Type conversions are explicit, never automatic.\footnote{There
is one exception to this rule: conversions from a subdomain to a
domain are automatic.
After all, the objects both have the domain as a common type.}

In summary, packages are more tedious to write than input files.
When writing input files, you can casually go ahead, giving some
facts now, leaving others for later.
Writing packages requires forethought, care and discipline.

\section{Compiling Packages}
\label{ugPackagesPackages}
%

Once you have defined the package {\tt DrawComplex},
you need to compile and test it.
To compile the package, issue the system command {\tt )compile drawpak}.
Axiom reads the file {\bf drawpak.spad}
and compiles its contents into machine binary.
If all goes well, the file {\tt DRAWCX.nrlib} is created in your
local directory for the package.
To test the package, you must load the package before trying an
operation.

Compile the package.

\spadcommand{)compile drawpak }

Expose the package.

\spadcommand{)expose DRAWCX }

Use an odd step size to avoid
a pole at the origin.

\spadcommand{setRealSteps 51 }

%Original Page 507

\spadcommand{setImagSteps 51 }

Define {\bf f} to be the Gamma function.

\spadcommand{f(z) == Gamma(z) }

Clip values of function with magnitude larger than 7.

\spadcommand{setClipValue 7}

Draw the {\bf Gamma} function.

\spadgraph{drawComplex(f,-\%pi..\%pi,-\%pi..\%pi, false) }

\begin{minipage}{\linewidth}
 \makebox[\linewidth]{\includegraphics[scale=0.5]{ps/3dgamma11.eps}}
\begin{center}
$f, -\pi..\pi, -\pi..\pi, false$
\end{center}
\end{minipage}

\section{Parameters}
\label{ugPackagesParameters}
%
The power of packages becomes evident when packages have parameters.
Usually these parameters are domains and the exported operations have types
involving these parameters.

In \sectionref{ugTypes}, you learned that categories denote classes of
domains.  Although we cover this notion in detail in the next chapter,
we now give you a sneak preview of its usefulness.

In \sectionref{ugUserBlocks}, we defined functions $bubbleSort(m)$ and
$insertionSort(m)$ to sort a list of integers.  If you look at the
code for these functions, you see that they may be used to sort {\it
any} structure $m$ with the right properties.  Also, the functions can
be used to sort lists of {\it any} elements---not just integers.  Let
us now recall the code for $bubbleSort$.

\begin{verbatim}
bubbleSort(m) ==
  n := #m
  for i in 1..(n-1) repeat
    for j in n..(i+1) by -1 repeat
      if m.j < m.(j-1) then swap!(m,j,j-1)
  m
\end{verbatim}

%Original Page 508

What properties of ``lists of integers'' are assumed by the sorting
algorithm?
In the first line, the operation {\bf \#} computes the maximum index of
the list.
The first obvious property is that $m$ must have a finite number of
elements.
In Axiom, this is done
by your telling Axiom that $m$ has
the ``attribute'' {\bf finiteAggregate}.
An {\it attribute} is a property
that a domain either has or does not have.
As we show later in \sectionref{ugCategoriesAttributes}, programs\\ 
can query domains as to the presence or absence of an attribute.

The operation {\bf swap} swaps elements of $m$. Using Browse, you find\\ 
that {\bf swap} requires its elements to come from a domain of category\\
{\tt IndexedAggregate} with attribute {\tt shallowlyMutable}.

This attribute means that you can change the internal components of\\
$m$ without changing its external structure. Shallowly-mutable data\\ 
structures include lists, streams, one- and two-dimensional arrays,\\ 
vectors, and matrices.

The category {\tt IndexedAggregate} designates the class of
aggregates whose elements can be accessed by the notation
$m.s$ for suitable selectors $s$.
The category {\tt IndexedAggregate} takes two arguments:
$Index$, a domain of selectors for the aggregate, and
$Entry$, a domain of entries for the aggregate.
Since the sort functions access elements by integers, we must
choose $Index = ${\tt Integer}.
The most general class of domains for which $bubbleSort$ and
$insertionSort$ are defined are those of
category {\tt IndexedAggregate(Integer,Entry)} with the two
attributes {\bf shallowlyMutable} and
{\bf finiteAggregate}.

Using Browse, you can also discover that Axiom has many kinds of domains
with attribute {\bf shallowlyMutable}.
Those of class {\tt IndexedAggregate(Integer,Entry)} include
{\tt Bits}, {\tt FlexibleArray}, {\tt OneDimensionalArray},
{\tt List}, {\tt String}, and {\tt Vector}, and also
{\tt HashTable} and {\tt EqTable} with integer keys.
Although you may never want to sort all such structures, we
nonetheless demonstrate Axiom's
ability to do so.

Another requirement is that {\tt Entry} has an
operation {\tt <}.
One way to get this operation is to assume that
{\tt Entry} has category {\tt OrderedSet}.
By definition, will then export a {\tt <} operation.
A more general approach is to allow any comparison function
$f$ to be used for sorting.
This function will be passed as an argument to the sorting
functions.

Our sorting package then takes two arguments: a domain $S$
of objects of {\it any} type, and a domain $A$, an aggregate
of type {\tt IndexedAggregate(Integer, S)} with the above
two attributes.
Here is its definition using what are close to the original
definitions of $bubbleSort$ and $insertionSort$ for
sorting lists of integers.
The symbol {\tt !} is added to the ends of the operation
names.
This uniform naming convention is used for Axiom operation
names that destructively change one or more of their arguments.

%Original Page 509

\line(1,0){380}
\begin{verbatim}
SortPackage(S,A) : Exports == Implementation where
  S: Object
  A: IndexedAggregate(Integer,S)
    with (finiteAggregate; shallowlyMutable)

  Exports == with
    bubbleSort!: (A,(S,S) -> Boolean) -> A
    insertionSort!: (A, (S,S) -> Boolean) -> A

  Implementation == add
    bubbleSort!(m,f) ==
      n := #m
      for i in 1..(n-1) repeat
        for j in n..(i+1) by -1 repeat
          if f(m.j,m.(j-1)) then swap!(m,j,j-1)
      m
    insertionSort!(m,f) ==
      for i in 2..#m repeat
        j := i
        while j > 1 and f(m.j,m.(j-1)) repeat
          swap!(m,j,j-1)
          j := (j - 1) pretend PositiveInteger
      m
\end{verbatim}
\line(1,0){380}

\section{Conditionals}
\label{ugPackagesConds}
%
When packages have parameters, you can say that an operation is or is not
\index{conditional}
exported depending on the values of those parameters.
When the domain of objects $S$ has an {\tt <}
operation, we can supply one-argument versions of
$bubbleSort$ and $insertionSort$ which use this operation
for sorting.
The presence of the
operation {\tt <} is guaranteed when $S$ is an ordered set.

\line(1,0){380}
\begin{verbatim}
Exports == with
    bubbleSort!: (A,(S,S) -> Boolean) -> A
    insertionSort!: (A, (S,S) -> Boolean) -> A

    if S has OrderedSet then
      bubbleSort!: A -> A
      insertionSort!: A -> A
\end{verbatim}
\line(1,0){380}

In addition to exporting the one-argument sort operations
\index{sort!bubble}
conditionally, we must provide conditional definitions for the
\index{sort!insertion}
operations in the {\tt Implementation} part.
This is easy: just have the one-argument functions call the
corresponding two-argument functions with the operation
{\tt <} from $S$.

\line(1,0){380}
\begin{verbatim}
  Implementation == add
       ...
    if S has OrderedSet then
      bubbleSort!(m) == bubbleSort!(m,<$S)
      insertionSort!(m) == insertionSort!(m,<$S)
\end{verbatim}
\line(1,0){380}

%Original Page 510

In \sectionref{ugUserBlocks}, we give an alternative definition of
{\bf bubbleSort} using \spadfunFrom{first}{List} and
\spadfunFrom{rest}{List} that is more efficient for a list (for
which access to any element requires traversing the list from its
first node).
To implement a more efficient algorithm for lists, we need the
operation {\bf setelt} which allows us to destructively change
the {\bf first} and {\bf rest} of a list.
Using Browse, you find that these operations come from category
{\tt UnaryRecursiveAggregate}.
Several aggregate types are unary recursive aggregates including
those of {\tt List} and {\tt AssociationList}.
We provide two different implementations for
{\bf bubbleSort!} and {\bf insertionSort!}: one
for list-like structures, another for array-like structures.

\line(1,0){380}
\begin{verbatim}
Implementation == add
        ...
    if A has UnaryRecursiveAggregate(S) then
      bubbleSort!(m,fn) ==
        empty? m => m
        l := m
        while not empty? (r := l.rest) repeat
           r := bubbleSort! r
           x := l.first
           if fn(r.first,x) then
             l.first := r.first
             r.first := x
           l.rest := r
           l := l.rest
         m
       insertionSort!(m,fn) ==
          ...
\end{verbatim}
\line(1,0){380}

The ordering of definitions is important.
The standard definitions come first and
then the predicate
\begin{verbatim}
A has UnaryRecursiveAggregate(S)
\end{verbatim}
is evaluated.
If {\tt true}, the special definitions cover up the standard ones.

Another equivalent way to write the capsule is to use an
$if-then-else$ expression:
\index{if}

\line(1,0){380}
\begin{verbatim}
     if A has UnaryRecursiveAggregate(S) then
        ...
     else
        ...
\end{verbatim}
\line(1,0){380}

%Original Page 511

\section{Testing}
\label{ugPackagesCompiling}
%
Once you have written the package, embed it in a file, for example, {\bf
sortpak.spad}.
\index{testing}
Be sure to include an {\bf )abbrev} command at the top of the file:
\begin{verbatim}
)abbrev package SORTPAK SortPackage
\end{verbatim}
Now compile the file (using {\tt )compile sortpak.spad}).

Expose the constructor.
You are then ready to begin testing.

\spadcommand{)expose SORTPAK}

Define a list.

\spadcommand{l := [1,7,4,2,11,-7,3,2]}

Since the integers are an ordered set,
a one-argument operation will do.

\spadcommand{bubbleSort!(l)}

Re-sort it using ``greater than.''

\spadcommand{bubbleSort!(l,(x,y) +-> x > y)}

Now sort it again using {\tt <} on integers.

\spadcommand{bubbleSort!(l, <\$Integer)}

A string is an aggregate of characters so we can sort them as well.

\spadcommand{bubbleSort! "Mathematical Sciences"}

Is {\tt <} defined on booleans?

\spadcommand{false < true}

Good! Create a bit string representing ten consecutive
boolean values {\tt true}.

\spadcommand{u : Bits := new(10,true)}

Set bits 3 through 5 to {\tt false}, then display the result.

\spadcommand{u(3..5) := false; u}

%Original Page 512

Now sort these booleans.

\spadcommand{bubbleSort! u}

Create an ``eq-table'', a
table having integers as keys
and strings as values.

\spadcommand{t : EqTable(Integer,String) := table()}

Give the table a first entry.

\spadcommand{t.1 := "robert"}

And a second.

\spadcommand{t.2 := "richard"}

What does the table look like?

\spadcommand{t}

Now sort it.

\spadcommand{bubbleSort! t}

\section{How Packages Work}
\label{ugPackagesHow}
%
Recall that packages as abstract datatypes are compiled independently
and put into the library.
The curious reader may ask: ``How is the interpreter able to find an
operation such as {\bf bubbleSort!}?
Also, how is a single compiled function such as {\bf bubbleSort!} able
to sort data of different types?''

After the interpreter loads the package {\tt SortPackage}, the four
operations from the package become known to the interpreter.
Each of these operations is expressed as a {\it modemap} in which the type
\index{modemap}
of the operation is written in terms of symbolic domains.

See the modemaps for {\bf bubbleSort!}.

\spadcommand{)display op bubbleSort! }

\begin{verbatim}
There are 2 exposed functions called bubbleSort! :

   [1] D1 -> D1 from SortPackage(D2,D1)
         if D2 has ORDSET and D2 has OBJECT and D1 has
         IndexedAggregate(Integer, D2) with
              finiteAggregate
              shallowlyMutable

   [2] (D1,((D3,D3) -> Boolean)) -> D1 from SortPackage(D3,D1)
         if D3 has OBJECT and D1 has
         IndexedAggregate(Integer,D3) with
              finiteAggregate
              shallowlyMutable
\end{verbatim}

%Original Page 513

What happens if you ask for $bubbleSort!([1,-5,3])$?
There is a unique modemap for an operation named
{\bf bubbleSort!} with one argument.
Since $[1,-5,3]$ is a list of integers, the symbolic domain
$D1$ is defined as {\tt List(Integer)}.
For some operation to apply, it must satisfy the predicate for
some $D2$.
What $D2$?
The third expression of the {\tt and} requires {\tt D1 has
IndexedAggregate(Integer, D2) with} two attributes.
So the interpreter searches for an {\tt IndexedAggregate}
among the ancestors of {\tt List (Integer)} (see
\sectionref{ugCategoriesHier}).
It finds one: {\tt IndexedAggregate(Integer, Integer)}.
The interpreter tries defining $D2$ as {\tt Integer}.
After substituting for $D1$ and $D2$, the predicate
evaluates to {\tt true}.
An applicable operation has been found!

Now Axiom builds the package
{\tt SortPackage(List(Integer), Integer)}.
According to its definition, this package exports the required
operation: {\bf bubbleSort!}: \spadsig{List Integer}{List
Integer}.
The interpreter then asks the package for a function implementing
this operation.
The package gets all the functions it needs (for example,
{\bf rest} and {\bf swap}) from the appropriate
domains and then it
returns a {\bf bubbleSort!} to the interpreter together with
the local environment for {\bf bubbleSort!}.
The interpreter applies the function to the argument $[1,-5,3]$.
The {\bf bubbleSort!} function is executed in its local
environment and produces the result.


%\setcounter{chapter}{11} % Chapter 12

%Original Page 515

\chapter{Categories}
\label{ugCategories}

This chapter unravels the mysteries of categories---what
\index{category}
they are, how they are related to domains and packages,
\index{category!constructor}
how they are defined in Axiom, and how you can extend the
\index{constructor!category}
system to include new categories of your own.

We assume that you have read the introductory material on domains
and categories in \sectionref{ugTypesBasicDomainCons}.
There you learned that the notion of packages covered in the
previous chapter are special cases of domains.
While this is in fact the case, it is useful here to regard domains
as distinct from packages.

Think of a domain as a datatype, a collection of objects (the
objects of the domain).
From your ``sneak preview'' in the previous chapter, you might
conclude that categories are simply named clusters of operations
exported by domains.
As it turns out, categories have a much deeper meaning.
Categories are fundamental to the design of Axiom.
They control the interactions between domains and algorithmic
packages, and, in fact, between all the components of Axiom.

Categories form hierarchies as shown on the inside cover pages of
this book.
The inside front-cover pages illustrate the basic
algebraic hierarchy of the Axiom programming language.
The inside back-cover pages show the hierarchy for data
structures.

Think of the category structures of Axiom as a foundation
for a city on which superstructures (domains) are built.
The algebraic hierarchy, for example, serves as a foundation for
constructive mathematical algorithms embedded in the domains of
Axiom.
Once in place, domains can be constructed, either independently or
from one another.

%Original Page 516

Superstructures are built for quality---domains are compiled into
machine code for run-time efficiency.
You can extend the foundation in directions beyond the space
directly beneath the superstructures, then extend selected
superstructures to cover the space.
Because of the compilation strategy, changing components of the
foundation generally means that the existing superstructures
(domains) built on the changed parts of the foundation
(categories) have to be rebuilt---that is, recompiled.

Before delving into some of the interesting facts about categories, let's see
how you define them in Axiom.

\section{Definitions}
\label{ugCategoriesDefs}

A category is defined by a function with exactly the same format as
\index{category!definition}
any other function in Axiom.

The definition of a category has the syntax:
\begin{center}
{\it CategoryForm} : {\tt Category\quad{}==\quad{}} {\it Extensions} 
{\tt [ with} {\it Exports} {\tt ]}
\end{center}

The brackets {\tt [ ]} here indicate optionality.


The first example of a category definition is
{\tt SetCategory},
the most basic of the algebraic categories in Axiom.
\index{SetCategory}

\line(1,0){380}
\begin{verbatim}
SetCategory(): Category ==
   Join(Type,CoercibleTo OutputForm) with
      "=" : ($, $) -> Boolean
\end{verbatim}
\line(1,0){380}

The definition starts off with the name of the
category ({\tt SetCategory}); this is
always in column one in the source file.
%% maybe talk about naming conventions for source files? .spad or .ax?
All parts of a category definition are then indented with respect to this
\index{indentation}
first line.

In \sectionref{ugTypes}, we talked about {\tt Ring} as denoting the
class of all domains that are rings, in short, the class of all
rings.
While this is the usual naming convention in Axiom, it is also
common to use the word ``Category'' at the end of a category name for clarity.
The interpretation of the name {\tt SetCategory} is, then, ``the
category of all domains that are (mathematical) sets.''

The name {\tt SetCategory} is followed in the definition by its
formal parameters enclosed in parentheses {\tt ()}.
Here there are no parameters.
As required, the type of the result of this category function is the
distinguished name {\sf Category}.

Then comes the {\tt ==}.
As usual, what appears to the right of the {\tt ==} is a
definition, here, a category definition.
A category definition always has two parts separated by the reserved word
\index{with}
$with$.
%\footnote{Debugging hint: it is very easy to forget
%the $with$!}

%Original Page 517

The first part tells what categories the category extends.
Here, the category extends two categories: {\tt Type}, the
category of all domains, and
{\tt CoercibleTo(OutputForm)}.
%\footnote{{\tt CoercibleTo(OutputForm)}
%can also be written (and is written in the definition above) without
%parentheses.}
The operation $Join$ is a system-defined operation that
\index{Join}
forms a single category from two or more other categories.

Every category other than {\tt Type} is an extension of some other
category.
If, for example, {\tt SetCategory} extended only the category
{\tt Type}, the definition here would read ``{\tt Type with
...}''.
In fact, the {\tt Type} is optional in this line; ``{\tt with
...}'' suffices.

\section{Exports}
\label{ugCategoriesExports}


To the right of the $with$ is a list of
\index{with}
all the exports of the category.
Each exported operation has a name and a type expressed by a
{\it declaration} of the form
``{\frenchspacing\tt {\it name}: {\it type}}''.

Categories can export symbols, as well as
{\tt 0} and {\tt 1} which denote
domain constants.\footnote{The
numbers {\tt 0} and {\tt 1} are operation names in Axiom.}
In the current implementation, all other exports are operations with
types expressed as mappings with the syntax
\begin{center}
{\it
source\quad{\tt ->}\quad target
}
\end{center}

The category {\tt SetCategory} has a single export: the operation
$=$ whose type is given by the mapping {\tt (\$, \$) -> Boolean}.
The {\tt \$} in a mapping type always means ``the domain.'' Thus
the operation $=$ takes two arguments from the domain and
returns a value of type {\tt Boolean}.

The source part of the mapping here is given by a {\it tuple}
\index{tuple}
consisting of two or more types separated by commas and enclosed in
parentheses.
If an operation takes only one argument, you can drop the parentheses
around the source type.
If the mapping has no arguments, the source part of the mapping is either
left blank or written as {\tt ()}.
Here are examples of formats of various operations with some
contrived names.

\begin{verbatim}
someIntegerConstant  :    $
aZeroArgumentOperation:   () -> Integer
aOneArgumentOperation:    Integer -> $
aTwoArgumentOperation:    (Integer,$) -> Void
aThreeArgumentOperation:  ($,Integer,$) -> Fraction($)
\end{verbatim}

%Original Page 518

\section{Documentation}
\label{ugCategoriesDoc}

The definition of {\tt SetCategory} above is  missing
an important component: its library documentation.
\index{documentation}
Here is its definition, complete with documentation.

\line(1,0){380}
\begin{verbatim}
++ Description:
++ \bs{}axiomType\{SetCategory\} is the basic category
++ for describing a collection of elements with
++ \bs{}axiomOp\{=\} (equality) and a \bs{}axiomFun\{coerce\}
++ to \bs{}axiomType\{OutputForm\}.

SetCategory(): Category ==
  Join(Type, CoercibleTo OutputForm) with
    "=": ($, $) -> Boolean
      ++ \bs{}axiom\{x = y\} tests if \bs{}axiom\{x\} and
      ++ \bs{}axiom\{y\} are equal.
\end{verbatim}
\line(1,0){380}

Documentary comments are an important part of constructor definitions.
Documentation is given both for the category itself and for
each export.
A description for the category precedes the code.
Each line of the description begins in column one with {\tt ++}.
The description starts with the word {\tt Description:}.\footnote{Other
information such as the author's name, date of creation, and so on,
can go in this
area as well but are currently ignored by Axiom.}
All lines of the description following the initial line are
indented by the same amount.

{\sloppy
Surround the name of any constructor (with or without parameters) with an
\verb+{\bf }+.
Similarly, surround an
operator name with \verb+{\tt }+,
an Axiom operation with \verb+{\bf }+, and a
variable or Axiom expression with
\verb+$$+.
Library documentation is given in a \TeX{}-like language so that
it can be used both for hard-copy and for Browse.
These different wrappings cause operations and types to have
mouse-active buttons in Browse.
For hard-copy output, wrapped expressions appear in a different font.
The above documentation appears in hard-copy as:

}
%
\begin{quotation}
%
{\tt SetCategory} is the basic category
for describing a collection of elements with {\tt =}
(equality) and a {\bf coerce} to {\tt OutputForm}.
%
\end{quotation}
%
and
%
\begin{quotation}
%
$x = y$ tests if $x$ and $y$ are equal.
%
\end{quotation}
%

For our purposes in this chapter, we omit the documentation from further
category descriptions.

%Original Page 519

\section{Hierarchies}
\label{ugCategoriesHier}

A second example of a category is
{\tt SemiGroup}, defined by:
\index{SemiGroup}

\line(1,0){380}
\begin{verbatim}
SemiGroup(): Category == SetCategory with
      "*":  ($,$) -> $
      "**": ($, PositiveInteger) -> $
\end{verbatim}
\line(1,0){380}

This definition is as simple as that for {\tt SetCategory},
except that there are two exported operations.
Multiple exported operations are written as a {\it pile},
that is, they all begin in the same column.
Here you see that the category mentions another type,
{\tt PositiveInteger}, in a signature.
Any domain can be used in a signature.

Since categories extend one another, they form hierarchies.
Each category other than {\tt Type} has one or more parents given
by the one or more categories mentioned before the $with$ part of
the definition.
{\tt SemiGroup} extends {\tt SetCategory} and
{\tt SetCategory} extends both {\tt Type} and
{\tt CoercibleTo (OutputForm)}.
Since {\tt CoercibleTo (OutputForm)} also extends {\tt Type},
the mention of {\tt Type} in the definition is unnecessary but
included for emphasis.

\section{Membership}
\label{ugCategoriesMembership}

We say a category designates a class of domains.
What class of domains?
\index{category!membership}
That is, how does Axiom know what domains belong to what categories?
The simple answer to this basic question is key to the design of
Axiom:

\begin{center}
{\bf Domains belong to categories by assertion.}
\end{center}

When a domain is defined, it is asserted to belong to one or more
categories.
Suppose, for example, that an author of domain {\tt String} wishes to
use the binary operator $*$ to denote concatenation.
Thus \verb|"hello " * "there"| would produce the string
\verb|"hello there"| Actually, concatenation of strings in
Axiom is done by juxtaposition or by using the operation
\spadfunFrom{concat}{String}.
The expression \verb|"hello " "there"| produces the string
\verb|"hello there"|.
The author of {\tt String} could then assert that {\tt String}
is a member of {\tt SemiGroup}.
According to our definition of {\tt SemiGroup}, strings
would then also have the operation $**$ defined automatically.
Then \verb|"--" ** 4| would produce a string of eight dashes
\verb|"--------"|.
Since {\tt String} is a member of {\tt SemiGroup}, it also is
a member of {\tt SetCategory} and thus has an operation
$=$ for testing that two strings are equal.

Now turn to the algebraic category hierarchy inside the
front cover of this book.
Any domain that is a member of a
category extending {\tt SemiGroup} is a member of
{\tt SemiGroup} (that is, it {\it is} a semigroup).
In particular, any domain asserted to be a {\tt Ring} is a
semigroup since {\tt Ring} extends {\tt Monoid}, that,
in turn, extends {\tt SemiGroup}.
The definition of {\tt Integer} in Axiom asserts that
{\tt Integer} is a member of category
{\tt IntegerNumberSystem}, that, in turn, asserts that it is
a member of {\tt EuclideanDomain}.
Now {\tt EuclideanDomain} extends
{\tt PrincipalIdealDomain} and so on.
If you trace up the hierarchy, you see that
{\tt EuclideanDomain} extends {\tt Ring}, and,
therefore, {\tt SemiGroup}.
Thus {\tt Integer} is a semigroup and also exports the
operations $*$ and $**$.

%Original Page 520

\section{Defaults}
\label{ugCategoriesDefaults}

We actually omitted the last \index{category!defaults} part of the
definition of \index{default definitions} {\tt SemiGroup} in
\sectionref{ugCategoriesHier}.  Here now is its complete Axiom definition.

\line(1,0){380}
\begin{verbatim}
SemiGroup(): Category == SetCategory with
      "*": ($, $) -> $
      "**": ($, PositiveInteger) -> $
    add
      import RepeatedSquaring($)
      x: $ ** n: PositiveInteger == expt(x,n)
\end{verbatim}
\line(1,0){380}

The $add$ part at the end is used to give ``default definitions'' for
\index{add}
exported operations.
Once you have a multiplication operation $*$, you can
define exponentiation
for positive integer exponents
using repeated multiplication:

$x^n = {\underbrace{x \, x \, x \, \cdots \,
x}_{\displaystyle n \hbox{\ times}}}$

This definition for $**$ is called a {\it default} definition.
In general, a category can give default definitions for any
operation it exports.
Since {\tt SemiGroup} and all its category descendants in the hierarchy
export $**$, any descendant category may redefine $**$ as well.

A domain of category {\tt SemiGroup}
(such as {\tt Integer}) may or may not choose to
define its own $**$ operation.
If it does not, a default definition that is closest (in a ``tree-distance''
sense of the hierarchy) to the domain is chosen.

The part of the category definition following an $add$ operation
is a {\it capsule}, as discussed in
the previous chapter.
The line
\begin{verbatim}
import RepeatedSquaring($)
\end{verbatim}
references the package
{\tt RepeatedSquaring(\$)}, that is, the package
{\tt RepeatedSquaring} that takes ``this domain'' as its
parameter.
For example, if the semigroup {\tt Polynomial (Integer)}
does not define its own exponentiation operation, the
definition used may come from the package
{\tt RepeatedSquaring (Polynomial (Integer))}.
The next line gives the definition in terms of {\bf expt} from that
package.

%Original Page 521

The default definitions are collected to form a ``default
package'' for the category.
The name of the package is the same as  the category but with an
ampersand ({\tt \&}) added at the end.
A default package always takes an additional argument relative to the
category.
Here is the definition of the default package {\tt SemiGroup\&} as
automatically generated by Axiom from the above definition of
{\tt SemiGroup}.

\line(1,0){380}
\begin{verbatim}
SemiGroup_&($): Exports == Implementation where
  $: SemiGroup
  Exports == with
    "**": ($, PositiveInteger) -> $
  Implementation == add
    import RepeatedSquaring($)
    x:$ ** n:PositiveInteger == expt(x,n)
\end{verbatim}
\line(1,0){380}

\section{Axioms}
\label{ugCategoriesAxioms}

In the previous section you saw the
complete Axiom program defining \index{axiom}
{\tt SemiGroup}.
According to this definition, semigroups (that is, are sets with
the operations \spadopFrom{*}{SemiGroup} and
\spadopFrom{**}{SemiGroup}.
\index{SemiGroup}

You might ask: ``Aside from the notion of default packages, isn't
a category just a {\it macro}, that is, a shorthand
equivalent to the two operations $*$ and $**$ with
their types?'' If a category were a macro, every time you saw the
word {\tt SemiGroup}, you would rewrite it by its list of
exported operations.
Furthermore, every time you saw the exported operations of
{\tt SemiGroup} among the exports of a constructor, you could
conclude that the constructor exported {\tt SemiGroup}.

A category is {\it not} a macro and here is why.
The definition for {\tt SemiGroup} has documentation that states:

\begin{quotation}
    Category {\tt SemiGroup} denotes the class of all multiplicative
    semigroups, that is, a set with an associative operation $*$.

    \vskip .5\baselineskip
    {Axioms:}

    {\small\tt associative("*" : (\$,\$)->\$) -- (x*y)*z = x*(y*z)}
\end{quotation}

According to the author's remarks, the mere
exporting of an operation named $*$ and $**$ is not
enough to qualify the domain as a {\tt SemiGroup}.
In fact, a domain can be a semigroup only if it explicitly
exports a $**$ and
a $*$ satisfying the associativity axiom.

In general, a category name implies a set of axioms, even mathematical
theorems.
There are numerous axioms from {\tt Ring}, for example,
that are well-understood from the literature.
No attempt is made to list them all.
Nonetheless, all such mathematical facts are implicit by the use of the
name {\tt Ring}.

%Original Page 522

\section{Correctness}
\label{ugCategoriesCorrectness}

While such statements are only comments,
\index{correctness}
Axiom can enforce their intention simply by shifting the burden of
responsibility onto the author of a domain.
A domain belongs to category $Ring$ only if the
author asserts that the domain  belongs to {\tt Ring} or
to a category that extends {\tt Ring}.

This principle of assertion is important for large user-extendable
systems.
Axiom has a large library of operations offering facilities in
many areas.
Names such as {\bf norm} and {\bf product}, for example, have
diverse meanings in diverse contexts.
An inescapable hindrance to users would be to force those who wish to
extend Axiom to always invent new names for operations.
%>> I don't think disambiguate is really a word, though I like it
Axiom allows you to reuse names, and then use context to disambiguate one
from another.

Here is another example of why this is important.
Some languages, such as {\bf APL},
\index{APL}
denote the {\tt Boolean} constants {\tt true} and
{\tt false} by the integers $1$ and $0$.
You may want to let infix operators $+$ and $*$ serve as the logical
operators {\bf or} and {\bf and}, respectively.
But note this: {\tt Boolean} is not a ring.
The {\it inverse axiom} for {\tt Ring} states:
%
\begin{center}
Every element $x$ has an additive inverse $y$ such that
$x + y = 0$.
\end{center}
%
{\tt Boolean} is not a ring since {\tt true} has
no inverse---there is no inverse element $a$ such that
$1 + a = 0$ (in terms of booleans, {\tt (true or a) = false}).
Nonetheless, Axiom {\it could} easily and correctly implement
{\tt Boolean} this way.
{\tt Boolean} simply would not assert that it is of category
{\tt Ring}.
Thus the ``{\tt +}'' for {\tt Boolean} values
is not confused with the one for {\tt Ring}.
Since the {\tt Polynomial} constructor requires its argument
to be a ring, Axiom would then refuse to build the
domain {\tt Polynomial(Boolean)}. Also, Axiom would refuse to
wrongfully apply algorithms to {\tt Boolean} elements that  presume that the
ring axioms for ``{\tt +}'' hold.

\section{Attributes}
\label{ugCategoriesAttributes}

Most axioms are not computationally useful.
Those that are can be explicitly expressed by what Axiom calls an
{\it attribute}.
The attribute {\bf commutative(\verb|"*"|)}, for example, is used to assert
that a domain has commutative multiplication.
Its definition is given by its documentation:

\begingroup \parindent=1pc \narrower\noindent%
    A domain $R$ has {\bf commutative(\verb|"*"|)}
    if it has an operation "*": \spadsig{(R,R)}{R} such that $x * y = y * x$.
\par\endgroup

Just as you can test whether a domain has the category {\tt Ring}, you
can test that a domain has a given attribute.


%Original Page 523

Do polynomials over the integers
have commutative multiplication?

\spadcommand{Polynomial Integer has commutative("*")}

Do matrices over the integers
have commutative multiplication?

\spadcommand{Matrix Integer has commutative("*")}

Attributes are used to conditionally export and define operations for
a domain (see \sectionref{ugDomainsAssertions}.
Attributes can also be asserted in a category definition.

After mentioning category {\tt Ring} many times in this book,
it is high time that we show you its definition:
\index{Ring}

\line(1,0){380}
\begin{verbatim}
Ring(): Category ==
  Join(Rng,Monoid,LeftModule($: Rng)) with
      characteristic: -> NonNegativeInteger
      coerce: Integer -> $
      unitsKnown
    add
      n:Integer
      coerce(n) == n * 1$$
\end{verbatim}
\line(1,0){380}

There are only two new things here.
First, look at the {\tt \$\$} on the last line.
This is not a typographic error!
The first {\tt \$} says that the $1$ is to come from some
domain.
The second {\tt \$} says that the domain is ``this domain.''
If {\tt \$} is {\tt Fraction(Integer)}, this line reads {\tt
coerce(n) == n * 1\$Fraction(Integer)}.

The second new thing is the presence of attribute ``$unitsKnown$''.
Axiom can always distinguish an attribute from an operation.
An operation has a name and a type. An attribute has no type.
The attribute {\bf unitsKnown} asserts a rather subtle mathematical
fact that is normally taken for granted when working with
rings.\footnote{With this axiom, the units of a domain are the set of
elements $x$ that each have a multiplicative
inverse $y$ in the domain.
Thus $1$ and $-1$ are units in domain {\tt Integer}.
Also, for {\tt Fraction Integer}, the domain of rational numbers,
all non-zero elements are units.}
Because programs can test for this attribute, Axiom can
correctly handle rather more complicated mathematical structures (ones
that are similar to rings but do not have this attribute).

%Original Page 524

\section{Parameters}
\label{ugCategoriesParameters}

Like domain constructors, category constructors can also have
parameters.
For example, category {\tt MatrixCategory} is a parameterized
category for defining matrices over a ring $R$ so that the
matrix domains can have
different representations and indexing schemes.
Its definition has the form:

\line(1,0){380}
\begin{verbatim}
MatrixCategory(R,Row,Col): Category ==
    TwoDimensionalArrayCategory(R,Row,Col) with ...
\end{verbatim}
\line(1,0){380}

The category extends {\tt TwoDimensionalArrayCategory} with
the same arguments.
You cannot find {\tt TwoDimensionalArrayCategory} in the
algebraic hierarchy listing.
Rather, it is a member of the data structure hierarchy,
given inside the back cover of this book.
In particular, {\tt TwoDimensionalArrayCategory} is an extension of
{\tt HomogeneousAggregate} since its elements are all one type.

The domain {\tt Matrix(R)}, the class of matrices with coefficients
from domain $R$, asserts that it is a member of category
{\tt MatrixCategory(R, Vector(R), Vector(R))}.
The parameters of a category must also have types.
The first parameter to {\tt MatrixCategory}
$R$ is required to be a ring.
The second and third are required to be domains of category
{\tt FiniteLinearAggregate(R)}.\footnote{%
This is another extension of
{\tt HomogeneousAggregate} that you can see in
the data structure hierarchy.}
In practice, examples of categories having parameters other than
domains are rare.

Adding the declarations for parameters to the definition for
{\tt MatrixCategory}, we have:

\line(1,0){380}
\begin{verbatim}
R: Ring
(Row, Col): FiniteLinearAggregate(R)

MatrixCategory(R, Row, Col): Category ==
    TwoDimensionalArrayCategory(R, Row, Col) with ...
\end{verbatim}
\line(1,0){380}

\section{Conditionals}
\label{ugCategoriesConditionals}

\index{conditional}
\spadfunFrom{determinant}{MatrixCategory}
As categories have parameters, the actual operations exported by a\\
category can depend on these parameters. As an example, the operation\\ 
from category {\tt MatrixCategory} is only exported when the\\
underlying domain $R$ has commutative multiplication:

\begin{verbatim}
if R has commutative("*") then
   determinant: $ -> R
\end{verbatim}

Conditionals can also define conditional extensions of a category.
Here is a portion of the definition of {\tt QuotientFieldCategory}:
\index{QuotientFieldCategory}

%Original Page 525

\line(1,0){380}
\begin{verbatim}
QuotientFieldCategory(R) : Category == ... with ...
     if R has OrderedSet then OrderedSet
     if R has IntegerNumberSystem then
       ceiling: $ -> R
         ...
\end{verbatim}
\line(1,0){380}

Think of category {\tt QuotientFieldCategory(R)} as
denoting the domain {\tt Fraction(R)}, the
class of all fractions of the form $a/b$ for elements of $R$.
The first conditional means in English:
``If the elements of $R$ are totally ordered ($R$
is an {\tt OrderedSet}), then so are the fractions $a/b$''.
\index{Fraction}

The second conditional is used to conditionally export an
operation {\bf ceiling} which returns the smallest integer
greater than or equal to its argument.
Clearly, ``ceiling'' makes sense for integers but not for
polynomials and other algebraic structures.
Because of this conditional,
the domain {\tt Fraction(Integer)} exports
an operation
{\bf ceiling}: \spadsig{Fraction Integer}{Integer}, but
{\tt Fraction Polynomial Integer} does not.

Conditionals can also appear in the default definitions for the
operations of a category.
For example, a default definition for \spadfunFrom{ceiling}{Field}
within the part following the $add$ reads:

\begin{verbatim}
if R has IntegerNumberSystem then
    ceiling x == ...
\end{verbatim}

Here the predicate used is identical to the predicate in the {\tt
Exports} part.  This need not be the case.  See \sectionref{ugPackagesConds}
for a more complicated example.

\section{Anonymous Categories}
\label{ugCategoriesAndPackages}

The part of a category to the right of a {\tt with} is also regarded
as a category---an ``anonymous category.''  Thus you have already seen
a category definition \index{category!anonymous} in 
\sectionref{ugPackages}.  The {\tt Exports} part
of the package {\tt DrawComplex} (\sectionref{ugPackagesAbstract})
is an anonymous category.  This is
not necessary.  We could, instead, give this category a name:

\line(1,0){380}
\begin{verbatim}
DrawComplexCategory(): Category == with
   drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
   drawComplexVectorField: (C -> C,S,S) -> VIEW3D
   setRealSteps: INT -> INT
   setImagSteps: INT -> INT
   setClipValue: DFLOAT-> DFLOAT
\end{verbatim}
\line(1,0){380}

and then define {\tt DrawComplex} by:

%%Original Page 526

\line(1,0){380}
\begin{verbatim}
DrawComplex(): DrawComplexCategory == Implementation
   where
      ...
\end{verbatim}
\line(1,0){380}

There is no reason, however, to give this list of exports a name
since no other domain or package exports it.
In fact, it is rare for a package to export a named category.
As you will see in the next chapter, however, it is very common
for the definition of domains to mention one or more category
before the {\tt with}.
\index{with}

%\setcounter{chapter}{12} % Chapter 13

\hyphenation{
Quad-rat-ic-Form
}
\spadcommand{)read alql.boot}
\spadcommand{)load DLIST ICARD DBASE QEQUAT MTHING OPQUERY )update}

%Original Page 527

\chapter{Domains}
\label{ugDomains}

We finally come to the {\it domain constructor}.
A few subtle differences between packages and
domains turn up some interesting issues.
We first discuss these differences then
describe the resulting issues by illustrating a program
for the {\tt QuadraticForm} constructor.
After a short example of an algebraic constructor,
{\tt CliffordAlgebra}, we show how you use domain constructors to build
a database query facility.

\section{Domains vs. Packages}
\label{ugPackagesDoms}
%
Packages are special cases of domains.
What is the difference between a package and a domain that is not a
package?
By definition, there is only one difference: a domain that is not a package
has the symbol {\tt \$} appearing
somewhere among the types of its exported operations.
The {\tt \$} denotes ``this domain.'' If the {\tt \$}
appears before the {\tt ->} in the type of a signature, it means
the operation takes an element from the domain as an argument.
If it appears after the {\tt ->}, then the operation returns an
element of the domain.

If no exported operations mention {\tt \$}, then evidently there is
nothing of interest to do with the objects of the domain.  You might
then say that a package is a ``boring'' domain!  But, as you saw in
\sectionref{ugPackages}, packages are a
very useful notion indeed.  The exported operations of a package
depend solely on the parameters to the package constructor and other
explicit domains.

To summarize, domain constructors are versatile structures that serve two
distinct practical purposes:
Those like {\tt Polynomial} and {\tt List}
describe classes of computational objects;
others, like {\tt SortPackage}, describe packages of useful
operations.
As in the last chapter, we focus here on the first kind.

%Original Page 528

\section{Definitions}
\label{ugDomainsDefs}
%

The syntax for defining a domain constructor is the same as for any
function in Axiom:
\begin{center}
\frenchspacing{\tt {\it DomainForm} : {\it Exports} == {\it Implementation}}
\end{center}
As this definition usually extends over many lines, a
$where$ expression is generally used instead.
\index{where}

A recommended format for the definition of a domain is:\newline
{\tt%
{\it DomainForm} : Exports  ==  Implementation where \newline
\hspace*{.75pc} {\it optional type declarations} \newline
\hspace*{.75pc} Exports  ==  [{\it Category Assertions}] with \newline
\hspace*{2.0pc}   {\it list of exported operations} \newline
\hspace*{.75pc} Implementation  ==  [{\it Add Domain}] add \newline
\hspace*{2.0pc}   [Rep := {\it Representation}] \newline
\hspace*{2.0pc}   {\it list of function definitions for exported operations}
}

\vskip 4pt
Note: The brackets {\tt [ ]} here denote optionality.

A complete domain constructor definition for {\tt QuadraticForm} is
shown in \figureref{fig-quadform}.
Interestingly, this little domain illustrates all the new concepts you
need to learn.

%Original Page 529

\begin{figure}
\line(1,0){380}
\begin{verbatim}
)abbrev domain QFORM QuadraticForm

++ Description:
++   This domain provides modest support for
++   quadratic forms.
QuadraticForm(n, K): Exports == Implementation where
    n: PositiveInteger
    K: Field

    Exports == AbelianGroup with            --The exports
      quadraticForm: SquareMatrix(n,K) -> $ --export this
        ++ \bs{}axiom\{quadraticForm(m)\} creates a quadratic
        ++ quadratic form from a symmetric,
        ++ square matrix \bs{}axiom\{m\}.
      matrix: $ -> SquareMatrix(n,K)       -- export matrix
        ++ \bs{}axiom\{matrix(qf)\} creates a square matrix
        ++ from the quadratic form \bs{}axiom\{qf\}.
      elt: ($, DirectProduct(n,K)) -> K    -- export elt
        ++ \bs{}axiom\{qf(v)\} evaluates the quadratic form
        ++ \bs{}axiom\{qf\} on the vector \bs{}axiom\{v\},
        ++ producing a scalar.

    Implementation == SquareMatrix(n,K) add --The exports
      Rep := SquareMatrix(n,K)              --representation
      quadraticForm m ==                    --definition 
        not symmetric? m => error                      
          "quadraticForm requires a symmetric matrix"
        m :: $
      matrix q == q :: Rep                  --definition 
      elt(q,v) == dot(v, (matrix q * v))    --definition 

\end{verbatim}
\caption{The {\tt QuadraticForm} domain.}\label{fig-quadform}
\line(1,0){380}
\end{figure}

A domain constructor can take any number and type of parameters.
{\tt QuadraticForm} takes a positive integer $n$ and a field
$K$ as arguments.
Like a package, a domain has a set of explicit exports and an
implementation described by a capsule.
Domain constructors are documented in the same way as package constructors.

Domain {\tt QuadraticForm(n, K)}, for a given positive integer
$n$ and domain $K$, explicitly exports three operations:
%
\begin{itemize}
\item$quadraticForm(A)$ creates a quadratic form from a matrix
$A$.
\item$matrix(q)$ returns the matrix $A$ used to create
the quadratic form $q$.
\item$q.v$ computes the scalar $v^TAv$
for a given vector $v$.
\end{itemize}

Compared with the corresponding syntax given for the definition of a
package, you see that a domain constructor has three optional parts to
its definition: {\it Category Assertions}, {\it Add Domain}, and
{\it Representation}.

\section{Category Assertions}
\label{ugDomainsAssertions}
%

The {\it Category Assertions} part of your domain constructor
definition lists those categories of which all domains created by the
constructor are unconditionally members.  The word ``unconditionally''
means that membership in a category does not depend on the values of
the parameters to the domain constructor.  This part thus defines the
link between the domains and the category hierarchies given on the
inside covers of this book.  As described in
\sectionref{ugCategoriesCorrectness}, it is this link that makes it
possible for you to pass objects of the domains as arguments to other
operations in Axiom.

Every {\tt QuadraticForm} domain is declared
to be unconditionally a member of category {\tt AbelianGroup}.
An abelian group is a collection of elements closed under
addition.
Every object {\it x} of an abelian group has an additive inverse
{\it y} such that $x + y = 0$.
The exports of an abelian group include $0$,
{\tt +}, {\tt -}, and scalar multiplication by an integer.
After asserting that {\tt QuadraticForm} domains are abelian
groups, it is possible to pass quadratic forms to algorithms that
only assume arguments to have these abelian group
properties.

%Original Page 530

In \sectionref{ugCategoriesConditionals}, you saw that {\tt Fraction(R)},\\ 
a member of {\tt QuotientFieldCategory(R)}, is a member of\\ 
{\tt OrderedSet} if $R$ is a member of {\tt OrderedSet}.  Likewise,\\
from the {\tt Exports} part of the definition of {\tt ModMonic(R, S)},

\begin{verbatim}
UnivariatePolynomialCategory(R) with
  if R has Finite then Finite
     ...
\end{verbatim}
you see that {\tt ModMonic(R, S)} is a member of
{\tt Finite} is $R$ is.

The {\tt Exports} part of a domain definition is
the same kind of
expression that can appear to the right of an
{\tt ==} in a category definition.
If a domain constructor is unconditionally a member of two or more
categories, a $Join$ form is used.
\index{Join}
The {\tt Exports} part of the definition of
{\tt FlexibleArray(S)} reads, for example:
\begin{verbatim}
Join(ExtensibleLinearAggregate(S),
     OneDimensionalArrayAggregate(S)) with...
\end{verbatim}

\section{A Demo}
\label{ugDomainsDemo}
%
Before looking at the {\it Implementation} part of {\tt QuadraticForm},
let's try some examples.

\vskip 2pc

Build a domain $QF$.

\spadcommand{QF := QuadraticForm(2,Fraction Integer)}

Define a matrix to be used to construct
a quadratic form.

\spadcommand{A := matrix [ [-1,1/2],[1/2,1] ]}

Construct the quadratic form. A package call {\tt \$QF} is necessary\\ 
since there are other {\tt QuadraticForm} domains.

\spadcommand{q : QF := quadraticForm(A)}

%Original Page 531

Looks like a matrix. Try computing
the number of rows.
Axiom won't let you.

\spadcommand{nrows q}

Create a direct product element $v$.
A package call is again necessary, but Axiom
understands your list as denoting a vector.

\spadcommand{v := directProduct([2,-1])\$DirectProduct(2,Fraction Integer)}

Compute the product $v^TAv$.

\spadcommand{q.v}

What is 3 times $q$ minus $q$ plus $q$?

\spadcommand{3*q-q+q}

\section{Browse}
\label{ugDomainsBrowse}

The Browse facility of HyperDoc is useful for
investigating
the properties of domains, packages, and categories.
From the main HyperDoc menu, move your mouse to {\bf Browse} and
click on the left mouse button.
This brings up the Browse first page.
Now, with your mouse pointer somewhere in this window, enter the
string ``quadraticform'' into the input area (all lower case
letters will do).
Move your mouse to {\bf Constructors} and click.
Up comes a page describing {\tt QuadraticForm}.

From here, click on {\bf Description}.
This gives you a page that includes a part labeled by ``{\it
Description:}''.
You also see the types for arguments $n$ and $K$
displayed as well as the fact that {\tt QuadraticForm}
returns an {\tt AbelianGroup}.
You can go and experiment a bit by selecting {\tt Field} with
your mouse.
Eventually, use the \UpBitmap{} button
several times to return to the first page on
{\tt QuadraticForm}.

Select {\bf Operations} to get a list of operations for
{\tt QuadraticForm}.
You can select an operation by clicking on it
to get an individual page with information about that operation.
Or you can select the buttons along the bottom to see alternative
views or get additional information on the operations.
Then return to the page on {\tt QuadraticForm}.

Select {\bf Cross Reference} to get another menu.
This menu has buttons for {\bf Parents}, {\bf Ancestors}, and
others.
Clicking on {\bf Parents}, you see that {\tt QuadraticForm}
has one parent {\tt AbelianMonoid}.

%Original Page 532

\section{Representation}
\label{ugDomainsRep}
%
The {\tt Implementation} part of an Axiom capsule for a
domain constructor uses the special variable $Rep$ to
\index{Rep @ {\tt Rep}}
identify the lower level data type used to represent the objects
\index{representation!of a domain}
of the domain.
\index{domain!representation}
The $Rep$ for quadratic forms is {\tt SquareMatrix(n, K)}.
This means that all objects of the domain are required to be
$n$ by $n$ matrices with elements from {\bf K}.

The code for {\tt quadraticForm} in \figureref{fig-quadform}
checks that the matrix is symmetric and then converts it to
{\tt \$}, which means, as usual, ``this domain.'' Such explicit
conversions \index{conversion} are generally required by the
compiler.
Aside from checking that the matrix is symmetric, the code for
this function essentially does nothing.
The {\frenchspacing\tt m :: \$} on line 28 coerces $m$ to a
quadratic form.
In fact, the quadratic form you created in step (3) of
\sectionref{ugDomainsDemo} is just the matrix you passed it in
disguise!
Without seeing this definition, you would not know that.
Nor can you take advantage of this fact now that you do know!
When we try in the next step of \sectionref{ugDomainsDemo} to regard
$q$ as a matrix by asking for {\bf nrows}, the number of
its rows, Axiom gives you an error message saying, in
effect, ``Good try, but this won't work!''

The definition for the \spadfunFrom{matrix}{QuadraticForm}
function could hardly be simpler:
it just returns its argument after explicitly
coercing its argument to a matrix.
Since the argument is already a matrix, this coercion does no computation.

Within the context of a capsule, an object of {\tt \$} is
regarded both as a quadratic form {\it and} as a
matrix.\footnote{In case each of {\tt \$} and $Rep$
have the same named operation available,
the one from $\$$ takes precedence.
Thus, if you want the one from {\tt Rep}, you must
package call it using a {\tt \$Rep} suffix.}
This makes the definition of $q.v$ easy---it
just calls the \spadfunFrom{dot}{DirectProduct} product from
{\tt DirectProduct} to perform the indicated operation.

\section{Multiple Representations}
\label{ugDomainsMultipleReps}
%

To write functions that implement the operations of a domain, you
want to choose the most computationally efficient
data structure to represent the elements of your domain.

A classic problem in computer algebra is the optimal choice for an
internal representation of polynomials.
If you create a polynomial, say $3x^2+ 5$, how
does Axiom hold this value internally?
There are many ways.
Axiom has nearly a dozen different representations of
polynomials, one to suit almost any purpose.
Algorithms for solving polynomial equations work most
efficiently with polynomials represented one way, whereas those for
factoring polynomials are most efficient using another.
One often-used representation is  a list of terms, each term
consisting of exponent-coefficient records written in the order
of decreasing exponents.
For example, the polynomial $3x^2+5$ is
%>> I changed the k's in next line to e's as I thought that was
%>> clearer.
represented by the list $[ [e:2, c:3], [e:0, c:5] ]$.

%Original Page 533

What is the optimal data structure for a matrix?
It depends on the application.
For large sparse matrices, a linked-list structure of records
holding only the non-zero elements may be optimal.
If the elements can be defined by a simple formula
$f(i,j)$, then a compiled function for
$f$ may be optimal.
Some programmers prefer to represent ordinary matrices as vectors
of vectors.
Others prefer to represent matrices by one big linear array where
elements are accessed with linearly computable indexes.

While all these simultaneous structures tend to be confusing,
Axiom provides a helpful organizational tool for such a purpose:
categories.
{\tt PolynomialCategory}, for example, provides a uniform user
interface across all polynomial types.
Each kind of polynomial implements functions for
all these operations, each in its own way.
If you use only the top-level operations in
{\tt PolynomialCategory} you usually do not care what kind
of polynomial implementation is used.

%>> I've often thought, though, that it would be nice to be
%>> be able to use conditionals for representations.
Within a given domain, however, you define (at most) one
representation.\footnote{You can make that representation a
{\tt Union} type, however.
See \sectionref{ugTypesUnions} for examples of unions.}
If you want to have multiple representations (that is, several
domains, each with its own representation), use a category to
describe the {\tt Exports}, then define separate domains for each
representation.

\section{Add Domain}
\label{ugDomainsAddDomain}
%

The capsule part of {\tt Implementation} defines functions that
implement the operations exported by the domain---usually only
some of the operations.
In our demo in \sectionref{ugDomainsDemo}, we asked for the value of
$3*q-q+q$.
Where do the operations {\tt *}, {\tt +}, and
{\tt -} come from?
There is no definition for them in the capsule!

The {\tt Implementation} part of a definition can
\index{domain!add}
optionally specify an ``add-domain'' to the left of an {\tt add}
\index{add}
(for {\tt QuadraticForm}, defines
{\tt SquareMatrix(n,K)} is the add-domain).
The meaning of an add-domain is simply this: if the capsule part
of the {\tt Implementation} does not supply a function for an
operation, Axiom goes to the add-domain to find the
function.
So do $*$, $+$ and $-$ (from QuadraticForm) come from
{\tt SquareMatrix(n,K)}?
%Read on!

%Original Page 534

\section{Defaults}
\label{ugDomainsDefaults}
%
In \sectionref{ugPackages}, we saw that categories can provide
default implementations for their operations.
How and when are they used?
When Axiom finds that {\tt QuadraticForm(2, Fraction
Integer)} does not implement the operations {\tt *},
{\tt +}, and {\tt -}, it goes to
{\tt SquareMatrix (2,Fraction Integer)} to find it.
As it turns out, {\tt SquareMatrix(2, Fraction Integer)} does
not implement {\it any} of these operations!

What does Axiom do then?
Here is its overall strategy.
First, Axiom looks for a function in the capsule for the domain.
If it is not there, Axiom looks in the add-domain for the
operation.
If that fails, Axiom searches the add-domain of the add-domain,
and so on.
If all those fail, it then searches the default packages for the
categories of which the domain is a member.
In the case of {\tt QuadraticForm}, it searches
{\tt AbelianGroup}, then its parents, grandparents, and
so on.
If this fails, it then searches the default packages of the
add-domain.
Whenever a function is found, the search stops immediately and the
function is returned.
When all fails, the system calls {\bf error} to report this
unfortunate news to you.
To find out the actual order of constructors searched for
{\tt QuadraticForm}, consult Browse: from the
{\tt QuadraticForm}, click on {\tt Cross Reference}, then on
{\tt Lineage}.

Let's apply this search strategy for our example $3*q-q+q$.
The scalar multiplication comes first.
Axiom finds a default implementation in
{\tt AbelianGroup\&}.
Remember from \sectionref{ugCategoriesDefaults} that
{\tt SemiGroup} provides a default definition for
$x^n$ by repeated squaring?
{\tt AbelianGroup} similarly provides a definition for
$n x$ by repeated doubling.

But the search of the defaults for {\tt QuadraticForm} fails
to find any {\tt +} or {\tt *} in the default packages for
the ancestors of {\tt QuadraticForm}.
So it now searches among those for {\tt SquareMatrix}.
Category {\tt MatrixCategory}, which provides a uniform interface
for all matrix domains,
is a grandparent of {\tt SquareMatrix} and
has a capsule defining many functions for matrices, including
matrix addition, subtraction, and scalar multiplication.
The default package {\tt MatrixCategory\&} is where the
functions for $+$ and $-$ (from QuadraticForm) come from.

You can use Browse to discover where the operations for
{\tt QuadraticForm} are implemented.
First, get the page describing {\tt QuadraticForm}.
With your mouse somewhere in this window, type a ``2'', press the
\fbox{\bf Tab} key, and then enter ``Fraction
Integer'' to indicate that you want the domain
{\tt QuadraticForm(2, Fraction Integer)}.
Now click on {\bf Operations} to get a table of operations and on
{\tt *} to get a page describing the {\tt *} operation.
Finally, click on {\bf implementation} at the bottom.

%Original Page 535

\section{Origins}
\label{ugDomainsOrigins}
%

Aside from the notion of where an operation is implemented,
\index{operation!origin}
a useful notion is  the {\it origin} or ``home'' of an operation.
When an operation (such as
\spadfunFrom{quadraticForm}{QuadraticForm}) is explicitly exported by
a domain (such as {\tt QuadraticForm}), you can say that the
origin of that operation is that domain.
If an operation is not explicitly exported from a domain, it is inherited
from, and has as origin, the (closest) category that explicitly exports it.
The operations $+$ and $-$ (from AbelianMonoid) of {\tt QuadraticForm},
for example, are inherited from {\tt AbelianMonoid}.
As it turns out, {\tt AbelianMonoid} is the origin of virtually every
{\tt +} operation in Axiom!

Again, you can use Browse to discover the origins of
operations.
From the Browse page on {\tt QuadraticForm}, click on {\bf
Operations}, then on {\bf origins} at the bottom of the page.

The origin of the operation is the {\it only} place where on-line
documentation is given.
However, you can re-export an operation to give it special
documentation.
Suppose you have just invented the world's fastest algorithm for
inverting matrices using a particular internal representation for
matrices.
If your matrix domain just declares that it exports
{\tt MatrixCategory}, it exports the {\bf inverse}
operation, but the documentation the user gets from Browse is
the standard one from {\tt MatrixCategory}.
To give your version of {\bf inverse} the attention it
deserves, simply export the operation explicitly with new
documentation.
This redundancy gives {\bf inverse} a new origin and tells
Browse to present your new documentation.

\section{Short Forms}
\label{ugDomainsShortForms}
%
In Axiom, a domain could be defined using only an add-domain
and no capsule.
Although we talk about rational numbers as quotients of integers,
there is no type {\tt RationalNumber} in Axiom.
To create such a type, you could compile the following
``short-form'' definition:

\noindent
\line(1,0){380}
\begin{verbatim}
RationalNumber() == Fraction(Integer)
\end{verbatim}
\line(1,0){380}

The {\tt Exports} part of this definition is missing and is taken
to be equivalent to that of {\tt Fraction(Integer)}.
Because of the add-domain philosophy, you get precisely
what you want.
The effect is to create a little stub of a domain.
When a user asks to add two rational numbers, Axiom would
ask {\tt RationalNumber} for a function implementing this
{\tt +}.
Since the domain has no capsule, the domain then immediately
sends its request to {\tt Fraction (Integer)}.

The short form definition for domains is used to
define such domains as {\tt Multivariate\-Polynomial}:
\index{MultivariatePolynomial}

%Original Page 536

\line(1,0){380}
\begin{verbatim}
MultivariatePolynomial(vl: List Symbol, R: Ring) ==
   SparseMultivariatePolynomial(R,
      OrderedVariableList vl)
\end{verbatim}
\line(1,0){380}

\section{Example 1: Clifford Algebra}
\label{ugDomainsClifford}
%

Now that we have {\tt QuadraticForm} available,
let's put it to use.
Given some quadratic form $Q$ described by an
$n$ by $n$ matrix over a field $K$, the domain
{\tt CliffordAlgebra(n, K, Q)} defines a vector space of
dimension $2^n$ over $K$.
This is an interesting domain since complex numbers, quaternions,
exterior algebras and spin algebras are all examples of Clifford
algebras.

The basic idea is this:
the quadratic form $Q$ defines a basis
$e_1,e_2\ldots,e_n$ for the
vector space $K^n$---the direct product of $K$
with itself $n$ times.
From this, the Clifford algebra generates a basis of
$2^n$ elements given by all the possible products
of the $e_i$ in order without duplicates, that is,

1,
$e_1$,
$e_2$,
$e_1e_2$,
$e_3$,
$e_1e_3$,
$e_2e_3$,
$e_1e_2,e_3$,
and so on.

The algebra is defined by the relations
$$
\begin{array}{lclc}
e_i \  e_i & = & Q(e_i) \\
e_i \  e_j & = & -e_j \  e_i & \hbox{for } i \neq j
\end{array}
$$

Now look at the snapshot of its definition given in \figureref{fig-clifalg}.
Lines 9-10 show part of the definitions of the
{\tt Exports}.  A Clifford algebra over a field $K$ is asserted to be
a ring, an algebra over $K$, and a vector space over $K$.  Its
explicit exports include $e(n),$ which returns the $n$-th unit
element.

The Implementation part begins by defining a local variable {\tt Qeelist}
to hold the list of all {\tt q.v} where {\tt v} runs over the unit vectors
from 1 to the dimension {\tt n}. Another local variable {\tt dim} is set
to $2^n$, computed once and for all. The representation for the domain is
{\tt PrimitiveArray(K)}, which is a basic array of elements from domain
{\tt K}. Line 18 defines {\tt New} as shorthand for a more lengthy
expression {\tt new(dim,0\$K)\$Rep}, which computes a primitive array of
length $2^n$ filled with 0's from domain {\tt K}.

Lines 19-22 define the sum of two elements {\tt x} and {\tt y}
straightforwardly. First, a new array of all 0's is created, then
filled with the sum of the corresponding elements. Indexing for primitive
arrays start at 0. The definition of the product of {\tt x} and {\tt y}
first requires the definition of a local function {\bf addMonomProd}.
Axiom knows it is local since it is not an exported function.
The types of all local functions must be declared.

%Original Page 537

\begin{figure}
\line(1,0){380}
\begin{verbatim}
NNI ==> NonNegativeInteger
PI  ==> PositiveInteger

CliffordAlgebra(n,K,q): Exports == Implementation where
    n: PI
    K: Field
    q: QuadraticForm(n, K)

    Exports == Join(Ring,Algebra(K),VectorSpace(K)) with
      e: PI -> $
          ...        

    Implementation == add
      Qeelist :=  
        [q.unitVector(i::PI) for i in 1..n]
      dim     :=  2**n
      Rep     := PrimitiveArray K
      New ==> new(dim, 0$K)$Rep
      x + y ==
        z := New
        for i in 0..dim-1 repeat z.i := x.i + y.i
        z
      addMonomProd: (K, NNI, K, NNI, $) -> $
      addMonomProd(c1, b1, c2, b2, z) ==  ...
      x * y ==
        z := New
        for ix in 0..dim-1 repeat
          if x.ix ~= 0 then for iy in 0..dim-1 repeat
            if y.iy ~= 0
            then addMonomProd(x.ix,ix,y.iy,iy,z)
          z
           ...
\end{verbatim}
\caption{Part of the {\tt CliffordAlgebra} domain.}\label{fig-clifalg}
\line(1,0){380}
\end{figure}

The {\tt Implementation} part begins by defining a local variable
$Qeelist$ to hold the list of all $q.v$ where $v$
runs over the unit vectors from 1 to the dimension $n$.
Another local variable $dim$ is set to $2^n$,
computed once and for all.
The representation for the domain is
{\tt PrimitiveArray(K)},
which is a basic array of elements from domain $K$.
Line 18 defines $New$ as shorthand for the more lengthy
expression $new(dim, 0\$K)\$Rep$, which computes a primitive
array of length $2^n$ filled with $0$'s from
domain $K$.

Lines 19-22 define the sum of two elements $x$ and $y$
straightforwardly.
First, a new array of all $0$'s is created, then filled with
the sum of the corresponding elements.
Indexing for primitive arrays starts at 0.
The definition of the product of $x$ and $y$ first requires
the definition of a local function {\bf addMonomProd}.
Axiom knows it is local since it is not an exported function.
The types of all local functions must be declared.

\section{Example 2: Building A Query Facility}
\label{ugDomsinsDatabase}
%
We now turn to an entirely different kind of application,
building a query language for a database.

Here is the practical problem to solve.
The Browse facility of Axiom has a
database for all operations and constructors which is
stored on disk and accessed by HyperDoc.
For our purposes here, we regard each line of this file as having
eight fields:
{\tt class, name, type, nargs, exposed, kind, origin,} and {\tt condition.}
Here is an example entry:

\begin{verbatim}
o`determinant`$->R`1`x`d`Matrix(R)`has(R,commutative("*"))
\end{verbatim}

In English, the entry means:
\begin{quotation}
\raggedright
The operation {\bf determinant}: \spadsig{\$}{R} with {\it 1} argument, is
{\it exposed} and is exported by {\it domain} {\tt Matrix(R)}
if {\tt R has commutative("*")}.
\end{quotation}

%Original Page 538

Our task is to create a little query language that allows us
to get useful information from this database.

\subsection{A Little Query Language}
\label{ugDomainsQueryLanguage}

First we design a simple language for accessing information from
the database.
We have the following simple model in mind for its design.
Think of the database as a box of index cards.
There is only one search operation---it
takes the name of a field and a predicate
\index{predicate}
(a boolean-valued function) defined on the fields of the
index cards.
When applied, the search operation goes through the entire box
selecting only those index cards for which the predicate is {\tt true}.
The result of a search is a new box of index cards.
This process can be repeated again and again.

The predicates all have a particularly simple form: {\it symbol}
{\tt =} {\it pattern}, where {\it symbol} designates one of the
fields, and {\it pattern} is a ``search string''---a string
that may contain a ``{\tt *}'' as a
wildcard.
Wildcards match any substring, including the empty string.
Thus the pattern {\tt "*ma*t} matches
{\tt "mat"},{\tt doormat} and {\tt smart}.

To illustrate how queries are given, we give you a sneak preview
of the facility we are about to create.

Extract the database of all Axiom operations.

\spadcommand{ops := getDatabase("o")}

How many exposed three-argument {\bf map} operations involving streams?

\spadcommand{ops.(name="map").(nargs="3").(type="*Stream*")}

As usual, the arguments of {\bf elt} ({\tt .})
associate to the left.
The first {\bf elt} produces the set of all operations with
name {\tt map}.
The second {\bf elt} produces the set of all map operations
with three arguments.
The third {\bf elt} produces the set of all three-argument map
operations having a type mentioning {\tt Stream}.

Another thing we'd like to do is to extract one field from each of
the index cards in the box and look at the result.
Here is an example of that kind of request.

What constructors explicitly export a {\bf determinant} operation?

\spadcommand{elt(elt(elt(elt(ops,name="determinant"),origin),sort),unique)}

%Original Page 539

The first {\bf elt} produces the set of all index cards with
name {\tt determinant}.
The second {\bf elt} extracts the {\tt origin} component from
each index card. Each origin component
is the name of a constructor which directly
exports the operation represented by the index card.
Extracting a component from each index card produces what we call
a {\it datalist}.
The third {\bf elt}, {\tt sort}, causes the datalist of
origins to be sorted in alphabetic
order.
The fourth, {\tt unique}, causes duplicates to be removed.

Before giving you a more extensive demo of this facility,
we now build the necessary domains and packages to implement it.
%We will introduce a few of our minor conveniences.

\subsection{The Database Constructor}
\label{ugDomainsDatabaseConstructor}

We work from the top down. First, we define a database,
our box of index cards, as an abstract datatype.
For sake of illustration and generality,
we assume that an index card is some type $S$, and
that a database is a box of objects of type $S$.
Here is the Axiom program defining the {\tt Database}
domain.

\noindent
\line(1,0){380}
\begin{verbatim}
PI ==> PositiveInteger
Database(S): Exports == Implementation where
  S: Object with 
    elt: ($, Symbol) -> String
    display: $ -> Void
    fullDisplay: $ -> Void

  Exports == with
    elt: ($,QueryEquation) -> $          Select by an equation
    elt: ($, Symbol) -> DataList String  Select by a field name
    "+": ($,$) -> $                      Combine two databases
    "-": ($,$) -> $                      Subtract one from another
    display: $ -> Void                   A brief database display
    fullDisplay: $ -> Void               A full database display
    fullDisplay: ($,PI,PI) -> Void       A selective display
    coerce: $ -> OutputForm              Display a database
  Implementation == add
      ...
\end{verbatim}
\line(1,0){380}

The domain constructor takes a parameter $S$, which
stands for the class of index cards.
We describe an index card later.
Here think of an index card as a string which has
the eight fields mentioned above.

First, we tell Axiom what operations we are going to require
from index cards.
We need an {\bf elt} to extract the contents of a field
(such as {\tt name} and {\tt type}) as a string.
For example,
$c.name$ returns a string that is the content of the
$name$ field on the index card $c$.
We need to display an index card in two ways:
{\bf display} shows only the name and type of an
operation;
{\bf fullDisplay} displays all fields.
The display operations return no useful information and thus have
return type {\tt Void}.

%Original Page 540

Next, we tell Axiom what operations the user can apply
to the database.
This part defines our little query language.
The most important operation is
{\frenchspacing\tt db . field = pattern} which
returns a new database, consisting of all index
cards of {\tt db} such that the $field$ part of the index
card is matched by the string pattern called $pattern$.
The expression {\tt field = pattern} is an object of type
{\tt QueryEquation} (defined in the next section).

Another {\bf elt} is needed to produce a {\tt DataList}
object.
Operation {\tt +} is to merge two databases together;
{\tt -} is used to subtract away common entries in a second
database from an initial database.
There are three display functions.
The {\bf fullDisplay} function has two versions: one
that prints all the records, the other that prints only a fixed
number of records.
A {\bf coerce} to {\tt OutputForm} creates a display
object.

The {\tt Implementation} part of {\tt Database} is straightforward.

\noindent
\line(1,0){380}
\begin{verbatim}
  Implementation == add
    s: Symbol
    Rep := List S
    elt(db,equation) == ...
    elt(db,key) == [x.key for x in db]::DataList(String)
    display(db) ==  for x in db repeat display x
    fullDisplay(db) == for x in db repeat fullDisplay x
    fullDisplay(db, n, m) == for x in db for i in 1..m
      repeat
        if i >= n then fullDisplay x
    x+y == removeDuplicates! merge(x,y)
    x-y == mergeDifference(copy(x::Rep),
                           y::Rep)$MergeThing(S)
    coerce(db): OutputForm == (#db):: OutputForm
\end{verbatim}
\line(1,0){380}

The database is represented by a list of elements of $S$ (index cards).
We leave the definition of the first {\bf elt} operation
(on line 4) until the next section.
The second {\bf elt} collects all the strings with field name
{\it key} into a list.
The {\bf display} function and first {\bf fullDisplay} function
simply call the corresponding functions from $S$.
The second {\bf fullDisplay} function provides an efficient way of
printing out a portion of a large list.
The {\tt +} is defined by using the existing
\spadfunFrom{merge}{List} operation defined on lists, then
removing duplicates from the result.
The {\tt -} operation requires writing a corresponding
subtraction operation.
A package {\tt MergeThing} (not shown) provides this.

The {\bf coerce} function converts the database to an
{\tt OutputForm} by computing the number of index cards.
This is a good example of the independence of
the representation of an Axiom object from how it presents
itself to the user. We usually do not want to look at a database---but
do care how many ``hits'' we get for a given query.
So we define the output representation of a database to be simply
the number of index cards our query finds.

%Original Page 541

\subsection{Query Equations}
\label{ugDomainsQueryEquations}

The predicate for our search is given by an object of type
{\tt QueryEquation}.
Axiom does not have such an object yet so we
have to invent it.

\noindent
\line(1,0){380}
\begin{verbatim}
QueryEquation(): Exports == Implementation where
  Exports == with
    equation: (Symbol, String) -> $
    variable: $ -> Symbol
    value: $ -> String

  Implementation == add
    Rep := Record(var:Symbol, val:String)
    equation(x, s) == [x, s]
    variable q == q.var
    value q == q.val
\end{verbatim}
\line(1,0){380}

Axiom converts an input expression of the form
${\it a} = {\it b}$ to $equation({\it a, b})$.
Our equations always have a symbol on the left and a string
on the right.
The {\tt Exports} part thus specifies an operation
{\bf equation} to create a query equation, and
{\bf variable} and {\bf value} to select the left- and
right-hand sides.
The {\tt Implementation} part uses {\tt Record} for a
space-efficient representation of an equation.

Here is the missing definition for the {\bf elt} function of
{\tt Database} in the last section:

\noindent
\line(1,0){380}
\begin{verbatim}
    elt(db,eq) ==
      field\  := variable eq
      value := value eq
      [x for x in db | matches?(value,x.field)]
\end{verbatim}
\line(1,0){380}

Recall that a database is represented by a list.
Line 4 simply runs over that list collecting all elements
such that the pattern (that is, $value$)
matches the selected field of the element.

\subsection{DataLists}
\label{ugDomainsDataLists}

Type {\tt DataList} is a new type invented to hold the result
of selecting one field from each of the index cards in the box.
It is useful to make datalists extensions of lists---lists that
have special {\bf elt} operations defined on them for
sorting and removing duplicates.

%Original Page 542

\noindent
\line(1,0){380}
\begin{verbatim}
DataList(S:OrderedSet) : Exports == Implementation where
  Exports == ListAggregate(S) with
    elt: ($,"unique") -> $
    elt: ($,"sort") -> $
    elt: ($,"count") -> NonNegativeInteger
    coerce: List S -> $

  Implementation ==  List(S) add
    Rep := List S
    elt(x,"unique") == removeDuplicates(x)
    elt(x,"sort") == sort(x)
    elt(x,"count") == #x
    coerce(x:List S) == x :: $
\end{verbatim}
\line(1,0){380}

The {\tt Exports} part asserts that datalists belong to the
category {\tt ListAggregate}.
Therefore, you can use all the usual list operations on datalists,
such as \spadfunFrom{first}{List}, \spadfunFrom{rest}{List}, and
\spadfunFrom{concat}{List}.
In addition, datalists have four explicit operations.
Besides the three {\bf elt} operations, there is a
{\bf coerce} operation that creates datalists from lists.

The {\tt Implementation} part needs only to define four functions.
All the rest are obtained from {\tt List(S)}.

\subsection{Index Cards}
\label{ugDomainsDatabase}

An index card comes from a file as one long string.
We define functions that extract substrings from the long
string.
Each field has a name that
is passed as a second argument to {\bf elt}.

\noindent
\line(1,0){380}
\begin{verbatim}
IndexCard() == Implementation where
  Exports == with
    elt: ($, Symbol) -> String
    display: $ -> Void
    fullDisplay: $ -> Void
    coerce: String -> $
  Implementation == String add ...
\end{verbatim}
\line(1,0){380}

We leave the {\tt Implementation} part to the reader.
All operations involve straightforward string manipulations.

\subsection{Creating a Database}
\label{ugDomainsCreating}

We must not forget one important operation: one that builds the database in the
first place!
We'll name it {\bf getDatabase} and put it in a package.
This function is implemented by calling the Common Lisp function
$getBrowseDatabase(s)$ to get appropriate information from
Browse.
This operation takes a string indicating which lines you
want from the database: ``{\tt o}'' gives you all operation
lines, and ``{\tt k}'', all constructor lines.
Similarly, ``{\tt c}'', ``{\tt d}'', and ``{\tt p}'' give
you all category, domain and package lines respectively.

%%Original Page 543

\noindent
\line(1,0){380}
\begin{verbatim}
OperationsQuery(): Exports == Implementation where
  Exports == with
    getDatabase: String -> Database(IndexCard)

  Implementation == add
    getDatabase(s) == getBrowseDatabase(s)$Lisp
\end{verbatim}
\line(1,0){380}

We do not bother creating a special name for databases of index cards.\\
{\tt Database (IndexCard)} will do. Notice that we used the package\\ 
{\tt OperationsQuery} to create, in effect, a new kind of domain:\\
{\tt Database(IndexCard)}.

\subsection{Putting It All Together}
\label{ugDomainsPutting}

To create the database facility, you put all these constructors
into one file.\footnote{You could use separate files, but we
are putting them all together because, organizationally, that is
the logical thing to do.}
At the top of the file put {\tt )abbrev} commands, giving the
constructor abbreviations you created.

\pagebreak
\noindent
\line(1,0){380}
\begin{verbatim}
)abbrev domain  ICARD   IndexCard
)abbrev domain  QEQUAT  QueryEquation
)abbrev domain  MTHING  MergeThing
)abbrev domain  DLIST   DataList
)abbrev domain  DBASE   Database
)abbrev package OPQUERY OperationsQuery
\end{verbatim}
\line(1,0){380}

With all this in {\bf alql.spad}, for example, compile it using
\index{compile}
\begin{verbatim}
)compile alql
\end{verbatim}
and then load each of the constructors:
\begin{verbatim}
)load ICARD QEQUAT MTHING DLIST DBASE OPQUERY
\end{verbatim}
\index{load}
You are ready to try some sample queries.

\subsection{Example Queries}
\label{ugDomainsExamples}

Our first set of queries give some statistics on constructors in
the current Axiom system.

How many constructors does Axiom have?

\spadcommand{ks := getDatabase "k"}

%Original Page 544

Break this down into the number of categories, domains, and packages.

\spadcommand{[ks.(kind=k) for k in ["c","d","p"] ]}

What are all the domain constructors that take no parameters?

\spadcommand{elt(ks.(kind="d").(nargs="0"),name)}

How many constructors have ``Matrix'' in their name?

\spadcommand{mk := ks.(name="*Matrix*")}

What are the names of those that are domains?

\spadcommand{elt(mk.(kind="d"),name)}

How many operations are there in the library?

\spadcommand{o := getDatabase "o"}

Break this down into categories, domains, and packages.

\spadcommand{[o.(kind=k) for k in ["c","d","p"] ]}


The query language is helpful in getting information about a
particular operation you might like to apply.
While this information can be obtained with
Browse, the use of the query database gives you data that you
can manipulate in the workspace.

%Original Page 545

How many operations have ``eigen'' in the name?

\spadcommand{eigens := o.(name="*eigen*")}

What are their names?

\spadcommand{elt(eigens,name)}

Where do they come from?

\spadcommand{elt(elt(elt(eigens,origin),sort),unique) }

The operations {\tt +} and {\tt -} are useful for
constructing small databases and combining them.
However, remember that the only matching you can do is string
matching.
Thus a pattern such as {\tt "*Matrix*"} on the type field
matches
any type containing {\tt Matrix}, {\tt MatrixCategory},
{\tt SquareMatrix}, and so on.

How many operations mention ``Matrix'' in their type?

\spadcommand{tm := o.(type="*Matrix*")}

How many operations come from constructors with ``Matrix'' in
their name?

\spadcommand{fm := o.(origin="*Matrix*")}

How many operations are in $fm$ but not in $tm$?

\spadcommand{fm-tm }

Display the operations that both mention ``Matrix'' in their type
and come from a constructor having ``Matrix'' in their name.

\spadcommand{fullDisplay(fm-\%) }

%Original Page 546

How many operations involve matrices?

\spadcommand{m := tm+fm }

Display 4 of them.

\spadcommand{fullDisplay(m, 202, 205) }

How many distinct names of operations involving matrices are there?

\spadcommand{elt(elt(elt(m,name),unique),count) }

%following definition should go into ug.sty
\gdef\aliascon#1#2{{\bf #1}}
%\setcounter{chapter}{13} % Chapter 14
%

%Original Page 547

\chapter{Browse}
\label{ugBrowse}

This chapter discusses the Browse
\index{Browse@Browse}
component of HyperDoc.
\index{HyperDoc@{HyperDoc}}
We suggest you invoke Axiom and work through this
chapter, section by section, following our examples to gain some
familiarity with Browse.

\section{The Front Page: Searching the Library}
\label{ugBrowseStart}
To enter Browse, click on {\bf Browse} on the top level page
of HyperDoc to get the {\it front page} of Browse.
%
%324pt is 4.5",180pt is 2.5",432pt is 6"=textwidth,54=(432-324)/2
%ps files are 4.5"x2.5" except source 4.5"x2.5"
%
\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-brfront.ps}
\end{picture}
\caption{The Browse front page.}
\end{figure}

To use this page, you first enter a {\it search string} into
the input area at the top, then click on one of the buttons below.
We show the use of each of the buttons by example.

%Original Page 548

\subsubsection{Constructors}

First enter the search string {\tt Matrix} into the input area and
click on {\bf Constructors}.
What you get is the {\it constructor page} for {\tt Matrix}.
We show and describe this page in detail in
\sectionref{ugBrowseDomain}.
By convention, Axiom does a case-insensitive search for a
match.
Thus {\tt matrix} is just as good as {\tt Matrix}, has the same
effect as {\tt MaTrix}, and so on.
We recommend that you generally use small letters for names
however.
A search string with only capital letters has a special meaning
(see \sectionref{ugBrowseCapitalizationConvention}).


Click on \UpBitmap{} to return to the Browse front page.

Use the symbol ``{\tt *}'' in search strings as a {\it wild
card}.
A wild card matches any substring, including the empty string.
For example, enter the search string {\tt *matrix*} into the input
area and click on {\bf Constructors}.\footnote{To get only
categories, domains, or packages, rather than all constructors,
you can click on the corresponding button to the right of {\bf
Constructors}.}
What you get is a table of all constructors whose names contain
the string ``{\tt matrix}.''

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-consearch.ps}
\end{picture}
\caption{Table of exposed constructors matching {\tt *matrix*} .}
\end{figure}

All constructors containing the string are listed, whether
exposed or unexposed.
You can hide the names of the unexposed constructors by clicking
on the {\it *=}{\bf unexposed} button in the {\it Views} panel at
the bottom of the window.
(The button will change to {\bf exposed} {\it only}.)

One of the names in this table is {\tt Matrix}.
Click on {\tt Matrix}.
What you get is again the constructor page for {\tt Matrix}.
As you see, Browse gives you a large network of
information in which there are many ways to reach the same
pages.
\index{Matrix}

Again click on the \UpBitmap{} to return to the table of constructors
whose names contain {\tt matrix}.


%Original Page 549

Below the table is a {\it Views} panel.
This panel contains buttons that let you view constructors in different
ways.
To learn about views of constructors, skip to
\sectionref{ugBrowseViewsOfConstructors}.

Click on \UpBitmap{} to return to the Browse front page.

\subsubsection{Operations}

Enter {\tt *matrix} into the input area and click on {\bf
Operations}.
This time you get a table of {\it operations} whose names end with {\tt
matrix} or {\tt Matrix}.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matrixops.ps}
\end{picture}
\caption{Table of operations matching {\tt *matrix} .}
\end{figure}

If you select an operation name, you go to a page describing all
the operations in Axiom of that name.
At the bottom of an operation page is another kind of {\it Views} panel,
one for operation pages.
To learn more about these views, skip to
\sectionref{ugBrowseViewsOfOperations}.

Click on \UpBitmap{} to return to the Browse front page.

\subsubsection{Attributes}

This button gives you a table of attribute names that match the
search string. Enter the search string {\tt *} and click on
{\bf Attributes} to get a list
of all system attributes.

Click on \UpBitmap{} to return to the Browse front page.


\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-atsearch.ps}
\end{picture}
\caption{Table of Axiom attributes.}
\end{figure}

Again there is a {\it Views} panel at the bottom with buttons that let
you view the attributes in different ways.

\subsubsection{General}

This button does a general search for all constructor, operation, and
attribute names matching the search string.
Enter the search string \allowbreak
{\tt *matrix*} into the input area.
Click on {\bf General} to find all constructs that have {\tt
matrix} as a part of their name.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-gensearch.ps}
\end{picture}
\caption{Table of all constructs matching {\tt *matrix*} .}
\end{figure}

The summary gives you all the names under a heading when the number of
entries is less than 10. 

%Original Page 550

Click on \UpBitmap{} to return to the Browse front page.

%Original Page 551

\subsubsection{Documentation}

Again enter the search key {\tt *matrix*} and this time click on
{\bf Documentation}.
This search matches any constructor, operation, or attribute
name whose documentation contains a substring matching {\tt
matrix}.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-docsearch.ps}
\end{picture}
\caption{Table of constructs with documentation matching {\tt *matrix*} .}
\end{figure}

Click on \UpBitmap{} to return to the Browse front page.

\subsubsection{Complete}

This search combines both {\bf General} and {\bf Documentation}.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-comsearch.ps}
\end{picture}
\caption{Table summarizing complete search for pattern {\tt *matrix*} .}
\end{figure}

\section{The Constructor Page}
\label{ugBrowseDomain}

In this section we look in detail at a constructor page for domain
{\tt Matrix}.
Enter {\tt matrix} into the input area on the main Browse page
and click on {\bf Constructors}.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matpage.ps}
\end{picture}
\caption{Constructor page for {\tt Matrix}.}
\end{figure}

%Original Page 552

The header part tells you that {\tt Matrix} has abbreviation
{\tt MATRIX} and one argument called {\tt R} that must be a
domain of category {\tt Ring}.
Just what domains can be arguments of {\tt Matrix}?
To find this out, click on the {\tt R} on the second line of the
heading.
What you get is a table of all acceptable domain parameter values
of {\tt R}, or a table of {\it rings} in Axiom.

%Original Page 553

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matargs.ps}
\end{picture}
\caption{Table of acceptable domain parameters to {\tt Matrix}.}
\end{figure}

Click on \UpBitmap{} to return to the constructor page for
{\tt Matrix}.
\newpage

If you have access to the source code of Axiom, the third
\index{source code}
line of the heading gives you the name of the source file
containing the definition of {\tt Matrix}.
Click on it to pop up an editor window containing the source code
of {\tt Matrix}.

\begin{figure}[htbp]
\begin{picture}(324,168)%(-54,0)
\special{psfile=ps/h-matsource.ps}
\end{picture}
\caption{Source code for {\tt Matrix}.}
\end{figure}

We recommend that you leave the editor window up while working
through this chapter as you occasionally may want to refer to it.
\newpage

%Original Page 554

\subsection{Constructor Page Buttons}
\label{ugBrowseDomainButtons}

We examine each button on this page in order.

\subsubsection{Description}

Click here to bring up a page with a brief description of
constructor {\tt Matrix}.
If you have access to system source code, note that these comments
can be found directly over the constructor definition.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matdesc.ps}
\end{picture}
\caption{Description page for {\tt Matrix}.}
\end{figure}

\subsubsection{Operations}

Click here to get a table of operations exported by
{\tt Matrix}.
You may wish to widen the window to have multiple columns as
below.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matops.ps}
\end{picture}
\caption{Table of operations from {\tt Matrix}.}
\end{figure}

If you click on an operation name, you bring up a description
page for the operations.
For a detailed description of these pages, skip to
\sectionref{ugBrowseViewsOfOperations}.

\subsubsection{Attributes}

%Original Page 555

Click here to get a table of the two attributes exported by
{\tt Matrix}:
\index{attribute}
{\bf fi\-nite\-Ag\-gre\-gate} and {\bf shallowlyMutable}.
These are two computational properties that result from
{\tt Matrix} being regarded as a data structure.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matats.ps}
\end{picture}
\caption{Attributes from {\tt Matrix}.}
\end{figure}

\subsubsection{Examples}

Click here to get an {\it examples page} with examples of operations to
create and manipulate matrices.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matexamp.ps}
\end{picture}
\caption{Example page for {\tt Matrix}.}
\end{figure}

Read through this section.
Try selecting the various buttons.
Notice that if you click on an operation name, such as
\spadfunFrom{new}{Matrix}, you bring up a description page for that
operation from {\tt Matrix}.

%Original Page 556

Example pages have several examples of Axiom commands.
Each example has an active button to its left.
Click on it!
A pre-computed answer is pasted into the page immediately following the
command.
If you click on the button a second time, the answer disappears.
This button thus acts as a toggle:
``now you see it; now you don't.''

Note also that the Axiom commands themselves are active.
If you want to see Axiom execute the command, then click on it!
A new Axiom window appears on your screen and the command is
executed.

At the end of the page is generally a menu of buttons that lead
you to further sections.
Select one of these topics to explore its contents.

\subsubsection{Exports}

Click here to see a page describing the exports of {\tt Matrix}
exactly as described by the source code.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matexports.ps}
\end{picture}
\caption{Exports of {\tt Matrix}.}
\end{figure}

As you see, {\tt Matrix} declares that it exports all the operations
and attributes exported by category
{\tt MatrixCategory(R, Row, Col)}.
In addition, two operations, {\bf diagonalMatrix} and
{\bf inverse}, are explicitly exported.

To learn a little about the structure of Axiom, we suggest you do
the following exercise.

Otherwise, go on to the next section.

{\tt Matrix} explicitly exports only two operations.
The other operations are thus exports of {\tt MatrixCategory}.
In general, operations are usually not explicitly exported by a domain.
Typically they are inherited from several
different categories.
Let's find out from where the operations of {\tt Matrix} come.

%Original Page 557

\begin{enumerate}
\item Click on {\tt MatrixCategory}, then on {\bf Exports}.\\
Here you see that {\tt MatrixCategory} explicitly exports many matrix\\
operations. Also, it inherits its operations from\\
{\tt TwoDimen\-sionalArrayCategory}.

\item Click on {\tt TwoDimensionalArrayCategory}, then on {\bf Exports}.
Here you see explicit operations dealing with rows and columns.
In addition, it inherits operations from
{\tt HomogeneousAggregate}.

%\item Click on {\tt HomogeneousAggregate}, then on {\bf Exports}.
%And so on.
%If you continue doing this, eventually you will

\item Click on \UpBitmap{} and then
click on {\tt Object}, then on {\bf Exports}, where you see
there are no exports.

\item Click on \UpBitmap{} repeatedly to return to the constructor page
for {\tt Matrix}.

\end{enumerate}

\subsubsection{Related Operations}

Click here bringing up a table of operations that are exported by
packages but not by {\tt Matrix} itself.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matrelops.ps}
\end{picture}
\caption{Related operations of {\tt Matrix}.}
\end{figure}

To see a table of such packages, use the {\bf Relatives} button on the
{\bf Cross Reference} page described next.


\subsection{Cross Reference}
\label{ugBrowseCrossReference}
Click on the {\bf Cross Reference} button on the main constructor page
for {\tt Matrix}.
This gives you a page having various cross reference information stored
under the respective buttons.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matxref.ps}
\end{picture}
\caption{Cross-reference page for {\tt Matrix}.}
\end{figure}

\subsubsection{Parents}

The parents of a domain are the same as the categories mentioned under
the {\bf Exports} button on the first page.
Domain {\tt Matrix} has only one parent but in general a domain can
have any number.

\subsubsection{Ancestors}

The ancestors of a constructor consist of its parents, the
parents of its parents, and so on.
Did you perform the exercise in the last section under {\bf Exports}?
If so, you  see here all the categories you found while ascending the
{\bf Exports} chain for {\tt Matrix}.

%Original Page 558

\subsubsection{Relatives}

The relatives of a domain constructor are package
constructors that provide operations in addition to those
exported by the domain.

Try this exercise.
\begin{enumerate}
\item Click on {\bf Relatives}, bringing up a list of
packages.

\item Click on {\tt LinearSystemMatrixPackage} bringing up its
constructor page.\footnote{You may want to widen your HyperDoc
window to make what follows more legible.}

\item Click on {\bf Operations}.
Here you see {\bf rank}, an operation also exported by
{\tt Matrix} itself.

\item Click on {\bf rank}.
This \spadfunFrom{rank}{LinearSystemMatrixPackage} has two arguments and
thus is different from the \spadfunFrom{rank}{Matrix} from
{\tt Matrix}.

\item Click on \UpBitmap{} to return to the list of operations for the
package {\bf LinearSystemMatrixPackage}.

\item Click on {\bf solve} to bring up a
\spadfunFrom{solve}{LinearSystemMatrixPackage} for linear systems of
equations.

\item Click on \UpBitmap{} several times to return to the cross
reference page for {\tt Matrix}.
\end{enumerate}

\subsubsection{Dependents}

The dependents of a constructor are those
domains or packages
that mention that
constructor either as an argument or in its exports.

If you click on {\bf Dependents} two entries may surprise you:\\
{\tt RectangularMatrix} and {\tt SquareMatrix}. This happens because\\ 
{\tt Matrix}, as it turns out, appears in signatures of operations\\ 
exported by these domains.

\subsubsection{Lineage}

%Original Page 559

The term {\it lineage} refers to the {\it search order} for
functions.
If you are an expert user or curious about how the Axiom system
works, try the following exercise.
Otherwise, you best skip this button and go on to {\bf Clients}.

Clicking on {\bf Lineage} gives you a
list of domain constructors:\\
{\tt InnerIndexedTwoDimensional\-Array},
\aliascon{MatrixCategory\&}{MATCAT-},
\aliascon{TwoDimensionalArrayCategory\&}{ARR2CAT-},
\aliascon{HomogeneousAggregate\&}{HOAGG-},
\aliascon{Aggregate\&}{AGG-}.
What are these constructors and how are they used?

We explain by an example.
Suppose you create a matrix using the interpreter, then ask for its
{\bf rank}.
Axiom must then find a function implementing the {\bf rank}
operation for matrices.
The first place Axiom looks for {\bf rank} is in the {\tt Matrix}
domain.

If not there, the lineage of {\tt Matrix} tells Axiom where
else to look.
Associated with the matrix domain are five other lineage domains.
Their order is important.
Axiom first searches the first one,
{\tt InnerIndexedTwoDimensionalArray}.
If not there, it searches the second \aliascon{MatrixCategory\&}{MATCAT-}.
And so on.

Where do these {\it lineage constructors} come from? The source code\\ 
for {\tt Matrix} contains this syntax for the {\it function body} of\\
{\tt Matrix}: {\tt InnerIndexedTwoDimensionalArray} is a special domain\\ 
implemented for matrix-like domains to provide efficient\\ 
implementations of two-di\-men\-sion\-al arrays.

For example, domains of category {\tt TwoDimensionalArrayCategory} can
have any integer as their $minIndex$. Matrices and other members of
this special ``inner'' array have their $minIndex$ defined as $1$.
\begin{verbatim}
InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col)
   add ...
\end{verbatim}
where the ``{\tt ...}'' denotes all the code that follows.
In English, this means:
``The functions for matrices are defined as those from
{\tt InnerIndexedTwoDimensionalArray} domain augmented by those
defined in `{\tt ...}','' where the latter take precedence.

This explains {\tt InnerIndexedTwoDimensionalArray}.
The other names, those with names ending with an ampersand {\tt \&} are
default packages
for categories to which {\tt Matrix} belongs.
Default packages are ordered by the notion of ``closest ancestor.''

\subsubsection{Clients}

A client of {\tt Matrix} is any constructor that uses
{\tt Matrix} in its implementation.
For example, {\tt Complex} is a client of {\tt Matrix}; it
exports several operations that take matrices as arguments or return
matrices as values.\footnote{A constructor is a client of
{\tt Matrix} if it handles any matrix.
For example, a constructor having internal (unexported) operations
dealing with matrices is also a client.}

%Original Page 560

\subsubsection{Benefactors}

A {\it benefactor} of {\tt Matrix} is any constructor that
{\tt Matrix} uses in its implementation.
This information, like that for clients, is gathered from run-time
structures.\footnote{The benefactors exclude constructors such as
{\tt PrimitiveArray} whose operations macro-expand and so vanish
from sight!}

Cross reference pages for categories have some different buttons on
them.
Starting with the constructor page of {\tt Matrix}, click on
{\tt Ring} producing its constructor page.
Click on {\bf Cross Reference},
producing the cross-reference page for {\tt Ring}.
Here are buttons {\bf Parents} and {\bf Ancestors} similar to the notion
for domains, except for categories the relationship between parent and
child is defined through {\it category extension}.

\subsubsection{Children}

Category hierarchies go both ways.
There are children as well as parents.
A child can have any number of parents, but always at least one.
Every category is therefore a descendant of exactly one category:
{\tt Object}.

\subsubsection{Descendants}

These are children, children of children, and so on.

Category hierarchies are complicated by the fact that categories take
parameters.
Where a parameterized category fits into a hierarchy {\it may} depend on
values of its parameters.
In general, the set of categories in Axiom forms a {\it directed
acyclic graph}, that is, a graph with directed arcs and no cycles.

\subsubsection{Domains}

This produces a table of all domain constructors that can possibly be
rings (members of category {\tt Ring}).
Some domains are unconditional rings.
Others are rings for some parameters and not for others.
To find out which, select the {\bf conditions} button in the views
panel.
For example, {\tt DirectProduct(n, R)} is a ring if {\tt R} is a
ring.



\subsection{Views Of Constructors}
\label{ugBrowseViewsOfConstructors}

Below every constructor table page is a {\it Views} panel.
As an example, click on {\bf Cross Reference} from
the constructor page of {\tt Matrix},
then on {\bf Benefactors} to produce a
short table of constructor names.

The {\it Views} panel is at the bottom of the page.
Two items, {\it names} and {\it conditions,} are in italics.
Others are active buttons.
The active buttons are those that give you useful alternative views
on this table of constructors.
Once you select a view, you notice that the button turns
off (becomes italicized) so that you cannot reselect it.

\subsubsection{names}

This view gives you a table of names.
Selecting any of these names brings up the constructor page for that
constructor.

%Original Page 561

\subsubsection{abbrs}

This view gives you a table of abbreviations, in the same order as the
original constructor names.
Abbreviations are in capitals and are limited to 7 characters.
They can be used interchangeably with constructor names in input areas.

\subsubsection{kinds}

This view organizes constructor names into
the three kinds: categories, domains and packages.

\subsubsection{files}

This view gives a table of file names for the source
code of the constructors in alphabetic order after removing
duplicates.

\subsubsection{parameters}

This view presents constructors with the arguments.
This view of the benefactors of {\tt Matrix} shows that
{\tt Matrix} uses as many as five different {\tt List} domains
in its implementation.

\subsubsection{filter}

This button is used to refine the list of names or abbreviations.
Starting with the {\it names} view, enter {\tt m*} into the input area
and click on {\tt filter}.
You then get a shorter table with only the names beginning with {\tt m}.

\subsubsection{documentation}

This gives you documentation for each of the constructors.

\subsubsection{conditions}

This page organizes the constructors according to predicates.
The view is not available for your example page since all constructors
are unconditional.
For a table with conditions, return to the {\bf Cross Reference} page
for {\tt Matrix}, click on {\bf Ancestors}, then on {\bf
conditions} in the view panel.
This page shows you that {\tt CoercibleTo(OutputForm)} and
{\tt SetCategory} are ancestors of {\tt Matrix(R)} only if {\tt R}
belongs to category {\tt SetCategory}.

\subsection{Giving Parameters to Constructors}
\label{ugBrowseGivingParameters}

Notice the input area at the bottom of the constructor page.
If you leave this blank, then the information you get is for the
domain constructor {\tt Matrix(R)}, that is, {\tt Matrix} for an
arbitrary underlying domain {\tt R}.

In general, however, the exports and other information {\it do} usually
depend on the actual value of {\tt R}.
For example, {\tt Matrix} exports the {\bf inverse} operation
only if the domain {\tt R} is a {\tt Field}.
To see this, try this from the main constructor page:

\begin{enumerate}
\item Enter {\tt Integer} into the input area at the bottom of the page.

\item Click on {\bf Operations}, producing a table of operations.
Note the number of operation names that appear at the top of the
page.

\item Click on \UpBitmap{} to return to the constructor page.

\item Use the
\fbox{\bf Delete}
or
\fbox{\bf Backspace}
keys to erase {\tt Integer} from the input area.

\item Click on {\bf Operations} to produce a new table of operations.
Look at the number of operations you get.
This number is greater than what you had before.
Find, for example, the operation {\bf inverse}.

%Original Page 562

\item Click on {\bf inverse} to produce a page describing the operation
{\bf inverse}.
At the bottom of the description, you notice that the {\bf
Conditions} line says ``{\tt R} has {\tt Field}.''
This operation is {\it not} exported by {\tt Matrix(Integer)} since
{\tt Integer} is not a {\it field}.

Try putting the name of a domain such as {\tt Fraction Integer}
(which is a field) into the input area, then clicking on {\bf Operations}.
As you see, the operation {\bf inverse} is exported.
\end{enumerate}

\section{Miscellaneous Features of Browse}
\label{ugBrowseMiscellaneousFeatures}

\subsection{The Description Page for Operations}
\label{ugBrowseDescription}

From the constructor page of {\tt Matrix},
click on {\bf Operations} to bring up the table of operations
for {\tt Matrix}.

Find the operation {\bf inverse} in the table and click on it.
This takes you to a page showing the documentation for this operation.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matinv.ps}
\end{picture}
\caption{Operation \spadfunFrom{inverse}{Matrix} from {\tt Matrix}.}
\end{figure}

Here is the significance of the headings you see.

\subsubsection{Arguments}

This lists each of the arguments of the operation in turn, paraphrasing
the {\it signature} of the operation.
As for signatures, a {\tt \$} is used to designate {\em this domain},
that is, {\tt Matrix(R)}.

\subsubsection{Returns}

This describes the return value for the operation, analogous to the {\bf
Arguments} part.

%Original Page 563

\subsubsection{Origin}

This tells you which domain or category explicitly exports the
operation.
In this example, the domain itself is the {\it Origin}.


\subsubsection{Conditions}

This tells you that the operation is exported by {\tt Matrix(R)} only if
``{\tt R} has {\tt Field},'' that is, ``{\tt R} is a member of
category {\tt Field}.''
When no {\bf Conditions} part is given, the operation is exported for
all values of {\tt R}.

\subsubsection{Description}

Here are the {\tt ++} comments
that appear in the source code of its {\it Origin}, here {\tt Matrix}.
You find these comments in the source code for {\tt Matrix}.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matmap.ps}
\end{picture}
\caption{Operations {\bf map} from {\tt Matrix}.}
\end{figure}

Click on \UpBitmap{} to return to the table of operations.
Click on {\bf map}.
Here you find three different operations named {\bf map}.
This should not surprise you.
Operations are identified by name and {\it signature}.
There are three operations named {\bf map}, each with
different signatures.
What you see is the {\it descriptions} view of the operations.
If you like, select the button in the heading of one of these
descriptions to get {\it only} that operation.

\subsubsection{Where}

This part qualifies domain parameters mentioned in the arguments to the
operation.

\subsection{Views of Operations}
\label{ugBrowseViewsOfOperations}

We suggest that you go to the constructor page for {\tt Matrix}
and click on {\bf Operations} to bring up a table of operations
with a {\it Views} panel at the bottom.

\subsubsection{names}

This view lists the names of the operations.
Unlike constructors, however, there may be several operations with the
same name.
The heading for the page tells you the number of unique names and the
number of distinct operations when these numbers are different.

%Original Page 564

\subsubsection{filter}

As for constructors, you can use this button to cut down the list of
operations you are looking at.
Enter, for example, {\tt m*} into the input area to the right of {\bf
filter} then click on {\bf filter}.
As usual, any logical expression is permitted.
For example, use
\begin{verbatim}
*! or *?
\end{verbatim}
to get a list of destructive operations and predicates.

\subsubsection{documentation}

This gives you the most information:
a detailed description of all the operations in the form you have seen
before.
Every other button summarizes these operations in some form.

\subsubsection{signatures}

This views the operations by showing their signatures.

\subsubsection{parameters}

This views the operations by their distinct syntactic forms with
parameters.

\subsubsection{origins}

This organizes the operations according to the constructor that
explicitly exports them.

\subsubsection{conditions}

This view organizes the operations into conditional and unconditional
operations.

\subsubsection{usage}

This button is only available if your user-level is set to {\it
\index{user-level}
development}.
The {\bf usage} button produces a table of constructors that reference this
operation.\footnote{Axiom requires an especially long time to
produce this table, so anticipate this when requesting this
information.}

\subsubsection{implementation}

This button is only available if your user-level is set to {\it
development}.
\index{user-level}
If you enter values for all domain parameters on the constructor page,
then the {\bf implementation} button appears in place of the {\bf
conditions} button.
This button tells you what domains or packages actually implement the
various operations.\footnote{This button often takes a long time; expect
a delay while you wait for an answer.}

With your user-level set to {\it development}, we suggest you try this
exercise.
Return to the main constructor page for {\tt Matrix}, then enter
{\tt Integer} into the input area at the bottom as the value of {\tt R}.
Then click on {\bf Operations} to produce a table of operations.
Note that the {\bf conditions} part of the {\it Views} table is
replaced by {\bf implementation}.
Click on {\bf implementation}.
After some delay, you get a page describing what implements each of
the matrix operations, organized by the various domains and packages.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-matimp.ps}
\end{picture}
\caption{Implementation domains for {\tt Matrix}.}
\end{figure}

\subsubsection{generalize}

This button only appears for an operation page of a constructor
involving a unique operation name.

From an operations page for {\tt Matrix}, select any
operation name, say {\bf rank}.
In the views panel, the {\bf filter} button is  replaced by
{\bf generalize}.
Click on it!
%% Replaced {\bf threshold} with 10 below.  MGR 1995oct31
What you get is a description of all Axiom operations
named {\bf rank}.\footnote{If there were more than 10
operations of the name, you get instead a page
with a {\it Views} panel at the bottom and the message to {\bf
Select a view below}.
To get the descriptions of all these operations as mentioned
above, select the {\bf description} button.}

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-allrank.ps}
\end{picture}
\caption{All operations named {\bf rank} in Axiom.}
\end{figure}

\subsubsection{all domains}

%Original Page 565


%Original Page 566

This button only appears on an operation page resulting from a
search from the front page of Browse or from selecting
{\bf generalize} from an operation page for a constructor.

Note that the {\bf filter} button in the {\it Views} panel is
replaced by {\bf all domains}.
Click on it to produce a table of {\it all} domains or packages that
export a {\bf rank} operation.

\begin{figure}[htbp]
\begin{picture}(324,180)%(-54,0)
\special{psfile=ps/h-alldoms.ps}
\end{picture}
\caption{Table of all domains that export {\bf rank}.}
\end{figure}

We note that this table specifically refers to all the {\bf rank}
operations shown in the preceding page.
Return to the descriptions of all the {\bf rank} operations and
select one of them by clicking on the button in its heading.
Select {\bf all domains}.
As you see, you have a smaller table of constructors.
When there is only one constructor, you get the
constructor page for that constructor.
\newpage

%Original Page 567

\subsection{Capitalization Convention}
\label{ugBrowseCapitalizationConvention}

When entering search keys for constructors, you can use capital
letters to search for abbreviations.
For example, enter {\tt UTS} into the input area and click on {\bf
Constructors}.
Up comes a page describing {\tt UnivariateTaylorSeries}
whose abbreviation is {\tt UTS}.

Constructor abbreviations always have three or more capital
letters.
For short constructor names (six letters or less), abbreviations
are not generally helpful as their abbreviation is typically the
constructor name in capitals.
For example, the abbreviation for {\tt Matrix} is
{\tt MATRIX}.

Abbreviations can also contain numbers.
For example, {\tt POLY2} is the abbreviation for constructor
{\tt PolynomialFunctions2}.
For default packages, the abbreviation is the same as the
abbreviation for the corresponding category with the ``\&''
replaced by ``-''.
For example, for the category default package
\aliascon{MatrixCategory\&}{MATCAT-} the abbreviation is
{\tt MATCAT-} since the corresponding category
{\tt MatrixCategory} has abbreviation {\tt MATCAT}.

%Original Page 568


%\setcounter{chapter}{14} % Chapter 15 

\chapter{What's New in Axiom Version 2.0}
\label{ugWhatsNew}

Many things have changed in this new version of Axiom and
we describe many of the more important topics here.

%------------------------------------------------------------------------
\section{Important Things to Read First}
\index{ugWhatsNewImportant}
%------------------------------------------------------------------------

If you have any private {\tt .spad} files (that is, library files
which were not shipped with Axiom) you will need to
recompile them.  For example, if you wrote the file {\tt
regress.spad} then you should issue {\tt )compile regress.spad}
before trying to use it.

The internal representation of {\tt Union}  has changed. 
This means that Axiom data saved 
with Release 1.x may not
be readable by this Release. If you cannot recreate the saved data      
by recomputing in Release 2.0, please contact NAG for assistance.       

% ----------------------------------------------------------------------
\section{The NAG Library Link}
\index{nagLinkIntro}
% ----------------------------------------------------------------------

The Nag Library link allows you to call NAG Fortran
routines from within Axiom, passing Axiom objects as parameters
and getting them back as results.

The Nag Library and, consequently, the link are divided into {\em chapters},
which cover different areas of numerical analysis.  The statistical
and sorting {\em chapters} of the Library, however, are not included in the
link and various support and utility routines (mainly the F06 and X
{\em chapters}) have been omitted.

Each {\em chapter} has a short (at most three-letter) name;
for example, the {\em chapter} devoted to the
solution of ordinary differential equations is called D02.  When
using the link via the HyperDoc interface.
you will be presented with a complete menu of these {\em chapters}. The
names of individual routines within each {\em chapter} are formed by
adding three letters to the {\em chapter} name, so for example the routine
for solving ODEs by Adams method is called
\spadfunFrom{d02cjf}{NagOrdinaryDifferentialEquationsPackage}.

% ----------------------------------------------------------------------
\subsection{Interpreting NAG Documentation}
\index{nagDocumentation}
% ----------------------------------------------------------------------

Information about using the Nag Library in general, and about using
individual routines in particular, can be accessed via HyperDoc.
This documentation refers to the Fortran routines directly; the
purpose of this subsection is to explain how this corresponds to the
Axiom routines.

For general information about the Nag Library users should consult
Essential Introduction to the NAG Foundation Library
\index{manpageXXintro}.
The documentation is in ASCII format, and a description of the conventions
used to represent mathematical symbols is given in
Introduction to NAG On-Line Documentation
\index{manpageXXonline}.
Advice about choosing a routine from a particular {\em chapter} can be found in
the Chapter Documents \index{FoundationLibraryDoc}.

% ----------------------------------------------------------------------
\subsubsection{Correspondence Between Fortran and Axiom types}
% ----------------------------------------------------------------------

The NAG documentation refers to the Fortran types of objects; in
general, the correspondence to Axiom types is as follows.
\begin{itemize}
\item Fortran INTEGER corresponds to Axiom {\tt Integer}.
\item Fortran DOUBLE PRECISION corresponds to Axiom {\tt DoubleFloat}.
\item Fortran COMPLEX corresponds to Axiom {\tt Complex DoubleFloat}.
\item Fortran LOGICAL corresponds to Axiom {\tt Boolean}.
\item Fortran CHARACTER*(*) corresponds to Axiom {\tt String}.
\end{itemize}
(Exceptionally, for NAG EXTERNAL parameters -- ASPs in link parlance\\
-- REAL and COMPLEX correspond to {\tt MachineFloat} and\\ 
{\tt MachineComplex}, respectively; see \sectionref{aspSection}.)

The correspondence for aggregates is as follows.
\begin{itemize}
\item A one-dimensional Fortran array corresponds to a
      {\tt Matrix} with one column.
\item A two-dimensional Fortran ARRAY corresponds to a
      {\tt Matrix}.
\item A three-dimensional Fortran ARRAY corresponds to a
      {\tt ThreeDimensionalMatrix}.
\end{itemize}
Higher-dimensional arrays are not currently needed for the Nag Library.

Arguments which are Fortran FUNCTIONs or SUBROUTINEs correspond
to special ASP domains in Axiom. See \sectionref{aspSection}.

% ----------------------------------------------------------------------
\subsubsection{Classification of NAG parameters}
% ----------------------------------------------------------------------

NAG parameters are classified as belonging to one (or more)
of the following categories: {\tt Input}, 
{\tt Output}, {\tt Workspace} or {\tt External} procedure.
Within {\tt External} procedures a 
similar classification is used, and parameters
may also be {\tt Dummies}, 
or {\tt User Workspace} (data structures not used by the
NAG routine but provided for the convenience of the user).

When calling a NAG routine via the link the user only provides values
for {\tt Input} and {\tt External} parameters.

The order of the parameters is, in general, different from  the order
specified in the Nag Library documentation. The Browser description
for each routine helps in determining the correspondence. As a rule of
thumb, {\tt Input} parameters come first followed by {\tt Input/Output}
parameters. The {\tt External} parameters are always found at the end.


% ----------------------------------------------------------------------
\subsubsection{IFAIL}
% ----------------------------------------------------------------------

NAG routines often return diagnostic information through a parameter called
$ifail$.  With a few exceptions, the principle is that on input
$ifail$ takes
one of the values $-1,0,1$.  This determines how the routine behaves when
it encounters an error:
\begin{itemize}
\item a value of 1 causes the NAG routine to return without printing an error
message;
\item a value of 0 causes the NAG routine to print an error message and abort;
\item a value of -1 causes the NAG routine to return and 
print an error message.
\end{itemize}

The user is STRONGLY ADVISED to set $ifail$ to $-1$ when using the link.
If $ifail$ has been set to $1$ or $-1$ on input, then its value on output
will determine the possible cause of any error.  A value of $0$ indicates
successful completion, otherwise it provides an index into a table of
diagnostics provided as part of the routine documentation (accessible via
Browse).

% ----------------------------------------------------------------------
\subsection{Using the Link}
\index{nagLinkUsage}
% ----------------------------------------------------------------------

The easiest way to use the link is via the
HyperDoc interface \index{htxl1}.
You will be presented with a set of fill-in forms where
you can specify the parameters for each call.  Initially, the forms
contain example values, demonstrating the use of each routine (these,
in fact, correspond to the standard NAG example program for the
routine in question).  For some parameters, these values can provide
reasonable defaults; others, of course, represent data.  When you
change a parameter which controls the size of an array, the data in
that array are reset to a ``neutral'' value -- usually zero.

When you are satisfied with the values entered, clicking on the
``Continue'' button will display the Axiom command needed to
run the chosen NAG routine with these values.  Clicking on the
``Do It'' button will then cause Axiom to execute this command
and return the result in the parent Axiom session, as described
below.  Note that, for some routines, multiple HyperDoc ``pages'' are
required, due to the structure of the data.  For these, returning to
an earlier page causes HyperDoc to reset the later pages (this is a
general feature of HyperDoc); in such a case, the simplest way to
repeat a call, varying a parameter on an earlier page, is probably to
modify the call displayed in the parent session.

An alternative approach is to call NAG routines directly in your
normal Axiom session (that is, using the Axiom
interpreter).  Such calls return an
object of type {\bf Result}.  As not
all parameters in the underlying NAG routine are required in the
Axiom call (and the parameter ordering may be different), before
calling a NAG routine you should consult the description of the
Axiom operation in the Browser.  (The quickest route to this
is to type the routine name, in lower case, into the Browser's
input area, then click on {\tt Operations}.)  The parameter names
used coincide with NAG's, although they will appear here in lower
case.  Of course, it is also possible to become familiar with the
Axiom form of a routine by first using it through the
HyperDoc interface \index{htxl1}.

As an example of this mode of working, we can find a zero
of a function, lying between 3 and 4, as follows:

\spadcommand{answer:=c05adf(3.0,4.0,1.0e-5,0.0,-1,sin(X)::ASP1(F)) }

By default, {\bf Result} only displays the type of returned values,
since the amount of information returned can be quite large.  Individual
components can be examined as follows:

\spadcommand{answer . x}

\spadcommand{answer . ifail}

In order to avoid conflict with names defined in the workspace, you can also
get the values by using the {\tt String} type (the interpreter automatically
coerces them to {\tt Symbol})

\spadcommand{answer "x"}

It is possible to have Axiom display the values of scalar or array
results automatically.  For more details, see the commands  
\spadfunFrom{showScalarValues}{Result}
and \spadfunFrom{showArrayValues}{Result}.

There is also a {\bf .input} file for each NAG routine, containing
Axiom interpreter commands to set up and run the standard NAG
example for that routine.

\spadcommand{)read c05adf.input}

% ----------------------------------------------------------------------
\subsection{Providing values for Argument Subprograms}
\label{aspSection}
\index{aspSection}
% ----------------------------------------------------------------------

There are a number of ways in which users can provide values for argument
subprograms (ASPs).  At the top level the user will see that NAG routines
require
an object from the {\tt Union} of a {\tt Filename} and an ASP.

For example {\bf c05adf} requires an object of type
{\tt Union}(fn: {\tt FileName},fp: {\tt Asp1 F})

\spadcommand{)display operation c05adf}


The user thus has a choice of providing the name of a file containing
Fortran source code, or of somehow generating the ASP within Axiom.
If a filename is specified, it is searched for in the {\it local} 
machine, i.e., the machine that Axiom is running on.

% ----------------------------------------------------------------------
\subsubsection{Providing ASPs via {\tt FortranExpression}}
% ----------------------------------------------------------------------

The {\tt FortranExpression} domain is used to represent expressions
which can be translated into Fortran under certain circumstances.    It is
very similar to {\tt Expression} except that only operators which exist
in Fortran can be used, and only certain variables can occur.
For
example the instantiation {\tt FortranExpression([X],[M],MachineFloat)}
is the domain of expressions containing the scalar $X$ and the array
$M$.

This allows us to create expressions like:

\spadcommand{f : FortranExpression([X],[M],MachineFloat) := sin(X)+M[3,1]}

but not

\spadcommand{f : FortranExpression([X],[M],MachineFloat) := sin(M)+Y}

Those ASPs which represent expressions usually export a {\bf coerce} from
an appropriate instantiation of {\tt FortranExpression} (or perhaps
{\tt Vector FortranExpression} etc.).  For convenience there are also
retractions from appropriate instantiations of {\tt Expression},
{\tt Polynomial} and {\tt Fraction Polynomial}.

% ----------------------------------------------------------------------
\subsubsection{Providing ASPs via {\tt FortranCode}}
% ----------------------------------------------------------------------

\index{FortranCode}
{\tt FortranCode} allows us to build arbitrarily complex ASPs via a
kind of pseudo-code.  It is described fully in
\sectionref{generalFortran}.

Every ASP exports two {\bf coerce} functions: one from
{\tt FortranCode} and one from {\tt List FortranCode}.  There
is also a {\bf coerce} from
{\tt Record( localSymbols: SymbolTable, code: List FortranCode)}
which is used for passing extra symbol information about the ASP.

So for example, to integrate the function abs(x) we could use the built-in
{\bf abs} function.  But suppose we want to get back to basics and define
it directly, then we could do the following:

\spadcommand{d01ajf(-1.0, 1.0, 0.0, 1.0e-5, 800, 200, -1, cond(LT(X,0), assign(F,-X), assign(F,X))) result }

The \spadfunFrom{cond}{FortranCode} operation creates a conditional clause
and the \spadfunFrom{assign}{FortranCode} an assignment statement.

% ----------------------------------------------------------------------
\subsubsection{Providing ASPs via {\tt FileName}}
% ----------------------------------------------------------------------

Suppose we have created the file ``asp.f'' as follows:
\begin{verbatim}
      DOUBLE PRECISION FUNCTION F(X)
      DOUBLE PRECISION X
      F=4.0D0/(X*X+1.0D0)
      RETURN
      END
\end{verbatim}
and wish to pass it to the NAG
routine {\bf d01ajf} which performs one-dimensional quadrature.
We can do this as follows:
\begin{verbatim}
d01ajf(0.0 ,1.0, 0.0, 1.0e-5, 800, 200, -1, "asp.f")
\end{verbatim}

% ----------------------------------------------------------------------
\subsection{General Fortran-generation utilities in Axiom}
\label{generalFortran}
\index{generalFortran}
% ----------------------------------------------------------------------

This section describes more advanced facilities which are available to users
who wish to generate Fortran code from within Axiom.  There are
facilities to manipulate templates, store type information, and generate
code fragments or complete programs.

% ----------------------------------------------------------------------
\subsubsection{Template Manipulation}
% ----------------------------------------------------------------------

A template is a skeletal program which is ``fleshed out'' with data when
it is processed.  It is a sequence of {\em active} and {\em passive} parts:
active parts are sequences of Axiom commands which are processed as if they
had been typed into the interpreter; passive parts are simply echoed
verbatim on the Fortran output stream.

Suppose, for example, that we have the following template, stored in
the file ``test.tem'':
\begin{verbatim}
-- A simple template
beginVerbatim
      DOUBLE PRECISION FUNCTION F(X)
      DOUBLE PRECISION X
endVerbatim
outputAsFortran("F",f)
beginVerbatim
      RETURN
      END
endVerbatim
\end{verbatim}
The passive parts lie between the two
tokens {\tt beginVerbatim} and {\tt endVerbatim}.  There
are two active statements: one which is simply an Axiom (\verb+--+)
comment, and one which produces an assignment to the current value
of {\tt f}.  We could use it as follows:
\begin{verbatim}
(4) ->f := 4.0/(1+X**2)

           4
   (4)   ------
          2
         X  + 1
                       
(5) ->processTemplate "test.tem"
      DOUBLE PRECISION FUNCTION F(X)
      DOUBLE PRECISION X
      F=4.0D0/(X*X+1.0D0)
      RETURN 
      END

   (5)  "CONSOLE"
\end{verbatim}

(A more reliable method of specifying the filename will be introduced
below.)  Note that the Fortran assignment {\tt F=4.0D0/(X*X+1.0D0)}
automatically converted 4.0 and 1 into DOUBLE PRECISION numbers; in
general, the Axiom Fortran generation facility will convert
anything which should be a floating point object into either
a Fortran REAL or DOUBLE PRECISION object.

Which alternative is used is determined by the command

\spadcommand{)set fortran precision}

It is sometimes useful to end a template before the file itself ends (e.g. to
allow the template to be tested incrementally or so that a piece of text
describing how the template works can be included).  It is of course possible
to ``comment-out'' the remainder of the file.  Alternatively, the single token
{\tt endInput} as part of an active portion of the template will cause
processing to be ended prematurely at that point.

The {\bf processTemplate} command comes in two flavours.  In the first case,
illustrated above, it takes one argument of domain {\tt FileName},
the name of the template to be processed, and writes its output on the
current Fortran output stream.  In general, a filename can be generated
from {\em directory}, {\em name} and {\em extension} components, using
the operation {\bf filename}, as in
\begin{verbatim}
processTemplate filename("","test","tem")
\end{verbatim}
There is an alternative version of {\bf processTemplate}, which
takes two arguments (both of domain {\tt FileName}).  In this case the
first argument is the name of the template to be processed, and the
second is the file in which to write the results.  Both versions return
the location of the generated Fortran code as their result
(``{\tt CONSOLE}'' in the above example).

It is sometimes useful to be able to mix active and passive parts of a
line or statement.  For example you might want to generate a Fortran
Comment describing your data set.  For this kind of application we
provide three functions as follows:

\begin{tabular}{p{1.8in}p{2.6in}}
{\bf fortranLiteral} & write string on the Fortran output stream \\
 & \\
{\bf fortranCarriageReturn} & 
writes a carriage return on the Fortran output stream \\
& \\
{\bf fortranLiteralLine} & writes a string followed by a return
on the Fortran output stream \\
\end{tabular}

So we could create our comment as follows:
\spadcommand{m := matrix [ [1,2,3],[4,5,6] ]}

\spadcommand{fortranLiteralLine concat ["C\ \ \ \ \ \ The\ Matrix\ has\ ", nrows(m)::String, "\ rows\ and\ ", ncols(m)::String, "\ columns"]}

or, alternatively:
\spadcommand{fortranLiteral "C\ \ \ \ \ \ The\ Matrix\ has\ "}

\spadcommand{fortranLiteral(nrows(m)::String)}

\spadcommand{fortranLiteral "\ rows\ and\ "}

\spadcommand{fortranLiteral(ncols(m)::String)}

\spadcommand{fortranLiteral "\ columns"}

\spadcommand{fortranCarriageReturn()}

We should stress that these functions, together with the {\bf outputAsFortran}
function are the {\em only} sure ways
of getting output to appear on the Fortran output stream.  Attempts to use
Axiom commands such as {\bf output} or {\bf writeline} may appear to give
the required result when displayed on the console, but will give the wrong
result when Fortran and algebraic output are sent to differing locations.  On
the other hand, these functions can be used to send helpful messages to the
user, without interfering with the generated Fortran.

% ----------------------------------------------------------------------
\subsubsection{Manipulating the Fortran Output Stream}
% ----------------------------------------------------------------------
\index{FortranOutputStackPackage}

Sometimes it is useful to manipulate the Fortran output stream in a program,
possibly without being aware of its current value.  The main use of this is
for gathering type declarations (see ``Fortran Types'' below) 
but it can be useful
in other contexts as well.  Thus we provide a set of commands to manipulate
a stack of (open) output streams.  Only one stream can be written to at
any given time.  The stack is never empty---its initial value is the
console or the current value of the Fortran output stream, and can be
determined using

\spadcommand{topFortranOutputStack()}

(see below).
The commands available to manipulate the stack are:

\begin{tabular}{ll}
{\bf clearFortranOutputStack} & resets the stack to the console \\
 & \\
{\bf pushFortranOutputStack} & pushes a {\tt FileName} onto the stack \\
 & \\
{\bf popFortranOutputStack} & pops the stack \\
 & \\
{\bf showFortranOutputStack} & returns the current stack \\
 & \\
{\bf topFortranOutputStack} & returns the top element of the stack \\
\end{tabular}

These commands are all part of {\tt FortranOutputStackPackage}.

% ----------------------------------------------------------------------
\subsubsection{Fortran Types}
% ----------------------------------------------------------------------

When generating code it is important to keep track of the Fortran types of
the objects which we are generating.  This is useful for a number of reasons,
not least to ensure that we are actually generating legal Fortran code.  The
current type system is built up in several layers, and we shall describe each
in turn.

% ----------------------------------------------------------------------
\subsubsection{FortranScalarType}
% ----------------------------------------------------------------------
\index{FortranScalarType}

This domain represents the simple Fortran datatypes: REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, INTEGER, and CHARACTER.
It is possible to {\bf coerce} a {\tt String} or {\tt Symbol}
into the domain, test whether two objects are equal, and also apply
the predicate functions \spadfunFrom{real?}{FortranScalarType} etc.

% ----------------------------------------------------------------------
\subsubsection{FortranType}
% ----------------------------------------------------------------------
\index{FortranType}

This domain represents ``full'' types: i.e., datatype plus array dimensions
(where appropriate) plus whether or not the parameter is an external
subprogram.  It is possible to {\bf coerce} an object of
{\tt FortranScalarType} into the domain or {\bf construct} one
from an element of {\tt FortranScalarType}, a list of
{\tt Polynomial Integer}s (which can of course be simple integers or
symbols) representing its dimensions, and
a {\tt Boolean} declaring whether it is external or not.  The list
of dimensions must be empty if the {\tt Boolean} is {\tt true}.
The functions {\bf scalarTypeOf}, {\bf dimensionsOf} and
{\bf external?} return the appropriate
parts, and it is possible to get the various basic Fortran Types via
functions like {\bf fortranReal}.

For example:
\spadcommand{type:=construct(real,[i,10],false)\$FortranType}

or
\spadcommand{type:=[real,[i,10],false]\$FortranType}

\spadcommand{scalarTypeOf type}

\spadcommand{dimensionsOf type}

\spadcommand{external?  type}

\spadcommand{fortranLogical()}

\spadcommand{construct(integer,[],true)\$FortranType}

% ----------------------------------------------------------------------
\subsubsection{SymbolTable}
% ----------------------------------------------------------------------
\index{SymbolTable}

This domain creates and manipulates a symbol table for generated Fortran code.
This is used by {\tt FortranProgram} to represent the types of objects in
a subprogram.  The commands available are:

\begin{tabular}{ll}
{\bf empty} & creates a new {\tt SymbolTable} \\
 & \\
{\bf declare} & creates a new entry in a table \\
 & \\
{\bf fortranTypeOf} & returns the type of an object in a table \\
 & \\
{\bf parametersOf} & returns a list of all the symbols in the table \\
 & \\
{\bf typeList} & returns a list of all objects of a given type \\
 & \\
{\bf typeLists} & returns a list of lists of all objects sorted by type \\
 & \\
{\bf externalList} & returns a list of all {\tt EXTERNAL} objects \\
 & \\
{\bf printTypes} & produces Fortran type declarations from a table\\
\end{tabular}

\spadcommand{symbols := empty()\$SymbolTable}

\spadcommand{declare!(X,fortranReal(),symbols)}

\spadcommand{declare!(M,construct(real,[i,j],false)\$FortranType,symbols)}

\spadcommand{declare!([i,j],fortranInteger(),symbols)}

\spadcommand{symbols}

\spadcommand{fortranTypeOf(i,symbols)}

\spadcommand{typeList(real,symbols)}

\spadcommand{printTypes symbols}

% ----------------------------------------------------------------------
\subsubsection{TheSymbolTable}
% ----------------------------------------------------------------------
\index{TheSymbolTable}

This domain creates and manipulates one global symbol table to be used, for
example, during template processing. It is
also used when
linking to external Fortran routines. The
information stored for each subprogram (and the main program segment, where
relevant) is:
\begin{itemize}
\item its name;
\item its return type;
\item its argument list;
\item and its argument types.
\end{itemize}
Initially, any information provided is deemed to be for the main program
segment.

Issuing the following command indicates that from now on all information
refers to the subprogram $F$.

\spadcommand{newSubProgram F}

It is possible to return to processing the main program segment by issuing
the command:

\spadcommand{endSubProgram()}

The following commands exist:

\begin{tabular}{p{1.6in}p{2.8in}}
{\bf returnType} & declares the return type of the current subprogram \\
 & \\
{\bf returnTypeOf} & returns the return type of a subprogram \\
 & \\
{\bf argumentList} &  declares the argument list of the current subprogram \\
 & \\
{\bf argumentListOf} &  returns the argument list of a subprogram \\
 & \\
{\bf declare} & 
provides type declarations for parameters of the current subprogram \\
 & \\
{\bf symbolTableOf} & returns the symbol table  of a subprogram \\
 & \\
{\bf printHeader} & produces the Fortran header for the current subprogram \\
\end{tabular}

In addition there are versions of these commands which are parameterised by
the name of a subprogram, and others parameterised by both the name of a
subprogram and by an instance of {\tt TheSymbolTable}.

\spadcommand{newSubProgram F}

\spadcommand{argumentList!(F,[X])}

\spadcommand{returnType!(F,real)}

\spadcommand{declare!(X,fortranReal(),F)}

\spadcommand{printHeader F}

% ----------------------------------------------------------------------
\subsubsection{Advanced Fortran Code Generation}
% ----------------------------------------------------------------------

This section describes facilities for representing Fortran statements, and
building up complete subprograms from them.

% ----------------------------------------------------------------------
\subsubsection{Switch}
% ----------------------------------------------------------------------
\index{Switch}

This domain is used to represent statements like {\tt x < y}.  Although
these can be represented directly in Axiom, it is a little cumbersome,
since Axiom evaluates the last statement, for example, to {\tt true}
(since $x$ is  lexicographically less than $y$).

Instead we have a set of operations, such as {\bf LT} to represent $<$,
to let us build such statements.  The available constructors are:

\begin{center}
\begin{tabular}{ll}
{\bf LT} & $<$ \\
{\bf GT} & $>$ \\
{\bf LE} & $\leq$ \\
{\bf GE} & $\geq$ \\
{\bf EQ} & $=$ \\
{\bf AND} & {\tt and}\\
{\bf OR} & {\tt or} \\
{\bf NOT} & {\tt not} \\
\end{tabular}
\end{center}

So for example:
\spadcommand{LT(x,y)}

% ----------------------------------------------------------------------
\subsubsection{FortranCode}
% ----------------------------------------------------------------------

This domain represents code segments or operations: currently assignments,
conditionals, blocks, comments, gotos, continues, various kinds of loops,
and return statements.

For example we can create quite a complicated conditional statement using
assignments, and then turn it into Fortran code:

\spadcommand{c := cond(LT(X,Y),assign(F,X),cond(GT(Y,Z),assign(F,Y),assign(F,Z)))}

\spadcommand{printCode c}

The Fortran code is printed
on the current Fortran output stream.

% ----------------------------------------------------------------------
\subsubsection{FortranProgram}
% ----------------------------------------------------------------------
\index{FortranProgram}

This domain is used to construct complete Fortran subprograms out of
elements of {\tt Fortran\-Code}.  It is parameterised by the name of the
target subprogram (a {\tt Symbol}), its return type (from
{\tt Union}({\tt FortranScalarType},``void'')),
its arguments (from {\tt List Symbol}), and
its symbol table (from {\tt SymbolTable}).  One can
{\bf coerce} elements of either {\tt FortranCode}
or {\tt Expression} into it.


First of all we create a symbol table:

\spadcommand{symbols := empty()\$SymbolTable}

Now put some type declarations into it:

\spadcommand{declare!([X,Y],fortranReal(),symbols)}

Then (for convenience)
we set up the particular instantiation of {\tt FortranProgram}

\spadcommand{FP := FortranProgram(F,real,[X,Y],symbols)}

Create an object of type {\tt Expression(Integer)}:

\spadcommand{asp := X*sin(Y)}

Now {\bf coerce} it into {\tt FP}, and print its Fortran form:

\spadcommand{outputAsFortran(asp::FP)}

We can generate a {\tt FortranProgram} using $FortranCode$.  For
example:

Augment our symbol table:

\spadcommand{declare!(Z,fortranReal(),symbols)}

and transform the conditional expression we prepared earlier:

\spadcommand{outputAsFortran([c,returns()]::FP)}

%------------------------------------------------------------------------
\subsection{Some technical information}
\index{nagTechnical}
%------------------------------------------------------------------------

The model adopted for the link is a server-client configuration
-- Axiom acting as a client via a local agent
(a process called {\tt nagman}). The server side is implemented
by the {\tt nagd} daemon process which may run on a different host.
The {\tt nagman} local agent is started by default whenever you
start Axiom. The {\tt nagd} server must be started separately.
Instructions for installing and running the server are supplied
in by NAG.
Use the {\tt )set naglink host} system command
to point your local agent to a server in your network.



On the Axiom side, one sees a set of {\em packages}
(ask Browse for {\em Nag*}) for each chapter, each exporting
operations with the same name as a routine in the Nag Library.
The arguments and return value of each operation belong to
standard Axiom types.

The {\tt man} pages for the Nag Library are accessible via the description
of each operation in Browse (among other places).

In the implementation of each operation, the set of inputs is passed
to the local agent {\tt nagman}, which makes a
Remote Procedure Call (RPC) to the
remote {\tt nagd} daemon process.  The local agent receives the RPC
results and forwards them to the Axiom workspace where they
are interpreted appropriately.

How are Fortran subroutines turned into RPC calls?
For each Fortran routine in the Nag Library, a C main() routine
is supplied.
Its job is to assemble the RPC input (numeric) data stream into
the appropriate Fortran data structures for the routine, call the Fortran
routine from C and serialize the results into an RPC output data stream.

Many Nag Library routines accept ASPs (Argument Subprogram Parameters).
These specify user-supplied Fortran routines (e.g. a routine to
supply values of a function is required for numerical integration).
How are they handled? There are new facilities in Axiom to help.
A set of Axiom domains has been provided to turn values in standard
 Axiom types (such as Expression Integer) into the appropriate
piece of Fortran for each case (a filename pointing to Fortran source
for the ASP can always be supplied instead).
Ask Browse for {\em Asp*} to see these domains. The Fortran fragments
are included in the outgoing RPC stream, but {\tt nagd} intercepts them,
compiles them, and links them with the main() C program before executing
the resulting program on the numeric part of the RPC stream.


%------------------------------------------------------------------------
\section{Interactive Front-end and Language}
\index{ugWhatsNewLanguage}
%------------------------------------------------------------------------

The {\tt leave} keyword has been replaced by the
{\tt break} keyword for compatibility with the new Axiom
extension language.
See \sectionref{ugLangLoopsBreak} for more information.

Curly braces are no longer used to create sets. Instead, use
{\bf set} followed by a bracketed expression. For example,

\spadcommand{set [1,2,3,4]}

Curly braces are now used to enclose a block (see section
\sectionref{ugLangBlocks} 
for more information). For compatibility, a block can still be 
enclosed by parentheses as well.

``Free functions'' created by the Aldor compiler can now be
loaded and used within the Axiom interpreter. A {\it free
function} is a library function that is implemented outside a
domain or category constructor.

New coercions to and from type {\tt Expression} have been
added. For example, it is now possible to map a polynomial
represented as an expression to an appropriate polynomial type.

Various messages have been added or rewritten for clarity.

%------------------------------------------------------------------------
\section{Library}
\index{ugWhatsNewLibrary}
%------------------------------------------------------------------------

The {\tt FullPartialFractionExpansion}
domain has been added. This domain computes factor-free full
partial fraction expansions.
See section
FullPartialFractionExpansion
for examples.

We have implemented the Bertrand/Cantor algorithm for integrals of
hyperelliptic functions. This brings a major speedup for some
classes of algebraic integrals.

We have implemented a new (direct) algorithm for integrating trigonometric
functions. This brings a speedup and an improvement in the answer
quality.

The {\sf SmallFloat} domain has been renamed
{\tt DoubleFloat} and {\sf SmallInteger} has been renamed
{\tt SingleInteger}. The new abbreviations as
{\tt DFLOAT} and {\tt SINT}, respectively.
We have defined the macro {\sf SF}, the old abbreviation for {\sf
SmallFloat}, to expand to {\tt DoubleFloat} and modified
the documentation and input file examples to use the new names
and abbreviations. You should do the same in any private Axiom
files you have.

There are many new categories, domains and packages related to the
NAG Library Link facility. See the file

src/algebra/exposed.lsp

for a list of constructors in the {\bf naglink} Axiom exposure group.

We have made improvements to the differential equation solvers
and there is a new facility for solving systems of first-order 
linear differential equations.
In particular, an important fix was made to the solver for
inhomogeneous linear ordinary differential equations that
corrected the calculation of particular solutions.
We also made improvements to the polynomial
and transcendental equation solvers including the
ability to solve some classes of systems of transcendental
equations.

The efficiency of power series have been improved and left and right
expansions of $tan(f(x))$ at $x =$ a pole of $f(x)$
can now be computed.
A number of power series bugs were fixed and the 
{\tt GeneralUnivariatePowerSeries}
domain was added.
The power series variable can appear in the coefficients and when this
happens, you cannot differentiate or integrate the series.  Differentiation
and integration with respect to other variables is supported.

A domain was added for representing asymptotic expansions of a
function at an exponential singularity.

For limits, the main new feature is the exponential expansion domain used
to treat certain exponential singularities.  Previously, such singularities
were treated in an {\it ad hoc} way and only a few cases were covered.  Now
Axiom can do things like

\begin{verbatim}
limit( (x+1)**(x+1)/x**x - x**x/(x-1)**(x-1), x = %plusInfinity)
\end{verbatim}

in a systematic way.  It only does one level of nesting, though.  In other
words, we can handle $exp(some function with a pole)$, but not
$exp(exp(some function with a pole))$.

The computation of integral bases has been improved through careful
use of Hermite row reduction. A P-adic algorithm
for function fields of algebraic curves in finite characteristic has also
been developed.

Miscellaneous:
There is improved conversion of definite and indefinite integrals to\\
{\tt InputForm}; binomial coefficients are displayed in a new way;\\
some new simplifications of radicals have been implemented;\\
the operation {\bf complexForm} for converting to rectangular\\ 
coordinates has been added; symmetric product operations have been\\ 
added to {\tt LinearOrdinaryDifferential\-Operator}.

%------------------------------------------------------------------------
\section{HyperTex}
\index{ugWhatsNewHyperDoc}
%------------------------------------------------------------------------

The buttons on the titlebar and scrollbar have been replaced
with ones which have a 3D effect. You can change the foreground and
background colors of these ``controls'' by including and modifying
the following lines in your {\bf .Xdefaults} file.
\begin{verbatim}
Axiom.hyperdoc.ControlBackground: White
Axiom.hyperdoc.ControlForeground: Black
\end{verbatim}

For various reasons, HyperDoc sometimes displays a
secondary window. You can control the size and placement of this
window by including and modifying
the following line in your {\bf .Xdefaults} file.
%
\begin{verbatim}
Axiom.hyperdoc.FormGeometry: =950x450+100+0
\end{verbatim}
%
This setting is a standard X Window System geometry specification:
you are requesting a window 950 pixels wide by 450 deep and placed in
the upper left corner.

Some key definitions have been changed to conform more closely
with the CUA guidelines. Press
F9
to see the current definitions.

Input boxes (for example, in the Browser) now accept paste-ins from
the X Window System. Use the second button to paste in something
you have previously copied or cut. An example of how you can use this
is that you can paste the type from an Axiom computation
into the main Browser input box.


%------------------------------------------------------------------------
\section{Documentation}
\index{ugWhatsNewDocumentation}
%------------------------------------------------------------------------

We describe here a few additions to the on-line
version of the Axiom book which you can read with
HyperDoc.


A section has been added to the graphics chapter, describing
how to build two-di\-men\-sion\-al graphs from lists of points. An example is
given showing how to read the points from a file.
See \sectionref{ugGraphTwoDbuild} for details.

A further section has been added to that same chapter, describing
how to add a two-di\-men\-sion\-al graph to a viewport which already
contains other graphs.
See \sectionref{ugGraphTwoDappend} for details.

Chapter 3 
and the on-line HyperDoc help have been unified.

An explanation of operation names ending in ``?'' and ``!'' has
been added to the first chapter. 
See the end of the \sectionref{ugIntroCallFun} for details.

An expanded explanation of using predicates has
been added to the sixth chapter. See the
example involving {\bf evenRule} in the middle of the 
\sectionref{ugUserRules} for details.

Documentation for the {\tt )compile}, {\tt )library} and
{\tt )load} commands has been greatly changed. This reflects
the ability of the {\tt )compile} to now invoke the Aldor
compiler, the impending deletion of the {\tt )load} command
and the new {\tt )library} command.
The {\tt )library} command replaces {\tt )load} and is
compatible with the compiled output from both the old and new
compilers.


%\setcounter{chapter}{0} % Appendix A

\appendix

%Original Page 571

\chapter{Axiom System Commands}
\label{ugSysCmd}

This chapter describes system commands, the command-line
facilities used to control the Axiom environment.
The first section is an introduction and discusses the common
syntax of the commands available.

\section{Introduction}
\label{ugSysCmdOverview}

System commands are used to perform Axiom environment
management.
Among the commands are those that display what has been defined or
computed, set up multiple logical Axiom environments
(frames), clear definitions, read files of expressions and
commands, show what functions are available, and terminate
Axiom.

Some commands are restricted: the commands
\index{set userlevel interpreter}
\index{set userlevel compiler}
\index{set userlevel development}
\begin{verbatim}
)set userlevel interpreter
)set userlevel compiler
)set userlevel development
\end{verbatim}
set the user-access level to the three possible choices.
All commands are available at {\tt development} level and the fewest
are available at {\tt interpreter} level.
The default user-level is {\tt interpreter}.
\index{user-level}
In addition to the {\tt )set} command (discussed in 
\sectionref{ugSysCmdset}
you can use the HyperDoc settings facility to change the {\it user-level.}


Each command listing begins with one or more syntax pattern descriptions
plus examples of related commands.
The syntax descriptions are intended to be easy to read and do not
necessarily represent the most compact way of specifying all
possible arguments and options; the descriptions may occasionally
be redundant.

All system commands begin with a right parenthesis which should be in
the first available column of the input line (that is, immediately
after the input prompt, if any).
System commands may be issued directly to Axiom or be
included in {\bf .input} files.
\index{file!input}

%Original Page 572

A system command {\it argument} is a word that directly
follows the command name and is not followed or preceded by a
right parenthesis.
A system command {\it option} follows the system command and
is directly preceded by a right parenthesis.
Options may have arguments: they directly follow the option.
This example may make it easier to remember what is an option and
what is an argument:

\begin{center}
{\tt )syscmd {\it arg1 arg2} )opt1 
{\it opt1arg1 opt1arg2} )opt2 {\it opt2arg1} ...}
\end{center}

In the system command descriptions, optional arguments and options are
enclosed in brackets (``\lanb'' and ``\ranb'').
If an argument or option name is in italics, it is
meant to be a variable and must have some actual value substituted
for it when the system command call is made.
For example, the syntax pattern description

\noindent
{\tt )read} {\it fileName} {\tt \lanb{})quietly\ranb{}}

\noindent
would imply that you must provide an actual file name for
{\it fileName} but need not use the {\tt )quietly} option.
Thus
\begin{verbatim}
)read matrix.input
\end{verbatim}
is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in
upper or lower case.
The case of actual arguments may be significant, depending on the
particular situation (such as in file names).
System command names and options may be abbreviated to the minimum
number of starting letters so that the name or option is unique.
Thus
\begin{verbatim}
)s Integer
\end{verbatim}
is not a valid abbreviation for the {\tt )set} command,
because both {\tt )set} and {\tt )show}
begin with the letter ``s''.
Typically, two or three letters are sufficient for disambiguating names.
In our descriptions of the commands, we have used no abbreviations for
either command names or options.

In some syntax descriptions we use a vertical line ``\vertline''
to indicate that you must specify one of the listed choices.
For example, in
\begin{verbatim}
)set output fortran on | off
\end{verbatim}
only {\tt on} and {\tt off} are acceptable words for following
{\tt boot}.
We also sometimes use ``...'' to indicate that additional arguments
or options of the listed form are allowed.
Finally, in the syntax descriptions we may also list the syntax of
related commands.

\section{)abbreviation}
\index{abbreviation}


\par\noindent{\bf User Level Required:} compiler

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )abbreviation query  \lanb{}{\it nameOrAbbrev}\ranb{}}
\item {\tt )abbreviation category  {\it abbrev  fullname} \lanb{})quiet\ranb{}}
\item {\tt )abbreviation domain  {\it abbrev  fullname}   \lanb{})quiet\ranb{}}
\item {\tt )abbreviation package  {\it abbrev  fullname}  \lanb{})quiet\ranb{}}
\item {\tt )abbreviation remove  {\it nameOrAbbrev}}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to query, set and remove abbreviations for category,
domain and package constructors.
Every constructor must have a unique abbreviation.

%Original Page 573

This abbreviation is part of the name of the subdirectory
under which the components of the compiled constructor are
stored.
%% BEGIN OBSOLETE
% It is this abbreviation that is used to bring compiled code into
% Axiom with the {\tt )load} command.
%% END OBSOLETE
Furthermore, by issuing this command you
let the system know what file to load automatically if you use a new
constructor.
Abbreviations must start with a letter and then be followed by
up to seven letters or digits.
Any letters appearing in the abbreviation must be in uppercase.

When used with the {\tt query} argument,
\index{abbreviation query}
this command may be used to list the name
associated with a  particular abbreviation or the  abbreviation for a
constructor.
If no abbreviation or name is given, the names and corresponding
abbreviations for {\it all} constructors are listed.

The following shows the abbreviation for the constructor {\tt List}:
\begin{verbatim}
)abbreviation query List
\end{verbatim}
The following shows the constructor name corresponding to the
abbreviation {\tt NNI}:
\begin{verbatim}
)abbreviation query NNI
\end{verbatim}
The following lists all constructor names and their abbreviations.
\begin{verbatim}
)abbreviation query
\end{verbatim}

To add an abbreviation for a constructor, use this command with
{\tt category}, {\tt domain} or {\tt package}.
\index{abbreviation package}
\index{abbreviation domain}
\index{abbreviation category}
The following add abbreviations to the system for a
category, domain and package, respectively:
\begin{verbatim}
)abbreviation domain   SET Set
)abbreviation category COMPCAT  ComplexCategory
)abbreviation package  LIST2MAP ListToMap
\end{verbatim}
If the {\tt )quiet} option is used,
no output is displayed from this command.
You would normally only define an abbreviation in a library source file.
If this command is issued for a constructor that has already been loaded, the
constructor will be reloaded next time it is referenced.  In particular, you
can use this command to force the automatic reloading of constructors.

To remove an abbreviation, the {\tt remove} argument is used.
\index{abbreviation remove}
This is usually
only used to correct a previous command that set an abbreviation for a
constructor name.
If, in fact, the abbreviation does exist, you are prompted
for confirmation of the removal request.
Either of the following commands
will remove the abbreviation {\tt VECTOR2} and the
constructor name {\tt VectorFunctions2} from the system:
\begin{verbatim}
)abbreviation remove VECTOR2
)abbreviation remove VectorFunctions2
\end{verbatim}

\par\noindent{\bf Also See:}
{\tt )compile} \index{ugSysCmdcompile} 

\section{)browse}
\index{browse}
\par\noindent{\bf User Level Required:} interpreter
\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )browse}
\end{list}

\par\noindent{\bf Command Description:}

The browse command changes the interpreter command loop to listen
for http connections on IP address 127.0.0.1 port 8085.

In order to access the new pages start Firefox.
Assuming the path to the file rootpage.xhtml is:\\
{\tt /spad/mnt/linux/doc/hypertex/rootpage.xhtml}\\
you would visit the URL:\\
{\tt 127.0.0.1:8085/spad/mnt/linux/doc/hypertex/rootpage.xhtml}

Note that it may be necessary to install fonts into the Firefox
browser in order to see correct mathML mathematics output. See
the faq file for details.

%Original Page 574

\section{)cd}
\label{ugSysCmdcd}
\index{ugSysCmdcd}

\index{cd}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )cd} {\it directory}
\end{list}

\par\noindent{\bf Command Description:}

This command sets the Axiom working current directory.
The current directory is used for looking for
input files (for {\tt )read}),
Axiom library source files (for {\tt )compile}),
saved history environment files (for {\tt )history )restore}),
compiled Axiom library files (for {\tt )library}), and
files to edit (for {\tt )edit}).
It is also used for writing
spool files (via {\tt )spool}),
writing history input files (via {\tt )history )write}) and
history environment files (via {\tt )history )save}),and
compiled Axiom library files (via {\tt )compile}).
\index{read}
\index{compile}
\index{history )restore}
\index{edit}
\index{spool}
\index{history )write}
\index{history )save}

If issued with no argument, this command sets the Axiom
current directory to your home directory.
If an argument is used, it must be a valid directory name.
Except for the ``{\tt )}'' at the beginning of the command,
this has the same syntax as the operating system {\tt cd} command.

\par\noindent{\bf Also See:}
{\tt )compile} \index{ugSysCmdcompile},
{\tt )edit} \index{ugSysCmdedit},
{\tt )history} \index{ugSysCmdhistory},
{\tt )library} \index{ugSysCmdlibrary},
{\tt )read} \index{ugSysCmdread}, and
{\tt )spool} \index{ugSysCmdspool}.

\section{)clear}
\index{ugSysCmdclear}

\index{clear}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )clear all}
\item{\tt )clear completely}
\item{\tt )clear properties all}
\item{\tt )clear properties}  {\it obj1 \lanb{}obj2 ...\ranb{}}
\item{\tt )clear value      all}
\item{\tt )clear value}     {\it obj1 \lanb{}obj2 ...\ranb{}}
\item{\tt )clear mode       all}
\item{\tt )clear mode}      {\it obj1 \lanb{}obj2 ...\ranb{}}
\end{list}
\par\noindent{\bf Command Description:}

This command is used to remove function and variable declarations, definitions
and values  from the workspace.
To  empty the entire workspace  and reset the
step counter to 1, issue
\begin{verbatim}
)clear all
\end{verbatim}
To remove everything in the workspace but not reset the step counter, issue
\begin{verbatim}
)clear properties all
\end{verbatim}
To remove everything about the object {\tt x}, issue

%Original Page 575

\begin{verbatim}
)clear properties x
\end{verbatim}
To remove everything about the objects {\tt x, y} and {\tt f}, issue
\begin{verbatim}
)clear properties x y f
\end{verbatim}

The word {\tt properties} may be abbreviated to the single letter
``{\tt p}''.
\begin{verbatim}
)clear p all
)clear p x
)clear p x y f
\end{verbatim}
All definitions of functions and values of variables may be removed by either
\begin{verbatim}
)clear value all
)clear v all
\end{verbatim}
This retains whatever declarations the objects had.  To remove definitions and
values for the specific objects {\tt x, y} and {\tt f}, issue
\begin{verbatim}
)clear value x y f
)clear v x y f
\end{verbatim}
To remove  the declarations  of everything while  leaving the  definitions and
values, issue
\begin{verbatim}
)clear mode  all
)clear m all
\end{verbatim}
To remove declarations for the specific objects {\tt x, y} and {\tt f}, issue
\begin{verbatim}
)clear mode x y f
)clear m x y f
\end{verbatim}
The {\tt )display names} and {\tt )display properties} commands  may be used
to see what is currently in the workspace.

The command
\begin{verbatim}
)clear completely
\end{verbatim}
does everything that {\tt )clear all} does, and also clears the internal
system function and constructor caches.

\par\noindent{\bf Also See:}
{\tt )display} \index{ugSysCmddisplay},
{\tt )history} \index{ugSysCmdhistory}, and
{\tt )undo} \index{ugSysCmdundo}.

\section{)close}
\index{ugSysCmdclose}

\index{close}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )close}
\item{\tt )close )quietly}
\end{list}
\par\noindent{\bf Command Description:}

This command is used to close down interpreter client processes.
Such processes are started by HyperDoc to run Axiom examples
when you click on their text. When you have finished examining or modifying the
example and you do not want the extra window around anymore, issue
\begin{verbatim}
)close
\end{verbatim}
to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client
process, Axiom will offer to close down the entire Axiom
session and return you to the operating system by displaying something
like
\begin{verbatim}
   This is the last Axiom session. Do you want to kill Axiom?
\end{verbatim}
Type ``{\tt y}'' (followed by the Return key) if this is what you had in mind.
Type ``{\tt n}'' (followed by the Return key) to cancel the command.

You can use the {\tt )quietly} option to force Axiom to
close down the interpreter client process without closing down
the entire Axiom session.

\par\noindent{\bf Also See:}
{\tt )quit} \index{ugSysCmdquit} and
{\tt )pquit} \index{ugSysCmdpquit}.

\section{)compile}
\label{ugSysCmdcompile}
\index{ugSysCmdcompile}

\index{compile}

\par\noindent{\bf User Level Required:} compiler

\par\noindent{\bf Command Syntax:}

\begin{list}{}
\item {\tt )compile}
\item {\tt )compile {\it fileName}}
\item {\tt )compile {\it fileName}.spad}
\item {\tt )compile {\it directory/fileName}.spad}
\item {\tt )compile {\it fileName} )quiet}
\item {\tt )compile {\it fileName} )noquiet}
\item {\tt )compile {\it fileName} )break}
\item {\tt )compile {\it fileName} )nobreak}
\item {\tt )compile {\it fileName} )library}
\item {\tt )compile {\it fileName} )nolibrary}
\item {\tt )compile {\it fileName} )vartrace}
\item {\tt )compile {\it fileName} )constructor} {\it nameOrAbbrev}
\end{list}

%Original Page 576

\par\noindent{\bf Command Description:}

You use this command to invoke the Axiom library compiler.  This
compiles files with file extension {\tt .spad} with the Axiom system
compiler. The command first looks in the standard system directories
for files with extension {\tt .spad}.
 
Should you not want the {\tt )library} command automatically invoked, 
call {\tt )compile} with the {\tt )nolibrary} option. For example,
\begin{verbatim} 
)compile mycode )nolibrary
\end{verbatim} 
By default, the {\tt )library} system command exposes all domains and 
categories it processes. This means that the Axiom intepreter will consider 
those domains and categories when it is trying to resolve a reference to a 
function.
Sometimes domains and categories should not be exposed. For example, a domain
may just be used privately by another domain and may not be meant for
top-level use. The {\tt )library} command should still be used, though, so 
that the code will be loaded on demand. In this case, you should use the 
{\tt )nolibrary} option on {\tt )compile} and the {\tt )noexpose} option in 
the {\tt )library} command. For
example,
\begin{verbatim} 
)compile mycode.spad )nolibrary
)library mycode )noexpose
\end{verbatim} 
Once you have established your own collection of compiled code, you may find
it handy to use the )dir option on the )library command. This causes )library
to process all compiled code in the specified directory. For example,
\begin{verbatim} 
)library )dir /u/jones/quantum
\end{verbatim} 
You must give an explicit directory after )dir, even if you want all compiled
code in the current working directory processed.
\begin{verbatim} 
)library )dir .
\end{verbatim} 
You can compile category, domain, and package constructors contained in files
with file extension {\tt .spad}. You can compile individual constructors or 
every constructor in a file.
 
The full filename is remembered between invocations of this command and 
{\tt )edit} commands. The sequence of commands
\begin{verbatim} 
)compile matrix.spad
)edit
)compile
\end{verbatim} 
will call the compiler, edit, and then call the compiler again on the file
matrix.spad. If you do not specify a directory, the working current directory
(see description of command )cd ) is searched for the file. If the file is
not found, the standard system directories are searched.
 
If you do not give any options, all constructors within a file are compiled.
Each constructor should have an {\tt )abbreviation} command in the file in 
which it is defined. We suggest that you place the {\tt )abbreviation} 
commands at the top of the file in the order in which the constructors are 
defined. The list of commands serves as a table of contents for the file.
 
The {\tt )library} option causes directories containing the compiled code 
for each constructor to be created in the working current directory. The 
name of such a directory consists of the constructor abbreviation and the 
{\tt .nrlib} file extension. For example, the directory containing the 
compiled code for the {\tt MATRIX} constructor is called {\bf MATRIX.nrlib}. 
The {\tt )nolibrary} option says that such files should not be created. 
 
The {\tt )vartrace} option causes the compiler to generate extra code for the
constructor to support conditional tracing of variable assignments. 
(see \sectionref{ugSysCmdtrace}). Without this option, this code is suppressed
and one cannot use the )vars option for the trace command.
 
The {\tt )constructor} option is used to specify a particular\\ 
constructor to compile. All other constructors in the file are\\ 
ignored. The constructor name or abbreviation follows {\tt )constructor}.\\ 
Thus either

\begin{verbatim} 
)compile matrix.spad )constructor RectangularMatrix
\end{verbatim}
or
\begin{verbatim} 
)compile matrix.spad )constructor RMATRIX
\end{verbatim}
compiles the {\tt RectangularMatrix} constructor defined in {\bf matrix.spad}.
 
The {\tt )break} and {\tt )nobreak} options determine what the compiler does
when it encounters an error. {\tt )break} is the default and it indicates that
processing should stop at the first error. The value of the {\tt )set break}
variable then controls what happens.
 
\par\noindent{\bf Also See:}
{\tt )abbreviation} \index{ugSysCmdabbreviation},
{\tt )edit} \index{ugSysCmdedit}, and
{\tt )library} \index{ugSysCmdlibrary}.

\section{)copyright}
\index{copyright}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )copyright}
\end{list}
\par\noindent{\bf Command Description:}

This command will show the text of the various licenses used
within the Axiom system.

\section{)credits}
\index{credits}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )credits}
\end{list}
\par\noindent{\bf Command Description:}

This command will show the list of names of people who have
contributed to Axiom.

\section{)describe}
\index{credits}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )describe categoryName}
\item{\tt )describe domainName}
\item{\tt )describe packageName}
\end{list}
\par\noindent{\bf Command Description:}

Given a categoryName, domainName, or a packageName it writes
some descriptive information to the console stream. For example,
\begin{verbatim}
)describe Set
A set over a domain D models the usual mathematical notion of a
finite set of elements from D. Sets are unordered collections of
distinct elements (that is, order and duplication does not matter).
The notation set [a,b,c] can be used to create a set and the usual
operations such as union and intersection are available to form new
sets. In our implementation, Language maintains the entries in sorted
order. Specifically, the parts function returns the entries as a list
in ascending order and the extract operation returns the maximum
entry. Given two sets s and t where #s = m and #t = n, the complexity
of
      s = t is O(min(n,m))
      s < t is O(max(n,m))
      union(s,t), intersect(s,t), minus(s,t),
           member(x,t) is O(n log n)
 
      insert(x,t) and remove(x,t) is O(n)
\end{verbatim}

\section{)display}
\index{ugSysCmddisplay}

\index{display}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )display all}
\item {\tt )display properties}
\item {\tt )display properties all}
\item {\tt )display properties} {\it \lanb{}obj1 \lanb{}obj2 ...\ranb{}\ranb{}}
\item {\tt )display value all}
\item {\tt )display value} {\it \lanb{}obj1 \lanb{}obj2 ...\ranb{}\ranb{}}
\item {\tt )display mode all}
\item {\tt )display mode} {\it \lanb{}obj1 \lanb{}obj2 ...\ranb{}\ranb{}}
\item {\tt )display names}
\item {\tt )display operations} {\it opName}
\end{list}
\par\noindent{\bf Command Description:}

This command is  used to display the contents of  the workspace and
signatures of functions  with a  given  name.\footnote{A
{\it signature} gives the argument and return types of a
function.}

The command
\begin{verbatim}
)display names
\end{verbatim}
lists the names of all user-defined  objects in the workspace.  This is useful
if you do  not wish to see everything  about the objects and need  only be
reminded of their names.

The commands
\begin{verbatim}
)display all
)display properties
)display properties all
\end{verbatim}
all do  the same thing: show  the values and  types and declared modes  of all
variables in the  workspace.  If you have defined  functions, their signatures
and definitions will also be displayed.

To show all information about a  particular variable or user functions,
for example, something named {\tt d}, issue
\begin{verbatim}
)display properties d
\end{verbatim}
To just show the value (and the type) of {\tt d}, issue
\begin{verbatim}
)display value d
\end{verbatim}
To just show the declared mode of {\tt d}, issue

%Original Page 578

\begin{verbatim}
)display mode d
\end{verbatim}

All modemaps for a given operation  may be
displayed by using {\tt )display operations}.
A {\it modemap} is a collection of information about  a particular
reference
to an  operation.  This  includes the  types of the  arguments and  the return
value, the  location of the  implementation and  any conditions on  the types.
The modemap may contain patterns.  The following displays the modemaps for the
operation \spadfunFrom{complex}{ComplexCategory}:
\begin{verbatim}
)d op complex
\end{verbatim}

\par\noindent{\bf Also See:}
{\tt )clear} \index{ugSysCmdclear},
{\tt )history} \index{ugSysCmdhistory},
{\tt )set} \index{ugSysCmdset},
{\tt )show} \index{ugSysCmdshow}, and
{\tt )what} \index{ugSysCmdwhat}.


\section{)edit}
\index{ugSysCmdedit}

\index{edit}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )edit} \lanb{}{\it filename}\ranb{}
\end{list}
\par\noindent{\bf Command Description:}

This command is  used to edit files.
It works in conjunction  with the {\tt )read}
and {\tt )compile} commands to remember the name
of the file on which you are working.
By specifying the name fully, you  can edit any file you wish.
Thus
\begin{verbatim}
)edit /u/julius/matrix.input
\end{verbatim}
will place  you in an editor looking at the  file
{\tt /u/julius/matrix.input}.
\index{editing files}
By default, the editor is {\tt vi},
\index{vi}
but if you have an EDITOR shell environment variable defined, that editor
will be used.
When Axiom is running under the X Window System,
it will try to open a separate {\tt xterm} running your editor if
it thinks one is necessary.
\index{Korn shell}
For example, under the Korn shell, if you issue
\begin{verbatim}
export EDITOR=emacs
\end{verbatim}
then the emacs
\index{emacs}
editor will be used by {\tt )edit}.

If you do not specify a file name, the last file you edited,
read or compiled will be used.
If there is no ``last file'' you will be placed in the editor editing
an empty unnamed file.

It is possible to use the {\tt )system} command to edit a file directly.
For example,
\begin{verbatim}
)system emacs /etc/rc.tcpip
\end{verbatim}
calls {\tt emacs} to edit the file.
\index{emacs}

\par\noindent{\bf Also See:}
{\tt )system} \index{ugSysCmdsystem},
{\tt )compile} \index{ugSysCmdcompile}, and
{\tt )read} \index{ugSysCmdread}.


\section{)fin}
\index{ugSysCmdfin}

\index{fin}


\par\noindent{\bf User Level Required:} development

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )fin}
\end{list}
\par\noindent{\bf Command Description:}

%Original Page 579

This command is used by Axiom
developers to leave the Axiom system and return
to the underlying Common Lisp system.
To return to Axiom, issue the
``{\tt (\vertline{}spad\vertline{})}''
function call to Common Lisp.

\par\noindent{\bf Also See:}
{\tt )pquit} \index{ugSysCmdpquit} and
{\tt )quit} \index{ugSysCmdquit}.


\section{)frame}
\label{ugSysCmdframe}
\index{ugSysCmdframe}

\index{frame}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )frame  new  {\it frameName}}
\item{\tt )frame  drop  {\it \lanb{}frameName\ranb{}}}
\item{\tt )frame  next}
\item{\tt )frame  last}
\item{\tt )frame  names}
\item{\tt )frame  import {\it frameName} 
{\it \lanb{}objectName1 \lanb{}objectName2 ...\ranb{}\ranb{}}}
\item{\tt )set message frame on \vertline{} off}
\item{\tt )set message prompt frame}
\end{list}

\par\noindent{\bf Command Description:}

A {\it frame} can be thought of as a logical session within the
physical session that you get when you start the system.  You can
have as many frames as you want, within the limits of your computer's
storage, paging space, and so on.
Each frame has its own {\it step number}, {\it environment} and {\it history.}
You can have a variable named {\tt a} in one frame and it will
have nothing to do with anything that might be called {\tt a} in
any other frame.

Some frames are created by the HyperDoc program and these can
have pretty strange names, since they are generated automatically.
\index{frame names}
To find out the names
of all frames, issue
\begin{verbatim}
)frame names
\end{verbatim}
It will indicate the name of the current frame.

You create a new frame
\index{frame new}
``{\bf quark}'' by issuing
\begin{verbatim}
)frame new quark
\end{verbatim}
The history facility can be turned on by issuing either
{\tt )set history on} or {\tt )history )on}.
If the history facility is on and you are saving history information
in a file rather than in the Axiom environment
then a history file with filename {\bf quark.axh} will
be created as you enter commands.
If you wish to go back to what
you were doing in the
\index{frame next}
``{\bf initial}'' frame, use
\index{frame last}
\begin{verbatim}
)frame next
\end{verbatim}
or
\begin{verbatim}
)frame last
\end{verbatim}
to cycle through the ring of available frames to get back to
``{\bf initial}''.

If you want to throw
away a frame (say ``{\bf quark}''), issue
\begin{verbatim}
)frame drop quark
\end{verbatim}
If you omit the name, the current frame is dropped.
\index{frame drop}

%Original Page 580

If you do use frames with the history facility on and writing to a file,
you may want to delete some of the older history files.
\index{file!history}
These are directories, so you may want to issue a command like
{\tt rm -r quark.axh} to the operating system.

You can bring things from another frame by using
\index{frame import}
{\tt )frame import}.
For example, to bring the {\tt f} and {\tt g} from the frame ``{\bf quark}''
to the current frame, issue
\begin{verbatim}
)frame import quark f g
\end{verbatim}
If you want everything from the frame ``{\bf quark}'', issue
\begin{verbatim}
)frame import quark
\end{verbatim}
You will be asked to verify that you really want everything.

There are two {\tt )set} flags
\index{set message frame}
to make it easier to tell where you are.
\begin{verbatim}
)set message frame on | off
\end{verbatim}
will print more messages about frames when it is set on.
By default, it is off.
\begin{verbatim}
)set message prompt frame
\end{verbatim}
will give a prompt
\index{set message prompt frame}
that looks like
\begin{verbatim}
initial (1) ->
\end{verbatim}
\index{prompt!with frame name}
when you start up. In this case, the frame name and step make up the
prompt.

\par\noindent{\bf Also See:}
{\tt )history} \index{ugSysCmdhistory} and
{\tt )set} \index{ugSysCmdset}.


\section{)help}
\index{ugSysCmdhelp}

\index{help}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )help}
\item{\tt )help} {\it commandName}
\end{list}

\par\noindent{\bf Command Description:}

This command displays help information about system commands.
If you issue
\begin{verbatim}
)help
\end{verbatim}
then this very text will be shown.
You can also give the name or abbreviation of a system command
to display information about it.
For example,
\begin{verbatim}
)help clear
\end{verbatim}
will display the description of the {\tt )clear} system command.

All this material is available in the Axiom User Guide
and in HyperDoc.
In HyperDoc, choose the {\bf Commands} item from the
{\bf Reference} menu.

%Original Page 581

\section{)history}
\index{ugSysCmdhistory}
\index{history}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )history )on}
\item{\tt )history )off}
\item{\tt )history )write} {\it historyInputFileName}
\item{\tt )history )show \lanb{}{\it n}\ranb{} \lanb{}both\ranb{}}
\item{\tt )history )save} {\it savedHistoryName}
\item{\tt )history )restore} \lanb{}{\it savedHistoryName}\ranb{}
\item{\tt )history )reset}
\item{\tt )history )change} {\it n}
\item{\tt )history )memory}
\item{\tt )history )file}
\item{\tt \%}
\item{\tt \%\%({\it n})}
\item{\tt )set history on \vertline{} off}
\end{list}

\par\noindent{\bf Command Description:}

The {\it history} facility within Axiom allows you to restore your
environment to that of another session and recall previous
computational results.
Additional commands allow you to review previous
input lines and to create an {\bf .input} file of the lines typed to
\index{file!input}
Axiom.

Axiom saves your input and output if the history facility is
turned on (which is the default).
This information is saved if either of
\begin{verbatim}
)set history on
)history )on
\end{verbatim}
has been issued.
Issuing either
\begin{verbatim}
)set history off
)history )off
\end{verbatim}
will discontinue the recording of information.
\index{history )on}
\index{set history on}
\index{set history off}
\index{history )off}

Whether the facility is disabled or not,
the value of {\tt \%} in Axiom always
refers to the result of the last computation.
If you have not yet entered anything,
{\tt \%} evaluates to an object of type
{\tt Variable('\%)}.
The function {\tt \%\%} may be  used to refer
to other previous results if the history facility is enabled.
In that case,
{\tt \%\%(n)} is  the output from step {\tt n} if {\tt n > 0}.
If {\tt n < 0}, the step is computed relative to the current step.
Thus {\tt \%\%(-1)} is also the previous step,
{\tt \%\%(-2)}, is the  step before that, and so on.
If an invalid step number is given, Axiom will signal an error.

The {\it environment} information can either be saved in a file or
entirely in memory (the default).  Each frame
(\sectionref{ugSysCmdframe}) has its own history database.  When it is
kept in a file, some of it may also be kept in memory for efficiency.
When the information is saved in a file, the name of the file is of
the form {\bf FRAME.axh} where ``{\bf FRAME}'' is the name of the
current frame.  The history file is placed in the current working
directory (see \sectionref{ugSysCmdcd}).  Note that these history
database files are not text files (in fact, they are directories
themselves), and so are not in human-readable format.

The options to the {\tt )history} command are as follows:

\begin{description}
\item[{\tt )change} {\it n}]
will set the number of steps that are saved in memory to {\it n}.
This option only has effect when the history data is maintained in a
file.
If you have issued {\tt )history )memory} (or not changed the default)
there is no need to use {\tt )history )change}.
\index{history )change}

\item[{\tt )on}]
will start the recording of information.
If the workspace is not empty, you will be asked to confirm this
request.
If you do so, the workspace will be cleared and history data will begin
being saved.
You can also turn the facility on by issuing {\tt )set history on}.

%Original Page 582

\item[{\tt )off}]
will stop the recording of information.
The {\tt )history )show} command will not work after issuing this
command.
Note that this command may be issued to save time, as there is some
performance penalty paid for saving the environment data.
You can also turn the facility off by issuing {\tt )set history off}.

\item[{\tt )file}]
indicates that history data should be saved in an external file on disk.

\item[{\tt )memory}]
indicates that all history data should be kept in memory rather than
saved in a file.
Note that if you are computing with very large objects it may not be
practical to kept this data in memory.

\item[{\tt )reset}]
will flush the internal list of the most recent workspace calculations
so that the data structures may be garbage collected by the underlying
Common Lisp system.
Like {\tt )history )change}, this option only has real effect when
history data is being saved in a file.

\item[{\tt )restore} \lanb{}{\it savedHistoryName}\ranb{}]
completely clears the environment and restores it to a saved session, if
possible.
The {\tt )save} option below allows you to save a session to a file
with a given name. If you had issued
{\tt )history )save jacobi}
the command
{\tt )history )restore jacobi}
would clear the current workspace and load the contents of the named
saved session. If no saved session name is specified, the system looks
for a file called {\bf last.axh}.

\item[{\tt )save} {\it savedHistoryName}] is used to save a snapshot
of the environment in a file.  This file is placed in the current
working directory (see \sectionref{ugSysCmdcd}).  Use {\tt )history
)restore} to restore the environment to the state preserved in the
file.  This option also creates an input file containing all the lines
of input since you created the workspace frame (for example, by
starting your Axiom session) or last did a {\tt )clear all} or {\tt
)clear completely}.

\item[{\tt )show} \lanb{}{\it n}\ranb{} \lanb{}{\tt both}\ranb{}]
can show previous input lines and output results.
{\tt )show} will display up to twenty of the last input lines
(fewer if you haven't typed in twenty lines).
{\tt )show} {\it n} will display up to {\it n} of the last input lines.
{\tt )show both} will display up to five of the last input lines and
output results.
{\tt )show} {\it n} {\tt both} will display up to {\it n} of the last
input lines and output results.

\item[{\tt )write} {\it historyInputFile}]
creates an {\bf .input} file with the input lines typed since the start
of the session/frame or the last {\tt )clear all} or {\tt )clear
completely}.
If {\it historyInputFileName} does not contain a 
period (``.'') in the filename,
{\bf .input} is appended to it.
For example,
{\tt )history )write chaos}
and
{\tt )history )write chaos.input}
both write the input lines to a file called {\bf chaos.input} in your
current working directory.
If you issued one or more {\tt )undo} commands,
{\tt )history )write}
eliminates all
input lines backtracked over as a result of {\tt )undo}.
You can edit this file and then use {\tt )read} to have Axiom process
the contents.
\end{description}

\par\noindent{\bf Also See:}
{\tt )frame} \index{ugSysCmdframe},
{\tt )read} \index{ugSysCmdread},
{\tt )set} \index{ugSysCmdset}, and
{\tt )undo} \index{ugSysCmdundo}.


\section{)include}
\index{ugSysCmdinclude}
\index{include}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )include {\it filename}}
\end{list}

\par\noindent{\bf Command Description:}

The \verb|)include| command can be used in \verb|.input| files
to place the contents of another file inline with the current file.
The path can be an absolute or relative pathname.


\section{)library}
\index{ugSysCmdlibrary}
\index{library}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )library {\it libName1  \lanb{}libName2 ...\ranb{}}}
\item{\tt )library )dir {\it dirName}}
\item{\tt )library )only {\it objName1  \lanb{}objlib2 ...\ranb{}}}
\item{\tt )library )noexpose}
\end{list}

\par\noindent{\bf Command Description:}

This command replaces the {\tt )load} system command that
was available in Axiom releases before version 2.0.
The {\tt )library} command makes available to Axiom the compiled
objects in the libraries listed.

For example, if you {\tt )compile dopler.spad} in your home
directory, issue {\tt )library dopler} to have Axiom look
at the library, determine the category and domain constructors present,
update the internal database with various properties of the
constructors, and arrange for the constructors to be
automatically loaded when needed.
If the {\tt )noexpose} option has not been given, the
constructors will be exposed (that is, available) in the current
frame.

If you compiled a file with the old system compiler, you will
have an {\it nrlib} present, for example, {\it DOPLER.nrlib,}
where {\tt DOPLER} is a constructor abbreviation.
The command {\tt )library DOPLER} will then do the analysis and
database updates as above.

To tell the system about all libraries in a directory, use
{\tt )library )dir dirName} where {\tt dirName} is an explicit
directory.
You may specify ``.'' as the directory, which means the current
directory from which you started the system or the one you set
via the {\tt )cd} command. The directory name is required.

You may only want to tell the system about particular
constructors within a library. In this case, use the {\tt )only}
option. The command {\tt )library dopler )only Test1} will only
cause the {\sf Test1} constructor to be analyzed, autoloaded,
etc..

Finally, each constructor in a library  are usually automatically 
exposed when the
{\tt )library} command is used. Use the {\tt )noexpose}
option if you not want them exposed. At a later time you can use
{\tt )set expose add constructor} to expose any hidden
constructors.

{\bf Note for Axiom beta testers:} At various times this
command was called {\tt )local} and {\tt )with} before the name
{\tt )library} became the official name.

\par\noindent{\bf Also See:}
{\tt )cd} \index{ugSysCmdcd},
{\tt )compile} \index{ugSysCmdcompile},
{\tt )frame} \index{ugSysCmdframe}, and
{\tt )set} \index{ugSysCmdset}.

\section{)lisp}
\index{ugSysCmdlisp}

\index{lisp}


\par\noindent{\bf User Level Required:} development

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )lisp} {\it\lanb{}lispExpression\ranb{}}
\end{list}

\par\noindent{\bf Command Description:}

This command is used by Axiom system developers to have single
expressions evaluated by the Common Lisp system on which
Axiom is built.
The {\it lispExpression} is read by the Common Lisp reader and
evaluated.
If this expression is not complete (unbalanced parentheses, say), the reader
will wait until a complete expression is entered.

%Original Page 583

Since this command is only useful  for evaluating single expressions, the
{\tt )fin}
command may be used to  drop out  of Axiom  into Common Lisp.

\par\noindent{\bf Also See:}
{\tt )system} \index{ugSysCmdsystem},
{\tt )boot} \index{ugSysCmdboot}, and
{\tt )fin} \index{ugSysCmdfin}.

\section{)ltrace}
\label{ugSysCmdtrace}
\label{ugSysCmdltrace}
\index{ugSysCmdltrace}

\index{ltrace}

\par\noindent{\bf User Level Required:} development

\par\noindent{\bf Command Syntax:}

This command has the same arguments as options as the
{\tt )trace} command.

\par\noindent{\bf Command Description:}

This command is used by Axiom system developers to trace
Common Lisp functions. It is not supported for general use.

\par\noindent{\bf Also See:}
{\tt )boot} \index{ugSysCmdboot},
{\tt )lisp} \index{ugSysCmdlisp}, and
{\tt )trace} \index{ugSysCmdtrace}.

\section{)pquit}
\index{ugSysCmdpquit}

\index{pquit}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )pquit}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to terminate Axiom  and return to the
operating system.
Other than by redoing all your computations or by
using the {\tt )history )restore}
command to try to restore your working environment,
you cannot return to Axiom in the same state.

{\tt )pquit} differs from the {\tt )quit} in that it always asks for
confirmation that you want to terminate Axiom (the ``p'' is for
``protected'').
\index{quit}
When you enter the {\tt )pquit} command, Axiom responds
%
\begin{center}
Please enter {\bf y} or {\bf yes} if you really want to 
leave the interactive \\
environment and return to the operating system:
\end{center}
%
If you respond with {\tt y} or {\tt yes}, you will see the message
%
\begin{center}
You are now leaving the Axiom interactive environment. \\
Issue the command {\bf axiom} to the operating system to start a new session.
\end{center}
%
and Axiom will terminate and return you to the operating
system (or the environment from which you invoked the system).
If you responded with something other than {\tt y} or {\tt yes}, then
the message
%
\begin{center}
You have chosen to remain in the Axiom interactive environment.
\end{center}
%
will be displayed and, indeed, Axiom would still be running.

\par\noindent{\bf Also See:}
{\tt )fin} \index{ugSysCmdfin},
{\tt )history} \index{ugSysCmdhistory},
{\tt )close} \index{ugSysCmdclose},
{\tt )quit} \index{ugSysCmdquit}, and
{\tt )system} \index{ugSysCmdsystem}.


%Original Page 585

\section{)quit}
\index{ugSysCmdquit}

\index{quit}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )quit}
\item{\tt )set quit protected \vertline{} unprotected}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to terminate Axiom  and return to the
operating system.
Other than by redoing all your computations or by
using the {\tt )history )restore}
command to try to restore your working environment,
you cannot return to Axiom in the same state.

{\tt )quit} differs from the {\tt )pquit} in that it asks for
\index{pquit}
confirmation only if the command
\begin{verbatim}
)set quit protected
\end{verbatim}
has been issued.
\index{set quit protected}
Otherwise, {\tt )quit} will make Axiom terminate and return you
to the operating system (or the environment from which you invoked the
system).

The default setting is {\tt )set quit protected} so that {\tt )quit}
and {\tt )pquit} behave in the same way.
If you do issue
\begin{verbatim}
)set quit unprotected
\end{verbatim}
we
\index{set quit unprotected}
suggest that you do not (somehow) assign {\tt )quit} to be
executed when you press, say, a function key.

\par\noindent{\bf Also See:}
{\tt )fin} \index{ugSysCmdfin},
{\tt )history} \index{ugSysCmdhistory},
{\tt )close} \index{ugSysCmdclose},
{\tt )pquit} \index{ugSysCmdpquit}, and
{\tt )system} \index{ugSysCmdsystem}.


\section{)read}
\index{ugSysCmdread}

\index{read}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )read} {\it \lanb{}fileName\ranb{}}
\item {\tt )read} {\it \lanb{}fileName\ranb{}} \lanb{}
{\tt )quiet}\ranb{} \lanb{}{\tt )ifthere}\ranb{}
\end{list}
\par\noindent{\bf Command Description:}

This command is used to read {\bf .input} files into Axiom.
\index{file!input}
The command
\begin{verbatim}
)read matrix.input
\end{verbatim}
will read the contents of the file {\bf matrix.input} into
Axiom.
The ``.input'' file extension is optional.
See \sectionref{ugInOutIn} for more information about {\bf .input} files.

This command remembers the previous file you edited, read or compiled.
If you do not specify a file name, the previous file will be read.

The {\tt )ifthere} option checks to see whether the {\bf .input} file
exists.
If it does not, the  {\tt )read} command does nothing.
If you do not use this option and the file does not exist,
you are asked to give the name of an existing {\bf .input} file.

The {\tt )quiet} option suppresses output while the file is being read.

\par\noindent{\bf Also See:}
{\tt )compile} \index{ugSysCmdcompile},
{\tt )edit} \index{ugSysCmdedit}, and
{\tt )history} \index{ugSysCmdhistory}.


%Original Page 586

\section{)regress}
\index{regress}
\par\noindent{\bf User Level Required:} development
\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )regress} {\it filename}
\item {\tt )regress} {\it filename.output}
\item {\tt )regress} {\it /path/filename}
\item {\tt )regress} {\it /pathfilename.output}
\end{list}

\par\noindent{\bf Command Description:}

\begin{verbatim}
The regress command will run the regress function that was compiled
as part of the lisp image build process. This function expects an
input filename, possibly containing a path prefix. 

If the filename contains a period then we consider it a fully formed
filename, otherwise we append ``.output'', which is the default file
extension.

  )regress matrix
  )regress matrix.output
  )regress /path/to/file/matrix
  )regress /path/to/file/matrix.output
 
will test the contents of the file matrix.output.

The idea behind regression testing is to check that the results
we currently get match the results we used to get. In order to
do that we create input files with a special comment format that
contains the prior results. These are easy to create as all you
need to do is run the Axiom function, capture the results, and
turn them input specially formed comments using the -- comment.

A regression file caches the result of an Axiom function so we
can automate the testing process. It is a file of many tests,
each with their own output.

The regression file format uses the Axiom -- comment syntax to keep
a copy of the expected output from an Axiom command. This expected
output is compared character by character against the actual output.

The regression file is broken into numbered blocks, delimited by
a --S for the beginning and a --E for the end. The total number of
blocks is also given so missing or failed tests also raise an error.

There are 4 special kinds of -- comments in regression files:

  --S n of M        this is test n of M tests in this file
  --E n             this marks the end of test n
  --R any output    this marks the actual expected output line
  --I any output    this line is compared but ignored

A regression test file looks like:

  )set break resume
  )spool foo.output
  )set message type off
  )clear all

  --S 1 of 3
  2+3
  --R                     this is the exact Axiom output
  --R   (1)  5
  --E 1

  --S 2 of 3
  2+3
  --R                     this should fail to match
  --R   (2)  7
  --E 2

  --S 3 of 3
  2+3
  --R                     this fails to match but we
  --I   (3)  7            use --I to ignore this line
  --E 3

We can now run this file with

  )read foo.input

Note that when this file is run it will create a spool file called
"foo.output" because of the lines:
  
  )spool foo.output
  )spool

The "foo.output" file contains the console image of the result. 
It will look like:

  Starts dribbling to foo.output (2012/2/28, 12:25:7).
  )set message type off
  )clear all

  --S 1 of 3
  2+3
  
     (1)  5
  --R
  --R   (1)  5
  --E 1
  
  --S 2 of 3
  2+3
  
     (2)  5
  --R
  --R   (2)  7
  --E 2

  --S 3 of 3
  2+3
  
     (3)  5
  --R
  --I   (3)  7
  --E 3

  )spool

This "foo.output" file can now be checked using the )regress command.
 
When we run the )regress foo.output we see;

  testing foo
  passed foo  1 of 3
  MISMATCH
  expected:"   (2)  7"
       got:"   (2)  5"
  FAILED foo  2 of 2
  passed foo  3 of 3
  regression result FAILED 1 of 3 stanzas file foo

Tests either pass or fail. A passing test generates the message:

    passed foo  1 of 3

A failing test will give a reversed printout of the expected vs
actual output as well as a FAILED message, as in:

  MISMATCH
  expected:"   (2)  7"
       got:"   (2)  5"
  FAILED foo  2 of 3

The last line of output is a summary:

  regression result FAILED 1 of 3 stanzas file foo

\end{verbatim}

\par\noindent{\bf Also See:}
{\tt )tangle} 

\section{)savesystem}
\index{savesystem}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )savesystem {\sl filename}}
\end{list}
\par\noindent{\bf Command Description:}

This command will save the current Axiom session including
currently set variables into an executable file under the given
filename. For instance,

\begin{verbatim}
   axiom
   (1) -> t1:=4
   (1) -> )savesystem foo
\end{verbatim}
and Axiom exits. Then do
\begin{verbatim}
   ./foo
   (1) -> t1
   4
\end{verbatim}

\section{)set}
\label{ugSysCmdset}
\index{ugSysCmdset}

\index{set}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )set}
\item {\tt )set} {\it label1 \lanb{}... labelN\ranb{}}
\item {\tt )set} {\it label1 \lanb{}... labelN\ranb{} newValue}
\end{list}
\par\noindent{\bf Command Description:}

The {\tt )set} command is used to view or set system variables that
control what messages are displayed, the type of output desired, the
status of the history facility, the way Axiom user functions are
cached, and so on.
Since this collection is very large, we will not discuss them here.
Rather, we will show how the facility is used.
We urge you to explore the {\tt )set} options to familiarize yourself
with how you can modify your Axiom working environment.
There is a HyperDoc version of this same facility available from the
main HyperDoc menu.


The {\tt )set} command is command-driven with a menu display.
It is tree-structured.
To see all top-level nodes, issue {\tt )set} by itself.
\begin{verbatim}
)set
\end{verbatim}
Variables with values have them displayed near the right margin.
Subtrees of selections have ``{\tt ...}''
displayed in the value field.
For example, there are many kinds of messages, so issue
{\tt )set message} to see the choices.
\begin{verbatim}
)set message
\end{verbatim}
The current setting  for the variable that displays
\index{computation timings!displaying}
whether computation times
\index{timings!displaying}
are displayed is visible in the menu displayed by the last command.
To see more information, issue
\begin{verbatim}
)set message time
\end{verbatim}
This shows that time printing is on now.
To turn it off, issue
\begin{verbatim}
)set message time off
\end{verbatim}
\index{set message time}

As noted above, not all settings have so many qualifiers.
For example, to change the {\tt )quit} command to being unprotected
(that is, you will not be prompted for verification), you need only issue
\begin{verbatim}
)set quit unprotected
\end{verbatim}
\index{set quit unprotected}

\par\noindent{\bf Also See:}
{\tt )quit} \index{ugSysCmdquit}.


\section{)show}
\index{ugSysCmdshow}

\index{show}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )show {\it nameOrAbbrev}}
\item {\tt )show {\it nameOrAbbrev} )operations}
\item {\tt )show {\it nameOrAbbrev} )attributes}
\end{list}

\par\noindent{\bf Command Description:}
This command displays information about Axiom
domain, package and category {\it constructors}.
If no options are given, the {\tt )operations} option is assumed.

%Original Page 587

For example,
\begin{verbatim}
)show POLY
)show POLY )operations
)show Polynomial
)show Polynomial )operations
\end{verbatim}
each display basic information about the
{\tt Polynomial} domain constructor and then provide a
listing of operations.
Since {\tt Polynomial} requires a {\tt Ring} (for example,
{\tt Integer}) as argument, the above commands all refer
to a unspecified ring {\tt R}.
In the list of operations, {\tt \$} means
{\tt Polynomial(R)}.

The basic information displayed includes the {\it signature}
of the constructor (the name and arguments), the constructor
{\it abbreviation}, the {\it exposure status} of the constructor, and the
name of the {\it library source file} for the constructor.

If operation information about a specific domain is wanted,
the full or abbreviated domain name may be used.
For example,
\begin{verbatim}
)show POLY INT
)show POLY INT )operations
)show Polynomial Integer
)show Polynomial Integer )operations
\end{verbatim}
are among  the combinations that will display the operations\\ 
exported  by the domain {\tt Polynomial(Integer)} (as opposed\\ 
to the general {\it domain constructor} {\tt Polynomial}).\\
Attributes may be listed by using the {\tt )attributes} option.

\par\noindent{\bf Also See:}
{\tt )display} \index{ugSysCmddisplay},
{\tt )set} \index{ugSysCmdset}, and
{\tt )what} \index{ugSysCmdwhat}.


\section{)spool}
\index{ugSysCmdspool}

\index{spool}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )spool} \lanb{}{\it fileName}\ranb{}
\item{\tt )spool}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to save {\it (spool)} all Axiom input and output
\index{file!spool}
into a file, called a {\it spool file.}
You can only have one spool file active at a time.
To start spool, issue this command with a filename. For example,
\begin{verbatim}
)spool integrate.out
\end{verbatim}
To stop spooling, issue {\tt )spool} with no filename.

If the filename is qualified with a directory, then the output will
be placed in that directory.
If no directory information is given, the spool file will be placed in the
\index{directory!for spool files}
{\it current directory.}
The current directory is the directory from which you started
Axiom or is the directory you specified using the
{\tt )cd} command.
\index{cd}

\par\noindent{\bf Also See:}
{\tt )cd} \index{ugSysCmdcd}.


\section{)summary}
\index{summary}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )summary}
\end{list}
\par\noindent{\bf Command Description:}

\begin{verbatim}
 )credits      : list the people who have contributed to Axiom

 )help <command> gives more information
 )quit         : exit AXIOM 

 )abbreviation : query, set and remove abbreviations for constructors
 )browse       : start an Axiom http server on 127.0.0.1 port 8085
 )cd           : set working directory
 )clear        : remove declarations, definitions or values
 )close        : throw away an interpreter client and workspace
 )compile      : invoke constructor compiler
 )copyright    : show copyright and trademark information
 )describe     : show database information for a category, domain, or package 
 )display      : display Library operations and objects in your workspace
 )edit         : edit a file
 )fin          : drop into lisp, use (restart) to return to the session
 )frame        : manage interpreter workspaces
 )history      : manage aspects of interactive session
 )include      : insert a file into a .input file
 )library      : introduce new constructors 
 )lisp         : evaluate a LISP expression
 )ltrace       : trace functions
 )pquit        : ask if you really want to exit Axiom
 )quit         : exit Axiom
 )read         : execute AXIOM commands from a file
 )regress      : regression test an output spool file
 )savesystem   : save LISP image to a file
 )set          : view and set system variables
 )show         : show constructor information
 )spool        : log input and output to a file
 )synonym      : define an abbreviation for system commands
 )system       : issue shell commands
 )tangle       : extract chunks from a literate program to an input file
 )trace        : trace execution of functions
 )undo         : restore workspace to earlier state
 )what         : search for various things by name
\end{verbatim}

\section{)synonym}
\index{ugSysCmdsynonym}

\index{synonym}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )synonym}
\item{\tt )synonym} {\it synonym fullCommand}
\item{\tt )what synonyms}
\end{list}

%Original Page 588

\par\noindent{\bf Command Description:}

This command is used to create short synonyms for system command expressions.
For example, the following synonyms  might simplify commands you often
use.
\begin{verbatim}
)synonym save         history )save
)synonym restore      history )restore
)synonym mail         system mail
)synonym ls           system ls
)synonym fortran      set output fortran
\end{verbatim}
Once defined, synonyms can be
used in place of the longer  command expressions.
Thus
\begin{verbatim}
)fortran on
\end{verbatim}
is the same as the longer
\begin{verbatim}
)set fortran output on
\end{verbatim}
To list all defined synonyms, issue either of
\begin{verbatim}
)synonyms
)what synonyms
\end{verbatim}
To list, say, all synonyms that contain the substring
``{\tt ap}'', issue
\begin{verbatim}
)what synonyms ap
\end{verbatim}

\par\noindent{\bf Also See:}
{\tt )set} \index{ugSysCmdset} and
{\tt )what} \index{ugSysCmdwhat}.


\section{)system}
\index{ugSysCmdsystem}

\index{system}

\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )system} {\it cmdExpression}
\end{list}

\par\noindent{\bf Command Description:}

This command may be used to issue commands to the operating system while
remaining in Axiom.
The {\it cmdExpression} is passed to the operating system for
execution.

To get an operating system shell, issue, for example,
{\tt )system sh}.
When you enter the key combination,
\fbox{\bf Ctrl}--\fbox{\bf D}
(pressing and holding the
\fbox{\bf Ctrl} key and then pressing the
\fbox{\bf D} key)
the shell will terminate and you will return to Axiom.
We do not recommend this way of creating a shell because
Common Lisp may field some interrupts instead of the shell.
If possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to
Axiom.
If this happens, you may have no other choice than to restart
Axiom and restore the environment via {\tt )history )restore}, if
possible.

\par\noindent{\bf Also See:}
{\tt )boot} \index{ugSysCmdboot},
{\tt )fin} \index{ugSysCmdfin},
{\tt )lisp} \index{ugSysCmdlisp},
{\tt )pquit} \index{ugSysCmdpquit}, and
{\tt )quit} \index{ugSysCmdquit}.


%Original Page 590

\section{)tangle}
\index{ugSysCmdboot}
\index{tangle}
\par\noindent{\bf User Level Required:} development
\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item {\tt )tangle} {\it filename}
\item {\tt )tangle} {\it filename.output}
\item {\tt )tangle} {\it /path/filename}
\item {\tt )tangle} {\it /pathfilename.output}
\end{list}

\par\noindent{\bf Command Description:}

\begin{verbatim}
This command is used to tangle pamphlet files.
 
)tangle matrix.input.pamphlet
 
will tangle the contents of the file matrix.input.pamphlet into 
matrix.input. The ``.input.pamphlet'' is optional.
 
\end{verbatim}

\par\noindent{\bf Also See:}
{\tt )regress} 

%Original Page 584

\section{)trace}
\label{ugSysCmdtrace}
\label{ugSysCmdltrace}
\index{ugSysCmdltrace}

\index{ltrace}


\par\noindent{\bf User Level Required:} development

\par\noindent{\bf Command Syntax:}

This command has the same arguments as options as the
{\tt )trace} command.

\par\noindent{\bf Command Description:}

This command is used by Axiom system developers to trace
Common Lisp or
BOOT functions.
It is not supported for general use.

\par\noindent{\bf Also See:}
{\tt )boot} \index{ugSysCmdboot},
{\tt )lisp} \index{ugSysCmdlisp}, and
{\tt )trace} \index{ugSysCmdtrace}.


\section{)trace}
\index{ugSysCmdtrace}

\index{trace}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )trace}
\item{\tt )trace )off}

\item{\tt )trace} {\it function \lanb{}options\ranb{}}
\item{\tt )trace} {\it constructor \lanb{}options\ranb{}}
\item{\tt )trace} {\it domainOrPackage \lanb{}options\ranb{}}
\end{list}
%
where options can be one or more of
%
\begin{list}{}
\item{\tt )after} {\it S-expression}
\item{\tt )before} {\it S-expression}
\item{\tt )break after}
\item{\tt )break before}
\item{\tt )cond} {\it S-expression}
\item{\tt )count}
\item{\tt )count} {\it n}
\item{\tt )depth} {\it n}
\item{\tt )local} {\it op1 \lanb{}... opN\ranb{}}
\item{\tt )nonquietly}
\item{\tt )nt}
\item{\tt )off}
\item{\tt )only} {\it listOfDataToDisplay}
\item{\tt )ops}
\item{\tt )ops} {\it op1 \lanb{}... opN \ranb{}}
\item{\tt )restore}
\item{\tt )stats}
\item{\tt )stats reset}
\item{\tt )timer}
\item{\tt )varbreak}
\item{\tt )varbreak} {\it var1 \lanb{}... varN \ranb{}}
\item{\tt )vars}
\item{\tt )vars} {\it var1 \lanb{}... varN \ranb{}}
\item{\tt )within} {\it executingFunction}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to trace the execution of functions that make
up the Axiom system, functions defined by users,
and functions from the system library.
Almost all options are available for each type of function but
exceptions will be noted below.

To list all functions, constructors, domains and packages that are
traced, simply issue
\begin{verbatim}
)trace
\end{verbatim}
To untrace everything that is traced, issue
\begin{verbatim}
)trace )off
\end{verbatim}
When a function is traced, the default system action is to display
the arguments to the function and the return value when the
function is exited.
Note that if a function is left via an action such as a {\tt THROW}, no
return value will be displayed.
Also, optimization of tail recursion may decrease the number of
times a function is actually invoked and so may cause less trace
information to be displayed.

%Original Page 590

Other information can be displayed or collected when a function is
traced and this is controlled by the various options.
Most options will be of interest only to Axiom system
developers.
If a domain or package is traced, the default action is to trace
all functions exported.

Individual interpreter, lisp or boot
functions can be traced by listing their names after
{\tt )trace}.
Any options that are present must follow the functions to be
traced.
\begin{verbatim}
)trace f
\end{verbatim}
traces the function {\tt f}.
To untrace {\tt f}, issue
\begin{verbatim}
)trace f )off
\end{verbatim}
Note that if a function name contains a special character, it will
be necessary to escape the character with an underscore
%
\begin{verbatim}
)trace _/D_,1
\end{verbatim}
%
To trace all domains or packages that are or will be created from a particular
constructor, give the constructor name or abbreviation after
{\tt )trace}.
%
\begin{verbatim}
)trace MATRIX
)trace List Integer
\end{verbatim}
%
The first command traces all domains currently instantiated with
{\tt Matrix}.
If additional domains are instantiated with this constructor
(for example, if you have used {\tt Matrix(Integer)} and
{\tt Matrix(Float)}), they will be automatically traced.
The second command traces {\tt List(Integer)}.
It is possible to trace individual functions in a domain or
package.
See the {\tt )ops} option below.

The following are the general options for the {\tt )trace}
command.

%!! system command parser doesn't treat general s-expressions correctly,
%!! I recommand not documenting )after )before and )cond
\begin{description}
%\item[{\tt )after} {\it S-expression}]
%causes the given Common Lisp {\it S-expression} to be
%executed after exiting the traced function.

%\item[{\tt )before} {\it S-expression}]
%causes the given Common Lisp {\it S-expression} to be
%executed before entering the traced function.

\item[{\tt )break after}]
causes a Common Lisp break loop to be entered after
exiting the traced function.

\item[{\tt )break before}]
causes a Common Lisp break loop to be entered before
entering the traced function.

\item[{\tt )break}]
is the same as {\tt )break before}.

%\item[{\tt )cond} {\it S-expression}]
%causes trace information to be shown only if the given
%Common Lisp {\it S-expression} evaluates to non-NIL.  For
%example, the following command causes the system function
%{\tt resolveTT} to be traced but to have the information
%displayed only if the value of the variable
%{\tt \$reportBottomUpFlag} is non-NIL.
%\begin{verbatim}
%)trace resolveTT )cond \_\$reportBottomUpFlag}
%\end{verbatim}

\item[{\tt )count}]
causes the system to keep a count of the number of times the
traced function is entered.  The total can be displayed with
{\tt )trace )stats} and cleared with {\tt )trace )stats reset}.

\item[{\tt )count} {\it n}]
causes information about the traced function to be displayed for
the first {\it n} executions.  After the {\it n-th} execution, the
function is untraced.

\item[{\tt )depth} {\it n}]
causes trace information to be shown for only {\it n} levels of
recursion of the traced function.  The command
\begin{verbatim}
)trace fib )depth 10
\end{verbatim}
will cause the display of only 10 levels of trace information for
the recursive execution of a user function {\bf fib}.

\item[{\tt )math}]
causes the function arguments and return value to be displayed\\ 
in the Axiom monospace two-dimensional math format.

\item[{\tt )nonquietly}]
causes the display of additional messages when a function is
traced.

\item[{\tt )nt}]
This suppresses all normal trace information.  This option is
useful if the {\tt )count} or {\tt )timer} options are used and
you are interested in the statistics but not the function calling
information.

%Original Page 591

\item[{\tt )off}]
causes untracing of all or specific functions.  Without an
argument, all functions, constructors, domains and packages are
untraced.  Otherwise, the given functions and other objects
are untraced.  To
immediately retrace the untraced functions, issue {\tt )trace
)restore}.

\item[{\tt )only} {\it listOfDataToDisplay}]
causes only specific trace information to be shown.  The items are
listed by using the following abbreviations:
\begin{description}
\item[a]        display all arguments
\item[v]        display return value
\item[1]        display first argument
\item[2]        display second argument
\item[15]       display the 15th argument, and so on
\end{description}
\end{description}
\begin{description}

\item[{\tt )restore}]
causes the last untraced functions to be retraced.  If additional
options are present, they are added to those previously in effect.

\item[{\tt )stats}]
causes the display of statistics collected by the use of the
{\tt )count} and {\tt )timer} options.

\item[{\tt )stats reset}]
resets to 0 the statistics collected by the use of the
{\tt )count} and {\tt )timer} options.

\item[{\tt )timer}]
causes the system to keep a count of execution times for the
traced function.  The total can be displayed with {\tt )trace
)stats} and cleared with {\tt )trace )stats reset}.

%!! only for lisp, boot, may not work in any case, recommend removing
%\item[{\tt )varbreak}]
%causes a Common Lisp break loop to be entered after
%the assignment to any variable in the traced function.

\item[{\tt )varbreak} {\it var1 \lanb{}... varN\ranb{}}]
causes a Common Lisp break loop to be entered after
the assignment to any of the listed variables in the traced
function.

\item[{\tt )vars}] causes the display of the value of any variable
after it is assigned in the traced function.  Note that library code
must have been compiled (see \sectionref{ugSysCmdcompile} using the
{\tt )vartrace} option in order to support this option.

\item[{\tt )vars} {\it var1 \lanb{}... varN\ranb{}}] causes the
display of the value of any of the specified variables after they are
assigned in the traced function.  Note that library code must have
been compiled (see \sectionref{ugSysCmdcompile} using the {\tt
)vartrace} option in order to support this option.

\item[{\tt )within} {\it executingFunction}]
causes the display of trace information only if the traced
function is called when the given {\it executingFunction} is running.
\end{description}

The following are the options for tracing constructors, domains
and packages.

\begin{description}
\item[{\tt )local} {\it \lanb{}op1 \lanb{}... opN\ranb{}\ranb{}}]
causes local functions of the constructor to be traced.  Note that
to untrace an individual local function, you must use the fully
qualified internal name, using the escape character
{\tt \_} before the semicolon.
\begin{verbatim}
)trace FRAC )local
)trace FRAC_;cancelGcd )off
\end{verbatim}

\item[{\tt )ops} {\it op1 \lanb{}... opN\ranb{}}]
By default, all operations from a domain or package are traced
when the domain or package is traced.  This option allows you to
specify that only particular operations should be traced.  The
command
%
\begin{verbatim}
)trace Integer )ops min max _+ _-
\end{verbatim}
%
traces four operations from the domain {\tt Integer}.  Since
{\tt +} and {\tt -} are special
characters, it is necessary
to escape them with an underscore.
\end{description}

\par\noindent{\bf Also See:}
{\tt )boot} \index{ugSysCmdboot},
{\tt )lisp} \index{ugSysCmdlisp}, and
{\tt )ltrace} \index{ugSysCmdltrace}.

%Original Page 592

\section{)undo}
\index{ugSysCmdundo}

\index{undo}


\par\noindent{\bf User Level Required:} interpreter

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )undo}
\item{\tt )undo} {\it integer}
\item{\tt )undo} {\it integer \lanb{}option\ranb{}}
\item{\tt )undo} {\tt )redo}
\end{list}
%
where {\it option} is one of
%
\begin{list}{}
\item{\tt )after}
\item{\tt )before}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to
restore the state of the user environment to an earlier
point in the interactive session.
The argument of an {\tt )undo} is an integer which must designate some
step number in the interactive session.

\begin{verbatim}
)undo n
)undo n )after
\end{verbatim}
These commands return the state of the interactive
environment to that immediately after step {\tt n}.
If {\tt n} is a positive number, then {\tt n} refers to step nummber
{\tt n}. If {\tt n} is a negative number, it refers to the {\tt n}-th
previous command (that is, undoes the effects of the last $-n$
commands).

A {\tt )clear all} resets the {\tt )undo} facility.
Otherwise, an {\tt )undo} undoes the effect of {\tt )clear} with
options {\tt properties}, {\tt value}, and {\tt mode}, and
that of a previous {\tt undo}.
If any such system commands are given between steps $n$ and
$n + 1$ ($n > 0$), their effect is undone
for {\tt )undo m} for any $0 < m \leq n$..

The command {\tt )undo} is equivalent to {\tt )undo -1} (it undoes
the effect of the previous user expression).
The command {\tt )undo 0} undoes any of the above system commands
issued since the last user expression.

\begin{verbatim}
)undo n )before
\end{verbatim}
This command returns the state of the interactive
environment to that immediately before step {\tt n}.
Any {\tt )undo} or {\tt )clear} system commands
given before step {\tt n} will not be undone.

\begin{verbatim}
)undo )redo
\end{verbatim}
This command reads the file {\tt redo.input}.
created by the last {\tt )undo} command.
This file consists of all user input lines, excluding those
backtracked over due to a previous {\tt )undo}.

\par\noindent{\bf Also See:}
{\tt )history} \index{ugSysCmdhistory}.
The command {\tt )history )write} will eliminate the ``undone'' command
lines of your program.

\section{)what}
\index{ugSysCmdwhat}
\label{ugSysCmdwhat}

\index{what}


\par\noindent{\bf User Level Required:} interpreter

%Original Page 593

\par\noindent{\bf Command Syntax:}
\begin{list}{}
\item{\tt )what categories} {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what commands  } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what domains   } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what operations} {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what packages  } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what synonym   } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )what things    } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\item{\tt )apropos        } {\it pattern1} \lanb{}{\it pattern2 ...\ranb{}}
\end{list}

\par\noindent{\bf Command Description:}

This command is used to display lists of things in the system.  The
patterns are all strings and, if present, restrict the contents of the
lists.  Only those items that contain one or more of the strings as
substrings are displayed.  For example,
\begin{verbatim}
)what synonym
\end{verbatim}
displays all command synonyms,
\begin{verbatim}
)what synonym ver
\end{verbatim}
displays all command synonyms containing the substring ``{\tt ver}'',
\begin{verbatim}
)what synonym ver pr
\end{verbatim}
displays all command synonyms
containing the substring  ``{\tt ver}'' or  the substring
``{\tt pr}''.
Output similar to the following will be displayed
\begin{verbatim}
---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:
      ver pr

  )apr ........................... )what things
  )apropos ....................... )what things
  )prompt ........................ )set message prompt
  )version ....................... )lisp *yearweek*
\end{verbatim}

Several other things can be listed with the {\tt )what} command:

\begin{description}
\item[{\tt categories}] displays a list of category constructors.
\index{what categories}
\item[{\tt commands}]  displays a list of  system commands available  at your
user-level.
\index{what commands}
Your user-level
\index{user-level}
is set via the  {\tt )set userlevel} command.
\index{set userlevel}
To get a description of a particular command, such as ``{\tt )what}'', issue
{\tt )help what}.
\item[{\tt domains}]   displays a list of domain constructors.
\index{what domains}
\item[{\tt operations}] displays a list of operations in  the system library.
\index{what operations}
It  is recommended that you  qualify this command with one or
more patterns, as there are thousands of operations available.  For
example, say you are looking for functions that involve computation of
eigenvalues.  To find their names, try {\tt )what operations eig}.
A rather large list of operations  is loaded into the workspace when
this command  is first issued.  This  list will be deleted  when you
clear the workspace  via {\tt )clear all} or {\tt )clear completely}.
It will be re-created if it is needed again.
\item[{\tt packages}]  displays a list of package constructors.
\index{what packages}
\item[{\tt synonym}]  lists system command synonyms.
\index{what synonym}
\item[{\tt things}]    displays all  of the  above types for  items containing
\index{what things}
the pattern strings as  substrings.
The command synonym  {\tt )apropos} is equivalent to
\index{apropos}
{\tt )what things}.
\end{description}

\par\noindent{\bf Also See:}
{\tt )display} \index{ugSysCmddisplay},
{\tt )set} \index{ugSysCmdset}, and
{\tt )show} \index{ugSysCmdshow}.

%\setcounter{chapter}{1} % Appendix B

%Original Page 595

%\twocolumn[%
\chapter{Categories}
\label{ugAppCategories}

This is a listing of all categories in the Axiom library at the
time this book was produced.
Use the Browse facility (described in \sectionref{ugBrowse})
to get more information about these constructors.

\boxer{4.6in}{
This sample entry will help you read the following table:

CategoryName{CategoryAbbreviation}:{$\hbox{{\sf Category}}_{1}$%
\ldots$\hbox{{\sf Category}}_{N}$}{\sl with }%
{$\hbox{{\rm op}}_{1}$\ldots$\hbox{{\rm op}}_{M}$}

where

\begin{tabular}{ll}
CategoryName & is the full category name, e.g., {\sf Integer}. \\
CategoryAbbreviation & is the category abbreviation, e.g., {\sf INT}. \\
$\hbox{{\sf Category}}_{i}$ & is a category to which the category belongs. \\
$\hbox{{\rm op}}_{j}$ & is an operation exported by the category.
\end{tabular}
}

\def\condata#1#2#3#4{{%
   \par\vskip 1pt%
   {\bf #2}\allowbreak\{{\tt #1}\}: {\sl #3} {\tt with }%
   {\rm #4}\par}}

\condata{ABELGRP}{AbelianGroup}{CancellationAbelianMonoid}{{\tt *} {\tt -}}
%
\condata{AMR}{AbelianMonoidRing}
{Algebra BiModule CharacteristicNonZero CharacteristicZero CommutativeRing
IntegralDomain Ring}
{{\tt /} coefficient degree leadingCoefficient leadingMonomial map 
monomial monomial? reductum}
%
\condata{ABELMON}{AbelianMonoid}{AbelianSemiGroup}{{\tt *} Zero zero?}
%
\condata{ABELSG}{AbelianSemiGroup}{SetCategory}{{\tt *} {\tt +}}
%
\condata{AGG}{Aggregate}{Object}
{{\tt \#} copy empty empty? eq? less? more? size?}
%
\condata{ACF}{AlgebraicallyClosedField}{Field RadicalCategory}
{rootOf rootsOf zeroOf zerosOf}
%
\condata{ACFS}{AlgebraicallyClosedFunctionSpace\\}
{AlgebraicallyClosedField FunctionSpace}
{rootOf rootsOf zeroOf zerosOf}
%
\condata{ALGEBRA}{Algebra}{Module Ring}{coerce}
%
\condata{AHYP}{ArcHyperbolicFunctionCategory}{}
{acosh acoth acsch asech asinh atanh}
%
\condata{ATRIG}{ArcTrigonometricFunctionCategory}{}
{acos acot acsc asec asin atan}
%
\condata{ALAGG}{AssociationListAggregate}{ListAggregate TableAggregate}{assoc}
%
\condata{ATTREG}{AttributeRegistry}{}{}
%
\condata{BGAGG}{BagAggregate}{HomogeneousAggregate}
{bag extract! insert! inspect}
%
\condata{BMODULE}{BiModule}{LeftModule RightModule}{}
%
\condata{BRAGG}{BinaryRecursiveAggregate}{RecursiveAggregate}
{elt left right setelt setleft! setright!}
%
\condata{BTCAT}{BinaryTreeCategory}{BinaryRecursiveAggregate}{node}
%
\condata{BTAGG}{BitAggregate}{OneDimensionalArrayAggregate OrderedSet}
{{\tt \^{}} and nand nor not or xor}
%
\condata{CACHSET}{CachableSet}{OrderedSet}{position setPosition}
%
\condata{CABMON}{CancellationAbelianMonoid}{AbelianMonoid}{{\tt -}}
%
\condata{CHARNZ}{CharacteristicNonZero}{Ring}{charthRoot}
%
\condata{CHARZ}{CharacteristicZero}{Ring}{}
%
\condata{KOERCE}{CoercibleTo}{}{coerce}
%
\condata{CLAGG}{Collection}{ConvertibleTo HomogeneousAggregate}
{construct find reduce remove removeDuplicates select}
%
\condata{CFCAT}{CombinatorialFunctionCategory}{}
{binomial factorial permutation}
%
\condata{COMBOPC}{CombinatorialOpsCategory}{CombinatorialFunctionCategory}
{factorials product summation}
%
\condata{COMRING}{CommutativeRing}{BiModule Ring}{}
%
\condata{COMPCAT}{ComplexCategory\\}
{CharacteristicNonZero CharacteristicZero CommutativeRing\\ 
ConvertibleTo DifferentialExtension EuclideanDomain Field\\ 
FullyEvalableOver FullyLinearlyExplicitRingOver FullyRetractableTo\\
IntegralDomain MonogenicAlgebra OrderedSet\\ 
PolynomialFactorizationExplicit RadicalCategory\\
TranscendentalFunctionCategory\\}
{abs argument complex conjugate exquo imag imaginary norm 
polarCoordinates rational rational? rationalIfCan real}
%
\condata{KONVERT}{ConvertibleTo}{}{convert}
%
\condata{DQAGG}{DequeueAggregate}
{QueueAggregate StackAggregate}
{bottom! dequeue extractBottom! extractTop! height
insertBottom! insertTop! reverse! top!}
%
\condata{DIOPS}{DictionaryOperations}{BagAggregate Collection}
{dictionary remove! select!}
%
\condata{DIAGG}{Dictionary}{DictionaryOperations}{}
%
\condata{DIFEXT}{DifferentialExtension\\}
{DifferentialRing PartialDifferentialRing Ring}
{D differentiate}
%
\condata{DPOLCAT}{DifferentialPolynomialCategory\\}
{DifferentialExtension Evalable InnerEvalable PolynomialCategory\\
RetractableTo}
{degree differentialVariables initial isobaric? leader makeVariable 
order separant weight weights}
%
\condata{DIFRING}{DifferentialRing}{Ring}{D differentiate}
%
\condata{DVARCAT}{DifferentialVariableCategory}{OrderedSet RetractableTo}
{D coerce differentiate makeVariable order variable weight}
%
\condata{DIRPCAT}{DirectProductCategory\\}
{AbelianSemiGroup Algebra BiModule CancellationAbelianMonoid\\ 
CoercibleTo CommutativeRing DifferentialExtension Finite\\ 
FullyLinearlyExplicitRingOver FullyRetractableTo IndexedAggregate\\ 
OrderedAbelianMonoidSup OrderedRing VectorSpace}
{{\tt *} directProduct dot unitVector}
%
\condata{DIVRING}{DivisionRing}{Algebra EntireRing}{{\tt **} inv}
%
\condata{DLAGG}{DoublyLinkedAggregate}{RecursiveAggregate}
{concat! head last next previous setnext! setprevious! tail}
%
\condata{ELEMFUN}{ElementaryFunctionCategory}{}{{\tt **} exp log}
%
\condata{ELTAGG}{EltableAggregate}{Eltable}{elt qelt qsetelt! setelt}
%
\condata{ELTAB}{Eltable}{}{elt}
%
\condata{ENTIRER}{EntireRing}{BiModule Ring}{}
%
\condata{EUCDOM}{EuclideanDomain}{PrincipalIdealDomain\\}
{divide euclideanSize extendedEuclidean multiEuclidean quo rem sizeLess?}
%
\condata{EVALAB}{Evalable}{}{eval}
%
\condata{ES}{ExpressionSpace}
{Evalable InnerEvalable OrderedSet RetractableTo}
{belong? box definingPolynomial distribute elt eval freeOf? height is? 
kernel kernels mainKernel map minPoly operator operators paren subst tower}
%
\condata{ELAGG}{ExtensibleLinearAggregate}{LinearAggregate\\}
{concat! delete! insert! merge! remove! removeDuplicates! select!}
%
\condata{XF}{ExtensionField}
{CharacteristicZero Field FieldOfPrimeCharacteristic RetractableTo 
VectorSpace}
{Frobenius algebraic? degree extensionDegree inGroundField? 
transcendenceDegree transcendent?}
%
\condata{FPC}{FieldOfPrimeCharacteristic}
{CharacteristicNonZero Field}{discreteLog order primeFrobenius}
%
\condata{FIELD}{Field}
{DivisionRing EuclideanDomain UniqueFactorizationDomain}{{\tt /}}
%
\condata{FILECAT}{FileCategory}{SetCategory}
{close! iomode name open read! reopen! write!}
%
\condata{FNCAT}{FileNameCategory}{SetCategory}
{coerce directory exists? extension filename name new readable? writable?}
%
\condata{FAMR}{FiniteAbelianMonoidRing}
{AbelianMonoidRing FullyRetractableTo}
{coefficients content exquo ground ground? mapExponents minimumDegree 
numberOfMonomials primitivePart}
%
\condata{FAXF}{FiniteAlgebraicExtensionField\\}
{ExtensionField FiniteFieldCategory RetractableTo\\}
{basis coordinates createNormalElement definingPolynomial degree 
extensionDegree generator minimalPolynomial norm normal? normalElement
represents trace}
%
\condata{FFIELDC}{FiniteFieldCategory}
{FieldOfPrimeCharacteristic Finite StepThrough}
{charthRoot conditionP createPrimitiveElement discreteLog 
factorsOfCyclicGroupSize order primitive? primitiveElement 
representationType tableForDiscreteLogarithm}
%
\condata{FLAGG}{FiniteLinearAggregate}{LinearAggregate OrderedSet}
{copyInto! merge position reverse reverse! sort sort!
   sorted?}
%
\condata{FINRALG}{FiniteRankAlgebra}
{Algebra CharacteristicNonZero CharacteristicZero}
{characteristicPolynomial coordinates discriminant minimalPolynomial 
norm rank regularRepresentation represents trace traceMatrix}
%
\condata{FINAALG}{FiniteRankNonAssociativeAlgebra\\}{NonAssociativeAlgebra\\}
{JacobiIdentity? JordanAlgebra? alternative? antiAssociative?\\ 
antiCommutative? associative? associatorDependence commutative?\\ 
conditionsForIdempotents coordinates flexible? jordanAdmissible?\\ 
leftAlternative? leftCharacteristicPolynomial leftDiscriminant\\ 
leftMinimalPolynomial leftNorm leftRecip leftRegularRepresentation\\ 
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlgebra?\\
noncommutativeJordanAlgebra? powerAssociative? rank recip represents\\ 
rightAlternative? rightCharacteristicPolynomial rightDiscriminant\\ 
rightMinimalPolynomial rightNorm rightRecip rightRegularRepresentation\\ 
rightTrace rightTraceMatrix rightUnit rightUnits someBasis\\ 
structuralConstants unit}
%
\condata{FSAGG}{FiniteSetAggregate}{Dictionary Finite SetAggregate}
{cardinality complement max min universe}
%
\condata{FINITE}{Finite}{SetCategory}{index lookup random size}
%
\condata{FPS}{FloatingPointSystem}{RealNumberSystem}
{base bits decreasePrecision digits exponent float
increasePrecision mantissa max order precision}
%
\condata{FRAMALG}{FramedAlgebra}{FiniteRankAlgebra}
{basis convert coordinates discriminant regularRepresentation
represents traceMatrix}
%
\condata{FRNAALG}{FramedNonAssociativeAlgebra\\}
{FiniteRankNonAssociativeAlgebra}
{apply basis conditionsForIdempotents convert coordinates elt 
leftDiscriminant leftRankPolynomial leftRegularRepresentation 
leftTraceMatrix represents rightDiscriminant rightRankPolynomial 
rightRegularRepresentation rightTraceMatrix structuralConstants}
%
\condata{FAMONC}{FreeAbelianMonoidCategory\\}
{CancellationAbelianMonoid RetractableTo}
{{\tt *} {\tt +} coefficient highCommonTerms mapCoef mapGen nthCoef 
nthFactor size terms}
%
\condata{FEVALAB}{FullyEvalableOver}{Eltable Evalable InnerEvalable}{map}
%
\condata{FLINEXP}{FullyLinearlyExplicitRingOver}{LinearlyExplicitRingOver}{}
%
\condata{FPATMAB}{FullyPatternMatchable}{Object PatternMatchable}{}
%
\condata{FRETRCT}{FullyRetractableTo}{RetractableTo}{}
%
\condata{FFCAT}{FunctionFieldCategory}{MonogenicAlgebra\\}
{D absolutelyIrreducible? branchPoint? branchPointAtInfinity?\\
complementaryBasis differentiate elt genus integral?\\ 
integralAtInfinity? integralBasis integralBasisAtInfinity\\
integralCoordinates integralDerivationMatrix integralMatrix\\ 
integralMatrixAtInfinity integralRepresents inverseIntegralMatrix\\ 
inverseIntegralMatrixAtInfinity nonSingularModel\\ 
normalizeAtInfinity numberOfComponents primitivePart ramified?\\ 
ramifiedAtInfinity? rationalPoint? rationalPoints\\ 
reduceBasisAtInfinity represents singular? singularAtInfinity?\\ 
yCoordinates}
%
\condata{FS}{FunctionSpace}
{AbelianGroup AbelianMonoid Algebra CharacteristicNonZero 
CharacteristicZero ConvertibleTo ExpressionSpace Field 
FullyLinearlyExplicitRingOver FullyPatternMatchable FullyRetractableTo 
Group Monoid PartialDifferentialRing Patternable RetractableTo Ring}
{{\tt **} {\tt /} applyQuote coerce convert denom denominator eval 
ground ground? isExpt isMult isPlus isPower isTimes numer numerator 
univariate variables}
%
\condata{GCDDOM}{GcdDomain}{IntegralDomain}{gcd lcm}
%
\condata{GRALG}{GradedAlgebra}{GradedModule}{One product}
%
\condata{GRMOD}{GradedModule}{RetractableTo SetCategory}
{{\tt *} {\tt +} {\tt -} Zero degree}
%
\condata{GROUP}{Group}{Monoid}{{\tt **} {\tt /} commutator conjugate inv}
%
\condata{HOAGG}{HomogeneousAggregate}{Aggregate SetCategory}
{any? count every? map map! member? members parts}
%
\condata{HYPCAT}{HyperbolicFunctionCategory}{}{cosh coth csch sech sinh tanh}
%
\condata{IXAGG}{IndexedAggregate}{EltableAggregate HomogeneousAggregate}
{entries entry? fill! first index? indices maxIndex minIndex swap!}
%
\condata{IDPC}{IndexedDirectProductCategory}{SetCategory}
{leadingCoefficient leadingSupport map monomial reductum}
%
\condata{IEVALAB}{InnerEvalable}{}{eval}
%
\condata{INS}{IntegerNumberSystem}
{CharacteristicZero CombinatorialFunctionCategory ConvertibleTo 
DifferentialRing EuclideanDomain LinearlyExplicitRingOver OrderedRing 
PatternMatchable RealConstant RetractableTo StepThrough 
UniqueFactorizationDomain}
{addmod base bit? copy dec even? hash inc invmod length mask mulmod odd? 
positiveRemainder powmod random rational rational? rationalIfCan shift 
submod symmetricRemainder}
%
\condata{INTDOM}{IntegralDomain}
{Algebra CommutativeRing EntireRing}
{associates? exquo unit? unitCanonical unitNormal}
%
\condata{KDAGG}{KeyedDictionary}{Dictionary}{key? keys remove! search}
%
\condata{LZSTAGG}{LazyStreamAggregate}{StreamAggregate}
{complete explicitEntries? explicitlyEmpty? extend frst lazy?
lazyEvaluate numberOfComputedEntries remove rst select}
%
\condata{LALG}{LeftAlgebra}{LeftModule Ring}{coerce}
%
\condata{LMODULE}{LeftModule}{AbelianGroup}{{\tt *}}
%
\condata{LNAGG}{LinearAggregate}
{Collection IndexedAggregate}
{concat delete elt insert map new setelt}
%
\condata{LINEXP}{LinearlyExplicitRingOver}{Ring}{reducedSystem}
%
\condata{LFCAT}{LiouvillianFunctionCategory}
{PrimitiveFunctionCategory TranscendentalFunctionCategory}
{Ci Ei Si dilog erf li}
%
\condata{LSAGG}{ListAggregate}
{ExtensibleLinearAggregate FiniteLinearAggregate StreamAggregate}{list}
%
\condata{MAGCDOC}{ModularAlgebraicGcdOperations}{}
{canonicalIfCan degree MPtoMPT packExps packModulus pseudoRem repack1 zero?}

\condata{MATCAT}{MatrixCategory}{TwoDimensionalArrayCategory\\}
{{\tt *} {\tt **} {\tt +} {\tt -} {\tt /} antisymmetric? coerce 
determinant diagonal? diagonalMatrix elt exquo horizConcat inverse 
listOfLists matrix minordet nullSpace nullity rank rowEchelon 
scalarMatrix setelt setsubMatrix! square? squareTop subMatrix 
swapColumns! swapRows! symmetric? transpose vertConcat zero}
%
\condata{MODULE}{Module}{BiModule}{}
%
\condata{MONADWU}{MonadWithUnit}{Monad}
{{\tt **} One leftPower leftRecip one? recip rightPower rightRecip}
%
\condata{MONAD}{Monad}{SetCategory}
{{\tt *} {\tt **} leftPower rightPower}
%
\condata{MONOGEN}{MonogenicAlgebra}
{CommutativeRing ConvertibleTo\\ 
DifferentialExtension Field Finite\\
FiniteFieldCategory FramedAlgebra\\ 
FullyLinearlyExplicitRingOver FullyRetractableTo\\}
{convert definingPolynomial derivationCoordinates generator lift reduce}
%
\condata{MLO}{MonogenicLinearOperator}{Algebra BiModule Ring}
{coefficient degree leadingCoefficient minimumDegree monomial reductum}
%
\condata{MONOID}{Monoid}{SemiGroup}{{\tt **} One one? recip}
%
\condata{MDAGG}{MultiDictionary}{DictionaryOperations}
{duplicates insert! removeDuplicates!}
%
\condata{MSAGG}{MultisetAggregate}{MultiDictionary SetAggregate}{}
%
\condata{MTSCAT}{MultivariateTaylorSeriesCategory\\}
{Evalable InnerEvalable PartialDifferentialRing\\ 
PowerSeriesCategory RadicalCategory\\ 
TranscendentalFunctionCategory\\}
{coefficient extend integrate monomial order polynomial}
%
\condata{NAALG}{NonAssociativeAlgebra}{Module NonAssociativeRng}{plenaryPower}
%
\condata{NASRING}{NonAssociativeRing}{MonadWithUnit NonAssociativeRng}
{characteristic coerce}
%
\condata{NARNG}{NonAssociativeRng}{AbelianGroup Monad\\}
{antiCommutator associator commutator}
%
\condata{OBJECT}{Object}{}{}
%
\condata{OC}{OctonionCategory}{Algebra CharacteristicNonZero\\ 
CharacteristicZero ConvertibleTo Finite FullyEvalableOver\\
FullyRetractableTo OrderedSet\\}
{abs conjugate imagE imagI imagJ imagK imagi imagj imagk inv norm 
octon rational rational? rationalIfCan real}
%
\condata{A1AGG}{OneDimensionalArrayAggregate}{FiniteLinearAggregate}{}
%
\condata{OAGROUP}{OrderedAbelianGroup\\}
{AbelianGroup OrderedCancellationAbelianMonoid}{}
%
\condata{OAMONS}{OrderedAbelianMonoidSup}
{OrderedCancellationAbelianMonoid}{sup}
%
\condata{OAMON}{OrderedAbelianMonoid}{AbelianMonoid OrderedAbelianSemiGroup}{}
%
\condata{OASGP}{OrderedAbelianSemiGroup}{AbelianMonoid OrderedSet}{}
%
\condata{OCAMON}{OrderedCancellationAbelianMonoid}
{CancellationAbelianMonoid OrderedAbelianMonoid}{}
%
\condata{ORDFIN}{OrderedFinite}{Finite OrderedSet}{}
%
\condata{ORDMON}{OrderedMonoid}{Monoid OrderedSet}{}
%
\condata{OMAGG}{OrderedMultisetAggregate}
{MultisetAggregate PriorityQueueAggregate}{min}
%
\condata{ORDRING}{OrderedRing}{OrderedAbelianGroup OrderedMonoid Ring}
{abs negative? positive? sign}
%
\condata{ORDSET}{OrderedSet}{SetCategory}{{\tt <} max min}
%
\condata{PADICCT}{PAdicIntegerCategory}{CharacteristicZero EuclideanDomain}
{approximate complete digits extend moduloP modulus order quotientByP sqrt}
%
\condata{PDRING}{PartialDifferentialRing}{Ring}{D differentiate}
%
\condata{PTRANFN}{PartialTranscendentalFunctions\\}{}
{acosIfCan acoshIfCan acotIfCan acothIfCan acscIfCan\\ 
acschIfCan asecIfCan asechIfCan asinIfCan asinhIfCan\\ 
atanIfCan atanhIfCan cosIfCan coshIfCan cotIfCan cothIfCan\\ 
cscIfCan cschIfCan expIfCan logIfCan nthRootIfCan secIfCan\\ 
sechIfCan sinIfCan sinhIfCan tanIfCan tanhIfCan}
%
\condata{PATAB}{Patternable}{ConvertibleTo Object}{}
%
\condata{PATMAB}{PatternMatchable}{SetCategory}{patternMatch}
%
\condata{PERMCAT}{PermutationCategory}{Group OrderedSet\\}
{{\tt <} cycle cycles elt eval orbit}
%
\condata{PPCURVE}{PlottablePlaneCurveCategory}{CoercibleTo\\}
{listBranches xRange yRange}
%
\condata{PSCURVE}{PlottableSpaceCurveCategory}{CoercibleTo\\}
{listBranches xRange yRange zRange}
%
\condata{PTCAT}{PointCategory}{VectorCategory}
{convert cross dimension extend length point}
%
\condata{POLYCAT}{PolynomialCategory}
{ConvertibleTo Evalable FiniteAbelianMonoidRing FullyLinearlyExplicitRingOver
GcdDomain InnerEvalable OrderedSet PartialDifferentialRing PatternMatchable 
PolynomialFactorizationExplicit RetractableTo}
{coefficient content degree discriminant isExpt isPlus isTimes 
mainVariable minimumDegree monicDivide monomial monomials multivariate 
primitiveMonomials primitivePart resultant squareFree squareFreePart 
totalDegree univariate variables}
%
\condata{PFECAT}{PolynomialFactorizationExplicit\\}{UniqueFactorizationDomain}
{charthRoot conditionP factorPolynomial factorSquareFreePolynomial\\ 
gcdPolynomial solveLinearPolynomialEquation squareFreePolynomial}
%
\condata{PSCAT}{PowerSeriesCategory}{AbelianMonoidRing}
{complete monomial pole? variables}
%
\condata{PRIMCAT}{PrimitiveFunctionCategory}{}{integral}
%
\condata{PID}{PrincipalIdealDomain}{GcdDomain}
{expressIdealMember principalIdeal}
%
\condata{PRQAGG}{PriorityQueueAggregate}{BagAggregate}{max merge merge!}
%
\condata{QUATCAT}{QuaternionCategory}
{Algebra CharacteristicNonZero CharacteristicZero ConvertibleTo
DifferentialExtension DivisionRing EntireRing FullyEvalableOver 
FullyLinearlyExplicitRingOver FullyRetractableTo OrderedSet}
{abs conjugate imagI imagJ imagK norm quatern rational rational? 
rationalIfCan real}
%
\condata{QUAGG}{QueueAggregate}{BagAggregate}
{back dequeue! enqueue! front length rotate!}
%
\condata{QFCAT}{QuotientFieldCategory\\}
{Algebra CharacteristicNonZero CharacteristicZero\\ 
ConvertibleTo DifferentialExtension Field FullyEvalableOver\\ 
FullyLinearlyExplicitRingOver FullyPatternMatchable OrderedRing\\ 
OrderedSet Patternable PolynomialFactorizationExplicit\\ 
RealConstant RetractableTo StepThrough\\}
{{\tt /} ceiling denom denominator floor fractionPart numer numerator 
random wholePart}
%
\condata{RADCAT}{RadicalCategory}{}{{\tt **} nthRoot sqrt}
%
\condata{REAL}{RealConstant}{ConvertibleTo}{}
%
\condata{RNS}{RealNumberSystem}
{CharacteristicZero ConvertibleTo Field OrderedRing PatternMatchable 
RadicalCategory RealConstant RetractableTo}
{abs ceiling floor fractionPart norm round truncate wholePart}
%
\condata{RMATCAT}{RectangularMatrixCategory\\}
{BiModule HomogeneousAggregate Module}
{{\tt /} antisymmetric? column diagonal? elt exquo listOfLists map matrix 
maxColIndex maxRowIndex minColIndex minRowIndex ncols nrows nullSpace
nullity qelt rank row rowEchelon square? symmetric?}
%
\condata{RCAGG}{RecursiveAggregate}{HomogeneousAggregate}
{children cyclic? elt leaf? leaves node? nodes setchildren! setelt 
setvalue! value}
%
\condata{RETRACT}{RetractableTo}{}{coerce retract retractIfCan}
%
\condata{RMODULE}{RightModule}{AbelianGroup}{{\tt *}}
%
\condata{RING}{Ring}{LeftModule Monoid Rng}{characteristic coerce}
%
\condata{RNG}{Rng}{AbelianGroup SemiGroup}{}
%
\condata{SEGCAT}{SegmentCategory}{SetCategory}
{BY SEGMENT convert hi high incr lo low segment}
%
\condata{SEGXCAT}{SegmentExpansionCategory}{SegmentCategory}{expand map}
%
\condata{SGROUP}{SemiGroup}{SetCategory}{{\tt *} {\tt **}}
%
\condata{SETAGG}{SetAggregate}{Collection SetCategory}
{{\tt <} brace difference intersect subset? symmetricDifference union}
%
\condata{SETCAT}{SetCategory}{CoercibleTo Object}{{\tt =}}
%
\condata{SEXCAT}{SExpressionCategory}{SetCategory}
{{\tt \#} atom? car cdr convert destruct elt eq expr float float?
integer integer? list? null? pair? string string? symbol symbol? uequal}
%
\condata{SPFCAT}{SpecialFunctionCategory}{}
{Beta Gamma abs airyAi airyBi besselI besselJ besselK besselY digamma
polygamma}
%
\condata{SMATCAT}{SquareMatrixCategory}
{Algebra BiModule DifferentialExtension FullyLinearlyExplicitRingOver
FullyRetractableTo Module RectangularMatrixCategory}
{{\tt *} {\tt **} determinant diagonal diagonalMatrix diagonalProduct 
inverse minordet scalarMatrix trace}
%
\condata{SKAGG}{StackAggregate}{BagAggregate}{depth pop! push! top}
%
\condata{STEP}{StepThrough}{SetCategory}{init nextItem}
%
\condata{STAGG}{StreamAggregate}{LinearAggregate UnaryRecursiveAggregate}
{explicitlyFinite? possiblyInfinite?}
%
\condata{SRAGG}{StringAggregate}{OneDimensionalArrayAggregate}
{coerce elt leftTrim lowerCase lowerCase! match match? position prefix? 
replace rightTrim split substring? suffix? trim upperCase upperCase!}
%
\condata{STRICAT}{StringCategory}{StringAggregate}{string}
%
\condata{TBAGG}{TableAggregate}{IndexedAggregate KeyedDictionary}
{map setelt table}
%
\condata{SPACEC}{ThreeSpaceCategory}{SetCategory}
{check closedCurve closedCurve? coerce components composite composites
copy create3Space curve curve? enterPointData lllip lllp llprop lp lprop 
merge mesh mesh? modifyPointData numberOfComponents numberOfComposites 
objects point point? polygon polygon? subspace}
%
\condata{TRANFUN}{TranscendentalFunctionCategory\\}
{ArcHyperbolicFunctionCategory ArcTrigonometricFunctionCategory\\
ElementaryFunctionCategory HyperbolicFunctionCategory\\
TrigonometricFunctionCategory}{pi}
%
\condata{TRIGCAT}{TrigonometricFunctionCategory}{}{cos cot csc sec sin tan}
%
\condata{ARR2CAT}{TwoDimensionalArrayCategory}{HomogeneousAggregate}
{column elt fill! map map! maxColIndex maxRowIndex minColIndex minRowIndex 
ncols new nrows parts qelt qsetelt! row setColumn! setRow! setelt}
%
\condata{URAGG}{UnaryRecursiveAggregate}{RecursiveAggregate}
{concat concat! cycleEntry cycleLength cycleSplit! cycleTail elt first 
last rest second setelt setfirst! setlast! setrest! split! tail third}
%
\condata{UFD}{UniqueFactorizationDomain}{GcdDomain}
{factor prime? squareFree squareFreePart}
%
\condata{ULSCAT}{UnivariateLaurentSeriesCategory\\}
{Field RadicalCategory TranscendentalFunctionCategory 
UnivariatePowerSeriesCategory}
{integrate multiplyCoefficients rationalFunction}
%
\condata{ULSCCAT}{UnivariateLaurentSeriesConstructorCategory\\}
{QuotientFieldCategory RetractableTo UnivariateLaurentSeriesCategory}
{coerce degree laurent removeZeroes taylor taylorIfCan taylorRep}
%
\condata{UPOLYC}{UnivariatePolynomialCategory\\}
{DifferentialExtension DifferentialRing Eltable EuclideanDomain
PolynomialCategory StepThrough}
{D composite differentiate discriminant divideExponents elt integrate makeSUP
monicDivide multiplyExponents order pseudoDivide pseudoQuotient 
pseudoRemainder resultant separate subResultantGcd unmakeSUP vectorise}
%
\condata{UPSCAT}{UnivariatePowerSeriesCategory\\}
{DifferentialRing Eltable PowerSeriesCategory}
{approximate center elt eval extend multiplyExponents order series 
terms truncate variable}
%
\condata{UPXSCAT}{UnivariatePuiseuxSeriesCategory\\}
{Field RadicalCategory TranscendentalFunctionCategory\\
UnivariatePowerSeriesCategory}
{integrate multiplyExponents}
%
\condata{UPXSCCA}{UnivariatePuiseuxSeriesConstructorCategory\\}{RetractableTo UnivariatePuiseuxSeriesCategory\\}
{coerce degree laurent laurentIfCan laurentRep puiseux rationalPower}
%
\condata{UTSCAT}{UnivariateTaylorSeriesCategory\\}
{RadicalCategory TranscendentalFunctionCategory\\
UnivariatePowerSeriesCategory\\}
{{\tt **} coefficients integrate multiplyCoefficients 
polynomial quoByVar series}
%
\condata{VECTCAT}{VectorCategory}{OneDimensionalArrayAggregate}
{{\tt *} {\tt +} {\tt -} dot zero}
%
\condata{VSPACE}{VectorSpace}{Module}{{\tt /} dimension}
%
%
% ----------------------------------------------------------------------



%\setcounter{chapter}{2} % Appendix C

%\twocolumn[%

%Original Page 601

\chapter{Domains}
\label{ugAppDomains}

This is a listing of all domains in the Axiom library at the
time this book was produced.
Use the Browse facility (described in \sectionref{ugBrowse})
to get more information about these constructors.

\boxer{4.6in}{
This sample entry will help you read the following table:

DomainName{DomainAbbreviation}:{$\hbox{{\sf Category}}_{1}$%
\ldots$\hbox{{\sf Category}}_{N}$}{\sl with }%
{$\hbox{{\rm op}}_{1}$\ldots$\hbox{{\rm op}}_{M}$}

where

\begin{tabular}{@{\quad}ll}
DomainName & is the full domain name, e.g., {\sf Integer}. \\
DomainAbbreviation & is the domain abbreviation, e.g., {\sf INT}. \\
$\hbox{{\sf Category}}_{i}$ & is a category to which the domain belongs. \\
$\hbox{{\rm op}}_{j}$ & is an operation exported by the domain.
\end{tabular}
}

% ----------------------------------------------------------------------
%\begin{constructorListing}
% ----------------------------------------------------------------------
\condata{ALGSC}{AlgebraGivenByStructuralConstants\\}
{FramedNonAssociativeAlgebra LeftModule}
{0 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} JacobiIdentity? 
JordanAlgebra? alternative? antiAssociative? antiCommutative? 
antiCommutator apply associative? associator associatorDependence 
basis coerce commutative? commutator conditionsForIdempotents convert
coordinates elt flexible? jordanAdmissible? leftAlternative? 
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial 
leftNorm leftPower leftRankPolynomial leftRecip 
leftRegularRepresentation leftTrace leftTraceMatrix leftUnit 
leftUnits lieAdmissible? lieAlgebra? noncommutativeJordanAlgebra? 
plenaryPower powerAssociative? rank recip represents 
rightAlternative? rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial 
rightRecip rightRegularRepresentation rightTrace rightTraceMatrix 
rightUnit rightUnits someBasis structuralConstants unit zero?}
%
\condata{ALGFF}{AlgebraicFunctionField}{FunctionFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D 
absolutelyIrreducible? associates? basis branchPoint? 
branchPointAtInfinity? characteristic characteristicPolynomial
charthRoot coerce complementaryBasis convert coordinates 
definingPolynomial derivationCoordinates differentiate discriminant 
divide elt euclideanSize expressIdealMember exquo extendedEuclidean 
factor gcd generator genus integral? integralAtInfinity? integralBasis 
integralBasisAtInfinity integralCoordinates integralDerivationMatrix 
integralMatrix integralMatrixAtInfinity integralRepresents inv 
inverseIntegralMatrix inverseIntegralMatrixAtInfinity knownInfBasis lcm
lift minimalPolynomial multiEuclidean nonSingularModel norm 
normalizeAtInfinity numberOfComponents one? prime? primitivePart 
principalIdeal quo ramified? ramifiedAtInfinity? rank rationalPoint? 
rationalPoints recip reduce reduceBasisAtInfinity reducedSystem 
regularRepresentation rem represents retract retractIfCan singular?
singularAtInfinity? sizeLess? squareFree squareFreePart trace 
traceMatrix unit? unitCanonical unitNormal yCoordinates zero?}
%
\condata{AN}{AlgebraicNumber}
{AlgebraicallyClosedField CharacteristicZero ConvertibleTo DifferentialRing
ExpressionSpace LinearlyExplicitRingOver RealConstant RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
associates? belong? box characteristic coerce convert 
definingPolynomial denom differentiate distribute
divide elt euclideanSize eval expressIdealMember exquo 
extendedEuclidean factor freeOf? gcd height inv is? kernel
kernels lcm mainKernel map max min minPoly multiEuclidean 
nthRoot numer one? operator operators paren prime? principalIdeal 
quo recip reduce reducedSystem rem retract retractIfCan rootOf 
rootsOf sizeLess? sqrt squareFree squareFreePart subst tower unit? 
unitCanonical unitNormal zero? zeroOf zerosOf}
%
\condata{ANON}{AnonymousFunction}{SetCategory}{{\tt =} coerce}
%
\condata{ANTISYM}{AntiSymm}{LeftAlgebra RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} characteristic
coefficient coerce degree exp generator homogeneous? 
leadingBasisTerm leadingCoefficient map one? recip reductum
retract retractIfCan retractable? zero?}
%
\condata{ANY}{Any}{SetCategory}
{{\tt =} any coerce domain domainOf obj objectOf showTypeInOutput}
%
\condata{ASTACK}{ArrayStack}{StackAggregate}
{{\tt \#} {\tt =} any? arrayStack bag coerce copy count depth empty empty?
eq? every? extract! insert! inspect less? map map! member? members more? 
parts pop! push! size? top}
%
\condata{JORDAN}{AssociatedJordanAlgebra}
{CoercibleTo\\ FiniteRankNonAssociativeAlgebra FramedNonAssociativeAlgebra\\
NonAssociativeAlgebra}
{0 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} JacobiIdentity?\\ 
JordanAlgebra? alternative? antiAssociative? antiCommutative?\\ 
antiCommutator apply associative? associator associatorDependence\\ 
basis coerce commutative? commutator conditionsForIdempotents\\ 
convert coordinates elt flexible? jordanAdmissible?\\ 
leftAlternative? leftCharacteristicPolynomial leftDiscriminant\\ 
leftMinimalPolynomial leftNorm leftPower leftRankPolynomial\\ 
leftRecip leftRegularRepresentation leftTrace leftTraceMatrix\\ 
leftUnit leftUnits lieAdmissible? lieAlgebra?\\ 
noncommutativeJordanAlgebra? plenaryPower powerAssociative?\\ 
rank recip represents rightAlternative?\\ 
rightCharacteristicPolynomial rightDiscriminant\\ 
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial\\
rightRecip rightRegularRepresentation rightTrace rightTraceMatrix\\ 
rightUnit rightUnits someBasis structuralConstants unit zero?}
%
\condata{LIE}{AssociatedLieAlgebra}
{CoercibleTo\\ FiniteRankNonAssociativeAlgebra FramedNonAssociativeAlgebra\\
NonAssociativeAlgebra}
{0 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} JacobiIdentity?\\
JordanAlgebra? alternative? antiAssociative? antiCommutative?\\
antiCommutator apply associative? associator associatorDependence\\
basis coerce commutative? commutator conditionsForIdempotents\\
convert coordinates elt flexible? jordanAdmissible?\\
leftAlternative? leftCharacteristicPolynomial leftDiscriminant\\
leftMinimalPolynomial leftNorm leftPower leftRankPolynomial\\
leftRecip leftRegularRepresentation leftTrace leftTraceMatrix\\
leftUnit leftUnits lieAdmissible? lieAlgebra?\\
noncommutativeJordanAlgebra? plenaryPower powerAssociative?\\
rank recip represents rightAlternative?\\
rightCharacteristicPolynomial rightDiscriminant\\
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial\\
rightRecip rightRegularRepresentation rightTrace\\
rightTraceMatrix rightUnit rightUnits someBasis\\
structuralConstants unit zero?}
%
\condata{ALIST}{AssociationList}{AssociationListAggregate}
{{\tt \#} {\tt =} any? assoc bag child? children coerce concat concat! 
construct copy copyInto! count cycleEntry cycleLength cycleSplit! 
cycleTail cyclic? delete delete! dictionary distance elt empty empty? 
entries entry? eq? every? explicitlyFinite? extract! fill! find first index?
indices insert insert! inspect key? keys last leaf? less? list map map! 
maxIndex member? members merge merge! minIndex more? new node? nodes parts 
position possiblyInfinite? qelt qsetelt! reduce remove remove! 
removeDuplicates removeDuplicates! rest reverse reverse! search second 
select select! setchildren! setelt setfirst! setlast! setrest! setvalue! 
size? sort sort! sorted? split! swap! table tail third value}
%
\condata{BBTREE}{BalancedBinaryTree}{BinaryTreeCategory}
{{\tt \#} {\tt =} any? balancedBinaryTree children coerce copy count 
cyclic? elt empty empty? eq? every? leaf? leaves left less? map map! 
mapDown! mapUp! member? members more? node node? nodes parts right 
setchildren! setelt setleaves! setleft! setright! setvalue! size? value}
%
\condata{BPADIC}{BalancedPAdicInteger}{PAdicIntegerCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} approximate associates? 
characteristic coerce complete digits divide euclideanSize 
expressIdealMember exquo extend extendedEuclidean gcd lcm moduloP 
modulus multiEuclidean one? order principalIdeal quo quotientByP recip 
rem sizeLess? sqrt unit? unitCanonical unitNormal zero?}
%
\condata{BPADICRT}{BalancedPAdicRational}{QuotientFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D approximate 
associates? characteristic coerce continuedFraction denom denominator 
differentiate divide euclideanSize expressIdealMember exquo 
extendedEuclidean factor fractionPart gcd inv lcm map multiEuclidean 
numer numerator one? prime? principalIdeal quo recip reducedSystem 
rem removeZeroes retract retractIfCan sizeLess? squareFree squareFreePart
unit? unitCanonical unitNormal wholePart zero?}
%
\condata{BOP}{BasicOperator}{OrderedSet}
{{\tt <} {\tt =} arity assert coerce comparison copy\\ 
deleteProperty! display equality has? input is? max min\\ 
name nary? nullary? operator properties property setProperties\\ 
setProperty unary? weight}
%
\condata{BINARY}{BinaryExpansion}{QuotientFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs 
associates? binary ceiling characteristic coerce convert denom denominator 
differentiate divide euclideanSize expressIdealMember exquo extendedEuclidean
factor floor fractionPart gcd init inv lcm map max min multiEuclidean
negative? nextItem numer numerator one? patternMatch positive? prime? 
principalIdeal quo random recip reducedSystem rem retract retractIfCan 
sign sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal 
wholePart zero?}
%
\condata{BSTREE}{BinarySearchTree}{BinaryTreeCategory}
{{\tt \#} {\tt =} any? binarySearchTree children coerce copy count cyclic? 
elt empty empty? eq? every? insert! insertRoot! leaf? leaves left less? 
map map! member? members more? node node? nodes parts right setchildren! 
setelt setleft! setright! setvalue! size? split value}
%
\condata{BTOURN}{BinaryTournament}{BinaryTreeCategory}
{{\tt \#} {\tt =} any? binaryTournament children coerce copy
count cyclic? elt empty empty? eq? every? insert! leaf? leaves left 
less? map map! member? members more? node node? nodes parts right 
setchildren! setelt setleft! setright! setvalue! size? value}
%
\condata{BTREE}{BinaryTree}{BinaryTreeCategory}
{{\tt \#} {\tt =} any? binaryTree children coerce copy count cyclic? elt
empty empty? eq? every? leaf? leaves left less? map map! member? members 
more? node node? nodes parts right setchildren! setelt setleft! setright! 
setvalue! size? value}
%
\condata{BITS}{Bits}{BitAggregate}
{{\tt \#} {\tt <} {\tt =} {\tt \^{}} and any? bits coerce concat construct 
convert copy copyInto! count delete elt empty empty? entries entry? eq? 
every? fill! find first index? indices insert less? map map! max maxIndex 
member? members merge min minIndex more? nand new nor not or parts 
position qelt qsetelt! reduce remove removeDuplicates reverse reverse! 
select setelt size? sort sort! sorted? swap! xor}
%
\condata{BOOLEAN}{Boolean}{ConvertibleTo Finite OrderedSet}
{{\tt <} {\tt =} {\tt \^{}} and coerce convert false implies index lookup 
max min nand nor not or random size true xor}
%
\condata{CARD}{CardinalNumber}
{CancellationAbelianMonoid Monoid OrderedSet RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =} Aleph coerce 
countable? finite? generalizedContinuumHypothesisAssumed  
generalizedContinuumHypothesisAssumed? max min one? recip retract 
retractIfCan zero?}
%
\condata{CARTEN}{CartesianTensor}{GradedAlgebra}
{0 1 {\tt *} {\tt +} {\tt -} {\tt =} coerce contract degree elt 
kroneckerDelta leviCivitaSymbol product rank ravel reindex retract 
retractIfCan transpose unravel}
%
\condata{CCLASS}{CharacterClass}
{ConvertibleTo FiniteSetAggregate SetCategory}
{{\tt \#} {\tt <} {\tt =} alphabetic alphanumeric any? bag brace cardinality 
charClass coerce complement construct convert copy count dictionary difference
digit empty empty? eq? every? extract! find hexDigit index insert! 
inspect intersect less? lookup lowerCase map map! max member? members min 
more? parts random reduce remove remove! removeDuplicates select select! 
size size? subset? symmetricDifference union universe upperCase}
%
\condata{CHAR}{Character}{OrderedFinite}
{{\tt <} {\tt =} alphabetic? alphanumeric? char coerce digit? escape hexDigit?
index lookup lowerCase lowerCase? max min ord quote random size space 
upperCase upperCase?}
%
\condata{CLIF}{CliffordAlgebra}{Algebra Ring VectorSpace}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} characteristic 
coefficient coerce dimension e monomial one? recip zero?}
%
\condata{COLOR}{Color}{AbelianSemiGroup}
{{\tt *} {\tt +} {\tt =} blue coerce color green hue numberOfHues red yellow}
%
\condata{COMM}{Commutator}{SetCategory}{{\tt =} coerce mkcomm}
%
\condata{COMPLEX}{Complex}{ComplexCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs acos
acosh acot acoth acsc acsch argument asec asech asin asinh associates? 
atan atanh basis characteristic characteristicPolynomial charthRoot 
coerce complex conditionP conjugate convert coordinates cos cosh cot coth
createPrimitiveElement csc csch definingPolynomial derivationCoordinates 
differentiate discreteLog discriminant divide elt euclideanSize eval exp 
expressIdealMember exquo extendedEuclidean factor factorPolynomial
factorSquareFreePolynomial factorsOfCyclicGroupSize gcd gcdPolynomial 
generator imag imaginary index init inv lcm lift log lookup map max min 
minimalPolynomial multiEuclidean nextItem norm nthRoot one? order pi 
polarCoordinates prime? primeFrobenius primitive? primitiveElement 
principalIdeal quo random rank rational rational? rationalIfCan real 
recip reduce reducedSystem regularRepresentation rem representationType 
represents retract retractIfCan sec sech sin sinh size sizeLess? 
solveLinearPolynomialEquation sqrt squareFree squareFreePart 
squareFreePolynomial tableForDiscreteLogarithm tan tanh trace 
traceMatrix unit? unitCanonical unitNormal zero?}
%
\condata{CONTFRAC}{ContinuedFraction}{Algebra Field}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} approximants\\
associates? characteristic coerce complete continuedFraction\\ 
convergents denominators divide euclideanSize expressIdealMember\\ 
exquo extend extendedEuclidean factor gcd inv lcm multiEuclidean\\ 
numerators one? partialDenominators partialNumerators\\ 
partialQuotients prime? principalIdeal quo recip\\ 
reducedContinuedFraction reducedForm rem sizeLess? squareFree\\ 
squareFreePart unit? unitCanonical unitNormal wholePart zero?}
%
\condata{DBASE}{Database}{SetCategory}
{{\tt +} {\tt -} {\tt =} coerce display elt fullDisplay}
%
\condata{DFLOAT}{DoubleFloat}
{ConvertibleTo DifferentialRing FloatingPointSystem 
TranscendentalFunctionCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs acos 
acosh acot acoth acsc acsch asec asech asin asinh associates? atan atanh 
base bits ceiling characteristic coerce convert cos cosh cot coth csc 
csch decreasePrecision differentiate digits divide euclideanSize exp 
exp1 exponent expressIdealMember exquo extendedEuclidean factor float
floor fractionPart gcd hash increasePrecision inv lcm log log10 log2 
mantissa max min multiEuclidean negative? norm nthRoot one? order 
patternMatch pi positive? precision prime? principalIdeal quo 
rationalApproximation recip rem retract retractIfCan round sec sech 
sign sin sinh sizeLess? sqrt squareFree squareFreePart tan tanh truncate 
unit? unitCanonical unitNormal wholePart zero?}
%
\condata{DLIST}{DataList}{ListAggregate}
{{\tt \#} {\tt <} {\tt =} any? children coerce concat concat! construct 
convert copy copyInto! count cycleEntry cycleLength cycleSplit! cycleTail 
cyclic? datalist delete delete! elt empty empty? entries entry? eq? 
every? explicitlyFinite? fill! find first index? indices insert insert! 
last leaf? leaves less? list map map! max maxIndex member? members merge 
merge! min minIndex more? new node? nodes parts position possiblyInfinite?
qelt qsetelt! reduce remove remove! removeDuplicates removeDuplicates! 
rest reverse reverse! second select select! setchildren! setelt setfirst! 
setlast! setrest! setvalue! size? sort sort! sorted? split! swap! tail 
third value}
%
\condata{DECIMAL}{DecimalExpansion}{QuotientFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs 
associates? ceiling characteristic coerce convert decimal denom 
denominator differentiate divide euclideanSize expressIdealMember 
exquo extendedEuclidean factor floor fractionPart gcd init inv lcm 
map max min multiEuclidean negative? nextItem numer numerator one? 
patternMatch positive? prime? principalIdeal quo random recip 
reducedSystem rem retract retractIfCan sign sizeLess? squareFree 
squareFreePart unit? unitCanonical unitNormal wholePart zero?}
%
\condata{DHMATRIX}{DenavitHartenbergMatrix}{MatrixCategory}
{{\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} antisymmetric? 
any? coerce column copy count determinant diagonal? diagonalMatrix elt 
empty empty? eq? every? exquo fill! horizConcat identity inverse less? 
listOfLists map map! matrix maxColIndex maxRowIndex member? members
minColIndex minRowIndex minordet more? ncols new nrows nullSpace 
nullity parts qelt qsetelt! rank rotatex rotatey rotatez row rowEchelon 
scalarMatrix scale setColumn! setRow! setelt setsubMatrix! size? square? 
squareTop subMatrix swapColumns! swapRows! symmetric? translate 
transpose vertConcat zero}
%
\condata{DEQUEUE}{Dequeue}{DequeueAggregate}
{{\tt \#} {\tt =} any? back bag bottom! coerce copy count depth dequeue
dequeue! empty empty? enqueue! eq? every? extract! extractBottom! 
extractTop! front height insert! insertBottom! insertTop! inspect 
length less? map map! member? members more? parts pop! push! reverse!
rotate! size? top top!}
%
\condata{DERHAM}{DeRhamComplex}{LeftAlgebra RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} characteristic
coefficient coerce degree exteriorDifferential generator 
homogeneous? leadingBasisTerm leadingCoefficient map one?
recip reductum retract retractIfCan retractable? totalDifferential zero?}
%
\condata{DSMP}{DifferentialSparseMultivariatePolynomial\\}
{DifferentialPolynomialCategory RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
associates? characteristic charthRoot coefficient coefficients coerce
conditionP content convert degree differentialVariables differentiate 
discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial 
gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric? 
lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable 
map mapExponents max min minimumDegree monicDivide monomial monomial? 
monomials multivariate numberOfMonomials one? order patternMatch prime? 
primitiveMonomials primitivePart recip reducedSystem reductum resultant 
retract retractIfCan separant solveLinearPolynomialEquation squareFree 
squareFreePart squareFreePolynomial totalDegree unit? unitCanonical 
unitNormal univariate variables weight weights zero?}
%
\condata{DPMM}{DirectProductMatrixModule}{DirectProductCategory LeftModule}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
abs any? characteristic coerce copy count differentiate dimension 
directProduct dot elt empty empty? entries entry? eq? every? fill! 
first index index? indices less? lookup map map! max maxIndex member?
members min minIndex more? negative? one? parts positive? qelt 
qsetelt! random recip reducedSystem retract retractIfCan setelt sign 
size size? sup swap! unitVector zero?}
%
\condata{DPMO}{DirectProductModule}{DirectProductCategory LeftModule}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
abs any? characteristic coerce copy count differentiate dimension 
directProduct dot elt empty empty? entries entry? eq? every? fill! 
first index index? indices less? lookup map map! max maxIndex member? 
members min minIndex more? negative? one? parts positive? qelt qsetelt! 
random recip reducedSystem retract retractIfCan setelt sign size size? 
sup swap! unitVector zero?}
%
\condata{DIRPROD}{DirectProduct}{DirectProductCategory}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
abs any? characteristic coerce copy count differentiate dimension 
directProduct dot elt empty empty? entries entry? eq? every? fill! 
first index index? indices less? lookup map map! max maxIndex member? 
members min minIndex more? negative? one? parts positive? qelt qsetelt! 
random recip reducedSystem retract retractIfCan setelt sign size
size? sup swap! unitVector zero?}
%
\condata{DMP}{DistributedMultivariatePolynomial}{PolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D\\
associates? characteristic charthRoot coefficient coefficients\\
coerce conditionP const content convert degree differentiate\\
discriminant eval exquo factor factorPolynomial\\
factorSquareFreePolynomial gcd gcdPolynomial ground ground? isExpt\\
isPlus isTimes lcm leadingCoefficient leadingMonomial mainVariable\\
map mapExponents max min minimumDegree monicDivide monomial monomial?\\
monomials multivariate numberOfMonomials one? prime? primitiveMonomials\\
primitivePart recip reducedSystem reductum reorder resultant retract\\
retractIfCan solveLinearPolynomialEquation squareFree squareFreePart\\
squareFreePolynomial totalDegree unit? unitCanonical unitNormal\\
univariate variables zero?}
%
\condata{DROPT}{DrawOption}{SetCategory}{{\tt =} adaptive clip coerce 
colorFunction coordinate coordinates curveColor option option? pointColor 
range ranges space style title toScale tubePoints tubeRadius unit 
var1Steps var2Steps}
%
\condata{EFULS}{ElementaryFunctionsUnivariateLaurentSeries\\}
{PartialTranscendentalFunctions}
{{\tt **} acos acosIfCan acosh acoshIfCan acot acotIfCan acoth acothIfCan 
acsc acscIfCan acsch acschIfCan asec asecIfCan asech asechIfCan asin
asinIfCan asinh asinhIfCan atan atanIfCan atanh atanhIfCan cos cosIfCan 
cosh coshIfCan cot cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan 
exp expIfCan log logIfCan nthRootIfCan sec secIfCan sech sechIfCan sin 
sinIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan}
%
\condata{EFUPXS}{ElementaryFunctionsUnivariatePuiseuxSeries}
{PartialTranscendentalFunctions}
{{\tt **} acos acosIfCan acosh acoshIfCan acot acotIfCan acoth acothIfCan 
acsc acscIfCan acsch acschIfCan asec asecIfCan asech asechIfCan asin
asinIfCan asinh asinhIfCan atan atanIfCan atanh atanhIfCan cos cosIfCan 
cosh coshIfCan cot cotIfCan coth cothIfCan csc cscIfCan csch cschIfCan 
exp expIfCan log logIfCan nthRootIfCan sec secIfCan sech sechIfCan sin 
sinIfCan sinh sinhIfCan tan tanIfCan tanh tanhIfCan}
%
\condata{EQTBL}{EqTable}{TableAggregate}
{{\tt \#} {\tt =} any? bag coerce construct copy count dictionary elt empty
empty? entries entry? eq? every? extract! fill! find first index? indices 
insert! inspect key? keys less? map map! maxIndex member? members minIndex 
more? parts qelt qsetelt! reduce remove remove! removeDuplicates search select
select! setelt size? swap! table}
%
\condata{EQ}{Equation}{CoercibleTo InnerEvalable Object SetCategory}
{{\tt *} {\tt **} {\tt +} {\tt -} {\tt =} coerce equation eval lhs map rhs}
%
\condata{EMR}{EuclideanModularRing}{EuclideanDomain}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} associates? characteristic 
coerce divide euclideanSize exQuo expressIdealMember exquo 
extendedEuclidean gcd inv lcm modulus multiEuclidean one? principalIdeal 
quo recip reduce rem sizeLess? unit? unitCanonical unitNormal zero?}
%
\condata{EXIT}{Exit}{SetCategory}{{\tt =} coerce}
%
\condata{EXPR}{Expression}
{AlgebraicallyClosedFunctionSpace CombinatorialOpsCategory FunctionSpace
LiouvillianFunctionCategory RetractableTo SpecialFunctionCategory 
TranscendentalFunctionCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} Beta Ci
D Ei Gamma Si abs acos acosh acot acoth acsc acsch airyAi airyBi
applyQuote asec asech asin asinh associates? atan atanh belong?
besselI besselJ besselK besselY binomial box characteristic
charthRoot coerce commutator conjugate convert cos cosh cot coth
csc csch definingPolynomial denom denominator differentiate digamma
dilog distribute divide elt erf euclideanSize eval exp
expressIdealMember exquo extendedEuclidean factor factorial
factorials freeOf? gcd ground ground? height integral inv is?
isExpt isMult isPlus isPower isTimes kernel kernels lcm li log
mainKernel map max min minPoly multiEuclidean nthRoot numer
numerator one?  operator operators paren patternMatch permutation
pi polygamma prime? principalIdeal product quo recip reduce
reducedSystem rem retract retractIfCan rootOf rootsOf sec sech sin
sinh sizeLess? sqrt squareFree squareFreePart subst summation tan
tanh tower unit? unitCanonical unitNormal univariate variables
zero? zeroOf zerosOf}
%
\condata{EAB}{ExtAlgBasis}{OrderedSet}
{{\tt <} {\tt =} Nul coerce degree exponents max min}
%
\condata{FR}{Factored}{Algebra DifferentialExtension Eltable Evalable 
FullyEvalableOver FullyRetractableTo GcdDomain InnerEvalable IntegralDomain 
RealConstant UniqueFactorizationDomain}{0 1 {\tt *} {\tt **} {\tt +} 
{\tt -} {\tt =} D associates? characteristic coerce convert differentiate 
elt eval expand exponent exquo factor factorList factors flagFactor gcd 
irreducibleFactor lcm makeFR map nilFactor nthExponent nthFactor 
nthFlag numberOfFactors one? prime? primeFactor rational rational? 
rationalIfCan recip retract retractIfCan sqfrFactor squareFree 
squareFreePart unit unit? unitCanonical unitNormal unitNormalize zero?}
%
\condata{FNAME}{FileName}{FileNameCategory}
{{\tt =} coerce directory exists? extension filename name new readable?
   writable?}
%
\condata{FILE}{File}{FileCategory}
{{\tt =} close! coerce iomode name open read! readIfCan! reopen! write!}
%
\condata{FDIV}{FiniteDivisor}{AbelianGroup}
{0 {\tt *} {\tt +} {\tt -} {\tt =} algsplit coerce divisor finiteBasis
generator ideal lSpaceBasis mkBasicDiv principal? reduce zero?}
%
\condata{FFCGP}{FiniteFieldCyclicGroupExtensionByPolynomial}
{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius 
algebraic? associates? basis characteristic charthRoot coerce conditionP
coordinates createNormalElement createPrimitiveElement 
definingPolynomial degree dimension discreteLog divide euclideanSize 
expressIdealMember exquo extendedEuclidean extensionDegree factor 
factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? 
index init inv lcm lookup minimalPolynomial multiEuclidean nextItem 
norm normal? normalElement one? order prime? primeFrobenius primitive? 
primitiveElement principalIdeal quo random recip rem representationType 
represents retract retractIfCan size sizeLess? squareFree squareFreePart 
tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? 
unitCanonical unitNormal zero?}
%
\condata{FFCGX}{FiniteFieldCyclicGroupExtension}
{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius 
algebraic? associates? basis characteristic charthRoot coerce 
conditionP coordinates createNormalElement createPrimitiveElement 
definingPolynomial degree dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean extensionDegree factor 
factorsOfCyclicGroupSize gcd generator getZechTable inGroundField? 
index init inv lcm lookup minimalPolynomial multiEuclidean nextItem 
norm normal? normalElement one? order prime? primeFrobenius primitive? 
primitiveElement principalIdeal quo random recip rem representationType
represents retract retractIfCan size sizeLess? squareFree squareFreePart 
tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit? 
unitCanonical unitNormal zero?}
%
\condata{FFCG}{FiniteFieldCyclicGroup}{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP coordinates 
createNormalElement createPrimitiveElement definingPolynomial degree 
dimension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd 
generator getZechTable inGroundField? index init inv lcm lookup 
minimalPolynomial multiEuclidean nextItem norm normal? normalElement 
one? order prime? primeFrobenius primitive? primitiveElement 
principalIdeal quo random recip rem representationType represents 
retract retractIfCan size sizeLess? squareFree squareFreePart 
tableForDiscreteLogarithm trace transcendenceDegree transcendent? unit?
unitCanonical unitNormal zero?}
%
\condata{FFP}{FiniteFieldExtensionByPolynomial}
{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP coordinates
createNormalElement createPrimitiveElement definingPolynomial degree 
dimension discreteLog divide euclideanSize expressIdealMember exquo 
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd 
generator inGroundField? index init inv lcm lookup minimalPolynomial 
multiEuclidean nextItem norm normal? normalElement one? order prime?
primeFrobenius primitive? primitiveElement principalIdeal quo random 
recip rem representationType represents retract retractIfCan size 
sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace 
transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{FFX}{FiniteFieldExtension}{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius\\
algebraic? associates? basis characteristic charthRoot coerce\\
conditionP coordinates createNormalElement createPrimitiveElement\\
definingPolynomial degree dimension discreteLog divide euclideanSize\\
expressIdealMember exquo extendedEuclidean extensionDegree factor\\
factorsOfCyclicGroupSize gcd generator inGroundField? index init inv\\
lcm lookup minimalPolynomial multiEuclidean nextItem norm normal?\\
normalElement one? order prime? primeFrobenius primitive?\\ 
primitiveElement principalIdeal quo random recip rem representationType\\
represents retract retractIfCan size sizeLess? squareFree squareFreePart\\
tableForDiscreteLogarithm trace transcendenceDegree transcendent?\\
unit? unitCanonical unitNormal zero?}
%
\condata{FFNBP}{FiniteFieldNormalBasisExtensionByPolynomial}
{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius 
algebraic? associates? basis characteristic charthRoot coerce conditionP
coordinates createNormalElement createPrimitiveElement definingPolynomial 
degree dimension discreteLog divide euclideanSize expressIdealMember 
exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize 
gcd generator getMultiplicationMatrix getMultiplicationTable 
inGroundField? index init inv lcm lookup minimalPolynomial multiEuclidean 
nextItem norm normal? normalElement one? order prime? primeFrobenius 
primitive? primitiveElement principalIdeal quo random recip rem 
representationType represents retract retractIfCan size sizeLess?
sizeMultiplication squareFree squareFreePart tableForDiscreteLogarithm 
trace transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{FFNBX}{FiniteFieldNormalBasisExtension}
{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius 
algebraic? associates? basis characteristic charthRoot coerce 
conditionP coordinates createNormalElement createPrimitiveElement 
definingPolynomial degree dimension discreteLog divide euclideanSize
expressIdealMember exquo extendedEuclidean extensionDegree factor 
factorsOfCyclicGroupSize gcd generator getMultiplicationMatrix 
getMultiplicationTable inGroundField? index init inv lcm lookup 
minimalPolynomial multiEuclidean nextItem norm normal? normalElement 
one? order prime? primeFrobenius primitive? primitiveElement
principalIdeal quo random recip rem representationType represents 
retract retractIfCan size sizeLess? sizeMultiplication squareFree 
squareFreePart tableForDiscreteLogarithm trace transcendenceDegree 
transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{FFNB}{FiniteFieldNormalBasis}{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP coordinates 
createNormalElement createPrimitiveElement definingPolynomial degree 
dimension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize 
gcd generator getMultiplicationMatrix getMultiplicationTable 
inGroundField? index init inv lcm lookup minimalPolynomial 
multiEuclidean nextItem norm normal? normalElement one? order prime? 
primeFrobenius primitive? primitiveElement principalIdeal quo random 
recip rem representationType represents retract retractIfCan size 
sizeLess? sizeMultiplication squareFree squareFreePart 
tableForDiscreteLogarithm trace transcendenceDegree transcendent? 
unit? unitCanonical unitNormal zero?}
%
\condata{FF}{FiniteField}{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP coordinates 
createNormalElement createPrimitiveElement definingPolynomial degree 
dimension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize gcd 
generator inGroundField? index init inv lcm lookup minimalPolynomial 
multiEuclidean nextItem norm normal? normalElement one? order prime? 
primeFrobenius primitive? primitiveElement principalIdeal quo random 
recip rem representationType represents retract retractIfCan size sizeLess?
squareFree squareFreePart tableForDiscreteLogarithm trace 
transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{FARRAY}{FlexibleArray}
{ExtensibleLinearAggregate\\ OneDimensionalArrayAggregate}
{{\tt \#} {\tt <} {\tt =} any? coerce concat concat! construct convert 
copy copyInto! count delete delete! elt empty empty? entries entry? eq? 
every? fill! find first flexibleArray index? indices insert insert! 
less? map map! max maxIndex member? members merge merge! min minIndex 
more? new parts physicalLength physicalLength! position qelt qsetelt! 
reduce remove remove! removeDuplicates removeDuplicates! reverse reverse! 
select select! setelt shrinkable size? sort sort! sorted? swap!}
%
\condata{FLOAT}{Float}
{CoercibleTo ConvertibleTo DifferentialRing FloatingPointSystem 
TranscendentalFunctionCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs acos 
acosh acot acoth acsc acsch asec asech asin asinh associates? atan atanh 
base bits ceiling characteristic coerce convert cos cosh cot coth csc 
csch decreasePrecision differentiate digits divide euclideanSize exp 
exp1 exponent expressIdealMember exquo extendedEuclidean factor float
floor fractionPart gcd increasePrecision inv lcm log log10 log2 
mantissa max min multiEuclidean negative? norm normalize nthRoot one? 
order outputFixed outputFloating outputGeneral outputSpacing patternMatch 
pi positive? precision prime? principalIdeal quo rationalApproximation 
recip relerror rem retract retractIfCan round sec sech shift sign sin
sinh sizeLess? sqrt squareFree squareFreePart tan tanh truncate unit? 
unitCanonical unitNormal wholePart zero?}
%
\condata{FRIDEAL}{FractionalIdeal}{Group}
{1 {\tt *} {\tt **} {\tt /} {\tt =} basis coerce commutator conjugate denom
ideal inv minimize norm numer one? randomLC recip}
%
\condata{FRAC}{Fraction}{QuotientFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs
associates? ceiling characteristic charthRoot coerce conditionP convert 
denom denominator differentiate divide elt euclideanSize eval 
expressIdealMember exquo extendedEuclidean factor factorPolynomial 
factorSquareFreePolynomial floor fractionPart gcd gcdPolynomial init 
inv lcm map max min multiEuclidean negative? nextItem numer numerator one?
patternMatch positive? prime? principalIdeal quo random recip 
reducedSystem rem retract retractIfCan sign sizeLess? 
solveLinearPolynomialEquation squareFree squareFreePart 
squareFreePolynomial unit? unitCanonical unitNormal wholePart zero?}
%
\condata{FRMOD}{FramedModule}{Monoid}
{1 {\tt *} {\tt **} {\tt =} basis coerce module norm one? recip}
%
\condata{FAGROUP}{FreeAbelianGroup}
{AbelianGroup FreeAbelianMonoidCategory Module OrderedSet}
{0 {\tt *} {\tt +} {\tt -} {\tt <} {\tt =} coefficient coerce 
highCommonTerms mapCoef mapGen max min nthCoef nthFactor retract 
retractIfCan size terms zero?}
%
\condata{FAMONOID}{FreeAbelianMonoid}{FreeAbelianMonoidCategory}
{0 {\tt *} {\tt +} {\tt -} {\tt =} coefficient coerce highCommonTerms 
mapCoef mapGen nthCoef nthFactor retract retractIfCan size terms zero?}
%
\condata{FGROUP}{FreeGroup}{Group RetractableTo}
{1 {\tt *} {\tt **} {\tt /} {\tt =} coerce commutator conjugate factors
inv mapExpon mapGen nthExpon nthFactor one? recip retract retractIfCan size}
%
\condata{FM}{FreeModule}{BiModule IndexedDirectProductCategory Module}
{0 {\tt *} {\tt +} {\tt -} {\tt =} coerce leadingCoefficient 
leadingSupport map monomial reductum zero?}
%
\condata{FMONOID}{FreeMonoid}{Monoid OrderedSet RetractableTo}
{1 {\tt *} {\tt **} {\tt <} {\tt =} coerce divide factors hclf hcrf 
lquo mapExpon mapGen max min nthExpon nthFactor one? overlap recip 
retract retractIfCan rquo size}
%
\condata{FNLA}{FreeNilpotentLie}{NonAssociativeAlgebra}
{0 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} antiCommutator associator 
coerce commutator deepExpand dimension generator leftPower rightPower 
shallowExpand zero?}
%
\condata{FUNCTION}{FunctionCalled}{SetCategory}{{\tt =} coerce name}
%
\condata{GDMP}{GeneralDistributedMultivariatePolynomial}{PolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D associates? 
characteristic charthRoot coefficient coefficients coerce conditionP const 
content convert degree differentiate discriminant eval exquo factor 
factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground 
ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial 
mainVariable map mapExponents max min minimumDegree monicDivide monomial 
monomial? monomials multivariate numberOfMonomials one? prime? 
primitiveMonomials primitivePart recip reducedSystem reductum reorder 
resultant retract retractIfCan solveLinearPolynomialEquation squareFree 
squareFreePart squareFreePolynomial totalDegree unit? unitCanonical 
unitNormal univariate variables zero?}
%
\condata{GSTBL}{GeneralSparseTable}{TableAggregate}
{{\tt \#} {\tt =} any? bag coerce construct copy count dictionary elt 
empty empty? entries entry? eq? every? extract! fill! find first index? 
indices insert! inspect key? keys less? map map! maxIndex member? 
members minIndex more? parts qelt qsetelt! reduce remove remove! 
removeDuplicates search select select! setelt size? swap! table}
%
\condata{GCNAALG}{GenericNonAssociativeAlgebra\\}
{FramedNonAssociativeAlgebra LeftModule}
{0 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} JacobiIdentity? 
JordanAlgebra? alternative? antiAssociative? antiCommutative? 
antiCommutator apply associative? associator associatorDependence 
basis coerce commutative? commutator conditionsForIdempotents convert
coordinates elt flexible? generic genericLeftDiscriminant 
genericLeftMinimalPolynomial genericLeftNorm genericLeftTrace
genericLeftTraceForm genericRightDiscriminant 
genericRightMinimalPolynomial genericRightNorm genericRightTrace
genericRightTraceForm jordanAdmissible? leftAlternative? 
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial 
leftNorm leftPower leftRankPolynomial leftRecip leftRegularRepresentation 
leftTrace leftTraceMatrix leftUnit leftUnits lieAdmissible? lieAlgebra? 
noncommutativeJordanAlgebra? plenaryPower powerAssociative? rank recip 
represents rightAlternative? rightCharacteristicPolynomial rightDiscriminant
rightMinimalPolynomial rightNorm rightPower rightRankPolynomial 
rightRecip rightRegularRepresentation rightTrace rightTraceMatrix 
rightUnit rightUnits someBasis structuralConstants unit zero?}
%
\condata{GRIMAGE}{GraphImage}{SetCategory}
{{\tt =} appendPoint coerce component graphImage key makeGraphImage point
pointLists putColorInfo ranges units}
%
\condata{HASHTBL}{HashTable}{TableAggregate}
{{\tt \#} {\tt =} any? bag coerce construct copy count dictionary elt empty
empty? entries entry? eq? every? extract! fill! find first index? indices 
insert! inspect key? keys less? map map! maxIndex member? members minIndex 
more? parts qelt qsetelt! reduce remove remove! removeDuplicates search 
select select! setelt size? swap! table}
%
\condata{HEAP}{Heap}{PriorityQueueAggregate}
{{\tt \#} {\tt =} any? bag coerce copy count empty empty? eq? every?
extract! heap insert! inspect less? map map! max member? members merge 
merge! more? parts size?}
%
\condata{HEXADEC}{HexadecimalExpansion}{QuotientFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs 
associates? ceiling characteristic coerce convert denom denominator 
differentiate divide euclideanSize expressIdealMember exquo 
extendedEuclidean factor floor fractionPart gcd hex init inv lcm map 
max min multiEuclidean negative? nextItem numer numerator one? 
patternMatch positive? prime? principalIdeal quo random recip 
reducedSystem rem retract retractIfCan sign sizeLess? squareFree 
squareFreePart unit? unitCanonical unitNormal wholePart zero?}
%
\condata{ICARD}{IndexCard}{OrderedSet}
{{\tt <} {\tt =} coerce display elt fullDisplay max min}
%
\condata{IBITS}{IndexedBits}{BitAggregate}
{{\tt \#} {\tt <} {\tt =} And Not Or {\tt \^{}} and any? coerce concat
construct convert copy copyInto! count delete elt empty empty? entries 
entry? eq? every? fill! find first index? indices insert less? map map! 
max maxIndex member? members merge min minIndex more? nand new nor not 
or parts position qelt qsetelt! reduce remove removeDuplicates reverse 
reverse! select setelt size? sort sort! sorted? swap! xor}
%
\condata{IDPAG}{IndexedDirectProductAbelianGroup\\}
{AbelianGroup IndexedDirectProductCategory}
{0 {\tt *} {\tt +} {\tt -} {\tt =} coerce leadingCoefficient leadingSupport 
map monomial reductum zero?}
%
\condata{IDPAM}{IndexedDirectProductAbelianMonoid\\}
{AbelianMonoid IndexedDirectProductCategory}{0 {\tt *} {\tt +} {\tt =} 
coerce leadingCoefficient leadingSupport map monomial reductum zero?}
%
\condata{IDPO}{IndexedDirectProductObject\\}{IndexedDirectProductCategory}
{{\tt =} coerce leadingCoefficient leadingSupport map monomial reductum}
%
\condata{IDPOAMS}{IndexedDirectProductOrderedAbelianMonoidSup\\}
{IndexedDirectProductCategory\\ OrderedAbelianMonoidSup\\}
{0 {\tt *} {\tt +} {\tt -} {\tt <} {\tt =} coerce leadingCoefficient 
leadingSupport map max min monomial reductum sup zero?}
%
\condata{IDPOAM}{IndexedDirectProductOrderedAbelianMonoid}
{IndexedDirectProductCategory OrderedAbelianMonoid}{0 {\tt *} {\tt +} 
{\tt <} {\tt =} coerce leadingCoefficient leadingSupport map max min 
monomial reductum zero?}
%
\condata{INDE}{IndexedExponents}{IndexedDirectProductCategory\\ 
OrderedAbelianMonoidSup}{0 {\tt *} {\tt +} {\tt -} {\tt <} {\tt =} coerce 
leadingCoefficient leadingSupport map max min monomial reductum sup zero?}
%
\condata{IFARRAY}{IndexedFlexibleArray}
{ExtensibleLinearAggregate OneDimensionalArrayAggregate}
{{\tt \#} {\tt <} {\tt =} any? coerce concat concat! construct convert 
copy copyInto! count delete delete! elt empty empty? entries entry? eq?
every? fill! find first flexibleArray index? indices insert insert! 
less? map map! max maxIndex member? members merge merge! min minIndex 
more? new parts physicalLength physicalLength! position qelt qsetelt! 
reduce remove remove! removeDuplicates removeDuplicates! reverse reverse! 
select select! setelt shrinkable size? sort sort! sorted? swap!}
%
\condata{ILIST}{IndexedList}{ListAggregate}
{{\tt \#} {\tt <} {\tt =} any? child? children coerce concat concat!
construct convert copy copyInto! count cycleEntry cycleLength cycleSplit! 
cycleTail cyclic? delete delete! distance elt empty empty? entries entry? 
eq? every? explicitlyFinite? fill! find first index? indices insert 
insert! last leaf? less? list map map! max maxIndex member? members 
merge merge! min minIndex more? new node? nodes parts position 
possiblyInfinite? qelt qsetelt! reduce remove remove! removeDuplicates 
removeDuplicates! rest reverse reverse! second select select! setchildren! 
setelt setfirst! setlast! setrest! setvalue! size? sort sort! sorted? 
split! swap! tail third value}
%
\condata{IMATRIX}{IndexedMatrix}{MatrixCategory}
{{\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} antisymmetric? 
any? coerce column copy count determinant diagonal? diagonalMatrix elt 
empty empty? eq? every? exquo fill! horizConcat inverse less? listOfLists 
map map! matrix maxColIndex maxRowIndex member? members minColIndex
minRowIndex minordet more? ncols new nrows nullSpace nullity parts qelt 
qsetelt! rank row rowEchelon scalarMatrix setColumn! setRow! setelt 
setsubMatrix! size? square? squareTop subMatrix swapColumns! swapRows! 
symmetric? transpose vertConcat zero}
%
\condata{IARRAY1}{IndexedOneDimensionalArray}{OneDimensionalArrayAggregate}
{{\tt \#} {\tt <} {\tt =} any? coerce concat construct convert copy 
copyInto! count delete elt empty empty? entries entry? eq? every? fill! 
find first index? indices insert less? map map! max maxIndex member? 
members merge min minIndex more? new parts position qelt qsetelt!
reduce remove removeDuplicates reverse reverse! select setelt size? 
sort sort! sorted? swap!}
%
\condata{ISTRING}{IndexedString}{StringAggregate}
{{\tt \#} {\tt <} {\tt =} any? coerce concat construct copy copyInto!
count delete elt empty empty? entries entry? eq? every? fill! find first 
hash index? indices insert leftTrim less? lowerCase lowerCase! map map! 
match? max maxIndex member? members merge min minIndex more? new parts 
position prefix? qelt qsetelt! reduce remove removeDuplicates replace 
reverse reverse! rightTrim select setelt size? sort sort! sorted?
split substring? suffix? swap! trim upperCase upperCase!}
%
\condata{IARRAY2}{IndexedTwoDimensionalArray\\}{TwoDimensionalArrayCategory}
{{\tt \#} {\tt =} any? coerce column copy count elt empty empty? eq? every? 
fill! less? map map! maxColIndex maxRowIndex member? members minColIndex 
minRowIndex more? ncols new nrows parts qelt qsetelt! row setColumn! 
setRow! setelt size?}
%
\condata{IVECTOR}{IndexedVector}{VectorCategory}
{{\tt \#} {\tt *} {\tt +} {\tt -} {\tt <} {\tt =} any? coerce concat
construct convert copy copyInto! count delete dot elt empty empty? 
entries entry? eq? every? fill! find first index? indices insert 
less? map map! max maxIndex member? members merge min minIndex more? 
new parts position qelt qsetelt! reduce remove removeDuplicates 
reverse reverse! select setelt size? sort sort! sorted? swap! zero}
%
\condata{ITUPLE}{InfiniteTuple}{CoercibleTo}{coerce construct filterUntil 
filterWhile generate map select}
%
\condata{IFF}{InnerFiniteField}{FiniteAlgebraicExtensionField}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP coordinates 
createNormalElement createPrimitiveElement definingPolynomial degree 
dimension discreteLog divide euclideanSize expressIdealMember exquo
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize 
gcd generator inGroundField? index init inv lcm lookup minimalPolynomial 
multiEuclidean nextItem norm normal? normalElement one? order prime? 
primeFrobenius primitive? primitiveElement principalIdeal quo random 
recip rem representationType represents retract retractIfCan size 
sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace 
transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{IFAMON}{InnerFreeAbelianMonoid}{FreeAbelianMonoidCategory}
{0 {\tt *} {\tt +} {\tt -} {\tt =} coefficient coerce highCommonTerms 
mapCoef mapGen nthCoef nthFactor retract retractIfCan size terms zero?}
%
\condata{IIARRAY2}{InnerIndexedTwoDimensionalArray\\}
{TwoDimensionalArrayCategory}{\\
{\tt \#} {\tt =} any? coerce column copy count elt empty empty? eq?\\
every? fill! less? map map! maxColIndex maxRowIndex member? members\\
minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt!\\
row setColumn! setRow! setelt size?}
%
\condata{IPADIC}{InnerPAdicInteger}{PAdicIntegerCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} approximate associates? 
characteristic coerce complete digits divide euclideanSize 
expressIdealMember exquo extend extendedEuclidean gcd lcm moduloP 
modulus multiEuclidean one? order principalIdeal quo quotientByP 
recip rem sizeLess? sqrt unit? unitCanonical unitNormal zero?}
%
\condata{IPF}{InnerPrimeField}
{ConvertibleTo\\ FiniteAlgebraicExtensionField FiniteFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius algebraic? 
associates? basis characteristic charthRoot coerce conditionP convert 
coordinates createNormalElement createPrimitiveElement definingPolynomial 
degree dimension discreteLog divide euclideanSize expressIdealMember 
exquo extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize 
gcd generator inGroundField? index init inv lcm lookup minimalPolynomial 
multiEuclidean nextItem norm normal? normalElement one? order prime? 
primeFrobenius primitive? primitiveElement principalIdeal quo random 
recip rem representationType represents retract retractIfCan size 
sizeLess? squareFree squareFreePart tableForDiscreteLogarithm trace
transcendenceDegree transcendent? unit? unitCanonical unitNormal zero?}
%
\condata{ITAYLOR}{InnerTaylorSeries}{IntegralDomain Ring}{0 1 {\tt *} 
{\tt **} {\tt +} {\tt -} {\tt =} associates? characteristic coefficients 
coerce exquo one? order pole? recip series unit? unitCanonical unitNormal 
zero?}
%
\condata{INFORM}{InputForm}{ConvertibleTo SExpressionCategory}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt /} {\tt =} atom? binary car 
cdr coerce compile convert declare destruct elt eq expr flatten float 
float? function integer integer? interpret lambda list? null? pair? 
string string? symbol symbol? uequal unparse}
%
\condata{ZMOD}{IntegerMod}{CommutativeRing ConvertibleTo Finite StepThrough}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} characteristic coerce convert 
index init lookup nextItem one? random recip size zero?}
%
\condata{INT}{Integer}{ConvertibleTo IntegerNumberSystem}{0 1 {\tt *} 
{\tt **} {\tt +} {\tt -} {\tt <} {\tt =} D abs addmod associates? base 
binomial bit? characteristic coerce convert copy dec differentiate 
divide euclideanSize even? expressIdealMember exquo extendedEuclidean 
factor factorial gcd hash inc init invmod lcm length mask max min mulmod
multiEuclidean negative? nextItem odd? one? patternMatch permutation 
positive? positiveRemainder powmod prime? principalIdeal quo random 
rational rational? rationalIfCan recip reducedSystem rem retract 
retractIfCan shift sign sizeLess? squareFree squareFreePart submod 
symmetricRemainder unit? unitCanonical unitNormal zero?}
%
\condata{IR}{IntegrationResult}{Module RetractableTo}{0 {\tt *} {\tt +} 
{\tt -} {\tt =} D coerce differentiate elem? integral logpart mkAnswer 
notelem ratpart retract retractIfCan zero?}
%
\condata{KERNEL}{Kernel}{CachableSet ConvertibleTo Patternable}{{\tt <} 
{\tt =} argument coerce convert height is? kernel max min name operator 
position setPosition symbolIfCan}
%
\condata{KAFILE}{KeyedAccessFile}{FileCategory TableAggregate}{{\tt \#} 
{\tt =} any? bag close! coerce construct copy count dictionary elt 
empty empty? entries entry? eq? every? extract! fill! find first 
index? indices insert! inspect iomode key? keys less? map map! 
maxIndex member? members minIndex more? name open pack! parts 
qelt qsetelt! read! reduce remove remove! removeDuplicates reopen! 
search select select! setelt size? swap! table write!}
%
\condata{LAUPOL}{LaurentPolynomial}
{CharacteristicNonZero CharacteristicZero ConvertibleTo DifferentialExtension
EuclideanDomain FullyRetractableTo IntegralDomain RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} D associates? characteristic 
charthRoot coefficient coerce convert degree differentiate divide 
euclideanSize expressIdealMember exquo extendedEuclidean gcd lcm 
leadingCoefficient monomial monomial? multiEuclidean one? order
principalIdeal quo recip reductum rem retract retractIfCan separate 
sizeLess? trailingCoefficient unit? unitCanonical unitNormal zero?}
%
\condata{LIB}{Library}{TableAggregate}{{\tt \#} {\tt =} any? bag coerce 
construct copy count dictionary elt empty empty? entries entry? eq? 
every? extract! fill! find first index? indices insert! inspect key? 
keys less? library map map! maxIndex member? members minIndex more? 
pack! parts qelt qsetelt! reduce remove remove! removeDuplicates search
select select! setelt size? swap! table}
%
\condata{LSQM}{LieSquareMatrix}
{CoercibleTo FramedNonAssociativeAlgebra SquareMatrixCategory}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D\\ 
JacobiIdentity? JordanAlgebra? alternative? antiAssociative?\\ 
antiCommutative? antiCommutator antisymmetric? any? apply\\ 
associative? associator associatorDependence basis characteristic\\ 
coerce column commutative? commutator conditionsForIdempotents\\ 
convert coordinates copy count determinant diagonal diagonal?\\
diagonalMatrix diagonalProduct differentiate elt empty empty? eq?\\ 
every? exquo flexible? inverse jordanAdmissible? leftAlternative?\\ 
leftCharacteristicPolynomial leftDiscriminant leftMinimalPolynomial\\ 
leftNorm leftPower leftRankPolynomial leftRecip\\ 
leftRegularRepresentation leftTrace leftTraceMatrix leftUnit leftUnits\\ 
less? lieAdmissible? lieAlgebra? listOfLists map map! matrix\\ 
maxColIndex maxRowIndex member? members minColIndex minRowIndex\\
minordet more? ncols noncommutativeJordanAlgebra? nrows nullSpace\\ 
nullity one? parts plenaryPower powerAssociative? qelt rank recip\\ 
reducedSystem represents retract retractIfCan rightAlternative?\\ 
rightCharacteristicPolynomial rightDiscriminant rightMinimalPolynomial\\ 
rightNorm rightPower rightRankPolynomial rightRecip\\ 
rightRegularRepresentation rightTrace rightTraceMatrix rightUnit\\ 
rightUnits row rowEchelon scalarMatrix size? someBasis square?\\
structuralConstants symmetric? trace unit zero?}
%
\condata{LODO}{LinearOrdinaryDifferentialOperator}{MonogenicLinearOperator}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} D characteristic coefficient 
coerce degree elt leadingCoefficient leftDivide leftExactQuotient leftGcd 
leftLcm leftQuotient leftRemainder minimumDegree monomial one? recip 
reductum rightDivide rightExactQuotient rightGcd rightLcm rightQuotient 
rightRemainder zero?}
%
\condata{LMOPS}{ListMonoidOps}{RetractableTo SetCategory}{\\
{\tt =} coerce leftMult listOfMonoms\\ 
makeMulti makeTerm makeUnit mapExpon mapGen nthExpon nthFactor\\ 
outputForm plus retract retractIfCan reverse reverse! rightMult size}
%
\condata{LMDICT}{ListMultiDictionary}{MultiDictionary}
{{\tt \#} {\tt =} any? bag coerce construct convert copy count dictionary 
duplicates duplicates? empty empty? eq? every? extract! find insert! 
inspect less? map map! member? members more? parts reduce remove remove! 
removeDuplicates removeDuplicates! select select! size? substitute}
%
\condata{LIST}{List}{ListAggregate}{{\tt \#} {\tt <} {\tt =} any? append 
child? children coerce concat concat! cons construct convert copy copyInto! 
count cycleEntry cycleLength cycleSplit! cycleTail cyclic? delete delete! 
distance elt empty empty? entries entry? eq? every? explicitlyFinite? 
fill! find first index? indices insert insert! last leaf? less? list map 
map! max maxIndex member? members merge merge! min minIndex more? new 
nil node? nodes null parts position possiblyInfinite? qelt qsetelt! 
reduce remove remove! removeDuplicates removeDuplicates! rest reverse 
reverse! second select select! setDifference setIntersection setUnion 
setchildren! setelt setfirst! setlast! setrest! setvalue! size? sort 
sort! sorted? split! swap! tail third value}
%
\condata{LA}{LocalAlgebra}{Algebra OrderedRing}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} abs
characteristic coerce denom max min negative? numer one? positive? 
recip sign zero?}
%
\condata{LO}{Localize}{Module OrderedAbelianGroup}
{0 {\tt *} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} coerce denom max
min numer zero?}
%
\condata{MKCHSET}{MakeCachableSet}{CachableSet CoercibleTo}
{{\tt <} {\tt =} coerce max min position setPosition}
%
\condata{MKODRING}{MakeOrdinaryDifferentialRing}{CoercibleTo DifferentialRing}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} D characteristic coerce 
differentiate one? recip zero?}
%
\condata{MATRIX}{Matrix}{MatrixCategory}{{\tt \#} {\tt *} {\tt **} {\tt +} 
{\tt -} {\tt /} {\tt =} antisymmetric? any? coerce column copy count 
determinant diagonal? diagonalMatrix elt empty empty? eq? every? exquo 
fill! horizConcat inverse less? listOfLists map map! matrix maxColIndex 
maxRowIndex member? members minColIndex minRowIndex minordet more? ncols 
new nrows nullSpace nullity parts qelt qsetelt! rank row rowEchelon 
scalarMatrix setColumn! setRow! setelt setsubMatrix! size? square? 
squareTop subMatrix swapColumns! swapRows! symmetric? transpose 
vertConcat zero}
%
\condata{MODMON}{ModMonic}{Finite UnivariatePolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} An D 
UnVectorise Vectorise associates? characteristic charthRoot coefficient 
coefficients coerce composite computePowers conditionP content degree 
differentiate discriminant divide divideExponents elt euclideanSize eval
expressIdealMember exquo extendedEuclidean factor factorPolynomial 
factorSquareFreePolynomial gcd gcdPolynomial ground ground? index init 
integrate isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial 
lift lookup mainVariable makeSUP map mapExponents max min minimumDegree 
modulus monicDivide monomial monomial? monomials multiEuclidean
multiplyExponents multivariate nextItem numberOfMonomials one? order pow 
prime? primitiveMonomials primitivePart principalIdeal pseudoDivide 
pseudoQuotient pseudoRemainder quo random recip reduce reducedSystem 
reductum rem resultant retract retractIfCan separate setPoly size 
sizeLess? solveLinearPolynomialEquation squareFree squareFreePart
squareFreePolynomial subResultantGcd totalDegree unit? unitCanonical 
unitNormal univariate unmakeSUP variables vectorise zero?}
%
\condata{MODFIELD}{ModularField}{Field}{0 1 {\tt *} {\tt **} {\tt +} {\tt -} 
{\tt /} {\tt =} associates? characteristic coerce divide euclideanSize 
exQuo expressIdealMember exquo extendedEuclidean factor gcd inv lcm 
modulus multiEuclidean one? prime? principalIdeal quo recip reduce rem 
sizeLess? squareFree squareFreePart unit? unitCanonical unitNormal zero?}
%
\condata{MODRING}{ModularRing}{Ring}{0 1 {\tt *} {\tt **} {\tt +} {\tt -} 
{\tt =} characteristic coerce exQuo inv modulus one? recip reduce zero?}
%
\condata{MOEBIUS}{MoebiusTransform}{Group}{1 {\tt *} {\tt **} {\tt /} 
{\tt =} coerce commutator conjugate eval inv moebius one? recip scale shift}
%
\condata{MRING}{MonoidRing}
{Algebra CharacteristicNonZero CharacteristicZero\\ Finite RetractableTo Ring}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} characteristic charthRoot 
coefficient coefficients coerce index leadingCoefficient leadingMonomial 
lookup map monomial monomial? monomials numberOfMonomials one? random 
recip reductum retract retractIfCan size terms zero?}
%
\condata{MSET}{Multiset}{MultisetAggregate}{{\tt \#} {\tt <} {\tt =} 
any? bag brace coerce construct convert copy count dictionary difference 
duplicates empty empty? eq? every? extract! find insert! inspect intersect 
less? map map! member? members more? multiset parts reduce remove remove! 
removeDuplicates removeDuplicates! select select! size? subset? 
symmetricDifference union}
%
\condata{MPOLY}{MultivariatePolynomial}{PolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
associates? characteristic charthRoot coefficient coefficients 
coerce conditionP content convert degree differentiate discriminant 
eval exquo factor factorPolynomial factorSquareFreePolynomial gcd 
gcdPolynomial ground ground? isExpt isPlus isTimes lcm 
leadingCoefficient leadingMonomial mainVariable map mapExponents max 
min minimumDegree monicDivide monomial monomial? monomials 
multivariate numberOfMonomials one? prime? primitiveMonomials
primitivePart recip reducedSystem reductum resultant retract 
retractIfCan solveLinearPolynomialEquation squareFree squareFreePart 
squareFreePolynomial totalDegree unit? unitCanonical unitNormal 
univariate variables zero?}
%
\condata{NDP}{NewDirectProduct}{DirectProductCategory}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
abs any? characteristic coerce copy count differentiate dimension 
directProduct dot elt empty empty? entries entry? eq? every? fill! first 
index index? indices less? lookup map map! max maxIndex member? members 
min minIndex more? negative? one? parts positive? qelt qsetelt! random 
recip reducedSystem retract retractIfCan setelt sign size size? sup 
swap! unitVector zero?}
%
\condata{NDMP}{NewDistributedMultivariatePolynomial}{PolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D associates? 
characteristic charthRoot coefficient coefficients coerce conditionP const 
content convert degree differentiate discriminant eval exquo factor 
factorPolynomial factorSquareFreePolynomial gcd gcdPolynomial ground 
ground? isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial 
mainVariable map mapExponents max min minimumDegree monicDivide monomial 
monomial? monomials multivariate numberOfMonomials one? prime? 
primitiveMonomials primitivePart recip reducedSystem reductum reorder 
resultant retract retractIfCan solveLinearPolynomialEquation squareFree 
squareFreePart squareFreePolynomial totalDegree unit? unitCanonical 
unitNormal univariate variables zero?}
%
\condata{NONE}{None}{SetCategory}{{\tt =} coerce}
%
\condata{NNI}{NonNegativeInteger}{Monoid OrderedAbelianMonoidSup}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =}
coerce divide exquo gcd max min one? quo recip rem sup zero?}
%
\condata{OCT}{Octonion}{FullyRetractableTo OctonionCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =} abs characteristic 
charthRoot coerce conjugate convert elt eval imagE imagI imagJ imagK imagi 
imagj imagk index inv lookup map max min norm octon one? random rational 
rational? rationalIfCan real recip retract retractIfCan size zero?}
%
\condata{ARRAY1}{OneDimensionalArray}{OneDimensionalArrayAggregate}
{{\tt \#} {\tt <} {\tt =} any? coerce concat construct convert copy 
copyInto! count delete elt empty empty? entries entry? eq? every? 
fill! find first index? indices insert less? map map! max maxIndex 
member? members merge min minIndex more? new oneDimensionalArray parts
   position qelt qsetelt! reduce remove removeDuplicates reverse 
reverse! select setelt size? sort sort! sorted? swap!}
%
\condata{ONECOMP}{OnePointCompletion}
{AbelianGroup FullyRetractableTo\\ OrderedRing SetCategory}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =} abs\\ 
characteristic coerce finite? infinite? infinity max min\\ 
negative? one? positive? rational rational? rationalIfCan\\ 
recip retract retractIfCan sign zero?}
%
\condata{OP}{Operator}
{Algebra CharacteristicNonZero CharacteristicZero Eltable RetractableTo Ring}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt =} characteristic charthRoot 
coerce elt evaluate one? opeval recip retract retractIfCan zero?}
%
\condata{OMLO}{OppositeMonogenicLinearOperator}
{DifferentialRing MonogenicLinearOperator}{0 1 {\tt *} {\tt **} {\tt +}
{\tt -} {\tt =} D characteristic coefficient coerce degree differentiate 
leadingCoefficient minimumDegree monomial one? op po recip reductum zero?}
%
\condata{ORDCOMP}{OrderedCompletion}
{AbelianGroup FullyRetractableTo OrderedRing SetCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =} abs characteristic 
coerce finite? infinite? max min minusInfinity negative? one? plusInfinity 
positive? rational rational? rationalIfCan recip retract retractIfCan sign 
whatInfinity zero?}
%
\condata{ODP}{OrderedDirectProduct}{DirectProductCategory}{0 1 {\tt \#} 
{\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs any? 
characteristic coerce copy count differentiate dimension directProduct 
dot elt empty empty? entries entry? eq? every? fill! first index index? 
indices less? lookup map map! max maxIndex member? members min minIndex 
more? negative? one? parts positive? qelt qsetelt! random recip 
reducedSystem retract retractIfCan setelt sign size size? sup swap! 
unitVector zero?}
%
\condata{OVAR}{OrderedVariableList}{ConvertibleTo OrderedFinite}{{\tt <} 
{\tt =} coerce convert index lookup max min random size variable}
%
\condata{ODPOL}{OrderlyDifferentialPolynomial}
{DifferentialPolynomialCategory RetractableTo}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
associates? characteristic charthRoot coefficient coefficients 
coerce conditionP content degree differentialVariables differentiate 
discriminant eval exquo factor factorPolynomial factorSquareFreePolynomial 
gcd gcdPolynomial ground ground? initial isExpt isPlus isTimes isobaric? 
lcm leader leadingCoefficient leadingMonomial mainVariable makeVariable 
map mapExponents max min minimumDegree monicDivide monomial monomial? 
monomials multivariate numberOfMonomials one? order prime? 
primitiveMonomials primitivePart recip reducedSystem reductum 
resultant retract retractIfCan separant solveLinearPolynomialEquation 
squareFree squareFreePart squareFreePolynomial totalDegree unit? 
unitCanonical unitNormal univariate variables weight weights zero?}
%
\condata{ODVAR}{OrderlyDifferentialVariable}{DifferentialVariableCategory}
{{\tt <} {\tt =} D coerce differentiate makeVariable max min order 
retract retractIfCan variable weight}
%
\condata{ODR}{OrdinaryDifferentialRing}{Algebra DifferentialRing Field}{
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D associates? 
characteristic coerce differentiate divide euclideanSize 
expressIdealMember exquo extendedEuclidean factor gcd inv lcm 
multiEuclidean one? prime? principalIdeal quo recip rem sizeLess? 
squareFree squareFreePart unit? unitCanonical unitNormal zero?}
%
\condata{OSI}{OrdSetInts}{OrderedSet}{{\tt <} {\tt =} coerce max min value}
%
\condata{OUTFORM}{OutputForm}{SetCategory}{{\tt *} {\tt **} {\tt +} 
{\tt -} {\tt /} {\tt <} {\tt <=} {\tt =} {\tt >} {\tt >=} D SEGMENT 
{\tt \^{}=} and assign blankSeparate box brace bracket center coerce 
commaSeparate differentiate div dot elt empty exquo hconcat height 
hspace infix infix? int label left matrix message messagePrint not 
or outputForm over overbar paren pile postfix prefix presub presuper 
prime print prod quo quote rarrow rem right root rspace scripts
semicolonSeparate slash string sub subHeight sum super superHeight 
supersub vconcat vspace width zag}
%
\condata{PADIC}{PAdicInteger}{PAdicIntegerCategory}{0 1 {\tt *} {\tt **} 
{\tt +} {\tt -} {\tt =} approximate associates? characteristic coerce 
complete digits divide euclideanSize expressIdealMember exquo extend
extendedEuclidean gcd lcm moduloP modulus multiEuclidean one? order 
principalIdeal quo quotientByP recip rem sizeLess? sqrt unit? 
unitCanonical unitNormal zero?}
%
\condata{PADICRC}{PAdicRationalConstructor}{QuotientFieldCategory}{0 1 
{\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs 
approximate associates? ceiling characteristic charthRoot coerce 
conditionP continuedFraction convert denom denominator differentiate 
divide elt euclideanSize eval expressIdealMember exquo extendedEuclidean 
factor factorPolynomial factorSquareFreePolynomial floor fractionPart 
gcd gcdPolynomial init inv lcm map max min multiEuclidean negative? 
nextItem numer numerator one? patternMatch positive? prime? 
principalIdeal quo random recip reducedSystem rem removeZeroes retract 
retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree
squareFreePart squareFreePolynomial unit? unitCanonical unitNormal 
wholePart zero?}
%
\condata{PADICRAT}{PAdicRational}{QuotientFieldCategory}{0 1 {\tt *} 
{\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D approximate associates? 
characteristic coerce continuedFraction denom denominator differentiate 
divide euclideanSize expressIdealMember exquo extendedEuclidean factor 
fractionPart gcd inv lcm map multiEuclidean numer numerator one? prime? 
principalIdeal quo recip reducedSystem rem removeZeroes retract 
retractIfCan sizeLess? squareFree squareFreePart unit? unitCanonical 
unitNormal wholePart zero?}
%
\condata{PALETTE}{Palette}{SetCategory}{{\tt =} bright coerce dark dim 
hue light pastel shade}
%
\condata{PARPCURV}{ParametricPlaneCurve}{}{coordinate curve}
%
\condata{PARSCURV}{ParametricSpaceCurve}{}{coordinate curve}
%
\condata{PARSURF}{ParametricSurface}{}{coordinate surface}
%
\condata{PFR}{PartialFraction}{Algebra Field}{0 1 {\tt *} {\tt **} 
{\tt +} {\tt -} {\tt /} {\tt =} associates? characteristic coerce 
compactFraction divide euclideanSize expressIdealMember exquo 
extendedEuclidean factor firstDenom firstNumer gcd inv lcm 
multiEuclidean nthFractionalTerm numberOfFractionalTerms one? 
padicFraction padicallyExpand partialFraction prime? principalIdeal 
quo recip rem sizeLess? squareFree squareFreePart unit? unitCanonical 
unitNormal wholePart zero?}
%
\condata{PRTITION}{Partition}{ConvertibleTo OrderedCancellationAbelianMonoid}
{0 {\tt *} {\tt +} {\tt -} {\tt <} {\tt =} coerce conjugate convert max 
min partition pdct powers zero?}
%
\condata{PATLRES}{PatternMatchListResult}{SetCategory}{{\tt =} atoms 
coerce failed failed? lists makeResult new}
%
\condata{PATRES}{PatternMatchResult}{SetCategory}{{\tt =} addMatch 
addMatchRestricted coerce construct destruct failed failed? getMatch 
insertMatch new satisfy? union}
%
\condata{PATTERN}{Pattern}{RetractableTo SetCategory}{0 1 {\tt *} {\tt **} 
{\tt +} {\tt /} {\tt =} addBadValue coerce constant? convert copy depth 
elt generic? getBadValues hasPredicate? hasTopPredicate? inR? isExpt 
isList isOp isPlus isPower isQuotient isTimes multiple? optional? 
optpair patternVariable predicates quoted? resetBadValues retract
retractIfCan setPredicates setTopPredicate symbol? topPredicate 
variables withPredicates}
%
\condata{PENDTREE}{PendantTree}{BinaryRecursiveAggregate}{{\tt \#} {\tt =} 
any? children coerce copy count cyclic? elt empty empty? eq? every? leaf? 
leaves left less? map map! member? members more? node? nodes parts ptree 
right setchildren! setelt setleft! setright! setvalue! size? value}
%
\condata{PERMGRP}{PermutationGroup}{SetCategory}{{\tt <} {\tt <=} {\tt =} 
base coerce degree elt generators initializeGroupForWordProblem member? 
movedPoints orbit orbits order permutationGroup random strongGenerators
wordInGenerators wordInStrongGenerators wordsForStrongGenerators}
%
\condata{PERM}{Permutation}{PermutationCategory}{1 {\tt *} {\tt **} 
{\tt /} {\tt <} {\tt =} coerce coerceImages coerceListOfPairs 
coercePreimagesImages commutator conjugate cycle cyclePartition 
cycles degree elt eval even? fixedPoints inv listRepresentation 
max min movedPoints numberOfCycles odd? one? orbit order recip sign sort}
%
\condata{HACKPI}{Pi}{CharacteristicZero CoercibleTo ConvertibleTo\\ 
Field RealConstant RetractableTo}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} associates?\\ 
characteristic coerce convert divide euclideanSize expressIdealMember\\
exquo extendedEuclidean factor gcd inv lcm multiEuclidean one? pi\\ 
prime? principalIdeal quo recip rem retract retractIfCan sizeLess?\\ 
squareFree squareFreePart unit? unitCanonical unitNormal zero?}
%
\condata{ACPLOT}{PlaneAlgebraicCurvePlot}{PlottablePlaneCurveCategory}{\\
coerce listBranches makeSketch refine xRange yRange}
%
\condata{PLOT3D}{Plot3D}{PlottableSpaceCurveCategory}{
adaptive3D? coerce debug3D listBranches maxPoints3D minPoints3D\\ 
numFunEvals3D plot pointPlot refine screenResolution3D setAdaptive3D\\ 
setMaxPoints3D setMinPoints3D setScreenResolution3D tRange tValues\\ 
xRange yRange zRange zoom}
%
\condata{PLOT}{Plot}{PlottablePlaneCurveCategory}{adaptive? coerce debug 
listBranches maxPoints minPoints numFunEvals parametric? plot plotPolar 
pointPlot refine screenResolution setAdaptive setMaxPoints setMinPoints 
setScreenResolution tRange xRange yRange zoom}
%
\condata{POINT}{Point}{PointCategory}{{\tt \#} {\tt *} {\tt +} {\tt -} 
{\tt <} {\tt =} any? coerce concat construct convert copy copyInto! 
count cross delete dimension dot elt empty empty? entries entry? eq? 
every? extend fill! find first index? indices insert length less? 
map map! max maxIndex member? members merge min minIndex more? new 
parts point position qelt qsetelt! reduce remove removeDuplicates 
reverse reverse! select setelt size? sort sort! sorted? swap! zero}
%
\condata{IDEAL}{PolynomialIdeals}{SetCategory}{{\tt *} {\tt **} {\tt +} 
{\tt =} backOldPos coerce contract dimension element? generalPosition 
generators groebner groebner? groebnerIdeal ideal in? inRadical? 
intersect leadingIdeal quotient relationsIdeal saturate zeroDim?}
%
\condata{PR}{PolynomialRing}{FiniteAbelianMonoidRing}{0 1 {\tt *} 
{\tt **} {\tt +} {\tt -} {\tt /} {\tt =} associates? characteristic 
charthRoot coefficient coefficients coerce content degree exquo ground 
ground? leadingCoefficient leadingMonomial map mapExponents 
minimumDegree monomial monomial? numberOfMonomials one? 
primitivePart recip reductum retract retractIfCan unit? unitCanonical 
unitNormal zero?}
%
\condata{POLY}{Polynomial}{PolynomialCategory}{0 1 {\tt *} {\tt **} 
{\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D associates? characteristic 
charthRoot coefficient coefficients coerce conditionP content convert 
degree differentiate discriminant eval exquo factor factorPolynomial 
factorSquareFreePolynomial gcd gcdPolynomial ground ground? integrate
isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial 
mainVariable map mapExponents max min minimumDegree  monicDivide 
monomial monomial? monomials multivariate numberOfMonomials one? 
patternMatch prime? primitiveMonomials primitivePart recip 
reducedSystem reductum resultant retract retractIfCan 
solveLinearPolynomialEquation squareFree squareFreePart 
squareFreePolynomial totalDegree unit? unitCanonical unitNormal 
univariate variables zero?}
%
\condata{PI}{PositiveInteger}{AbelianSemiGroup Monoid OrderedSet}{1 
{\tt *} {\tt **} {\tt +} {\tt <} {\tt =} coerce gcd max min one? recip}
%
\condata{PF}{PrimeField}
{ConvertibleTo FiniteAlgebraicExtensionField FiniteFieldCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} Frobenius 
algebraic? associates? basis characteristic charthRoot coerce 
conditionP convert coordinates createNormalElement 
createPrimitiveElement definingPolynomial degree dimension 
discreteLog divide euclideanSize expressIdealMember exquo 
extendedEuclidean extensionDegree factor factorsOfCyclicGroupSize 
gcd generator inGroundField? index init inv lcm lookup 
minimalPolynomial multiEuclidean nextItem norm normal? normalElement 
one? order prime? primeFrobenius primitive? primitiveElement 
principalIdeal quo random recip rem representationType represents 
retract retractIfCan size sizeLess? squareFree squareFreePart 
tableForDiscreteLogarithm trace transcendenceDegree transcendent? 
unit? unitCanonical unitNormal zero?}
%
\condata{PRIMARR}{PrimitiveArray}{OneDimensionalArrayAggregate}{{\tt \#} 
{\tt <} {\tt =} any? coerce concat construct convert copy copyInto! count 
delete elt empty empty? entries entry? eq? every? fill! find first index? 
indices insert less? map map! max maxIndex member? members merge min 
minIndex more? new parts position qelt qsetelt! reduce remove 
removeDuplicates reverse reverse! select setelt size? sort sort! 
sorted? swap!}
%
\condata{PRODUCT}{Product}{AbelianGroup AbelianMonoid\\ 
CancellationAbelianMonoid Finite Group Monoid OrderedAbelianMonoidSup\\ 
OrderedSet SetCategory}{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /}\\ 
{\tt <} {\tt =} coerce commutator conjugate index inv lookup makeprod\\ 
max min one? random recip selectfirst selectsecond size sup zero?}
%
\condata{QFORM}{QuadraticForm}{AbelianGroup}{0 {\tt *} {\tt +} {\tt -} 
{\tt =} coerce elt matrix quadraticForm zero?}
%
\condata{QALGSET}{QuasiAlgebraicSet}{CoercibleTo SetCategory}{{\tt =} 
coerce definingEquations definingInequation empty? idealSimplify 
quasiAlgebraicSet setStatus simplify}
%
\condata{QUAT}{Quaternion}{QuaternionCategory}{0 1 {\tt *} {\tt **} {\tt +} 
{\tt -} {\tt <} {\tt =} D abs characteristic charthRoot coerce conjugate 
convert differentiate elt eval imagI imagJ imagK inv map max min norm one?
quatern rational rational? rationalIfCan real recip reducedSystem retract 
retractIfCan zero?}
%
\condata{QEQUAT}{QueryEquation}{}{equation value variable}
%
\condata{QUEUE}{Queue}{QueueAggregate}{{\tt \#} {\tt =} any? back bag coerce 
copy count dequeue! empty empty? enqueue! eq? every? extract! front insert! 
inspect length less? map map! member? members more? parts queue rotate! size?}
%
\condata{RADFF}{RadicalFunctionField}{FunctionFieldCategory}{0 1 {\tt *} 
{\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D absolutelyIrreducible? 
associates? basis branchPoint? branchPointAtInfinity? characteristic 
characteristicPolynomial   charthRoot coerce complementaryBasis 
convert coordinates definingPolynomial derivationCoordinates 
differentiate discriminant divide elt euclideanSize expressIdealMember 
exquo extendedEuclidean factor gcd generator genus integral? 
integralAtInfinity? integralBasis integralBasisAtInfinity 
integralCoordinates integralDerivationMatrix integralMatrix
integralMatrixAtInfinity integralRepresents inv inverseIntegralMatrix 
inverseIntegralMatrixAtInfinity lcm lift minimalPolynomial multiEuclidean 
nonSingularModel norm normalizeAtInfinity numberOfComponents one? prime? 
primitivePart principalIdeal quo ramified? ramifiedAtInfinity? rank 
rationalPoint? rationalPoints recip reduce reduceBasisAtInfinity
reducedSystem regularRepresentation rem represents retract retractIfCan 
singular? singularAtInfinity? sizeLess? squareFree squareFreePart trace 
traceMatrix unit? unitCanonical unitNormal yCoordinates zero?}
%
\condata{RADIX}{RadixExpansion}{QuotientFieldCategory}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D\\
abs associates? ceiling characteristic coerce convert cycleRagits\\ 
denom denominator differentiate divide euclideanSize\\
expressIdealMember exquo extendedEuclidean factor floor fractRadix\\ 
fractRagits fractionPart gcd init inv lcm map max min multiEuclidean\\ 
negative? nextItem numer numerator one? patternMatch positive?\\ 
prefixRagits prime? principalIdeal quo random recip reducedSystem\\ 
rem retract retractIfCan sign sizeLess? squareFree squareFreePart\\ 
unit? unitCanonical unitNormal wholePart wholeRadix wholeRagits zero?}
%
\condata{RMATRIX}{RectangularMatrix}{CoercibleTo\\
RectangularMatrixCategory VectorSpace}{\\
0 {\tt \#} {\tt *} {\tt +} {\tt -} {\tt /} {\tt =} antisymmetric?\\ 
any? coerce column copy count diagonal? dimension elt empty empty?\\ 
eq? every? exquo less? listOfLists map map! matrix maxColIndex\\ 
maxRowIndex member? members minColIndex minRowIndex more? ncols\\ 
nrows nullSpace nullity parts qelt rank rectangularMatrix row\\ 
rowEchelon size? square? symmetric? zero?}
%
\condata{REF}{Reference}{Object SetCategory}{{\tt =} coerce deref elt 
ref setelt setref}
%
\condata{RULE}{RewriteRule}{Eltable RetractableTo SetCategory}{{\tt =} 
coerce elt lhs pattern quotedOperators retract retractIfCan rhs rule suchThat}
%
\condata{ROMAN}{RomanNumeral}{IntegerNumberSystem}{0 1 {\tt *} {\tt **} 
{\tt +} {\tt -} {\tt <} {\tt =} D abs addmod associates? base binomial 
bit? characteristic coerce convert copy dec differentiate divide 
euclideanSize even? expressIdealMember exquo extendedEuclidean factor 
factorial gcd hash inc init invmod lcm length mask max min mulmod
multiEuclidean negative? nextItem odd? one? patternMatch permutation 
positive? positiveRemainder powmod prime? principalIdeal quo random 
rational rational? rationalIfCan recip reducedSystem rem retract 
retractIfCan roman shift sign sizeLess? squareFree squareFreePart 
submod symmetricRemainder unit? unitCanonical unitNormal zero?}
%
\condata{RULECOLD}{RuleCalled}{SetCategory}{{\tt =} coerce name}
%
\condata{RULESET}{Ruleset}{Eltable SetCategory}{{\tt =} coerce elt rules 
ruleset}
%
\condata{FORMULA1}{ScriptFormulaFormat1}{Object}{coerce}
%
\condata{FORMULA}{ScriptFormulaFormat}{SetCategory}{{\tt =} coerce convert 
display epilogue formula new prologue
   setEpilogue! setFormula! setPrologue!}
%
\condata{SEGBIND}{SegmentBinding}{SetCategory}{{\tt =} coerce equation 
segment variable}
%
\condata{SEG}{Segment}{SegmentCategory SegmentExpansionCategory}{{\tt =} 
BY SEGMENT coerce convert expand hi high incr lo low map segment}
%
\condata{SCFRAC}{SemiCancelledFraction}{ConvertibleTo QuotientFieldCategory}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D\\ 
abs associates? ceiling characteristic charthRoot coerce conditionP\\ 
convert denom denominator differentiate divide elt euclideanSize\\ 
eval expressIdealMember exquo extendedEuclidean factor\\ 
factorPolynomial factorSquareFreePolynomial floor fractionPart\\ 
gcd gcdPolynomial init inv lcm map max min multiEuclidean negative?\\
nextItem normalize numer numerator one? patternMatch positive?\\ 
prime? principalIdeal quo random recip reducedSystem rem retract\\ 
retractIfCan sign sizeLess? solveLinearPolynomialEquation squareFree\\ 
squareFreePart squareFreePolynomial unit? unitCanonical unitNormal\\ 
wholePart zero?}
%
\condata{SDPOL}{SequentialDifferentialPolynomial}
{DifferentialPolynomialCategory\\ RetractableTo}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =}D\\ 
associates? characteristic charthRoot coefficient coefficients\\ 
coerce conditionP content degree differentialVariables\\ 
differentiate discriminant eval exquo factor factorPolynomial\\
factorSquareFreePolynomial gcd gcdPolynomial ground ground?\\ 
initial isExpt isPlus isTimes isobaric? lcm leader\\ 
leadingCoefficient leadingMonomial mainVariable makeVariable\\ 
map mapExponents max min minimumDegree monicDivide monomial\\ 
monomial? monomials multivariate numberOfMonomials one? order\\ 
prime? primitiveMonomials primitivePart recip reducedSystem\\ 
reductum resultant retract retractIfCan separant\\ 
solveLinearPolynomialEquation squareFree squareFreePart\\
squareFreePolynomial totalDegree unit? unitCanonical unitNormal\\ 
univariate variables weight weights zero?}
%
\condata{SDVAR}
{SequentialDifferentialVariable}{DifferentialVariableCategory}{\\
{\tt <} {\tt =} D coerce differentiate makeVariable max min order\\ 
retract retractIfCan variable weight}
%
\condata{SET}{Set}{FiniteSetAggregate}{{\tt \#} {\tt <} {\tt =} any? bag 
brace cardinality coerce complement construct convert copy count 
dictionary difference empty empty? eq? every? extract! find index 
insert! inspect intersect less? lookup map map! max member? members 
min more? parts random reduce remove remove! removeDuplicates select 
select! size size? subset? symmetricDifference union universe}
%
\condata{SEXOF}{SExpressionOf}{SExpressionCategory}{{\tt \#} {\tt =} 
atom? car cdr coerce convert destruct elt eq expr float float? integer 
integer? list? null? pair? string string? symbol symbol? uequal}
%
\condata{SEX}{SExpression}{SExpressionCategory}{{\tt \#} {\tt =} atom? car 
cdr coerce convert destruct elt eq expr float float? integer integer? 
list? null? pair? string string? symbol symbol? uequal}
%
\condata{SAE}{SimpleAlgebraicExtension}{MonogenicAlgebra}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D\\
associates? basis characteristic characteristicPolynomial\\ 
charthRoot coerce conditionP convert coordinates\\
createPrimitiveElement definingPolynomial derivationCoordinates\\ 
differentiate discreteLog discriminant divide euclideanSize\\ 
expressIdealMember exquo extendedEuclidean factor\\ 
factorsOfCyclicGroupSize gcd generator index init inv lcm\\ 
lift lookup minimalPolynomial multiEuclidean nextItem norm one?\\ 
order prime? primeFrobenius primitive? primitiveElement\\ 
principalIdeal quo random rank recip reduce reducedSystem\\ 
regularRepresentation rem representationType represents retract\\ 
retractIfCan size sizeLess? squareFree squareFreePart\\ 
tableForDiscreteLogarithm trace traceMatrix unit? unitCanonical\\ 
unitNormal zero?}
%
\condata{SAOS}{SingletonAsOrderedSet}{OrderedSet}{{\tt <} {\tt =} coerce create max min}
%
\condata{SINT}{SingleInteger}{IntegerNumberSystem}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt <} {\tt =}\\ 
And D Not Or {\tt \^{}} abs addmod and associates? base\\ 
binomial bit? characteristic coerce convert copy dec\\ 
differentiate divide euclideanSize even? expressIdealMember\\ 
exquo extendedEuclidean factor factorial gcd hash inc init\\ 
invmod lcm length mask max min mulmod multiEuclidean\\ 
negative? nextItem not odd? one? or patternMatch permutation\\ 
positive? positiveRemainder powmod prime? principalIdeal\\ 
quo random rational rational? rationalIfCan recip\\ 
reducedSystem rem retract retractIfCan shift sign sizeLess?\\ 
squareFree squareFreePart submod symmetricRemainder unit?\\ 
unitCanonical unitNormal xor zero?}
%
\condata{SMP}{SparseMultivariatePolynomial}{PolynomialCategory}{\\
0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <}\\
{\tt =} D associates? characteristic charthRoot coefficient\\ 
coefficients coerce conditionP content convert degree\\
differentiate discriminant eval exquo factor factorPolynomial\\ 
factorSquareFreePolynomial gcd gcdPolynomial ground ground?\\ 
isExpt isPlus isTimes lcm leadingCoefficient leadingMonomial\\ 
mainVariable map mapExponents max min minimumDegree monicDivide\\ 
monomial monomial? monomials multivariate numberOfMonomials one?\\ 
patternMatch prime? primitiveMonomials primitivePart recip\\ 
reducedSystem reductum resultant retract retractIfCan\\
solveLinearPolynomialEquation squareFree squareFreePart\\ 
squareFreePolynomial totalDegree unit? unitCanonical unitNormal\\
univariate variables zero?}
%
\condata{SMTS}{SparseMultivariateTaylorSeries}{\\
MultivariateTaylorSeriesCategory}{0 1 {\tt *} {\tt **}\\ 
{\tt +} {\tt -} {\tt /} {\tt =} D acos acosh acot acoth\\ 
acsc acsch asec asech asin asinh associates? atan atanh\\ 
characteristic charthRoot coefficient coerce complete cos\\ 
cosh cot coth csc csch csubst degree differentiate eval\\ 
exp exquo extend fintegrate integrate leadingCoefficient\\ 
leadingMonomial log map monomial monomial? nthRoot one?\\ 
order pi pole? polynomial recip reductum sec sech sin sinh\\ 
sqrt tan tanh unit? unitCanonical unitNormal variables zero?}
%
\condata{STBL}{SparseTable}{TableAggregate}{{\tt \#} {\tt =}\\ 
any? bag coerce construct copy count dictionary elt empty\\
empty? entries entry? eq? every? extract! fill! find first\\ 
index? indices insert! inspect key? keys less? map map!\\
maxIndex member? members minIndex more? parts qelt qsetelt!\\ 
reduce remove remove! removeDuplicates search select select!\\ 
setelt size? swap! table}
%
\condata{SUP}{SparseUnivariatePolynomial}{UnivariatePolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D associates? 
characteristic charthRoot coefficient coefficients coerce composite 
conditionP content degree differentiate discriminant divide 
divideExponents elt euclideanSize eval expressIdealMember exquo
extendedEuclidean factor factorPolynomial factorSquareFreePolynomial 
gcd gcdPolynomial ground ground? init integrate isExpt isPlus isTimes 
lcm leadingCoefficient leadingMonomial mainVariable makeSUP map 
mapExponents max min minimumDegree monicDivide monomial monomial? 
monomials multiEuclidean multiplyExponents multivariate nextItem
numberOfMonomials one? order outputForm prime? primitiveMonomials 
primitivePart principalIdeal pseudoDivide pseudoQuotient pseudoRemainder 
quo recip reducedSystem reductum rem resultant retract retractIfCan 
separate sizeLess? solveLinearPolynomialEquation squareFree 
squareFreePart squareFreePolynomial subResultantGcd totalDegree unit?
unitCanonical unitNormal univariate unmakeSUP variables vectorise zero?}
%
\condata{SUTS}{SparseUnivariateTaylorSeries}{UnivariateTaylorSeriesCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D acos acosh acot 
acoth acsc acsch approximate asec asech asin asinh associates? atan 
atanh center characteristic charthRoot coefficient coefficients coerce 
complete cos cosh cot coth csc csch degree differentiate elt eval exp 
exquo extend integrate leadingCoefficient leadingMonomial log map 
monomial monomial? multiplyCoefficients multiplyExponents nthRoot one? 
order pi pole? polynomial quoByVar recip reductum sec sech series sin 
sinh sqrt tan tanh terms truncate unit? unitCanonical unitNormal 
variable variables zero?}
%
\condata{SQMATRIX}{SquareMatrix}{CoercibleTo SquareMatrixCategory}
{0 1 {\tt \#} {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D 
antisymmetric? any? characteristic coerce column copy count determinant 
diagonal diagonal? diagonalMatrix diagonalProduct differentiate elt empty 
empty? eq? every? exquo inverse less? listOfLists map map! matrix maxColIndex
maxRowIndex member? members minColIndex minRowIndex minordet more? ncols 
nrows nullSpace nullity one? parts qelt rank recip reducedSystem retract 
retractIfCan row rowEchelon scalarMatrix size? square? squareMatrix 
symmetric? trace transpose zero?}
%
\condata{STACK}{Stack}{StackAggregate}{{\tt \#} {\tt =} any? bag coerce 
copy count depth empty empty? eq? every? extract! insert! inspect less? 
map map! member? members more? parts pop! push! size? stack top}
%
\condata{STREAM}{Stream}{LazyStreamAggregate}{{\tt \#} {\tt =} any? child? 
children coerce complete concat concat! cons construct convert copy 
count cycleEntry cycleLength cycleSplit! cycleTail cyclic? delay delete 
distance elt empty empty? entries entry? eq? every? explicitEntries? 
explicitlyEmpty? explicitlyFinite? extend fill! filterUntil filterWhile 
find findCycle first frst generate index? indices insert last lazy? 
lazyEvaluate leaf? less? map map! maxIndex member? members minIndex 
more? new node? nodes numberOfComputedEntries output parts 
possiblyInfinite? qelt qsetelt! reduce remove removeDuplicates 
repeating repeating? rest rst second select setchildren! setelt setfirst!
setlast! setrest! setvalue! showAll? showAllElements size? split! swap! 
tail third value}
%
\condata{STRTBL}{StringTable}{TableAggregate}{{\tt \#} {\tt =} any? bag 
coerce construct copy count dictionary elt empty empty? entries entry? 
eq? every? extract! fill! find first index? indices insert! inspect key? 
keys less? map map! maxIndex member? members minIndex more? parts 
qelt qsetelt! reduce remove remove! removeDuplicates search select
select! setelt size? swap! table}
%
\condata{STRING}{String}{StringCategory}{{\tt \#} {\tt <} {\tt =} any? 
coerce concat construct copy copyInto! count delete elt empty empty? 
entries entry? eq? every? fill! find first index? indices insert 
leftTrim less? lowerCase lowerCase! map map! match? max maxIndex 
member? members merge min minIndex more? new parts position prefix? qelt
qsetelt! reduce remove removeDuplicates replace reverse reverse! 
rightTrim select setelt size? sort sort! sorted? split
string substring? suffix? swap! trim upperCase upperCase!}
%
\condata{COMPPROP}{SubSpaceComponentProperty}{SetCategory}{{\tt =} 
close closed? coerce copy new solid solid?}
%
\condata{SUBSPACE}{SubSpace}{SetCategory}{{\tt =} addPoint addPoint2 
addPointLast birth child children closeComponent coerce deepCopy 
defineProperty extractClosed extractIndex extractPoint extractProperty 
internal? leaf? level merge modifyPoint new numberOfChildren parent 
pointData root? separate shallowCopy subspace traverse}
%
\condata{SUCH}{SuchThat}{SetCategory}{{\tt =} coerce construct lhs rhs}
%
\condata{SYMBOL}{Symbol}{ConvertibleTo OrderedSet PatternMatchable}
{{\tt <} {\tt =} argscript coerce convert elt list max min name new 
patternMatch resetNew script scripted? scripts string subscript superscript}
%
\condata{SYMPOLY}{SymmetricPolynomial}{FiniteAbelianMonoidRing}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =}
associates? characteristic charthRoot coefficient coefficients coerce 
content degree exquo ground ground? leadingCoefficient leadingMonomial 
map mapExponents minimumDegree monomial monomial? numberOfMonomials one?
primitivePart recip reductum retract retractIfCan unit? unitCanonical 
unitNormal zero?}
%
\condata{TABLEAU}{Tableau}{Object}{coerce listOfLists tableau}
%
\condata{TABLE}{Table}{TableAggregate}{{\tt \#} {\tt =} any? bag coerce 
construct copy count dictionary elt empty empty? entries entry? eq? 
every? extract! fill! find first index? indices insert! inspect key? 
keys less? map map! maxIndex member? members minIndex more? parts 
qelt qsetelt! reduce remove remove! removeDuplicates search select
select! setelt size? swap! table}
%
\condata{TS}{TaylorSeries}{MultivariateTaylorSeriesCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D acos acosh 
acot acoth acsc acsch asec asech asin asinh associates? atan atanh 
characteristic charthRoot coefficient coerce complete cos cosh cot 
coth csc csch degree differentiate eval exp exquo extend fintegrate 
integrate leadingCoefficient leadingMonomial log map monomial 
monomial? nthRoot one? order pi pole? polynomial recip reductum sec
sech sin sinh sqrt tan tanh unit? unitCanonical unitNormal variables zero?}
%
\condata{TEX1}{TexFormat1}{Object}{coerce}
%
\condata{TEX}{TexFormat}{SetCategory}\\
{{\tt =} coerce convert display epilogue new prologue\\ 
setEpilogue! setPrologue! setTex! tex}
%
\condata{TEXTFILE}{TextFile}{FileCategory}{{\tt =} close! coerce 
endOfFile? iomode name open read! readIfCan! readLine!
readLineIfCan! reopen! write! writeLine!}
%
\condata{VIEW3D}{ThreeDimensionalViewport}{SetCategory}\\
{{\tt =} axes clipSurface close coerce colorDef controlPanel\\ 
diagonals dimensions drawStyle eyeDistance hitherPlane\\ 
intensity key lighting makeViewport3D modifyPointData move\\ 
options outlineRender perspective reset resize rotate\\ 
showClipRegion showRegion subspace title translate\\ 
viewDeltaXDefault viewDeltaYDefault viewPhiDefault\\ 
viewThetaDefault viewZoomDefault viewpoint viewport3D write zoom}
%
\condata{SPACE3}{ThreeSpace}{ThreeSpaceCategory}{{\tt =} check 
closedCurve closedCurve? coerce components composite composites copy 
create3Space curve curve? enterPointData lllip lllp llprop lp lprop 
merge mesh mesh? modifyPointData numberOfComponents numberOfComposites 
objects point point? polygon polygon? subspace}
%
\condata{TREE}{Tree}{RecursiveAggregate}
{{\tt \#} {\tt =} any? children coerce copy count cyclic? elt empty 
empty? eq? every? leaf? leaves less? map map! member? members more? 
node? nodes parts setchildren! setelt setvalue! size? tree value}
%
\condata{TUBE}{TubePlot}{}{closed? getCurve listLoops open? setClosed tube}
%
\condata{TUPLE}{Tuple}{CoercibleTo SetCategory}{{\tt =} coerce length select}
%
\condata{ARRAY2}{TwoDimensionalArray}{TwoDimensionalArrayCategory}
{{\tt \#} {\tt =} any? coerce column copy count elt empty empty? eq? 
every? fill! less? map map! maxColIndex maxRowIndex member? members 
minColIndex minRowIndex more? ncols new nrows parts qelt qsetelt! 
row setColumn! setRow! setelt size?}
%
\condata{VIEW2D}{TwoDimensionalViewport}{SetCategory}
{{\tt =} axes close coerce connect controlPanel dimensions
getGraph graphState graphStates graphs key makeViewport2D move options 
points putGraph region reset resize scale show
title translate units viewport2D write}
%
\condata{ULSCONS}{UnivariateLaurentSeriesConstructor}
{UnivariateLaurentSeriesConstructorCategory}{0 1 {\tt *} {\tt **}
{\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D abs acos acosh acot acoth acsc 
acsch approximate asec asech asin asinh associates? atan atanh ceiling 
center characteristic charthRoot coefficient coerce complete conditionP 
convert cos cosh cot coth csc csch degree denom denominator differentiate 
divide elt euclideanSize eval exp expressIdealMember exquo extend 
extendedEuclidean factor factorPolynomial factorSquareFreePolynomial 
floor fractionPart gcd gcdPolynomial init integrate inv laurent lcm 
leadingCoefficient leadingMonomial log map max min monomial monomial? 
multiEuclidean multiplyCoefficients multiplyExponents negative? nextItem 
nthRoot numer numerator one? order patternMatch pi pole? positive? 
prime? principalIdeal quo random rationalFunction recip reducedSystem 
reductum rem removeZeroes retract retractIfCan sec sech series sign 
sin sinh sizeLess? solveLinearPolynomialEquation sqrt squareFree 
squareFreePart squareFreePolynomial tan tanh taylor taylorIfCan 
taylorRep terms truncate unit? unitCanonical unitNormal variable
variables wholePart zero?}
%
\condata{ULS}{UnivariateLaurentSeries}
{UnivariateLaurentSeriesConstructorCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D acos acosh acot 
acoth acsc acsch approximate asec asech asin asinh associates? atan 
atanh center characteristic charthRoot coefficient coerce complete cos 
cosh cot coth csc csch degree denom denominator differentiate
divide elt euclideanSize eval exp expressIdealMember exquo extend 
extendedEuclidean factor gcd integrate inv laurent lcm leadingCoefficient 
leadingMonomial log map monomial monomial? multiEuclidean 
multiplyCoefficients multiplyExponents nthRoot numer numerator one? order 
pi pole? prime? principalIdeal quo rationalFunction recip reducedSystem 
reductum rem removeZeroes retract retractIfCan sec sech series sin sinh 
sizeLess? sqrt squareFree squareFreePart tan tanh taylor taylorIfCan 
taylorRep terms truncate unit? unitCanonical unitNormal variable 
variables zero?}
%
\condata{UP}{UnivariatePolynomial}{UnivariatePolynomialCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt <} {\tt =} D 
associates? characteristic charthRoot coefficient coefficients coerce 
composite conditionP content degree differentiate discriminant divide 
divideExponents elt euclideanSize eval expressIdealMember exquo 
extendedEuclidean factor factorPolynomial factorSquareFreePolynomial gcd 
gcdPolynomial ground ground? init integrate isExpt isPlus isTimes lcm 
leadingCoefficient leadingMonomial mainVariable makeSUP map mapExponents 
max min minimumDegree monicDivide monomial monomial? monomials 
multiEuclidean multiplyExponents multivariate nextItem numberOfMonomials 
one? order prime? primitiveMonomials primitivePart principalIdeal 
pseudoDivide pseudoQuotient pseudoRemainder quo recip reducedSystem
reductum rem resultant retract retractIfCan separate sizeLess? 
solveLinearPolynomialEquation squareFree squareFreePart 
squareFreePolynomial subResultantGcd totalDegree unit? unitCanonical 
unitNormal univariate unmakeSUP variables vectorise zero?}
%
\condata{UPXSCONS}{UnivariatePuiseuxSeriesConstructor}\\
{UnivariatePuiseuxSeriesConstructorCategory}{0 1 {\tt *} {\tt **}
{\tt +} {\tt -} {\tt /} {\tt =} D acos acosh acot acoth acsc acsch 
approximate asec asech asin asinh associates? atan atanh center 
characteristic charthRoot coefficient coerce complete cos cosh cot coth 
csc csch degree differentiate divide elt euclideanSize eval exp 
expressIdealMember exquo extend extendedEuclidean factor gcd integrate 
inv laurent laurentIfCan laurentRep lcm leadingCoefficient 
leadingMonomial log map monomial monomial? multiEuclidean
multiplyExponents nthRoot one? order pi pole? prime? principalIdeal 
puiseux quo rationalPower recip reductum rem retract retractIfCan sec 
sech series sin sinh sizeLess? sqrt squareFree squareFreePart tan tanh 
terms truncate unit? unitCanonical unitNormal variable variables zero?}
%
\condata{UPXS}{UnivariatePuiseuxSeries}\\
{UnivariatePuiseuxSeriesConstructorCategory} {0 1 {\tt *} {\tt **} {\tt +} 
{\tt -} {\tt /} {\tt =} D acos acosh acot acoth acsc acsch approximate 
asec asech asin asinh associates? atan atanh center characteristic 
charthRoot coefficient coerce complete cos cosh cot coth csc csch 
degree differentiate divide elt euclideanSize eval exp expressIdealMember 
exquo extend extendedEuclidean factor gcd integrate inv laurent laurentIfCan
laurentRep lcm leadingCoefficient leadingMonomial log map monomial 
monomial? multiEuclidean multiplyExponents nthRoot one? order pi pole? 
prime? principalIdeal puiseux quo rationalPower recip reductum rem 
retract retractIfCan sec sech series sin sinh sizeLess? sqrt squareFree 
squareFreePart tan tanh terms truncate unit? unitCanonical unitNormal
variable variables zero?}
%
\condata{UTS}{UnivariateTaylorSeries}{UnivariateTaylorSeriesCategory}
{0 1 {\tt *} {\tt **} {\tt +} {\tt -} {\tt /} {\tt =} D acos acosh acot 
acoth acsc acsch approximate asec asech asin asinh associates? atan atanh 
center characteristic charthRoot coefficient coefficients coerce 
complete cos cosh cot coth csc csch degree differentiate elt eval
evenlambert exp exquo extend generalLambert integrate invmultisect 
lagrange lambert leadingCoefficient leadingMonomial log map monomial 
monomial? multiplyCoefficients multiplyExponents multisect nthRoot 
oddlambert one? order pi pole? polynomial quoByVar recip reductum 
revert sec sech series sin sinh sqrt tan tanh terms truncate unit? 
unitCanonical unitNormal univariatePolynomial variable variables zero?}
%
\condata{UNISEG}{UniversalSegment}{SegmentCategory SegmentExpansionCategory}
{{\tt =} BY SEGMENT coerce convert expand hasHi hi high incr lo low 
map segment}
%
\condata{VARIABLE}{Variable}{CoercibleTo SetCategory}{{\tt =} coerce variable}
%
\condata{VECTOR}{Vector}{VectorCategory}{{\tt \#} {\tt *} {\tt +} {\tt -} 
{\tt <} {\tt =} any? coerce concat construct convert copy copyInto! count 
delete dot elt empty empty? entries entry? eq? every? fill! find first 
index? indices insert less? map map! max maxIndex member? members merge 
min minIndex more? new parts position qelt qsetelt! reduce remove 
removeDuplicates reverse reverse! select setelt size? sort sort! 
sorted? swap! vector zero}
%
\condata{VOID}{Void}{}{coerce void}
%
%
% ----------------------------------------------------------------------
%\end{constructorListing}
% ----------------------------------------------------------------------



%\setcounter{chapter}{3} % Appendix D

%Original Page 619

%\twocolumn[%
\chapter{Packages}
\label{ugAppPackages}

This is a listing of all packages in the Axiom library at the
time this book was produced.
Use the Browse facility (described in \sectionref{ugBrowse})
to get more information about these constructors.

\boxer{5.0in}{
This sample entry will help you read the following table:

PackageName{PackageAbbreviation}:{$\hbox{{\sf Category}}_{1}$%
\ldots$\hbox{{\sf Category}}_{N}$}{\sl with }%
{$\hbox{{\rm op}}_{1}$\ldots$\hbox{{\rm op}}_{M}$}

where

\begin{tabular}{@{\quad}ll}
PackageName & is the full package name, e.g., {\sf PadeApproximantPackage}. \\
PackageAbbreviation & is the package abbreviation, e.g., {\sf PADEPAC}.\\
$\hbox{{\sf Category}}_{i}$ & is a category to which the package belongs. \\
$\hbox{{\rm op}}_{j}$ & is an operation exported by the package.
\end{tabular}
}

% ----------------------------------------------------------------------
%\begin{constructorListing}
% ----------------------------------------------------------------------
\condata{AF}{AlgebraicFunction}{}{{\tt **} belong? definingPolynomial 
inrootof iroot minPoly operator rootOf}
%
\condata{INTHERAL}{AlgebraicHermiteIntegration}{}{HermiteIntegrate}
%
\condata{INTALG}{AlgebraicIntegrate}{}{algintegrate palginfieldint 
palgintegrate}
%
\condata{INTAF}{AlgebraicIntegration}{}{algint}
%
\condata{ALGMANIP}{AlgebraicManipulations}{}{ratDenom ratPoly rootKerSimp 
rootSimp rootSplit}
%
\condata{ALGMFACT}{AlgebraicMultFact}{}{factor}
%
\condata{ALGPKG}{AlgebraPackage}{}{basisOfCenter basisOfCentroid 
basisOfCommutingElements basisOfLeftAnnihilator basisOfLeftNucleus 
basisOfLeftNucloid basisOfMiddleNucleus basisOfNucleus 
basisOfRightAnnihilator basisOfRightNucleus basisOfRightNucloid biRank 
doubleRank leftRank radicalOfLeftTraceForm rightRank weakBiRank}
%
\condata{ALGFACT}{AlgFactor}{}{doublyTransitive? factor split}
%
\condata{ANY1}{AnyFunctions1}{}{coerce retract retractIfCan retractable?}
%
\condata{APPRULE}{ApplyRules}{}{applyRules localUnquote}
%
\condata{PMPRED}{AttachPredicates}{}{suchThat}
%
\condata{BALFACT}{BalancedFactorisation}{}{balancedFactorisation}
%
\condata{BOP1}{BasicOperatorFunctions1}{}{constantOpIfCan constantOperator 
derivative evaluate}
%
\condata{BEZOUT}{BezoutMatrix}{}{bezoutDiscriminant bezoutMatrix 
bezoutResultant}
%
\condata{BOUNDZRO}{BoundIntegerRoots}{}{integerBound}
%
\condata{CARTEN2}{CartesianTensorFunctions2}{}{map reshape}
%
\condata{CHVAR}{ChangeOfVariable}{}{chvar eval goodPoint mkIntegral 
radPoly rootPoly}
%
\condata{CHARPOL}{CharacteristicPolynomialPackage}{}{characteristicPolynomial}
%
\condata{CVMP}{CoerceVectorMatrixPackage}{}{coerce coerceP}
%
\condata{COMBF}{CombinatorialFunction}{}{{\tt **} belong? binomial 
factorial factorials iibinom iidprod iidsum iifact iiperm iipow ipow 
operator permutation product summation}
%
\condata{CDEN}{CommonDenominator}{}{clearDenominator commonDenominator 
splitDenominator}
%
\condata{COMMONOP}{CommonOperators}{}{operator}
%
\condata{COMMUPC}{CommuteUnivariatePolynomialCategory}{}{swap}
%
\condata{COMPFACT}{ComplexFactorization}{}{factor}
%
\condata{COMPLEX2}{ComplexFunctions2}{}{map}
%
\condata{CINTSLPE}{Complex\-Integer\-Solve\-Linear\-Polynomial\-Equation}{}\\
{solveLinearPolynomialEquation}
%
\condata{CRFP}{ComplexRootFindingPackage}{}{complexZeros divisorCascade 
factor graeffe norm pleskenSplit reciprocalPolynomial rootRadius 
schwerpunkt setErrorBound startPolynomial}
%
\condata{CMPLXRT}{ComplexRootPackage}{}{complexZeros}
%
\condata{ODECONST}{ConstantLODE}{}{constDsolve}
%
\condata{COORDSYS}{CoordinateSystems}{}{bipolar\\ 
bipolarCylindrical cartesian conical cylindrical\\ 
elliptic ellipticCylindrical oblateSpheroidal parabolic\\ 
parabolicCylindrical paraboloidal polar prolateSpheroidal\\ 
spherical toroidal}
%
\condata{CRAPACK}{CRApackage}{}{chineseRemainder modTree multiEuclideanTree}
%
\condata{CYCLES}{CycleIndicators}{}{SFunction alternating cap complete cup 
cyclic dihedral elementary eval graphs powerSum skewSFunction wreath}
%
\condata{CSTTOOLS}{CyclicStreamTools}{}\\
{computeCycleEntry computeCycleLength cycleElt}
%
\condata{CYCLOTOM}{CyclotomicPolynomialPackage}{}{cyclotomic 
cyclotomicDecomposition cyclotomicFactorization}
%
\condata{DEGRED}{DegreeReductionPackage}{}{expand reduce}
%
\condata{DIOSP}{DiophantineSolutionPackage}{}{dioSolve}
%
\condata{DIRPROD2}{DirectProductFunctions2}{}{map reduce scan}
%
\condata{DLP}{DiscreteLogarithmPackage}{}{shanksDiscLogAlgorithm}
%
\condata{DISPLAY}{DisplayPackage}{}{bright center copies newLine say sayLength}
%
\condata{DDFACT}{DistinctDegreeFactorize}{}{distdfact exptMod factor 
irreducible? separateDegrees separateFactors tracePowMod}
%
\condata{DBLRESP}{DoubleResultantPackage}{}{doubleResultant}
%
\condata{DRAWHACK}{DrawNumericHack}{}{coerce}
%
\condata{DROPT0}{DrawOptionFunctions0}{}{adaptive\\ 
clipBoolean coordinate curveColorPalette pointColorPalette\\ 
ranges space style title toScale tubePoints tubeRadius units\\ 
var1Steps var2Steps}
%
\condata{DROPT1}{DrawOptionFunctions1}{}{option}
%
\condata{EP}{EigenPackage}{}{characteristicPolynomial eigenvalues 
eigenvector eigenvectors inteigen}
%
\condata{ODEEF}{ElementaryFunctionODESolver}{}{solve}
%
\condata{SIGNEF}{ElementaryFunctionSign}{}{sign}
%
\condata{EFSTRUC}{ElementaryFunctionStructurePackage}{}\\
{normalize realElementary rischNormalize validExponential}
%
\condata{EFUTS}{ElementaryFunctionsUnivariateTaylorSeries}{}{{\tt **} acos 
acosh acot acoth acsc acsch asec asech asin asinh atan atanh cos cosh cot 
coth csc csch exp log sec sech sin sincos sinh sinhcosh tan tanh}
%
\condata{EF}{ElementaryFunction}{}{acos acosh acot acoth acsc acsch asec 
asech asin asinh atan atanh belong? cos cosh cot coth csc csch exp iiacos 
iiacosh iiacot iiacoth iiacsc iiacsch iiasec iiasech iiasin iiasinh 
iiatan iiatanh iicos iicosh iicot iicoth iicsc iicsch iiexp iilog iisec 
iisech iisin iisinh iitan iitanh log operator pi sec sech sin sinh
specialTrigs tan tanh}
%
\condata{INTEF}{ElementaryIntegration}{}{lfextendedint lfextlimint 
lfinfieldint lfintegrate lflimitedint}
%
\condata{RDEEF}{ElementaryRischDE}{}{rischDE}
%
\condata{ELFUTS}{EllipticFunctionsUnivariateTaylorSeries}{}{cn dn sn sncndn}
%
\condata{EQ2}{EquationFunctions2}{}{map}
%
\condata{ERROR}{ErrorFunctions}{}{error}
%
\condata{GBEUCLID}{EuclideanGroebnerBasisPackage}{}{euclideanGroebner 
euclideanNormalForm}
%
\condata{EVALCYC}{EvaluateCycleIndicators}{}{eval}
%
\condata{EXPR2}{ExpressionFunctions2}{}{map}
%
\condata{ES1}{ExpressionSpaceFunctions1}{}{map}
%
\condata{ES2}{ExpressionSpaceFunctions2}{}{map}
%
\condata{EXPRODE}{ExpressionSpaceODESolver}{}{seriesSolve}
%
\condata{EXPR2UPS}{ExpressionToUnivariatePowerSeries}{}{laurent puiseux 
series taylor}
%
\condata{EXPRTUBE}{ExpressionTubePlot}{}{constantToUnaryFunction tubePlot}
%
\condata{FR2}{FactoredFunctions2}{}{map}
%
\condata{FACTFUNC}{FactoredFunctions}{}{log nthRoot}
%
\condata{FRUTIL}{FactoredFunctionUtilities}{}{mergeFactors refine}
%
\condata{FACUTIL}{FactoringUtilities}{}{completeEval degree lowerPolynomial 
normalDeriv raisePolynomial ran variables}
%
\condata{FORDER}{FindOrderFinite}{}{order}
%
\condata{FDIV2}{FiniteDivisorFunctions2}{}{map}
%
\condata{FFF}{FiniteFieldFunctions}{}{createMultiplicationMatrix 
createMultiplicationTable createZechTable sizeMultiplication}
%
\condata{FFHOM}{FiniteFieldHomomorphisms}{}{coerce}
%
\condata{FFPOLY2}{FiniteFieldPolynomialPackage2}{}{rootOfIrreduciblePoly}
%
\condata{FFPOLY}{FiniteFieldPolynomialPackage}{}\\
{createIrreduciblePoly createNormalPoly createNormalPrimitivePoly\\ 
createPrimitiveNormalPoly createPrimitivePoly leastAffineMultiple\\ 
nextIrreduciblePoly nextNormalPoly nextNormalPrimitivePoly\\
nextPrimitiveNormalPoly nextPrimitivePoly normal?\\
numberOfIrreduciblePoly numberOfNormalPoly numberOfPrimitivePoly\\
primitive? random reducedQPowers}
%
\condata{FFSLPE}{FiniteFieldSolveLinearPolynomialEquation}{}
{solve\-Linear\-Polynomial\-Equation}
%
\condata{FLAGG2}{FiniteLinearAggregateFunctions2}{}{map reduce scan}
%
\condata{FLASORT}{FiniteLinearAggregateSort}{}{heapSort quickSort shellSort}
%
\condata{FSAGG2}{FiniteSetAggregateFunctions2}{}{map reduce scan}
%
\condata{FLOATCP}{FloatingComplexPackage}{}{complexRoots complexSolve}
%
\condata{FLOATRP}{FloatingRealPackage}{}{realRoots solve}
%
\condata{FRIDEAL2}{FractionalIdealFunctions2}{}{map}
%
\condata{FRAC2}{FractionFunctions2}{}{map}
%
\condata{FSPECF}{FunctionalSpecialFunction}{}{Beta Gamma abs airyAi airyBi 
belong? besselI besselJ besselK besselY digamma iiGamma iiabs operator 
polygamma}
%
\condata{FFCAT2}{FunctionFieldCategoryFunctions2}{}{map}
%
\condata{FFINTBAS}{FunctionFieldIntegralBasis}{}{integralBasis}
%
\condata{PMASSFS}{FunctionSpaceAssertions}{}{assert constant multiple optional}
%
\condata{PMPREDFS}{FunctionSpaceAttachPredicates}{}{suchThat}
%
\condata{FSCINT}{FunctionSpaceComplexIntegration}{}\\
{complexIntegrate internalIntegrate}
%
\condata{FS2}{FunctionSpaceFunctions2}{}{map}
%
\condata{FSINT}{FunctionSpaceIntegration}{}{integrate}
%
\condata{FSPRMELT}{FunctionSpacePrimitiveElement}{}{primitiveElement}
%
\condata{FSRED}{FunctionSpaceReduce}{}{bringDown newReduc}
%
\condata{SUMFS}{FunctionSpaceSum}{}{sum}
%
\condata{FS2UPS}{FunctionSpaceToUnivariatePowerSeries}{}{exprToGenUPS 
exprToUPS}
%
\condata{FSUPFACT}{FunctionSpaceUnivariatePolynomialFactor}{}{ffactor qfactor}
%
\condata{GAUSSFAC}{GaussianFactorizationPackage}{}{factor prime? sumSquares}
%
\condata{GHENSEL}{GeneralHenselPackage}{}{HenselLift completeHensel}
%
\condata{GENPGCD}{GeneralPolynomialGcdPackage}{}{gcdPolynomial randomR}
%
\condata{GENUPS}{GenerateUnivariatePowerSeries}{}{laurent puiseux series 
taylor}
%
\condata{GENEEZ}{GenExEuclid}{}{compBound reduction solveid tablePow 
testModulus}
%
\condata{GENUFACT}{GenUFactorize}{}{factor}
%
\condata{INTG0}{GenusZeroIntegration}{}{palgLODE0 palgRDE0 palgextint0 
palgint0 palglimint0}
%
\condata{GOSPER}{GosperSummationMethod}{}{GospersMethod}
%
\condata{GRDEF}{GraphicsDefaults}{}{adaptive clipPointsDefault\\ 
drawToScale maxPoints minPoints screenResolution}
%
\condata{GRAY}{GrayCode}{}{firstSubsetGray nextSubsetGray}
%
\condata{GBF}{GroebnerFactorizationPackage}{}{factorGroebnerBasis 
groebnerFactorize}
%
\condata{GBINTERN}{GroebnerInternalPackage}{}{credPol critB critBonD 
critM critMTonD1 critMonD1 critT critpOrder fprindINFO gbasis hMonic 
lepol makeCrit minGbasis prinb prindINFO prinpolINFO prinshINFO redPo 
redPol sPol updatD updatF virtualDegree}
%
\condata{GB}{GroebnerPackage}{}{groebner normalForm}
%
\condata{GROEBSOL}{GroebnerSolve}{}{genericPosition groebSolve testDim}
%
\condata{HB}{HallBasis}{}{generate inHallBasis? lfunc}
%
\condata{HEUGCD}{HeuGcd}{}{content contprim gcd gcdcofact gcdcofactprim 
gcdprim lintgcd}
%
\condata{IDECOMP}{IdealDecompositionPackage}{}{primaryDecomp\\ 
prime? radical zeroDimPrimary? zeroDimPrime?}
%
\condata{INCRMAPS}{IncrementingMaps}{}{increment incrementBy}
%
\condata{ITFUN2}{InfiniteTupleFunctions2}{}{map}
%
\condata{ITFUN3}{InfiniteTupleFunctions3}{}{map}
%
\condata{INFINITY}{Infinity}{}{infinity minusInfinity plusInfinity}
%
\condata{IALGFACT}{InnerAlgFactor}{}{factor}
%
\condata{ICDEN}{InnerCommonDenominator}{}{clearDenominator\\
commonDenominator splitDenominator}
%
\condata{IMATLIN}{InnerMatrixLinearAlgebraFunctions}{}{determinant 
inverse nullSpace nullity rank rowEchelon}
%
\condata{IMATQF}{InnerMatrixQuotientFieldFunctions}{}{inverse 
nullSpace nullity rank rowEchelon}
%
\condata{INMODGCD}{InnerModularGcd}{}{modularGcd reduction}
%
\condata{INNMFACT}{InnerMultFact}{}{factor}
%
\condata{INBFF}{InnerNormalBasisFieldFunctions}{}{{\tt *} {\tt **} {\tt /} 
basis dAndcExp expPot index inv lookup minimalPolynomial norm normal? 
normalElement pol qPot random repSq setFieldInfo trace xn}
%
\condata{INEP}{InnerNumericEigenPackage}{}{charpol innerEigenvectors}
%
\condata{INFSP}{InnerNumericFloatSolvePackage}{}{innerSolve innerSolve1 makeEq}
%
\condata{INPSIGN}{InnerPolySign}{}{signAround}
%
\condata{ISUMP}{InnerPolySum}{}{sum}
%
\condata{ITRIGMNP}{InnerTrigonometricManipulations}{}{F2FG\\ 
FG2F GF2FG explogs2trigs trigs2explogs}
%
\condata{INFORM1}{InputFormFunctions1}{}{interpret packageCall}
%
\condata{COMBINAT}{IntegerCombinatoricFunctions}{}{binomial factorial 
multinomial partition permutation stirling1 stirling2}
%
\condata{INTFACT}{IntegerFactorizationPackage}{}{BasicMethod 
PollardSmallFactor factor squareFree}
%
\condata{ZLINDEP}{IntegerLinearDependence}{}{linearDependenceOverZ 
linearlyDependentOverZ? solveLinearlyOverQ}
%
\condata{INTHEORY}{IntegerNumberTheoryFunctions}{}{bernoulli 
chineseRemainder divisors euler eulerPhi fibonacci harmonic jacobi 
legendre moebiusMu numberOfDivisors sumOfDivisors sumOfKthPowerDivisors}
%
\condata{PRIMES}{IntegerPrimesPackage}{}{nextPrime prevPrime prime? primes}
%
\condata{INTRET}{IntegerRetractions}{}{integer integer? integerIfCan}
%
\condata{IROOT}{IntegerRoots}{}{approxNthRoot approxSqrt perfectNthPower? 
perfectNthRoot perfectSqrt perfectSquare?}
%
\condata{IBATOOL}{IntegralBasisTools}{}{diagonalProduct idealiser leastPower}
%
\condata{IR2}{IntegrationResultFunctions2}{}{map}
%
\condata{IRRF2F}{IntegrationResultRFToFunction}{}{complexExpand\\
complexIntegrate expand integrate split}
%
\condata{IR2F}{IntegrationResultToFunction}{}{complexExpand expand split}
%
\condata{INTTOOLS}{IntegrationTools}{}{kmax ksec mkPrim union vark varselect}
%
\condata{INVLAPLA}{InverseLaplaceTransform}{}{inverseLaplace}
%
\condata{IRREDFFX}{IrredPolyOverFiniteField}{}{generateIrredPoly}
%
\condata{IRSN}{IrrRepSymNatPackage}{}
{dimensionOfIrreducibleRepresentation\\
irreducibleRepresentation}
%
\condata{KERNEL2}{KernelFunctions2}{}{constantIfCan constantKernel}
%
\condata{KOVACIC}{Kovacic}{}{kovacic}
%
\condata{LAPLACE}{LaplaceTransform}{}{laplace}
%
\condata{LEADCDET}{LeadingCoefDetermination}{}{distFact polCase}
%
\condata{LINDEP}{LinearDependence}{}{linearDependence linearlyDependent? 
solveLinear}
%
\condata{LPEFRAC}{LinearPolynomialEquationByFractions}{}\\
{solve\-Linear\-Polynomial\-Equation\-By\-Fractions}
%
\condata{LSMP}{LinearSystemMatrixPackage}{}{aSolution hasSolution? rank solve}
%
\condata{LSPP}{LinearSystemPolynomialPackage}{}{linSolve}
%
\condata{LGROBP}{LinGrobnerPackage}{}
{anticoord choosemon computeBasis\\
coordinate groebgen intcompBasis linGenPos\\ 
minPol totolex transform}
%
\condata{LF}{LiouvillianFunction}{}{Ci Ei Si belong? dilog erf integral 
li operator}
%
\condata{LIST2}{ListFunctions2}{}{map reduce scan}
%
\condata{LIST3}{ListFunctions3}{}{map}
%
\condata{LIST2MAP}{ListToMap}{}{match}
%
\condata{MKBCFUNC}{MakeBinaryCompiledFunction}{}{binaryFunction 
compiledFunction}
%
\condata{MKFLCFN}{MakeFloatCompiledFunction}{}{makeFloatFunction}
%
\condata{MKFUNC}{MakeFunction}{}{function}
%
\condata{MKRECORD}{MakeRecord}{}{makeRecord}
%
\condata{MKUCFUNC}{MakeUnaryCompiledFunction}{}{compiledFunction unaryFunction}
%
\condata{MAPPKG1}{MappingPackage1}{}{{\tt **} coerce fixedPoint id 
nullary recur}
%
\condata{MAPPKG2}{MappingPackage2}{}{const constant curry diag}
%
\condata{MAPPKG3}{MappingPackage3}{}{{\tt *} constantLeft constantRight 
curryLeft curryRight twist}
%
\condata{MAPHACK1}{MappingPackageInternalHacks1}{}{iter recur}
%
\condata{MAPHACK2}{MappingPackageInternalHacks2}{}{arg1 arg2}
%
\condata{MAPHACK3}{MappingPackageInternalHacks3}{}{comp}
%
\condata{MATCAT2}{MatrixCategoryFunctions2}{}{map reduce}
%
\condata{MCDEN}{MatrixCommonDenominator}{}{clearDenominator 
commonDenominator splitDenominator}
%
\condata{MATLIN}{MatrixLinearAlgebraFunctions}{}
{determinant inverse\\
minordet nullSpace nullity rank rowEchelon}
%
\condata{MTHING}{MergeThing}{}{mergeDifference}
%
\condata{MESH}{MeshCreationRoutinesForThreeDimensions}{}
{meshFun2Var\\
meshPar1Var meshPar2Var ptFunc}
%
\condata{MDDFACT}{ModularDistinctDegreeFactorizer}{}{ddFact exptMod 
factor gcd separateFactors}
%
\condata{MHROWRED}{ModularHermitianRowReduction}{}{rowEch rowEchelon}
%
\condata{MRF2}{MonoidRingFunctions2}{}{map}
%
\condata{MSYSCMD}{MoreSystemCommands}{}{systemCommand}
%
\condata{MPC2}{MPolyCatFunctions2}{}{map reshape}
%
\condata{MPC3}{MPolyCatFunctions3}{}{map}
%
\condata{MPRFF}{MPolyCatRationalFunctionFactorizer}{}
{factor pushdown pushdterm\\ 
pushucoef pushuconst pushup totalfract}
%
\condata{MRATFAC}{MRationalFactorize}{}{factor}
%
\condata{MFINFACT}{MultFiniteFactorize}{}{factor}
%
\condata{MMAP}{MultipleMap}{}{map}
%
\condata{MULTFACT}{MultivariateFactorize}{}{factor}
%
\condata{MLIFT}{MultivariateLifting}{}{corrPoly lifting lifting1}
%
\condata{MULTSQFR}{MultivariateSquareFree}{}{squareFree squareFreePrim}
%
\condata{NCODIV}{NonCommutativeOperatorDivision}{}{leftDivide 
leftExactQuotient leftGcd leftLcm leftQuotient leftRemainder}
%
\condata{NONE1}{NoneFunctions1}{}{coerce}
%
\condata{NODE1}{NonLinearFirstOrderODESolver}{}{solve}
%
\condata{NLINSOL}{NonLinearSolvePackage}{}{solve solveInField}
%
\condata{NPCOEF}{NPCoef}{}{listexp npcoef}
%
\condata{NFINTBAS}{NumberFieldIntegralBasis}{}{discriminant integralBasis}
%
\condata{NUMFMT}{NumberFormats}{}{FormatArabic FormatRoman 
ScanArabic ScanRoman}
%
\condata{NTPOLFN}{NumberTheoreticPolynomialFunctions}{}
{bernoulliB cyclotomic eulerE}
%
\condata{NUMODE}{NumericalOrdinaryDifferentialEquations}{}{rk4 rk4a rk4f rk4qc}
%
\condata{NUMQUAD}{NumericalQuadrature}{}\\
{aromberg asimpson atrapezoidal romberg rombergo\\ 
simpson simpsono trapezoidal trapezoidalo}
%
\condata{NCEP}{NumericComplexEigenPackage}{}{characteristicPolynomial 
complexEigenvalues complexEigenvectors}
%
\condata{NCNTFRAC}{NumericContinuedFraction}{}{continuedFraction}
%
\condata{NREP}{NumericRealEigenPackage}{}\\
{characteristicPolynomial realEigenvalues realEigenvectors}
%
\condata{NUMTUBE}{NumericTubePlot}{}{tube}
%
\condata{NUMERIC}{Numeric}{}{complexNumeric numeric}
%
\condata{OCTCT2}{OctonionCategoryFunctions2}{}{map}
%
\condata{ODEINT}{ODEIntegration}{}{expint int}
%
\condata{ODETOOLS}{ODETools}{}{particularSolution variationOfParameters 
wronskianMatrix}
%
\condata{ARRAY12}{OneDimensionalArrayFunctions2}{}{map reduce scan}
%
\condata{ONECOMP2}{OnePointCompletionFunctions2}{}{map}
%
\condata{OPQUERY}{OperationsQuery}{}{getDatabase}
%
\condata{ORDCOMP2}{OrderedCompletionFunctions2}{}{map}
%
\condata{ORDFUNS}{OrderingFunctions}{}{pureLex reverseLex totalLex}
%
\condata{ORTHPOL}{OrthogonalPolynomialFunctions}{}{ChebyshevU chebyshevT 
hermiteH laguerreL legendreP}
%
\condata{OUT}{OutputPackage}{}{output}
%
\condata{PADEPAC}{PadeApproximantPackage}{}{pade}
%
\condata{PADE}{PadeApproximants}{}{pade padecf}
%
\condata{YSTREAM}{ParadoxicalCombinatorsForStreams}{}{Y}
%
\condata{PARTPERM}{PartitionsAndPermutations}{}
{conjugate conjugates partitions\\ 
permutations sequences shuffle shufflein}
%
\condata{PATTERN1}{PatternFunctions1}{}
{addBadValue badValues predicate satisfy?\\
suchThat}
%
\condata{PATTERN2}{PatternFunctions2}{}{map}
%
\condata{PMASS}{PatternMatchAssertions}{}{assert constant multiple optional}
%
\condata{PMFS}{PatternMatchFunctionSpace}{}{patternMatch}
%
\condata{PMINS}{PatternMatchIntegerNumberSystem}{}{patternMatch}
%
\condata{PMKERNEL}{PatternMatchKernel}{}{patternMatch}
%
\condata{PMLSAGG}{PatternMatchListAggregate}{}{patternMatch}
%
\condata{PMPLCAT}{PatternMatchPolynomialCategory}{}{patternMatch}
%
\condata{PMDOWN}{PatternMatchPushDown}{}{fixPredicate patternMatch}
%
\condata{PMQFCAT}{PatternMatchQuotientFieldCategory}{}{patternMatch}
%
\condata{PATRES2}{PatternMatchResultFunctions2}{}{map}
%
\condata{PMSYM}{PatternMatchSymbol}{}{patternMatch}
%
\condata{PMTOOLS}{PatternMatchTools}{}{patternMatch patternMatchTimes}
%
\condata{PATMATCH}{PatternMatch}{}{Is is?}
%
\condata{PERMAN}{Permanent}{}{permanent}
%
\condata{PGE}{PermutationGroupExamples}{}{abelianGroup alternatingGroup 
cyclicGroup dihedralGroup janko2 mathieu11 mathieu12 mathieu22 mathieu23 
mathieu24 rubiksGroup symmetricGroup youngGroup}
%
\condata{PICOERCE}{PiCoercions}{}{coerce}
%
\condata{PLOT1}{PlotFunctions1}{}{plot plotPolar}
%
\condata{PLOTTOOL}{PlotTools}{}{calcRanges}
%
\condata{PTFUNC2}{PointFunctions2}{}{map}
%
\condata{PTPACK}{PointPackage}{}{color hue phiCoord rCoord shade 
thetaCoord xCoord yCoord zCoord}
%
\condata{PFOQ}{PointsOfFiniteOrderRational}{}{order torsion? torsionIfCan}
%
\condata{PFOTOOLS}{PointsOfFiniteOrderTools}{}{badNum doubleDisc 
getGoodPrime mix polyred}
%
\condata{PFO}{PointsOfFiniteOrder}{}{order torsion? torsionIfCan}
%
\condata{POLTOPOL}{PolToPol}{}{dmpToNdmp dmpToP ndmpToDmp ndmpToP 
pToDmp pToNdmp}
%
\condata{PGROEB}{PolyGroebner}{}{lexGroebner totalGroebner}
%
\condata{PAN2EXPR}{PolynomialAN2Expression}{}{coerce}
%
\condata{POLYLIFT}{PolynomialCategoryLifting}{}{map}
%
\condata{POLYCATQ}{PolynomialCategoryQuotientFunctions}{}{isExpt isPlus 
isPower isTimes mainVariable multivariate univariate variables}
%
\condata{PFBRU}{PolynomialFactorizationByRecursionUnivariate}{}\\
{bivariateSLPEBR factorByRecursion factorSFBRlcUnit\\
factorSquareFreeByRecursion randomR\\ 
solveLinearPolynomialEquationByRecursion}
%
\condata{PFBR}{PolynomialFactorizationByRecursion}{}\\
{bivariateSLPEBR factorByRecursion factorSFBRlcUnit\\
factorSquareFreeByRecursion randomR\\ 
solveLinearPolynomialEquationByRecursion}
%
\condata{POLY2}{PolynomialFunctions2}{}{map}
%
\condata{PGCD}{PolynomialGcdPackage}{}{gcd gcdPrimitive}
%
\condata{PINTERPA}{PolynomialInterpolationAlgorithms}{}{LagrangeInterpolation}
%
\condata{PINTERP}{PolynomialInterpolation}{}{interpolate}
%
\condata{PNTHEORY}{PolynomialNumberTheoryFunctions}{}{bernoulli 
chebyshevT chebyshevU cyclotomic euler fixedDivisor hermite laguerre legendre}
%
\condata{POLYROOT}{PolynomialRoots}{}{froot qroot rroot}
%
\condata{SOLVEFOR}{PolynomialSolveByFormulas}{}{aCubic aLinear 
aQuadratic aQuartic aSolution cubic linear mapSolve quadratic quartic solve}
%
\condata{PSQFR}{PolynomialSquareFree}{}{squareFree}
%
\condata{POLY2UP}{PolynomialToUnivariatePolynomial}{}{univariate}
%
\condata{LIMITPS}{PowerSeriesLimitPackage}{}{complexLimit limit}
%
\condata{PRIMARR2}{PrimitiveArrayFunctions2}{}{map reduce scan}
%
\condata{PRIMELT}{PrimitiveElement}{}{primitiveElement}
%
\condata{ODEPRIM}{PrimitiveRatDE}{}{denomLODE}
%
\condata{ODEPRRIC}{PrimitiveRatRicDE}{}\\
{changevar constantCoefficientRicDE denomRicDE\\ 
leadingCoefficientRicDE polyRicDE singRicDE}
%
\condata{PRINT}{PrintPackage}{}{print}
%
\condata{INTPAF}{PureAlgebraicIntegration}{}{palgLODE palgRDE palgextint 
palgint palglimint}
%
\condata{ODEPAL}{PureAlgebraicLODE}{}{algDsolve}
%
\condata{QALGSET2}{QuasiAlgebraicSet2}{}{radicalSimplify}
%
\condata{QUATCT2}{QuaternionCategoryFunctions2}{}{map}
%
\condata{QFCAT2}{QuotientFieldCategoryFunctions2}{}{map}
%
\condata{REP}{RadicalEigenPackage}{}{eigenMatrix gramschmidt normalise 
orthonormalBasis radicalEigenvalues radicalEigenvector radicalEigenvectors}
%
\condata{SOLVERAD}{RadicalSolvePackage}{}{contractSolve radicalRoots 
radicalSolve}
%
\condata{RADUTIL}{RadixUtilities}{}{radix}
%
\condata{RANDSRC}{RandomNumberSource}{}{randnum reseed size}
%
\condata{RATFACT}{RationalFactorize}{}{factor}
%
\condata{DEFINTRF}{RationalFunctionDefiniteIntegration}{}{integrate}
%
\condata{RFFACTOR}{RationalFunctionFactorizer}{}{factorFraction}
%
\condata{RFFACT}{RationalFunctionFactor}{}{factor}
%
\condata{INTRF}{RationalFunctionIntegration}{}{extendedIntegrate 
infieldIntegrate internalIntegrate limitedIntegrate}
%
\condata{LIMITRF}{RationalFunctionLimitPackage}{}{complexLimit limit}
%
\condata{SIGNRF}{RationalFunctionSign}{}{sign}
%
\condata{SUMRF}{RationalFunctionSum}{}{sum}
%
\condata{RF}{RationalFunction}{}{coerce eval mainVariable multivariate 
univariate variables}
%
\condata{INTRAT}{RationalIntegration}{}{extendedint infieldint integrate 
limitedint}
%
\condata{ODERAT}{RationalLODE}{}{ratDsolve}
%
\condata{RATRET}{RationalRetractions}{}{rational rational? rationalIfCan}
%
\condata{ODERTRIC}{RationalRicDE}{}{changevar constantCoefficientRicDE 
polyRicDE ricDsolve singRicDE}
%
\condata{RTODETLS}{RatODETools}{}{genericPolynomial}
%
\condata{REALSOLV}{RealSolvePackage}{}{realSolve solve}
%
\condata{REAL0Q}{RealZeroPackageQ}{}{realZeros refine}
%
\condata{REAL0}{RealZeroPackage}{}{midpoint midpoints realZeros refine}
%
\condata{RMCAT2}{RectangularMatrixCategoryFunctions2}{}{map reduce}
%
\condata{RDIV}{ReducedDivisor}{}{order}
%
\condata{ODERED}{ReduceLODE}{}{reduceLODE}
%
\condata{REDORDER}{ReductionOfOrder}{}{ReduceOrder}
%
\condata{REPDB}{RepeatedDoubling}{}{double}
%
\condata{REPSQ}{RepeatedSquaring}{}{expt}
%
\condata{REP1}{RepresentationPackage1}{}{antisymmetricTensors 
createGenericMatrix permutationRepresentation symmetricTensors tensorProduct}
%
\condata{REP2}{RepresentationPackage2}{}\\
{areEquivalent? completeEchelonBasis createRandomElement\\ 
cyclicSubmodule isAbsolutelyIrreducible? meatAxe\\
scanOneDimSubspaces split standardBasisOfCyclicSubmodule}
%
\condata{RESLATC}{ResolveLatticeCompletion}{}{coerce}
%
\condata{RETSOL}{RetractSolvePackage}{}{solveRetract}
%
\condata{SAERFFC}{SAERationalFunctionAlgFactor}{}{factor}
%
\condata{SEGBIND2}{SegmentBindingFunctions2}{}{map}
%
\condata{SEG2}{SegmentFunctions2}{}{map}
%
\condata{SAEFACT}{SimpleAlgebraicExtensionAlgFactor}{}{factor}
%
\condata{DFLOATSFUN}{DoubleFloatSpecialFunctions}{}{Beta Gamma airyAi 
airyBi besselI besselJ besselK besselY digamma hypergeometric0F1 logGamma 
polygamma}
%
\condata{SCACHE}{SortedCache}{}{cache clearCache enterInCache}
%
\condata{SUP2}{SparseUnivariatePolynomialFunctions2}{}{map}
%
\condata{SPECOUT}{SpecialOutputPackage}{}{outputAsFortran outputAsScript 
outputAsTex}
%
\condata{MATSTOR}{StorageEfficientMatrixOperations}{}{{\tt **} copy! 
leftScalarTimes! minus! plus! power! rightScalarTimes! times!}
%
\condata{STREAM1}{StreamFunctions1}{}{concat}
%
\condata{STREAM2}{StreamFunctions2}{}{map reduce scan}
%
\condata{STREAM3}{StreamFunctions3}{}{map}
%
\condata{STTAYLOR}{StreamTaylorSeriesOperations}{}{{\tt *} {\tt +} {\tt -} 
{\tt /} addiag coerce compose deriv eval evenlambert gderiv generalLambert 
int integers integrate invmultisect lagrange lambert lazyGintegrate 
lazyIntegrate mapdiv mapmult monom multisect nlde oddintegers 
oddlambert power powern recip revert}
%
\condata{STTF}{StreamTranscendentalFunctions}{}{{\tt **} acos acosh acot 
acoth acsc acsch asec asech asin asinh atan atanh cos cosh cot coth csc 
csch exp log sec sech sin sincos sinh sinhcosh tan tanh}
%
\condata{SUBRESP}{SubResultantPackage}{}{primitivePart subresultantVector}
%
\condata{SYMFUNC}{SymmetricFunctions}{}{symFunc}
%
\condata{SGCF}{SymmetricGroupCombinatoricFunctions}{}\\
{coleman inverseColeman listYoungTableaus makeYoungTableau\\ 
nextColeman nextLatticePermutation nextPartition\\ 
numberOfImproperPartitions subSet unrankImproperPartitions0\\ 
unrankImproperPartitions1}
%
\condata{ODESYS}{SystemODESolver}{}{solveInField triangulate}
%
\condata{SYSSOLP}{SystemSolvePackage}{}{solve triangularSystems}
%
\condata{TABLBUMP}{TableauxBumpers}{}{bat bat1 bumprow bumptab bumptab1 
inverse lex maxrow mr slex tab tab1 untab}
%
\condata{TANEXP}{TangentExpansions}{}{tanAn tanNa tanSum}
%
\condata{TOOLSIGN}{ToolsForSign}{}{direction nonQsign sign}
%
\condata{DRAWCURV}{TopLevelDrawFunctionsForAlgebraicCurves}{}{draw}
%
\condata{DRAWCFUN}{TopLevelDrawFunctionsForCompiledFunctions}{}{draw 
makeObject recolor}
%
\condata{DRAW}{TopLevelDrawFunctions}{}{draw makeObject}
%
\condata{TOPSP}{TopLevelThreeSpace}{}{createThreeSpace}
%
\condata{INTHERTR}{TranscendentalHermiteIntegration}{}{HermiteIntegrate}
%
\condata{INTTR}{TranscendentalIntegration}{}{expextendedint expintegrate 
expintfldpoly explimitedint primextendedint primextintfrac primintegrate 
primintegratefrac primintfldpoly primlimintfrac primlimitedint}
%
\condata{TRMANIP}{TranscendentalManipulations}{}\\
{cos2sec cosh2sech cot2tan cot2trig coth2tanh\\ 
coth2trigh csc2sin csch2sinh expand expandLog\\ 
expandPower htrigs removeCosSq removeCoshSq\\ 
removeSinSq removeSinhSq sec2cos sech2cosh\\ 
simplify simplifyExp sin2csc sinh2csch\\ 
tan2cot tan2trig tanh2coth tanh2trigh}
%
\condata{RDETR}{TranscendentalRischDE}{}{DSPDE SPDE baseRDE expRDE primRDE}
%
\condata{SOLVESER}{TransSolvePackageService}{}{decomposeFunc unvectorise}
%
\condata{SOLVETRA}{TransSolvePackage}{}{solve}
%
\condata{TRIMAT}{TriangularMatrixOperations}{}{LowTriBddDenomInv 
UpTriBddDenomInv}
%
\condata{TRIGMNIP}{TrigonometricManipulations}{}{complexElementary 
complexNormalize imag real real? trigs}
%
\condata{TUBETOOL}{TubePlotTools}{}{{\tt *} {\tt +} {\tt -} cosSinInfo 
cross dot loopPoints point unitVector}
%
\condata{CLIP}{TwoDimensionalPlotClipping}{}{clip clipParametric 
clipWithRanges}
%
\condata{TWOFACT}{TwoFactorize}{}{generalSqFr generalTwoFactor twoFactor}
%
\condata{UNIFACT}{UnivariateFactorize}{}{factor factorSquareFree genFact 
henselFact henselfact quadratic sqroot trueFactors}
%
\condata{ULS2}{UnivariateLaurentSeriesFunctions2}{}{map}
%
\condata{UPOLYC2}{UnivariatePolynomialCategoryFunctions2}{}{map}
%
\condata{UPCDEN}{UnivariatePolynomialCommonDenominator}{}{clearDenominator 
commonDenominator splitDenominator}
%
\condata{UP2}{UnivariatePolynomialFunctions2}{}{map}
%
\condata{UPSQFREE}{UnivariatePolynomialSquareFree}{}
{BumInSepFFE\\ 
squareFree squareFreePart}
%
\condata{UPXS2}{UnivariatePuiseuxSeriesFunctions2}{}{map}
%
\condata{UTS2}{UnivariateTaylorSeriesFunctions2}{}{map}
%
\condata{UTSODE}{UnivariateTaylorSeriesODESolver}{}{mpsode ode ode1 ode2 
stFunc1 stFunc2 stFuncN}
%
\condata{UNISEG2}{UniversalSegmentFunctions2}{}{map}
%
\condata{UDPO}{UserDefinedPartialOrdering}{}{getOrder largest less? more? 
setOrder userOrdered?}
%
\condata{UDVO}{UserDefinedVariableOrdering}{}{getVariableOrder 
resetVariableOrder setVariableOrder}
%
\condata{VECTOR2}{VectorFunctions2}{}{map reduce scan}
%
\condata{VIEWDEF}{ViewDefaultsPackage}{}
{axes\-Color\-Default line\-Color\-Default point\-Color\-Default\\
point\-Size\-Default tube\-Points\-Default tube\-Radius\-Default\\
units\-Color\-Default var1Steps\-Default var2\-StepsDefault\\ 
view\-Defaults view\-PosDefault view\-SizeDefault\\ 
view\-WriteAvailable view\-WriteDefault}
%
\condata{VIEW}{ViewportPackage}{}{coerce drawCurves graphCurves}
%
\condata{WEIER}{WeierstrassPreparation}{}{cfirst clikeUniv crest qqq 
sts2stst weierstrass}
%
\condata{WFFINTBS}{WildFunctionFieldIntegralBasis}{}{integralBasis 
listSquaredFactors}
%
%
% ----------------------------------------------------------------------
%\end{constructorListing}
% ----------------------------------------------------------------------


%\setcounter{chapter}{4} % Appendix E

%%Original Page 627

{
%\twocolumn[%
\chapter{Operations}
\label{ugAppOperations}

This appendix contains a partial list of Axiom operations
with brief descriptions.
For more details, use the Browse facility of HyperDoc:
enter the name of the operation for which you want more information
in the input area on the main Browse menu and then click on
{\bf Operations.}

\vskip \baselineskip
%]
\def\alt#1#2{{$\lbrace$#1$\mid$#2$\rbrace$}}
\def\altx#1#2#3{{$\lbrace$#1$\mid$#2$\mid$#3$\rbrace$}}
\def\opt#1{{$\,[$#1$]$}}
\def\bigLeftBrack{{\tt \[}}
\def\bigRightBrack{{\tt \]}}
\def\smallLeftBrack{{\tt \[}}
\def\smallRightBrack{{\tt \]}}
\def\optinit#1{{$[$#1$]$}}
\def\optfirst#1{{[#1]}}
\def\from#1{{From {\bf #1}.}}
\def\consultType#1{{Consult {\bf #1} using Browse for details.}}
\def\colx#1#2#3{{[#1,#2,\ldots,#3]}}
\def\col#1#2{{[#1,\ldots,]}}
\def\code#1{{\tt #1}}
\def\Script{IBM SCRIPT Formula Formatter}

\def\smallbreak{{\hfill{\break}}}
\def\newitem{{\smallbreak}}
\def\bigitem{{\medbreak}}
\def\largerbreak{{\hfill{\smallskip\break}}}
\def\medbreak{{\hfill{\medskip\break}}}
\def\bigbreak{{\hfill{\bigskip\break}}}
\long\def\bigopkey#1{{#1}}
\long\def\opkey#1{{#1}}

\def\and{{\ {\bf and}\ }}
\def\or{{\ {\bf or}\ }}
\def\mod{{\ {\bf mod}\ }}
\def\quo{{\ {\bf quo}\ }}
\def\rem{{\ {\bf rem}\ }}
\def\opLeftPren{\nobreak\,{\tt (}}
\def\opRightPren{\nobreak{\tt )}\allowbreak}

\def\seeType#1{{See {\bf #1} using Browse.}}
\def\seeAlso#1{{See also #1}.}
\def\seeOther#1{{For additional information on $#1$, consult Browse.}}
\def\sayOption#1#2{{This command may be given as a draw option: $#1 == #2$.}}
\def\seeDetails#1{{Consult {\bf #1} using Browse for details.}}

\long\def\opdataQual#1#2#3#4#5#6{{
  \opdata{#1}{#2}{#3}{#4}{#5\newitem#6}
}}

\long\def\opdata#1#2#3#4#5{{
  %#1 name  #2 number of args #3 sig  #4 con  #5 documentation
   \hyphenpenalty=1000
   \exhyphenpenalty=1000
   \par\vskip 4pt\optitle{#1}\nopagebreak\par\vskip -\parskip%
   \vskip 2pt\nopagebreak\noindent%
   {\def\TYsize{\SMTYfont}#5}\par}}

\def\mathOrSpad#1{{$#1$}}
\def\smath#1{\mathOrSpad{#1}}
\def\twodim{two-di\-men\-sion\-al}
\def\threedim{three-di\-men\-sion\-al}
\def\keydata#1#2#3#4#5{{\opdata{#1}{#2}{#3}{#4}{#5}}}
\def\keyop#1{{{\large{$#1$}}}}
\def\optitle#1{{\bf #1}}
\def\opand{\optand}
\def\optand{{\par\vskip -\parskip}}
\def\optinner#1{{[#1]}}
\def\opname#1{{\tt #1}}
\def\opoption#1#2{{{\tt #1}$== #2$}}

\long\def\xxdata#1#2#3#4#5{{}}

\def\indented#1{{#1}}
\def\spadsyscom#1{{#1}}

\sloppy\raggedright
%\input{oplist}

\fussy

\keydata{\keyop{\#}aggregate}{1}{(\$)->NonNegativeInteger}{Aggregate}
   {\smath{\# a} returns the number of items in \smath{a}.
}

\keydata{x\keyop{**}y}{2}{(\$, \$)->\$}{ElementaryFunctionCategory}
   {\smath{x**y} returns \smath{x} to the power \smath{y}.
Also, this operation returns, if \smath{x} is:
\begin{simpleList}
\item an equation: a new equation by raising both sides of 
\smath{x} to the power \smath{y}.
\item a float or small float: 
\smath{\mbox{\bf sign}\opLeftPren{}x\opRightPren{}}
\smath{\mbox{\bf exp}\opLeftPren{}y \log(|x|)\opRightPren{}}.
\end{simpleList}
See also \axiomType{InputForm} and \axiomType{OutputForm}.
}

\keydata{x\keyop{*}y}{2}{(Integer, \$)->\$}{AbelianGroup}
  {\opkey{The binary operator \smath{*} denotes multiplication.
Its meaning depends on the type of its arguments:}
\begin{simpleList}
\item if \smath{x} and \smath{y} are members of a ring (more generally, 
a domain of
category \axiomType{SemiGroup}), \smath{x*y} returns the product of 
\smath{x} and \smath{y}.
\item if \smath{r} is an integer and \smath{x} is an element of a ring, or
if \smath{r} is a scalar and \smath{x} is a vector, matrix, or direct product:
\smath{r*x} returns the left multiplication of \smath{r} by \smath{x}.
More generally, if \smath{r} is an integer and \smath{x} is a
member of a domain of category \axiomType{AbelianMonoid},
or \smath{r} is a member of domain \smath{R} and \smath{x} is a 
domain of category
\axiomType{Module(R)}, \axiomType{GradedModule}, or \axiomType{GradedAlgebra}
defined over \smath{R},
\smath{r*x} returns the left multiplication of \smath{r} by \smath{x}.
Here \smath{x} can be a vector, a matrix, or a direct product.
Similarly, \smath{x*n} returns the right integer multiple of \smath{x}.
\item if \smath{a} and \smath{b} are monad elements,
the product of \smath{a} and \smath{b} (see \axiomType{Monad}).
\item if \smath{A} and \smath{B} are matrices,
returns the product of \smath{A} and \smath{B}.
If \smath{v} is a row vector, \smath{v*A}
returns the product of \smath{v} and \smath{A}.
If \smath{v} is column vector, \smath{A*v}
returns the product of \smath{A} with column vector \smath{v}.
In each case, the operation calls \spadfun{error}
if the dimensions are incompatible.
\item if \smath{s} is an integer or float and \smath{c} is a color, 
\smath{s*c} returns
the weighted shade scaled by \smath{s}.
\item if \smath{s} and \smath{t} are Cartesian tensors,
\smath{s*t} is the inner product of the tensors \smath{s} and \smath{t}.
This contracts the last index of \smath{s} with the first index of \smath{t},
that is,
\smath{t*s = \mbox{\tt contract}(t, \mbox{\tt rank } t, s, 1)},
\smath{t*s = \sum\nolimits_{k=1}^N{t([i_1, .., i_N, k]*s[k, j_1, .., j_M])}}.
\item if \smath{eq} is an equation, \smath{r*eq}
multiplies both sides of \smath{eq} by r.
\item if \smath{I} and \smath{J} are ideals, the product of ideals.
\item See also \axiomType{OutputForm}, \axiomType{Monad},
\axiomType{LeftModule},
\axiomType{RightModule}, and
\axiomType{FreeAbelianMonoidCategory},
\end{simpleList}
See also \axiomType{InputForm} and \axiomType{OutputForm}.
}

\keydata{x\keyop{+}y}{2}{(Integer, \$)->\$}{AbelianGroup}
  {\opkey{The binary operator \smath{+} denotes addition.
Its meaning depends on the type of its arguments.
If \smath{x} and \smath{y} are:}
\begin{simpleList}
\item members of a ring (more generally,
of a domain of category \axiomType{AbelianSemiGroup}):
the sum of \smath{x} and \smath{y}.
\item matrices:
the matrix sum if \smath{x} and \smath{y} have the same dimensions,
and \spadfun{error} otherwise.
\item vectors: the component-wise sum if \smath{x} and \smath{y} have
the same length, and \spadfun{error} otherwise.
\item colors:  a color which additively mixes colors \smath{x} and \smath{y}.
\item equations: an equation created by adding the respective 
left- and right-hand
sides of \smath{x} and \smath{y}.
\item elements of graded module or algebra:
the sum of \smath{x} and \smath{y} in the module of elements
of the same degree as \smath{x} and \smath{y}.
\item ideals: the ideal generated by the union of \smath{x} and \smath{y}.
\end{simpleList}
See also \axiomType{FreeAbelianMonoidCategory},
\axiomType{InputForm} and \axiomType{OutputForm}.
}

\keydata{\optinit{x}\keyop{-}y}{1}{(\$)->\$}{AbelianGroup}
  {\smath{- x} returns the negative (additive inverse) of \smath{x},
where \smath{x} is a member of a ring
(more generally, a domain of category \axiomType{AbelianGroup}).
Also, \smath{x} may be a matrix, a vector, or a member of a graded module.
  \newitem
  \smath{x - y} returns \smath{x + (-y)}.
  \newitem
See also \axiomType{CancellationAbelianMonoid} and \axiomType{OutputForm}.
}

\keydata{x\keyop{/}y}{2}{(\$, \$)->\$}{Group}
{\opkey{The binary operator \smath{/} generally denotes binary
division.
Its precise meaning, however, depends on the type of its arguments:}
\begin{simpleList}
\item \smath{x} and \smath{y} are elements of a group: multiplies 
\smath{x} by the inverse 
\smath{\mbox{\bf inv}\opLeftPren{}y\opRightPren{}} of \smath{y}.
\item \smath{x} and \smath{y} are elements of a field: divides 
\smath{x} by \smath{y}, calling
\spadfun{error} if \smath{y=0}.
\item \smath{x} is a matrix or a vector and \smath{y} is a scalar: 
divides each element of \smath{x} by \smath{y}.
\item \smath{x} and \smath{y} are floats or small floats: divides 
\smath{x} by \smath{y}.
\item \smath{x} and \smath{y} are fractions: returns the quotient 
as another fraction.
\item \smath{x} and \smath{y} are polynomials: returns the quotient
as a fraction of polynomials.
\end{simpleList}
See also \axiomType{AbelianMonoidRing}, \axiomType{InputForm} and 
\axiomType{OutputForm}.
}

\keydata{\keyop{0}}{0}{()->\$}{AbelianMonoid}{The additive
identity element for a ring (more generally, for an
\axiomType{AbelianMonoid}).
Also, for a graded module or algebra, the zero of degree 0 (see
\axiomType{GradedModule}).
See also \axiomType{InputForm}.
}

\keydata{\keyop{1}}{0}{()->\$}{GradedAlgebra}
{The multiplicative identity element for a ring
(more generally, for a \axiomType{Monoid} and \axiomType{MonadWithUnit}).
or a graded algebra.
See also \axiomType{InputForm}.
}

\keydata{x\keyop{<}y}{2}{(\$, \$)->Boolean}{OrderedSet}
  {\opkey{The binary operator \smath{<} denotes the boolean-valued
``less than'' function.
Its meaning depends on the type of its arguments.
The operation \smath{x < y} for \smath{x} and \smath{y}:}
\begin{simpleList}
\item elements of a totally ordered set (such as integer and 
floating point numbers):
tests if \smath{x} is less than y.
\item sets: tests if all the elements of \smath{x} are also elements of y.
\item permutations: tests if \smath{x} is less than \smath{y};
see \axiomType{Permutation} for details.
Note: this order relation is total if and only
if the underlying domain is of category \axiomType{Finite} or 
\axiomType{OrderedSet}.
\item permutation groups: tests if \smath{x} is a proper subgroup of y.
\item See also \axiomType{OutputForm}.
\end{simpleList}
}

\keydata{x\keyop{=}y}{2}{(S, S)->\$}{Equation}
  {\opkey{The meaning of binary operator \smath{x = y}
depends on the value expected of the operation.
If the value is expected to be:}
\begin{simpleList}
\item a boolean: \smath{x = y} tests that \smath{x} and \smath{y} are equal.
\item an equation: \smath{x = y} creates an equation.
\item See also \axiomType{OutputForm}.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{abelianGroup}}\opLeftPren{}
{\it listOfPositiveIntegers}\opRightPren{}%
}%
}%
{1}{(List(PositiveInteger))->PermutationGroup(Integer)}
{PermutationGroupExamples}
{\smath{\mbox{\bf abelianGroup}\opLeftPren{}[p_1, 
\allowbreak{} \ldots, p_k]\opRightPren{}} constructs the abelian
group that is the direct product of cyclic groups with order
\smath{p_i}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{absolutelyIrreducible?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FunctionFieldCategory}
{\smath{\mbox{\bf absolutelyIrreducible?}\opLeftPren{}\opRightPren{}\$F} 
tests if the algebraic
function field \smath{F}
remains irreducible over the algebraic closure of the ground field.
\seeType{FunctionFieldCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{abs}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->R}{ComplexCategory}
 {\smath{\mbox{\bf abs}\opLeftPren{}x\opRightPren{}} returns the 
absolute value of \smath{x},
an element of an \axiomType{OrderedRing} or a \axiomType{Complex}, 
\axiomType{Quaternion},
or \axiomType{Octonion} value.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acos}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acosIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex}, 
\axiomType{Float}, \axiomType{DoubleFloat}, or
  \axiomType{Expression} value or a series.}
  \newitem\smath{\mbox{\bf acos}\opLeftPren{}x\opRightPren{}} 
returns the arccosine of \smath{x}.
  \newitem\smath{\mbox{\bf acosIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acos}\opLeftPren{}x\opRightPren{}} 
if possible, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acosh}}\opLeftPren{}
{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acoshIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.
}
\newitem\smath{\mbox{\bf acosh}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arccosine of
\smath{x}.
  \newitem
\smath{\mbox{\bf acoshIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acosh}\opLeftPren{}x\opRightPren{}} if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acoth}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acothIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
 {\opkey{Argument \smath{x} can be a \axiomType{Complex}, 
\axiomType{Float}, \axiomType{DoubleFloat}, or
  \axiomType{Expression} value or a series. }
  \newitem\smath{\mbox{\bf acoth}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arccotangent of \smath{x}.
  \newitem
  \smath{\mbox{\bf acothIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acoth}\opLeftPren{}x\opRightPren{}} if possible, and 
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acot}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acotIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
  {\opkey{Argument \smath{x} can be a \axiomType{Complex}, 
\axiomType{Float}, \axiomType{DoubleFloat}, or
  \axiomType{Expression} value or a series. }
  \newitem\smath{\mbox{\bf acot}\opLeftPren{}x\opRightPren{}} 
returns the arccotangent of \smath{x}.
  \newitem
\smath{\mbox{\bf acotIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acot}\opLeftPren{}x\opRightPren{}} if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acsch}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acschIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.
}
\newitem\smath{\mbox{\bf acsch}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arccosecant of
\smath{x}.
  \newitem
\smath{\mbox{\bf acschIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acsch}\opLeftPren{}x\opRightPren{}} if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{acsc}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{acscIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
  {\opkey{Argument \smath{x} can be a \axiomType{Complex}, 
\axiomType{Float}, \axiomType{DoubleFloat}, or
  \axiomType{Expression} value or a series. }
  \newitem\smath{\mbox{\bf acsc}\opLeftPren{}x\opRightPren{}} 
returns the arccosecant of \smath{x}.
  \newitem
  \smath{\mbox{\bf acscIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf acsc}\opLeftPren{}x\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{adaptive}}\opLeftPren{}
{\it \opt{boolean}}\opRightPren{}%
}%
}%
{0}{()->Boolean}{GraphicsDefaults}
 {\smath{\mbox{\bf adaptive}\opLeftPren{}\opRightPren{}} 
tests whether plotting will be done adaptively.
  \newitem
  \smath{\mbox{\bf adaptive}\opLeftPren{}true\opRightPren{}} 
turns adaptive plotting on; 
\smath{\mbox{\bf adaptive}\opLeftPren{}false\opRightPren{}} 
turns it off.
  Note: this command can be expressed by the draw option \smath{adaptive == b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{addmod}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, \$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf addmod}\opLeftPren{}a, 
\allowbreak{} b, \allowbreak{} p\opRightPren{}}, $0\le a, b<p>1$, 
means $a+b \mod p$.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{airyAi}}\opLeftPren{}
{\it complexDoubleFloat}\opRightPren{}%
\opand \mbox{\axiomFun{airyBi}}\opLeftPren{}
{\it complexDoubleFloat}\opRightPren{}%
}%
}%
{1}{(Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf airyAi}\opLeftPren{}x\opRightPren{}} 
is the Airy function ${\rm Ai}(x)$ satisfying the
differential equation
${\rm Ai}''(x) - x {\rm Ai}(x) = 0$.
\newitem
  \smath{\mbox{\bf airyBi}\opLeftPren{}x\opRightPren{}} 
is the Airy function ${\rm Bi}(x)$ satisfying the differential equation
${\rm Bi}''(x) - x  {\rm Bi}(x) = 0$.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Aleph}}\opLeftPren{}
{\it nonNegativeInteger}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->\$}{CardinalNumber}
{\smath{\mbox{\bf Aleph}\opLeftPren{}n\opRightPren{}} provides the 
named (infinite) cardinal number.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{algebraic?}}\opLeftPren{}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ExtensionField}
{\smath{\mbox{\bf algebraic?}\opLeftPren{}a\opRightPren{}} tests whether 
an element \smath{a} is algebraic with respect to the ground field \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{alphabetic}}\opLeftPren{}\opRightPren{}%
\opand \mbox{\axiomFun{alphabetic?}}\opLeftPren{}
{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Character}
{\smath{\mbox{\bf alphabetic}\opLeftPren{}\opRightPren{}} 
returns the class of all characters
\smath{ch} for which
\smath{\mbox{\bf alphabetic?}\opLeftPren{}ch\opRightPren{}} is \smath{true}.
  \newitem
\smath{\mbox{\bf alphabetic?}\opLeftPren{}ch\opRightPren{}} 
tests if \smath{ch} is an alphabetic
character a$\ldots$z, A$\ldots$B.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{alphanumeric}}\opLeftPren{}\opRightPren{}%
\opand \mbox{\axiomFun{alphanumeric?}}\opLeftPren{}
{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Character}
{\smath{\mbox{\bf alphanumeric}\opLeftPren{}\opRightPren{}} returns 
the class of all characters \smath{ch} for which
\smath{\mbox{\bf alphanumeric?}\opLeftPren{}ch\opRightPren{}} is \smath{true}.
  \newitem
  \smath{\mbox{\bf alphanumeric?}\opLeftPren{}ch\opRightPren{}} 
tests if \smath{ch} is either an alphabetic character a$\ldots$z, 
A$\ldots$B or digit 0$\ldots$9.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{alternating}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN}{}{}
  {\smath{\mbox{\bf alternating}\opLeftPren{}n\opRightPren{}} 
is the cycle index of the
   alternating group of degree \smath{n}.
See \axiomType{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{alternatingGroup}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf alternatingGroup}\opLeftPren{}li\opRightPren{}} 
constructs the alternating group
acting on the integers in the list \smath{li}.
If \smath{n} is odd, the generators are in general the
\smath{(n-2)}-cycle \smath{(li.3, \ldots, li.n)} and the
3-cycle \smath{(li.1, li.2, li.3)}.
If \smath{n} is even, the generators are the product of the 2-cycle
\smath{(li.1, li.2)} with \smath{(n-2)}-cycle
\smath{(li.3, \ldots, li.n)} and the 3-cycle \smath{(li.1, li.2, li.3)}.
Duplicates in the list will be removed.
\newitem\smath{\mbox{\bf alternatingGroup}\opLeftPren{}n\opRightPren{}} 
constructs the alternating
group $A_n$ acting on the integers \smath{1, \ldots, n}.
If \smath{n} is odd, the generators are in general the
\smath{(n-2)}-cycle \smath{(3, \ldots, n)} and the 3-cycle \smath{(1, 2, 3)}.
If \smath{n} is even, the generators are the product of the 2-cycle
\smath{(1, 2)} with \smath{(n-2)}-cycle \smath{(3, \ldots, n)} and the 3-cycle
\smath{(1, 2, 3)} if \smath{n} is even.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{alternative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf alternative?}\opLeftPren{}\opRightPren{}\$F} 
tests if $2 \mbox{\bf associator}(a, a, b) = 0 =
2 \mbox{\bf associator}(a, b, b)$ for all \smath{a}, \smath{b} in the algebra
\smath{F}.
Note: in general,
\smath{2 a=0} does not necessarily imply \smath{a=0}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{and}}\opLeftPren{}
{\it boolean}, \allowbreak{}{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BitAggregate}
{\smath{x \and y} returns the logical {\it and} of two
\axiomType{BitAggregate}s \smath{x} and \smath{y}.
   \newitem
\smath{b_1 \and b_2} returns the logical {\it and} of Boolean
\smath{b_1} and \smath{b_2}.
\newitem\smath{si_1 \and si_2} returns the bit-by-bit logical {\it
and} of the small integers \smath{si_1} and \smath{si_2}.
\newitem See also \axiomType{OutputForm}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{approximants}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(Fraction(R))}{ContinuedFraction}
{\smath{\mbox{\bf approximants}\opLeftPren{}cf\opRightPren{}} 
returns the stream of approximants of the
continued fraction \smath{cf}.
If the continued fraction is finite, then the stream will be
infinite and periodic with period 1.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{approximate}}\opLeftPren{}
{\it series}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Expon)->Coef}{UnivariatePowerSeriesCategory}
{\smath{\mbox{\bf approximate}\opLeftPren{}s, 
\allowbreak{} r\opRightPren{}} returns a truncated power series as an
expression in the coefficient domain of the power series.
For example, if \smath{R} is \axiomType{Fraction Polynomial Integer}
and \smath{s} is a series over \smath{R}, then approximate(s, r)
returns the power series \smath{s} truncated after the exponent
\smath{r} term.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{approximate}}\opLeftPren{}
{\it pAdicInteger}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->Integer}{PAdicIntegerCategory}
{\smath{\mbox{\bf approximate}\opLeftPren{}x, 
\allowbreak{} n\opRightPren{}}, \smath{x} a p-adic integer, returns an
integer \smath{y} such that \smath{y = x \mod p^n} when \smath{n}
is positive, and 0 otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{approxNthRoot}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(I, NonNegativeInteger)->I}{IntegerRoots}
{\smath{\mbox{\bf approxNthRoot}\opLeftPren{}n, 
\allowbreak{} p\opRightPren{}} returns an integer approximation
\smath{i} to \smath{n^{1/p}} such that \smath{-1 < i - n^{1/p} <
1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{approxSqrt}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{2}{(I, NonNegativeInteger)->I}{IntegerRoots}
{\smath{\mbox{\bf approxSqrt}\opLeftPren{}n\opRightPren{}} returns an 
integer approximation \smath{i}
to \smath{\sqrt(n)} such that \smath{-1 < i - \sqrt(n) < 1}.
A variable precision Newton iteration is used with running time
\smath{O( \log(n)^2 )}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{areEquivalent?}}\opLeftPren{}{\it listOfMatrices}, 
\allowbreak{}{\it  listOfMatrices}\allowbreak $\,[$ , \allowbreak{}
{\it  randomElements?}, \allowbreak{}{\it  numberOfTries}$]$\opRightPren{}%
}%
}%
{4}{(List(Matrix(R)), List(Matrix(R)), Boolean, Integer)->
Matrix(R)}{RepresentationPackage2}
{\smath{\mbox{\bf areEquivalent?}\opLeftPren{}lM, 
\allowbreak{} lM', \allowbreak{} b, \allowbreak{} numberOfTries\opRightPren{}} tests whether the
two lists of matrices, assumed of the same square shape, can be
simultaneously conjugated by a non-singular matrix.
If these matrices represent the same group generators, the
representations are equivalent.
The algorithm tries \smath{numberOfTries} times to create elements
in the generated algebras in the same fashion.
For details, consult HyperDoc.
  \newitem
  \smath{\mbox{\bf areEquivalent?}\opLeftPren{}aG0, 
\allowbreak{} aG1, \allowbreak{} numberOfTries\opRightPren{}} calls 
\smath{\mbox{\bf areEquivalent?}\opLeftPren{}aG0, \allowbreak{} aG1, 
\allowbreak{} true, \allowbreak{} 25\opRightPren{}}.
  \newitem
  \smath{\mbox{\bf areEquivalent?}\opLeftPren{}aG0, 
\allowbreak{} aG1\opRightPren{}} calls 
\smath{\mbox{\bf areEquivalent?}\opLeftPren{}aG0, 
\allowbreak{} aG1, \allowbreak{} true, \allowbreak{} 25\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{argscript}}\opLeftPren{}
{\it symbol}, \allowbreak{}{\it  listOfOutputForms}\opRightPren{}%
}%
}%
{2}{(\$, List(OutputForm))->\$}{Symbol}
{\smath{\mbox{\bf argscript}\opLeftPren{}f, 
\allowbreak{} [o_1, \allowbreak{} \ldots, o_n]\opRightPren{}} returns a new symbol 
with \smath{f} with scripts
\smath{o_1, \ldots, o_n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{argument}}\opLeftPren{}
{\it complexExpression}\opRightPren{}%
}%
}%
{1}{(\$)->R}{ComplexCategory}
{\smath{\mbox{\bf argument}\opLeftPren{}c\opRightPren{}} 
returns the angle made by complex expression \smath{c} with
the positive real axis.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{arity}}\opLeftPren{}
{\it basicOperator}\opRightPren{}%
}%
}%
{1}{(\$)->Union(NonNegativeInteger, \mbox{\tt "failed"})}{BasicOperator}
{\smath{\mbox{\bf arity}\opLeftPren{}op\opRightPren{}} 
returns \smath{n} if \smath{op} is
\smath{n}-ary, and \mbox{\tt "failed"} if \smath{op} has arbitrary arity.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{asec}}\opLeftPren{}
{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{asecIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.}
\newitem\smath{\mbox{\bf asec}\opLeftPren{}x\opRightPren{}} 
returns the arcsecant of \smath{x}.
\newitem\smath{\mbox{\bf asecIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf asec}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{asech}}\opLeftPren{}
{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{asechIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.}
\newitem
\smath{\mbox{\bf asech}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arcsecant of \smath{x}.
\newitem
\smath{\mbox{\bf asechIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf asech}\opLeftPren{}x\opRightPren{}} if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{asin}}\opLeftPren{}
{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{asinIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.
}
\newitem\smath{\mbox{\bf asin}\opLeftPren{}x\opRightPren{}} 
returns the arcsine of \smath{x}.
\newitem\smath{\mbox{\bf asinIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf asin}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{asinh}}\opLeftPren{}
{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{asinhIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.
}
\newitem\smath{\mbox{\bf asinh}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arcsine of
\smath{x}.
\newitem\smath{\mbox{\bf asinhIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf asinh}\opLeftPren{}x\opRightPren{}} if
possible, and \mbox{\tt "failed"} otherwise.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{assign}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
  {\smath{\mbox{\bf assign}\opLeftPren{}f, \allowbreak{} g\opRightPren{}} 
creates an \axiomType{OutputForm} object
for the assignment \smath{f {\tt :=} g}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{associates?}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{IntegralDomain}
{\smath{\mbox{\bf associates?}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
tests whether \smath{x} and \smath{y} are associates, that is, that
\smath{x} and \smath{y} differ by a unit factor.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{associative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf associative?}\opLeftPren{}\opRightPren{}\$F} tests 
if multiplication in \smath{F} is associative, where
\smath{F} is a \axiomType{FiniteRankNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{associatorDependence}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(Vector(R))}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf associatorDependence}\opLeftPren{}\opRightPren{}\$F} 
computes associator identities for
\smath{F}. \consultType{FiniteRankNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{associator}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  element}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{3}{(\$, \$, \$)->\$}{NonAssociativeRng}
  {\smath{\mbox{\bf associator}\opLeftPren{}a, \allowbreak{} b, 
\allowbreak{} c\opRightPren{}} returns \smath{(ab)c-a(bc)},
where \smath{a}, \smath{b}, and \smath{c} are all members of a domain of
category \axiomType{NonAssociateRng}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{assoc}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  associationList}\opRightPren{}%
}%
}%
{2}{(Key, \$)->Union(Record(key:Key, entry:Entry), 
\mbox{\tt "failed"})}{AssociationListAggregate}
{\smath{\mbox{\bf assoc}\opLeftPren{}k, 
\allowbreak{} al\opRightPren{}} returns the element \smath{x} in the
\axiomType{AssociationList} \smath{al}
stored under key \smath{k}, or \mbox{\tt "failed"} if no such element exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{atan}}\opLeftPren{}
{\it expression\opt{, phase}}\opRightPren{}%
 \opand \mbox{\axiomFun{atanIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ArcTrigonometricFunctionCategory}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.}
\newitem\smath{\mbox{\bf atan}\opLeftPren{}x\opRightPren{}} returns the 
arctangent of \smath{x}.
\newitem\smath{\mbox{\bf atan}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
computes the arc tangent from \smath{x}
with phase \smath{y}.
\newitem\smath{\mbox{\bf atanIfCan}\opLeftPren{}x\opRightPren{}} 
returns the \smath{\mbox{\bf atan}\opLeftPren{}x\opRightPren{}} if
possible, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{atanh}}\opLeftPren{}{\it expression}\opRightPren{}%
\opand \mbox{\axiomFun{atanhIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, \mbox{\tt "failed"})}{PartialTranscendentalFunctions}
{\opkey{Argument \smath{x} can be a \axiomType{Complex},
\axiomType{Float}, \axiomType{DoubleFloat}, or
\axiomType{Expression} value or a series.}
\newitem\smath{\mbox{\bf atanh}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic arctangent of
\smath{x}.
\newitem\smath{\mbox{\bf atanhIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf atanh}\opLeftPren{}x\opRightPren{}} if
possible, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{atom?}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf atom?}\opLeftPren{}s\opRightPren{}} tests if \smath{x} is
atomic, where \smath{x} is an \axiomType{SExpression} or 
\axiomType{OutputForm}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{antiCommutator}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{NonAssociativeRng}
  {\smath{\mbox{\bf antiCommutator}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} returns \smath{x y + y x},
where \smath{x} and \smath{y} are elements of a non-associative ring,
possibly without identity. \seeType{NonAssociativeRng}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{antisymmetric?}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{MatrixCategory}
{\smath{\mbox{\bf antisymmetric?}\opLeftPren{}m\opRightPren{}} 
tests if the matrix \smath{m} is square
and antisymmetric, that is, \smath{m_{i, j} = -m_{j, i}} for all
\smath{i} and \smath{j}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{antisymmetricTensors}}\opLeftPren{}
{\it matrices}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), PositiveInteger)->List(Matrix(R))}
{RepresentationPackage1}
  {\smath{\mbox{\bf antisymmetricTensors}\opLeftPren{}A, 
\allowbreak{} n\opRightPren{}},
where \smath{A} is an \smath{m} by \smath{m} matrix,
returns a matrix obtained by applying to \smath{A}
the irreducible, polynomial representation of the
general linear group \smath{GL_m} corresponding to the
partition \smath{(1, 1, \ldots, 1, 0, 0, \ldots, 0)} of \smath{n}.
A call to \spadfun{error} occurs if \smath{n} is greater than \smath{m}.
Note: this corresponds to the symmetrization of the representation
with the sign
representation of the symmetric group \smath{S_n}.
The carrier spaces of the representation are the antisymmetric
tensors of the \smath{n}-fold tensor product.
  \newitem\smath{\mbox{\bf antisymmetricTensors}\opLeftPren{}lA, 
\allowbreak{} n\opRightPren{}},
where \smath{lA} is a list of \smath{m} by \smath{m} matrices,
similarly applies the representation of \smath{GL_m} to each matrix \smath{A}
of \smath{lA}, returning a list of matrices.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{any?}}\opLeftPren{}{\it predicate}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->Boolean}{HomogeneousAggregate}
{\smath{\mbox{\bf any?}\opLeftPren{}pred, \allowbreak{} a\opRightPren{}} 
tests if predicate \smath{\mbox{\bf pred}\opLeftPren{}x\opRightPren{}} 
is \smath{true} for any element \smath{x} of aggregate \smath{a}. 
Note: for collections, \code{any?(p, u) = reduce(or, map(p, u), false, true)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{any}}\opLeftPren{}{\it type}, \allowbreak{}
{\it  object}\opRightPren{}%
}%
}%
{2}{(SExpression, None)->\$}{Any}
{\smath{\mbox{\bf any}\opLeftPren{}type, \allowbreak{} object\opRightPren{}} 
is a technical function for creating an \smath{object} of \axiomType{Any}. 
Argument \smath{type} is a \spadgloss{LISP} form for the \smath{type} 
of \smath{object}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{append}}\opLeftPren{}{\it list}, \allowbreak{}
{\it  list}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{List}
{\smath{\mbox{\bf append}\opLeftPren{}l_1, \allowbreak{} l_2\opRightPren{}} 
appends the elements of list \smath{l_1}
onto the front of
list \smath{l_2}.
See also \spadfun{concat}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{axesColorDefault}}\opLeftPren{}
{\it \opt{palette}}\opRightPren{}%
}%
}%
{0}{()->Palette}{ViewDefaultsPackage}
{\smath{\mbox{\bf axesColorDefault}\opLeftPren{}p\opRightPren{}} sets 
the default color of the axes in a \twodim{} viewport to the palette \smath{p}.
  \newitem
  \smath{\mbox{\bf axesColorDefault}\opLeftPren{}\opRightPren{}} 
returns the default color of the axes in a \twodim{} viewport.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{back}}\opLeftPren{}{\it queue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{QueueAggregate}
{\smath{\mbox{\bf back}\opLeftPren{}q\opRightPren{}} 
returns the element at the back of the queue, or calls
\spadfun{error} if \smath{q} is empty.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bag}}\opLeftPren{}{\it \opt{bag}}\opRightPren{}%
}%
}%
{0}{()->\$}{BagAggregate}
{\smath{\mbox{\bf bag}\opLeftPren{}\colx{x}{y}{z}\opRightPren{}} 
creates a bag with elements \smath{x}, \smath{y}, $\ldots$, \smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{balancedBinaryTree}}\opLeftPren{}
{\it nonNegativeInteger}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{0}{()->\$}{BagAggregate}
 {\smath{\mbox{\bf balancedBinaryTree}\opLeftPren{}n, 
\allowbreak{} s\opRightPren{}} creates a balanced binary tree with
\smath{n} nodes, each with value \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{base}}\opLeftPren{}{\it group}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf base}\opLeftPren{}gp\opRightPren{}} returns a 
base for the group {\it gp}. \consultType{PermutationGroup}
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basis}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Vector(\$)}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf basis}\opLeftPren{}\opRightPren{}\$R} returns a 
fixed basis of \smath{R}
or a subspace of \smath{R}.
See \axiomType{FiniteAlgebraicExtensionField},
\axiomType{FramedAlgebra},
\axiomType{FramedNonAssociativeAlgebra} using HyperDoc for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfCenter}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(A)}{AlgebraPackage}
{\smath{\mbox{\bf basisOfCenter}\opLeftPren{}\opRightPren{}\$R} returns a 
basis of the space of all
\smath{x} in \smath{R} satisfying \smath{\mbox{\bf commutator}\opLeftPren{}x, 
a) = 0} and
\smath{\mbox{\bf associator}\opLeftPren{}x, \allowbreak{} a, \allowbreak{} b
\opRightPren{}} = \smath{\mbox{\bf associator}\opLeftPren{}a, \allowbreak{} x, 
\allowbreak{} b\opRightPren{}} = \smath{\mbox{\bf associator}\opLeftPren{}a, 
\allowbreak{} b, \allowbreak{} x\opRightPren{}} =
0 for all \smath{a}, \smath{b} in \smath{R}.
Domain \smath{R} is a domain of category
\axiomType{FramedNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfCentroid}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(Matrix(R))}{AlgebraPackage}
{\smath{\mbox{\bf basisOfCentroid}\opLeftPren{}\opRightPren{}\$R} 
returns a basis of the centroid of
\smath{R}, that is, the endomorphism ring of \smath{R} considered as
\smath{(R, R)}-bimodule.
Domain \smath{R} is a domain of category
\axiomType{FramedNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfCommutingElements}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(A)}{AlgebraPackage}
{\smath{\mbox{\bf basisOfCommutingElements}\opLeftPren{}\opRightPren{}\$R} 
returns a basis of the space
of all \smath{x} of \smath{R} satisfying 
\smath{\mbox{\bf commutator}\opLeftPren{}x, \allowbreak{} a\opRightPren{}} = 0
for all \smath{a} in \smath{R}.
Domain \smath{R} is a domain of category
\axiomType{FramedNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfLeftAnnihilator}}\opLeftPren{}
{\it element}\opRightPren{}%
 \opand \mbox{\axiomFun{basisOfRightAnnihilator}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(A)->List(A)}{AlgebraPackage}
{\opkey{These operations return a basis of the space of all
\smath{x} in \smath{R} of category
\axiomType{FramedNonAssociativeAlgebra}, satisfying}
\begin{simpleList}
\item\smath{\mbox{\bf basisOfLeftAnnihilator}\opLeftPren{}a\opRightPren{}}:
 \smath{0 = xa}.
\item\smath{\mbox{\bf basisOfRightAnnihilator}\opLeftPren{}a\opRightPren{}}:
  \smath{0 = ax}.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfNucleus}}\opLeftPren{}\opRightPren{}%
 \optand \mbox{\axiomFun{basisOfLeftNucleus}}\opLeftPren{}\opRightPren{}%
 \optand \mbox{\axiomFun{basisOfMiddleNucleus}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{basisOfRightNucleus}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(A)}{AlgebraPackage}
{\opkey{Each operation returns a basis of the space of all
\smath{x} of \smath{R}, a domain of category
\axiomType{FramedNonAssociativeAlgebra}, satisfying for all
\smath{a} and \smath{b}:}
\begin{simpleList}
\item \smath{\mbox{\bf basisOfNucleus}\opLeftPren{}\opRightPren{}\$R}:
\smath{\mbox{\bf associator}\opLeftPren{}x, \allowbreak{} a, 
\allowbreak{} b\opRightPren{}} = \smath{\mbox{\bf associator}\opLeftPren{}a, 
\allowbreak{} x, \allowbreak{} b\opRightPren{}}
= \smath{\mbox{\bf associator}\opLeftPren{}a, \allowbreak{} b, 
\allowbreak{} x\opRightPren{}} = 0;
\item \smath{\mbox{\bf basisOfLeftNucleus}\opLeftPren{}\opRightPren{}\$R}:  
\smath{\mbox{\bf associator}\opLeftPren{}x, \allowbreak{} a, 
\allowbreak{} b\opRightPren{}} = 0;
\item \smath{\mbox{\bf basisOfMiddleNucleus}\opLeftPren{}\opRightPren{}\$R}: 
\smath{\mbox{\bf associator}\opLeftPren{}a, \allowbreak{} x, 
\allowbreak{} b\opRightPren{}} = 0;
\item \smath{\mbox{\bf basisOfRightNucleus}\opLeftPren{}\opRightPren{}\$R}:  
\smath{\mbox{\bf associator}\opLeftPren{}a, 
\allowbreak{} b, \allowbreak{} x\opRightPren{}} = 0.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{basisOfLeftNucloid}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{basisOfRightNucloid}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(Matrix(R))}{AlgebraPackage}
{\opkey{Each operation returns a basis of the space of
endomorphisms of \smath{R}, a domain of category
\axiomType{FramedNonAssociativeAlgebra}, considered as:}
\begin{simpleList}
  \item\smath{\mbox{\bf basisOfLeftNucloid}\opLeftPren{}\opRightPren{}}: 
a right module.
  \item\smath{\mbox{\bf basisOfRightNucloid}\opLeftPren{}\opRightPren{}}: 
a left module.
\end{simpleList}
Note: if \smath{R} has a unit, the left and right nucloid coincide with
the left and right nucleus.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{belong?}}\opLeftPren{}{\it operator}\opRightPren{}%
}%
}%
{1}{(BasicOperator)->Boolean}{ExpressionSpace}
{\smath{\mbox{\bf belong?}\opLeftPren{}op\opRightPren{}\$R} tests 
if \smath{op} is known as an
operator to \smath{R}.
For example, \smath{R} is an \axiomType{Expression} domain or
\axiomType{AlgebraicNumber}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bernoulli}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Fraction(Integer)}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf bernoulli}\opLeftPren{}n\opRightPren{}} returns the 
\eth{\smath{n}} Bernoulli
number, that is, \smath{B(n, 0)} where \smath{B(n, x)} is the
\eth{\smath{n}} Bernoulli polynomial.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{besselI}}\opLeftPren{}{\it complexDoubleFloat}, 
\allowbreak{}{\it  complexDoubleFloat}\opRightPren{}%
\optand \mbox{\axiomFun{besselJ}}\opLeftPren{}{\it complexDoubleFloat}, 
\allowbreak{}{\it  complexDoubleFloat}\opRightPren{}%
\optand \mbox{\axiomFun{besselK}}\opLeftPren{}{\it complexDoubleFloat}, 
\allowbreak{}{\it  complexDoubleFloat}\opRightPren{}%
\opand \mbox{\axiomFun{besselY}}\opLeftPren{}{\it complexDoubleFloat}, 
\allowbreak{}{\it  complexDoubleFloat}\opRightPren{}%
}%
}%
{2}{(Complex(DoubleFloat), 
Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf besselI}\opLeftPren{}v, 
\allowbreak{} x\opRightPren{}} is the modified Bessel function of the first
kind, \smath{I(v, x)}, satisfying the differential equation
\smath{x^2 {w''(x)} + x w'(x) - (x^2+v^2)w(x) = 0}.
\bigitem\smath{\mbox{\bf besselJ}\opLeftPren{}v, 
\allowbreak{} x\opRightPren{}} is the Bessel function of the second
kind, \smath{J(v, x)},
satisfying the differential equation \smath{x^2 {w''(x)} + x w'(x)
+ (x^2-v^2)w(x) = 0}.
\bigitem\smath{\mbox{\bf besselK}\opLeftPren{}v, 
\allowbreak{} x\opRightPren{}} is the modified Bessel function of
the first kind, \smath{K(v, x)},
satisfying the differential equation \smath{x^2 {w''(x)} + x w'(x)
- (x^2+v^2)w(x) = 0}.
Note: The default implementation uses the relation
\smath{K(v, x) = \pi/2(I(-v, x) - I(v, x))/\sin(v \pi)}
so is not valid for integer values of \smath{v}.
\bigitem\smath{\mbox{\bf besselY}\opLeftPren{}v, 
\allowbreak{} x\opRightPren{}} is the Bessel function of the second
kind, \smath{Y(v, x)},
satisfying the differential equation \smath{x^2 {w''(x)} + x w'(x)
+ (x^2-v^2)w(x) = 0}.
Note: The default implementation uses the relation \smath{Y(v, x) =
(J(v, x) \cos(v \pi) - J(-v, x))/\sin(v \pi)} so is not valid for
integer values of \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Beta}}\opLeftPren{}{\it complexDoubleFloat}, 
\allowbreak{}{\it  complexDoubleFloat}\opRightPren{}%
}%
}%
{2}{(Complex(DoubleFloat), 
Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf Beta}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} 
is the Euler beta function, \smath{B(x, y)}, defined by
\smath{\mbox{\bf Beta}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} $\int_0^1{t^{x-1}(1-t)^{y-1} dt}$.
Note: this function is defined by
\smath{\mbox{\bf Beta}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} $= 
{{\Gamma(x)\Gamma(y)} \over {\Gamma(x + y)}}$.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{binaryTournament}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{1}{(Fraction(Integer))->\$}{BinaryExpansion}
{\smath{\mbox{\bf binaryTournament}\opLeftPren{}ls\opRightPren{}} creates a
\axiomType{BinaryTournament} tree with the
      elements of \smath{ls} as values at the nodes.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{binaryTree}}\opLeftPren{}{\it value}\opRightPren{}%
}%
}%
{1}{(Fraction(Integer))->\$}{BinaryExpansion}
  {\smath{\mbox{\bf binaryTree}\opLeftPren{}x\opRightPren{}} creates 
a binary tree
consisting of one node for which the \spadfunFrom{value}{BinaryTree} 
is \smath{x} and
the \spadfun{left} and \spadfun{right} subtrees are empty.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{binary}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{1}{(Fraction(Integer))->\$}{BinaryExpansion}
{\smath{\mbox{\bf binary}\opLeftPren{}rn\opRightPren{}} 
converts rational number \smath{rn} to a binary expansion.
 \newitem
 \smath{\mbox{\bf binary}\opLeftPren{}op, 
\allowbreak{} [a_1, \allowbreak{} \ldots, a_n]\opRightPren{}} 
returns the input form
corresponding to  \smath{a_1 {\rm op} \ldots op a_n}, where
\smath{op} and the \smath{a_i}'s are of type \axiomType{InputForm}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{binomial}}\opLeftPren{}
{\it integerNumber}, \allowbreak{}{\it  integerNumber}\opRightPren{}%
}%
}%
{2}{(I, I)->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf binomial}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} returns the binomial coefficient
\smath{C(x, y) = x!/(y!
(x-y)!)}, where \texht{$x \geq y \geq 0$}{x >= y >= 0},
the number of combinations of \smath{x} objects taken
\smath{y} at a time.
Arguments \smath{x} and \smath{y} can come from any
\axiomType{Expression} or \axiomType{IntegerNumberSystem} domain.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bipolar}}\opLeftPren{}{\it x}\opRightPren{}%
 \opand \mbox{\axiomFun{bipolarCylindrical}}
\opLeftPren{}{\it x}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf bipolar}\opLeftPren{}a\opRightPren{}} 
returns a function for transforming bipolar
coordinates to
Cartesian coordinates; this function maps the
point \smath{(u, v)} to \smath{(x = a \sinh(v)/(\cosh(v)-\cos(u)),
y = a \sin(u)/(\cosh(v)-\cos(u)))}.
  \newitem\smath{\mbox{\bf bipolarCylindrical}
\opLeftPren{}a\opRightPren{}} returns a function for transforming
bipolar cylindrical coordinates to Cartesian coordinates; this function
maps the point \smath{(u, v, z)} to
\smath{(x = a \sinh(v)/(\cosh(v)-\cos(u)), y = a
\sin(u)/(\cosh(v)-\cos(u)), z)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{biRank}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(A)->NonNegativeInteger}{AlgebraPackage}
  {\smath{\mbox{\bf biRank}\opLeftPren{}x\opRightPren{}\$R},
where \smath{R} is a domain of
category \axiomType{FramedNonAssociativeAlgebra},
returns the number of linearly independent elements
among \smath{x}, \smath{x b_i}, \smath{b_i x}, 
\smath{b_i x b_j}, \smath{i, j=1, \ldots, n},
where \smath{b=[b_1, \ldots, b_n]} is the fixed basis for \smath{R}.
Note: if \smath{R} has a unit, then
\spadfunFrom{doubleRank}{AlgebraPackage},
\spadfunFrom{weakBiRank}{AlgebraPackage}
and \spadfunFrom{biRank}{AlgebraPackage} coincide.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bit?}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{IntegerNumberSystem}
{\smath{\mbox{\bf bit?}\opLeftPren{}i, 
\allowbreak{} n\opRightPren{}} tests if the 
\eth{\smath{n}} bit of \smath{i} is a 1.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bits}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf bits}\opLeftPren{}\opRightPren{}} 
returns the precision of floats in
bits. Also see \spadfun{precision}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{blankSeparate}}\opLeftPren{}
{\it listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf blankSeparate}\opLeftPren{}lo\opRightPren{}},
where {\it lo} is a list of objects of type \axiomType{OutputForm}
(normally unexposed),
returns a single output form consisting of the elements
of {\it lo} separated by blanks.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{blue}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Color}{\smath{\mbox{\bf blue}\opLeftPren{}\opRightPren{}} 
returns the
position of the blue hue from total hues.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bottom!}}\opLeftPren{}{\it dequeue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{DequeueAggregate}
{\smath{\mbox{\bf bottom!}\opLeftPren{}q\opRightPren{}} removes 
then returns the element at the bottom
(back) of the dequeue q.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{box}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(List(\$))->\$}{ExpressionSpace}
{\smath{\mbox{\bf box}\opLeftPren{}e\opRightPren{}}, where \smath{e} 
is an expression, returns
\smath{e} with a box around it that prevents \smath{e} from being
evaluated when operators are applied to it.
For example, \smath{\mbox{\bf log}\opLeftPren{}1\opRightPren{}} 
returns \smath{0}, but
\smath{\mbox{\bf log}\opLeftPren{}{\mbox{\bf box}}(1)\opRightPren{}} 
returns the formal kernel
\smath{\mbox{\bf log}\opLeftPren{}1\opRightPren{}}.
\newitem
\smath{\mbox{\bf box}\opLeftPren{}f_1, \allowbreak{} \ldots, f_n
\opRightPren{}}, where the \smath{f_i} are
expressions, returns \smath{(f_1, \ldots, f_n)} with a box around
them that prevents the \smath{f_i} from being evaluated when
operators are applied to them, and makes them applicable to a
unary operator.
For example, \smath{\mbox{\bf atan}\opLeftPren{}{\mbox {\bf box}} 
[x, \allowbreak{} 2]\opRightPren{}} returns the
formal kernel \smath{\mbox{\bf atan}\opLeftPren{}x, 
\allowbreak{} 2\opRightPren{}}.
\newitem\smath{\mbox{\bf box}\opLeftPren{}o\opRightPren{}}, 
where \smath{o} is an object of type
\axiomType{OutputForm} (normally unexposed), returns an output
form enclosing \smath{o} in a box.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{brace}}\opLeftPren{}{\it outputForm}\opRightPren{}%
}%
}%
{}{}{}
  {\smath{\mbox{\bf brace}\opLeftPren{}o\opRightPren{}},
where \smath{o} is an object of type \axiomType{OutputForm}
(normally unexposed),
returns an output form enclosing \smath{o} in braces.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bracket}}\opLeftPren{}{\it outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf bracket}\opLeftPren{}o\opRightPren{}}, 
where \smath{o} is an object of type
\axiomType{OutputForm} (normally unexposed), returns an output
form enclosing \smath{o} in brackets.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{branchPoint}}\opLeftPren{}
{\it element}\opRightPren{}%
 \opand \mbox{\axiomFun{branchPointAtInfinity?}}
\opLeftPren{}\opRightPren{}%
}%
}%
{1}{(F)->Boolean}{FunctionFieldCategory}
{\smath{\mbox{\bf branchPoint?}\opLeftPren{}a\opRightPren{}\$F} 
tests if \smath{x = a} is a branch
point of the algebraic function field \smath{F}.
\newitem\smath{\mbox{\bf branchPointAtInfinity?}
\opLeftPren{}\opRightPren{}\$F} tests if the
algebraic function field \smath{F} has a branch point at infinity.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{bright}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(Color)->\$}{Palette}
{\smath{\mbox{\bf bright}\opLeftPren{}c\opRightPren{}} sets the shade 
of a hue, \smath{c}, above dim
but below pastel.
\newitem
\smath{\mbox{\bf bright}\opLeftPren{}ls\opRightPren{}} sets the font 
property of a list of
strings \smath{ls} to bold-face type.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cap}}\opLeftPren{}{\it symmetricPolynomial}, 
\allowbreak{}{\it  symmetricPolynomial}\opRightPren{}%
}%
}%
{ (SPOL RN, SPOL RN) -> RN}{}{}
{\smath{\mbox{\bf cap}\opLeftPren{}s_1, 
\allowbreak{} s_2\opRightPren{}}, introduced by Redfield, is the scalar
product of two cycle indices, where the \smath{s_i} are
\spadtype{SymmetricPolynomial}s with rational number coefficients.
See also \spadfun{cup}. See \spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cardinality}}\opLeftPren{}
{\it finiteSetAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{FiniteSetAggregate}
{\smath{\mbox{\bf cardinality}\opLeftPren{}u\opRightPren{}} 
returns the number of elements of
\smath{u}.
Note: \code{cardinality(u) = \#u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{car}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{SExpressionCategory}
{\smath{\mbox{\bf car}\opLeftPren{}se\opRightPren{}} 
returns \smath{a_1} when \smath{se} is the
\axiomType{SExpression} object \smath{(a_1, \ldots, a_n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cdr}}\opLeftPren{}
{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{SExpressionCategory}
{\smath{\mbox{\bf cdr}\opLeftPren{}se\opRightPren{}} 
returns \smath{(a_2, \ldots, a_n)} when \smath{se}
is the \axiomType{SExpression} object \smath{(a_1, \ldots, a_n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ceiling}}\opLeftPren{}
{\it floatOrRationalNumber}\opRightPren{}%
}%
}%
{1}{(\$)->D}{QuotientFieldCategory}
{\opkey {Argument \smath{x} is a floating point number or fraction
of numbers.}
\newitem\smath{\mbox{\bf ceiling}\opLeftPren{}x\opRightPren{}} 
returns the smallest integral element
above \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{center}}\opLeftPren{}{\it stringsOrSeries}
\opRightPren{}%
}%
}%
{1}{(\$)->Coef}{UnivariatePowerSeriesCategory}
{\smath{\mbox{\bf center}\opLeftPren{}s\opRightPren{}} returns the 
point about which the series
\smath{s} is expanded.
\newitem\smath{\mbox{\bf center}\opLeftPren{}ls, \allowbreak{} n, 
\allowbreak{} s\opRightPren{}} takes a list of strings \smath{ls},
and centers them within a list of strings which is \smath{n}
characters long.
The remaining spaces are filled with strings composed of as many
repetitions as possible of the last string parameter \smath{s}.
\newitem\smath{\mbox{\bf center}\opLeftPren{}s_1, \allowbreak{} n, 
\allowbreak{} s_2\opRightPren{}} is equivalent to
\smath{\mbox{\bf center}\opLeftPren{}[ s_1], n, s_2\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{char}}\opLeftPren{}{\it character}\opRightPren{}%
}%
}%
{1}{(Integer)->\$}{Character}
{\smath{\mbox{\bf char}\opLeftPren{}i\opRightPren{}} returns a 
\spadtype{Character} object with
integer code \smath{i}.
Note: {\bf ord(char({\it i})) \rm = \it i}.
\newitem
\smath{\mbox{\bf char}\opLeftPren{}s\opRightPren{}} returns the 
unique character of a string
\smath{s} of length one.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{characteristic}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{NaiveRingInternalUseOnly}
{\smath{\mbox{\bf characteristic}\opLeftPren{}\opRightPren{}\$R} 
returns the characteristic of ring
\smath{R}: the smallest positive integer \smath{n} such that
\smath{nx=0} for all \smath{x} in the ring, or zero if no such
\smath{n} exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{characteristicPolynomial}}\opLeftPren{}
{\it matrix\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(\$)->UP}{FiniteRankAlgebra}
{\smath{\mbox{\bf characteristicPolynomial}\opLeftPren{}a\opRightPren{}} 
returns the characteristic
polynomial of the regular representation of \smath{a} with respect
to any basis.
\newitem
\smath{\mbox{\bf characteristicPolynomial}\opLeftPren{}m\opRightPren{}} 
returns the
characteristic polynomial of the matrix \smath{m} expressed as
polynomial with a new symbol as variable.
\newitem
\smath{\mbox{\bf characteristicPolynomial}\opLeftPren{}m, 
\allowbreak{} sy\opRightPren{}} is similar except
that the resulting polynomial has variable \smath{sy}.
\newitem
\smath{\mbox{\bf characteristicPolynomial}\opLeftPren{}m, 
\allowbreak{} r\opRightPren{}}, where \smath{r} is
a member of the coefficient domain of matrix \smath{m}, evaluates
the characteristic polynomial at \smath{r}.
In particular, if \smath{r} is the polynomial \smath{'x}, then it
returns the characteristic polynomial expressed as a polynomial in
\smath{'x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{charClass}}\opLeftPren{}{\it strings}\opRightPren{}%
}%
}%
{1}{(List(Character))->\$}{CharacterClass}
{\smath{\mbox{\bf charClass}\opLeftPren{}s\opRightPren{}} creates 
a character class containing exactly
the characters given in the string \smath{s}.
\newitem
\smath{\mbox{\bf charClass}\opLeftPren{}ls\opRightPren{}} creates 
a character class which contains
exactly the characters given in the list \smath{ls} of strings.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{charthRoot}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf charthRoot}\opLeftPren{}r\opRightPren{}},
where \smath{r} is an element of domain with \spadfun{characteristic}
$p \not= 0$, returns the \eth{\smath{p}} root of \smath{r}, or 
\mbox{\tt "failed"} if none exists in the domain.
\newitem\smath{\mbox{\bf charthRoot}\opLeftPren{}f\opRightPren{}\$R} 
takes the \eth{\smath{p}} root of finite field element \smath{f},
where \smath{p} is the characteristic of the finite field \smath{R}.
Note: such a root is always defined in finite fields.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{chebyshevT}}\opLeftPren{}{\it positiveInteger}, 
\allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(NonNegativeInteger, R)->R}{OrthogonalPolynomialFunctions}
{\smath{\mbox{\bf chebyshevT}\opLeftPren{}n, \allowbreak{} x\opRightPren{}} 
returns the \eth{\smath{n}} Chebyshev polynomial of the
first kind, \smath{T_n(x)}, defined by
\smath{(1-tx)/(1-2tx+t^2) = \sum\nolimits_{n=0}^\infty {T_n(x)\, t^n}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{children}}\opLeftPren{}
{\it recursiveAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{RecursiveAggregate}
{\smath{\mbox{\bf children}\opLeftPren{}u\opRightPren{}}
returns a list of the children of aggregate \smath{u}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{chineseRemainder}}\opLeftPren{}
{\it listOfElements}, \allowbreak{}{\it  listOfModuli}\opRightPren{}%
\opand \mbox{\axiomFun{chineseRemainder}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  modulus}, \allowbreak{}{\it  integer}, 
\allowbreak{}{\it  modulus}\opRightPren{}%
}%
}%
{4}{(Integer, Integer, Integer, Integer)->Integer}
{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf chineseRemainder}\opLeftPren{}lv, \allowbreak{} lm
\opRightPren{}} where \smath{lv} is a list of
values \smath{[v_1, \ldots, v_n]} and \smath{lm} is a list of moduli
\smath{[m_1, \ldots, m_n]}, returns \smath{m} such that \smath{m =
n_i \bmod p_i}; the \smath{p_i} must be relatively prime.
\newitem\smath{\mbox{\bf chineseRemainder}\opLeftPren{}n_1, 
\allowbreak{} p_1, \allowbreak{} n_2, \allowbreak{} p_2\opRightPren{}} 
is equivalent to
\smath{\mbox{\bf chineseRemainder}\opLeftPren{}[n_1, \allowbreak{} n_2], 
\allowbreak{} [p_1, \allowbreak{} p_2]\opRightPren{}}, where all arguments
are integers.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{clearDenominator}}\opLeftPren{}
{\it fraction}\opRightPren{}%
}%
}%
{1}{(A)->A}{CommonDenominator}
{\smath{\mbox{\bf clearDenominator}\opLeftPren{}\col{q_1}{q_n}\opRightPren{}}
returns \smath{\col{p_1}{p_n}}
such that \smath{q_i = p_i/d} where \smath{d} is a common denominator for 
the \smath{q_i}'s.
\newitem\smath{\mbox{\bf clearDenominator}\opLeftPren{}A\opRightPren{}}, 
where \smath{A} is a matrix of fractions,
returns matrix \smath{B} such that \smath{A = B/d} where \smath{d} is a
common denominator for the elements of \smath{A}.
\newitem\smath{\mbox{\bf clearDenominator}\opLeftPren{}p\opRightPren{}} 
returns polynomial \smath{q} such that \smath{p = q/d} where \smath{d} 
is a common denominator for the coefficients of polynomial \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{clip}}\opLeftPren{}
{\it rangeOrBoolean}\opRightPren{}%
}%
}%
{1}{(Boolean)->\$}{DrawOption}
{\smath{\mbox{\bf clip}\opLeftPren{}b\opRightPren{}} turns 
\twodim{} clipping on if \smath{b} is \smath{true}, and off if \smath{b}
is \smath{false}. \sayOption{clip}{b}
\newitem
\smath{\mbox{\bf clip}\opLeftPren{}[ a..b]\opRightPren{}} 
defines the range for user-defined clipping.
\sayOption{range}{[ a..b]}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{clipPointsDefault}}\opLeftPren{}
{\it \opt{boolean}}\opRightPren{}%
}%
}%
{0}{()->Boolean}{GraphicsDefaults}
{\smath{\mbox{\bf clipPointsDefault}\opLeftPren{}\opRightPren{}} tests if 
automatic clipping is to be done.
\newitem\smath{\mbox{\bf clipPointsDefault}\opLeftPren{}b\opRightPren{}} 
turns on automatic clipping for \smath{b=true}, and
off if \smath{b=false}. \sayOption{clip}{b}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{close}}\opLeftPren{}{\it filename}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FileCategory}
{\smath{\mbox{\bf close}\opLeftPren{}v\opRightPren{}} 
closes the viewport window of the given \twodim{} or
\threedim{} viewport \smath{v} and terminates the 
corresponding Unix process.
Argument \smath{v} is  a member of domain
\spadtype{TwoDimensionalViewport} or
\spadtype{ThreeDimensionalViewport}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{close!}}\opLeftPren{}{\it filename}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FileCategory}
{\smath{\mbox{\bf close!}\opLeftPren{}fn\opRightPren{}} 
returns the file \smath{fn} closed to input and output.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{closedCurve?}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ThreeSpace}
{\smath{\mbox{\bf closedCurve?}\opLeftPren{}sp\opRightPren{}} 
tests if the \spadtype{ThreeSpace} object
\smath{sp} contains a single closed curve component.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{closedCurve}}\opLeftPren{}
{\it listsOfPoints\opt{, listOfPoints}}\opRightPren{}%
}%
}%
{1}{(List(Point(R)))->\$}{ThreeSpace}
{\smath{\mbox{\bf closedCurve}\opLeftPren{}lpt\opRightPren{}} 
returns a \spadtype{ThreeSpace} object
containing a single closed curve described by the list of points 
\smath{lpt} of the form
$[ p_0, p_1, \ldots, p_n, p_0]$.
\newitem\smath{\mbox{\bf closedCurve}\opLeftPren{}sp\opRightPren{}} 
returns a closed curve as a list of points, where
\smath{sp} must be a \spadtype{ThreeSpace} object containing
a single closed curve.
\newitem\smath{\mbox{\bf closedCurve}\opLeftPren{}sp, 
\allowbreak{} lpt\opRightPren{}} returns \spadtype{ThreeSpace} object with
the closed curve denoted by \smath{lpt} added. 
Argument \smath{lpt} is a list of points
of the form $[ p_0, p_1, \ldots, p_n, p_0]$.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coefficient}}\opLeftPren{}
{\it polynomialOrSeries}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, E)->R}{AbelianMonoidRing}
{\smath{\mbox{\bf coefficient}\opLeftPren{}p, \allowbreak{} n\opRightPren{}} 
extracts the coefficient of the monomial with exponent \smath{n} from 
polynomial \smath{p}, or returns zero if exponent is not present.
\newitem\smath{\mbox{\bf coefficient}\opLeftPren{}u, \allowbreak{} x, 
\allowbreak{} n\opRightPren{}} returns the coefficient of variable \smath{x} 
to the power
\smath{n} in \smath{u}, a multivariate polynomial or series.
\newitem\smath{\mbox{\bf coefficient}\opLeftPren{}u, \allowbreak{} 
\col{x_1}{x_k}, \col{n_1}{n_k}\opRightPren{}}
returns the coefficient of \smath{x_1^{n_1} \cdots x_k^{n_k}} in \smath{u},
a multivariate series or polynomial.
\newitem Also defined for domain \spadtype{CliffordAlgebra} and categories
\spadtype{AbelianMonoidRing},
\spadtype{FreeAbelianCategory},
and \spadtype{MonogenicLinearOperator}.
\newitem
{\smath{\mbox{\bf coefficient}\opLeftPren{}s, 
\allowbreak{} n\opRightPren{}} returns the terms of 
total degree \smath{n} of series
\smath{s} as a polynomial.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coefficients}}\opLeftPren{}
{\it polynomialOrStream}\opRightPren{}%
}%
}%
{1}{(\$)->List(R)}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf coefficients}\opLeftPren{}p\opRightPren{}} returns 
the list of non-zero coefficients of polynomial \smath{p}
starting with the coefficient of the maximum degree.
\newitem\smath{\mbox{\bf coefficients}\opLeftPren{}s\opRightPren{}} 
returns a stream of coefficients \smath{[ a_0, a_1, a_2, \ldots]}
for the stream \smath{s}:
\smath{a_0 + a_1 x + a_2 x^2 + \cdots}.
Note: the entries of the stream may be zero.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coerceImages}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{1}{(List(S))->\$}{Permutation}
{\smath{\mbox{\bf coerceImages}\opLeftPren{}ls\opRightPren{}} 
coerces the list \smath{ls} to a
permutation whose image is given by \smath{ls} and whose preimage
is fixed to be \smath{[ 1, \ldots, n]}.
Note:
\smath{\mbox{\bf coerceImages}\opLeftPren{}ls\opRightPren{}}=
\smath{coercePreimagesImages([
1, \ldots, n ], ls)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coerceListOfPairs}}\opLeftPren{}
{\it listOfPairsOfElements}\opRightPren{}%
}%
}%
{1}{(List(List(S)))->\$}{Permutation}
{\smath{\mbox{\bf coerceListOfPairs}\opLeftPren{}lls\opRightPren{}} 
coerces a list of pairs
\smath{lls} to a permutation, or calls
\smath{error} if not consistent, that is, the set of the first
elements coincides with the set of second elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coercePreimagesImages}}\opLeftPren{}
{\it listOfListOfElements}\opRightPren{}%
}%
}%
{1}{(List(List(S)))->\$}{Permutation}
{\smath{\mbox{\bf coercePreimagesImages}\opLeftPren{}lls\opRightPren{}} 
coerces the representation
\smath{lls} of a permutation as a list of preimages and images to
a permutation.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coleman}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}{\it  listOfIntegers}, \allowbreak{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{3}{(List(Integer), List(Integer), List(Integer))->Matrix(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf coleman}\opLeftPren{}alpha, \allowbreak{} beta, 
\allowbreak{} pi\opRightPren{}} generates the Coleman-matrix of a
certain double coset of the symmetric group given by an
representing element \smath{pi} and \smath{alpha} and
\smath{beta}.
The matrix has nonnegative entries, row sums \smath{alpha} and
column sums \smath{beta}.
\seeDetails{SymmetricGroupCombinatoricFunctions}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{color}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->\$}{Color}
{\smath{\mbox{\bf color}\opLeftPren{}i\opRightPren{}} returns a 
color of the indicated hue \smath{i}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{colorDef}}\opLeftPren{}{\it viewPort}, 
\allowbreak{}{\it  color}, \allowbreak{}{\it  color}\opRightPren{}%
}%
}%
{1}{(Integer)->\$}{Color}
{\smath{\mbox{\bf colorDef}\opLeftPren{}v, 
\allowbreak{} c_1, \allowbreak{} c_2\opRightPren{}} 
sets the range of colors along the colormap so
that the lower end of the colormap is defined by
\smath{c_1} and the top end of the colormap is defined by \smath{c2}
for the given \threedim{} viewport \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{colorFunction}}\opLeftPren{}
{\it smallFloatFunction}\opRightPren{}%
}%
}%
{1}{((DoubleFloat)->DoubleFloat)->\$}{DrawOption}
{\smath{\mbox{\bf colorFunction}\opLeftPren{}fn\opRightPren{}} 
specifies the color for
three-dimensional plots.
Function \smath{fn} can take one to three \spadtype{DoubleFloat}
arguments and always returns a \spadtype{DoubleFloat} value.
If one argument, the color is based upon the \smath{z}-component
of plot.
If two arguments, the color is based on two parameter values.
If three arguments, the color is based on the \smath{x},
\smath{y}, and \smath{z} components.
\sayOption{colorFunction}{fn}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{column}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->Col}{RectangularMatrixCategory}
{\smath{\mbox{\bf column}\opLeftPren{}M, 
\allowbreak{} j\opRightPren{}} returns the \eth{\smath{j}} column of the
matrix or \spadtype{TwoDimensionalArrayCategory} object \smath{M},
or calls \spadfun{error} if the index is outside the proper range.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{commaSeparate}}\opLeftPren{}
{\it listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf commaSeparate}\opLeftPren{}lo\opRightPren{}}, 
where \smath{lo} is a list of objects
of type \spadtype{OutputForm} (normally unexposed), returns an
output form which separates the elements of \smath{lo} by commas.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{commonDenominator}}\opLeftPren{}
{\it fraction}\opRightPren{}%
}%
}%
{1}{(A)->R}{CommonDenominator}
{\smath{\mbox{\bf commonDenominator}\opLeftPren{}\col{q_1}{q_n}\opRightPren{}}
returns a common
denominator for the \smath{q_i}'s.
\newitem\smath{\mbox{\bf commonDenominator}\opLeftPren{}A\opRightPren{}}, 
where \smath{A} is a matrix
of fractions, returns a common denominator for the elements of
\smath{A}.
\newitem\smath{\mbox{\bf commonDenominator}\opLeftPren{}p\opRightPren{}} 
returns a common denominator
for the coefficients of polynomial \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{commutative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf commutative?}\opLeftPren{}\opRightPren{}\$R} 
tests if multiplication in the algebra \smath{R} is commutative.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{commutator}}\opLeftPren{}
{\it groupElement}, \allowbreak{}{\it  groupElement}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{Group}
{\smath{\mbox{\bf commutator}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} computes \smath{\mbox{\bf inv}\opLeftPren{}p) * 
{\mbox {\bf inv}}(q) * p * q} where \smath{p} and
\smath{q} are members of a \spadtype{Group} domain.
\newitem
\smath{\mbox{\bf commutator}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns \smath{ab-ba} where \smath{a}
and \smath{b} are members of a \spadtype{NonAssociativeRing} domain.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{compactFraction}}\opLeftPren{}
{\it partialFraction}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{PartialFraction}
{\smath{\mbox{\bf compactFraction}\opLeftPren{}u\opRightPren{}} 
normalizes the partial fraction \smath{u} to a compact representation 
where it has only one fractional term per prime in the denominator.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{comparison}}\opLeftPren{}
{\it basicOperator}, \allowbreak{}{\it  property}\opRightPren{}%
}%
}%
{2}{(\$, (\$, \$)->Boolean)->\$}{BasicOperator}
{\smath{\mbox{\bf comparison}\opLeftPren{}op, 
\allowbreak{} p\opRightPren{}} attaches \smath{p}
as the \mbox{\tt "\%less?"} property to \smath{op}.
If \smath{op1} and \smath{op2} have the same name, and one of them
has a \mbox{\tt "\%less?"} property \smath{p}, then \smath{p(op1, op2)} is
called to decide whether \smath{op1 < op2}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{compile}}\opLeftPren{}
{\it symbol}, \allowbreak{}{\it  listOfTypes}\opRightPren{}%
}%
}%
{ (Symbol, List $) -> Symbol}{}{}
{\smath{\mbox{\bf compile}\opLeftPren{}f, 
\allowbreak{} [T_1, \allowbreak{} \ldots, T_n]\opRightPren{}} 
forces the interpreter to compile
the function with name \smath{f} with signature 
\smath{(T_1, \ldots, T_n) -> T},
where \smath{T} is a type determined by type analysis of the
function body of \smath{f}.
If the compilation is successful, the operation returns the name \smath{f}.
The operation calls \spadfun{error} if \smath{f}
is not defined beforehand in the interpreter,
or if the \smath{T_i}'s are not valid types, or if the compiler fails.
See also \spadfun{function},
\spadfun{interpret}, \spadfun{lambda}, and \spadfun{compiledFunction}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{compiledFunction}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  symbol }\allowbreak $\,[$ , \allowbreak{}
{\it  symbol}$]$\opRightPren{}%
}%
}%
{ (S, SY) -> (D -> I)}{}{}
{\opkey{Argument \smath{expression} may be of any type that is
coercible to type \spadtype{InputForm} (most commonly used types).
These functions must be package called to define the type of the
function produced.}
\newitem
\smath{\mbox{\bf compiledFunction}\opLeftPren{}expr, 
\allowbreak{} x\opRightPren{}\$P}, where \smath{P} is
\spadtype{MakeUnaryCompiledFunction(E, S, T)}, returns an anonymous
function of type \smath{S}{T} defined by defined by \smath{x
\mapsto {\rm expr}}.
The anonymous function is compiled and directly applicable to
objects of type \smath{S}.
\newitem
\smath{\mbox{\bf compiledFunction}\opLeftPren{}expr, 
\allowbreak{} x, \allowbreak{} y\opRightPren{}\$P}, where \smath{P} is
\spadtype{MakeBinaryCompiledFunction(E, A, B, T)} returns an
anonymous function of type \spadsig{(A, B)}{T} defined by
\smath{(x, y) \mapsto {\rm expr}}.
The anonymous function is compiled and is then directly applicable
to objects of type \smath{(A, B)}.
\newitem
See also \spadfun{compile}, \spadfun{function}, and
\spadfun{lambda}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complement}}\opLeftPren{}
{\it finiteSetElement}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FiniteSetAggregate}
{\smath{\mbox{\bf complement}\opLeftPren{}u\opRightPren{}} 
returns the complement of the finite set \smath{u}, that is, the 
set of all values not in \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complementaryBasis}}\opLeftPren{}
{\it vector}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Vector(\$)}{FunctionFieldCategory}
{\smath{\mbox{\bf complementaryBasis}\opLeftPren{}b_1, 
\allowbreak{} \ldots, b_n\opRightPren{}} returns the complementary
basis \smath{(b_1^{'}, \ldots, b_n^{'})} of \smath{(b_1, \ldots, b_n)} 
for a domain of category \spadtype{FunctionFieldCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complete}}\opLeftPren{}
{\it streamOrInteger}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LazyStreamAggregate}
{\smath{\mbox{\bf complete}\opLeftPren{}u\opRightPren{}} 
causes all terms of a stream or continued
fraction \smath{u} to be computed.
If not called on a finite stream or continued fraction, this
function will compute until interrupted.
\newitem
\smath{\mbox{\bf complete}\opLeftPren{}n\opRightPren{}} 
is the \eth{\smath{n}} complete
homogeneous symmetric function expressed in terms of power sums.
Alternatively, it is the cycle index of the symmetric group of
degree \smath{n}.
See \spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{completeEchelonBasis}}\opLeftPren{}
{\it vectorOfVectors}\opRightPren{}%
}%
}%
{1}{(Vector(Vector(R)))->Matrix(R)}{RepresentationPackage2}
{\smath{\mbox{\bf completeEchelonBasis}\opLeftPren{}vv\opRightPren{}} 
returns a completed basis from \smath{vv},
a vector of vectors of domain elements. \seeDetails{RepresentationPackage2}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complex}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(R, R)->\$}{ComplexCategory}
{\smath{\mbox{\bf complex}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
creates the complex expression \smath{x} + \%i*y.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexEigenvalues}}\opLeftPren{}{\it matrix}, 
\allowbreak{}{\it  precision}\opRightPren{}%
}%
}%
{2}{(Matrix(Complex(Fraction(Integer))), Float)->List(Complex(Float))}
{NumericComplexEigenPackage}
{\smath{\mbox{\bf complexEigenvalues}\opLeftPren{}m, \allowbreak{} 
eps\opRightPren{}} computes the eigenvalues of the matrix \smath{m} 
to precision \smath{eps}, chosen as a float or a rational number 
so as to agree with the type
of the coefficients of the matrix \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexEigenvectors}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  precision}\opRightPren{}%
}%
}%
{2}{(Matrix(Complex(Fraction(Integer))), Float)->
List(Record(floatval:Complex(Float), floatmult:Integer, 
floatvect:List(Matrix(Complex(Float)))))}{NumericComplexEigenPackage}
{\smath{\mbox{\bf complexEigenvectors}\opLeftPren{}m, 
\allowbreak{} eps\opRightPren{}} (\smath{m}, a matrix) 
returns a list of records,
each containing a complex
eigenvalue, its algebraic multiplicity, and a list of associated eigenvectors.
All results are expressed as complex floats or rationals 
with precision \smath{eps}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexElementary}}\opLeftPren{}
{\it expression\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(F)->F}{TrigonometricManipulations}
{\smath{\mbox{\bf complexElementary}\opLeftPren{}e\opRightPren{}} 
rewrites \smath{e} in terms of the two fundamental complex transcendental 
elementary functions: \smath{log, exp}.
\newitem\smath{\mbox{\bf complexElementary}\opLeftPren{}e, 
\allowbreak{} x\opRightPren{}} does the same but only rewrites 
kernels of \smath{e}
involving \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexExpand}}\opLeftPren{}
{\it integrationResult}\opRightPren{}%
}%
}%
{1}{(IntegrationResult(F))->F}{IntegrationResultToFunction}
{\smath{\mbox{\bf complexExpand}\opLeftPren{}ir\opRightPren{}}, 
where \smath{ir} is an \spadtype{IntegrationResult}, 
returns the expanded complex function corresponding to \smath{ir}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexIntegrate}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  variable}\opRightPren{}%
}%
}%
{2}{(F, Symbol)->F}{FunctionSpaceComplexIntegration}
{\smath{\mbox{\bf complexIntegrate}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}} returns $\int f(x)dx$ where \smath{x} is viewed 
as a complex variable.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexLimit}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  equation}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(R)), 
Equation(Fraction(Polynomial(R))))->
OnePointCompletion(Fraction(Polynomial(R)))}{RationalFunctionLimitPackage}
{\smath{\mbox{\bf complexLimit}\opLeftPren{}f(x), 
\allowbreak{} x = a\opRightPren{}} computes the complex 
limit of \smath{f} as its argument 
\smath{x} approaches \smath{a}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexNormalize}}\opLeftPren{}
{\it expression\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(F)->F}{TrigonometricManipulations}
{\smath{\mbox{\bf complexNormalize}\opLeftPren{}e\opRightPren{}} rewrites 
\smath{e} using the least possible number of complex independent kernels.
\newitem\smath{\mbox{\bf complexNormalize}\opLeftPren{}e, 
\allowbreak{} x\opRightPren{}} rewrites \smath{e} using the least possible 
number of complex independent kernels involving \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexNumeric}}\opLeftPren{}
{\it expression\opt{, positiveInteger}}\opRightPren{}%
}%
}%
{1}{(Expression(S))->Complex(Float)}{Numeric}
{\smath{\mbox{\bf complexNumeric}\opLeftPren{}u\opRightPren{}} 
returns a complex approximation of \smath{u},
where \smath{u} is a polynomial or an expression.
\newitem\smath{\mbox{\bf complexNumeric}\opLeftPren{}u, 
\allowbreak{} n\opRightPren{}} does the same but requires accuracy to be up to
\smath{n} decimal places.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexRoots}}\opLeftPren{}
{\it rationalFunctions\opt{, options}}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(Complex(Fraction(Integer)))), Par)->
List(Complex(Par))}{FloatingComplexPackage}
{\smath{\mbox{\bf complexRoots}\opLeftPren{}rf, 
\allowbreak{} eps\opRightPren{}} finds all the complex solutions of a
univariate rational function with rational number coefficients with
precision given by \smath{eps}.
The complex solutions are returned either
as rational numbers or floats depending on whether \smath{eps}
is a rational number or a float.
\newitem\smath{\mbox{\bf complexRoots}\opLeftPren{}lrf, 
\allowbreak{} lv, \allowbreak{} eps\opRightPren{}} similarly 
finds all the complex solutions
of a list of rational functions with rational number coefficients
with respect the variables appearing in \smath{lv}.
Solutions are computed to precision \smath{eps} and returned as
a list of values corresponding to the order of variables in \smath{lv}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexSolve}}\opLeftPren{}
{\it eq}, \allowbreak{}{\it  x}\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{See \smath{\mbox{\bf solve}\opLeftPren{}u, \allowbreak{} v\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{complexZeros}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  floatOrRationaNumber}\opRightPren{}%
}%
}%
{2}{(UP, Par)->List(Complex(Par))}{ComplexRootPackage}
{\smath{\mbox{\bf complexZeros}\opLeftPren{}poly, 
\allowbreak{} eps\opRightPren{}} finds the complex zeros of the
univariate polynomial \smath{poly} to precision \smath{eps}.
Solutions are returned either as complex floats or rationals
depending on the type of \smath{eps}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{components}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{ThreeSpace}
{\smath{\mbox{\bf components}\opLeftPren{}sp\opRightPren{}} takes the 
\spadtype{ThreeSpace} object \smath{sp}, and returns
a list of \spadtype{ThreeSpace} objects, each having a single component.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{composite}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{1}{(List(\$))->\$}{ThreeSpace}
{\smath{\mbox{\bf composite}\opLeftPren{}p, \allowbreak{} q\opRightPren{}}, 
for polynomials \smath{p} and \smath{q},
returns \smath{f} if \smath{p} = \smath{f(q)}, and \mbox{\tt "failed"} 
if no such \smath{f} exists.
\newitem
\smath{\mbox{\bf composite}\opLeftPren{}lsp\opRightPren{}}, 
where \smath{lsp} is a list
\smath{[ sp_1, sp_2, \ldots, sp_n]} of \spadtype{ThreeSpace} objects,
returns a single \spadtype{ThreeSpace} object containing
the union of all objects in the parameter list grouped as a single composite.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{composites}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{ThreeSpace}
{\smath{\mbox{\bf composites}\opLeftPren{}sp\opRightPren{}} 
takes the \spadtype{ThreeSpace} object \smath{sp}
and returns a list of \spadtype{ThreeSpace} objects, 
one for each single composite
of \smath{sp}. If \smath{sp} has no defined composites 
(composites need to be explicitly created), the list returned is empty. 
Note that not all the components need to be part of a composite.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{concat}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
\opand \mbox{\axiomFun{concat!}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(\$, S)->\$}{ExtensibleLinearAggregate}
{\smath{\mbox{\bf concat}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}} returns list \smath{u} with additional element 
\smath{x} at the end. Note: equivalent to 
\smath{\mbox{\bf concat}\opLeftPren{}u, 
\allowbreak{} [ x]\opRightPren{}}.
\newitem\smath{\mbox{\bf concat}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} returns an aggregate 
consisting of the elements of \smath{u} 
followed by the elements of \smath{v}.
\newitem\smath{\mbox{\bf concat}\opLeftPren{}u\opRightPren{}}, 
where \smath{u} is a list of aggregates \smath{[ a, b, $\ldots$, c]}, 
returns a single aggregate consisting of the elements of \smath{a} followed 
by those of \smath{b} followed $\ldots$ by the elements of \smath{c}.
\newitem\smath{\mbox{\bf concat!}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}}, where \smath{u} is 
extensible, destructively adds 
element \smath{x} to the end of aggregate \smath{u}; if \smath{u} is a stream, 
it must be finite.
\newitem\smath{\mbox{\bf concat!}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} destructively appends \smath{v} 
to the end of \smath{u}; if
\smath{u} is a stream, it must be finite.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{conditionP}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(\$))->Union(Vector(\$), "failed")}{FiniteFieldCategory}
{\smath{\mbox{\bf conditionP}\opLeftPren{}M\opRightPren{}}, 
given a matrix \smath{M} representing a
homogeneous system of equations over a field \smath{F} with
\spadfun{characteristic} \smath{p}, returns a non-zero vector
whose \eth{\smath{p}} power is a non-trivial solution to these
equations, or \mbox{\tt "failed"} if no such vector exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{conditionsForIdempotents}}
\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(Polynomial(R))}{FramedNonAssociativeAlgebra}
{\smath{\mbox{\bf conditionsForIdempotents}\opLeftPren{}\opRightPren{}}
determines a complete list of polynomial equations for the
coefficients of idempotents with respect to the \smath{R}-module
basis.
\seeAlso{\spadtype{FramedNonAssociativeAlgebra} for an alternate
definition}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{conical}}\opLeftPren{}
{\it smallFloat}, \allowbreak{}{\it  smallFloat}\opRightPren{}%
}%
}%
{2}{(R, R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf conical}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns a function of two parameters for
mapping conical coordinates to Cartesian coordinates.
The function maps the point \smath{(\lambda, \mu, \nu)} to \smath{x
= \lambda\mu\nu/(ab)}, \smath{y =
\lambda/a\sqrt((mu^2-a^2)(\nu^2-a^2)/(a^2-b^2))}, \smath{z =
\lambda/b\sqrt((mu^2-b^2)(nu^2-b^2)/(b^2-a^2))}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{conjugate}}\opLeftPren{}
{\it element\opt{, element}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ComplexCategory}
{\smath{\mbox{\bf conjugate}\opLeftPren{}u\opRightPren{}} 
returns the conjugate of a complex,
quaternion, or octonian expression \smath{u}. For example, 
if \smath{u} is the
complex expression \smath{x + \%i y}, 
\smath{\mbox{\bf conjugate}\opLeftPren{}u\opRightPren{}}
returns \smath{x - \% i y}.
\newitem\smath{\mbox{\bf conjugate}\opLeftPren{}pt\opRightPren{}} 
returns the conjugate of a partition \smath{pt}.
\seeType{PartitionsAndPermutations}
\newitem\smath{\mbox{\bf conjugate}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} returns 
\smath{\mbox{\bf inv}\opLeftPren{}q) * p * q}
for elements \smath{p} and \smath{q} of a group. Note: this operation
is called {\it right action by conjugation}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{conjugates}}\opLeftPren{}
{\it streamOfPartitions}\opRightPren{}%
}%
}%
{1}{(Stream(List(Integer)))->Stream(List(Integer))}{PartitionsAndPermutations}
{\smath{\mbox{\bf conjugates}\opLeftPren{}lp\opRightPren{}} 
is the stream of conjugates of a stream of
partitions \smath{lp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{connect}}\opLeftPren{}
{\it twoDimensionalViewport}, \allowbreak{}
{\it  positiveInteger}, \allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{3}{(Kernel(S))->Union(R, "failed")}{KernelFunctions2}
{\smath{\mbox{\bf connect}\opLeftPren{}v, 
\allowbreak{} n, \allowbreak{} s\opRightPren{}} 
displays the lines connecting the graph points in
field \smath{n} of the \twodim{} viewport \smath{v} if
\smath{s="on"},
and does not display the lines if \smath{s="off"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{constant}}\opLeftPren{}
{\it variableOrfunction}\opRightPren{}%
 \optand \mbox{\axiomFun{constantLeft}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  element}\opRightPren{}%
 \opand \mbox{\axiomFun{constantRight}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{    (()->C)       -> (A ->C)}{}{}
{\opkey{These operations add an argument to a function
and must be package-called from package \smath{P} as indicated.
See also \spadfun{curry}, \spadfun{curryLeft}, and \spadfun{curryRight}.}
\newitem
\smath{\mbox{\bf constant}\opLeftPren{}f\opRightPren{}\$P} 
returns the function \smath{g}
such that \smath{g(a)= f()}, where
function \smath{f} has type
\spadsig{}{C} and \smath{a} has type \smath{A}.
The function must be package-called from
\smath{P =} \spadtype{MappingPackage2(A, C)}.
\newitem
\smath{\mbox{\bf constantRight}\opLeftPren{}f\opRightPren{}\$P} 
returns the function \smath{g}
such that \smath{g(a, b)= f(a)}, where function \smath{f} has
type \spadsig{A}{C} and \smath{b} has type \smath{B}.
This function must be package-called from
\smath{P =} \spadtype{MappingPackage3(A, B, C)}.
\newitem
\smath{\mbox{\bf constantLeft}\opLeftPren{}f\opRightPren{}\$P} 
returns the function \smath{g}
such that \smath{g(a, b)= f(b)}, where function \smath{f} has
type \spadsig{B}{C} and \smath{a} has type \smath{A}.
The function must be package-called from
\smath{P =} \spadtype{MappingPackage3(A, B, C)}.
\newitem
\smath{\mbox{\bf constant}\opLeftPren{}x\opRightPren{}} 
tells the pattern matcher that \smath{x} should match
the symbol \smath{'x} and no other quantity, or calls 
\spadfun{error} if \smath{x} is not a symbol.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{constantOperator}}\opLeftPren{}
{\it property}\opRightPren{}%
 \opand \mbox{\axiomFun{constantOpIfCan}}\opLeftPren{}{\it f}\opRightPren{}%
}%
}%
{1}{(BasicOperator)->Union(A, "failed")}{BasicOperatorFunctions1}
{\smath{\mbox{\bf constantOperator}\opLeftPren{}f\opRightPren{}} 
returns a nullary operator op such that \smath{op()} always 
evaluate to \smath{f}.
\newitem
\smath{\mbox{\bf constantOpIfCan}\opLeftPren{}op\opRightPren{}} 
returns \smath{f} if \smath{op} is the constant nullary operator 
always returning \smath{f}, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{construct}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  ..}\opRightPren{}%
}%
}%
{1}{(List(S))->\$}{Collection}
{\smath{\mbox{\bf construct}\opLeftPren{}x, \allowbreak{} y, 
\allowbreak{} \ldots, z\opRightPren{}\$R} returns the collection of elements 
\smath{x, y, \ldots, z} from domain \smath{R} ordered as given. 
This is equivalently written
as \smath{[ x, y, \ldots, z]}. The qualification \smath{R} may be omitted 
for domains
of type \spadtype{List}.
Infinite tuples such as \smath{[ x_i \mbox{ \tt for } i \mbox{ \tt in } 1..]} 
are converted
to a \spadtype{Stream} object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cons}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  listOrStream}\opRightPren{}%
}%
}%
{2}{(S, \$)->\$}{List}
{\smath{\mbox{\bf cons}\opLeftPren{}x, \allowbreak{} u\opRightPren{}}, 
where u is a list or stream,
creates a new list or stream whose \spadfun{first} element is \smath{x}
and whose \spadfun{rest} is \smath{u}. Equivalent to 
\smath{\mbox{\bf concat}\opLeftPren{}x, \allowbreak{} u\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{content}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(\$)->R}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf content}\opLeftPren{}p\opRightPren{}} 
returns the greatest common divisor (\spadfun{gcd}) of the 
coefficients of polynomial \smath{p}.
\newitem\smath{\mbox{\bf content}\opLeftPren{}p, 
\allowbreak{} v\opRightPren{}}, where \smath{p} is a multivariate 
polynomial type, returns
the \smath{gcd} of the coefficients of the polynomial \smath{p} 
viewed as a univariate polynomial with respect to the variable \smath{v}.
For example, if \smath{p = 7x^2y + 14xy^2}, the \smath{gcd} of the
coefficients with respect to \smath{x} is \smath{7y}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{continuedFraction}}\opLeftPren{}
{\it fractionOrFloat\opt{, options}}\opRightPren{}%
}%
}%
{1}{(F)->ContinuedFraction(Integer)}{NumericContinuedFraction}
{\smath{\mbox{\bf continuedFraction}\opLeftPren{}f\opRightPren{}} 
converts the floating point number \smath{f}
to a reduced continued fraction.
\newitem\smath{\mbox{\bf continuedFraction}\opLeftPren{}r\opRightPren{}} 
converts the fraction
\smath{r} with components of type \smath{R} to a continued
fraction over \smath{R}.
\newitem\smath{\mbox{\bf continuedFraction}\opLeftPren{}r, 
\allowbreak{} s, \allowbreak{} s'\opRightPren{}}, where \smath{s} and
\smath{s'} are streams over
a domain \smath{R}, constructs a continued fraction in the
following way: if \smath{s = [ a1, a2, $\ldots$]} and
\smath{s' = [ b1, b2, $\ldots$]} then the result is the
continued fraction \smath{r + a1/(b1 + a2/(b2 + $\ldots$))}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{contract}}\opLeftPren{}
{\it idealOrTensors\opt{, options}}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Integer)->\$}{CartesianTensor}
{\smath{\mbox{\bf contract}\opLeftPren{}I, \allowbreak{} lvar\opRightPren{}} 
contracts the ideal \smath{I} to the
polynomial ring \smath{F[ lvar]}.
\newitem\smath{\mbox{\bf contract}\opLeftPren{}t, \allowbreak{} i, 
\allowbreak{} j\opRightPren{}} is the contraction of tensor
\smath{t} which sums along the \eth{\smath{i}} and \eth{\smath{j}}
indices.
For example, if \smath{r = contract(t, 1, 3)} for a rank 4 tensor
\smath{t}, then \smath{r} is the rank 2 \smath{(= 4 - 2)} tensor
given by \smath{r(i, j) = \sum\nolimits_{h=1}^{\rm dim}t(h, i, h, j)}.
\newitem\smath{\mbox{\bf contract}\opLeftPren{}t, 
\allowbreak{} i, \allowbreak{} s, \allowbreak{} j\opRightPren{}} 
is the inner product of tensors
\smath{s} and \smath{t} which sums along the \smath{k_1}st index
of \smath{t} and the \smath{k_2}st index of \smath{s}.
For example, if \smath{r = contract(s, 2, t, 1)} for rank 3 tensors
\smath{s} and \smath{t}, then \smath{r} is the rank 4 \smath{(= 3
+ 3 - 2)} tensor given by \smath{r(i, j, k, l) =
\sum\nolimits_{h=1}^{\rm dim} s(i, h, j)t(h, k, l)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{contractSolve}}\opLeftPren{}
{\it equation}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{\smath{\mbox{\bf contractSolve}\opLeftPren{}eq, 
\allowbreak{} x\opRightPren{}} finds the solutions expressed in
terms of radicals of the equation of rational functions \smath{eq}
with respect to the symbol \smath{x}.
The result contains new symbols for common subexpressions in order
to reduce the size of the output.
Alternatively, an expression \smath{u} may be given for \smath{eq}
in which case the equation \smath{eq} is defined as \smath{u=0}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{controlPanel}}\opLeftPren{}
{\it viewport}, \allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(Fraction(R))}{ContinuedFraction}
{\smath{\mbox{\bf controlPanel}\opLeftPren{}v, 
\allowbreak{} s\opRightPren{}} displays the control panel of the given
\twodim{} or \threedim{} viewport \smath{v} if \smath{s = "on"},
or hides the
control panel if \smath{s = "off"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{convergents}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(Fraction(R))}{ContinuedFraction}
{\smath{\mbox{\bf convergents}\opLeftPren{}cf\opRightPren{}} 
returns the stream of the convergents of
the continued fraction \smath{cf}.
If the continued fraction is finite, then the stream will be
finite.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coordinate}}\opLeftPren{}
{\it curveOrSurface}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->ComponentFunction}{ParametricPlaneCurve}
{\smath{\mbox{\bf coordinate}\opLeftPren{}u, 
\allowbreak{} n\opRightPren{}} returns the \eth{\smath{n}}
coordinate function for the curve or surface \smath{u}.
See \spadtype{ParametericPlaneCurve}, \spadtype{ParametricSpaceCurve},
and \spadtype{ParametericSurface}, using HyperDoc.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coordinates}}\opLeftPren{}
{\it pointOrvector\opt{, basis}}\opRightPren{}%
}%
}%
{2}{(\$, Vector(\$))->Vector(R)}{FiniteRankAlgebra}
{\smath{\mbox{\bf coordinates}\opLeftPren{}pt\opRightPren{}} specifies a 
change of coordinate systems
of point \smath{pt}.
This option is expressed in the form \smath{coordinates == pt}.
\medbreak\opkey{The following operations return a matrix
representation of the coordinates of an argument vector \smath{v}
of the form \smath{[ v_1\ldots v_n]} with respect to
the basis a domain \smath{R}.
The coordinates of \smath{v_i} are contained in the
\eth{\smath{i}} row of the matrix returned.}
\newitem\smath{\mbox{\bf coordinates}\opLeftPren{}v{, b}\opRightPren{}} 
returns the matrix
representation with respect to the basis \smath{b} for vector
\smath{v} of elements from domain \smath{R} of category
\spadtype{FiniteRankNonAssociativeAlgebra} or
\spadtype{FiniteRankAlgebra}.
If a second argument is not given, the basis is taken to be the
fixed basis of \smath{R}.
\newitem\smath{\mbox{\bf coordinates}\opLeftPren{}v\opRightPren{}\$R}, 
returns a matrix representation
for \smath{v} with respect to a fixed basis for domain \smath{R}
of category \spadtype{FiniteAlgebraicExtensionField},
\spadtype{FramedNonAssociativeAlgebra}, or
\spadtype{FramedAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{copies}}\opLeftPren{}{\it integer}, \allowbreak{}
{\it  string}\opRightPren{}%
}%
}%
{2}{(Integer, String)->String}{DisplayPackage}
{\smath{\mbox{\bf copies}\opLeftPren{}n, \allowbreak{} s\opRightPren{}} 
returns
a string composed of \smath{n} copies of string \smath{s}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{copy}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{Aggregate}
{\smath{\mbox{\bf copy}\opLeftPren{}u\opRightPren{}} returns a 
top-level (non-recursive) copy of an aggregate \smath{u}.
Note: for lists, \code{copy(u) == [x for x in u]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{copyInto!}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  aggregate}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, \$, Integer)->\$}{FiniteLinearAggregate}
{\smath{\mbox{\bf copyInto!}\opLeftPren{}u, \allowbreak{} v, 
\allowbreak{} p\opRightPren{}} returns linear aggregate \smath{u} with
elements of \smath{u} replaced by the successive elements of \smath{v}
starting at index \smath{p}.
Arguments \smath{u} and \smath{v} can be elements of any 
\spadtype{FiniteLinearAggregate}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cos}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{cosIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{TrigonometricFunctionCategory}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float},
\spadtype{DoubleFloat}, or \spadtype{Expression} value or a series.
} \newitem\smath{\mbox{\bf cos}\opLeftPren{}x\opRightPren{}} 
returns the cosine of \smath{x}.
\newitem\smath{\mbox{\bf cosIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf cos}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cos2sec}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf cos2sec}\opLeftPren{}e\opRightPren{}} converts 
every \smath{\mbox{\bf cos}\opLeftPren{}u\opRightPren{}} appearing in
\smath{e} into \smath{1/\sec(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cosh2sech}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf cosh2sech}\opLeftPren{}e\opRightPren{}} converts 
every \smath{\mbox{\bf cosh}\opLeftPren{}u\opRightPren{}} appearing in
\smath{e} into \smath{1/\mbox{\rm sech}(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cosh}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{coshIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{HyperbolicFunctionCategory}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float},
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem\smath{\mbox{\bf cosh}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic cosine of
\smath{x}.
\newitem\smath{\mbox{\bf coshIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf cosh}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cot}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{TrigonometricFunctionCategory}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float}, 
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem\smath{\mbox{\bf cot}\opLeftPren{}x\opRightPren{}} 
returns the cotangent of \smath{x}.
\newitem\smath{\mbox{\bf cotIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf cot}\opLeftPren{}x\opRightPren{}} 
if possible, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cot2tan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf cot2tan}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\cot(u)}
appearing in \smath{e} into \smath{1/\tan(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cot2trig}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf cot2trig}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\cot(u)}
appearing in \smath{e} into \smath{\cos(u)/\sin(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coth}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{cothIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float}, 
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem\smath{\mbox{\bf coth}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic cotangent of \smath{x}.
\newitem
\smath{\mbox{\bf cothIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf coth}\opLeftPren{}x\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coth2tanh}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf coth2tanh}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\mbox{\rm
coth}(u)} appearing in \smath{e} into \smath{1/\mbox{\rm
tanh}(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{coth2trigh}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf coth2trigh}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\mbox{\rm
coth}(u)} appearing in
\smath{e} into \smath{\mbox{\rm cosh}(u)/\mbox{\rm sinh}(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{count}}\opLeftPren{}
{\it predicate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->NonNegativeInteger}{HomogeneousAggregate}
{\smath{\mbox{\bf count}\opLeftPren{}pred, \allowbreak{} u\opRightPren{}} 
returns the number of elements \smath{x} in
\smath{u} such that \smath{\mbox{\bf pred}\opLeftPren{}x\opRightPren{}} 
is \smath{true}.
For collections, \code{count(p, u) = reduce(+, [1 for x in u |
p(x)], 0)}.
\newitem\smath{\mbox{\bf count}\opLeftPren{}x, 
\allowbreak{} u\opRightPren{}} returns the number of occurrences of
\smath{x} in \smath{u}.
For collections, \code{count(x, u) = reduce(+, [x=y for y in u], 0)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{countable?}}\opLeftPren{}{\it cardinal}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{CardinalNumber}
{\smath{\mbox{\bf countable?}\opLeftPren{}u\opRightPren{}} 
tests if the cardinal number \smath{u} is
countable, that is, if $u \le $\smath{Aleph 0}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createThreeSpace}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{ThreeSpace}
{\smath{\mbox{\bf createThreeSpace}\opLeftPren{}\opRightPren{}}
{\bf \$}\spadtype{ThreeSpace(R)} creates a
\spadtype{ThreeSpace} object capable of holding point,
curve, mesh components or any combination of the three.
The ring \smath{R} is usually \spadtype{DoubleFloat}.
If you do not package call this function, \spadtype{DoubleFloat}
is assumed.
\newitem\smath{\mbox{\bf createThreeSpace}\opLeftPren{}s\opRightPren{}} 
creates a \spadtype{ThreeSpace}
object containing objects pre-defined within some
\spadtype{SubSpace} \smath{s}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createGenericMatrix}}\opLeftPren{}
{\it nonNegativeInteger}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->Matrix(Polynomial(R))}{RepresentationPackage1}
{\smath{\mbox{\bf createGenericMatrix}\opLeftPren{}n\opRightPren{}} 
creates a square matrix of
dimension \smath{n} whose entry at the \smath{i}-th row and
\smath{j}-th column is the indeterminate \smath{x_{i, j}} (double
subscripted).
\seeType{RepresentationPackage1}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createIrreduciblePoly}}\opLeftPren{}
{\it nonNegativeInteger}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf createIrreduciblePoly}\opLeftPren{}n\opRightPren{}}
{\bf \$}\spadtype{FFPOLY(GF)} generates
a monic irreducible polynomial of degree \smath{n} over the finite field
\smath{GF}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createNormalElement}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf createNormalElement}\opLeftPren{}\opRightPren{}\$F} 
computes a normal element over the ground field
of a finite algebraic extension field \smath{F}, that is,
an element \smath{a} such that \smath{a^{q^i}, 0 \leq i < {\mbox
{\bf extensionDegree}}()\$F} is an \smath{F}-basis, where
\smath{q} is the size of the ground field.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createNormalPrimitivePoly}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf createNormalPrimitivePoly}\opLeftPren{}n\opRightPren{}}
{\bf \$}\spadtype{FFPOLY(GF)}
generates a normal and
primitive polynomial of degree \smath{n} over the field \smath{GF}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createPrimitiveElement}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteFieldCategory}
{\smath{\mbox{\bf createPrimitiveElement}\opLeftPren{}\opRightPren{}\$F} 
computes a generator of the
(cyclic) multiplicative group of a finite
field \smath{F}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{createRandomElement}}\opLeftPren{}
{\it listOfMatrices}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), Matrix(R))->Matrix(R)}{RepresentationPackage2}
{\smath{\mbox{\bf createRandomElement}\opLeftPren{}lm, 
\allowbreak{} m\opRightPren{}} creates a random element of
the group algebra generated by \smath{lm}, where \smath{lm} is a
list of matrices and \smath{m} is a matrix.
\seeType{RepresentationPackage2}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{csc2sin}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf csc2sin}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\mbox{\bf csc}\opLeftPren{}u\opRightPren{}}
appearing in \smath{f} into \smath{1/{\tt sin}(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{csch2sinh}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf csch2sinh}\opLeftPren{}expression\opRightPren{}} 
converts every \smath{\mbox{\bf csch}\opLeftPren{}u\opRightPren{}}
appearing in \smath{f} into \smath{1/{\sinh}(u)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{csch}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{cschIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float},
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series.}
\newitem\smath{\mbox{\bf csch}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic cosecant of \smath{x}.
\newitem\smath{\mbox{\bf cschIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf csch}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cscIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float},
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem
\smath{\mbox{\bf csc}\opLeftPren{}x\opRightPren{}} 
returns the cosecant of \smath{x}.
\newitem
\smath{\mbox{\bf cscIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf csc}\opLeftPren{}x\opRightPren{}} if possible,
and \mbox{\tt "failed"} otherwise.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cup}}\opLeftPren{}
{\it symmetricPolynomial}, \allowbreak{}
{\it symmetricPolynomial}\opRightPren{}%
}%
}%
{ (SPOL RN, SPOL RN) -> SPOL RN}{}{}
{\smath{\mbox{\bf cup}\opLeftPren{}s_1, 
\allowbreak{} s_2\opRightPren{}}, introduced by Redfield,
is the scalar product of two cycle indices, where the
\smath{s_i} are of type \spadtype{SymmetricPolynomial} with
rational number coefficients.
See also \spadfun{cap}. See \spadtype{CycleIndicators} for details.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{curry}}\opLeftPren{}{\it function}\opRightPren{}%
 \optand \mbox{\axiomFun{curryLeft}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  element}\opRightPren{}%
 \opand \mbox{\axiomFun{curryRight}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{   ((A, B)->C, B) -> (A ->C)}{}{}
{\opkey{These functions drop an argument from a function.}
\newitem
\smath{\mbox{\bf curry}\opLeftPren{}f, 
\allowbreak{} a\opRightPren{}} returns the function \smath{g}
such that \smath{g()= f(a)}, where function \smath{f} has type
\spadsig{A}{C} and element \smath{a} has type \smath{A}.
\newitem
\smath{\mbox{\bf curryRight}\opLeftPren{}f, 
\allowbreak{} b\opRightPren{}} returns the function \smath{g} such that
\smath{g(a) = f(a, b)}, where function \smath{f} has type
\spadsig{(A, B)}{C} and element \smath{b} has type \smath{B}.
\newitem
\smath{\mbox{\bf curryLeft}\opLeftPren{}f, 
\allowbreak{} a\opRightPren{}} is the function \smath{g}
such that \smath{g(b) = f(a, b)}, where function \smath{f} has type
\spadsig{(A, B)}{C} and element \smath{a} has type \smath{A}.
\newitem
See also \spadfun{constant}, \spadfun{constantLeft}, 
and \spadfun{constantRight}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{curve}}\opLeftPren{}
{\it listOfPoints\opt{, options}}\opRightPren{}%
}%
}%
{1}{(List(Point(R)))->\$}{ThreeSpace}
{\smath{\mbox{\bf curve}\opLeftPren{}
[ p_0, p_1, $\ldots$, p_n]\opRightPren{}} creates a
space curve defined by the list of points \smath{p_0} through
\smath{p_n} and returns a \spadtype{ThreeSpace} object whose
component is the curve.
\newitem\smath{\mbox{\bf curve}\opLeftPren{}sp\opRightPren{}} 
checks to see if the
\spadtype{ThreeSpace} object \smath{sp} is composed of a single
curve defined by a list of points; if so, the list of points
defining the curve is returned.
Otherwise, the operation calls \spadfun{error}.
\newitem\smath{\mbox{\bf curve}\opLeftPren{}c_1, 
\allowbreak{} c_2\opRightPren{}} creates a plane curve from two
component functions \smath{c_1} and \smath{c_2}.
\seeType{ComponentFunction}
\newitem\smath{curve(sp, [
[ p_0], [ p_1], $\ldots$, [
p_n]])} adds a space curve defined by a list of points
\smath{p_0} through \smath{p_n} to a \spadtype{ThreeSpace} object
\smath{sp}.
Each \smath{p_i} is from a domain 
\smath{\mbox{\bf PointDomain}\opLeftPren{}m, 
\allowbreak{} R\opRightPren{}}, where
\smath{R} is the \spadtype{Ring} over which the point elements are
defined and \smath{m} is the dimension of the points.
\newitem \smath{\mbox{\bf curve}\opLeftPren{}s, 
\allowbreak{} [ p_0, p_1, $\ldots$, p_n]\opRightPren{}} adds
the space curve component designated by the list of points
\smath{p_0} through \smath{p_n} to the \spadtype{ThreeSpace} object
\smath{sp}.
\newline \smath{\mbox{\bf curve}\opLeftPren{}c_1, \allowbreak{} c_2, 
\allowbreak{} c_3\opRightPren{}} creates a space curve from
three component functions \smath{c_1}, \smath{c_2}, and
\smath{c_3}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{curve?}}\opLeftPren{}{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ThreeSpace}
{\smath{\mbox{\bf curve?}\opLeftPren{}sp\opRightPren{}} 
tests if the \spadtype{ThreeSpace} object \smath{sp} contains
a single curve object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{curveColor}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(Float)->\$}{DrawOption}
{\smath{\mbox{\bf curveColor}\opLeftPren{}p\opRightPren{}} 
specifies a color index for \twodim{} graph
curves from the palette \smath{p}.
This option is expressed in the form \smath{curveColor ==p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycle}}\opLeftPren{}
{\it listOfPermutations}\opRightPren{}%
}%
}%
{1}{(List(S))->\$}{PermutationCategory}
{\smath{\mbox{\bf cycle}\opLeftPren{}ls\opRightPren{}} 
converts a cycle \smath{ls}, a list with no repetitions, to
the permutation, which
maps \smath{ls.i} to \smath{ls.(i+1)} (index modulo the length of the list).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycleEntry}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf cycleEntry}\opLeftPren{}u\opRightPren{}} 
returns the head of a top-level cycle
contained in aggregate \smath{u}, or 
\smath{\mbox{\bf empty}\opLeftPren{}\opRightPren{}} if none
exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycleLength}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf cycleLength}\opLeftPren{}u\opRightPren{}} 
returns the length of a top-level cycle
contained in aggregate \smath{u}, or 0 if \smath{u} has no such
cycle.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclePartition}}\opLeftPren{}
{\it permutation}\opRightPren{}%
}%
}%
{1}{(\$)->Partition}{Permutation}
{\smath{\mbox{\bf cyclePartition}\opLeftPren{}p\opRightPren{}} returns 
the cycle structure of a permutation \smath{p} including cycles of length 1.
The permutation is assumed to be a member of
\spadtype{Permutation(S)} where \smath{S} is a finite set.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycleRagits}}\opLeftPren{}
{\it radixExpansion}\opRightPren{}%
}%
}%
{1}{(\$)->List(Integer)}{RadixExpansion}
{\smath{\mbox{\bf cycleRagits}\opLeftPren{}rx\opRightPren{}} returns the 
cyclic part of the ragits of the fractional part of a radix expansion. 
For example, if \smath{x = 3/28 = 0.10 714285 714285 \ldots},
then \code{cycleRagits(x) = [7, 1, 4, 2, 8, 5]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycleSplit!}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf cycleSplit!}\opLeftPren{}u\opRightPren{}} 
splits the recursive aggregate (for example, a list) \smath{u} into two
aggregates by dropping off the cycle. The value returned is the cycle entry,
or \smath{nil} if none exists.
For example, if \smath{w = {\mbox {\bf concat}}(u, v)} 
is the cyclic list where \smath{v} is the
head of the cycle, \smath{\mbox{\bf cycleSplit!}
\opLeftPren{}w\opRightPren{}} will drop \smath{v} off \smath{w}. Thus
\smath{w} is destructively changed to \smath{u}, and \smath{v}
is returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycles}}\opLeftPren{}
{\it listOfListOfElements}\opRightPren{}%
}%
}%
{1}{(List(List(S)))->\$}{PermutationCategory}
{\smath{\mbox{\bf cycles}\opLeftPren{}lls\opRightPren{}} 
coerces a list of list of cycles \smath{lls}
to a permutation.
Each cycle, represented as a list \smath{ls} with no repetitions,
is coerced to the permutation, which maps \smath{ls.i} to
\smath{ls.(i+1)} (index modulo the length of the list).
These permutations are then multiplied.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cycleTail}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf cycleTail}\opLeftPren{}u\opRightPren{}} 
returns the last node in the cycle of
a recursive aggregate (for example, a list) \smath{u}, 
or empty if none exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclic}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN    --cyclic group}{}{}
{\smath{\mbox{\bf cyclic}\opLeftPren{}n\opRightPren{}} 
returns the cycle index of the
cyclic group of degree \smath{n}.
\spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclic?}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{RecursiveAggregate}
{\smath{\mbox{\bf cyclic?}\opLeftPren{}u\opRightPren{}} tests if
recursive aggregate (for example, a list) \smath{u} has a cycle.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclicGroup}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf cyclicGroup}\opLeftPren{}
[ i_1, \ldots, i_k]\opRightPren{}} constructs
the cyclic group of order \smath{k} acting on the list of integers
\smath{i_1}, \ldots, \smath{i_k}.
Note: duplicates in the list will be removed.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclicGroup}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf cyclicGroup}\opLeftPren{}n\opRightPren{}} 
constructs the cyclic group of order
\smath{n} acting on the integers 1, \ldots, \smath{n}, \smath{n >
0}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cyclicSubmodule}}\opLeftPren{}
{\it listOfMatrices}, \allowbreak{}{\it  vector}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), Vector(R))->Vector(Vector(R))}{RepresentationPackage2}
{\smath{\mbox{\bf cyclicSubmodule}\opLeftPren{}lm, 
\allowbreak{} v\opRightPren{}}, where \smath{lm} is a list of
\smath{n} by \smath{n} square matrices and \smath{v} is a vector
of size \smath{n}, generates a basis in echelon form.
\seeDetails{RepresentationPackage2}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{cylindrical}}\opLeftPren{}{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf cylindrical}\opLeftPren{}pt\opRightPren{}} 
transforms \smath{pt} from polar
coordinates to Cartesian coordinates,
by mapping the point \smath{(r, theta, z)} to
\smath{x = r \cos(theta)}, \smath{y = r  \sin(theta)}, \smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{D}}\opLeftPren{}
{\it expression\opt{, options}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{DifferentialRing}
{\smath{\mbox{\bf D}\opLeftPren{}x\opRightPren{}} returns the 
derivative of \smath{x}.
This function is a simple differential operator where no variable
needs to be specified.
\newitem\smath{\mbox{\bf D}\opLeftPren{}x, \allowbreak{} [ s_1, 
\ldots s_n]\opRightPren{}} computes
successive partial derivatives, that is, \smath{D(\ldots {\bf
D}(x, s_1)\ldots, s_n)}.
\newitem\smath{\mbox{\bf D}\opLeftPren{}u, \allowbreak{} x\opRightPren{}} 
computes the partial derivative of
\smath{u} with respect to \smath{x}.
\newitem\smath{\mbox{\bf D}\opLeftPren{}u, \allowbreak{} 
deriv\optinner{, n}\opRightPren{}} differentiates \smath{u}
\smath{n} times using a derivation which extends \smath{deriv} on
\smath{R}.
Argument \smath{n} defaults to 1.
\newitem\smath{\mbox{\bf D}\opLeftPren{}p, \allowbreak{} d, 
\allowbreak{} x'\opRightPren{}} extends the \smath{R}-derivation
\smath{d} to an extension \smath{R} in \smath{R[ x]}
where \smath{Dx} is given by \smath{x'}, and returns \smath{Dp}.
\newitem\smath{D(x, [ s_1, \ldots, s_n], [
n_1, \ldots, n_m])} computes multiple partial derivatives,
that is, \smath{\mbox{\bf D}\opLeftPren{}\ldots {\bf D}(x, s_1, n_1)\ldots, 
s_n, n_m\opRightPren{}}.
\newitem\smath{\mbox{\bf D}\opLeftPren{}u, \allowbreak{} x, 
\allowbreak{} n\opRightPren{}} computes multiple partial derivatives,
that is, \eth{\smath{n}} derivative of \smath{u} with respect to
\smath{x}.
\newitem \smath{\mbox{\bf D}\opLeftPren{}of\optinner{, n}\opRightPren{}}, 
where \smath{of} is an object
of type \spadtype{OutputForm} (normally unexposed), returns an
output form for the \eth{\smath{n}} derivative of \smath{f}, for
example, \smath{f'}, \smath{f''}}, \smath{f'''}, \smath{f^{{\tt
iv}}}, and so on.
\newitem \smath{\mbox{\bf D}\opLeftPren{}\opRightPren{}\$A} 
provides the operator corresponding to the
derivation in the differential ring \smath{A}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dark}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(Color)->\$}{Palette}
{\smath{\mbox{\bf dark}\opLeftPren{}color\opRightPren{}} returns 
the shade of the indicated hue of \smath{color} to its lowest value.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ddFact}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  primeInteger}\opRightPren{}%
}%
}%
{2}{(U, Integer)->List(Record(factor:U, degree:Integer))}
{ModularDistinctDegreeFactorizer}
{\smath{\mbox{\bf ddFact}\opLeftPren{}q, \allowbreak{} p\opRightPren{}} 
computes a distinct degree factorization of the polynomial 
\smath{q} modulo the prime \smath{p}, that is, such that each factor is a 
product of irreducibles of the same degrees.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{decimal}}\opLeftPren{}
{\it rationalNumber}\opRightPren{}%
}%
}%
{1}{(Fraction(Integer))->\$}{DecimalExpansion}
{\smath{\mbox{\bf decimal}\opLeftPren{}rn\opRightPren{}} 
converts a rational number \smath{rn} to a decimal expansion.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{declare}}\opLeftPren{}
{\it listOfInputForms}\opRightPren{}%
}%
}%
{ List $   -> Symbol}{}{}
{\smath{\mbox{\bf declare}\opLeftPren{}t\opRightPren{}} 
returns a name f such that f has been
declared to the interpreter to be of type t, but has
not been assigned a value yet.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{decreasePrecision}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf decreasePrecision}\opLeftPren{}n\opRightPren{}\$R} 
decreases the current
\spadfunFrom{precision}{FloatingPointSystem} by \smath{n} decimal digits.}




% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{definingPolynomial}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->UP}{MonogenicAlgebra}
{\smath{\mbox{\bf definingPolynomial}\opLeftPren{}\opRightPren{}\$R} 
returns the minimal polynomial for
a \spadtype{MonogenicAlgebra} domain \smath{R}, that is, one which 
\smath{\mbox{\bf generator}\opLeftPren{}\opRightPren{}\$R} satisfies.
\newitem\smath{\mbox{\bf definingPolynomial}\opLeftPren{}x\opRightPren{}} 
returns an expression \smath{p} such that \smath{p(x) = 0}, 
where \smath{x} is an \spadtype{AlgebraicNumber} 
or an object of type \spadtype{Expression}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{degree}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(\$)->E}{AbelianMonoidRing}
{\opkey{The meaning of degree(u\optinner{, s}) depends on the type of 
\smath{u}.}
\begin{simpleList}
\item if \smath{u} is a polynomial:
\smath{\mbox{\bf degree}\opLeftPren{}u, \allowbreak{} x\opRightPren{}} 
returns the degree of polynomial \smath{u} with respect to the variable 
\smath{x}.
Similarly, \smath{\mbox{\bf degree}\opLeftPren{}u, 
\allowbreak{} lv\opRightPren{}}, where \smath{lv} is 
a list of variables, returns
a list of degrees of polynomial \smath{u} with respect 
to each of the variables
in \smath{lv}.
\item if \smath{u}
is an element of an \spadtype{AbelianMonoidRing} or
\spadtype{GradedModule} domain:
\smath{\mbox{\bf degree}\opLeftPren{}u\opRightPren{}} 
returns the maximum of the exponents of the terms of \smath{u}.
\item if \smath{u} is a series:
\smath{\mbox{\bf degree}\opLeftPren{}u\opRightPren{}} 
returns the degree of the leading term of \smath{u}.
\item if \smath{u} is an element of a domain of category 
\spadtype{ExtensionField}: 
\smath{\mbox{\bf degree}\opLeftPren{}u\opRightPren{}}
returns the degree of the minimal polynomial of \smath{u} 
if \smath{u} is algebraic
with respect to the
ground field \smath{F}, and {\tt \%infinity} otherwise.
\item if \smath{u} is a permutation:
\smath{\mbox{\bf degree}\opLeftPren{}u\opRightPren{}} 
returns the number of points moved by the permutation.
\item if \smath{u} is a permutation group:
\smath{\mbox{\bf degree}\opLeftPren{}u\opRightPren{}} 
returns the number of points moved by all permutations of the group \smath{u}.
\seeOther{\spadfun{degree}}
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{delete}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  integerOrSegment}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{LinearAggregate}
{\smath{\mbox{\bf delete}\opLeftPren{}u, 
\allowbreak{} i\opRightPren{}} returns a copy of 
linear aggregate \smath{u} with
the \eth{\smath{i}} element deleted. Note: for lists,
\code{delete(a, i) == {\tt concat}(a(0..i-1), a(i + 1, ..))}.
\newitem\smath{\mbox{\bf delete}\opLeftPren{}u, 
\allowbreak{} i..j\opRightPren{}} returns a copy 
of \smath{u} with the \eth{\smath{i}}
through \eth{\smath{j}} element deleted.
Note: for lists, \code{delete(a, i..j) = concat(a(0..i-1), a(j+1..))}.
\newitem\smath{\mbox{\bf delete!}\opLeftPren{}u, 
\allowbreak{} i\opRightPren{}} destructively deletes 
the \eth{\smath{i}} element of \smath{u}.
\newitem\smath{\mbox{\bf delete!}\opLeftPren{}u, 
\allowbreak{} i..j\opRightPren{}} destructively deletes 
elements \smath{u}.\smath{i} 
through \smath{u}.\smath{j} of \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{deleteProperty}}\opLeftPren{}
{\it basicOperator}, \allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{2}{(\$, String)->\$}{BasicOperator}
{\smath{\mbox{\bf deleteProperty}\opLeftPren{}op, \allowbreak{} s
\opRightPren{}} destructively removes property \smath{s} from \smath{op}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{denom}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{denominator}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->D}{QuotientFieldCategory}
{\opkey{Argument x can be from domain \spadtype{Fraction(R)} for 
some domain \smath{R}, or of type \spadtype{Expression}}
if the result is of type \smath{R}.
\newitem
\smath{\mbox{\bf denom}\opLeftPren{}x\opRightPren{}} returns the 
denominator of \smath{x} as an object
of domain \smath{R}; if \smath{x} is of type \spadtype{Expression}, 
it returns
an object of domain \spadtype{SMP(R, Kernel(Expression R))}.
\newitem
\smath{\mbox{\bf denominator}\opLeftPren{}x\opRightPren{}} 
returns the denominator of \smath{x} as an element
of \spadtype{Fraction(R)}; if \smath{x} is of type \spadtype{Expression},
it returns an object of domain Expression(R).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{denominators}}\opLeftPren{}
{\it fractionOrContinuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(R)}{ContinuedFraction}
{\smath{\mbox{\bf denominator}\opLeftPren{}frac\opRightPren{}} 
is the denominator of the fraction \smath{frac}.
\newitem\smath{\mbox{\bf denominators}\opLeftPren{}cf\opRightPren{}} 
returns the stream of
denominators of the approximants of the continued fraction
\smath{x}.
If the continued fraction is finite, then the stream will be
finite.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{depth}}\opLeftPren{}{\it stack}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{StackAggregate}
{\smath{\mbox{\bf depth}\opLeftPren{}st\opRightPren{}} 
returns the number of elements of stack
\smath{st}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dequeue}}\opLeftPren{}{\it queue}\opRightPren{}%
 \opand \mbox{\axiomFun{dequeue!}}\opLeftPren{}{\it queue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{QueueAggregate}
{\smath{\mbox{\bf dequeue}\opLeftPren{}[ x, y, \ldots, z]\opRightPren{}} 
creates a
dequeue with first (top or front) element \smath{x}, second
element \smath{y}, \smath{\ldots}, and last (bottom or back) element
\smath{z}.
\newitem\smath{\mbox{\bf dequeue!}\opLeftPren{}q\opRightPren{}} 
destructively extracts the first (top)
element from queue \smath{q}.
The element previously second in the queue becomes the first
element.
A call to \spadfun{error} occurs if \smath{q} is empty.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{derivationCoordinates}}\opLeftPren{}
{\it vectorOfElements}, \allowbreak{}{\it  derivationFunction}\opRightPren{}%
}%
}%
{2}{(Vector(\$), (R)->R)->Matrix(R)}{MonogenicAlgebra}
{\smath{\mbox{\bf derivationCoordinates}\opLeftPren{}v, 
\allowbreak{} \quad{}'\opRightPren{}} returns a matrix 
\smath{M} such that \smath{v' = M v}.
Argument \smath{v} is a vector of elements from \smath{R}, a domain
of category \spadtype{MonogenicAlgebra} over a ring \smath{R}.
Argument \smath{'} is a derivation function defined on \smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{derivative}}\opLeftPren{}
{\it basicOperator\opt{, property}}\opRightPren{}%
}%
}%
{1}{(BasicOperator)->Union(List((List(A))->A), "failed")}
{BasicOperatorFunctions1}
{\smath{\mbox{\bf derivative}\opLeftPren{}op\opRightPren{}} 
returns the value of the \mbox{\tt "\%diff"}
property of \smath{op} if it has one, and \mbox{\tt "failed"} otherwise.
\newitem\smath{\mbox{\bf derivative}\opLeftPren{}op, 
\allowbreak{} dprop\opRightPren{}} attaches \smath{dprop} as the
\mbox{\tt "\%diff"} property of \smath{op}.
Note: if \smath{op} has a \mbox{\tt "\%diff"} property \smath{f}, then
applying a derivation \smath{D} to \smath{op}(a) returns
\smath{f(a) D(a)}.
Argument \smath{op} must be unary.
\newitem\smath{\mbox{\bf derivative}\opLeftPren{}op, 
\allowbreak{} [f_1, \allowbreak{} \ldots, f_n]\opRightPren{}} attaches
\smath{[ f_1, \ldots, f_n]} as the \mbox{\tt "\%diff"} property
of \smath{op}.
Note: if \smath{op} has such a \mbox{\tt "\%diff"} property, then applying
a derivation \smath{D} to \smath{op(a_1, \ldots, a_n)} returns
\smath{f_1(a_1, \ldots, a_n) D(a_1) + \cdots + fn(a_1, \ldots, a_n)
D(a_n)}.
\newitem\seeAlso{\smath{D}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{destruct}}\opLeftPren{}
{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{SExpressionCategory}
{\smath{\mbox{\bf destruct}\opLeftPren{}se\opRightPren{}}, where \smath{se} is
the \smath{SExpression} \smath{(a_1, \ldots, a_n)}, returns the list
\smath{[ a_1, \ldots, a_n]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{determinant}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->R}{MatrixCategory}
{\smath{\mbox{\bf determinant}\opLeftPren{}m\opRightPren{}} 
returns the determinant of the matrix \smath{m}, or calls
\spadfun{error} if the matrix is not square.
Note: the underlying coefficient domain of \smath{m} is assumed to
have a commutative \spadop{*}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{diagonal}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(List(R))->\$}{MatrixCategory}
{\smath{\mbox{\bf diagonal}\opLeftPren{}m\opRightPren{}}, 
where \smath{m} is a square matrix, returns a vector
consisting of the diagonal elements of \smath{m}.
\newitem
\smath{\mbox{\bf diagonal}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function of type \spadsig{(A, A)}{T}
is the function \smath{g}
such that \smath{g(a) = f(a, a)}.
See \spadtype{MappingPackage} for related functions.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{diagonal?}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{MatrixCategory}
{\smath{\mbox{\bf diagonal?}\opLeftPren{}m\opRightPren{}} tests if the matrix
\smath{m} is square and diagonal.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{diagonalMatrix}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{1}{(List(R))->\$}{MatrixCategory}
{\smath{\mbox{\bf diagonalMatrix}\opLeftPren{}l\opRightPren{}},
where \smath{l} is a list or vector of elements, returns a
(square) diagonal matrix with those
elements of \smath{l} on the diagonal.
\newitem\smath{\mbox{\bf diagonalMatrix}\opLeftPren{}
[ m_1, \ldots, m_k]\opRightPren{}}
creates a block diagonal matrix \smath{M} with block matrices
\smath{m_1}, \ldots, \smath{m_k} down the diagonal,
with 0 block matrices elsewhere.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{diagonalProduct}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->R}{SquareMatrixCategory}
{\smath{\mbox{\bf diagonalProduct}\opLeftPren{}m\opRightPren{}} 
returns the product of the elements on the diagonal of the matrix \smath{m}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dictionary}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{DictionaryOperations}
{\smath{\mbox{\bf dictionary}\opLeftPren{}\opRightPren{}}\$\smath{R} 
creates an empty dictionary of type \smath{R}.
\newitem\smath{\mbox{\bf dictionary}\opLeftPren{}
[ x, y, \ldots, z]\opRightPren{}} creates a 
dictionary consisting of entries \smath{x, y, \ldots, z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{difference}}\opLeftPren{}
{\it setAggregate}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, S)->\$}{SetAggregate}
{\smath{\mbox{\bf difference}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}} returns the set aggregate \smath{u} with element
\smath{x} removed.
\newitem\smath{\mbox{\bf difference}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} returns the set aggregate 
\smath{w} consisting of elements 
in set aggregate \smath{u} but not in set aggregate \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{differentialVariables}}\opLeftPren{}
{\it differentialPolynomial}\opRightPren{}%
}%
}%
{1}{(\$)->List(S)}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf differentialVariables}\opLeftPren{}p\opRightPren{}} 
returns a list of differential 
indeterminates occurring in a differential polynomial \smath{p}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{differentiate}}\opLeftPren{}
{\it expression\opt{, options}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{DifferentialRing}
{See \spadfun{D}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{digamma}}\opLeftPren{}
{\it complexDoubleFloat}\opRightPren{}%
}%
}%
{1}{(Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf digamma}\opLeftPren{}x\opRightPren{}} 
is the function, \smath{\psi(x)}, defined by
$\psi(x) = \Gamma'(x)/\Gamma(x).$
Argument x is either a small float or a complex small float.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{digit}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{CharacterClass}
{\smath{\mbox{\bf digit}\opLeftPren{}\opRightPren{}} 
returns the class of all characters for 
which \spadfunFrom{digit?}{Character} is \smath{true}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{digit?}}\opLeftPren{}{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Character}
{\smath{\mbox{\bf digit?}\opLeftPren{}ch\opRightPren{}} 
tests if character \smath{c} is a digit character, that is, one of 0..9.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{digits}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf digits}\opLeftPren{}\opRightPren{}} 
returns the current precision of floats in
numbers of digits.
\newitem
\smath{\mbox{\bf digits}\opLeftPren{}n\opRightPren{}} set the
\spadfunFrom{precision}{FloatingPointSystem} of floats
to \smath{n} digits.
\newitem
\smath{\mbox{\bf digits}\opLeftPren{}x\opRightPren{}} 
returns a stream of \smath{p}-adic
digits of p-adic integer
\smath{n}.
\seeType{PAdicInteger}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dihedral}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN    --dihedral group}{}{}
{\smath{\mbox{\bf dihedral}\opLeftPren{}n\opRightPren{}} 
is the cycle index of the
dihedral group of degree \smath{n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dihedralGroup}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf dihedralGroup}\opLeftPren{}
[ i_1, \ldots, i_k]\opRightPren{}} constructs
the dihedral group of order \smath{2k} acting on the integers
\smath{i_1}, \ldots, \smath{i_k}. Note: duplicates in the list will be removed.
\newitem\smath{\mbox{\bf dihedralGroup}\opLeftPren{}n\opRightPren{}} 
constructs the dihedral group of order \smath{2n}
acting on integers \smath{1, \ldots, n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dilog}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LiouvillianFunctionCategory}
{\smath{\mbox{\bf dilog}\opLeftPren{}x\opRightPren{}} returns the 
dilogarithm of \smath{x}, that is,  \smath{\int {log(x) / (1 - x) dx}}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dim}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(Color)->\$}{Palette}
{\smath{\mbox{\bf dim}\opLeftPren{}c\opRightPren{}} 
sets the shade of a hue \smath{c}, above dark but
below bright.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dimension}}\opLeftPren{}
{\it \opt{various}}\opRightPren{}%
}%
}%
{0}{()->CardinalNumber}{VectorSpace}
{\smath{\mbox{\bf dimension}\opLeftPren{}\opRightPren{}\$R} 
returns the dimensionality of the vector space
or rank of Lie algebra \smath{R}.
\newitem\smath{\mbox{\bf dimension}\opLeftPren{}I\opRightPren{}} 
gives the dimension of the ideal \smath{I}.
\newitem\smath{\mbox{\bf dimension}\opLeftPren{}s\opRightPren{}} 
returns the dimension of the point category \smath{s}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dioSolve}}\opLeftPren{}{\it equation}\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{\smath{\mbox{\bf dioSolve}\opLeftPren{}eq\opRightPren{}} 
computes a basis of all minimal solutions
for a linear homomogeneous Diophantine equation \smath{eq}, then
all minimal solutions of the inhomogeneous equation.
Alternatively, an expression \smath{u} may be given 
for \smath{eq} in which case the equation
\smath{eq} is defined as \smath{u=0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{directory}}\opLeftPren{}
{\it filename}\opRightPren{}%
}%
}%
{1}{(\$)->String}{FileNameCategory}
{\smath{\mbox{\bf directory}\opLeftPren{}f\opRightPren{}} 
returns the directory part of the file name.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{directProduct}}\opLeftPren{}
{\it vector}\opRightPren{}%
}%
}%
{1}{(Vector(R))->\$}{DirectProductCategory}
{\smath{\mbox{\bf directProduct}\opLeftPren{}v\opRightPren{}} 
converts the vector \smath{v} to become a direct product
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{discreteLog}}\opLeftPren{}
{\it finiteFieldElement}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{FiniteFieldCategory}
{\smath{\mbox{\bf discreteLog}\opLeftPren{}a\opRightPren{}\$F} 
computes the discrete logarithm of \smath{a} with respect to 
\smath{\mbox{\bf primitiveElement}\opLeftPren{}\opRightPren{}\$F} 
of the field \smath{F}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{discreteLog}}\opLeftPren{}
{\it finiteFieldElement}, 
\allowbreak{}{\it  finiteFieldElement}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Union(NonNegativeInteger, "failed")}{FieldOfPrimeCharacteristic}
{\smath{\mbox{\bf discreteLog}\opLeftPren{}b, 
\allowbreak{} a\opRightPren{}} computes \smath{s} such that
\smath{b^s = a} if such an \smath{s} exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{discriminant}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{0}{()->R}{FramedAlgebra}
{\smath{\mbox{\bf discriminant}\opLeftPren{}p\optinner{, x}\opRightPren{}} 
returns the discriminant of the polynomial
\smath{p} with respect to the variable \smath{x}.
If \smath{x} is univariate, the second argument may be omitted.
\newitem\smath{\mbox{\bf discriminant}\opLeftPren{}\opRightPren{}\$R}
returns \smath{\mbox{\bf determinant}\opLeftPren{}
{\mbox {\bf traceMatrix}}()\$R\opRightPren{}} of a
\spadtype{FramedAlgebra} domain \smath{R}.
\newitem\smath{\mbox{\bf discriminant}\opLeftPren{}
[ v_1, .., v_n]\opRightPren{}} returns \smath{\mbox{\bf determinant}
\opLeftPren{}traceMatrix([ v_1, .., v_n])\opRightPren{}} 
where the \smath{v_i} each have 
\smath{n} elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{display}}\opLeftPren{}
{\it text\opt{, width}}\opRightPren{}%
}%
}%
{1}{(\$)->Void}{ScriptFormulaFormat}
{\smath{\mbox{\bf display}\opLeftPren{}t\optinner{, w}\opRightPren{}},
where \smath{t} is either IBM SCRIPT Formula Format or \TeX{} text,
outputs \smath{t} so that each line has length \smath{\leq w}.
The default value of \smath{w} is that length set by
the system command \spadsyscom{)set output length}.
\newitem\smath{\mbox{\bf display}\opLeftPren{}op, 
\allowbreak{} f\opRightPren{}} attaches \smath{f} 
as the \mbox{\tt "\%display"} property
of \smath{op}.
\newitem
\smath{\mbox{\bf display}\opLeftPren{}op\opRightPren{}} 
returns the \mbox{\tt "\%display"} property of \smath{op} if it has one 
attached, and \mbox{\tt "failed"} otherwise.
\newitem Value \smath{f} either has type \spadsig{OutputForm}{OutputForm}
or else \spadsig{List(OutputForm)}{OutputForm}.
Argument \smath{op} must be unary.
Note: if \smath{op} has a \mbox{\tt "\%display"} 
property \smath{f} of the former type,
then \smath{op(a)} gets converted to \spadtype{OutputForm} as \smath{f(a)}.
If \smath{f} has the latter type,
then \smath{op(a_1, \ldots, a_n)} gets converted to
\spadtype{OutputForm} as \smath{f(a_1, \ldots, a_n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{distance}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Integer}{RecursiveAggregate}
{\smath{\mbox{\bf distance}\opLeftPren{}u, \allowbreak{} v\opRightPren{}},
where \smath{u} and \smath{v}
are recursive aggregates (for example, lists)
returns the path length (an integer) from node \smath{u} to \smath{v}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{distdfact}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  boolean}\opRightPren{}%
}%
}%
{2}{(FP, Boolean)->Record(cont:F, 
factors:List(Record(irr:FP, pow:Integer)))}{DistinctDegreeFactorize}
{\smath{\mbox{\bf distdfact}\opLeftPren{}p, 
\allowbreak{} squareFreeFlag\opRightPren{}} produces the complete
\typeout{check distdfact}
factorization of the polynomial \smath{p} returning an internal
data structure.
If argument \smath{squareFreeFlag} is \smath{true}, the polynomial
is assumed square free.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{distribute}}\opLeftPren{}
{\it expression\opt{, f}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ExpressionSpace}
{\smath{\mbox{\bf distribute}\opLeftPren{}f\optinner{, g}\opRightPren{}} 
expands all the kernels in
\smath{f} that contain \smath{g} in their arguments and that are
formally enclosed by a \spadfunFrom{box}{ExpressionSpace} or a
\spadfunFrom{paren}{ExpressionSpace} expression.
By default, \smath{g} is the list of all kernels in \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{divide}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(quotient:\$, remainder:\$)}{EuclideanDomain}
{\smath{\mbox{\bf divide}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
divides \smath{x} by \smath{y} producing a
record containing a \smath{quotient} and \smath{remainder}, where
the remainder is smaller (see
\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor
\smath{y}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{divideExponents}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Union(\$, "failed")}
{UnivariatePolynomialCategory}
{\smath{\mbox{\bf divideExponents}\opLeftPren{}p, 
\allowbreak{} n\opRightPren{}} returns a new polynomial resulting
from dividing all exponents of the polynomial \smath{p} by the non
negative integer \smath{n}, or \mbox{\tt "failed"} if no exponent is
exactly divisible by \smath{n}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{divisors}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->List(Integer)}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf divisors}\opLeftPren{}i\opRightPren{}} 
returns a list of the divisors of integer
\smath{i}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{domain}}\opLeftPren{}
{\it typeAnyObject}\opRightPren{}%
}%
}%
{1}{(\$)->SExpression}{Any}
{\smath{\mbox{\bf domain}\opLeftPren{}a\opRightPren{}} 
returns the type of the original object that
was converted to \spadtype{Any}
as object of type \spadtype{SExpression}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{domainOf}}\opLeftPren{}
{\it typeAnyObject}\opRightPren{}%
}%
}%
{1}{(\$)->OutputForm}{Any}
{\smath{\mbox{\bf domainOf}\opLeftPren{}a\opRightPren{}} returns a 
printable form of the type of the
original type of \smath{a}, an object
of type \spadtype{Any}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{dot}}\opLeftPren{}{\it vector}, \allowbreak{}
{\it  vector}\opRightPren{}%
}%
}%
{2}{(\$, \$)->R}{DirectProductCategory}
{\smath{\mbox{\bf dot}\opLeftPren{}v_1, \allowbreak{} v_2\opRightPren{}} 
computes the inner product of the vectors
\smath{v_1} and \smath{v_2}, or calls \spadfun{error} if \smath{x}
and \smath{y} are not of the same length.
\newitem \smath{\mbox{\bf dot}\opLeftPren{}of\opRightPren{}}, 
where \smath{of} is an object of type
\spadtype{OutputForm} (normally unexposed), returns an output form
with one dot overhead\texht{ (\.{x})}{}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{doubleRank}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(A)->NonNegativeInteger}{AlgebraPackage}
{\smath{\mbox{\bf doubleRank}\opLeftPren{}x\opRightPren{}},
where \smath{x} is an element of a domain \smath{R}
of category \spadtype{FramedNonAssociativeAlgebra},
determines the number of linearly independent elements in
\smath{b_1 x}, \ldots, \smath{b_n x}, where 
\smath{b=[ b_1, \ldots, b_n]} is the
fixed basis for \smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{doublyTransitive?}}\opLeftPren{}\opRightPren{}%
}%
}%
{1}{(UP)->Boolean}{AlgFactor}
{\smath{\mbox{\bf doublyTransitive?}\opLeftPren{}p\opRightPren{}}
tests if polynomial \smath{p}, is irreducible over the field
\smath{K} generated by its coefficients, and if \smath{p(X)/(X -
a)} is irreducible over \smath{K(a)} where \smath{p(a) = 0}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{draw}}\opLeftPren{}{\it functionOrExpression}, 
\allowbreak{}{\it  range}\allowbreak $\,[$ , \allowbreak{}
{\it  options}$]$\opRightPren{}%
}%
}%
{2}{((DoubleFloat)->DoubleFloat, Segment(Float))->
TwoDimensionalViewport}{TopLevelDrawFunctionsForCompiledFunctions}
{\smath{f}, \smath{g}, and \smath{h} below denote user-defined
functions which map one or more \spadtype{DoubleFloat} values to a
\spadtype{DoubleFloat} value.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}f, 
\allowbreak{} a..b\opRightPren{}} draws the \twodim{} graph of 
\smath{y = f(x)} as \smath{x} 
ranges from \smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to
\smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}curve(f, g), 
\allowbreak{} a..b\opRightPren{}} draws the \twodim{} graph of
the parametric curve \smath{x = f(t), y = g(t)} as \smath{t}
ranges from \smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}f, 
\allowbreak{} a..b, \allowbreak{} c..d\opRightPren{}} 
draws the \threedim{} graph of
\smath{z = f(x, y)} as \smath{x} ranges from 
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} to
\smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
and \smath{y} ranges from \smath{\mbox{\bf min}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}} to
\smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}curve(f, g, h), 
\allowbreak{} a..b\opRightPren{}} draws a \threedim{} graph
of the parametric curve \smath{x = f(t), y = g(t), z = h(t)} as
\smath{t} ranges from \smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}surface(f, g, h), 
\allowbreak{} a..b, \allowbreak{} c..d\opRightPren{}} draws the
\threedim{} graph of the parametric
surface \smath{x = f(u, v)}, \smath{y = g(u, v)}, 
\smath{z = h(u, v)} as \smath{u} ranges from 
\smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to 
\smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
and \smath{v} ranges from \smath{\mbox{\bf min}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}}.
\medbreak\bigopkey{Arguments \smath{f}, \smath{g}, and \smath{h}
below
denote an \spadtype{Expression} involving the variables indicated as arguments.
For example, \smath{f(x, y)} denotes an expression involving the
variables \smath{x}
and \smath{y}.}
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}f(x), 
\allowbreak{} x = a..b\opRightPren{}} draws the \twodim{} graph of
\smath{y = f(x)} as
\smath{x} ranges from \smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}curve(f(t), g(t)), 
\allowbreak{} t = a..b\opRightPren{}} draws the \twodim{} graph of the
parametric curve \smath{x = f(t), y = g(t)} as \smath{t} ranges from 
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} to 
\smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}f(x, y), \allowbreak{} x = a..b, 
\allowbreak{} y = c..d\opRightPren{}} draws the
\threedim{} graph of \smath{z = f(x, y)} as \smath{x} ranges from
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} to 
\smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} and \smath{y} 
ranges from
\smath{\mbox{\bf min}\opLeftPren{}c, \allowbreak{} d\opRightPren{}} to 
\smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
\bigitem\smath{\mbox{\bf draw}\opLeftPren{}curve(f(t), g(t), h(t)), 
\allowbreak{} t = a..b\opRightPren{}} draws the
\threedim{} graph of the parametric curve \smath{x = f(t)},
\smath{y = g(t)}, \smath{z = h(t)} as \smath{t} ranges from
\smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}.
\bigitem\smath{{\bf draw}(surface(f(u, v), g(u, v), h(u, v)), u = a..b,
v = c..d)} draws the \threedim{} graph of the parametric surface
\smath{x = f(u, v)}, \smath{y = g(u, v)}, \smath{z = h(u, v)} as
\smath{u} ranges from \smath{\mbox{\bf min}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} and
\smath{v} ranges from \smath{\mbox{\bf min}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}} to \smath{\mbox{\bf max}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}}.
\medbreak Each of the \spadfun{draw} operations optionally take
options given as
extra arguments.
\smallbreak\opoption{adaptive}{true} turns on adaptive plotting.
\smallbreak\opoption{clip}{true} turns on \twodim{} clipping.
\smallbreak\opoption{colorFunction}{f} specifies the color based
on a function.
\smallbreak\opoption{coordinates}{p} specifies a change of
coordinate systems of point \smath{p}:
\smath{bipolar},
\smath{bipolarCylindrical},
\smath{conical},
\smath{elliptic},
\smath{ellipticCylindrical},
\smath{oblateSpheroidal},
\smath{parabolic},
\smath{parabolicCylindrical},
\smath{paraboloidal},
\smath{prolateSpheroidal},
\smath{spherical}, and
\smath{toroidal}
\smallbreak\opoption{curveColor}{p} specifies a color index 
for \twodim{} graph curves from the pallete \smath{p}.
\smallbreak\opoption{pointColor}{p} specifies a color index 
for \twodim{} graph points
from the palette \smath{p}.
\smallbreak\opoption{range}{[ a..b]} provides a user-specified range
for implicit curve plots.
\smallbreak\opoption{space}{sp} adds the current graph to 
\spadtype{ThreeSpace} object
\smath{sp}.
\smallbreak\opoption{style}{s} specifies the drawing style in
which the graph will be plotted: \smath{wire}, \smath{solid},
\smath{shade}, \smath{smooth}.
\smallbreak\opoption{title}{s} titles the graph with string \smath{s}.
\smallbreak\opoption{toScale}{true} causes the graph to be drawn to scale.
\smallbreak\opoption{tubePoints}{n} specifies the number of 
points \smath{n} defining
the circle which creates the tube around a \threedim{} curve. 
The default value is 6.
\smallbreak\opoption{tubeRadius}{r} specifies a \spadtype{Float} 
radius \smath{r}
for a tube plot around a \threedim{} curve.
\smallbreak\opoption{unit}{[ a, b]} marks off the units of a \twodim{} graph
in increments \smath{a} along the x-axis, \smath{b} along the y-axis.
\smallbreak\opoption{var1Steps}{n} indicates the number of 
subdivisions \smath{n}
of the first range variable.
\smallbreak\opoption{var2Steps}{n} indicates the number of
subdivisions \smath{n}
of the second range variable.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{drawToScale}}\opLeftPren{}
{\optArg{boolean}}\opRightPren{}%
}%
}%
{0}{()->Boolean}{GraphicsDefaults}
{\smath{\mbox{\bf drawToScale}\opLeftPren{}\opRightPren{}} 
tests if plots are currently to be drawn to scale.
\newitem\
\smath{\mbox{\bf drawToScale}\opLeftPren{}true\opRightPren{}} 
causes plots to be drawn to scale.
\smath{\mbox{\bf drawToScale}\opLeftPren{}false\opRightPren{}} 
causes plots to be drawn to fill up the
viewport window.
The default setting is \smath{false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{duplicates}}\opLeftPren{}
{\it dictionary}\opRightPren{}%
}%
}%
{1}{(\$)->List(Record(entry:S, count:NonNegativeInteger))}{MultiDictionary}
{\smath{\mbox{\bf duplicates}\opLeftPren{}d\opRightPren{}} 
returns a list of values which have
duplicates in \smath{d}}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Ei}}\opLeftPren{}{\it variable}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LiouvillianFunctionCategory}
{\smath{\mbox{\bf Ei}\opLeftPren{}x\opRightPren{}} 
returns the exponential integral of \smath{x}:
\smath{\int exp(x)/x {\rm dx}}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eigenMatrix}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
Union(Matrix(Expression(Fraction(Integer))), 
\mbox{\tt "failed"})}{RadicalEigenPackage}
{\smath{\mbox{\bf eigenMatrix}\opLeftPren{}A\opRightPren{}} 
returns the matrix \smath{B} such that
\smath{BA(\mbox{\bf inverse } B)} is diagonal, or \mbox{\tt
"failed"} if no such
\smath{B} exists.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eigenvalues}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Fraction(Polynomial(Fraction(Integer))))}{EigenPackage}
{\smath{\mbox{\bf eigenvalues}\opLeftPren{}A\opRightPren{}},
where \smath{A} is a matrix with rational function coefficients,
returns the eigenvalues of the matrix \smath{A}
which are expressible as rational functions over the rational numbers.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eigenvector}}\opLeftPren{}
{\it eigenvalue}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(Fraction(Integer))), 
Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Matrix(Fraction(Polynomial(Fraction(Integer)))))}
{EigenPackage}
{\smath{\mbox{\bf eigenvector}\opLeftPren{}eigval, 
\allowbreak{} A\opRightPren{}} returns the eigenvectors belonging
to the eigenvalue \smath{eigval} for the matrix \smath{A}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eigenvectors}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Union(Record(algrel:Fraction(Polynomial(Fraction(Integer))), 
algmult:Integer, 
algvec:List(Matrix(Fraction(Polynomial(Fraction(Integer)))))), 
Record(eigval:Fraction(Polynomial(Fraction(Integer))), eigmult:Integer, 
eigvec:List(Matrix(Fraction(Polynomial(Fraction(Integer))))))))}{EigenPackage}
{\smath{\mbox{\bf eigenvectors}\opLeftPren{}A\opRightPren{}} 
returns the eigenvalues and eigenvectors
for the matrix \smath{A}.
The rational eigenvalues and the corresponding eigenvectors are
explicitly computed.
The non-rational eigenvalues are defined via their minimal
polynomial.
Their corresponding eigenvectors are expressed in terms of a
``generic'' root of this polynomial.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{element?}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  ideal}\opRightPren{}%
}%
}%
{2}{(DPoly, \$)->Boolean}{PolynomialIdeals}
{\smath{\mbox{\bf element?}\opLeftPren{}f, \allowbreak{} I\opRightPren{}} 
tests if the polynomial \smath{f} belongs
to the ideal \smath{I}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{elementary}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN}{}{}
{\smath{\mbox{\bf elementary}\opLeftPren{}n\opRightPren{}} 
is the \eth{\smath{n}} elementary symmetric
function expressed in terms of power sums.
See \axiomType{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{elliptic}}\opLeftPren{}
{\it scaleFactor}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf elliptic}\opLeftPren{}r\opRightPren{}} 
returns a function for transforming elliptic
coordinates to Cartesian coordinates.
The function returned will map the point \smath{(u, v)} to \smath{x
= r \cosh(u) \cos(v)}, \smath{y = r \sinh(u) \sin(v)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ellipticCylindrical}}\opLeftPren{}
{\it scaleFactor}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf ellipticCylindrical}\opLeftPren{}r\opRightPren{}} 
returns a function for
transforming elliptic cylindrical coordinates to Cartesian
coordinates as a function of the scale factor \smath{r}.
The function returned will map the point \smath{(u, v, z)} to
\smath{x = r \cosh(u) \cos(v)}, \smath{y = r \sinh(u) \sin(v)},
\smath{z}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{elt}}\opLeftPren{}{\it structure}, \allowbreak{}
{\it  various}\allowbreak $\,[$ , \allowbreak{}
{\it  \ldots}$]$\opRightPren{}%
}%
}%
{1}{(\$)->R}{CartesianTensor}
{\opkey{\smath{\mbox{\bf elt}\opLeftPren{}u, \allowbreak{} v\opRightPren{}}, 
usually written as \smath{u.v} or
\smath{u(v)}, regards the structure \smath{u} as a function and
applies structure \smath{u} to argument \smath{v}.
Many types export \spadfun{elt} with multiple arguments;
\smath{\mbox{\bf elt}\opLeftPren{}u, \allowbreak{} v, 
\allowbreak{} w\ldots\opRightPren{}} is generally written
\smath{u(v, w\ldots)}.
The interpretation of \smath{u} depends on its type.
If \smath{u} is:}
\begin{simpleList}
\item an indexed aggregate such as a list, stream, vector, or string:
\smath{u.i}, \smath{1 \leq i \leq maxIndex(u)}, is equivalently
written \smath{u(i)} and
returns the \eth{\smath{i}} element of \smath{u}.
Also, \smath{u(i, y)} returns \smath{u(i)} if \smath{i} is an
appropriate index for
\smath{u}, and \smath{y} otherwise.
\item a linear aggregate:
\smath{u(i..j)} returns the aggregate of elements of \smath{u(k)}
for \smath{k=i, i+1, \ldots, j}
in that order.
\item a basic operator: \smath{u(x)} applies the unary operator
\smath{u} to \smath{x};
similarly, \smath{u.[x_1, \ldots, x_n]} applies the \smath{n}-ary operator
\smath{u} to \smath{x_1, \ldots, x_n}.
Also,
\smath{u(x, y)}, \smath{u(x, y, z)}, and \smath{u(x, y, z, w)} respectively
apply the binary, ternary, or 4-ary operator \smath{u} to arguments.
\item a univariate polynomial or rational function:
\smath{u(y)} evaluates the rational function or polynomial with
the distinguished variable replaced by the value of \smath{y};
this value may either be another rational function or polynomial
or a member of the underlying coefficient domain.
\item a list: \smath{u.first} is equivalent to 
\smath{\mbox{\bf first}\opLeftPren{}u\opRightPren{}} and returns
the first element of list \smath{u}.
Also, \smath{u.last} is equivalent to 
\smath{\mbox{\bf last}\opLeftPren{}u\opRightPren{}} and returns
the last element of
list \smath{u}.
Both of these call \spadfun{error} if \smath{u} is the empty list.
Similarly, \smath{u.rest} is equivalent to 
\smath{\mbox{\bf rest}\opLeftPren{}u\opRightPren{}} and
returns the list \smath{u}
beginning at its second element, or calls \spadfun{error} 
if \smath{u} has less than
two elements.
\item a library:
\smath{u(name)} returns the entry in the library stored under the
key \smath{name}.
\item a linear ordinary differential operator:
\smath{u(x)} applies the differential operator \smath{u} to the
value \smath{x}.
\item a matrix or two-dimensional array:
\smath{u(i, j\optinner{, x})}, \smath{1 \leq i \leq nrows(u), 
1 \leq j \leq ncols(m)}, returns the
element in the \eth{\smath{i}} row and \eth{\smath{j}} 
column of the matrix \smath{m}.
If the indices are out of range and an extra argument 
\smath{x} is provided,
then \smath{x} is returned; otherwise, \spadfun{error} is called.
Also, \smath{u([i_1, \ldots, i_m], [j_1, \ldots, j_m])} returns
the \smath{m}-by-\smath{n} matrix consisting of elements 
\smath{u(i_k, j_l)} of \smath{u}.
\item a permutation group:
\smath{u(i)} returns the \smath{i}-th generator of the group \smath{u}.
\item a point: \smath{u.i} returns the \eth{\smath{i}} component 
of the point \smath{u}.
\item a rewrite rule:
\smath{u(f\optinner{, n})} applies rewrite rule \smath{u} to 
expression \smath{f}
at most \smath{n} times, where \smath{n=\infty} by default.
When the left-hand side of \smath{u} matches a subexpression of \smath{f},
the subexpression is replaced by the right-hand side of \smath{u} 
producing a new \smath{f}.
After \smath{n} iterations or when no further match occurs, the 
transformed \smath{f}
is returned.
\item a ruleset:
\smath{u(f\optinner{, n})} applies ruleset \smath{u} to expression 
\smath{f} at most \smath{n}
times, where \smath{n=\infty} by default.
Similar to last case, except that on each iteration, each rule in 
the ruleset is
applied in turn in attempt to find a match.
\item an \axiomType{SExpression} \smath{(a_1, \ldots, a_n\quad{}.\quad{}b)}
(where \smath{b} denotes the \spadfun{cdr} of the last node):
\smath{u.i} returns \smath{a_i}; similarly
\smath{u.[i_1, \ldots, i_m]} returns \smath{(a_{i_1}, \ldots, a_{i_m})}.
\item a univariate series:
\smath{u(r)} returns the coefficient of the term of degree
\smath{r} in \smath{u}.
\item a symbol: \smath{u[a_1, \ldots, a_n]} returns \smath{u}
subscripted by \smath{a_1, \ldots, a_n}.
\item a cartesian tensor:
\smath{u(r)} gives a component of a rank 1 tensor;
\smath{u([i_1, \ldots, l_n])} gives a component of a rank \smath{n} tensor;
\smath{u()} gives the component of a rank 0 tensor.
Also: \smath{u(i, j)},
\smath{u(i, j, k)},
and \smath{u(i, j, k, l)} gives a component of a rank 2, 3, and 4
tensors respectively.
\item See also \axiomType{QuadraticForm},
\axiomType{FramedNonAssociativeAlgebra}, and
\axiomType{FunctionFieldCategory}.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{empty}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Aggregate}
{\smath{\mbox{\bf empty}\opLeftPren{}\opRightPren{}\$R} creates an 
aggregate of type \smath{R} with 0
elements.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{empty?}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Aggregate}
{\smath{\mbox{\bf empty?}\opLeftPren{}u\opRightPren{}} tests if aggregate 
\smath{u} has 0 elements.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{endOfFile?}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{TextFile}
{\smath{\mbox{\bf endOfFile?}\opLeftPren{}f\opRightPren{}} tests whether 
the file \smath{f} is
positioned after the end of all text.
If the file is open for output, then this test always returns
\smath{true}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{enqueue!}}\opLeftPren{}{\it value}, \allowbreak{}
{\it  queue}\opRightPren{}%
}%
}%
{2}{(S, \$)->S}{QueueAggregate}
{\smath{\mbox{\bf enqueue!}\opLeftPren{}x, \allowbreak{} q\opRightPren{}} 
inserts \smath{x} into the queue \smath{q}
at the back end.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{enterPointData}}\opLeftPren{}{\it space}, 
\allowbreak{}{\it  listOfPoints}\opRightPren{}%
}%
}%
{2}{(\$, List(Point(R)))->NonNegativeInteger}{ThreeSpace}
{\smath{\mbox{\bf enterPointData}\opLeftPren{}s, \allowbreak{} 
[p_0, \allowbreak{} p_1, \allowbreak{} \ldots, p_n]\opRightPren{}} 
adds a list of points
from \smath{p_0} through \smath{p_n} to the \axiomType{ThreeSpace}
\smath{s}, and returns the index of the start of the list.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{entry?}}\opLeftPren{}{\it value}, \allowbreak{}
{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(Entry, \$)->Boolean}{IndexedAggregate}
{\smath{\mbox{\bf entry?}\opLeftPren{}x, \allowbreak{} u\opRightPren{}},
where \smath{u} is an indexed aggregate
(such as a list, vector, or string),
tests if \smath{x} equals \smath{u . i} for some index \smath{i}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{epilogue}}\opLeftPren{}
{\it formattedObject}\opRightPren{}%
}%
}%
{1}{(\$)->List(String)}{ScriptFormulaFormat}
{\smath{\mbox{\bf epilogue}\opLeftPren{}t\opRightPren{}} extracts the 
epilogue section of an IBM
SCRIPT Formula Format or \TeX{} formatted object \smath{t}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eq}}\opLeftPren{}{\it sExpression}, \allowbreak{}
{\it  sExpression}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{SExpressionCategory}
{\smath{eq(s, t)}, for \axiomType{SExpression}s
\smath{s} and \smath{t} returns \smath{true} if EQ(\smath{s}, \smath{t})
is \smath{true} in Common Lisp.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eq?}}\opLeftPren{}{\it aggregate}, \allowbreak{}
{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{Aggregate}
{\smath{\mbox{\bf eq?}\opLeftPren{}u, \allowbreak{} v\opRightPren{}} 
tests if two aggregates \smath{u} and \smath{v}
are same objects
in the Axiom store.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{equality}}\opLeftPren{}
{\it operator}, \allowbreak{}{\it  function}\opRightPren{}%
}%
}%
{2}{(\$, (\$, \$)->Boolean)->\$}{BasicOperator}
{\smath{\mbox{\bf equality}\opLeftPren{}op, 
\allowbreak{} f\opRightPren{}} attaches \smath{f} as 
the \mbox{\tt "\%equal?"} property to
\smath{op}.
Argument \smath{f} must be a boolean-valued ``equality'' function defined
on \axiomType{BasicOperator} objects.
If \smath{op1} and \smath{op2} have the same name, and one of them has
an \mbox{\tt "\%equal?"} property \smath{f}, then 
\smath{f(op1, op2)} is called to
decide whether \smath{op1} and \smath{op2} should be considered equal.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{equation}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  expression}\opRightPren{}%
}%
}%
{2}{(S, S)->\$}{Equation}
{\smath{\mbox{\bf equation}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} creates the equation \smath{a = b}.
\newitem\smath{\mbox{\bf equation}\opLeftPren{}v, 
\allowbreak{} a..b\opRightPren{}},
also written: \smath{v=a..b},
creates a segment binding value with variable \smath{v} and
segment \smath{a..b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{erf}}\opLeftPren{}{\it variable}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LiouvillianFunctionCategory}
{\smath{\mbox{\bf erf}\opLeftPren{}x\opRightPren{}} 
returns the error function of \smath{x}:
\smath{{2 \over \sqrt(\pi)}\int {exp^{-x^2} dx}}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{error}}\opLeftPren{}
{\it string\opt{, string}}\opRightPren{}%
}%
}%
{1}{(List(String))->Exit}{ErrorFunctions}
{\smath{\mbox{\bf error}\opLeftPren{}msg\opRightPren{}} 
displays error message \smath{msg} and terminates.
Argument \smath{msg} is either a string or a list of strings.
\newitem\smath{\mbox{\bf error}\opLeftPren{}name, 
\allowbreak{} msg\opRightPren{}} is similar except that
the error message is preceded by a message saying that the
error occured in a function named \smath{name}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{euclideanGroebner}}\opLeftPren{}
{\it ideal\opt{, string, string}}\opRightPren{}%
}%
}%
{1}{(List(Dpol))->List(Dpol)}{EuclideanGroebnerBasisPackage}
{\smath{\mbox{\bf euclideanGroebner}\opLeftPren{}lp\optinner{, 
"info", "redcrit}\opRightPren{}} computes a Gr\"obner basis for a polynomial 
ideal over a Euclidean domain generated by the list of polynomials \smath{lp}.
If the string \mbox{\tt "info"} is given as a second argument,
a summary is given of the critical pairs.
If the string \mbox{\tt "redcrit"} is given as a third argument,
the critical pairs are printed.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{euclideanNormalForm}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  groebnerBasis}\opRightPren{}%
}%
}%
{2}{(Dpol, List(Dpol))->Dpol}{EuclideanGroebnerBasisPackage}
{\smath{\mbox{\bf euclideanNormalForm}\opLeftPren{}poly, 
\allowbreak{} gb\opRightPren{}} reduces the polynomial
\smath{poly} modulo the precomputed Gr\"obner basis \smath{gb}
giving a canonical representative of the residue class.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{euclideanSize}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{EuclideanDomain}
{\smath{\mbox{\bf euclideanSize}\opLeftPren{}x\opRightPren{}} 
returns the Euclidean size of the
element \smath{x},
or calls \spadfun{error} if \smath{x} is zero.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eulerPhi}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf eulerPhi}\opLeftPren{}n\opRightPren{}} 
returns the number of integers between 1 and
\smath{n} (including 1) which are relatively prime to \smath{n}.
This is the Euler phi function \smath{\phi(n)}, also called the
totient function.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{euler}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf euler}\opLeftPren{}n\opRightPren{}} 
returns the \eth{\smath{n}} Euler number.
This is \smath{2^n E(n, 1/2)}, where \smath{E(n, x)} is the
\eth{\smath{n}} Euler polynomial.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{eval}}\opLeftPren{}
{\it expression\opt{, options}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FunctionSpace}
{\opkey{Many domains have forms of the \spadfun{eval}
defined. Here are some the most common forms.}
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f\opRightPren{}} unquotes all the 
quoted operators in \smath{f}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f, \allowbreak{} x = v\opRightPren{}} 
replaces symbol or expression \smath{x} by
\smath{v} in \smath{f};
if \smath{x} is an expression, it must be retractable to a single
\axiomType{Kernel}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f, \allowbreak{} [x_1 = v_1, 
\allowbreak{} \ldots, x_n = v_n]\opRightPren{}} returns \smath{f}
with symbols
or expressions \smath{x_i}
replaced by \smath{v_i} in parallel;
if \smath{x_i} is an expression, it must be retractable to a
single \axiomType{Kernel}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f, \allowbreak{} [x_1, \allowbreak{} 
\ldots, x_n]\opRightPren{}} unquotes all
the quoted operations in \smath{f} whose name is one of the \smath{x_i}.'s.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f, \allowbreak{} x\opRightPren{}} 
unquotes all quoted operators in \smath{f}
whose name is \smath{x}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}e, \allowbreak{} s, 
\allowbreak{} f\opRightPren{}}
replaces every subexpression of \smath{e} of the form
\smath{s(a_1, \dots, a_n)} by \smath{f(a_1, \ldots, a_n)}.
The function \smath{f} can have type
\spadsig{Expression}{Expression} if \smath{s} is a unary operator;
otherwise \smath{f}
must have signature \spadsig{List(Expression)}{Expression}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}e, \allowbreak{} [s_1, 
\allowbreak{} \ldots, s_n], [f_1, \ldots, f_n]\opRightPren{}},
replaces every subexpression of \smath{e} of the form
\smath{s_i(a_1, \dots, a_{n_i})} by \smath{f_i(a_1, \ldots, a_{n_i})}.
If all the \smath{s_i}'s are unary operators, the functions
\smath{f_i} can have signature \spadsig{Expression}{Expression};
otherwise, the \smath{f_i} must have signature
\spadsig{List(Expression)}{Expression}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}p, \allowbreak{} el\opRightPren{}}, 
where \smath{p} is a permutation,
returns the image of element {\it el} under \smath{p}.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}s\opRightPren{}}, 
where \spad{s} is of type \axiomType{SymmetricPolynomial} with
rational number coefficients, returns the sum of the 
coefficients of a cycle index.
See \axiomType{CycleIndicators} for details.
\newitem
\smath{\mbox{\bf eval}\opLeftPren{}f, 
\allowbreak{} s\opRightPren{}}, where \spad{s} is of type 
\axiomType{SymmetricPolynomial}
with rational number coefficients and \spad{f} is a function of type
\spadsig{Integer}{Algebra Fraction Integer},
evaluates the cycle index s by applying
the function \spad{f} to each integer in a monomial partition,
forms their product and sums the results over all monomials.
See \axiomType{EvaluateCycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{evaluate}}\opLeftPren{}
{\it operator}, \allowbreak{}{\it  function}\opRightPren{}%
}%
}%
{2}{(BasicOperator, (A)->A)->BasicOperator}{BasicOperatorFunctions1}
{\smath{\mbox{\bf evaluate}\opLeftPren{}op\opRightPren{}} 
returns the value of the \mbox{\tt "\%eval"} property
of \axiomType{BasicOperator}
object \smath{op} if it has one, and \mbox{\tt "failed"} otherwise.
\newitem
\smath{\mbox{\bf evaluate}\opLeftPren{}op, 
\allowbreak{} f\opRightPren{}} attaches \smath{f} as the \mbox{\tt "\%eval"}
property of \smath{op}.
If \smath{op} has an \mbox{\tt "\%eval"} property \smath{f}, then applying
\smath{op} to a
returns the result of \smath{f(a)}.
If \smath{f} takes a single argument, then
applying \smath{op} to a value \smath{a} returns the result \smath{f(a)}.
If \smath{f} takes a list of arguments, then
applying \smath{op} to \smath{a_1, \ldots, a_n} returns the
result of \smath{f(a_1, \ldots, a_n)}.
\newitem
Argument \smath{f} may also be an anonymous function of
the form \smath{u +-> g(u)}. In this case,
\smath{g} {\it must} be additive,
that is, \smath{g(a + b) = g(a) + g(b)} for any
\smath{a} and \smath{b} in \smath{R}.
This implies that \smath{g(n a) = n g(a)} for any \smath{a}
in \smath{R} and integer \smath{n > 0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{even?}}\opLeftPren{}
{\it integerNumber}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{IntegerNumberSystem}
{\smath{\mbox{\bf even?}\opLeftPren{}n\opRightPren{}} 
tests if integer \smath{n} is even.
\newitem
\smath{\mbox{\bf even?}\opLeftPren{}p\opRightPren{}} 
tests if permutation \smath{p} is an even
permutation, that is, that
the \smath{\mbox{\bf sign}\opLeftPren{}p) = 1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{every?}}\opLeftPren{}{\it predicate}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->Boolean}{HomogeneousAggregate}
{\smath{\mbox{\bf every?}\opLeftPren{}pred, 
\allowbreak{} u\opRightPren{}} tests if {\it pred(x)} is \smath{true}
for all elements \smath{x} of \smath{u}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exists?}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FileNameCategory}
{\smath{\mbox{\bf exists?}\opLeftPren{}f\opRightPren{}} 
tests if the file \smath{f} exists in the file
system.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exp}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{expIfCan}}\opLeftPren{}{\it x}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ElementaryFunctionCategory}
{\smath{\mbox{\bf exp}\opLeftPren{}x\opRightPren{}} 
returns {\tt \%e} to the power \smath{x}.
\newitem
\smath{\mbox{\bf expIfCan}\opLeftPren{}z\opRightPren{}} 
returns exp(\smath{z}) if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exp1}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Float}
{\smath{\mbox{\bf exp1}\opLeftPren{}\opRightPren{}\$R} returns exp 1: 
\smath{2.7182818284\ldots} either
a float or a small float according to whether \smath{R=} \axiomType{Float}
or \smath{R=} \axiomType{DoubleFloat}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{expand}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf expand}\opLeftPren{}f\opRightPren{}} performs the 
following expansions
on \axiomType{Expression} \smath{f:}
\begin{simpleList}
\item Logs of products are expanded into sums of logs.
\item Trigonometric and hyperbolic trigonometric functions of
sums are expanded into sums of products of trigonometric
and hyperbolic trigonometric functions.
\item Formal powers of the form \smath{(a/b)^c} are expanded into
\smath{a^c  b^{(-c)}}.
\end{simpleList}
\newitem
\smath{\mbox{\bf expand}\opLeftPren{}ir\opRightPren{}},
where \smath{ir} is an \axiomType{IntegrationResult},
returns the list of possible real functions corresponding to \smath{ir}.
\newitem
\smath{\mbox{\bf expand}\opLeftPren{}lseg\opRightPren{}},
where \smath{lseg} is a list of segments, returns a list with all segments
expanded.
For example, \code{expand [1..4, 7..9] = [1, 2, 3, 4, 7, 8, 9]}.
\newitem
\smath{\mbox{\bf expand}\opLeftPren{}l..h \mbox{ \tt by } k\opRightPren{}} 
returns
a list of explicit elements.
For example, \code{expand(1..5 by 2) = [1, 3, 5]}.
\newitem
\smath{\mbox{\bf expand}\opLeftPren{}f\opRightPren{}} 
returns an unfactored form of factored object \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{expandLog}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf expandLog}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\mbox{\bf log}\opLeftPren{}a/b\opRightPren{}}
appearing in \axiomType{Expression} \smath{f} into \smath{\log(a) - \log(b)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{expandPower}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf expandPower}\opLeftPren{}f\opRightPren{}} 
converts every power \smath{(a/b)^c} appearing
in \axiomType{Expression} \smath{f} into \smath{a^c  b^{-c}}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{explicitEntries?}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{LazyStreamAggregate}
{\smath{\mbox{\bf explicitEntries?}\opLeftPren{}s\opRightPren{}} 
tests if the stream \smath{s} has
explicitly computed entries.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{explicitlyEmpty?}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{LazyStreamAggregate}
{\smath{\mbox{\bf explicitlyEmpty?}\opLeftPren{}s\opRightPren{}} 
tests if the stream is an (explicitly) empty stream.
Note: this is a null test which will not cause lazy evaluation.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{explicitlyFinite?}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{StreamAggregate}
{\smath{\mbox{\bf explicitlyFinite?}\opLeftPren{}s\opRightPren{}} 
tests if the stream \smath{s} has a finite
number of elements. Note: for many datatypes, 
\code{explicitlyFinite?(s) = not possiblyInfinite?(s)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exponent}}\opLeftPren{}
{\it floatOrFactored}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{FloatingPointSystem}
{\smath{\mbox{\bf exponent}\opLeftPren{}fl\opRightPren{}} returns the
\spadfunFrom{exponent}{FloatingPointSystem} part of
a float or small float \smath{fl}.
\newitem
\smath{\mbox{\bf exponent}\opLeftPren{}u\opRightPren{}}, 
where \smath{u} is a factored object, returns the
exponent of the
first factor of \smath{u}, or 0 if the factored object 
consists solely of a unit.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{expressIdealMember}}\opLeftPren{}
{\it listOfIdeals}, \allowbreak{}{\it  ideal}\opRightPren{}%
}%
}%
{2}{(List(\$), \$)->Union(List(\$), "failed")}{PrincipalIdealDomain}
{\smath{\mbox{\bf expressIdealMember}\opLeftPren{}[f_1, \allowbreak{} 
\ldots, f_n], h\opRightPren{}} returns a representation of ideal \smath{h} 
as a linear combination of the ideals \smath{f_i} or \mbox{\tt "failed"} 
if \smath{h} is not in the ideal generated by the \smath{f_i}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exptMod}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  nonNegativeInteger}, 
\allowbreak{}{\it  polynomial}
\allowbreak $\,[$ , \allowbreak{}{\it  prime}$]$\opRightPren{}%
}%
}%
{3}{(FP, NonNegativeInteger, FP)->FP}{DistinctDegreeFactorize}
{\smath{\mbox{\bf exptMod}\opLeftPren{}u, \allowbreak{} k, 
\allowbreak{} v\optinner{, p}\opRightPren{}}
raises the polynomial \smath{u} to the \eth{\smath{k}} 
power modulo the polynomial \smath{v}.
If a prime \smath{p} is given, the power is also computed modulo that prime.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{exquo}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, R)->Union(\$, "failed")}{ComplexCategory}
{\smath{\mbox{\bf exquo}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} either returns an element \smath{c} such that
\smath{cb=a} or \mbox{\tt "failed"} if no such element can be found.
Values \smath{a} and \smath{b} are members of a domain of category
\axiomType{IntegralDomain}.
\newitem\smath{\mbox{\bf exquo}\opLeftPren{}A, 
\allowbreak{} r\opRightPren{}} returns the exact quotient of the
elements of matrix \smath{A} by
coefficient \smath{r}, or calls \spadfun{error} if this is not
possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extend}}\opLeftPren{}
{\it stream}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{LazyStreamAggregate}
{\smath{\mbox{\bf extend}\opLeftPren{}ps, 
\allowbreak{} n\opRightPren{}}, where \smath{ps} is a power series,
causes all terms of \smath{ps} of degree \smath{\leq n} to be computed.
\newitem\smath{\mbox{\bf extend}\opLeftPren{}st, 
\allowbreak{} n\opRightPren{}}, where \smath{st} is a stream, causes
entries
to be computed so that \smath{st} has at least \smath{n}
explicit entries, or so that all entries of \smath{st} are finite with
length \smath{\leq n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extendedEuclidean}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}\allowbreak $\,[$ , \allowbreak{}
{\it  element}$]$\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(coef1:\$, coef2:\$, generator:\$)}{EuclideanDomain}
{\opkey{Argments \smath{x}, \smath{y}, and \smath{z} are members
of a domain of category \axiomType{EuclideanDomain}.}
\newitem\smath{\mbox{\bf extendedEuclidean}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} returns a record
\smath{rec} containing three fields: \smath{coef1}, \smath{coef2},
and \smath{generator} where \smath{rec.coef1*x+rec.coef2*y =
rec.generator} and \smath{rec.generator} is a \smath{gcd} of
\smath{x} and \smath{y}.
The \smath{gcd} is unique only up to associates if
{\tt canonicalUnitNormal} is not asserted.
Note: See \spadfun{principalIdeal} for a version of this operation
which accepts an arbitrary length list of arguments.
\newitem\smath{\mbox{\bf extendedEuclidean}\opLeftPren{}x, 
\allowbreak{} y, \allowbreak{} z\opRightPren{}} either returns a record
\smath{rec} of two fields \smath{coef1} and \smath{coef2} where
\smath{rec.coef1*x+rec.coef2*y=z}, and \mbox{\tt "failed"} if \smath{z}
cannot be expressed as such a linear combination of \smath{x} and
\smath{y}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extendedIntegrate}}\opLeftPren{}
{\it rationalFnct}, \allowbreak{}{\it  symbol}, \allowbreak{}{\it  
rationalFnct}\opRightPren{}%
}%
}%
{3}{(Fraction(Polynomial(F)), Symbol, Fraction(Polynomial(F)))->
Union(Record(ratpart:Fraction(Polynomial(F)), 
coeff:Fraction(Polynomial(F))), "failed")}
{RationalFunctionIntegration}
{\smath{\mbox{\bf extendedIntegrate}\opLeftPren{}f, \allowbreak{} x, 
\allowbreak{} g\opRightPren{}} returns fractions \smath{[h,
c]} such that \smath{dc/dx = 0} and \smath{dh/dx = f - cg} if
\smath{(h, c)} exist, and \mbox{\tt "failed"} otherwise.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extensionDegree}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->OnePointCompletion(PositiveInteger)}{ExtensionField}
{\smath{\mbox{\bf extensionDegree}\opLeftPren{}\opRightPren{}\$F} 
returns the degree of the field extension \smath{F}
if the extension is algebraic, and {\tt infinity} if it is not.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extension}}\opLeftPren{}{\it filename}\opRightPren{}%
}%
}%
{1}{(\$)->String}{FileNameCategory}
{\smath{\mbox{\bf extension}\opLeftPren{}fn\opRightPren{}} 
returns the type part of the file name
\smath{fn} as a string.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extract!}}\opLeftPren{}{\it bag}\opRightPren{}%
}%
}%
{1}{(\$)->S}{BagAggregate}
{\smath{\mbox{\bf extract!}\opLeftPren{}bg\opRightPren{}} 
destructively removes a (random) item from
bag \smath{bg}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extractBottom!}}\opLeftPren{}
{\it dequeue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{DequeueAggregate}
{\smath{\mbox{\bf extractBottom!}\opLeftPren{}d\opRightPren{}} 
destructively extracts the bottom
(back) element from the dequeue \smath{d}, or calls
\spadfun{error} if \smath{d} is empty.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{extractTop!}}\opLeftPren{}{\it dequeue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{DequeueAggregate}
{\smath{\mbox{\bf extractTop!}\opLeftPren{}d\opRightPren{}} 
destructively extracts the top (front)
element from the
dequeue \smath{d}, or calls \spadfun{error} if \smath{d} is empty.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{e}}\opLeftPren{}{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{CliffordAlgebra}
{\smath{\mbox{\bf e}\opLeftPren{}n\opRightPren{}} 
produces the appropriate unit element of a
\axiomType{CliffordAlgebra}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factor}}\opLeftPren{}
{\it polynomial\opt{, numbers}}\opRightPren{}%
}%
}%
{1}{(\$)->Factored(\$)}{UniqueFactorizationDomain}
{\smath{\mbox{\bf factor}\opLeftPren{}x\opRightPren{}} 
returns the factorization of \smath{x} into
irreducibles, where \smath{x} is a member of any domain of
category \axiomType{UniqueFactorizationDomain}.
\newitem\smath{\mbox{\bf factor}\opLeftPren{}p, 
\allowbreak{} lan\opRightPren{}}, where \smath{p} is a polynomial
and \smath{lan} is a list of algebraic numbers, factors \smath{p}
over the extension generated by the algebraic numbers given by the
list \smath{lan}.
\newitem\smath{\mbox{\bf factor}\opLeftPren{}upoly, 
\allowbreak{} prime\opRightPren{}}, where \smath{upoly} is a
univariate polynomial and \smath{prime} is a prime integer,
returns the list of factors of \smath{upoly} modulo the integer
prime \smath{p}, or calls \spadfun{error} if \smath{upoly} is not
square-free modulo \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorFraction}}\opLeftPren{}
{\it fraction}\opRightPren{}%
}%
}%
{1}{(Fraction(Polynomial(R)))->Fraction(Factored(Polynomial(R)))}
{RationalFunctionFactorizer}
{\smath{\mbox{\bf factorFraction}\opLeftPren{}r\opRightPren{}} 
factors the numerator and the
denominator of the polynomial fraction \smath{r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorGroebnerBasis}}\opLeftPren{}
{\it listOfPolynomials\opt{, boolean}}\opRightPren{}%
}%
}%
{1}{(List(Dpol))->List(List(Dpol))}{GroebnerFactorizationPackage}
{\smath{\mbox{\bf factorGroebnerBasis}\opLeftPren{}basis
\optinner{, flag}\opRightPren{}} checks
whether the \smath{basis} contains reducible polynomials and uses
these to split the \smath{basis}.
Information about partial results is given if a second argument of
\smath{true} is given.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorials}}\opLeftPren{}
{\it expression\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{CombinatorialOpsCategory}
{\smath{\mbox{\bf factorials}\opLeftPren{}f
\optinner{, x}\opRightPren{}} rewrites the permutations and
binomials in \smath{f} in terms of factorials.
If a symbol \smath{x} is given as a second argument,
the operation rewrites only those terms involving \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorial}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(I)->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf factorial}\opLeftPren{}n\opRightPren{}}, 
where \smath{n} is an integer, returns the
integer value of \smath{n!
= \prod\nolimits_1^n{i}}.
\newitem \smath{\mbox{\bf factorial}\opLeftPren{}n\opRightPren{}}, 
where n is an expression, returns a
formal expression denoting \smath{n!} Note: \smath{n!
= n (n-1)!} when \smath{n > 0}; also, \smath{0!
= 1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorList}}\opLeftPren{}
{\it factoredForm}\opRightPren{}%
}%
}%
{1}{(\$)->List(Record(flg:Union("nil", "sqfr", "irred", "prime"), 
fctr:R, xpnt:Integer))}{Factored}
{\smath{\mbox{\bf factorList}\opLeftPren{}f\opRightPren{}}, 
for a factored form \smath{f}, returns
list of records.
Each record corresponds to a factor of \smath{f} and has three
fields: \smath{flg}, \smath{fctr}, and \smath{xpnt}.
The \smath{fctr} lists the factor and \smath{xpnt}, the exponent.
The \smath{flg} is one of the strings: \mbox{\tt "nil"}, \mbox{\tt "sqfr"},
\mbox{\tt "irred"}, or \mbox{\tt "prime"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorPolynomial}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(SparseUnivariatePolynomial(\$))->
Factored(SparseUnivariatePolynomial(\$))}{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf factorPolynomial}\opLeftPren{}p\opRightPren{}} 
returns the factorization
of a sparse univariate polynomial \smath{p} as a factored form.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factors}}\opLeftPren{}
{\it factoredForm}\opRightPren{}%
}%
}%
{1}{(\$)->List(Record(factor:R, exponent:Integer))}{Factored}
{\smath{\mbox{\bf factors}\opLeftPren{}u\opRightPren{}} returns a list of 
the factors of a factored
form \smath{u} in a form as a list suitable for iteration.
Each element in the list is a record containing both a
\smath{factor} and \smath{exponent} field.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorsOfCyclicGroupSize}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(Record(factor:Integer, exponent:Integer))}{FiniteFieldCategory}
{\smath{\mbox{\bf factorsOfCyclicGroupSize}\opLeftPren{}\opRightPren{}} 
returns the factorization of
\smath{\mbox{\bf size}\opLeftPren{})-1}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{factorSquareFreePolynomial}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(SparseUnivariatePolynomial(\$))->
Factored(SparseUnivariatePolynomial(\$))}{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf factorSquareFreePolynomial}\opLeftPren{}p\opRightPren{}} 
factors the univariate
polynomial \smath{p} into irreducibles, where \smath{p} is known to
be square free and primitive with respect to its main variable.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fibonacci}}\opLeftPren{}
{\it nonNegativeInteger}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf fibonacci}\opLeftPren{}n\opRightPren{}} returns 
the \eth{\smath{n}} Fibonacci
number.
The Fibonacci numbers \smath{F[n]} are defined by \smath{F[0] =
F[1] = 1} and \smath{F[n] = F[n-1] + F[n-2]}.
The algorithm has running time \smath{O(\log(n)^3)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{filename}}\opLeftPren{}{\it directory}, 
\allowbreak{}{\it  name}, \allowbreak{}{\it  extension}\opRightPren{}%
}%
}%
{3}{(String, String, String)->\$}{FileNameCategory}
{\smath{\mbox{\bf filename}\opLeftPren{}d, \allowbreak{} n, 
\allowbreak{} e\opRightPren{}} creates a file name with string
\smath{d} as its directory, string \smath{n} as its name and
string \smath{e} as its extension.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fill!}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{2}{(\$, Entry)->\$}{IndexedAggregate}
{\smath{\mbox{\bf fill!}\opLeftPren{}a, \allowbreak{} x\opRightPren{}} 
replaces each entry in aggregate \smath{a} by
\smath{x}.
The modified \smath{a} is returned.
If \smath{a} is a domain of category
\smath{TwoDimensionalArrayCategory} such as a matrix,
\smath{\mbox{\bf fill!}\opLeftPren{}a, \allowbreak{} x\opRightPren{}} 
sets every element of \smath{a} to \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{filterUntil}}\opLeftPren{}
{\it predicate}, \allowbreak{}{\it  stream}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->\$}{InfiniteTuple}
{\smath{\mbox{\bf filterUntil}\opLeftPren{}p, 
\allowbreak{} s\opRightPren{}} returns \smath{[x_0, x_1, \ldots, x_n]},
where stream \smath{s = [x_0, x_1, x_2, ..]} and 
\smath{n} is the smallest index
such that \smath{p(x_n) = true}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{filterWhile}}\opLeftPren{}
{\it predicate}, \allowbreak{}{\it  stream}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->\$}{Stream}
{\smath{\mbox{\bf filterWhile}\opLeftPren{}pred, 
\allowbreak{} s\opRightPren{}} returns \smath{[x_0, x_1, \ldots,
x_{(n-1)}]} where
\smath{s = [x_0, x_1, x_2, ..]} and
\smath{n} is the smallest index such that \smath{p(x_n) = false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{find}}\opLeftPren{}{\it predicate}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->Union(S, "failed")}{Collection}
{\smath{\mbox{\bf find}\opLeftPren{}pred, \allowbreak{} u\opRightPren{}} 
returns the first \smath{x} in \smath{u}
such that \smath{\mbox{\bf pred}\opLeftPren{}x\opRightPren{}} 
is \smath{true}, and \mbox{\tt "failed"}
if no such \smath{x} exists.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{findCycle}}\opLeftPren{}
{\it nonNegativeInteger}, \allowbreak{}{\it  stream}\opRightPren{}%
}%
}%
{2}{(NonNegativeInteger, \$)->
Record(cycle?:Boolean, prefix:NonNegativeInteger, 
period:NonNegativeInteger)}{Stream}
{\smath{\mbox{\bf findCycle}\opLeftPren{}n, 
\allowbreak{} st\opRightPren{}} determines if stream \smath{st} is
periodic within \smath{n}
terms.
The operation returns a record with three fields: \smath{cycle?},
\smath{prefix}, and \smath{period}.
If \smath{cycle?} has value true,
\smath{period} denotes the period of the cycle,
and \smath{prefix} gives the number of terms in the stream before
the cycle begins.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{finite?}}\opLeftPren{}
{\it cardinalNumber}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{CardinalNumber}
{\smath{\mbox{\bf finite?}\opLeftPren{}f\opRightPren{}} 
tests if expression f is finite.
\newitem
\smath{\mbox{\bf finite?}\opLeftPren{}a\opRightPren{}} 
tests if cardinal number \smath{a} is a
finite cardinal, that is, an integer.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fintegrate}}\opLeftPren{}
{\it taylorSeries}, \allowbreak{}{\it  symbol}, \allowbreak{}
{\it  coefficient}\opRightPren{}%
}%
}%
{3}{(()->\$, Symbol, Coef)->\$}{TaylorSeries}
{\smath{\mbox{\bf fintegrate}\opLeftPren{}s, 
\allowbreak{} v, \allowbreak{} c\opRightPren{}} integrates the series \smath{s} with
respect to variable \smath{v} and having \smath{c} 
as the constant of integration.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{first}}\opLeftPren{}
{\it aggregate\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(\$)->Entry}{IndexedAggregate}
{\smath{\mbox{\bf first}\opLeftPren{}u\opRightPren{}} 
returns the first element \smath{x} of aggregate \smath{u}.
\newitem\smath{\mbox{\bf first}\opLeftPren{}u, 
\allowbreak{} n\opRightPren{}} returns a copy of the first \smath{n}
elements of \smath{u}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fixedPoint}}\opLeftPren{}
{\it function\opt{, positiveInteger}}\opRightPren{}%
}%
}%
{ (A->A) -> A}{}{}
{\smath{\mbox{\bf fixedPoint}\opLeftPren{}f\opRightPren{}},
a function of type \spadsig{A}{A},
is the fixed point of function \smath{f}.
That is, \smath{\mbox{\bf fixedPoint}\opLeftPren{}f) = 
f(\mbox{\bf fixedPoint}(f))}.
\newitem
\smath{\mbox{\bf fixedPoint}\opLeftPren{}f, \allowbreak{} n\opRightPren{}},
where \smath{f} is a function of type \spadsig{List(A)}{List(A)}
and \smath{n} is a positive integer, is the fixed point of function
\smath{f} which is assumed to transform a list of length
\smath{n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fixedPoints}}\opLeftPren{}
{\it permutation}\opRightPren{}%
}%
}%
{1}{(\$)->Set(S)}{Permutation}
{\smath{\mbox{\bf fixedPoints}\opLeftPren{}p\opRightPren{}} 
returns the points fixed by the permutation \smath{p}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{flagFactor}}\opLeftPren{}{\it base}, 
\allowbreak{}{\it  exponent}, \allowbreak{}{\it  flag}\opRightPren{}%
}%
}%
{3}{(R, Integer, Union("nil", "sqfr", "irred", "prime"))->\$}{Factored}
{\smath{\mbox{\bf flagFactor}\opLeftPren{}base, 
\allowbreak{} exponent, \allowbreak{} flag\opRightPren{}} 
creates a factored object 
with a single factor whose \smath{base} is asserted to be properly described 
by the information \smath{flag}:
one of the strings \mbox{\tt "nil"}, \mbox{\tt "sqfr"}, \mbox{\tt "irred"}, and \mbox{\tt "prime"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{flatten}}\opLeftPren{}{\it inputForm}\opRightPren{}%
}%
}%
{ $ -> $}{}{}
{\smath{\mbox{\bf flatten}\opLeftPren{}s\opRightPren{}} 
returns an input form corresponding to \smath{s} with
all the nested operations flattened to triples using new
local variables.
This operation is used to optimize compiled code.
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{flexible?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf flexible?}\opLeftPren{}\opRightPren{}\$R} 
tests if \smath{2 \mbox{\bf
associator}(a, b, a) = 0}
for all \smath{a}, \smath{b} in a domain \smath{R}
of category \axiomType{FiniteRankNonAssociativeAlgebra}.
Note: only this can be tested since, in general, it is not known
whether \smath{2a=0} implies \smath{a=0}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{flexibleArray}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf flexibleArray}\opLeftPren{}ls
\opRightPren{}} creates a flexible array from a list of
elements \smath{ls}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{float?}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}{\smath{
\mbox{\bf float?}\opLeftPren{}s\opRightPren{}} is \smath{true} if \smath{s} is 
an atom and belongs o \smath{Flt}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{float}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\allowbreak $\,[$ , 
\allowbreak{}{\it  positiveinteger}$]$\opRightPren{}%
}%
}%
{2}{(Integer, Integer)->\$}{FloatingPointSystem}
{\smath{\mbox{\bf float}\opLeftPren{}a, \allowbreak{} e\opRightPren{}} 
returns \smath{a {\tt base()}^e} as a float.
\newitem\smath{\mbox{\bf float}\opLeftPren{}a, \allowbreak{} e, 
\allowbreak{} b\opRightPren{}} returns \smath{a b ^ e} as a float.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{floor}}\opLeftPren{}
{\it rationalNumber}\opRightPren{}%
}%
}%
{1}{(\$)->D}{QuotientFieldCategory}
{\smath{\mbox{\bf floor}\opLeftPren{}fr\opRightPren{}},
where \smath{fr} is a fraction,
returns the largest integral element below \smath{fr}.
\newitem \smath{\mbox{\bf floor}\opLeftPren{}fl\opRightPren{}}, 
where \smath{fl} is a float,
returns the largest integer \smath{<= fl}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{formula}}\opLeftPren{}
{\it formulaFormat}\opRightPren{}%
}%
}%
{1}{(\$)->List(String)}{ScriptFormulaFormat}
{\smath{\mbox{\bf formula}\opLeftPren{}t\opRightPren{}} 
extracts the formula section of an IBM
SCRIPT Formula formatted object \smath{t}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fractionPart}}\opLeftPren{}
{\it fraction}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{QuotientFieldCategory}
{\smath{\mbox{\bf fractionPart}\opLeftPren{}x\opRightPren{}} 
returns the fractional part of \smath{x}.
Argument \smath{x} can be a fraction, a radix (binary, decimal, or
hexadecimal) expansion, or a float.
Note: \smath{x} = whole(\smath{x}) + fractionPart(\smath{x}).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fractRadix}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(List(Integer), List(Integer))->\$}{RadixExpansion}
{\smath{\mbox{\bf fractRadix}\opLeftPren{}pre, 
\allowbreak{} cyc\opRightPren{}} creates a fractional radix expansion
from a list of prefix ragits and a list of cyclic ragits.
For example, \smath{\mbox{\bf fractRadix}\opLeftPren{}[1], 
\allowbreak{} [6]\opRightPren{}} will return
\smath{0.16666666\ldots}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{fractRagits}}\opLeftPren{}
{\it radixExpansion}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(Integer)}{RadixExpansion}
{\smath{\mbox{\bf fractRagits}\opLeftPren{}rx\opRightPren{}} 
returns the ragits of the fractional
part of a radix expansion as a stream of integers.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{freeOf?}}\opLeftPren{}{\it expression}, 
\allowbreak{}{\it  kernel}\opRightPren{}%
}%
}%
{2}{(\$, Symbol)->Boolean}{ExpressionSpace}
{\smath{\mbox{\bf freeOf?}\opLeftPren{}x, \allowbreak{} k\opRightPren{}} 
tests if expression \smath{x} does not
contain
any operator whose name is the symbol or kernel \smath{k}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Frobenius}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ExtensionField}
{\smath{\mbox{\bf Frobenius}\opLeftPren{}a\opRightPren{}\$F} 
returns \smath{a^q} where \smath{q} is
the \smath{\mbox{\bf size}\opLeftPren{}\opRightPren{}\$F} 
of extension field \smath{F}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{front}}\opLeftPren{}{\it queue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{QueueAggregate}
{\smath{\mbox{\bf front}\opLeftPren{}q\opRightPren{}} 
returns the element at the front of the queue, or
calls \spadfun{error} if \smath{q} is empty.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{frst}}\opLeftPren{}{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->S}{LazyStreamAggregate}
{\smath{\mbox{\bf frst}\opLeftPren{}s\opRightPren{}} 
returns the first element of stream \smath{s}.
Warning: this function should only be called after a
\smath{empty?} test has been made since there is no error check.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{function}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  name}\allowbreak $\,[$ , \allowbreak{}
{\it  options}$]$\opRightPren{}%
}%
}%
{2}{(S, Symbol)->Symbol}{MakeFunction}
{\opkey{Most domains provide an operation which converts
objects to type \axiomType{InputForm}.
Argument \smath{e} below denotes an object from such a domain.
These operations create user-functions from already computed results.}
\newitem\smath{\mbox{\bf function}\opLeftPren{}e, \allowbreak{} f
\opRightPren{}} creates a function \smath{f() == e}.
\newitem\smath{\mbox{\bf function}\opLeftPren{}e, \allowbreak{} f, 
\allowbreak{} [x_1, \allowbreak{} \ldots, x_n]\opRightPren{}} 
creates a function 
\smath{f(x_1, \ldots, x_n) == e}.
\newitem\smath{\mbox{\bf function}\opLeftPren{}e, \allowbreak{} f, 
\allowbreak{} x\opRightPren{}} creates a function \smath{f(x) == e}.
\newitem\smath{\mbox{\bf function}\opLeftPren{}e, 
\allowbreak{} f, \allowbreak{} x, \allowbreak{} y\opRightPren{}} 
creates a function \smath{f(x, y) == e}.
\newitem\smath{\mbox{\bf function}\opLeftPren{}expr, 
\allowbreak{} [x_1, \allowbreak{} \ldots, x_n], f\opRightPren{}},
where \smath{expr} is an input form and
where \smath{f} and the \smath{x_i}'s are symbols,
returns the input form
corresponding to \smath{f(x_1, \ldots, x_n) == {\rm i}}.
See also \spadfun{unparse}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Gamma}}\opLeftPren{}{\it smallFloat}\opRightPren{}%
}%
}%
{1}{(Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf Gamma}\opLeftPren{}x\opRightPren{}} is the Euler 
gamma function, \smath{\mbox{\bf Gamma}\opLeftPren{}x\opRightPren{}},
defined by
\smath{\Gamma(x) = \int\nolimits_0^\infty {t^{(x-1)}*exp(-t) dt}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{gcdPolynomial}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(\$), SparseUnivariatePolynomial(\$))->
SparseUnivariatePolynomial(\$)}{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf gcdPolynomial}\opLeftPren{}p, \allowbreak{} q\opRightPren{}} returns the \spadfun{gcd} of the
univariate polynomials \smath{p} and \smath{q}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{gcd}}\opLeftPren{}
{\it element\opt{, element, element}}\opRightPren{}%
}%
}%
{1}{(List(\$))->\$}{GcdDomain}
{\smath{\mbox{\bf gcd}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
returns the greatest common divisor of \smath{x} and \smath{y}.
Arguments \smath{x} and \smath{y} are elements of a domain of
category \smath{GcdDomain}.
\newitem\smath{\mbox{\bf gcd}\opLeftPren{}[x_1, 
\allowbreak{} \ldots, x_n]\opRightPren{}} returns the
common \smath{gcd} of the elements of the list of \smath{x_i}.
\newitem\smath{\mbox{\bf gcd}\opLeftPren{}p_1, \allowbreak{} p_2, 
\allowbreak{} prime\opRightPren{}} computes the \smath{gcd} of the univariate
polynomials \smath{p_1} and \smath{p_2} modulo the prime integer 
\smath{prime}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{generalizedContinuumHypothesisAssumed?}}
\opLeftPren{}{\it \opt{bool}}\opRightPren{}%
}%
}%
{0}{()->Boolean}{CardinalNumber}
{\smath{\mbox{\bf generalizedContinuumHypothesisAssumed?}
\opLeftPren{}\opRightPren{}} tests if the hypothesis is currently assumed.
\newitem
\smath{\mbox{\bf generalizedContinuumHypothesisAssumed}
\opLeftPren{}bool\opRightPren{}} dictates
that the hypothesis is or is not to be assumed, according to
whether \smath{bool} is true or false.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{generalPosition}}\opLeftPren{}
{\it ideal}, \allowbreak{}{\it  listOfVariables}\opRightPren{}%
}%
}%
{2}{(\$, List(OrderedVariableList(vl)))->
Record(mval:Matrix(F), invmval:Matrix(F), genIdeal:\$)}{PolynomialIdeals}
{\smath{\mbox{\bf generalPosition}\opLeftPren{}I, 
\allowbreak{} listvar\opRightPren{}} performs a random linear
transformation on the variables in \smath{listvar} and returns
the transformed ideal \smath{I} along with the change of basis matrix.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{generate}}\opLeftPren{}
{\it function\opt{, element}}\opRightPren{}%
}%
}%
{1}{(()->S)->\$}{Stream}
{\smath{\mbox{\bf generate}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function of no arguments,
creates an infinite stream all of whose elements are equal to
the value of \smath{f()}. Note: \smath{\mbox{\bf generate}
\opLeftPren{}f) = [f(), f(), f(), \ldots]}.
\newitem\smath{\mbox{\bf generate}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}},
where \smath{f} is a function of one argument,
creates an infinite stream whose first element is \smath{x}
and whose \eth{\smath{n}} element (\smath{n > 1}) is \smath{f} applied to the
previous element.
Note: \smath{\mbox{\bf generate}\opLeftPren{}f, x) = 
[x, f(x), f(f(x)), \ldots]}.
\newitem See also \axiomType{HallBasis}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{generator}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf generator}\opLeftPren{}\opRightPren{}\$R} returns 
a root of the defining polynomial
of a domain of category \axiomType{FiniteAlgebraicExtensionField} \smath{R}.
This element generates the field as an algebra over the ground field.
\newitem
See also \axiomType{MonogenicAlgebra} and \axiomType{FreeNilpotentLie}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{generators}}\opLeftPren{}{\it ideal}\opRightPren{}%
}%
}%
{1}{(\$)->List(DPoly)}{PolynomialIdeals}
{\smath{\mbox{\bf generators}\opLeftPren{}I\opRightPren{}} returns 
a list of generators for the ideal \smath{I}.
\newitem\smath{\mbox{\bf generators}\opLeftPren{}gp\opRightPren{}} 
returns the generators of a permutation
group {\it gp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{genus}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{FunctionFieldCategory}
{\smath{\mbox{\bf genus}\opLeftPren{}\opRightPren{}}{\bf \$}\smath{R} 
returns the genus of
the algebraic function field \smath{R}.
If \smath{R} has several
absolutely irreducible components, then the genus of one of them is
returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{getMultiplicationMatrix}}\opLeftPren{}\opRightPren{}%
 \optand \mbox{\axiomFun{getMultiplicationTable}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Matrix(PrimeField(p))}{FiniteFieldNormalBasis}
{\smath{\mbox{\bf getMultiplicationMatrix}\opLeftPren{}\opRightPren{}\$R} 
returns a matrix multiplication table
for domain \axiomType{FiniteFieldNormalBasis(p, n)},
a finite extension field of degree \smath{n} over the domain
\axiomType{PrimeField(p)} with \smath{p} elements.
Each element of the matrix is a member of the underlying prime field.
\newitem
\smath{\mbox{\bf getMultiplicationTable}\opLeftPren{}\opRightPren{}\$R} 
is similar except that the
multiplication table for the normal basis of the field
is represented by a vector of lists of records, each record
having two fields: \smath{value}, an element of the prime field over
which the domain is built, and \smath{index}, a small integer.
This table is used to perform multiplications between field elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{getVariableOrder}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Record(high:List(Symbol), low:List(Symbol))}
{UserDefinedVariableOrdering}
{\smath{\mbox{\bf getVariableOrder}\opLeftPren{}\opRightPren{}} 
returns \smath{[[b_1, \ldots, b_m],
[a_1, \ldots, a_n] ]} such that the ordering on the variables was given
by \smath{\mbox{\bf setVariableOrder}\opLeftPren{}[b_1, 
\allowbreak{} \ldots, b_m], [a_1, \ldots, a_n]\opRightPren{}}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{getZechTable}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->PrimitiveArray(SingleInteger)}{FiniteFieldCyclicGroup}
{\smath{\mbox{\bf getZechTable}\opLeftPren{}\opRightPren{}\$F} 
returns the Zech logarithm table of the
\index{Zech logarithm}
field
\smath{F} where \smath{F} is some domain
\axiomType{FiniteFieldCyclicGroup(p, extdeg)}.
This table is used to perform additions in the field quickly.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{gramschmidt}}\opLeftPren{}
{\it listOfMatrices}\opRightPren{}%
}%
}%
{1}{(List(Matrix(Expression(Fraction(Integer)))))->
List(Matrix(Expression(Fraction(Integer))))}{RadicalEigenPackage}
{\opkey{Argument \smath{lv} has the form of a list of matrices of
elements of type \axiomType{Expression}.}
\newitem
\smath{\mbox{\bf gramschmidt}\opLeftPren{}lv\opRightPren{}} 
converts the list of column vectors
\smath{lv} into a set of orthogonal column vectors of Euclidean
length 1 using the Gram-Schmidt algorithm.
\index{Gram-Schmidt algorithm}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{graphs}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN}{}{}
{\smath{\mbox{\bf graphs}\opLeftPren{}n\opRightPren{}} 
is the cycle index of the group induced on
the edges of a graph by applying the symmetric function to the
\smath{n} nodes.
See \axiomType{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{green}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Color}
{\smath{\mbox{\bf green}\opLeftPren{}\opRightPren{}} 
returns the position of the green hue from total hues.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{groebner}}\opLeftPren{}
{\it listOfPolynomials}\opRightPren{}%
}%
}%
{1}{(List(Dpol))->List(Dpol)}{GroebnerPackage}
{\smath{\mbox{\bf groebner}\opLeftPren{}lp\opRightPren{}} 
computes a Gr\"obner basis for a polynomial
ideal generated by the list of polynomials \smath{lp}.
\newitem \smath{\mbox{\bf groebner}\opLeftPren{}I\opRightPren{}} 
returns a set of generators of ideal
\smath{I} that are a Gr\"obner basis for \smath{I}.
\newitem \smath{\mbox{\bf groebner}\opLeftPren{}lp, \allowbreak{} 
infoflag\opRightPren{}} computes a Gr\"obner basis
for a polynomial ideal generated by the list of polynomials
\smath{lp}.
Argument \smath{infoflag} is used to get information on the
computation.
If \smath{infoflag} is \mbox{\tt "info"}, then summary information 
is displayed for
each s-polynomial generated.
If \smath{infoflag} is \mbox{\tt "redcrit"}, the reduced critical pairs are
displayed.
To get the display of both kinds of information, use
\smath{\mbox{\bf groebner}\opLeftPren{}lp, \allowbreak{} "info", 
\allowbreak{} "redcrit"\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{groebner?}}\opLeftPren{}{\it ideal}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{PolynomialIdeals}
{\smath{\mbox{\bf groebner?}\opLeftPren{}I\opRightPren{}} 
tests if the generators of the ideal
\smath{I} are a Gr\"obner basis.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{groebnerIdeal}}\opLeftPren{}
{\it listOfPolynomials}\opRightPren{}%
}%
}%
{1}{(List(DPoly))->\$}{PolynomialIdeals}
{\smath{\mbox{\bf groebnerIdeal}\opLeftPren{}lp\opRightPren{}} 
constructs the ideal generated by the
list of
polynomials \smath{lp} assumed to be a Gr\"obner basis.
Note: this operation avoids a Gr\"obner basis computation.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{groebnerFactorize}}\opLeftPren{}
{\it listOfPolynomials\opt{options}}\opRightPren{}%
}%
}%
{1}{(List(Dpol))->List(List(Dpol))}{GroebnerFactorizationPackage}
{\smath{\mbox{\bf groebnerFactorize}\opLeftPren{}lp
\optinner{, bool}\opRightPren{}} returns
a list of list of polynomials, each inner list denoting a Gr\"obner basis.
The union of the solutions of the bases is the solution of the system of
equations given by \smath{lp}.
Information about partial results is printed if a
second argument is given with value \smath{true}.
\newitem
\smath{\mbox{\bf groebnerFactorize}\opLeftPren{}lp, 
\allowbreak{} nonZeroRestrictions\optinner{, bool}\opRightPren{}},
where \smath{nonZeroRestrictions} is a list of polynomials, is similar.
Here, however, the solutions to the system of equations are computed
under the restriction that the polynomials in the second argument
do not vanish.
Information about partial results is printed if a
third argument with value \smath{true} is given.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ground}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{ground?}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf ground}\opLeftPren{}p\opRightPren{}} 
retracts expression polynomial \smath{p} to the coefficient ring, or
calls \spadfun{error} if such a retraction is not possible.
\newitem
\smath{\mbox{\bf ground?}\opLeftPren{}p\opRightPren{}} 
tests if an expression or polynomial \smath{p} is a member 
of the coefficient ring.
\seeAlso{\spadfun{ground?}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{harmonic}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(Integer)->Fraction(Integer)}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf harmonic}\opLeftPren{}n\opRightPren{}} 
returns the \eth{\smath{n}} harmonic number, defined by
\smath{H[n] = \sum\nolimits_{k=1}^n {1/k}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{has}}\opLeftPren{}
{\it domain}, \allowbreak{}{\it  property}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf has}\opLeftPren{}R, \allowbreak{} prop\opRightPren{}} tests if domain \smath{R} has
property \smath{prop}.
Argument \smath{prop} is either a category, operation, an attribute,
or a combination of these.
For example, \code{Integer has Ring}
and \code{Integer has commutative("*")}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{has?}}\opLeftPren{}
{\it operation}, \allowbreak{}{\it  property}\opRightPren{}%
}%
}%
{2}{(\$, String)->Boolean}{BasicOperator}
{\smath{\mbox{\bf has?}\opLeftPren{}op, 
\allowbreak{} s\opRightPren{}} tests if property \smath{s} is attached to
\smath{op}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hash}}\opLeftPren{}{\it number}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf hash}\opLeftPren{}n\opRightPren{}} 
returns the hash code for \smath{n},
an integer or a float.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hasHi}}\opLeftPren{}
{\it segment}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{UniversalSegment}
{\smath{\mbox{\bf hasHi}\opLeftPren{}seg\opRightPren{}} 
tests whether the segment \smath{seg} has an
upper bound.
For example, \smath{\mbox{\bf hasHi}\opLeftPren{}1..) = false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hasSolution?}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  vector}\opRightPren{}%
}%
}%
{2}{(M, Col)->Boolean}{LinearSystemMatrixPackage}
{\smath{\mbox{\bf hasSolution?}\opLeftPren{}A, 
\allowbreak{} B\opRightPren{}} tests if the linear 
system \smath{AX = B} has a solution,
where \smath{A} is a matrix and \smath{B} is a (column) vector.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hconcat}}\opLeftPren{}
{\it outputForms\opt{, outputForm}}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf hconcat}\opLeftPren{}o_1, 
\allowbreak{} o_2\opRightPren{}}, where \smath{o_1} and \smath{o_2} are
objects of type \axiomType{OutputForm} (normally unexposed),
returns an output form for the horizontal concatenation of forms
\smath{o_1} and \smath{o_2}.
\newitem
\smath{\mbox{\bf hconcat}\opLeftPren{}lof\opRightPren{}},
where \smath{lof} is a list of objects of type
\axiomType{OutputForm} (normally unexposed),
returns an output form for the horizontal concatenation of the
elements of \smath{lof}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{heap}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{2}{((S, S)->Boolean, V)->V}{FiniteLinearAggregateSort}
{\smath{\mbox{\bf heap}\opLeftPren{}ls\opRightPren{}} 
creates a \axiomType{Heap} of elements consisting
of the elements of \smath{ls}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{heapSort}}\opLeftPren{}
{\it predicate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S, S)->Boolean, V)->V}{FiniteLinearAggregateSort}
{\smath{\mbox{\bf heapSort}\opLeftPren{}pred, 
\allowbreak{} agg\opRightPren{}} sorts the aggregate agg with the
ordering function \smath{pred} using the heapsort algorithm.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{height}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{ExpressionSpace}
{\smath{\mbox{\bf height}\opLeftPren{}f\opRightPren{}}, 
where \smath{f} is an expression, returns the
highest nesting level appearing in \smath{f}.
Constants have height 0.
Symbols have height 1.
For any operator \smath{op} and expressions \smath{f_1}, \ldots,
\smath{f_n},
\smath{op(f_1, \ldots, f_n)} has height equal to \smath{1 +
max(height(f_1), \ldots, height(f_n))}.
\newitem\smath{\mbox{\bf height}\opLeftPren{}d\opRightPren{}} 
returns the number of elements in
dequeue \smath{d}.
Note: \smath{\mbox{\bf height}\opLeftPren{}d) = \# d}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hermiteH}}\opLeftPren{}
{\it nonNegativeInteger}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(NonNegativeInteger, R)->R}{OrthogonalPolynomialFunctions}
{\smath{\mbox{\bf hermiteH}\opLeftPren{}n, 
\allowbreak{} x\opRightPren{}} is the \eth{\smath{n}} Hermite polynomial,
\smath{H[n](x)}, defined by
\smath{\mbox{\bf exp}\opLeftPren{}2 t x-t^2) = \sum
\nolimits_{n=0}^\infty{H[n](x)t^n/n!}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hexDigit}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{CharacterClass}
{\smath{\mbox{\bf hexDigit}\opLeftPren{}\opRightPren{}} 
returns the class of all characters for which
\spadfunFrom{hexDigit?}{Character} is \smath{true}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hexDigit?}}\opLeftPren{}
{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Character}
{\smath{\mbox{\bf hexDigit?}\opLeftPren{}c\opRightPren{}} 
tests if \smath{c} is a hexadecimal numeral,
that is, one of 0..9, a..\smath{f} or A..\smath{F}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hex}}\opLeftPren{}{\it rationalNumber}\opRightPren{}%
}%
}%
{1}{(Fraction(Integer))->\$}{HexadecimalExpansion}
{\smath{\mbox{\bf hex}\opLeftPren{}r\opRightPren{}} 
converts a rational number to a hexadecimal
expansion.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hi}}\opLeftPren{}{\it segment}\opRightPren{}%
}%
}%
{1}{(\$)->S}{SegmentCategory}
{\smath{\mbox{\bf hi}\opLeftPren{}s\opRightPren{}} 
returns the second endpoint of segment \smath{s}.
For example, \smath{\mbox{\bf hi}\opLeftPren{}l..h) = h}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{horizConcat}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{MatrixCategory}
{\smath{\mbox{\bf horizConcat}\opLeftPren{}x, 
\allowbreak{} y\opRightPren{}} horizontally concatenates two matrices
with an equal number of rows.
The entries of \smath{y} appear to the right of the entries of
\smath{x}.
The operation calls \spadfun{error} if the matrices do not have the 
same number of rows.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{htrigs}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf htrigs}\opLeftPren{}f\opRightPren{}} converts all 
the exponentials in expression \smath{f} into hyperbolic sines and cosines.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hue}}\opLeftPren{}{\it palette}\opRightPren{}%
}%
}%
{1}{(\$)->Color}{Palette}
{\smath{\mbox{\bf hue}\opLeftPren{}p\opRightPren{}} returns 
the hue field of the indicated palette \smath{p}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hue}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{Color}
{\smath{\mbox{\bf hue}\opLeftPren{}c\opRightPren{}} returns 
the hue index of the indicated color \smath{c}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{hypergeometric0F1}}\opLeftPren{}
{\it complexDF}, \allowbreak{}{\it  complexSF}\opRightPren{}%
}%
}%
{2}{(Complex(DoubleFloat), Complex(DoubleFloat))->Complex(DoubleFloat)}
{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf hypergeometric0F1}\opLeftPren{}c, 
\allowbreak{} z\opRightPren{}} is the hypergeometric function 
\smath{0F1(c; z)}.
Arguments \smath{c} and \smath{z} are both either small floats
or complex small floats.}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ideal}}\opLeftPren{}{\it polyList}\opRightPren{}%
}%
}%
{1}{(List(DPoly))->\$}{PolynomialIdeals}
{\smath{\mbox{\bf ideal}\opLeftPren{}polyList\opRightPren{}} 
constructs the ideal generated by the
list of polynomials \smath{polyList}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{imag}}\opLeftPren{}{\it expression}\opRightPren{}%
 \optand \mbox{\axiomFun{imagi}}\opLeftPren{}
{\it quaternionOrOctonion}\opRightPren{}%
 \opand \mbox{\axiomFun{imagI}}\opLeftPren{}{\it octonion}\opRightPren{}%
}%
}%
{1}{(\$)->R}{OctonionCategory}
{\smath{\mbox{\bf imag}\opLeftPren{}x\opRightPren{}} extracts the 
imaginary part of a complex value or
expression \smath{x}.
\newitem
\smath{\mbox{\bf imagI}\opLeftPren{}q\opRightPren{}} extracts the 
\smath{i} part of quaternion \smath{q}.
Similarly, operations \spadfun{imagJ},
and \spadfun{imagK} are used to extract the \smath{j} and \smath{k} parts.
\newitem
\smath{\mbox{\bf imagi}\opLeftPren{}o\opRightPren{}} extracts the 
\smath{i} part of octonion \smath{o}.
Similarly, \spadfun{imagj}, \spadfun{imagk}, \spadfun{imagE},
\spadfun{imagI}, \spadfun{imagJ}, and \spadfun{imagK} are used to extract 
other parts.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{implies}}\opLeftPren{}{\it boolean}, \allowbreak{}
{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{Boolean}
{\smath{\mbox{\bf implies}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
tests if boolean value \smath{a}
implies boolean value \smath{b}. The
result is \smath{true} except when \smath{a} is \smath{true}
and \smath{b} is \smath{false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{in?}}\opLeftPren{}{\it ideal}, \allowbreak{}
{\it  ideal}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{PolynomialIdeals}
{\smath{\mbox{\bf in?}\opLeftPren{}I, \allowbreak{} J\opRightPren{}} 
tests if the ideal \smath{I} is contained in the ideal \smath{J}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inHallBasis}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  integer}, \allowbreak{}
{\it  integer}\opRightPren{}%
}%
}%
{4}{(Integer, Integer, Integer, Integer)->Boolean}{HallBasis}
{\smath{inHallBasis?(n, leftCandidate, rightCandidate,
left)} tests to see if a new element should be added to the
\smath{P}.
Hall basis being constructed.
The list \smath{[leftCandidate, wt, rightCandidate]} is included in
the basis if in the unique factorization of
\smath{rightCandidate}, we have left factor \smath{leftOfRight}, and
\smath{leftOfRight <= leftCandidate}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{increasePrecision}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf increasePrecision}\opLeftPren{}n\opRightPren{}}
increases the current \spadfunFrom{precision}{FloatingPointSystem}
by \smath{n} decimal digits.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{index}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{Finite}
{\smath{\mbox{\bf index}\opLeftPren{}i\opRightPren{}} takes a 
positive integer \smath{i} less than or
equal to \smath{\mbox{\bf size}\opLeftPren{}\opRightPren{}} and
returns the \eth{\smath{i}} element of the set.
This operation establishes a bijection between
the elements of the finite set and \smath{1..{\mbox {\bf size}}()}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{index?}}\opLeftPren{}{\it index}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(Index, \$)->Boolean}{IndexedAggregate}
{\smath{\mbox{\bf index?}\opLeftPren{}i, \allowbreak{} u\opRightPren{}} 
tests if \smath{i} is an index of
aggregate \smath{u}.
For example, \code{index?(2, [1, 2, 3])} is \smath{true}
but \code{index?(4, [1, 2, 3])} is \smath{false}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{infieldIntegrate}}\opLeftPren{}
{\it rationalFunction}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(F)), Symbol)->
Union(Fraction(Polynomial(F)), "failed")}{RationalFunctionIntegration}
{\smath{\mbox{\bf infieldIntegrate}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}},
where \smath{f} is a fraction of polynomials, returns a fraction
\smath{g} such that \smath{{dg\over dx} = f} if \smath{g} exists,
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{infinite?}}\opLeftPren{}
{\it orderedCompletion}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{OrderedCompletion}
{\smath{\mbox{\bf infinite?}\opLeftPren{}x\opRightPren{}} tests 
if \smath{x} is infinite,
where \smath{x} is a member of the ordered
completion of a domain.
\seeType{OrderedCompletion}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{infinity}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->OnePointCompletion(Integer)}{Infinity}
{\smath{\mbox{\bf infinity}\opLeftPren{}\opRightPren{}} returns 
\smath{infinity}
denoting \smath{+\infty} as a one point completion of the integers.
\seeType{OnePointCompletion}
See also \spadfun{minusInfinity} and \spadfun{plusInfinitity}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{infix}}\opLeftPren{}{\it outputForm}, 
\allowbreak{}{\it  outputForms}\allowbreak $\,[$ , 
\allowbreak{}{\it  OutputForm}$]$\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf infix}\opLeftPren{}o, \allowbreak{} lo\opRightPren{}},
where \smath{o} is an object of type \spadtype{OutputForm} (normally unexposed)
and \smath{lo} is a list of objects of type \spadtype{OutputForm},
creates a form depicting the \smath{n}ary application
of infix operation \smath{o} to a tuple of arguments \smath{lo}.
\newitem
\smath{\mbox{\bf infix}\opLeftPren{}o, \allowbreak{} a, 
\allowbreak{} b\opRightPren{}},
where \smath{o}, \smath{a}, and \smath{b} are objects of type 
\spadtype{OutputForm} (normally unexposed),
creates an output form which displays as: \smath{a\ {\rm op}\ b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{initial}}\opLeftPren{}
{\it differentialPolynomial}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf initial}\opLeftPren{}p\opRightPren{}} returns the 
leading coefficient of
differential polynomial \smath{p} expressed as
a univariate polynomial in its leader.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{initializeGroupForWordProblem}}\opLeftPren{}
{\it group\opt{, integer, integer}}\opRightPren{}%
}%
}%
{1}{(\$)->Void}{PermutationGroup}
{\smath{\mbox{\bf initializeGroupForWordProblem}
\opLeftPren{}gp \optinner{, n, m}\opRightPren{}}
initializes the group {\it gp} for the word problem.
\seeDetails{PermutationGroup}
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{input}}\opLeftPren{}
{\it operator\opt{, function}}\opRightPren{}%
}%
}%
{1}{(\$)->Union((List(InputForm))->InputForm, "failed")}{BasicOperator}
{\smath{\mbox{\bf input}\opLeftPren{}op\opRightPren{}} returns the 
\mbox{\tt "\%input"} property of \smath{op}
if it has one attached, and \mbox{\tt "failed"} otherwise.
\newitem
\smath{\mbox{\bf input}\opLeftPren{}op, \allowbreak{} f\opRightPren{}} 
attaches \smath{f} as the \mbox{\tt "\%input"} property
of \smath{op}.
If \smath{op} has a \mbox{\tt "\%input"} property \smath{f}, then 
\smath{op(a1, \ldots, an)} is
converted to InputForm using \smath{f(a1, \ldots, an)}.
Argument f must be a function with signature
\spadsig{List(InputForm)}{InputForm}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inRadical?}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  ideal}\opRightPren{}%
}%
}%
{2}{(DPoly, \$)->Boolean}{PolynomialIdeals}
{\smath{\mbox{\bf inRadical?}\opLeftPren{}f, \allowbreak{} I\opRightPren{}} 
tests if some power of the polynomial \smath{f} belongs to the ideal \smath{I}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{insert}}\opLeftPren{}{\it x}, \allowbreak{}
{\it  aggregate}\allowbreak $\,[$ , 
\allowbreak{}{\it  integer}$]$\opRightPren{}%
}%
}%
{3}{(S, \$, Integer)->\$}{LinearAggregate}
{\smath{\mbox{\bf insert}\opLeftPren{}x, \allowbreak{} u, 
\allowbreak{} i\opRightPren{}} returns a copy of \smath{u} having
\smath{x} as its \eth{\smath{i}} element.
\newitem\smath{\mbox{\bf insert}\opLeftPren{}v, \allowbreak{} u, 
\allowbreak{} k\opRightPren{}} returns a copy of \smath{u} having \smath{v}
inserted beginning at the \eth{\smath{i}} element.
\newitem
\smath{\mbox{\bf insert!}\opLeftPren{}x, \allowbreak{} u\opRightPren{}} 
destructively inserts item \smath{x} into
bag \smath{u}.
\newitem
\smath{\mbox{\bf insert!}\opLeftPren{}x, \allowbreak{} u\opRightPren{}} 
destructively inserts item \smath{x} as a
leaf into binary search
tree or binary tournament \spad{u}.
\newitem
\smath{\mbox{\bf insert!}\opLeftPren{}x, \allowbreak{} u, 
\allowbreak{} i\opRightPren{}} destructively inserts \smath{x} into
aggregate \smath{u} at position \smath{i}.
\newitem
\smath{\mbox{\bf insert!}\opLeftPren{}v, \allowbreak{} u, 
\allowbreak{} i\opRightPren{}} destructively inserts aggregate \smath{v}
into \smath{u} at position \smath{i}.
\newitem
\smath{\mbox{\bf insert!}\opLeftPren{}x, \allowbreak{} d, 
\allowbreak{} n\opRightPren{}} destructively inserts \smath{n} copies of
\smath{x} into dictionary \smath{d}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{insertBottom!}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  queue}\opRightPren{}%
}%
}%
{2}{(S, \$)->S}{DequeueAggregate}
{\smath{\mbox{\bf insertBottom!}\opLeftPren{}x, 
\allowbreak{} d\opRightPren{}} destructively inserts \smath{x} 
into the dequeue \smath{d} at the 
bottom (back) of the dequeue.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{insertTop!}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  dequeue}\opRightPren{}%
}%
}%
{2}{(S, \$)->S}{DequeueAggregate}
{\smath{\mbox{\bf insertTop!}\opLeftPren{}x, \allowbreak{} d\opRightPren{}} 
destructively inserts \smath{x} into the dequeue \smath{d}
at the top (front). The element previously at the top of the 
dequeue becomes the second in the dequeue, and so on.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integer}}\opLeftPren{}{\it expression}\opRightPren{}%
 \optand \mbox{\axiomFun{integer?}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{integerIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(S)->Boolean}{IntegerRetractions}
{\smath{\mbox{\bf integer}\opLeftPren{}x\opRightPren{}} returns 
\smath{x} as an integer, or calls \spadfun{error}
if this is not possible.
\newitem
\smath{\mbox{\bf integer?}\opLeftPren{}x\opRightPren{}} tests 
if expression \smath{x} is an integer.
\newitem
\smath{\mbox{\bf integerIfCan}\opLeftPren{}x\opRightPren{}} 
returns expression x as of type \spadtype{Integer}
or else \mbox{\tt "failed"} if it cannot.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integerPart}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{RealNumberSystem}
{\smath{\mbox{\bf integerPart}\opLeftPren{}fl\opRightPren{}} 
returns the integer part of the
mantissa of float \smath{fl}.}




% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integral}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  symbol}\opRightPren{}%
 \opand \mbox{\axiomFun{integral}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  segmentBinding}\opRightPren{}%
}%
}%
{2}{(\$, SegmentBinding(\$))->\$}{PrimitiveFunctionCategory}
{\smath{\mbox{\bf integral}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}} returns the formal integral \smath{\int {f dx}}.
\newitem
\smath{\mbox{\bf integral}\opLeftPren{}f, 
\allowbreak{} x = a..b\opRightPren{}} returns the formal definite integral
\smath{\int\nolimits_a^b{f(x) dx}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integralBasis}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{integralBasisAtInfinity}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Vector(\$)}{FunctionFieldCategory}
{\opkey{Domain \smath{F} is the domain of functions on a fixed curve.
\seeType{FunctionFieldCategory}}
\newitem\smath{\mbox{\bf integralBasisAtInfinity}\opLeftPren{}
\opRightPren{}\$F} returns the local
integral basis at infinity.
\newitem\smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F} 
returns the integral basis for
the curve.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integralCoordinates}}\opLeftPren{}
{\it function}\opRightPren{}%
}%
}%
{1}{(\$)->Record(num:Vector(UP), den:UP)}{FunctionFieldCategory}
{\smath{\mbox{\bf integralCoordinates}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function on a curve defined by domain \smath{F},
returns the coordinates of \smath{f} with respect to the 
\smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F}
as polynomials \smath{A_i} together with a common denominator \smath{d}.
Specifically, the operation returns a record having selector
\smath{num} with value \smath{[A_1, \ldots, A_n]} and selector \smath{den} with
value \smath{d} such that
\smath{f = (A_1 w_1 +\ldots+ A_n w_n) / d} where 
\smath{(w_1, \ldots, w_n)} is the
integral basis.
\seeType{FunctionFieldCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integralDerivationMatrix}}\opLeftPren{}
{\it function}\opRightPren{}%
}%
}%
{1}{((UP)->UP)->Record(num:Matrix(UP), den:UP)}{FunctionFieldCategory}
{\smath{\mbox{\bf integralDerivationMatrix}\opLeftPren{}d\opRightPren{}} 
extends the derivation \smath{d} and
returns the coordinates of the derivative of \smath{f} with respect to
the \smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F} 
as a matrix of polynomials and a common denominator \smath{Q}.
Specifically, the operation returns a record having selector
\smath{num} with value \smath{M}
and selector \smath{den} with value \smath{Q} such that
the \eth{\smath{i}} row of \smath{M} divided by \smath{Q} form the
coordinates of \smath{f} with respect to integral basis
\smath{(w1, \ldots, wn)}.
\seeType{FunctionFieldCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integralMatrix}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{integralMatrixAtInfinity}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Matrix(Fraction(UP))}{FunctionFieldCategory}
{\opkey{Domain \smath{F} is a domain of functions on a fixed curve. These
operations return a matrix which transform the natural basis to an 
integral basis.
\seeType{FunctionFieldCategory}
}
\newitem
\smath{\mbox{\bf integralMatrix}\opLeftPren{}\opRightPren{}} returns 
\smath{M} such that
\smath{(w_1, \ldots, w_n) = M (1, y, \ldots, y^{n-1})},
where \smath{(w_1, \ldots, w_n)} is the integral basis returned by
\smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F}.
\newitem
\smath{\mbox{\bf integralMatrixAtInfinity}\opLeftPren{}\opRightPren{}\$F} 
returns matrix \smath{M}
which transforms the natural basis
such that \smath{(v_1, \ldots, v_n) = M (1, y, \ldots, y^{n-1})}
where \smath{(v_1, \ldots, v_n)} is the local integral basis at
infinity returned by \smath{\mbox{\bf integralBasisAtInfinity}
\opLeftPren{}\opRightPren{}\$F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integralRepresents}}
\opLeftPren{}{\it vector}, \allowbreak{}{\it  commonDenominator}\opRightPren{}%
}%
}%
{2}{(Vector(UP), UP)->\$}{FunctionFieldCategory}
{\smath{\mbox{\bf integralRepresents}\opLeftPren{}
[A_1, \allowbreak{} \ldots, A_n], d\opRightPren{}} is the inverse
of the operation
\spadfunFrom{integralCoordinates}{FunctionFieldCategory} defined
for domain \smath{F}, a domain of functions on a fixed curve. Given
the coordinates as polynomials \smath{[A_1, \ldots, A_n]} over
a common denominator \smath{d}, this operation returns the function
represented as\smath{(A_1 w_1+\ldots+A_n w_n)/d} where
\smath{(w_1, \ldots, w_n)} is the integral basisreturned by
\smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F}.
\seeType{FunctionFieldCategory}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{integrate}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{integrate}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  variable }
\allowbreak $\,[$ , \allowbreak{}
{\it  options}$]$\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf integrate}\opLeftPren{}f\opRightPren{}} 
returns the integral of a
univariate polynomial or power series \smath{f} with respect to
its distinguished variable.
\newitem\smath{\mbox{\bf integrate}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}} returns the integral of
\smath{f(x)dx}, where \smath{x} is viewed as a real variable.
\newitem\smath{\mbox{\bf integrate}\opLeftPren{}f, 
\allowbreak{} x = a..b\optinner{, "noPole"}\opRightPren{}}
returns the integral of \smath{f(x)dx} from \smath{a} to \smath{b}.
If it is not possible to check whether \smath{f} has a pole for
\smath{x} between \smath{a} and \smath{b}, then a third argument
\mbox{\tt "noPole"} will make this function assume that\smath{f}
has no such pole.This operation calls \spadfun{error} if \smath{f}
has a pole for \smath{x} between \smath{a} and \smath{b} or if
a third argument different from \mbox{\tt "noPole"} is given.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{interpret}}\opLeftPren{}{\it inputForm}\opRightPren{}%
}%
}%
{ $ -> Any}{}{}
{\smath{\mbox{\bf interpret}\opLeftPren{}f\opRightPren{}} 
passes f of type \spadtype{InputForm} to the interpreter.
\newitem
\smath{\mbox{\bf interpret}\opLeftPren{}f\opRightPren{}\$P},
where \smath{P} is the package \spadtype{InputFormFunctions1(R)} for
some type \spadtype{R},
passes \smath{f} of type \spadtype{InputForm} to the interpreter,
and transforms the result into an object of type \smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{intersect}}\opLeftPren{}
{\it elements\opt{, element}}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{SetAggregate}
{\smath{\mbox{\bf intersect}\opLeftPren{}li\opRightPren{}},
where \smath{li} is a list of ideals,
computes the intersection of the list of ideals \smath{li}.
\newitem
\smath{\mbox{\bf intersect}\opLeftPren{}u, \allowbreak{} v\opRightPren{}},
where \smath{u} and \smath{v} are sets,
returns the set \smath{w} consisting of elements common to both
sets \smath{u} and \smath{v}.
See also \axiomType{Multiset}.
\newitem
\smath{\mbox{\bf intersect}\opLeftPren{}I, \allowbreak{} J\opRightPren{}},
where \smath{I} and \smath{J} are ideals,
computes the intersection of the ideals \smath{I} and \smath{J}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inv}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{DivisionRing}
{\smath{\mbox{\bf inv}\opLeftPren{}x\opRightPren{}} 
returns the multiplicative inverse of \smath{x},
where \smath{x} is an element of a domain of category \spadtype{Group} or
\spadtype{DivisionRing}, or calls \spadfun{error} if
\smath{x} is 0.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inverse}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{MatrixCategory}
{\smath{\mbox{\bf inverse}\opLeftPren{}A\opRightPren{}} 
returns the inverse of the matrix \smath{A}, or
\mbox{\tt "failed"} if the matrix is not invertible, 
or calls \spadfun{error} if
the matrix is not square.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inverseColeman}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}
{\it  listOfIntegers}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{3}{(List(Integer), List(Integer), Matrix(Integer))->
List(Integer)}{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf inverseColeman}\opLeftPren{}alpha, 
\allowbreak{} beta, \allowbreak{} C\opRightPren{}}
returns the lexicographically smallest permutation in a
double coset of the symmetric group
corresponding to a non-negative Coleman-matrix.
\seeDetails{SymmetricGroupCombinatoricFunctions}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inverseIntegralMatrix}}\opLeftPren{}
\opRightPren{}
\opand \mbox{\axiomFun{inverseIntegralMatrixAtInfinity}}
\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Matrix(Fraction(UP))}{FunctionFieldCategory}
{\opkey{Domain \smath{F} is a domain of functions on a fixed
curve.
These operations return a matrix which transform an integral basis
to a natural basis.
\seeType{FunctionFieldCategory}}
\newitem\smath{\mbox{\bf inverseIntegralMatrix}\opLeftPren{}
\opRightPren{}\$F} returns \smath{M} such
that \smath{M (w_1, \ldots, w_n) = (1, y, \ldots, y^{n-1})} where
\smath{(w_1, \ldots, w_n)} is the integral basis returned by
\smath{\mbox{\bf integralBasis}\opLeftPren{}\opRightPren{}\$F}.
See also \spadfunFrom{integralMatrix}{FunctionFieldCategory}.
\newitem \smath{\mbox{\bf inverseIntegralMatrixAtInfinity}\opLeftPren{}
\opRightPren{}} returns
\smath{M} such that \smath{M (v_1, \ldots, v_n) = (1, y, \ldots,
y^(n-1))} where \smath{(v_1, \ldots, v_n)} is the local integral
basis at infinity returned by
\smath{\mbox{\bf integralBasisAtInfinity}\opLeftPren{}\opRightPren{}\$F}.
See also
\spadfunFrom{integralMatrixAtInfinity}{FunctionFieldCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{inverseLaplace}}\opLeftPren{}{\it expression}, 
\allowbreak{}{\it  symbol}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{3}{(F, Symbol, Symbol)->Union(F, "failed")}{InverseLaplaceTransform}
{\smath{\mbox{\bf inverseLaplace}\opLeftPren{}f, \allowbreak{} s, 
\allowbreak{} t\opRightPren{}} returns the Inverse Laplace
transform of \smath{f(s)} using \smath{t} as the new variable, or
\mbox{\tt "failed"} if unable to find a closed form.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{invmod}}\opLeftPren{}{\it positiveInteger}, 
\allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf invmod}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}, 
for relatively prime positive integers \smath{a} and \smath{b}
such that \smath{a < b}, returns \smath{1/a \mod b}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{iomode}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->String}{FileCategory}
{\smath{\mbox{\bf iomode}\opLeftPren{}f\opRightPren{}} returns the 
status of the file \smath{f}
as one of the following strings: {\tt "input", "output"} or {\tt "closed".}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{irreducible?}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(FP)->Boolean}{DistinctDegreeFactorize}
{\smath{\mbox{\bf irreducible?}\opLeftPren{}p\opRightPren{}} 
tests whether the polynomial \smath{p} is irreducible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{irreducibleFactor}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(R, Integer)->\$}{Factored}
{\smath{\mbox{\bf irreducibleFactor}\opLeftPren{}base, \allowbreak{} 
exponent\opRightPren{}} creates a factored
object with a single factor whose \smath{base} is asserted to be
irreducible (flag = \mbox{\tt "irred"}).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{irreducibleRepresentation}}\opLeftPren{}
{\it listOfIntegers\opt{, permutations}}\opRightPren{}%
}%
}%
{2}{(List(Integer), Permutation(Integer))->Matrix(Integer)}
{irreducibleRepresentationPackage}
{\smath{\mbox{\bf irreducibleRepresentation}\opLeftPren{}lambda
\optinner{, pi}\opRightPren{}} returns
a matrix giving the irreducible representation corresponding to
partition \smath{lambda}, represented as a list of integers, in
Young's natural form of the permutation \smath{pi} in the
symmetric group whose elements permute \smath{1, 2, \ldots, n}.
If a second argument is not given, the permutation is taken to be
the following two generators of the symmetric group, namely
\smath{(1 2)} (2-cycle) and \smath{(1 2 \ldots n)}
(\smath(n)-cycle).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{is?}}\opLeftPren{}{\it expression}, \allowbreak{}
{\it  pattern}\opRightPren{}%
}%
}%
{2}{(\$, BasicOperator)->Boolean}{ExpressionSpace}
{\smath{\mbox{\bf is?}\opLeftPren{}expr, \allowbreak{} pat\opRightPren{}} 
tests if the expression \smath{expr} matches the pattern \smath{pat}.
\newitem
\smath{\mbox{\bf is?}\opLeftPren{}expression, \allowbreak{} op\opRightPren{}} 
tests if \smath{expression} is a kernel and is its operator is op.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isAbsolutelyIrreducible?}}\opLeftPren{}
{\it listOfMatrices}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), Integer)->Boolean}{RepresentationPackage2}
{\smath{\mbox{\bf isAbsolutelyIrreducible?}\opLeftPren{}aG, \allowbreak{} 
numberOfTries\opRightPren{}} uses Norton's irreducibility
test to check for absolute irreduciblity.
\seeDetails{RepresentationPackage2}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isExpt}}\opLeftPren{}
{\it expression\opt{, operator}}\opRightPren{}%
}%
}%
{1}{(\$)->Union(Record(var:Kernel(\$), exponent:Integer), "failed")}
{FunctionSpace}
{\smath{\mbox{\bf isExpt}\opLeftPren{}p\optinner{, op}\opRightPren{}} 
returns a record with two fields:
\smath{var} denoting a kernel \smath{x},
and \smath{exponent} denoting an integer \smath{n},
if expression \smath{p}
has the form \smath{p = x^n} and \smath{n \not= 0}.
If a second argument \smath{op} is given,
\smath{x} must have the form \smath{op(a)} for some \smath{a}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isMult}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->Union(Record(coef:Integer, var:Kernel(\$)), "failed")}{FunctionSpace}
{\smath{\mbox{\bf isMult}\opLeftPren{}p\opRightPren{}} returns
a record with two fields:
\smath{coef} denoting an integer \smath{n},
and \smath{var} denoting a kernel \smath{x},
if \smath{p} has the form \smath{n * x} and \smath{n \not= 0},
and \mbox{\tt "failed"} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isobaric?}}\opLeftPren{}
{\it differentialPolynomial}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf isobaric?}\opLeftPren{}p\opRightPren{}} 
tests if every differential monomial appearing in the differential polynomial 
\smath{p} has the same weight.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isPlus}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->Union(List(\$), "failed")}{FunctionSpace}
{\smath{\mbox{\bf isPlus}\opLeftPren{}p\opRightPren{}} 
returns \smath{[m_1, \ldots, m_n]} if
\smath{p} has the form \smath{m_1 +\ldots+ m_n} for 
\smath{n > 1} and \smath{m_i \not= 0},
and \mbox{\tt "failed"} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{isTimes}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->Union(List(\$), "failed")}{FunctionSpace}
{\smath{\mbox{\bf isTimes}\opLeftPren{}p\opRightPren{}} 
returns \smath{[a_1, \ldots, a_n]} if
\smath{p} has the form
\smath{a_1*\ldots*a_n} for \smath{n > 1} and \smath{m_i \not= 1},
and \mbox{\tt "failed"} if this is not possible.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{Is}}\opLeftPren{}
{\it subject}, \allowbreak{}{\it  pattern}\opRightPren{}%
}%
}%
{2}{(List(Subject), Pat)->
PatternMatchListResult(Base, Subject, List(Subject))}{PatternMatch}
{\smath{Is(expr, pat)} matches the pattern \smath{pat} on the
expression \smath{expr} and returns a list of matches \smath{[v_1
= e_1, \ldots, v_n = e_n]} or \mbox{\tt "failed"} if matching
fails.
An empty list is returned if either \smath{expr} is exactly equal
to \smath{pat} or if \smath{pat} does not match \smath{expr}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{jacobi}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(Integer, Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf jacobi}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns the Jacobi symbol \smath{J(a/b)}.
\index{Jacobi symbol}
When \smath{b} is odd, \smath{J(a/b) = \prod\nolimits_{p \in
{\bf factors}(b)}{L(a/p)}}.
Note: by convention, 0 is returned if 
\smath{\mbox{\bf gcd}\opLeftPren{}a, b) \not= 1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{jacobiIdentity?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf jacobiIdentity?}\opLeftPren{}\opRightPren{}} 
tests if \smath{(a b) c + (b c) a + (c a) b = 0}
for all \smath{a}, \smath{b}, \smath{c} in a domain
of \spadtype{FiniteRankNonAssociativeAlgebra}. For example,
this relation holds for crossed products of three-dimensional vectors.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{janko2}}\opLeftPren{}
{\it \optinit{listOfIntegers}}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf janko2}\opLeftPren{}\opRightPren{}} constructs the janko 
group acting on the integers \smath{1, \ldots, 100}.
\newitem
\smath{\mbox{\bf janko2}\opLeftPren{}\optinner{li}\opRightPren{}} constructs 
the janko group acting on the 100 integers given in the list \smath{li}.
The default value of \smath{li} is \smath{[1, \ldots, 100]}.
This operation removes duplicates in the list and calls
\spadfun{error} if \smath{li} does not have exactly 100 distinct entries.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{jordanAdmissible?}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{jordanAlgebra?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf jordanAdmissible?}\opLeftPren{}\opRightPren{}\$F},
where \smath{F} is a member of
\spadtype{FiniteRankNonAssociativeAlgebra(R)} over
a commutative ring \smath{R},
tests if 2 is invertible
in \smath{R} and if the algebra defined
by \smath{\{a, b\}} defined by \smath{(1/2)(a b+b a)} is a Jordan 
algebra, that is,
satisfies the Jordan identity.
\newitem
\smath{\mbox{\bf jordanAlgebra?}\opLeftPren{}\opRightPren{}\$F} 
tests if the algebra is commutative,
that \smath{\mbox{\bf characteristic}\opLeftPren{})\$F \not= 2},
and \smath{(a b) a^2 - a (b a^2) = 0} for all \smath{a} and \smath{b}
in the algebra (Jordan identity). Example: for every associative algebra
\smath{(A, +, @)}, you can construct a Jordan algebra \smath{(A, +, *)},
where \smath{a*b := (a@b+b@a)/2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{kernel}}\opLeftPren{}{\it operator}, 
\allowbreak{}{\it  expression}\opRightPren{}%
}%
}%
{2}{(BasicOperator, \$)->\$}{ExpressionSpace}
{\smath{\mbox{\bf kernel}\opLeftPren{}op, \allowbreak{} x\opRightPren{}} 
constructs \smath{op}(\smath{x}) without evaluating it.
\newitem
\smath{\mbox{\bf kernel}\opLeftPren{}op, \allowbreak{} [f_1, 
\allowbreak{} \ldots, f_n]\opRightPren{}} constructs \smath{op(f1, \ldots, fn)}
without evaluating it.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{kernels}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->List(Kernel(\$))}{ExpressionSpace}
{\smath{\mbox{\bf kernels}\opLeftPren{}f\opRightPren{}} returns the 
list of all the top-level kernels appearing in
expression \smath{f},
but not the ones appearing in the arguments of the top-level kernels.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{key?}}\opLeftPren{}{\it key}, \allowbreak{}
{\it  dictionary}\opRightPren{}%
 \opand \mbox{\axiomFun{keys}}\opLeftPren{}{\it dictionary}\opRightPren{}%
}%
}%
{2}{(Key, \$)->Boolean}{KeyedDictionary}
{\smath{\mbox{\bf key?}\opLeftPren{}k, \allowbreak{} d\opRightPren{}} 
tests if \smath{k} is a key in dictionary \smath{d}.
Dictionary \smath{d} is an element of a domain of category
\spadtype{KeyedDictionary(K, E)}, where \smath{K}
and \smath{E} denote the domains of keys and entries.
\newitem
\smath{\mbox{\bf keys}\opLeftPren{}d\opRightPren{}} 
returns the list the keys in table \smath{d}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{kroneckerDelta}}\opLeftPren{}
{\it [integer}, \allowbreak{}{\it  integer]}\opRightPren{}%
}%
}%
{0}{()->\$}{CartesianTensor}
{\smath{\mbox{\bf kroneckerDelta}\opLeftPren{}\opRightPren{}} 
is the rank 2 tensor defined by
\smath{\mbox{\bf kroneckerDelta}\opLeftPren{}i, j) = 1} 
if \smath{i=j}, and 0 otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{label}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf label}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}}, 
where \smath{o_1} and \smath{o_2} are
objects of type \spadtype{OutputForm} (normally unexposed),
returns
an output form displaying equation \smath{o_2} with label
\smath{o_1}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{laguerreL}}\opLeftPren{}{\it nonNegativeInteger}, 
\allowbreak{}{\it  x}\opRightPren{}%
 \opand \mbox{\axiomFun{laguerreL}}\opLeftPren{}{\it nonNegativeInteger}, 
\allowbreak{}{\it  nonNegativeInteger}, \allowbreak{}{\it  x}\opRightPren{}%
}%
}%
{2}{(NonNegativeInteger, R)->R}{OrthogonalPolynomialFunctions}
{\smath{\mbox{\bf laguerreL}\opLeftPren{}n, \allowbreak{} x\opRightPren{}} 
is the \eth{\smath{n}} Laguerre
polynomial, \smath{L[n](x)}, defined by \smath{{exp({{-t
x}\over{1-t}})/(1-t)} = \sum\nolimits_{n=0}^\infty {L[n](x)
t^n/n!}}.
\newitem \smath{\mbox{\bf laguerreL}\opLeftPren{}m, 
\allowbreak{} n, \allowbreak{} x\opRightPren{}} is the associated Laguerre
polynomial, \smath{L_m[n](x)}, defined as the \eth{\smath{m}}
derivative of \smath{L[n](x)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lambda}}\opLeftPren{}{\it inputForm}, 
\allowbreak{}{\it  listOfSymbols}\opRightPren{}%
}%
}%
{ ($, List Symbol) -> $}{}{}
{\smath{\mbox{\bf lambda}\opLeftPren{}i, \allowbreak{} [x_1, 
\allowbreak{} \ldots x_n]\opRightPren{}} returns the input form
corresponding to \smath{(x_1, \ldots, x_n) \mapsto i} if \smath{n
> 1}.
See also \spadfun{compiledFunction}, \spadfun{flatten}, and \spadfun{unparse}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{laplace}}\opLeftPren{}{\it expression}, 
\allowbreak{}{\it  symbol}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{3}{(F, Symbol, Symbol)->F}{LaplaceTransform}
{\smath{\mbox{\bf laplace}\opLeftPren{}f, \allowbreak{} t, 
\allowbreak{} s\opRightPren{}} returns the Laplace transform of \smath{f(t)},
defined by \smath{\int_{t=0}^\infty{exp(-s t)f(t) {\rm dt}}}.
If the transform cannot be computed, the
formal object \smath{\mbox{\bf laplace}\opLeftPren{}f, 
\allowbreak{} t, \allowbreak{} s\opRightPren{}} is returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{last}}\opLeftPren{}{\it indexedAggregate
\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(\$)->S}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf last}\opLeftPren{}u\opRightPren{}} returns the last 
element of \smath{u}.
\newitem
\smath{\mbox{\bf last}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
returns a copy of the last \smath{n} (\smath{n
\geq 0}) elements
of \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{laurent}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{laurentIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->ULS}{UnivariatePuiseuxSeriesConstructorCategory}
{\smath{\mbox{\bf laurent}\opLeftPren{}u\opRightPren{}} converts 
\smath{u} to a Laurent series, or
calls \spadfun{error}
if this is not possible.
\newitem
\smath{\mbox{\bf laurentIfCan}\opLeftPren{}u\opRightPren{}} converts the 
Puiseux series \smath{u}
to a Laurent series, or returns \mbox{\tt "failed"} if this is not possible.
\newitem
\smath{\mbox{\bf laurent}\opLeftPren{}f, \allowbreak{} x = a\opRightPren{}} 
expands the expression \smath{f} as a
Laurent series in powers of \smath{(x - a)}.
\newitem
\smath{\mbox{\bf laurent}\opLeftPren{}f, \allowbreak{} n\opRightPren{}} 
expands the expression \smath{f} as a Laurent series in
powers of \smath{x}; at least \smath{n} terms are computed.
\newitem
\smath{\mbox{\bf laurent}\opLeftPren{}n \mapsto a_n, x = a, 
n_0..\optinner{n_1}\opRightPren{}} returns
a Laurent series defined by
\smath{\sum\nolimits_{n = n_0}^{n_1}{a_n (x - a)^n}}, where
\smath{n_1} is \smath{\infty} by default.
\newitem
\smath{\mbox{\bf laurent}\opLeftPren{}a_n, \allowbreak{} n, 
\allowbreak{} x=a, \allowbreak{} n_0..\optinner{n_1}\opRightPren{}} returns
a Laurent series defined by
\smath{\sum\nolimits_{n=n_0}^{n_1}{a_n(x - a)^n}},
where \smath{n_1} is \smath{\infty} by default.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{laurentRep}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->ULS}{UnivariatePuiseuxSeriesConstructorCategory}
{\smath{\mbox{\bf laurentRep}\opLeftPren{}f(x)\opRightPren{}} 
returns \smath{g(x)}
where the Puiseux series \smath{f(x) = g(x^r)} is 
represented by \smath{[r, g(x)]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lazy?}}\opLeftPren{}{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{LazyStreamAggregate}
{\smath{\mbox{\bf lazy?}\opLeftPren{}s\opRightPren{}} tests
if the first node of the stream \smath{s} is a lazy 
evaluation mechanism which could produce an additional entry to \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lazyEvaluate}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LazyStreamAggregate}
{\smath{\mbox{\bf lazyEvaluate}\opLeftPren{}s\opRightPren{}} 
causes one lazy evaluation of stream
\smath{s}.
Caution: \smath{s} must be a ``lazy node'' satisfying
\smath{\mbox{\bf lazy?}\opLeftPren{}s) = true}, as there is no error check.
A call to this function may or may not produce an explicit first
entry.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lcm}}\opLeftPren{}
{\it elements\opt{, element}}\opRightPren{}%
}%
}%
{1}{(List(\$))->\$}{GcdDomain}
{\smath{\mbox{\bf lcm}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
returns the least common multiple of \smath{x} and \smath{y}.
\newitem
\smath{\mbox{\bf lcm}\opLeftPren{}lx\opRightPren{}} returns the 
least common multiple of the elements of
the list \smath{lx}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ldexquo}}\opLeftPren{}{\it lodOperator}, 
\allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Union(\$, "failed")}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf ldexquo}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
returns
\smath{q} such that \smath{a = b*q}, or \mbox{\tt "failed"} 
if no such \smath{q} exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftDivide}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
\optand \mbox{\axiomFun{leftQuotient}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
\opand \mbox{\axiomFun{leftRemainder}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(quotient:\$, remainder:\$)}
{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf leftDivide}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns
a record with two fields: ``quotient'' \smath{q}
and ``remainder'' \smath{r}
such that \smath{a = b q + r} and the degree of \smath{r} is less
than the degree of \smath{b}.
This operation is called ``left division.''
Operation \smath{\mbox{\bf leftQuotient}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns \smath{q}, and
\smath{\mbox{\bf leftRemainder}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns \smath{r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leader}}\opLeftPren{}
{\it differentialPolynomial}\opRightPren{}%
}%
}%
{1}{(\$)->V}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf leader}\opLeftPren{}p\opRightPren{}} 
returns the derivative of the highest rank
appearing in the differential polynomial \smath{p}, or
calls \spadfun{error} if \smath{p} is in the ground ring.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leadingCoefficient}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->R}{AbelianMonoidRing}
{\smath{\mbox{\bf leadingCoefficient}\opLeftPren{}p\opRightPren{}} 
returns the coefficient of the highest degree
term of polynomial \smath{p}.
See also \spadtype{IndexedDirectProductCategory} and
\spadtype{MonogenicLinearOperator}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leadingIdeal}}\opLeftPren{}{\it ideal}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{PolynomialIdeals}
{\smath{\mbox{\bf leadingIdeal}\opLeftPren{}I\opRightPren{}} is the 
ideal generated by the leading terms of the elements of the ideal \smath{I}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leadingMonomial}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{AbelianMonoidRing}
{\smath{\mbox{\bf leadingMonomial}\opLeftPren{}p\opRightPren{}} 
returns the monomial of polynomial \smath{p} with the highest degree.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leaf?}}\opLeftPren{}{\it aggregate}\opRightPren{}%
\optand \mbox{\axiomFun{leafValues}}\opLeftPren{}{\it aggregate}\opRightPren{}%
\opand \mbox{\axiomFun{leaves}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{RecursiveAggregate}
{\opkey{These operations apply to a recursive aggregate \smath{a}.
See, for example,
\spadtype{BinaryTree}.}
\newitem\smath{\mbox{\bf leaf?}\opLeftPren{}a\opRightPren{}} 
tests if \smath{a} is a terminal node.
\newitem\smath{\mbox{\bf leaves}\opLeftPren{}a\opRightPren{}} 
returns the list of values at the leaf nodes
in left-to-right order.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{left}}\opLeftPren{}
{\it binaryRecursiveAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{BinaryRecursiveAggregate}
{\smath{\mbox{\bf left}\opLeftPren{}a\opRightPren{}} 
returns the left child of binary aggregate \smath{a}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftAlternative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftAlternative?}\opLeftPren{}\opRightPren{}\$F},
where \smath{F} is a domain of \spadtype{FiniteRankNonAssociativeAlgebra},
tests if \smath{2*\mbox{\tt associator}(a, a, b) = 0}
for all \smath{a}, \smath{b} in \smath{F}.
Note: in general, you do not know whether \smath{2*a=0} implies \smath{a=0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftCharacteristicPolynomial}}
\opLeftPren{}{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(R)}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftCharacteristicPolynomial}
\opLeftPren{}p\opRightPren{}\$F} returns the
characteristic polynomial of the left regular representation of
\smath{p} of domain \smath{F} with respect to any basis.
Argument \smath{p} is a member of a domain of category
\spadtype{FiniteRankNonAssociativeAlgebra(R)} where \smath{R} is
a commutative ring.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftDiscriminant}}\opLeftPren{}
{\it \optinit{listOfVectors}}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->R}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftDiscriminant}\opLeftPren{}[v_1, 
\allowbreak{} \ldots, v_n]\opRightPren{}\$F}
where \smath{F} is a domain
of category \spadtype{FramedNonAssociativeAlgebra} over a
commutative ring \smath{R},
returns the determinant
of the \smath{n}-by-\smath{n} matrix whose element at the
\eth{\smath{i}} row and \eth{\smath{j}} column is given by the
left trace of the product
\smath{v_i*v_j}.
Same as \spadfun{determinant}(\smath{\mbox{\bf leftTraceMatrix}
\opLeftPren{}[v_1, \allowbreak{} \ldots, v_n]\opRightPren{}}).
If no argument is given, \smath{v_1, \ldots, v_n} are taken to
elements of the fixed \smath{R}-basis.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftGcd}}\opLeftPren{}{\it lodOperator}, 
\allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf leftGcd}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
computes the value \smath{g} of highest degree such that
\smath{a = aa*g} and \smath{b = bb*g} for some values \smath{aa} and 
\smath{bb}.
The value \smath{g} is computed using left-division.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftLcm}}\opLeftPren{}{\it lodOperator}, 
\allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf leftLcm}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
computes the value \smath{m} of lowest
degree such that \smath{m = a*aa = b*bb} for some values
\smath{aa} and \smath{bb}.
The value \smath{m} is computed using left-division.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftMinimalPolynomial}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(R)}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftMinimalPolynomial}\opLeftPren{}a\opRightPren{}} 
returns the polynomial
determined by the smallest non-trivial linear combination of left
powers of \smath{a}, an element of a domain of category
\spadtype{FiniteRankNonAssociativeAlgebra}.
Note: the polynomial has no a constant term because, in general, the
algebra has no unit.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftNorm}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->R}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftNorm}\opLeftPren{}a\opRightPren{}} 
returns the determinant of the left regular representation of \smath{a},
an element of a domain of category \spadtype{FiniteRankNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftPower}}\opLeftPren{}
{\it monad}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->\$}{MonadWithUnit}
{\smath{\mbox{\bf leftPower}\opLeftPren{}a, \allowbreak{} n
\opRightPren{}} returns the \eth{\smath{n}} left power of monad \smath{a},
that is, \smath{\mbox{\bf leftPower}\opLeftPren{}a, n) := 
a {\mbox{\bf leftPower}}(a, n-1)}.
If the monad has a unit then \smath{\mbox{\bf leftPower}
\opLeftPren{}a, 0) := 1}.
Otherwise, define \smath{\mbox{\bf leftPower}\opLeftPren{}a, 1) = a}
See \spadtype{Monad} and \spadtype{MonadWithUnit} for details.
See also \spadfun{leftRecip}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftRankPolynomial}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->SparseUnivariatePolynomial(Polynomial(R))}{FramedNonAssociativeAlgebra}
{\smath{\mbox{\bf leftRankPolynomial}\opLeftPren{}\opRightPren{}\$F} 
calculates the left minimal
polynomial of a generic element of an algebra of domain \smath{F},
a domain of category \spadtype{FramedNonAssociativeAlgebra} over a
commutative ring \smath{R}.
This generic element is an element of the algebra defined by the
same structural constants over the polynomial ring in symbolic
coefficients with respect to the fixed basis.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftRank}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(A)->NonNegativeInteger}{AlgebraPackage}
{\smath{\mbox{\bf leftRank}\opLeftPren{}x\opRightPren{}} 
returns the number of linearly independent
elements in \smath{x b_1}, \ldots, \smath{x b_n}, where
\smath{b=[b_1, \ldots, b_n]} is a basis.
Argument \smath{x} is an element of a domain of category
\spadtype{FramedNonAssociativeAlgebra} over a commutative ring
\smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftRecip}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftRecip}\opLeftPren{}a\opRightPren{}} 
returns an element that is a left inverse
of \smath{a}, or \mbox{\tt "failed"}, if there is no unit element,
such an element does not exist, or the left reciprocal cannot be
determined (see {\tt unitsKnown}).}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftRecip}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{MonadWithUnit}
{\smath{\mbox{\bf leftRecip}\opLeftPren{}a\opRightPren{}} 
returns an element, which is a left inverse
of \smath{a}, or \mbox{\tt "failed"} if such an element doesn't
exist or cannot be determined (see
{\tt unitsKnown}).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftRegularRepresentation}}\opLeftPren{}
{\it element\opt{, vectorOfElements}}\opRightPren{}%
}%
}%
{2}{(\$, Vector(\$))->Matrix(R)}{FiniteRankNonAssociativeAlgebra}
{\opkey{This operation is defined on a domain \smath{F} of
category \spadtype{NonAssociativeAlgebra}.}
\newline\smath{leftRegularRepresentation(a\optinner{, [v_1,
\ldots, v_n]})} returns the matrix of the linear map defined by
left multiplication by \smath{a} with respect to the basis
\smath{[v_1, \ldots, v_n]}.
If a second argument is missing, the basis is taken to be the
fixed basis for \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftTraceMatrix}}\opLeftPren{}
{\it \opt{vectorOfElements}}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Matrix(R)}{FiniteRankNonAssociativeAlgebra}
{\opkey{This operation is defined on a domain \smath{F} 
of category \spadtype{NonAssociativeAlgebra}.}
\newline\smath{\mbox{\bf leftTraceMatrix}\opLeftPren{}
\optinner{v}\opRightPren{}}, where \smath{v}
is an optional vector \smath{[v_1, \ldots, v_n]}, returns
the \smath{n}-by-\smath{n} matrix \smath{M} such that
\smath{M_{i, j}} is the left
trace of the product \smath{v_i*v_j} of elements from the
basis \smath{[v_1, \ldots, v_n]}.
If the argument is missing, the basis is taken to be the 
fixed basis for \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftTrace}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->R}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf leftTrace}\opLeftPren{}a\opRightPren{}} returns 
the trace of the left regular representation of \smath{a},
an element of a domain of category \spadtype{FiniteRankNonAssociativeAlgebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftTrim}}\opLeftPren{}{\it string}, 
\allowbreak{}{\it  various}\opRightPren{}%
}%
}%
{2}{(\$, Character)->\$}{StringAggregate}
{\smath{\mbox{\bf leftTrim}\opLeftPren{}s, \allowbreak{} c\opRightPren{}} 
returns string \smath{s} with all leading characters
\smath{c} deleted. For example,
\spadfun{leftTrim}{\tt (" abc ", " ")} returns {\tt "abc "}.
\newitem
\smath{\mbox{\bf leftTrim}\opLeftPren{}s, \allowbreak{} cc\opRightPren{}} 
returns \smath{s} with all leading characters in
\smath{cc} deleted. For example, \code{leftTrim("(abc)", charClass "()")}
returns \code{"abc"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leftUnit}}\opLeftPren{}\opRightPren{}%
 \opand \mbox{\axiomFun{leftUnits}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Union(Record(particular:\$, basis:List(\$)), "failed")}
{FiniteRankNonAssociativeAlgebra}
{\opkey{These operations are defined on a domain \smath{F} of
category \spadtype{NonAssociativeAlgebra}.}
\newitem\smath{\mbox{\bf leftUnit}\opLeftPren{}\opRightPren{}\$F} 
returns a left unit of the algebra (not
necessarily unique), or \mbox{\tt "failed"} if there is none.
\newitem\smath{\mbox{\bf leftUnits}\opLeftPren{}\opRightPren{}\$F} 
returns the affine space of all
left units of an algebra \smath{F}, or \mbox{\tt "failed"} if
there is none, where \smath{F} is a domain of category
\spadtype{FiniteRankNonAssociativeAlgebra}.
The normal result is returned as a record with selector
\smath{particular} for an element of \smath{F}, and \smath{basis}
for a list of elements of \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{legendreSymbol}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(Integer, Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf legendreSymbol}\opLeftPren{}a, 
\allowbreak{} p\opRightPren{}} returns the Legendre symbol
\smath{L(a/p)}, \smath{L(a/p) = (-1)^{(p-1)/2} \mod p} for prime
\smath{p}.
This is 0 if \smath{a = 0}, 1 if \smath{a} is a quadratic residue
\smath{\mod p}, and \smath{-1} otherwise.
Note: because the primality test is expensive, use
\smath{\mbox{\bf jacobi}\opLeftPren{}a, \allowbreak{} p\opRightPren{}} 
if you know that \smath{p} is prime.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{LegendreP}}\opLeftPren{}{\it nonNegativeInteger}, 
\allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(NonNegativeInteger, R)->R}{OrthogonalPolynomialFunctions}
{\smath{\mbox{\bf LegendreP}\opLeftPren{}n, \allowbreak{} x\opRightPren{}} 
is the \eth{\smath{n}} Legendre
polynomial, \smath{P[n](x)}, defined by \smath{{1\over
\sqrt(1-2xt+t^2)} ={ \sum\nolimits_{n=0}^\infty {P[n](x) t^n}}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{length}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf length}\opLeftPren{}a\opRightPren{}} 
returns the length of integer \smath{a} in digits.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{less?}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Boolean}{Aggregate}
{\smath{\mbox{\bf less?}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
tests if \smath{u} has less than \smath{n} elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{leviCivitaSymbol}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{CartesianTensor}
{\smath{\mbox{\bf leviCivitaSymbol}\opLeftPren{}\opRightPren{}} 
is the rank \smath{dim} tensor defined
by \smath{\mbox{\bf leviCivitaSymbol}\opLeftPren{})
(i_1, \ldots i_{\rm dim})}, which is
\smath{+1}, \smath{-1} or \smath{0} according to whether the
permutation \smath{i_1, \ldots, i_{\rm dim}} is an even
permutation, an odd permutation, or not a permutation of
\smath{i_0, \ldots, i_0+{\rm dim}-1}, respectively, where
\smath{i_0} is the minimum index.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lexGroebner}}\opLeftPren{}
{\it listOfPolynomials}, \allowbreak{}{\it  listOfSymbols}\opRightPren{}%
}%
}%
{2}{(List(Polynomial(F)), List(Symbol))->List(Polynomial(F))}{PolyGroebner}
{\smath{\mbox{\bf lexGroebner}\opLeftPren{}lp, 
\allowbreak{} lv\opRightPren{}} computes a Gr\"obner basis for the
list of polynomials \smath{lp} in lexicographic order.
The variables \smath{lv} are ordered by their position in the list
\smath{lp}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lhs}}\opLeftPren{}
{\it equationOrRewriteRule}\opRightPren{}%
}%
}%
{1}{(\$)->F}{RewriteRule}
{\smath{\mbox{\bf lhs}\opLeftPren{}x\opRightPren{}} 
returns the left hand side of an equation or rewrite-rule.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{library}}\opLeftPren{}{\it filename}\opRightPren{}%
}%
}%
{1}{(FileName)->\$}{Library}
{\smath{\mbox{\bf library}\opLeftPren{}name\opRightPren{}} 
creates a new library file with filename
\smath{name}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lieAdmissible?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf lieAdmissible?}\opLeftPren{}\opRightPren{}\$F} 
tests if the algebra defined by the commutators
is a Lie algebra.
The domain \smath{F} is a member of the category
\spadtype{FiniteRankNonAssociativeAlgebra(R)}.
The property of anticommutativity follows from the definition.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lieAlgebra?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf lieAlgebra?}\opLeftPren{}\opRightPren{}\$F} 
tests if the algebra of
\smath{F}
is anticommutative and
that the Jacobi identity \smath{(a*b)*c + (b*c)*a + (c*a)*b = 0}
is satisfied for all \smath{a}, \smath{b}, \smath{c} in \smath{F}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{light}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(Color)->\$}{Palette}
{\smath{\mbox{\bf light}\opLeftPren{}c\opRightPren{}} 
sets the shade of a hue \smath{c} to its highest value.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{limit}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  equation}\allowbreak $\,[$ , \allowbreak{}
{\it  direction}$]$\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(R)), Equation(Fraction(Polynomial(R))))->
Union(OrderedCompletion(Fraction(Polynomial(R))), 
Record(leftHandLimit:Union(OrderedCompletion(Fraction(Polynomial(R))), 
"failed"), 
rightHandLimit:Union(OrderedCompletion(Fraction(Polynomial(R))), "failed")), 
"failed")}
{RationalFunctionLimitPackage}
{\smath{\mbox{\bf limit}\opLeftPren{}f(x), 
\allowbreak{} x = a\opRightPren{}} computes 
the real two-sided limit of \smath{f} as its argument 
\smath{x} approaches \smath{a}.
\newitem
\smath{\mbox{\bf limit}\opLeftPren{}f(x), \allowbreak{} x=a, 
\allowbreak{} "left"\opRightPren{}} computes the real limit 
of \smath{f} as its 
argument \smath{x} approaches \smath{a} from the left.
\newitem
\smath{\mbox{\bf limit}\opLeftPren{}f(x), \allowbreak{} x=a, 
\allowbreak{} "right"\opRightPren{}} computes the corresponding limit as 
\smath{x} approaches \smath{a} from the right.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{limitedIntegrate}}\opLeftPren{}
{\it rationalFunction}, \allowbreak{}{\it  symbol}, \allowbreak{}
{\it  listOfRationalFunctions}\opRightPren{}%
}%
}%
{3}{(Fraction(Polynomial(F)), Symbol, 
List(Fraction(Polynomial(F))))->Union(Record(mainpart:Fraction(Polynomial(F)), 
limitedlogs:List(Record(coeff:Fraction(Polynomial(F)), 
logand:Fraction(Polynomial(F))))), "failed")}
{RationalFunctionIntegration}
{\smath{\mbox{\bf limitedIntegrate}\opLeftPren{}f, \allowbreak{} x, 
\allowbreak{} [g_1, \allowbreak{} \ldots, g_n]\opRightPren{}} returns
fractions \smath{[h, [c_i, g_i]]} such
that the \smath{g_i}'s are
among \smath{[g_1, \ldots, g_n]}, \smath{dc_i/dx = 0},
and \smath{d(h + \sum\nolimits_i {c_i {\tt log} g_i})/dx = f} if
possible, \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{linearDependenceOverZ}}\opLeftPren{}
{\it vector}\opRightPren{}%
 \opand \mbox{\axiomFun{linearlyDependentOverZ?}}\opLeftPren{}
{\it vector}\opRightPren{}%
}%
}%
{1}{(Vector(R))->Union(Vector(Integer), "failed")}{IntegerLinearDependence}
{\smath{\mbox{\bf linearlyDependenceOverZ}\opLeftPren{}
[v_1, \allowbreak{} \ldots, v_n]\opRightPren{}} tests
if the elements \smath{v_i} of a ring (typically algebraic numbers or
\spadtype{Expression}s) are linearly dependent over the integers.
If so, the operation returns
\smath{[c_1, \ldots, c_n]} such that
\smath{c_1 v_1 + \cdots + c_n v_n = 0} (for which not all the
\smath{c_i}'s are 0).
If linearly independent over the integers,
\mbox{\tt "failed"} is returned.
\newline
\smath{\mbox{\bf linearlyDependentOverZ?}\opLeftPren{}[v1, 
\allowbreak{} \ldots, vn]\opRightPren{}} returns \smath{true}
if the \smath{vi}'s are linearly dependent over the integers, 
and \smath{false} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lineColorDefault}}\opLeftPren{}
{\it \opt{palette}}\opRightPren{}%
}%
}%
{0}{()->Palette}{ViewDefaultsPackage}
{\smath{\mbox{\bf lineColorDefault}\opLeftPren{}\opRightPren{}} 
returns the default color of lines
connecting points in a \twodim{} viewport.
\newline
\smath{\mbox{\bf lineColorDefault}\opLeftPren{}p\opRightPren{}} 
sets the default color of lines
connecting points in a \twodim{} viewport to the palette
\smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{linSolve}}\opLeftPren{}
{\it listOfPolynomials}, \allowbreak{}{\it  listOfVariables}\opRightPren{}%
}%
}%
{2}{(List(P), List(OV))->Record(particular:Union(Vector(F), "failed"), 
basis:List(Vector(F)))}{LinearSystemPolynomialPackage}
{\smath{\mbox{\bf linSolve}\opLeftPren{}lp, \allowbreak{} 
lvar\opRightPren{}} finds the solutions of the linear system of polynomials 
\smath{lp} = 0 with respect to the list of symbols \smath{lvar}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{li}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LiouvillianFunctionCategory}
{\smath{li(x)} returns the logarithmic integral of \smath{x}
defined by, \smath{\int {dx\over log(x)}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{list}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(S)->\$}{ListAggregate}
{\smath{\mbox{\bf list}\opLeftPren{}x\opRightPren{}} 
creates a list consisting of the one element \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{list?}}\opLeftPren{}
{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf list?}\opLeftPren{}s\opRightPren{}} 
tests if \spadtype{SExpression} value \smath{s}
is a Lisp list, possibly the null list.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listBranches}}\opLeftPren{}
{\it listOfListsOfPoints}\opRightPren{}%
}%
}%
{1}{(\$)->List(List(Point(DoubleFloat)))}{PlottablePlaneCurveCategory}
{\smath{\mbox{\bf listBranches}\opLeftPren{}c\opRightPren{}} 
returns a list of lists of points
representing the branches of the curve \smath{c}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listRepresentation}}\opLeftPren{}
{\it permutation}\opRightPren{}%
}%
}%
{1}{(\$)->Record(preimage:List(S), image:List(S))}{Permutation}
{\smath{\mbox{\bf listRepresentation}\opLeftPren{}p\opRightPren{}} 
produces a representation {\it rep}
of the permutation \smath{p} as a list of preimages and images
\smath{i}, that is, permutation \smath{p} maps \smath{(rep.{\tt
preimage}).k} to \smath{(rep.{\tt image}).k} for all indices
\smath{k}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listYoungTableaus}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->List(Matrix(Integer))}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf listYoungTableaus}\opLeftPren{}lambda\opRightPren{}}, 
where {\it lambda} is a proper
partition, generates the list of all standard tableaus of shape
{\it lambda} by means of lattice permutations.
The numbers of the lattice permutation are interpreted as column
labels.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listOfComponents}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->List(List(List(Point(R))))}{ThreeSpace}
{\smath{\mbox{\bf listOfComponents}\opLeftPren{}sp\opRightPren{}} 
returns a list of list of list of points for threeSpace
object \smath{sp} assumed to be composed of a list of components, 
each a list of
curves, which in turn is each a list of points,
or calls \spadfun{error} if this is not possible.
}

{\smath{\mbox{\bf listOfCurves}\opLeftPren{}sp\opRightPren{}} 
returns a list of list of subspace component properties
for threeSpace object \smath{sp} assumed to be a list of 
curves, each of which is
a list of subspace components, or calls \spadfun{error} 
if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lo}}\opLeftPren{}{\it segment}\opRightPren{}%
}%
}%
{1}{(\$)->S}{SegmentCategory}
{\smath{\mbox{\bf lo}\opLeftPren{}s\opRightPren{}} 
returns the first endpoint of \smath{s}.
For example, \code{lo(l..h) = l}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{log}}\opLeftPren{}
{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{logIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\smath{\mbox{\bf log}\opLeftPren{}x\opRightPren{}} 
returns the natural logarithm of \smath{x}.
\newitem
\smath{\mbox{\bf logIfCan}\opLeftPren{}z\opRightPren{}} 
returns \smath{\mbox{\bf log}\opLeftPren{}z\opRightPren{}} if possible, and
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{log2}}\opLeftPren{}{\it \opt{float}}\opRightPren{}%
}%
}%
{0}{()->\$}{Float}
{\smath{\mbox{\bf log2}\opLeftPren{}\opRightPren{}} 
returns \smath{ln(2) = 0.6931471805\ldots}.
\newitem
\smath{\mbox{\bf log2}\opLeftPren{}x\opRightPren{}} 
computes the base 2 logarithm for \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{log10}}\opLeftPren{}{\it \opt{float}}\opRightPren{}%
}%
}%
{0}{()->\$}{Float}
{\smath{\mbox{\bf log10}\opLeftPren{}\opRightPren{}} 
returns \smath{ln(10) = 2.3025809299\ldots}.
\newitem
\smath{\mbox{\bf log10}\opLeftPren{}x\opRightPren{}} 
computes the base 10 logarithm for \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{logGamma}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(Complex(DoubleFloat))->Complex(DoubleFloat)}{DoubleFloatSpecialFunctions}
{\smath{\mbox{\bf logGamma}\opLeftPren{}x\opRightPren{}} 
is the natural log of $\Gamma(x).$
Note: this can often be computed even if $\Gamma(x)$ cannot.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{lowerCase}}\opLeftPren{}
{\it \opt{string}}\opRightPren{}%
 \opand \mbox{\axiomFun{lowerCase?}}\opLeftPren{}
{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Character}
{\smath{\mbox{\bf lowerCase}\opLeftPren{}\opRightPren{}} 
returns the class of all characters for which 
\spadfunFrom{lowerCase?}{Character} is \smath{true}.
\newitem
\smath{\mbox{\bf lowerCase}\opLeftPren{}c\opRightPren{}}
returns a corresponding lower case alphabetic character \smath{c} if
\smath{c} is an upper case alphabetic character,
and \smath{c} otherwise.
\newitem
\smath{\mbox{\bf lowerCase}\opLeftPren{}s\opRightPren{}} 
returns the string with all characters in lower case.
\newitem
\smath{\mbox{\bf lowerCase?}\opLeftPren{}c\opRightPren{}} 
tests if character \smath{c} is an lower case letter, that is,
one of \smath{a}\ldots\smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listOfProperties}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->List(SubSpaceComponentProperty)}{ThreeSpace}
{\smath{\mbox{\bf listOfProperties}\opLeftPren{}sp\opRightPren{}} 
returns a list of subspace
component properties for \smath{sp} of type \spadtype{ThreeSpace},
or calls \spadfun{error} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{listOfPoints}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->List(Point(R))}{ThreeSpace}
{\smath{\mbox{\bf listOfPoints}\opLeftPren{}sp\opRightPren{}},
where \smath{sp} is a \spadtype{ThreeSpace} object,
returns the list of points component contained in \smath{sp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mainKernel}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->Union(Kernel(\$), "failed")}{ExpressionSpace}
{\smath{\mbox{\bf mainKernel}\opLeftPren{}f\opRightPren{}} 
returns a kernel of \smath{f} with maximum
nesting level, or \mbox{\tt "failed"} if \smath{f} has no kernels
(that is, \smath{f} is a constant).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mainVariable}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->Union(VarSet, "failed")}{PolynomialCategory}
{\smath{\mbox{\bf mainVariable}\opLeftPren{}u\opRightPren{}} 
returns the variable of highest ordering
that actually occurs in the polynomial \smath{p}, or \mbox{\tt
"failed"} if no variables are present.
Argument u can be either a polynomial or a rational function.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{makeFloatFunction}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  symbol}\allowbreak $\,[$ , \allowbreak{}
{\it  symbol}$]$\opRightPren{}%
}%
}%
{2}{(S, Symbol)->(DoubleFloat)->DoubleFloat}{MakeFloatCompiledFunction}
{\opkey{Argument \smath{expr} may be of any type that is coercible to
type \spadtype{InputForm} (objects of the most common types can
be so coerced).}
\newitem
\smath{\mbox{\bf makeFloatFunction}\opLeftPren{}expr, 
\allowbreak{} x\opRightPren{}} returns an anonymous function
of type \spadsig{Float}{Float} defined by
\smath{x \mapsto {\rm expr}}.
\newitem
\smath{\mbox{\bf makeFloatFunction}\opLeftPren{}expr, 
\allowbreak{} x, \allowbreak{} y\opRightPren{}} returns an anonymous function
of type \spadsig{(Float, Float)}{Float} defined by
\smath{(x, y) \mapsto {\rm expr}}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{makeVariable}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(S)->(NonNegativeInteger)->\$}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf makeVariable}\opLeftPren{}s\opRightPren{}}, 
where \smath{s} is a symbol,
differential indeterminate, or a differential polynomial,
returns a function \smath{f} defined on the non-negative integers
such that \smath{f(n)}
returns the \eth{\smath{n}} derivative of \smath{s}.
\newitem
\smath{\mbox{\bf makeVariable}\opLeftPren{}s, 
\allowbreak{} n\opRightPren{}} returns the \eth{\smath{n}} derivative of a
differential indeterminate \smath{s} as an algebraic indeterminate.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{makeObject}}\opLeftPren{}{\it functions}, 
\allowbreak{}{\it  range}\allowbreak $\,[$ , \allowbreak{}
{\it  range}$]$\opRightPren{}%
}%
}%
{2}{(ParametricSpaceCurve((DoubleFloat)->DoubleFloat), Segment(Float))->
ThreeSpace(DoubleFloat)}{TopLevelDrawFunctionsForCompiledFunctions}
{Arguments \smath{f}, \smath{g}, and \smath{h} appearing below
with arguments (for example, \smath{f(x, y)}) denote symbolic
expressions involving those arguments.
\largerbreak Arguments \smath{f}, \smath{g}, and \smath{h}
appearing below as symbols without arguments denote user-defined
functions which map one or more \spadtype{DoubleFloat} values to
\spadtype{DoubleFloat} values.
\largerbreak Values \smath{a}, \smath{b}, \smath{c}, and \smath{d}
denote numerical values.
\bigitem\smath{\mbox{\bf makeObject}\opLeftPren{}curve(f, g, h), 
\allowbreak{} a..b\opRightPren{}} returns the space
\smath{sp} of the domain \spadtype{ThreeSpace} with the addition
of the graph of the parametric curve \smath{x = f(t)}, \smath{y =
g(t)}, \smath{z = h(t)} as \smath{t} ranges from 
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}
to \smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf makeObject}\opLeftPren{}curve(f(t), g(t), h(t)), 
\allowbreak{} t = a..b\opRightPren{}}
returns the space \smath{sp} of the domain \spadtype{ThreeSpace}
with the addition of the graph of the parametric curve \smath{x =
f(t)}, \smath{y = g(t)}, \smath{z = h(t)} as \smath{t} ranges from
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}}.
\bigitem\smath{\mbox{\bf makeObject}\opLeftPren{}f, \allowbreak{} a..b, 
\allowbreak{} c..d\opRightPren{}} returns the space
\smath{sp} of the domain \spadtype{ThreeSpace} with the addition
of the graph of \smath{z = f(x, y)} as \smath{x} ranges from
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
and \smath{y} ranges from
\smath{\mbox{\bf min}\opLeftPren{}c, \allowbreak{} d\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
\bigitem\smath{\mbox{\bf makeObject}\opLeftPren{}f(x, y), 
\allowbreak{} x = a..b, \allowbreak{} y = c..d\opRightPren{}} returns
the space \smath{sp} of the domain \spadtype{ThreeSpace} with the
addition of the graph of \smath{z = f(x, y)} as \smath{x} ranges
from \smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} and 
\smath{y} ranges
from \smath{\mbox{\bf min}\opLeftPren{}c, \allowbreak{} d\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
\bigitem\smath{\mbox{\bf makeObject}\opLeftPren{}surface(f, g, h), 
\allowbreak{} a..b, \allowbreak{} c..d\opRightPren{}} returns
the space \smath{sp} of the domain \spadtype{ThreeSpace} with the
addition of the graph of the parametric surface \smath{x = f(u,
v)}, \smath{y = g(u, v)}, \smath{z = h(u, v)} as \smath{u} ranges
from \smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
and \smath{v} ranges
from \smath{\mbox{\bf min}\opLeftPren{}c, \allowbreak{} d\opRightPren{}} 
to \smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
\bigitem \smath{makeObject(surface(f(u, v), g(u, v), h(u, v)), u =
a..b, v = c..d)} returns the space \smath{sp} of the domain
\spadtype{ThreeSpace} with the addition of the graph of the
parametric surface \smath{x = f(u, v)}, \smath{y = g(u, v)},
\smath{z = h(u, v)} as \smath{u} ranges from 
\smath{\mbox{\bf min}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} to
\smath{\mbox{\bf max}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
and \smath{v} ranges from \smath{\mbox{\bf min}\opLeftPren{}c, 
\allowbreak{} d\opRightPren{}} to
\smath{\mbox{\bf max}\opLeftPren{}c, \allowbreak{} d\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{makeYoungTableau}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(List(Integer), List(Integer))->Matrix(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf makeYoungTableau}\opLeftPren{}lambda, 
\allowbreak{} gitter\opRightPren{}} computes for a given
lattice permutation {\it gitter} and for an improper partition
{\it lambda} the corresponding standard tableau of shape {\it
lambda}.
See \spadfun{listYoungTableaus}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mantissa}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{FloatingPointSystem}
{\smath{\mbox{\bf mantissa}\opLeftPren{}x\opRightPren{}} 
returns the mantissa part of \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{map}}\opLeftPren{}{\it function}, \allowbreak{}
{\it  structure}\allowbreak $\,[$ , \allowbreak{}
{\it  structure}$]$\opRightPren{}%
 \opand \mbox{\axiomFun{map!}}\opLeftPren{}{\it function}, \allowbreak{}
{\it  structure}\opRightPren{}%
}%
}%
{2}{((R)->R, \$)->\$}{AbelianMonoidRing}
{\smath{\mbox{\bf map}\opLeftPren{}fn, \allowbreak{} u\opRightPren{}} 
maps the one-argument function \smath{fn} onto
the components of a structure, returning a new structure.
Most structures allow \smath{f} to have different source and
target domains.
Specifically, the function \smath{f} is mapped onto the following
components of the structure as follows.
If \smath{u} is: \begin{simpleList} \item a series: the
coefficients of the series.
\item a polynomial: the coefficients of the non-zero monomials.
\item a direct product of elements: the elements.
\item an aggregate, tuple, table, or a matrix: all its elements.
\item an operation of the form \smath{op(a_1, \ldots, a_n)}: each
\smath{a_i}, returning \smath{op(f(a_1), \ldots, f(a_n))}.
\item a fraction: the numerator and denominator.
\item complex: the real and imaginary parts.
\item a quaternion or octonion: the real and all imaginary parts.
\item a finite or infinite series or stream: all the coefficients.
\item a factored object: onto all the factors.
\item a segment \smath{a..b} or a segment binding of the form
\smath{x=a..b}: each of the elements from \smath{a} to \smath{b}.
\item an equation: both sides of the equation.
\end{simpleList} \smath{\mbox{\bf map}\opLeftPren{}fn, 
\allowbreak{} u, \allowbreak{} v\opRightPren{}} maps the two argument
function \smath{fn} onto the components of a structure, returning
a new structure.
Arguments \smath{u} and \smath{v} can be matrices, finite
aggregates such as lists, tables, and vectors, and infinite
aggregates such as streams and series.
\bigitem \smath{\mbox{\bf map!}\opLeftPren{}f, 
\allowbreak{} u\opRightPren{}}, where \smath{u} is homogeneous
aggregate, destructively replaces each element \smath{x} of
\smath{u} by \smath{f(x)}.
\bigitem \seeAlso{\spadfun{match}} }

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mapCoef}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  freeAbelianMonoid}\opRightPren{}%
 \opand \mbox{\axiomFun{mapGen}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  freeAbelianMonoid}\opRightPren{}%
}%
}%
{2}{((E)->E, \$)->\$}{FreeAbelianMonoidCategory}
{\smath{\mbox{\bf mapCoeff}\opLeftPren{}f, 
\allowbreak{} m\opRightPren{}} maps unary function \smath{f} onto the
coefficients of a free abelian monoid of the form
\smath{e_1 a_1 +\ldots+ e_n a_n} returning
\smath{f(e_1) a_1 +\ldots+ f(e_n) a_n}.
\newitem\smath{\mbox{\bf mapGen}\opLeftPren{}fn, 
\allowbreak{} m\opRightPren{}} similarly returns
\smath{e_1 f(a_1) +\ldots+ e_n f(a_n)}.
\seeType{FreeAbelianMonoidCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mapDown!}}\opLeftPren{}{\it tree}, 
\allowbreak{}{\it  value}, \allowbreak{}{\it  function}\opRightPren{}%
}%
}%
{2}{((E)->E, \$)->\$}{FreeAbelianMonoidCategory}
{\opkey{These operations make a preorder traversal (node then
left branch
then right branch) of a tree \smath{t} of type
\spadtype{BalancedBinaryTree(S)}, destructively mapping values of
type \smath{S} from the root to the leaves of the tree, then
returning the modified tree as value; \smath{p} is a value of type
\smath{S}.}
\newitem\smath{\mbox{\bf mapDown!}\opLeftPren{}t, 
\allowbreak{} p, \allowbreak{} f\opRightPren{}}, where \smath{f} is a function
of type \spadsig{(S, S)}{S}, replaces the successive interior
nodes of \smath{t} as follows.
The root value \smath{x} is replaced by \smath{q = f(x, p)}.
Then \spadfun{mapDown!} is recursively applied to \smath{(l, q,
f)} and \smath{(r, q, f)} where \smath{l} and \smath{r} are
respectively the left and right subtrees of \smath{t}.
\newitem\smath{\mbox{\bf mapDown!}\opLeftPren{}t, 
\allowbreak{} p, \allowbreak{} f\opRightPren{}}, where \smath{f} is a function
of type \spadsig{(S, S, S)}{List S}, is similar.
The root value of \smath{t} is first replaced by \smath{p}.
Then \smath{f} is applied to three values: the value at the
current, left, and right node (in that order) to produce a list of
two values \spad{l} and \spad{r}, which are then passed
recursively as the second argument of \spadfun{mapDown!} to
the left and right subtrees.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mapExponents}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{((E)->E, \$)->\$}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf mapExponents}\opLeftPren{}fn, 
\allowbreak{} u\opRightPren{}} maps function \smath{fn} onto the
exponents of the non-zero monomials of polynomial \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mapUp!}}\opLeftPren{}
{\it \optinit{tree, }tree, function}\opRightPren{}%
}%
}%
{2}{((E)->E, \$)->\$}{FreeAbelianMonoidCategory}
{\opkey{These operations make an endorder traversal (left branch then
right branch then node) of a tree \smath{t} of type
\spadtype{BalancedBinaryTree(S)}, destructively mapping values of
type \smath{S} from the leaves to the root of the tree, then
returning the modified tree as value; \smath{p} is a value of type
\smath{S}.}
\newitem\smath{\mbox{\bf mapUp!}\opLeftPren{}t, 
\allowbreak{} f\opRightPren{}}, where \smath{f} has type
\spadsig{(S, S)}{S}, replaces the value at each interior node by
\smath{f(l, r)}, where \smath{l} and \smath{r} are the values at
the immediate left and right nodes.
\newitem\smath{\mbox{\bf mapUp!}\opLeftPren{}t, 
\allowbreak{} t_1, \allowbreak{} f\opRightPren{}} 
makes an endorder traversal of
both \smath{t} and \smath{t_1} (of identical shape) in parallel.
The value at each successive interior node of \smath{t} is
replaced by \smath{f(l, r, l_1, r_1)}, where \smath{l} and
\smath{r} are the values at the immediate left and right nodes of
\smath{t}, and \smath{l_1} and \smath{r_1} are corresponding
values of \smath{t_1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mask}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf mask}\opLeftPren{}n\opRightPren{}} returns 
\smath{2^n-1} (an \smath{n}-bit mask).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{match?}}\opLeftPren{}{\it string}, \allowbreak{}
{\it  string}, \allowbreak{}{\it  character}\opRightPren{}%
}%
}%
{3}{(\$, \$, Character)->Boolean}{StringAggregate}
{\smath{\mbox{\bf match?}\opLeftPren{}s, \allowbreak{} t, 
\allowbreak{} char\opRightPren{}} tests if \smath{s} matches \smath{t} except 
perhaps for multiple and consecutive occurrences of character \smath{char}. 
Typically \smath{char} is the blank character.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{match}}\opLeftPren{}{\it list}, \allowbreak{}
{\it  list}\allowbreak $\,[$ , \allowbreak{}{\it  option}$]$\opRightPren{}%
}%
}%
{2}{(List(A), List(B))->(A)->B}{ListToMap}
{\smath{\mbox{\bf match}\opLeftPren{}la, 
\allowbreak{} lb\optinner{, u}\opRightPren{}},
where \smath{la} and \smath{lb} are lists of equal length,
creates a function that can be used by \spadfun{map}.
The target of a source value \smath{x} in \smath{la} is the
value \smath{y} with the corresponding index in \smath{lb}.
Optional argument \smath{u} defines the target for a source
value \smath{a} which is not in \smath{la}.
If \smath{u} is a value of the source domain, then \smath{a} is 
replaced by \smath{u},
which must be a member of \smath{la}.
If \smath{u} is a value of the target domain, the value returned 
by the map for
\smath{a} is \smath{u}.
If \smath{u} is a function \smath{f}, then the value returned is \smath{f(a)}.
If no third argument is given, an error occurs when such a \smath{a} is found.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mathieu11}}\opLeftPren{}
{\it \opt{listOfIntegers}}\opRightPren{}%
 \optand \mbox{\axiomFun{mathieu12}}\opLeftPren{}
{\it \opt{listOfIntegers}}\opRightPren{}%
 \optand \mbox{\axiomFun{mathieu22}}\opLeftPren{}
{\it \opt{listOfIntegers}}\opRightPren{}%
 \optand \mbox{\axiomFun{mathieu23}}\opLeftPren{}
{\it \opt{listOfIntegers}}\opRightPren{}%
 \opand \mbox{\axiomFun{mathieu24}}\opLeftPren{}
{\it \opt{listOfIntegers}}\opRightPren{}%
}%
}%
%
{0}{()->PermutationGroup(Integer)}{PermutationGroupExamples}{%
\smath{\mbox{\bf mathieu11}\opLeftPren{}\optinner{li}\opRightPren{}} 
constructs the
mathieu group acting on the eleven integers given in the list \smath{li}.
Duplicates
in the list will be removed and \spadfun{error} will be called
if \smath{li} has fewer or more than eleven different entries.
The default value of \smath{li} is \smath{[1, \ldots, 11]}.
Operations \smath{mathieu12},
\smath{mathieu22}, and \smath{mathieu23}
and \smath{mathieu24} are similar.
These operations provide examples of permutation groups in Axiom.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{matrix}}\opLeftPren{}{\it listOfLists}\opRightPren{}%
}%
}%
{1}{(List(List(R)))->\$}{RectangularMatrixCategory}
{\smath{\mbox{\bf matrix}\opLeftPren{}l\opRightPren{}} 
converts the list of lists \smath{l} to a
matrix, where the list of lists is viewed as a list of the rows of
the matrix.
\newitem\smath{\mbox{\bf matrix}\opLeftPren{}llo\opRightPren{}},
where \smath{llo} is a list of list of objects of type
\spadtype{OutputForm} (normally unexposed),
returns an output form displaying \smath{llo} as a matrix.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{max}}\opLeftPren{}{\it \opt{various}}\opRightPren{}%
}%
}%
{0}{()->\$}{SingleInteger}
{\smath{\mbox{\bf max}\opLeftPren{}\opRightPren{}} returns 
the largest small integer.
\newline\smath{\mbox{\bf max}\opLeftPren{}u\opRightPren{}} 
returns the largest element of aggregate
\smath{u}.
\newline\smath{\mbox{\bf max}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
returns the maximum of \smath{x} and
\smath{y} relative to a total ordering \axiomOp{<}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{maxColIndex}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{RectangularMatrixCategory}
{\smath{\mbox{\bf maxColIndex}\opLeftPren{}m\opRightPren{}} 
returns the index of the last column of the matrix
or two-dimensional array \smath{m}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{maxIndex}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->Index}{IndexedAggregate}
{\smath{\mbox{\bf maxIndex}\opLeftPren{}u\opRightPren{}} 
returns the maximum index \smath{i} of indexed
aggregate \smath{u}. For most indexed aggregates (vectors, strings, lists),
\smath{\mbox{\bf maxIndex}\opLeftPren{}u\opRightPren{}} is 
equivalent to \smath{\# u.}
}




% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{maxRowIndex}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{RectangularMatrixCategory}
{\smath{\mbox{\bf maxRowIndex}\opLeftPren{}m\opRightPren{}} 
returns the index of the ``last'' row of the matrix
or two-dimensional array \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{meatAxe}}\opLeftPren{}
{\it listOfListsOfMatrices \opt{, boolean, integer, integer}}\opRightPren{}%
}%
}%
{4}{(List(Matrix(R)), Boolean, Integer, Integer)->
List(List(Matrix(R)))}{RepresentationPackage2}
{\smath{\mbox{\bf meatAxe}\opLeftPren{}aG \optinner{, randomElts, 
\allowbreak numOfTries, \allowbreak maxTests}\opRightPren{}} tries to
split the representation given by \smath{aG} and returns a 2-list of
representations. All matrices of argument \smath{aG} are assumed to be 
square and of equal size.
The default values of arguments \smath{randomElts},
\smath{numOfTries} and \smath{maxTests} are \smath{false}, 25, and 7, 
respectively.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{member?}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(S, \$)->Boolean}{HomogeneousAggregate}
{\smath{\mbox{\bf member?}\opLeftPren{}x, \allowbreak{} u\opRightPren{}} 
tests if \smath{x} is a member of \smath{u}.
\newitem
\smath{\mbox{\bf member?}\opLeftPren{}pp, \allowbreak{} gp\opRightPren{}}, 
where \smath{pp} is a permutation and
\smath{gp} is a group, tests
whether {\it pp} is in the group {\it gp}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{merge}}\opLeftPren{}{\it various}\opRightPren{}%
 \opand \mbox{\axiomFun{merge!}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{ExtensibleLinearAggregate}
{\smath{\mbox{\bf merge}\opLeftPren{}[s1, \allowbreak{} s2, \allowbreak{} 
\ldots, sn]\opRightPren{}} will create a new
\spadtype{ThreeSpace} object that has the components of all the ones in
the list; groupings of components into composites are maintained.
\newitem
\smath{\mbox{\bf merge}\opLeftPren{}s1, \allowbreak{} s2\opRightPren{}} 
will create a new \spadtype{ThreeSpace}
object that
has the components of \smath{s1} and \smath{s2}; groupings
of components into composites are maintained.
\newitem
\smath{\mbox{\bf merge}\opLeftPren{}\optfirst{p, }a, b\opRightPren{}} 
returns an aggregate \smath{c} which
merges \smath{a} and \smath{b}.
The result is produced by examining each element \smath{x} of \smath{a}
and \smath{y} of \smath{b} successively.
If \smath{p(x, y)} is \smath{true}, then \smath{x} is inserted into  the
result.
Otherwise \smath{y} is inserted.
If \smath{x} is chosen, the next element  of \smath{a} is examined, and so on.
When all the elements of one aggregate are examined, the remaining elements 
of the other are appended. For example, \smath{\mbox{\bf merge}\opLeftPren{}<, 
\allowbreak{} [1, \allowbreak{} 3], \allowbreak{} [2, \allowbreak{} 7, 
\allowbreak{} 5]\opRightPren{}} returns \smath{[1, 2, 3, 7, 5]}.
By default, function \smath{p} is \smath{\leq}.
\newitem
\smath{\mbox{\bf merge!}\opLeftPren{}\optfirst{p}, u, v\opRightPren{}} 
destructively merges the elements \smath{u} and \smath{v} into
\smath{u} using comparison function \smath{p}.
Function \smath{p} is \smath{\leq} by default.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mesh}}\opLeftPren{}
{\it u\opt{, v, w, x}}\opRightPren{}%
}%
}%
{4}{(\$, List(List(List(R))), Boolean, Boolean)->\$}{ThreeSpace}
{\opkey{Argument \smath{sp} below is a \spadtype{ThreeSpace}
object \smath{sp}.
Argument \smath{lc} is a list of curves.
Each curve is either a list of points (objects of type
\spadtype{Point}) or else a list of lists of small floats.}
\newitem\smath{\mbox{\bf mesh}\opLeftPren{}lc\opRightPren{}} 
returns a \spadtype{ThreeSpace} object
defined by \smath{lc}.
\newitem\smath{\mbox{\bf mesh}\opLeftPren{}sp\opRightPren{}} 
returns the list of curves contained in
space \smath{sp}.
\newitem\smath{\mbox{\bf mesh}\opLeftPren{}
\optfirst{sp, }, lc, close1, close2\opRightPren{}} adds the
list of curves \smath{lc} to the \spadtype{ThreeSpace} object
\smath{sp}.
Boolean arguments \smath{close1} and \smath{close2} tell how the
curves and surface are to be closed.
If \smath{close1} is \smath{true}, each individual curve will be
closed, that is, the last point of the list will be connected to
the first point.
If \smath{close2} is \smath{true}, the first and last curves are
regarded as boundaries and are connected.
By default, the argument \smath{sp} is empty.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{midpoints}}\opLeftPren{}
{\it listOfIntervals}\opRightPren{}%
}%
}%
{1}{(List(Record(left:Fraction(Integer), right:Fraction(Integer))))->
List(Fraction(Integer))}{RealZeroPackage}
{\opkey{These operations are defined on ``intervals'' represented
by records with keys \smath{right} and \smath{left}, and rational 
number values.}
\newitem\smath{\mbox{\bf midpoints}\opLeftPren{}isolist\opRightPren{}} 
returns the list of midpoints for the list of intervals \smath{isolist}.
\newitem\smath{\mbox{\bf midpoint}\opLeftPren{}int\opRightPren{}} 
returns the midpoint of the interval \smath{int}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{min}}\opLeftPren{}{\it \opt{u, v}}\opRightPren{}%
}%
}%
{0}{()->\$}{SingleInteger}
{\smath{\mbox{\bf min}\opLeftPren{}\opRightPren{}} returns the 
element of type \spadtype{SingleInteger}.
\newitem
\smath{\mbox{\bf min}\opLeftPren{}u\opRightPren{}} returns the 
smallest element of aggregate \smath{u}.
\newitem
\smath{\mbox{\bf min}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
returns the minimum of \smath{x} and \smath{y} relative to
total ordering \smath{<}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minColIndex}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{RectangularMatrixCategory}
{\smath{\mbox{\bf minColIndex}\opLeftPren{}m\opRightPren{}} 
returns the index of the ``first'' column
of the matrix
or two-dimensional array \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minimalPolynomial}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(F)}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf minimalPolynomial}\opLeftPren{}x
\optinner{, n}\opRightPren{}} computes the minimal 
polynomial of \smath{x} over the 
field of extension degree \smath{n} over the ground field \smath{F}.
The default value of \smath{n} is 1.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minimalPolynomial}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->UP}{FiniteRankAlgebra}
{\smath{\mbox{\bf minimalPolynomial}\opLeftPren{}a\opRightPren{}} 
returns the minimal polynomial of element \smath{a}
of a finite rank algebra.
\seeType{FiniteRankAlgebra}
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minimumDegree}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  variable}\opRightPren{}%
}%
}%
{1}{(\$)->E}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf minimumDegree}\opLeftPren{}p, 
\allowbreak{} v\opRightPren{}} gives the minimum degree of 
polynomial \smath{p} with 
respect to \smath{v}, that is, viewed as a univariate polynomial in \smath{v}.
\newitem
\smath{\mbox{\bf minimumDegree}\opLeftPren{}p, 
\allowbreak{} lv\opRightPren{}} gives the list of 
minimum degrees of the polynomial \smath{p} 
with respect to each of the variables in the list \smath{lv}.
\newitem
\seeAlso{\spadtype{FiniteAbelianMonoidRing} and 
\spadtype{MonogenicLinearOperator}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minIndex}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->Index}{IndexedAggregate}
{\smath{\mbox{\bf minIndex}\opLeftPren{}aggregate\opRightPren{}} 
returns the minimum index \smath{i} of aggregate \smath{u}.
Note: the \axiomFun{minIndex} of most system-defined indexed aggregates is 1.
See also \spadtype{PointCategory}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minordet}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->R}{MatrixCategory}
{\smath{\mbox{\bf minordet}\opLeftPren{}m\opRightPren{}} 
computes the determinant of the matrix \smath{m} using minors,
or calls \spadfun{error} if the matrix is not square.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minPoly}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(Kernel(\$))->SparseUnivariatePolynomial(\$)}{ExpressionSpace}
{\smath{\mbox{\bf minPoly}\opLeftPren{}k\opRightPren{}} 
returns polynomial \smath{p} such that \smath{p(k) = 0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minRowIndex}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{RectangularMatrixCategory}
{\smath{\mbox{\bf minRowIndex}\opLeftPren{}m\opRightPren{}} 
returns the index of the ``first'' row of the matrix
or two-dimensional array \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{minusInfinity}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->OrderedCompletion(Integer)}{Infinity}
{\smath{\mbox{\bf minusInfinity}\opLeftPren{}\opRightPren{}} 
returns {\tt \%minusInfinity},
the Axiom name for \smath{-\infty}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{modifyPointData}}\opLeftPren{}{\it space}, 
\allowbreak{}{\it  nonNegativeInteger}, \allowbreak{}
{\it  point}\opRightPren{}%
}%
}%
{3}{(\$, NonNegativeInteger, Point(R))->\$}{ThreeSpace}
{\smath{\mbox{\bf modifyPointData}\opLeftPren{}sp, \allowbreak{} i, 
\allowbreak{} p\opRightPren{}} changes the point at the indexed location 
\smath{i} in the \spadtype{ThreeSpace} object \smath{sp} to \smath{p}.
This operation is useful for making changes to existing data.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{moduloP}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{PAdicIntegerCategory}
{\smath{\mbox{\bf moduloP}\opLeftPren{}x\opRightPren{}}, 
such that \smath{p = \mbox{\bf modulus}()},
 returns a, where \smath{x = a + b p}
where \smath{x} is a \smath{p}-adic integer.
\seeType{PAdicIntegerCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{modulus}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Integer}{PAdicIntegerCategory}
{\smath{\mbox{\bf modulus}\opLeftPren{}\opRightPren{}\$R} 
returns the value of the modulus \smath{p}
of a p-adic integer domain \smath{R}.
\seeType{PAdicIntegerCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{moebiusMu}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf moebiusMu}\opLeftPren{}n\opRightPren{}} 
returns the Moebius function \smath{\mu(n)},
defined as \smath{-1}, \smath{0} or \smath{1} as
follows: \smath{\mu(n) = 0} if \smath{n} is divisible by a square
\smath{ > 1}, and \smath{(-1)^k} if \smath{n} is square-free and
has \smath{k} distinct prime divisors.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{monicDivide}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\allowbreak $\,[$ , 
\allowbreak{}{\it  variable}$]$\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(quotient:\$, remainder:\$)}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf monicDivide}\opLeftPren{}p, 
\allowbreak{} q\optinner{, v}\opRightPren{}} divides the polynomial
\smath{p} by the monic polynomial \smath{q}, returning the record
containing a \smath{quotient} and \smath{remainder}.
For multivariate polynomials, the polynomials are viewed as a
univariate polynomials in \smath{v}.
If \smath{p} and \smath{q} are univariate polynomials, then the
third argument may be omitted.
The operation calls \spadfun{error} if \smath{q} is not monic with
respect to \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{monomial}}\opLeftPren{}{\it coefficient}, 
\allowbreak{}{\it  exponent}\allowbreak $\,[$ , 
\allowbreak{}{\it  option}$]$\opRightPren{}%
}%
}%
{2}{(R, E)->\$}{AbelianMonoidRing}
{\smath{\mbox{\bf monomial}\opLeftPren{}coef, 
\allowbreak{} exp\opRightPren{}} creates a term of
a univariate polynomial or series object from a coefficient \smath{coef} and
exponent \smath{exp}. The variable name must be given by context
(as through a declaration for the result).
\newitem
\smath{\mbox{\bf monomial}\opLeftPren{}c, 
\allowbreak{} [x_1, \allowbreak{} \ldots, x_k], 
[n_1, \ldots, n_k]\opRightPren{}} creates a term
\smath{c x_1^{n_1}\ldots x_k^{n_k}}
of a multivariate power series or polynomial
from coefficient \smath{c}, variables \smath{x_j} and exponents
\smath{n_j}.
\newitem
\smath{\mbox{\bf monomial}\opLeftPren{}c, 
\allowbreak{} x, \allowbreak{} n\opRightPren{}} creates a term \smath{c x^n}
of a polynomial or series
from a coefficient \smath{c}, variable \smath{x}, and exponent \smath{n}.
\newitem
\smath{\mbox{\bf monomial}\opLeftPren{}c, 
\allowbreak{} [n_1, \allowbreak{} \ldots, n_k]\opRightPren{}}
creates a \spadtype{CliffordAlgebra} element \smath{c e(n_1), \ldots, c e(n_k)}
from a coefficient \smath{c} and basis elements \smath{c(i_j)}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{monomial?}}\opLeftPren{}
{\it polynomialOrSeries}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{AbelianMonoidRing}
{\smath{\mbox{\bf monomial?}\opLeftPren{}p\opRightPren{}} 
tests if polynomial or series \smath{p} is a
single monomial.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{monomials}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{PolynomialCategory}
{\smath{\mbox{\bf monomials}\opLeftPren{}p\opRightPren{}} 
returns the list of non-zero monomials of
polynomial \smath{p},
\smath{[a_1 X^{(1)}, \ldots, a_n X^{(n)}]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{more?}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Boolean}{Aggregate}
{\smath{\mbox{\bf more?}\opLeftPren{}u, \allowbreak{} n\opRightPren{}}
tests if \smath{u} has greater than \smath{n} elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{movedPoints}}\opLeftPren{}
{\it permutation}\opRightPren{}%
}%
}%
{1}{(\$)->Set(S)}{Permutation}
{\smath{\mbox{\bf movedPoints}\opLeftPren{}p\opRightPren{}} 
returns the set of points moved by the permutation \smath{p}.
\newitem
\smath{\mbox{\bf movedPoints}\opLeftPren{}gp\opRightPren{}} 
returns the points moved by the group {\it gp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{mulmod}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, \$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf mulmod}\opLeftPren{}a, \allowbreak{} b, 
\allowbreak{} p\opRightPren{}}, where \smath{a},
\smath{b} are non-negative integers both \smath{<} integer \smath{p},
returns \smath{a b \mod p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multiEuclidean}}\opLeftPren{}
{\it listOfElements}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(List(\$), \$)->Union(List(\$), "failed")}{EuclideanDomain}
{\smath{\mbox{\bf multiEuclidean}\opLeftPren{}[f_1, \allowbreak{} 
\ldots, f_n], z\opRightPren{}} returns a list of
coefficients \smath{[a_1, \ldots, a_n]}
such that \smath{z/\prod_{i=1}^n f_i = \sum\nolimits_{j=1}^n
{a_j/f_j}}.
If no such list of coefficients exists, \mbox{\tt "failed"} is
returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multinomial}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(I, List(I))->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf multinomial}\opLeftPren{}n, \allowbreak{} 
[m_1, \allowbreak{} m_2, \allowbreak{} \ldots, m_k]\opRightPren{}} returns the
multinomial coefficient \smath{n!/(m_1!
m_2! \ldots m_k!)}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multiple}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{FunctionSpaceAssertions}
{\smath{\mbox{\bf multiple}\opLeftPren{}x\opRightPren{}} 
directs the pattern matcher that \smath{x}
should preferably match a multi-term quantity in a sum or product.
For matching on lists, multiple(\smath{x}) tells the pattern
matcher that \smath{x} should match a list instead of an element
of a list.
This operation calls \spadfun{error} if \smath{x} is not a symbol.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multiplyCoefficients}}\opLeftPren{}
{\it function}, \allowbreak{}{\it  series}\opRightPren{}%
}%
}%
{2}{((Integer)->Coef, \$)->\$}{UnivariateTaylorSeriesCategory}
{\smath{\mbox{\bf multiplyCoefficients}\opLeftPren{}f, 
\allowbreak{} s\opRightPren{}} returns
\smath{\sum\nolimits_{n = 0}^\infty {f(n) a_n x^n}} where \smath{s} is the
series \smath{\sum\nolimits_{n = 0}^\infty{a_n x^n}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multiplyExponents}}\opLeftPren{}
{\it various}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->\$}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf multiplyExponents}\opLeftPren{}p, 
\allowbreak{} n\opRightPren{}},
where \smath{p} is a univariate polynomial or series,
returns a new polynomial
or series resulting from multiplying all exponents by the non
negative integer \smath{n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multiset}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(R), VarSet)->\$}{PolynomialCategory}
{\smath{\mbox{\bf multiset}\opLeftPren{}ls\opRightPren{}} 
creates a multiset with elements from \smath{ls}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{multivariate}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(R), VarSet)->\$}{PolynomialCategory}
{\smath{\mbox{\bf multivariate}\opLeftPren{}p, \allowbreak{} v\opRightPren{}}
converts an anonymous univariate
polynomial \smath{p} to a polynomial in the variable \smath{v}.
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{name}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{1}{(\$)->String}{FileNameCategory}
{\smath{\mbox{\bf name}\opLeftPren{}f\opRightPren{}} returns 
the name part of the file name for file \smath{f}.
\newitem\smath{\mbox{\bf name}\opLeftPren{}op\opRightPren{}} 
returns the name of basic operator \smath{op}.
\newitem\smath{\mbox{\bf name}\opLeftPren{}s\opRightPren{}} 
returns symbol \smath{s} without its scripts.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nand}}\opLeftPren{}{\it boolean}, \allowbreak{}{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BitAggregate}
{\smath{\mbox{\bf nand}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
returns the logical negation of
\smath{a} and \smath{b}, either booleans or bit aggregates.
Note: \smath{\mbox{\bf nand}\opLeftPren{}a, b) = true} if and only if one of
\smath{a} and \smath{b} is \smath{false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nary?}}\opLeftPren{}{\it basicOperator}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{BasicOperator}
{\smath{\mbox{\bf nary?}\opLeftPren{}op\opRightPren{}} 
tests if \smath{op} accepts an arbitrary number
of arguments.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ncols}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{RectangularMatrixCategory}
{\smath{\mbox{\bf ncols}\opLeftPren{}m\opRightPren{}} 
returns the number of columns in the matrix
or two-dimensional array \smath{m}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{new}}\opLeftPren{}{\it \opt{various}}\opRightPren{}%
}%
}%
{0}{()->\$}{ScriptFormulaFormat}
{\smath{\mbox{\bf new}\opLeftPren{}\opRightPren{}\$R} create a new object
of type \smath{R}. When \smath{R} is an aggregate,
\smath{new} creates an empty object.
Other variations are as follows:
\begin{simpleList}
\item\smath{\mbox{\bf new}\opLeftPren{}s\opRightPren{}}, where s is a symbol,
returns a new symbol whose name starts with \%\smath{s}.
\item\smath{\mbox{\bf new}\opLeftPren{}n, \allowbreak{} x\opRightPren{}} 
returns \smath{\mbox{\bf fill!}\opLeftPren{}new(n), 
\allowbreak{} x\opRightPren{}},
an aggregate of \smath{n} elements, each with value \smath{x}.
\item\smath{\mbox{\bf new}\opLeftPren{}m, \allowbreak{} n, 
\allowbreak{} r\opRightPren{}\$R} creates an \smath{m}-by-\smath{n} array
or matrix of type \smath{R} all of whose entries are \smath{r}.
\item\smath{\mbox{\bf new}\opLeftPren{}d, \allowbreak{} pre, 
\allowbreak{} e\opRightPren{}},
where \smath{d},  smath{pre},  and smath{e} are strings,
constructs the name of a new writable file with \smath{d}
as its directory, \smath{pre} as a prefix of its name and \smath{e}
as its extension. When \smath{d} or \smath{e} is the empty string,
a default is used.
The operation calls \spadfun{error} if a new file cannot be
written in the given directory.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{newLine}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->String}{DisplayPackage}
{\smath{\mbox{\bf newLine}\opLeftPren{}\opRightPren{}} sends a new line 
command to output.
See \spadtype{DisplayPackage}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nextColeman}}\opLeftPren{}{\it listOfIntegers}, 
\allowbreak{}{\it  listOfIntegers}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{3}{(List(Integer), List(Integer), Matrix(Integer))->Matrix(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf nextColeman}\opLeftPren{}alpha, \allowbreak{} beta, 
\allowbreak{} C\opRightPren{}} generates the next
Coleman-matrix of column sums
{\it alpha} and row sums {\it beta} according to the lexicographical
order from bottom-to-top.
The first Coleman matrix is created using \smath{C = {\bf new}(1, 1, 0)}.
Also, \smath{\mbox{\bf new}\opLeftPren{}1, \allowbreak{} 1, 
\allowbreak{} 0\opRightPren{}} indicates that \smath{C} is the 
last Coleman matrix.
See \spadtype{SymmetricGroupCombinatoricFunctions} for details.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nextLatticePermutation}}\opLeftPren{}
{\it integers}, \allowbreak{}{\it  integers}, \allowbreak{}
{\it  boolean}\opRightPren{}%
}%
}%
{3}{(List(Integer), List(Integer), Boolean)->List(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf nextLatticePermutation}\opLeftPren{}lambda, 
\allowbreak{} lattP, \allowbreak{} constructNotFirst\opRightPren{}}
generates the
lattice permutation according to the proper partition 
\smath{lambda} succeeding
the lattice permutation \smath{lattP} in lexicographical order as
long as \smath{constructNotFirst} is \smath{true}.
If \smath{constructNotFirst} is \smath{false}, the first
lattice permutation is returned. The result \smath{nil} 
indicates that \smath{lattP} has no successor.
See \spadtype{SymmetricGroupCombinatoricFunctions} for details.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nextPartition}}\opLeftPren{}
{\it vectorOfIntegers}, \allowbreak{}{\it  vectorOfIntegers}, \allowbreak{}
{\it  integer}\opRightPren{}%
}%
}%
{3}{(List(Integer), Vector(Integer), Integer)->
Vector(Integer)}{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf nextPartition}\opLeftPren{}gamma, 
\allowbreak{} part, \allowbreak{} number\opRightPren{}} 
generates the partition of
\smath{number} which follows \smath{part} according to the
right-to-left lexicographical order.
The partition has the property that its components do not exceed
the corresponding components of \smath{gamma}.
the first partition is achieved by \smath{part={\tt []}}.
Also, {\tt []} indicates that \smath{part} is the last partition.
See \spadtype{SymmetricGroupCombinatoricFunctions} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nextPrime}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(I)->I}{IntegerPrimesPackage}
{\smath{\mbox{\bf nextPrime}\opLeftPren{}n\opRightPren{}} 
returns the smallest prime strictly larger
than \smath{n}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nil}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{List}
{\smath{\mbox{\bf nil}\opLeftPren{}\opRightPren{}\$R} 
returns the empty list of type \smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nilFactor}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(R, Integer)->\$}{Factored}
{\smath{\mbox{\bf nilFactor}\opLeftPren{}base, 
\allowbreak{} exponent\opRightPren{}} creates a 
factored object with a single factor
with no information about the kind of \smath{base}.
See \spadtype{Factored} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{node?}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{RecursiveAggregate}
{\smath{\mbox{\bf node?}\opLeftPren{}u, \allowbreak{} v\opRightPren{}} 
tests if node \smath{u} is contained in node
\smath{v} (either as a child, a child of a child, etc.).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nodes}}\opLeftPren{}
{\it recursiveAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{RecursiveAggregate}
{\smath{\mbox{\bf nodes}\opLeftPren{}a\opRightPren{}} 
returns a list of all the nodes of aggregate
\smath{a}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{noncommutativeJordanAlgebra?}}
\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf noncommutativeJordanAlgebra?}
\opLeftPren{}\opRightPren{}\$F} tests if the algebra
\smath{F} is flexible and Jordan admissible.
See \spadtype{FiniteRankNonAssociativeAlgebra}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nor}}\opLeftPren{}
{\it boolean}, \allowbreak{}{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BitAggregate}
{\smath{\mbox{\bf nor}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns the logical \smath{nor} of booleans or
bit aggregates \smath{a} and \smath{b}.
Note: \smath{\mbox{\bf nor}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} = true if and only if both \smath{a} and
\smath{b} are \smath{false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{norm}}\opLeftPren{}
{\it element\opt{, option}}\opRightPren{}%
}%
}%
{1}{(\$)->R}{ComplexCategory}
{\smath{\mbox{\bf norm}\opLeftPren{}x\opRightPren{}} returns:
\begin{simpleList}
\item for complex \smath{x}: 
\smath{\mbox{\bf conjugate}\opLeftPren{}x\opRightPren{}}
.
\item for floats: the absolute value.
\item for quaternions or octonions: the sum of the squares of its coefficients.
\item for a domain of category \spadtype{FiniteRankAlgebra}:
the determinant of the regular representation of \smath{x} with 
respect to any basis.
\end{simpleList}
\smath{\mbox{\bf norm}\opLeftPren{}x\optinner{, p}\opRightPren{}}, 
where \smath{p} is a
positiveInteger and \smath{x} is
an element of a domain of category \spadtype{FiniteAlgebraExtensionField}
over ground field \smath{F},
returns the norm of \smath{x} with respect to the field of extension
degree \smath{d} over the ground field of size.
The default value of \smath{p} is 1.
The operation calls \spadfun{error} if \smath{p} does not divide
the extension degree of \smath{x}.
Note: \smath{\mbox{\bf norm}\opLeftPren{}x, p) = \prod_{i=0}^{n/p} x^{q^{pi}}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normal?}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf normal?}\opLeftPren{}a\opRightPren{}},
where \smath{a} is a member of a domain of category
\smath{FiniteAlgebraicExtensionField} over a field \smath{F},
tests whether the element \smath{a}
is normal over the ground field \smath{F}, that is, if
\smath{a^{q^i}, 0 \leq i \leq {\bf extensionDegree}()-1} is 
an \smath{F}-basis,
where \smath{q = {\bf size}()}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normalElement}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteAlgebraicExtensionField}
{\smath{\mbox{\bf normalElement}\opLeftPren{}\opRightPren{}\$R},
where \smath{R} is a domain of category
\smath{FiniteAlgebraicExtensionField} over a field \smath{F},
returns a element, normal over the ground field \smath{F},
that is, \smath{a^{q^i}, 0 \leq i < {\bf extensionDegree}()} 
is an \smath{F}-basis,
where \smath{q = {\bf size}()}.
At the first call, the element is computed by
\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField}
then cached in a global variable.
On subsequent calls, the element is retrieved by referencing the
global variable.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normalForm}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  listOfpolynomials}\opRightPren{}%
}%
}%
{2}{(Dpol, List(Dpol))->Dpol}{GroebnerPackage}
{\smath{\mbox{\bf normalForm}\opLeftPren{}poly, 
\allowbreak{} gb\opRightPren{}} reduces the polynomial \smath{poly}
modulo the precomputed Gr\"obner basis \smath{gb} giving a
canonical representative of the residue class.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normalise}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(Matrix(Expression(Fraction(Integer))))->
Matrix(Expression(Fraction(Integer)))}{RadicalEigenPackage}
{\smath{\mbox{\bf normalise}\opLeftPren{}v\opRightPren{}} 
returns the column vector \smath{v} divided
by its Euclidean norm; when possible, the vector \smath{v} is
expressed in terms of radicals.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normalize}}\opLeftPren{}
{\it element \opt, option}\opRightPren{}%
}%
}%
{1}{(Matrix(Expression(Fraction(Integer))))->
Matrix(Expression(Fraction(Integer)))}{RadicalEigenPackage}
{\smath{\mbox{\bf normalize}\opLeftPren{}flt\opRightPren{}} 
normalizes float \smath{flt} at current precision.
\newitem
\smath{\mbox{\bf normalize}\opLeftPren{}f\optinner{, x}\opRightPren{}} 
rewrites \smath{f} using the
least possible number of real algebraically independent kernels
involving symbol \smath{x}.
If no symbol \smath{x} is given, the operation
rewrites \smath{f} using the least possible number of real
algebraically independent kernels.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{normalizeAtInfinity}}\opLeftPren{}
{\it vectorOfFunctions}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Vector(\$)}{FunctionFieldCategory}
{\smath{\mbox{\bf normalizeAtInfinity}\opLeftPren{}v\opRightPren{}} 
makes \smath{v} normal at infinity,
where
\smath{v} is a vector of functions defined on a curve.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{not}}\opLeftPren{}{\it boolean}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{Boolean}
{\smath{\mbox{\bf not}\opLeftPren{}n\opRightPren{}} 
returns the negation of boolean or bit aggregate
\smath{n}.
\newitem
\smath{\mbox{\bf not}\opLeftPren{}n\opRightPren{}} 
returns the bit-by-bit logical \smath{not} of the
small integer \smath{n}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nrows}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{RectangularMatrixCategory}
{\smath{\mbox{\bf nrows}\opLeftPren{}m\opRightPren{}} 
returns the number of rows in the matrix
or two-dimensional array \smath{m}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nthExponent}}\opLeftPren{}
{\it factored}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->Integer}{Factored}
{\smath{\mbox{\bf nthExponent}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
returns the exponent of
the \eth{\smath{n}} factor of \smath{u}, or 0 if \smath{u} has no
such factor.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nthFactor}}\opLeftPren{}
{\it factor}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->R}{Factored}
{\smath{\mbox{\bf nthFactor}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
returns the base of the \eth{\smath{n}}
factor of \smath{u}, or 1 if \smath{n} is not a valid index
for a factor.
If \smath{u} consists only of a unit, the unit is returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nthFlag}}\opLeftPren{}
{\it factored}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->Union("nil", "sqfr", "irred", "prime")}{Factored}
{\smath{\mbox{\bf nthFlag}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
returns the information flag of the
\eth{\smath{n}} factor of \smath{u}, \mbox{\tt "nil"} if \smath{n} is not a
valid index for a factor.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nthFractionalTerm}}\opLeftPren{}
{\it partialFraction}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{PartialFraction}
{\smath{\mbox{\bf nthFractionalTerm}\opLeftPren{}p, 
\allowbreak{} n\opRightPren{}} extracts the \eth{\smath{n}}
fractional term from the partial fraction \smath{p}, or 0 if the
index \smath{n} is out of range.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nthRoot}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  integer}\opRightPren{}%
 \opand \mbox{\axiomFun{nthRootIfCan}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{RadicalCategory}
{\opkey{Argument \smath{x} can be of type \spadtype{Expression},
\spadtype{Complex}, \spadtype{Float} and \spadtype{DoubleFloat}, or
a series.}
\newitem \smath{\mbox{\bf nthRoot}\opLeftPren{}x, 
\allowbreak{} n\opRightPren{}} returns the \eth{\smath{n}} root of
\smath{x}.
If x is not an expression, the operation calls \spadfun{error} if
this is not possible.
\newitem \smath{\mbox{\bf nthRootIfCan}\opLeftPren{}z, 
\allowbreak{} n\opRightPren{}} returns the \eth{\smath{n}}
root of \smath{z} if possible, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{null?}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf null?}\opLeftPren{}s\opRightPren{}} 
is \smath{true} if \smath{s} is the \spadtype{SExpression}
object \smath{()}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nullary}}\opLeftPren{}\opRightPren{}%
}%
}%
{ C           -> (()->C)}{}{}
{\smath{\mbox{\bf nullary}\opLeftPren{}x\opRightPren{}}, 
where \smath{x} has type \smath{R}, returns a function
\smath{f} of type \spadsig{}{R} such that
such that \smath{f()} returns the value \smath{c}.
See also \spadfun{constant} for a similar operation.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nullary?}}\opLeftPren{}
{\it basicOperator}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{BasicOperator}
{\smath{\mbox{\bf nullary?}\opLeftPren{}op\opRightPren{}} 
tests if basic operator \smath{op} is nullary.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nullity}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{MatrixCategory}
{\smath{\mbox{\bf nullity}\opLeftPren{}m\opRightPren{}} 
returns the dimension of the null space of the matrix \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{nullSpace}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->List(Col)}{MatrixCategory}
{\smath{\mbox{\bf nullSpace}\opLeftPren{}m\opRightPren{}} 
returns a basis for the null space of the matrix \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfComponents}}\opLeftPren{}
{\it \opt{threeSpace}}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{FunctionFieldCategory}
{\smath{\mbox{\bf numberOfComponents}\opLeftPren{}\opRightPren{}\$F} 
returns the number of absolutely irreducible components for
a domain \smath{F} of functions defined over a curve.
\newitem
\smath{\mbox{\bf numberOfComponents}\opLeftPren{}sp\opRightPren{}} 
returns the number of distinct
object components in the \spadtype{ThreeSpace} object \smath{s}
such as points, curves, and polygons.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfComputedEntries}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{LazyStreamAggregate}
{\smath{\mbox{\bf numberOfComputedEntries}\opLeftPren{}st\opRightPren{}} 
returns the number of explicitly computed entries of stream \smath{st}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfCycles}}\opLeftPren{}
{\it permutation}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{Permutation}
{\smath{\mbox{\bf numberOfCycles}\opLeftPren{}p\opRightPren{}} 
returns the number of non-trivial cycles of the permutation \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfDivisors}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf numberOfDivisors}\opLeftPren{}n\opRightPren{}} 
returns the number of integers
between 1 and \smath{n} inclusive which divide \smath{n}.
The number of divisors of \smath{n} is often denoted by
\smath{\tau(n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfFactors}}\opLeftPren{}
{\it factored}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{Factored}
{\smath{\mbox{\bf numberOfFactors}\opLeftPren{}u\opRightPren{}} 
returns the number of factors in factored form \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfFractionalTerms}}\opLeftPren{}
{\it partialFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{PartialFraction}
{\smath{\mbox{\bf numberOfFractionalTerms}\opLeftPren{}p\opRightPren{}} 
computes the number of
fractional terms in \smath{p}, or 0 if there is no fractional part.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfHues}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{Color}
{\smath{\mbox{\bf numberOfHues}\opLeftPren{}\opRightPren{}} 
returns the number of total hues.
See also \spadfun{totalHues}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfImproperPartitions}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(Integer, Integer)->Integer}{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf numberOfImproperPartitions}\opLeftPren{}n, 
\allowbreak{} m\opRightPren{}} computes the number of
partitions of the nonnegative integer \smath{n} in \smath{m}
nonnegative parts with regarding
the order (improper partitions). Example:
\code{numberOfImproperPartitions (3, 3)} is 10, since
\code{[0, 0, 3], [0, 1, 2], [0, 2, 1], [0, 3, 0], [1, 0, 2], 
[1, 1, 1], [1, 2, 0], [2, 0, 1], [2, 1, 0], [3, 0, 0]}
are the possibilities. Note: this operation has a recursive implementation.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numberOfMonomials}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf numberOfMonomials}\opLeftPren{}p\opRightPren{}} 
gives the number of non-zero monomials in polynomial \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numer}}\opLeftPren{}{\it fraction}\opRightPren{}%
 \opand \mbox{\axiomFun{numerator}}\opLeftPren{}{\it fraction}\opRightPren{}%
}%
}%
{1}{(\$)->D}{QuotientFieldCategory}
{\opkey{Argument x is from domain \spadtype{Fraction(R)} for some 
domain \smath{R},
or of type \spadtype{Expression}}
\newitem
\smath{\mbox{\bf numer}\opLeftPren{}x\opRightPren{}} returns the 
numerator of \smath{x} as an object
of domain \smath{R}; if \smath{x} is of type \spadtype{Expression}, 
it returns
an object of domain \spadtype{SMP(D, Kernel(Expression R))}.
\newitem
\smath{\mbox{\bf numerator}\opLeftPren{}x\opRightPren{}} returns  
the numerator of \smath{x} as an element
of \spadtype{Fraction(R)}; if \smath{x} if of type \spadtype{Expression},
it returns an object of domain \spadtype{Expression}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numerators}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(R)}{ContinuedFraction}
{\smath{\mbox{\bf numerators}\opLeftPren{}cf\opRightPren{}} 
returns the stream of numerators of the approximants of
the continued fraction \smath{cf}.
If the continued fraction is finite, then the stream will be finite.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{numeric}}\opLeftPren{}
{\it expression\opt{, n}}\opRightPren{}%
}%
}%
{1}{(Expression(S))->Float}{Numeric}
{\smath{\mbox{\bf numeric}\opLeftPren{}x, \allowbreak{} n\opRightPren{}} 
returns a float approximation of expression \smath{x}
to \smath{n} decimal digits accurary.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{objectOf}}\opLeftPren{}
{\it typeAnyObject}\opRightPren{}%
}%
}%
{1}{(\$)->OutputForm}{Any}
{\smath{\mbox{\bf objectOf}\opLeftPren{}a\opRightPren{}} returns a 
printable form of an object
of type \spadtype{Any}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{objects}}\opLeftPren{}{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->Record(points:NonNegativeInteger,
curves:NonNegativeInteger, polygons:NonNegativeInteger,
constructs:NonNegativeInteger)}{ThreeSpace}
{\smath{\mbox{\bf objects}\opLeftPren{}sp\opRightPren{}} 
returns the \spadtype{ThreeSpace} object \smath{sp}.
The result is returned as record with fields:
\smath{points}, the number of points;
\smath{curves}, the number of curves;
\smath{polygons}, the number of polygons; and
\smath{constructs}, the number of constructs.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{oblateSpheroidal}}\opLeftPren{}
{\it function}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf oblateSpheroidal}\opLeftPren{}a\opRightPren{}},
where \smath{a} is a small float, returns a function to map the
point \smath{(\xi, \eta, \phi)} to cartesian coordinates
\smath{x = a sinh(\xi) sin(\eta) cos(\phi)}, \smath{y = a
sinh(\xi) sin(\eta) sin(\phi)}, \smath{z = a cosh(\xi) cos(\eta)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{octon}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}
\allowbreak $\,[$ , \allowbreak{}{\it  elements}$]$\opRightPren{}%
}%
}%
{2}{(Quaternion(R), Quaternion(R))
->\$}{Octonion}
{\smath{\mbox{\bf octon}\opLeftPren{}q_e, \allowbreak{} q_E\opRightPren{}} 
constructs an octonion
whose first 4 components are given by a quaternion \smath{q_e} and whose
last 4 components are given by a quaternion \smath{q_E}.
\newitem
\smath{\mbox{\bf octon}\opLeftPren{}r_e, \allowbreak{} r_i, \allowbreak{} r_j, 
\allowbreak{} r_k, \allowbreak{} r_E, \allowbreak{} r_I, \allowbreak{} r_J, 
\allowbreak{} r_K\opRightPren{}} constructs an octonion from scalars.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{odd?}}\opLeftPren{}{\it x}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{IntegerNumberSystem}
{\smath{\mbox{\bf odd?}\opLeftPren{}n\opRightPren{}} tests 
if integer \smath{n} is odd.
\newitem
\smath{\mbox{\bf odd?}\opLeftPren{}p\opRightPren{}} tests 
if \smath{p} is an odd permutation, that is, 
\smath{\mbox{\bf sign}\opLeftPren{}p\opRightPren{}}
is \smath{-1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{oneDimensionalArray}}\opLeftPren{}
{\it \optinit{integer, }elements}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{IntegerNumberSystem}
{\smath{\mbox{\bf oneDimensionalArray}\opLeftPren{}ls\opRightPren{}} 
creates a one-dimensional array consisting of
the elements of list \smath{ls}.
\newitem\smath{\mbox{\bf oneDimensionalArray}\opLeftPren{}n, 
\allowbreak{} s\opRightPren{}} creates a one-dimensional array of \smath{n}
elements, each with value \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{one?}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{MonadWithUnit}
{\smath{\mbox{\bf one?}\opLeftPren{}a\opRightPren{}} 
tests whether \smath{a} is the unit 1.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{open}}\opLeftPren{}
{\it file\opt{, string}}\opRightPren{}%
}%
}%
{1}{(Name)->\$}{FileCategory}
{\smath{\mbox{\bf open}\opLeftPren{}s\optinner{, mode}\opRightPren{}} 
returns the file \smath{s} open
in the indicated mode: \mbox{\tt "input"} or \mbox{\tt "output"}.
Argument \smath{mode} is \mbox{\tt "output"} by default.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{operator}}\opLeftPren{}
{\it symbol\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(BasicOperator)->BasicOperator}{ExpressionSpace}
{\smath{\mbox{\bf operator}\opLeftPren{}f, 
\allowbreak{} n\opRightPren{}} makes \smath{f} into an \smath{n}-ary operator.
If the second argument \smath{n} is omitted, \smath{f} has
arbitary \spadgloss{arity}, that is, \smath{f} takes an arbitrary
number of arguments.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{operators}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->List(BasicOperator)}{ExpressionSpace}
{\smath{\mbox{\bf operators}\opLeftPren{}f\opRightPren{}} returns a 
list of all basic operators in \smath{f},
regardless of level.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{optional}}\opLeftPren{}{\it symbol}\opRightPren{}%
}%
}%
{1}{(F)->F}{FunctionSpaceAssertions}
{\smath{\mbox{\bf optional}\opLeftPren{}x\opRightPren{}} tells the 
pattern matcher that \smath{x} can
match an identity (0 in a sum, 1 in a product or exponentiation),
or calls \spadfun{error} if \smath{x} is not a symbol.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{or}}\opLeftPren{}{\it boolean}, \allowbreak{}
{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BitAggregate}
{\smath{a \or b} returns the logical \smath{or} of booleans or bit 
aggregates \smath{a} and \smath{b}.
\newitem
\smath{n \or m} returns the bit-by-bit logical \smath{or} of the small 
integers \smath{n} and \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{orbit}}\opLeftPren{}{\it group}, \allowbreak{}
{\it  elements}\opRightPren{}%
}%
}%
{2}{(\$, List(S))->Set(List(S))}{PermutationGroup}
{\smath{\mbox{\bf orbit}\opLeftPren{}gp, \allowbreak{} el\opRightPren{}} 
returns the orbit of the element \smath{el} under
the permutation group \smath{gp}, that is, the set of all 
points gained by applying each group element to \smath{el}.
\newitem
\smath{\mbox{\bf orbit}\opLeftPren{}gp, \allowbreak{} ls\opRightPren{}},
where \smath{ls} is a list or
unordered set of elements,
returns the orbit of
\smath{ls} under the permutation group \smath{gp}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{orbits}}\opLeftPren{}{\it group}\opRightPren{}%
}%
}%
{1}{(\$)->Set(Set(S))}{PermutationGroup}
{\smath{\mbox{\bf orbits}\opLeftPren{}gp\opRightPren{}} 
returns the orbits of the permutation group \smath{gp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ord}}\opLeftPren{}{\it character}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{Character}
{\smath{\mbox{\bf ord}\opLeftPren{}c\opRightPren{}} returns an integer code
corresponding to the character \smath{c}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{order}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{FloatingPointSystem}
{\smath{\mbox{\bf order}\opLeftPren{}p\opRightPren{}} returns:
\begin{simpleList}
\item if \smath{p} is a float: the magnitude of \smath{p}
(Note: \smath{{\rm base}^{{\bf order}(x)} \leq |x| < base^{(1 +
{\bf order}(x))}}.)
\item if \smath{p} is a differential polynomial:
the maximum number of differentiations of a
differential indeterminate among all those appearing in \smath{p}.
\item if \smath{p} is a differential variable:
the number of differentiations of the differential indeterminate
appearing in \smath{p}.
\item if \smath{p} is an element of finite field: the order of an
element in the multiplicative group of the field (the function
calls \spadfun{error} if \smath{p} is 0).
\item if \smath{p} is a univariate power series:
the degree of the lowest order non-zero term in \smath{f}.
(A call to this operation results
in an infinite loop if \smath{f} has no non-zero terms.)
\item if \smath{p} is a \smath{q}-adic integer: the
exponent of the highest power of \smath{q} dividing \smath{p}
(see \spadtype{PAdicIntegerCategory}).
\item if \smath{p} is a permutation: the order of a permutation
\smath{p} as a group element.
\item if \smath{p} is permutation group: the order of the group.
\end{simpleList}
\smath{\mbox{\bf order}\opLeftPren{}p, \allowbreak{} q\opRightPren{}} 
returns the order of the differential
polynomial \smath{p} in differential indeterminate \smath{q}.
\newitem
\smath{\mbox{\bf order}\opLeftPren{}p, \allowbreak{} q\opRightPren{}} 
returns the order of multivariate series
\smath{p}
viewed as a series in \smath{q}
(this operation results in an infinite loop if \smath{f} has
no non-zero terms).
\newitem
\smath{\mbox{\bf order}\opLeftPren{}p, \allowbreak{} q\opRightPren{}} 
returns the largest \smath{n} such that
\smath{q^n} divides polynomial \smath{p}, that is, the order of
\smath{p(x)} at \smath{q(x)=0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{orthonormalBasis}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Matrix(Expression(Fraction(Integer))))}{RadicalEigenPackage}
{\smath{\mbox{\bf orthonormalBasis}\opLeftPren{}M\opRightPren{}} 
returns the orthogonal matrix
\smath{B}
such that \smath{B M B^{-1}} is diagonal, or
calls \spadfun{error} if \smath{M} is not a symmetric matrix.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{output}}\opLeftPren{}{\it x}\opRightPren{}%
}%
}%
{1}{(OutputForm)->Void}{OutputPackage}
{\smath{\mbox{\bf output}\opLeftPren{}x\opRightPren{}} 
displays \smath{x} on the ``algebra output'' stream
defined by \spadsyscom{)set output algebra}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputAsFortran}}\opLeftPren{}
{\it outputForms}\opRightPren{}%
}%
}%
{1}{(List(OutputForm))->Void}{SpecialOutputPackage}
{\smath{\mbox{\bf outputAsFortran}\opLeftPren{}f\opRightPren{}}
outputs \spadtype{OutputForm} object \smath{f} in FORTRAN format
to the destination defined by
the system command \spadsyscom{)set output fortran}.
If \smath{f} is a list of \spadtype{OutputForm} objects,
each expression in \smath{f} is output in order.
\newitem
\smath{\mbox{\bf outputAsFortran}\opLeftPren{}s, 
\allowbreak{} f\opRightPren{}}, where \smath{s} is a string,
outputs \smath{s = f}, but is otherwise identical.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputAsTex}}\opLeftPren{}
{\it outputForms}\opRightPren{}%
}%
}%
{1}{(List(OutputForm))->Void}{SpecialOutputPackage}
{\smath{\mbox{\bf outputAsTex}\opLeftPren{}f\opRightPren{}}
outputs \spadtype{OutputForm} object \smath{f} in
\TeX{} format
to the destination defined by
the system command \spadsyscom{)set output tex}.
If \smath{f} is a list of \spadtype{OutputForm} objects,
each expression in \smath{f} is output in order.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputFixed}}\opLeftPren{}
{\it \opt{nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->Void}{Float}
{\smath{\mbox{\bf outputFixed}\opLeftPren{}\optinner{n}\opRightPren{}} 
sets the output mode of
floats to fixed point notation,
that is, as an integer, a decimal point, and a number of digits.
If \smath{n} is given, then
\smath{n} digits are displayed after the decimal point.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputFloating}}\opLeftPren{}
{\it \opt{nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->Void}{Float}
{\smath{\mbox{\bf outputFloating}\opLeftPren{}\optinner{n}\opRightPren{}} 
sets the output mode to
floating (scientific) notation,
that is,
\smath{m 10^e} is displayed as \code{
mEe}.
If \smath{n} is given, \smath{n} digits will be displayed after
the decimal point.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputForm}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf outputForm}\opLeftPren{}x\opRightPren{}} 
creates an object of type
\spadtype{OutputForm} from \smath{x},
an object of type \smath{Integer}, \smath{DoubleFloat},
\smath{String}, or \smath{Symbol}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputGeneral}}\opLeftPren{}
{\it \opt{nonNegativeInteger}}\opRightPren{}%
}%
}%
{0}{()->Void}{Float}
{\smath{\mbox{\bf outputGeneral}\opLeftPren{}\optinner{n}\opRightPren{}} 
sets the output
mode (default mode) to general notation, that is, numbers will be
displayed in either fixed or floating (scientific) notation
depending on the magnitude.
If \smath{n} is given, \smath{n} digits are displayed after
the decimal point.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{outputSpacing}}\opLeftPren{}
{\it nonNegativeInteger}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->Void}{Float}
{\smath{\mbox{\bf outputSpacing}\opLeftPren{}n\opRightPren{}} 
inserts a space after \smath{n} digits on output.
\smath{\mbox{\bf outputSpacing}\opLeftPren{}0\opRightPren{}} 
means no spaces are inserted.
By default, \smath{n = 10}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{over}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf over}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type 
\spadtype{OutputForm} (normally unexposed),
creates an output form for the vertical fraction of 
\smath{o_1} over \smath{o_2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{overbar}}\opLeftPren{}
{\it outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf overbar}\opLeftPren{}o\opRightPren{}},
where \smath{o} is an object of type 
\spadtype{OutputForm} (normally unexposed),
creates the output form \smath{o} with an overbar.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pack!}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{KeyedAccessFile}
{\smath{\mbox{\bf pack!}\opLeftPren{}f\opRightPren{}} 
reorganizes the file \smath{f} on disk to recover unused space.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{packageCall}}\opLeftPren{}\opRightPren{}%
}%
}%
{ Symbol -> InputForm}{}{}
{\smath{\mbox{\bf packageCall}\opLeftPren{}f\opRightPren{}\$P},
where \smath{P} is the package \spadtype{InputFormFunctions1(R)} for
some type \spadtype{R},
returns the input form corresponding to f\$R.
See also \spadfun{interpret}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pade}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}, \allowbreak{}{\it  series}
\allowbreak $\,[$ , \allowbreak{}{\it  series}$]$\opRightPren{}%
}%
}%
{3}{(NonNegativeInteger, NonNegativeInteger, 
UnivariateTaylorSeries(R, x, pt))->
Union(Fraction(UnivariatePolynomial(x, R)), "failed")}
{PadeApproximantPackage}
{\smath{\mbox{\bf pade}\opLeftPren{}nd, \allowbreak{} dd, 
\allowbreak{} s \optinner{, ds}\opRightPren{}} computes the quotient of
polynomials (if it exists) with numerator degree at most \smath{nd}
and denominator degree at most \smath{dd}.
If a single univariate Taylor series \smath{s} is given, the quotient
approximate must match the series \smath{s} to order \smath{nd +
dd}.
If two series \smath{s} and \smath{ds} are given, \smath{ns} is the
numerator series of the function and \smath{ds} is the denominator
series.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{padicFraction}}\opLeftPren{}
{\it partialFraction}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{PartialFraction}
{\smath{\mbox{\bf padicFraction}\opLeftPren{}q\opRightPren{}} 
expands the fraction \smath{p}-adically in
the primes \smath{p} in the denominator of \smath{q}.
For example, \smath{\mbox{\bf padicFraction}
\opLeftPren{}3/(2^2)) = 1/2 + 1/(2^2)}.
Use \spadfunFrom{compactFraction}{PartialFraction} to return to compact form.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pair?}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf pair?}\opLeftPren{}s\opRightPren{}} tests if 
\smath{SExpression} object
is a non-null Lisp object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{parabolic}}\opLeftPren{}{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf parabolic}\opLeftPren{}pt\opRightPren{}} 
transforms \smath{pt} from parabolic
coordinates to Cartesian coordinates: the function produced will
map the point \smath{(u, v)} to \smath{x = 1/2 (u^2 - v^2)},
\smath{y = u v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{parabolicCylindrical}}\opLeftPren{}
{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf parabolicCylindrical}\opLeftPren{}pt\opRightPren{}} 
transforms \smath{pt} from
parabolic cylindrical coordinates to Cartesian coordinates: the
function produced will map the point \smath{(u, v, z)} to \smath{x =
1/2(u^2 - v^2)}, \smath{y = u v}, \smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{paraboloidal}}\opLeftPren{}{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf paraboloidal}\opLeftPren{}pt\opRightPren{}} 
transforms \smath{pt} from paraboloidal
coordinates to Cartesian coordinates: the function produced will
map the point \smath{(u, v, phi)} to \smath{x = u v {\bf
cos}(\phi)}, \smath{y = u v {\bf sin}(\phi)}, \smath{z = 1/2 (u^2
- v^2)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{paren}}\opLeftPren{}
{\it expressions}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ExpressionSpace}
{\smath{\mbox{\bf paren}\opLeftPren{}f\opRightPren{}} returns (\smath{f})
unless \smath{f} is a list \smath{[f_1, \ldots, f_n]} in
which case it returns \smath{(f_1, \ldots, f_n)}.
This prevents \smath{f} or the constituent \smath{f_i}
from being evaluated when operators are applied to it.
For example, \code{log(1)} returns 0, but \code{log(paren 1)}
returns the formal kernel \code{log((1))}.
Also, {\bf atan}{\it ({\bf paren [}x, 2{\bf ]})} returns the 
formal kernel {\bf atan}{\it ((x, 2))}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partialDenominators}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(R)}{ContinuedFraction}
{\smath{\mbox{\bf partialDenominators}\opLeftPren{}x\opRightPren{}} 
extracts the denominators
in \smath{x}.
If \smath{x = {\mbox {\bf continuedFraction}}
(b_0, [a_1, \ldots], [b_1, \ldots])},
then \smath{\mbox{\bf partialDenominators}\opLeftPren{}x) = [b_1, b_2\ldots]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partialFraction}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  factored}\opRightPren{}%
}%
}%
{2}{(R, Factored(R))->\$}{PartialFraction}
{\smath{\mbox{\bf partialFraction}\opLeftPren{}numer, 
\allowbreak{} denom\opRightPren{}} is the main function for
constructing partial fractions.
The second argument \smath{denom} is the denominator and should be
factored.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partialNumerators}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(R)}{ContinuedFraction}
{\smath{\mbox{\bf partialNumerators}\opLeftPren{}x\opRightPren{}} 
extracts the numerators in
\smath{x},
if \smath{x = {\mbox {\bf continuedFraction}}
(b_0, [a_1, \ldots], [b_1, \ldots], \ldots)},
then \smath{\mbox{\bf partialNumerators}\opLeftPren{}x) = [a_1, \ldots]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partialQuotients}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->Stream(R)}{ContinuedFraction}
{\smath{\mbox{\bf partialQuotients}\opLeftPren{}x\opRightPren{}} 
extracts the partial quotients in
\smath{x}, if
\smath{x = {\mbox {\bf continuedFraction}}
(b_0, [a_1, \dots], [b_1, \ldots], \ldots)},
then \smath{\mbox{\bf partialQuotients}\opLeftPren{}x) = [b_0, b_1, \ldots]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{particularSolution}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  vector}\opRightPren{}%
}%
}%
{2}{(M, Col)->Union(Col, \mbox{\tt "failed"})}{LinearSystemMatrixPackage}
{\smath{\mbox{\bf aSolution}\opLeftPren{}M, 
\allowbreak{} v\opRightPren{}} finds a particular solution 
\smath{x} of the linear system \smath{Mx = v}.
The result \smath{x} is returned as a vector, or 
\mbox{\tt "failed"} if no solution exists.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partition}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(I)->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf partition}\opLeftPren{}n\opRightPren{}} 
returns the number of partitions of the
integer \smath{n}.
This is the number of distinct ways that \smath{n} can be written
as a sum of positive integers.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{partitions}}\opLeftPren{}
{\it integer\opt{, integer, integer}}\opRightPren{}%
}%
}%
{1}{(Integer)->Stream(List(Integer))}{PartitionsAndPermutations}
{\smath{\mbox{\bf partitions}\opLeftPren{}i, 
\allowbreak{} j\opRightPren{}} is the stream of all partitions whose
number of parts and largest part are no greater than \smath{i} and
\smath{j}.
\newitem
\smath{\mbox{\bf partitions}\opLeftPren{}n\opRightPren{}} is 
the stream of all partitions of integer
\smath{n}.
\newitem
\smath{\mbox{\bf partitions}\opLeftPren{}p, \allowbreak{} l, 
\allowbreak{} n\opRightPren{}} is the stream of partitions of \smath{n}
whose number of parts is no greater than \smath{p} and whose
largest part is no greater than \smath{l}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{parts}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->List(R)}{TwoDimensionalArrayCategory}
{\smath{\mbox{\bf parts}\opLeftPren{}u\opRightPren{}} 
returns a list of the consecutive elements of \smath{u}.
Note: if \smath{u} is a list, \smath{\mbox{\bf parts}\opLeftPren{}u) = u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pastel}}\opLeftPren{}{\it color}\opRightPren{}%
}%
}%
{1}{(Color)->\$}{Palette}
{\smath{\mbox{\bf pastel}\opLeftPren{}c\opRightPren{}} 
sets the shade of a hue \smath{c} above ``bright'' but below ``light''.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pattern}}\opLeftPren{}
{\it rewriteRule}\opRightPren{}%
}%
}%
{1}{(\$)->Pattern(Base)}{RewriteRule}
{\smath{\mbox{\bf pattern}\opLeftPren{}r\opRightPren{}} 
returns the pattern corresponding to the left hand
side of the rewrite rule \smath{r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{patternMatch}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  expression}, \allowbreak{}
{\it  patternMatchResult}\opRightPren{}%
}%
}%
{3}{(\$, Pattern(S), PatternMatchResult(S, \$))->
PatternMatchResult(S, \$)}{PatternMatchable}
{\smath{\mbox{\bf patternMatch}\opLeftPren{}expr, \allowbreak{} pat, 
\allowbreak{} res\opRightPren{}} matches the pattern 
\smath{pat} to the expression 
\smath{expr}.
The argument \smath{res} contains the variables of \smath{pat}
which are already matched and their matches. Initially,
\smath{res} is the result of \spadfun{new()}, an empty list of matches.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{perfectNthPower?}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(I, NonNegativeInteger)->Boolean}{IntegerRoots}
{\smath{\mbox{\bf perfectNthPower?}\opLeftPren{}n, 
\allowbreak{} r\opRightPren{}} tests if \smath{n} is an
\eth{\smath{r}} power.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{perfectNthRoot}}\opLeftPren{}
{\it integer\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{2}{(I, NonNegativeInteger)->Union(I, "failed")}{IntegerRoots}
{\smath{\mbox{\bf perfectNthRoot}\opLeftPren{}n\opRightPren{}} 
returns a record
with fields ``base'' \smath{x} and
``exponent'' \smath{r} such that
\smath{n = x^r} and \smath{r} is the largest integer such
that \smath{n} is a perfect \eth{\smath{r}} power.
\newitem
\smath{\mbox{\bf perfectNthRoot}\opLeftPren{}n, 
\allowbreak{} r\opRightPren{}} returns the \eth{\smath{r}} root of
\smath{n} if \smath{n} is an \eth{\smath{r}} power, and \mbox{\tt "failed"}
otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{perfectSqrt}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(I)->Union(I, "failed")}{IntegerRoots}
{\smath{\mbox{\bf perfectSqrt}\opLeftPren{}n\opRightPren{}} 
returns the square root of \smath{n} if
\smath{n} is a perfect square, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{perfectSquare?}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(I)->Boolean}{IntegerRoots}
{\smath{\mbox{\bf perfectSquare?}\opLeftPren{}n\opRightPren{}} 
tests if \smath{n} is a perfect square.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{permanent}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(SquareMatrix(n, R))->R}{Permanent}
{\smath{\mbox{\bf permanent}\opLeftPren{}x\opRightPren{}} 
returns the permanent of a square matrix \smath{x},
equivalent to the \spadfun{determinant} except that 
coefficients have no change of sign.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{permutation}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(I, I)->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf permutation}\opLeftPren{}n, 
\allowbreak{} m\opRightPren{}} returns the number of permutations of
\smath{n} objects taken \smath{m} at a time.
Note: \smath{\mbox{\bf permutation}\opLeftPren{}n, m) = n!/(n-m)!}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{permutationGroup}}\opLeftPren{}
{\it listPermutations}\opRightPren{}%
}%
}%
{1}{(List(Permutation(S)))->\$}{PermutationGroup}
{\smath{\mbox{\bf permutationGroup}\opLeftPren{}ls\opRightPren{}} 
coerces a list of permutations \smath{ls} to the group generated by this list.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{permutationRepresentation}}\opLeftPren{}
{\it permutations\opt{, n}}\opRightPren{}%
}%
}%
{1}{(List(Integer))->Matrix(Integer)}{RepresentationPackage1}
{\smath{\mbox{\bf permutationRepresentation}\opLeftPren{}pi, 
\allowbreak{} n\opRightPren{}} returns the matrix
\smath{\delta_{i, pi(i)}} (Kronecker delta) if the permutation
\smath{pi} is in list notation and permutes
\smath{{1, 2, \ldots, n}}.
Argument \smath{pi} may either be permutation or a list of
integers describing a permutation by list notation.
\newitem
\smath{\mbox{\bf permutationRepresentation}\opLeftPren{}
[pi_1, \allowbreak{} \ldots, pi_k], n\opRightPren{}} returns
the list of matrices
\smath{[(\delta_{i, pi_1}(i)), \ldots, (\delta_{i, pi_k(i)})]}
(Kronecker delta) for permutations
\smath{pi_1}, \ldots, \smath{pi_k} of \smath{{1, 2, \ldots, n}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{permutations}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Stream(List(Integer))}{PartitionsAndPermutations}
{\smath{\mbox{\bf permutations}\opLeftPren{}n\opRightPren{}} 
returns the stream of permutations
formed from \smath{1, 2, \ldots, n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{physicalLength}}\opLeftPren{}
{\it flexibleArray}\opRightPren{}%
\opand \mbox{\axiomFun{physicalLength!}}\opLeftPren{}
{\it flexibleArray}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{1}{(Integer)->Stream(List(Integer))}{PartitionsAndPermutations}
{\opkey{These operations apply to a flexible array \smath{a} and concern the
``physical length'' of \smath{a}, the maximum number of elements that \smath{a}
can hold.
When a destructive operation (such as \spadfun{concat!}) is applied
that increases the number
of elements of \smath{a} beyond this number, new storage is allocated
(generally to be about 50\% larger than current storage allocation)
and the elements from the old storage are copied over to the new storage area.}

\newitem\smath{\mbox{\bf physicalLength}\opLeftPren{}a\opRightPren{}} 
returns the physical length of \smath{a}.
\newitem\smath{\mbox{\bf physicalLength!}\opLeftPren{}a, 
\allowbreak{} n\opRightPren{}} causes
new storage to be allocated for the elements
of \smath{a} with a physical length of \smath{n}. The \spadfun{maxIndex}
elements from the old storage area are copied.
An \spadfun{error} is called if \smath{n} is less than 
\spadfun{maxIndex}\smath{(a)}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pi}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{TranscendentalFunctionCategory}
{\smath{\mbox{\bf pi}\opLeftPren{}\opRightPren{}} returns \smath{\pi},
also denoted by the special symbol \code{\%pi}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pile}}\opLeftPren{}
{\it listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf pile}\opLeftPren{}lo\opRightPren{}},
where \smath{lo} is a list of objects of type \spadtype{OutputForm} 
(normally unexposed),
creates the output form consisting of the elements of \smath{lo} displayed
as a pile, that is, each element begins on a new
line and is indented right to the same margin.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{plenaryPower}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, PositiveInteger)->\$}{NonAssociativeAlgebra}
{\opkey{Argument \smath{a} is a member of a domain of 
category \spadtype{NonAssociativeAlgebra}}
\newitem
\smath{\mbox{\bf plenaryPower}\opLeftPren{}a, 
\allowbreak{} n\opRightPren{}} is recursively defined to be
\smath{\mbox{\bf plenaryPower}\opLeftPren{}a, n-1) * 
{\bf plenaryPower}(a, n-1)} for \smath{n>1} and \smath{a} for \smath{n=1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{plusInfinity}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->OrderedCompletion(Integer)}{Infinity}
{\smath{\mbox{\bf plusInfinity}\opLeftPren{}\opRightPren{}} 
returns the constant {\tt \%plusInfinity}
denoting $+\infty$.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{point}}\opLeftPren{}
{\it u\opt{, option}}\opRightPren{}%
}%
}%
{1}{(List(R))->\$}{PointCategory}
{\smath{\mbox{\bf point}\opLeftPren{}p\opRightPren{}} returns a 
\spadtype{ThreeSpace} object which is composed of one component, 
the point \smath{p}.
\smath{\mbox{\bf point}\opLeftPren{}l\opRightPren{}} creates a point 
defined by a list \smath{l}.
\newitem
\newitem
\smath{\mbox{\bf point}\opLeftPren{}sp\opRightPren{}} checks to see if 
the \spadtype{ThreeSpace}
object \smath{sp}
is composed of only a single point and, if so, returns the point, or
calls \spadfun{error} if \smath{sp} has more than one point.
\newitem
\smath{\mbox{\bf point}\opLeftPren{}sp, \allowbreak{} l\opRightPren{}} 
adds a point component defined by a list
\smath{l} to the \spadtype{ThreeSpace} object \smath{sp}.
\newitem
\smath{\mbox{\bf point}\opLeftPren{}sp, \allowbreak{} i\opRightPren{}} 
adds a point component into a component
list of the \spadtype{ThreeSpace} object \smath{sp} at the index given 
by \smath{i}.
\newitem
\smath{\mbox{\bf point}\opLeftPren{}sp, \allowbreak{} p\opRightPren{}} 
adds a point component defined by the point \smath{p}
described as a list, to the \spadtype{ThreeSpace} object \smath{sp}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{point?}}\opLeftPren{}{\it space}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ThreeSpace}
{\smath{\mbox{\bf point?}\opLeftPren{}sp\opRightPren{}} 
queries whether the \spadtype{ThreeSpace} object \smath{sp},
is composed of a single component which is a point.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pointColor}}\opLeftPren{}
{\it palette}\opRightPren{}%
}%
}%
{1}{(Float)->\$}{DrawOption}
{\smath{\mbox{\bf pointColor}\opLeftPren{}v\opRightPren{}} 
specifies a color \smath{v} for \twodim{} graph points.
This option is expressed in the form \code{pointColor == v}
in the \spadfun{draw} command.
Argument \smath{p} is either a palette or a float.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pointColorDefault}}\opLeftPren{}
{\it \opt{palette}}\opRightPren{}%
}%
}%
{0}{()->Palette}{ViewDefaultsPackage}
{\smath{\mbox{\bf pointColorDefault}\opLeftPren{}\opRightPren{}} 
returns the default color of points in a \twodim{} viewport.
\newitem
\smath{\mbox{\bf pointColorDefault}\opLeftPren{}p\opRightPren{}} sets 
the default color of points in a \twodim{} viewport to the palette \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pointSizeDefault}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{ViewDefaultsPackage}
{\smath{\mbox{\bf pointSizeDefault}\opLeftPren{}\opRightPren{}} 
returns the default size of the points
in a \twodim{} viewport.
\newitem
\smath{\mbox{\bf pointSizeDefault}\opLeftPren{}i\opRightPren{}} 
sets the default size of the points in
a \twodim{} viewport to \smath{i}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{polarCoordinates}}\opLeftPren{}{\it x}\opRightPren{}%
}%
}%
{1}{(\$)->Record(r:R, phi:R)}{ComplexCategory}
{\smath{\mbox{\bf polarCoordinates}\opLeftPren{}x\opRightPren{}} returns
a record with components \smath{(r, \phi)} such that \smath{x =
re^{i\phi}.}}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{polar}}\opLeftPren{}{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf polar}\opLeftPren{}pt\opRightPren{}} 
transforms point \smath{pt} from polar coordinates to
Cartesian coordinates. The function produced will map the point
\smath{(r, \theta)} to \smath{x = r {\bf cos}(\theta)} , 
\smath{y = r {\bf sin}(\theta)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pole?}}\opLeftPren{}{\it series}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{PowerSeriesCategory}
{\smath{\mbox{\bf pole?}\opLeftPren{}f\opRightPren{}} tests if the power 
series \smath{f} has a pole.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{polygamma}}\opLeftPren{}{\it k}, \allowbreak{}
{\it  x}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{SpecialFunctionCategory}
{\smath{\mbox{\bf polygamma}\opLeftPren{}k, \allowbreak{} x\opRightPren{}} 
is the \eth{\smath{k}} derivative of
\smath{\mbox{\bf digamma}\opLeftPren{}x\opRightPren{}}, 
often written \smath{\psi(k, x)} in the
literature.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{polygon}}\opLeftPren{}
{\it \optinit{sp, }listOfPoints}\opRightPren{}%
 \opand \mbox{\axiomFun{polygon?}}\opLeftPren{}{\it space}\opRightPren{}%
}%
}%
{1}{(List(Point(R)))->\$}{ThreeSpace}
{\smath{\mbox{\bf polygon}\opLeftPren{}\optfirst{sp, }lp\opRightPren{}} 
adds a polygon defined
by \smath{lp} to the \spadtype{ThreeSpace} object \smath{sp}.
Each \smath{lp} is either a list of points (objects of type \spadtype{Point})
or else a list of small floats.
If \smath{sp} is omitted, it is understood to be empty.
\newitem
\smath{\mbox{\bf polygon}\opLeftPren{}sp\opRightPren{}} returns 
\spadtype{ThreeSpace} object \smath{sp} as a list
of polygons, or an error if \smath{sp} is not composed of a single polygon.
\newitem
\smath{\mbox{\bf polygon?}\opLeftPren{}sp\opRightPren{}} tests 
if the \spadtype{ThreeSpace} object \smath{sp}
contains a single polygon component.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{polynomial}}\opLeftPren{}{\it series}, 
\allowbreak{}{\it  integer}\allowbreak $\,[$ , \allowbreak{}
{\it  integer}$]$\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Polynomial(Coef)}{UnivariateTaylorSeriesCategory}
{\smath{\mbox{\bf polynomial}\opLeftPren{}s, \allowbreak{} k\opRightPren{}} 
returns a polynomial consisting of the
sum of all terms of
series \smath{s} of degree \smath{\leq k} and greater than or
equal to 0.
\newitem
\smath{\mbox{\bf polynomial}\opLeftPren{}s, \allowbreak{} k_1, 
\allowbreak{} k_2\opRightPren{}} returns a polynomial consisting of the sum
of all terms of Taylor series \smath{s} of degree \smath{d}
with \smath{0 \leq k_1 \leq d \leq k_2}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pop!}}\opLeftPren{}{\it stack}\opRightPren{}%
}%
}%
{1}{(\$)->S}{StackAggregate}
{\smath{\mbox{\bf pop!}\opLeftPren{}s\opRightPren{}} returns 
the top element \smath{x}
from stack \smath{s}, destructively removing it from \smath{s},
or calls \spadfun{error} if \smath{s} is empty.
Note: Use \smath{\mbox{\bf top}\opLeftPren{}s\opRightPren{}} 
to obtain \smath{x} without removing it from \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{position}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  aggregate}\allowbreak $\,[$ , \allowbreak{}
{\it  index}$]$\opRightPren{}%
}%
}%
{2}{(S, \$)->Integer}{FiniteLinearAggregate}
{\smath{\mbox{\bf position}\opLeftPren{}x, 
\allowbreak{} a\optinner{, n}\opRightPren{}} returns the index \smath{i}
of the first occurrence of \smath{x} in \smath{a} where \smath{i
\geq n}, and \smath{\mbox{\bf minIndex}\opLeftPren{}a) - 1} 
if no such \smath{x} is
found.
The default value of \smath{n} is 1.
\newitem \smath{\mbox{\bf position}\opLeftPren{}cc, \allowbreak{} t, 
\allowbreak{} i\opRightPren{}} returns the position \smath{j
>= i} in \smath{t} of the first character belonging to character
class \smath{cc}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{positive?}}\opLeftPren{}
{\it orderedSetElement}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{OrderedRing}
{\smath{\mbox{\bf positive?}\opLeftPren{}x\opRightPren{}} 
tests if \smath{x} is strictly greater than 0.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{positiveRemainder}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf positiveRemainder}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}, where \smath{b > 1}, yields
\smath{r} where \smath{0 \leq r < b} and \smath{r = a \rem b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{possiblyInfinite?}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{StreamAggregate}
{\smath{\mbox{\bf possiblyInfinite?}\opLeftPren{}s\opRightPren{}} 
tests if the stream \smath{s} could
possibly have an infinite number of elements.
Note: for many datatypes,
\smath{\mbox{\bf possiblyInfinite?}\opLeftPren{}s\opRightPren{}} 
\smath{= \mbox{\bf not } \mbox{\bf explictlyFinite?}(s)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{postfix}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf postfix}\opLeftPren{}op, \allowbreak{} a\opRightPren{}},
where \smath{op} and \smath{a} are objects of type
\spadtype{OutputForm} (normally unexposed),
creates an output form which prints as: \smath{a\quad{}{\rm op}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{powerAssociative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{\smath{\mbox{\bf powerAssociative?}\opLeftPren{}\opRightPren{}\$F}, 
where \spad{F} is
a domain of category \spadtype{FiniteRankNonAssociativeAlgebra},
tests if all subalgebras generated by
a single element are associative.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{powerSum}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{ I -> SPOL RN}{}{}
{\smath{\mbox{\bf powerSum}\opLeftPren{}n\opRightPren{}} 
is the \smath{n} th power sum symmetric
function.
See \spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{powmod}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, \$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf powmod}\opLeftPren{}a, \allowbreak{} b, 
\allowbreak{} p\opRightPren{}},
where \smath{a} and \smath{b} are non-negative integers, each \smath{< p},
returns \smath{a^b\mod p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{precision}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{FloatingPointSystem}
{\smath{\mbox{\bf precision}\opLeftPren{}\opRightPren{}} 
returns the precision of \spadtype{Float} values
in decimal digits.
\newitem
\smath{\mbox{\bf precision}\opLeftPren{}n\opRightPren{}} 
set the precision in the base to \smath{n}
decimal digits.
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prefix}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf prefix}\opLeftPren{}o, \allowbreak{} lo\opRightPren{}},
where \smath{o} is an object of type \spadtype{OutputForm} (normally unexposed)
and \smath{lo} is a list of objects of type \spadtype{OutputForm},
creates an output form depicting the \smath{n}ary prefix application
of \smath{o} to a tuple of arguments given by list \smath{lo}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prefix?}}\opLeftPren{}{\it string}, \allowbreak{}
{\it  string}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{StringAggregate}
{\smath{\mbox{\bf prefix?}\opLeftPren{}s, \allowbreak{} t\opRightPren{}} 
tests if the string \smath{s} is the initial
substring of \smath{t}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prefixRagits}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(\$)->List(Integer)}{RadixExpansion}
{\smath{\mbox{\bf prefixRagits}\opLeftPren{}rx\opRightPren{}} 
returns the non-cyclic part of the
ragits of the fractional part of a radix expansion.
For example, if \smath{x = 3/28 = 0.10 714285 714285 \ldots}, then
\smath{\mbox{\bf prefixRagits}\opLeftPren{}x)=[1, 0]}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{presub}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf presub}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type 
\spadtype{OutputForm} (normally unexposed),
creates an output form for \smath{o_1} presubscripted by \smath{o_2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{presuper}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf presuper}\opLeftPren{}o_1, 
\allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type 
\spadtype{OutputForm} (normally unexposed),
creates an output form for \smath{o_1} presuperscripted by \smath{o_2}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primaryDecomp}}\opLeftPren{}
{\it ideal}\opRightPren{}%
}%
}%
{1}{(PolynomialIdeals(Fraction(Integer), 
DirectProduct(nv, NonNegativeInteger), vl, 
DistributedMultivariatePolynomial(vl, Fraction(Integer))))->
List(PolynomialIdeals(Fraction(Integer), 
DirectProduct(nv, NonNegativeInteger), vl, 
DistributedMultivariatePolynomial(vl, Fraction(Integer))))}
{IdealDecompositionPackage}
{\smath{\mbox{\bf primaryDecomp}\opLeftPren{}I\opRightPren{}} 
returns a list of primary ideals such
that their intersection is the ideal \smath{I}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prime}}\opLeftPren{}
{\it outputForm\opt{, positiveInteger}}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf prime}\opLeftPren{}o\optinner{, n}\opRightPren{}},
where \smath{o} is an object of type \spadtype{OutputForm} 
(normally unexposed),
creates an output form for \smath{o} following by \smath{n}
primes (that is, a prime like `` ' '').
By default, \smath{n = 1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prime?}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{UniqueFactorizationDomain}
{\smath{\mbox{\bf prime?}\opLeftPren{}x\opRightPren{}} 
tests if \smath{x} cannot be written as the
product of two non-units, that is, \smath{x} is an irreducible
element.
Argument \smath{x} may be an integer, a polynomial, an ideal, or,
in general, any element of a domain of category
\spadtype{UniqueFactorizationDomain}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primeFactor}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(R, Integer)->\$}{Factored}
{\smath{\mbox{\bf primeFactor}\opLeftPren{}base, 
\allowbreak{} exponent\opRightPren{}} creates a factored object with
a single factor whose \smath{base} is asserted to be prime (flag =
\mbox{\tt "prime"}).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primeFrobenius}}\opLeftPren{}
{\it finiteFieldElement\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->\$}{FieldOfPrimeCharacteristic}
{\opkey{Argument \smath{a} is a member of a domain of category
\spadtype{FieldOfPrimeCharacteristic(p)}.}
\newitem
\smath{\mbox{\bf primeFrobenius}\opLeftPren{}a\optinner{, s}\opRightPren{}} 
returns \smath{a^{p^s}}.
The default value of \smath{s} is 1.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primes}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(I, I)->List(I)}{IntegerPrimesPackage}
{\smath{\mbox{\bf primes}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
returns a list of all primes \smath{p} with \smath{a \leq p \leq b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primitive?}}\opLeftPren{}
{\it finiteFieldElement}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FiniteFieldCategory}
{\smath{\mbox{\bf primitive?}\opLeftPren{}b\opRightPren{}} 
tests whether the element \smath{b}
of a finite field is a generator of the (cyclic) multiplicative group of the
field, that is, is a primitive element.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primitiveElement}}\opLeftPren{}
{\it expressions\opt{, expression}}\opRightPren{}%
}%
}%
{2}{(F, F)->Record(primelt:F, pol1:SparseUnivariatePolynomial(F), 
pol2:SparseUnivariatePolynomial(F), prim:SparseUnivariatePolynomial(F))}
{FunctionSpacePrimitiveElement}
{\smath{\mbox{\bf primitiveElement}\opLeftPren{}a_1, 
\allowbreak{} a_2\opRightPren{}} returns a record with four
components: a primitive element \smath{a} with selector
\smath{primelt}, and three polynomials \smath{q_1}, \smath{q_2},
and \smath{q} with selectors \smath{pol1}, \smath{pol2}, and
\smath{prim}.
The prime element \smath{a} is such that the algebraic extension
generated by \smath{a_1} and \smath{a_2} is the same as that
generated by \smath{a}, \smath{a_i = q_i(a)} and \smath{q(a) = 0}.
The minimal polynomial for \smath{a_2} may involve \smath{a_1}, but
the minimal polynomial for \smath{a_1} may not involve \smath{a_2}.
This operations uses \spadfun{resultant}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primitiveMonomials}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->List(\$)}{PolynomialCategory}
{\smath{\mbox{\bf primitiveMonomials}\opLeftPren{}p\opRightPren{}} 
gives the list of monomials of the
polynomial \smath{p} with their coefficients removed.
Note: \smath{\mbox{\bf primitiveMonomials}\opLeftPren{}
\sum {a_i X^{(i)}}) = [X^{(1)}, \ldots, X^{(n)}]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{primitivePart}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FiniteAbelianMonoidRing}
{\smath{\mbox{\bf primitivePart}\opLeftPren{}p\optinner{, v}
\opRightPren{}} returns
the unit normalized form of polynomial \smath{p} divided 
by the \spadfun{content} of \smath{p} with respect to variable \smath{v}.
If no \smath{v} is given, the content is removed with respect to all variables.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{principalIdeal}}\opLeftPren{}
{\it listOfPolynomials}\opRightPren{}%
}%
}%
{1}{(List(\$))->Record(coef:List(\$), generator:\$)}
{PrincipalIdealDomain}
{\smath{\mbox{\bf principalIdeal}\opLeftPren{}[f_1, 
\allowbreak{} \ldots, f_n]\opRightPren{}} returns a record whose
``generator'' component is a generator of the ideal generated by
\smath{[f_1, \ldots, f_n]} whose ``coef'' component is a list of
coefficients \smath{[c_1, \ldots, c_n]} such that
\smath{generator = \sum_i c_i \, f_i}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{print}}\opLeftPren{}{\it outputForm}\opRightPren{}%
}%
}%
{1}{(OutputForm)->Void}{PrintPackage}
{\smath{\mbox{\bf print}\opLeftPren{}o\opRightPren{}} 
writes the output form \smath{o} on standard
output using the two-dimensional formatter.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{product}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{GradedAlgebra}
{\smath{\mbox{\bf product}\opLeftPren{}f(n), 
\allowbreak{} n = a..b\opRightPren{}} returns
\smath{\prod\nolimits_{n=a}^b{f(n)}} as a formal product.
\newitem\smath{\mbox{\bf product}\opLeftPren{}f(n), 
\allowbreak{} n\opRightPren{}} returns the formal product
\smath{P(n)} verifying \smath{{P(n+1)/P(n)} = f(n)}.
\newitem\smath{\mbox{\bf product}\opLeftPren{}s, 
\allowbreak{} t\opRightPren{}}, where \smath{s} and \smath{t} are
cartesian tensors, returns the outer product of \smath{s} and
\smath{t}.
For example, if \smath{r = {\bf product}(s, t)} for rank 2 tensors
\smath{s} and \smath{t}, then \smath{r} is a rank 4 tensor given
by \smath{r_{i, j, k, l} = s_{i, j} t_{k, l}}.
\newitem\smath{\mbox{\bf product}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}, where \smath{a} and \smath{b} are
elements of a graded algebra returns the degree-preserving linear
product.
See \spadtype{GradedAlgebra} for details.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prolateSpheroidal}}\opLeftPren{}
{\it smallFloat}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf prolateSpheroidal}\opLeftPren{}a\opRightPren{}} returns a
function to transform prolate spheroidal coordinates to Cartesian coordinates.
This function will map the point
\smath{(\xi, \eta, \phi)} to
\smath{x = a {\rm sinh}(\xi) {\rm sin}(\eta) {\rm cos}(\phi)},
\smath{y = a {\rm sinh}(\xi) {\rm sin}(\eta) {\rm sin}(\phi)},
\smath{z = a {\rm cosh}(\xi) {\rm cos}(\eta)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{prologue}}\opLeftPren{}{\it text}\opRightPren{}%
}%
}%
{1}{(\$)->List(String)}{ScriptFormulaFormat}
{\smath{\mbox{\bf prologue}\opLeftPren{}t\opRightPren{}} 
extracts the prologue section of a
IBM SCRIPT Formula Formatter or \TeX{} formatted object \smath{t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{properties}}\opLeftPren{}
{\it basicOperator\opt{, prop}}\opRightPren{}%
}%
}%
{1}{(\$)->AssociationList(String, None)}{BasicOperator}
{\smath{\mbox{\bf properties}\opLeftPren{}op\opRightPren{}} 
returns the list of all the properties currently attached to \smath{op}.
\newitem
\smath{\mbox{\bf property}\opLeftPren{}op, \allowbreak{} s\opRightPren{}} 
returns the value of property \smath{s} if
it is attached to \smath{op}, and \mbox{\tt "failed"} otherwise.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pseudoDivide}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(coef:R, quotient:\$, remainder:\$)}
{UnivariatePolynomialCategory}
{\smath{\mbox{\bf pseudoDivide}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} returns \smath{(c, q, r)}, when
\smath{p' := p \mbox{ \bf leadingCoefficient}(q)^{{\rm deg}(p) - {\rm
deg}(q) + 1}= c p} is pseudo right-divided by \smath{q}, that is,
\smath{p' = s q + r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pseudoQuotient}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf pseudoQuotient}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} returns \smath{r}, the quotient when
\smath{p' := p {\rm leadingCoefficient}(q)^{{\rm deg} p - {\rm deg} q + 1}}
is pseudo right-divided by \smath{q}, that is,
\smath{p' = s q + r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pseudoRemainder}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf pseudoRemainder}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} = \smath{r}, for polynomials
\smath{p} and \smath{q}, returns the remainder when
\smath{p' := p {\rm leadingCoefficient}(q)^{{\rm deg} p - {\rm deg} q + 1}}
is
pseudo right-divided by \smath{q}, that is, \smath{p' = s q + r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{puiseux}}\opLeftPren{}
{\it expression\opt{, options}}\opRightPren{}%
}%
}%
{1}{(FE)->Any}{ExpressionToUnivariatePowerSeries}
{\smath{\mbox{\bf puiseux}\opLeftPren{}f\opRightPren{}} 
returns a Puiseux expansion of the expression
\smath{f}.
Note: \smath{f} should have only one variable; the series will be
expanded in powers of that variable.
Also, if \smath{x} is a symbol,
\smath{\mbox{\bf puiseux}\opLeftPren{}x\opRightPren{}} returns \smath{x} 
as a Puiseux series.
\newitem
\smath{\mbox{\bf puiseux}\opLeftPren{}f, \allowbreak{} x = a\opRightPren{}} 
expands the expression \smath{f} as a
Puiseux series in powers of \smath{(x - a)}.
\newitem
\smath{\mbox{\bf puiseux}\opLeftPren{}f, \allowbreak{} n\opRightPren{}} 
returns a Puiseux expansion of the expression
\smath{f}.
Note: \smath{f} should have only one variable; the series will be
expanded in powers of that variable and terms will be computed up
to order at least \smath{n}.
\newitem
\smath{\mbox{\bf puiseux}\opLeftPren{}f, \allowbreak{} x = a, 
\allowbreak{} n\opRightPren{}} expands the expression \smath{f} as a
Puiseux series in powers of \smath{(x - a)}; terms will be
computed up to order at least \smath{n}.
\newitem
\smath{\mbox{\bf puiseux}\opLeftPren{}n {\tt +->} a(n), 
\allowbreak{} x = a, \allowbreak{} r_0.., \allowbreak{} r\opRightPren{}} 
returns
\smath{\sum\nolimits_{n = r_0, r_0 + r, r_0 + 2 r, \ldots} a(n) (x - a)^n}.
\newitem
\smath{\mbox{\bf puiseux}\opLeftPren{}a(n), 
\allowbreak{} n, \allowbreak{} x = a, \allowbreak{} r_0.., 
\allowbreak{} r\opRightPren{}} returns
\smath{\sum\nolimits_{n = r_0, r_0 + r, r_0 + 2 r, \ldots} a(n) (x - a)^n}.
\newitem Note: Each of the last two commands have alternate forms
whose third argument is the finite segment \smath{r_0..r_1}
producing a similar series with
a finite number of terms.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{push!}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  stack}\opRightPren{}%
}%
}%
{2}{(S, \$)->S}{StackAggregate}
{\smath{\mbox{\bf push!}\opLeftPren{}x, 
\allowbreak{} s\opRightPren{}} pushes \smath{x} onto stack \smath{s}, that
is, destructively changing \smath{s} so as to have a new first
(top) element \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pushdown}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  symbol}\opRightPren{}%
 \opand \mbox{\axiomFun{pushdterm}}\opLeftPren{}
{\it monomial}, \allowbreak{}{\it  symbol}\opRightPren{}%
}%
}%
{2}{(PRF, OV)->PRF}{MPolyCatRationalFunctionFactorizer}
{\smath{\mbox{\bf pushdown}\opLeftPren{}prf, 
\allowbreak{} var\opRightPren{}} pushes all top level occurences of the
variable \smath{var} into the coefficient domain for the
polynomial \smath{prf}.
\newitem\smath{\mbox{\bf pushdterm}\opLeftPren{}monom, 
\allowbreak{} var\opRightPren{}} pushes all top level
occurences of the variable \smath{var} into the coefficient domain
for the monomial \smath{monom}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pushucoef}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  variable}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(Polynomial(R)), OV)->PRF}
{MPolyCatRationalFunctionFactorizer}
{\smath{\mbox{\bf pushucoef}\opLeftPren{}upoly, 
\allowbreak{} var\opRightPren{}} converts the anonymous univariate
polynomial \smath{upoly} to a polynomial in \smath{var} over
rational functions.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pushuconst}}\opLeftPren{}
{\it rationalFunction}, \allowbreak{}{\it  variable}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(R)), OV)->PRF}{MPolyCatRationalFunctionFactorizer}
{\smath{\mbox{\bf pushuconst}\opLeftPren{}r, \allowbreak{} var\opRightPren{}} 
takes a rational function and raises
all occurences
of the variable \smath{var} to the polynomial level.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{pushup}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  variable}\opRightPren{}%
}%
}%
{2}{(PRF, OV)->PRF}{MPolyCatRationalFunctionFactorizer}
{\smath{\mbox{\bf pushup}\opLeftPren{}prf, \allowbreak{} var\opRightPren{}} 
raises all occurences of the variable
\smath{var} in the coefficients of the polynomial \smath{prf} back
to the polynomial level.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{qelt}}\opLeftPren{}{\it u\opt{, options}}
\opRightPren{}%
}%
}%
{2}{(\$, Dom)->Im}{EltableAggregate}
{\smath{\mbox{\bf qelt}\opLeftPren{}u, \allowbreak{} p\optinner{, options}
\opRightPren{}} is equivalent to
a corresponding \spadfun{elt} form except that it
performs no check that indicies are in range.
Use HyperDoc to discover if a given domain has this alternative operation.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{qsetelt!}}\opLeftPren{}{\it u}, \allowbreak{}
{\it  x}, \allowbreak{}{\it  y}\allowbreak $\,[$ , \allowbreak{}
{\it  z}$]$\opRightPren{}%
}%
}%
{3}{(\$, Dom, Im)->Im}{EltableAggregate}
{\smath{\mbox{\bf qsetelt!}\opLeftPren{}u, \allowbreak{} x, 
\allowbreak{} y\optinner{, z}\opRightPren{}} is equivalent to
a corresponding \spadfun{setelt} form except that it
performs no check that indicies are in range.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quadraticForm}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(SquareMatrix(n, K))->\$}{QuadraticForm}
{\smath{\mbox{\bf quadraticForm}\opLeftPren{}m\opRightPren{}} 
creates a quadratic form from a symmetric, square matrix \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quatern}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  element}, \allowbreak{}{\it  element}, \allowbreak{}
{\it  element}\opRightPren{}%
}%
}%
{4}{(R, R, R, R)->\$}{QuaternionCategory}
{\smath{\mbox{\bf quatern}\opLeftPren{}r, \allowbreak{} i, \allowbreak{} j, 
\allowbreak{} k\opRightPren{}} constructs a quaternion from scalars.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{queue}}\opLeftPren{}
{\it \opt{listOfElements}}\opRightPren{}%
}%
}%
{0}{()->\$}{QueueAggregate}
{\smath{\mbox{\bf queue}\opLeftPren{}\opRightPren{}}\$\smath{R} 
returns an empty queue of type
\smath{R}.
\newitem
\smath{\mbox{\bf queue}\opLeftPren{}[x, \allowbreak{} y, 
\allowbreak{} \ldots, z]\opRightPren{}} creates a queue with first (top)
element \smath{x}, second element \smath{y}, \ldots, and last
(bottom) element \smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quickSort}}\opLeftPren{}
{\it predicate}, \allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S, S)->Boolean, V)->V}{FiniteLinearAggregateSort}
{\smath{\mbox{\bf quickSort}\opLeftPren{}f, 
\allowbreak{} agg\opRightPren{}} sorts the aggregate agg with the
ordering predicate \smath{f} using the quicksort algorithm.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quo}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{NonNegativeInteger}
{\smath{a \quo b} returns the quotient of \smath{a} and \smath{b}
discarding the remainder.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quoByVar}}\opLeftPren{}{\it series}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnivariateTaylorSeriesCategory}
{\smath{\mbox{\bf quoByVar}
\opLeftPren{}a_0 + a_1 x + a_2 x^2 + \cdots\opRightPren{}}
returns \smath{a_1 + a_2 x + a_3 x^2 + \cdots} Thus, this function
subtracts the constant term and divides by the series variable.
This function is used when Laurent series are represented by a
Taylor series and an order.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quote}}\opLeftPren{}{\it outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf quote}\opLeftPren{}o\opRightPren{}}, 
where \smath{o} is an object of type
\spadtype{OutputForm} (normally unexposed),
creates an output form \smath{o} with a prefix quote.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quotedOperators}}\opLeftPren{}
{\it rewriteRule}\opRightPren{}%
}%
}%
{1}{(\$)->List(Symbol)}{RewriteRule}
{\smath{\mbox{\bf quotedOperators}\opLeftPren{}r\opRightPren{}}, 
where \smath{r} is a rewrite rule,
returns the list of operators on the right-hand side of \smath{r}
that are considered quoted, that is, they are not evaluated during
any rewrite, but applied formally to their arguments.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{quotient}}\opLeftPren{}{\it ideal}, 
\allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, DPoly)->\$}{PolynomialIdeals}
{\smath{\mbox{\bf quotient}\opLeftPren{}I, 
\allowbreak{} f\opRightPren{}} computes the quotient of the ideal
\smath{I} by the principal ideal generated by the polynomial
\smath{f}, \smath{(I:(f))}.
\newitem\smath{\mbox{\bf quotient}\opLeftPren{}I, 
\allowbreak{} J\opRightPren{}} computes the quotient of the ideals
\smath{I} and \smath{J}, \smath{(I:J)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radical}}\opLeftPren{}{\it ideal}\opRightPren{}%
}%
}%
{1}{(PolynomialIdeals(Fraction(Integer), 
DirectProduct(nv, NonNegativeInteger), vl, 
DistributedMultivariatePolynomial(vl, Fraction(Integer))))->
PolynomialIdeals(Fraction(Integer), DirectProduct(nv, NonNegativeInteger), 
vl, DistributedMultivariatePolynomial(vl, Fraction(Integer)))}
{IdealDecompositionPackage}
{\smath{\mbox{\bf radical}\opLeftPren{}I\opRightPren{}} 
returns the radical of the ideal \smath{I}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalEigenvalues}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Expression(Fraction(Integer)))}{RadicalEigenPackage}
{\smath{\mbox{\bf radicalEigenvalues}\opLeftPren{}m\opRightPren{}} 
computes the eigenvalues of the
matrix \smath{m}; when possible, the eigenvalues are expressed in
terms of radicals.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalEigenvectors}}\opLeftPren{}
{\it matrix}\opRightPren{}%
}%
}%
{1}{(Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Record(radval:Expression(Fraction(Integer)), radmult:Integer, 
radvect:List(Matrix(Expression(Fraction(Integer))))))}{RadicalEigenPackage}
{\smath{\mbox{\bf radicalEigenvectors}\opLeftPren{}m\opRightPren{}} 
computes the eigenvalues and the
corresponding eigenvectors of the matrix \smath{m}; when possible,
values are expressed in terms of radicals.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalEigenvector}}\opLeftPren{}
{\it eigenvalue}, \allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{2}{(Expression(Fraction(Integer)), 
Matrix(Fraction(Polynomial(Fraction(Integer)))))->
List(Matrix(Expression(Fraction(Integer))))}{RadicalEigenPackage}
{\smath{\mbox{\bf radicalEigenvector}\opLeftPren{}c, 
\allowbreak{} m\opRightPren{}} computes the
eigenvector(\smath{s}) of the matrix \smath{m} corresponding to
the eigenvalue \smath{c}; when possible, values are expressed in
terms of radicals.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalOfLeftTraceForm}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(A)}{AlgebraPackage}
{\smath{\mbox{\bf radicalOfLeftTraceForm}\opLeftPren{}\opRightPren{}\$F} 
returns the basis for the
null space
of \smath{\mbox{\bf leftTraceMatrix}\opLeftPren{}\opRightPren{}\$F},
where \smath{F} is a domain of category 
\spadtype{FramedNonAssociativeAlgebra}.
If the algebra is associative, alternative
or a Jordan algebra,
then this space equals the radical (maximal nil ideal) of the algebra.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalRoots}}\opLeftPren{}
{\it fractions}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(R)), Symbol)->
List(Expression(R))}{RadicalSolvePackage}
{\smath{\mbox{\bf radicalRoots}\opLeftPren{}rf, 
\allowbreak{} v\opRightPren{}} finds the roots expressed in terms of
radicals of the rational function \smath{rf} with respect to the
symbol \smath{v}.
\newitem
\smath{\mbox{\bf radicalRoots}\opLeftPren{}lrf, 
\allowbreak{} lv\opRightPren{}} finds the roots expressed in terms of
radicals of the list of rational functions \smath{lrf} with
respect to the list of symbols \smath{lv}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radicalSolve}}\opLeftPren{}
{\it eq}, \allowbreak{}{\it  x}\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{See \smath{\mbox{\bf solve}\opLeftPren{}u, \allowbreak{} v\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{radix}}\opLeftPren{}{\it rationalNumber}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(Fraction(Integer), Integer)->Any}{RadixUtilities}
{\smath{\mbox{\bf radix}\opLeftPren{}rn, \allowbreak{} b\opRightPren{}} 
converts rational number \smath{rn} to a
radix expansion in base \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ramified?}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
 \opand \mbox{\axiomFun{ramifiedAtInfinity?}}\opLeftPren{}\opRightPren{}%
}%
}%
{1}{(UP)->Boolean}{FunctionFieldCategory}
{\opkey{Domain \smath{F} is a domain of functions on a fixed
curve.}
\newitem\smath{\mbox{\bf ramified?}\opLeftPren{}p\opRightPren{}\$F} 
tests whether \smath{p(x) = 0} is ramified.
\newitem\smath{\mbox{\bf ramifiedAtInfinity?}\opLeftPren{}\opRightPren{}} 
tests if infinity is
ramified.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{random}}\opLeftPren{}{\it \opt{u, v}}\opRightPren{}%
}%
}%
{0}{()->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf random}\opLeftPren{}\opRightPren{}\$R} creates a 
random element from
domain \smath{D}.
\newitem
\smath{\mbox{\bf random}\opLeftPren{}gp\optinner{, i}\opRightPren{}} 
returns a random product
of maximal \smath{i} generators of the permutation group {\it gp}.
The value of \smath{i} is 20 by default.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{range}}\opLeftPren{}
{\it listOfSegments}\opRightPren{}%
}%
}%
{1}{(List(Segment(Float)))->\$}{DrawOption}
{\smath{\mbox{\bf range}\opLeftPren{}ls\opRightPren{}},
where \smath{ls} is a list of segments of the form
\smath{[a_1..b_1, \ldots, a_n..b_n]}, provides a user-specified range
for clipping
for the \spadfun{draw} command.
This command may also be
expressed locally to the
\spadfun{draw} command as the option \smath{range == ls}.
The values \smath{a_i} and \smath{b_i} are either given
as floats or rational numbers.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ranges}}\opLeftPren{}
{\it listOfSegments}\opRightPren{}%
}%
}%
{1}{(List(Segment(Float)))->\$}{DrawOption}
{\smath{\mbox{\bf ranges}\opLeftPren{}l\opRightPren{}} provides a 
list of user-specified ranges
for the \spadfun{draw} command.
This command may also be expressed as an option to the \spadfun{draw}
command in the form \smath{{\bf ranges} == l}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rank}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(M)->NonNegativeInteger}{MatrixLinearAlgebraFunctions}
{\smath{\mbox{\bf rank}\opLeftPren{}m\opRightPren{}} returns the 
rank of the matrix \smath{m}. Also:
\newitem
\smath{\mbox{\bf rank}\opLeftPren{}A, \allowbreak{} B\opRightPren{}} 
computes the rank of the complete matrix
\smath{(A|B)} of the linear system \smath{AX = B}.
\newitem
\smath{\mbox{\bf rank}\opLeftPren{}t\opRightPren{}},
where \smath{t} is a
Cartesion tensor,
returns the tensorial rank of \smath{t} (that is, the number of
indices).
\seeAlso{ \spadtype{FiniteRankAlgebra} and
\spadtype{FiniteRankNonAssociativeAlgebra}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rarrow}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf rarrow}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type
\spadtype{OutputForm} (normally unexposed),
creates a form for the mapping \smath{o_1  \rightarrow o_2}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ratDenom}}\opLeftPren{}
{\it expression\opt{, option}}\opRightPren{}%
}%
}%
{2}{(F, F)->F}{AlgebraicManipulations}
{\smath{\mbox{\bf ratDenom}\opLeftPren{}f\optinner{, u}\opRightPren{}}
rationalizes the denominators appearing in \smath{f}.
If no second argument is given, then all algebraic quantities
are moved into the numerators.
If the second argument is given as an algebraic kernel
\smath{a}, then \smath{a} is removed from the denominators.
Similarly, if \smath{u} is a list of algebraic kernels
\smath{[a_1, \ldots, a_n]}, the operation removes the
\smath{a_i}'s from the denominators in \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rational?}}\opLeftPren{}{\it element}\opRightPren{}%
\optand \mbox{\axiomFun{rationalIfCan}}\opLeftPren{}
{\it element}\opRightPren{}%
 \opand \mbox{\axiomFun{rational}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ComplexCategory}
{\smath{\mbox{\bf rational?}\opLeftPren{}x\opRightPren{}} 
tests if \smath{x} is a rational number,
that is, that it can be converted to type \spadtype{Fraction(Integer)}.
Specifically, if \smath{x} is complex, a quaternion, or an
octonion, it tests that all imaginary parts are 0.
\newitem
\smath{\mbox{\bf rationalIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{x} as a rational number
if possible, and \mbox{\tt "failed"} if it is not.
\newitem
\smath{\mbox{\bf rational}\opLeftPren{}x\opRightPren{}} 
returns \smath{x} as a rational number if
possible, and calls \spadfun{error} if it is not.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rationalApproximation}}\opLeftPren{}
{\it float}, \allowbreak{}
{\it  nonNegativeInteger}\allowbreak $\,[$ , \allowbreak{}
{\it  positiveInteger}$]$\opRightPren{}%
}%
}%
{3}{(\$, NonNegativeInteger, NonNegativeInteger)->Fraction(Integer)}{Float}
{\smath{\mbox{\bf rationalApproximation}\opLeftPren{}f, 
\allowbreak{} n\optinner{, b}\opRightPren{}} computes a
rational approximation \smath{r} to \smath{f} with relative error
\smath{< b^{-n}}, that is \smath{|(r-f)/f| < b^{-n}}, for some
positive integer base \smath{b}.
By default, \smath{b = 10}.
The first argument \smath{f} is either a float or small float.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rationalFunction}}\opLeftPren{}
{\it series}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Integer)->Fraction(Polynomial(Coef))}
{UnivariateLaurentSeriesCategory}
{\smath{\mbox{\bf rationalFunction}\opLeftPren{}f, 
\allowbreak{} m, \allowbreak{} n\opRightPren{}} returns a rational function
consisting of the sum of all terms of \smath{f} of
degree \smath{d} with \smath{m \leq d \leq n}.
By default, \smath{n} is the maximum degree of \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rationalPoint?}}\opLeftPren{}
{\it value}, \allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{2}{(F, F)->Boolean}{FunctionFieldCategory}
{\smath{\mbox{\bf rationalPoint?}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}\$F} tests if
\smath{(x=a, y=b)} is on the curve
defining function field \smath{F}.
See \spadtype{FunctionFieldCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rationalPoints}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(List(F))}{FunctionFieldCategory}
{\smath{\mbox{\bf rationalPoints}\opLeftPren{})\$} returns the list of all the
affine rational points on the curve
defining function field \smath{F}.
See \spadtype{FunctionFieldCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rationalPower}}\opLeftPren{}
{\it puiseuxSeries}\opRightPren{}%
}%
}%
{1}{(\$)->Fraction(Integer)}{UnivariatePuiseuxSeriesConstructorCategory}
{\smath{\mbox{\bf rationalPower}\opLeftPren{}f(x)\opRightPren{}} 
returns \smath{r} where the Puiseux series \smath{f(x) = g(x^r)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ratPoly}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->SparseUnivariatePolynomial(F)}{AlgebraicManipulations}
{\smath{\mbox{\bf ratPoly}\opLeftPren{}f\opRightPren{}} 
returns a polynomial \smath{p} such that \smath{p} has no algebraic 
coefficients, and \smath{p(f) = 0}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rdexquo}}\opLeftPren{}{\it lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Union(\$, "failed")}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf rdexquo}\opLeftPren{}a, \allowbreak{} b\opRightPren{}},
where \smath{a} and \smath{b} are linear ordinary differential operators,
returns \smath{q} such that
\smath{a = bq}, or \mbox{\tt "failed"} if no such \smath{q} exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightDivide}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
\optand \mbox{\axiomFun{rightQuotient}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
\opand \mbox{\axiomFun{rightRemainder}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(quotient:\$, remainder:\$)}
{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf rightDivide}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns the pair \smath{q, r} such that
\smath{a = qb + r} and the degree of
\smath{r} is less than the degree of \smath{b}.
The pair is returned as a record with
fields \smath{quotient} and \smath{remainder}.
This process is called ``right division''. Also:
\smath{\mbox{\bf rightQuotient}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns only \smath{q}.
\smath{\mbox{\bf rightRemainder}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} returns only \smath{r}.

}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{read!}}\opLeftPren{}{\it file}\opRightPren{}%
\opand \mbox{\axiomFun{readIfCan!}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->S}{FileCategory}
{\smath{\mbox{\bf read!}\opLeftPren{}f\opRightPren{}} extracts a 
value from file \smath{f}. The state of \smath{f} is modified so a subsequent 
call to \spadfun{read!} will return the next element.
\newitem
\smath{\mbox{\bf readIfCan!}\opLeftPren{}f\opRightPren{}} returns 
a value from the file \smath{f}
or \mbox{\tt "failed"} if this is not possible (that is,
either \smath{f} is not open for reading, or \smath{f} is at the
end of the file).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{readable?}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FileNameCategory}
{\smath{\mbox{\bf readable?}\opLeftPren{}f\opRightPren{}} tests 
if the named file exists and can be opened for reading.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{readLine!}}\opLeftPren{}{\it file}\opRightPren{}%
 \opand \mbox{\axiomFun{readLineIfCan!}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->String}{TextFile}
{\smath{\mbox{\bf readLineIfCan!}\opLeftPren{}f\opRightPren{}} 
returns a string of the contents
of a line from file \smath{f}, or \mbox{\tt "failed"} if this is not
possible (if
\smath{f} is not readable or is positioned at the end of file).
\newitem
\smath{\mbox{\bf readLine!}\opLeftPren{}f\opRightPren{}} 
returns a string of the contents of a line from the file \smath{f}, and calls 
\spadfun{error} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{real}}\opLeftPren{}{\it x}\opRightPren{}%
 \opand \mbox{\axiomFun{real?}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->R}{ComplexCategory}
{\smath{\mbox{\bf real}\opLeftPren{}x\opRightPren{}} returns 
real part of \smath{x}.
Argument \smath{x} can be an expression or a complex value,
quaternion, or octonion.
\newitem
\smath{\mbox{\bf real?}\opLeftPren{}f\opRightPren{}} tests 
if expression \smath{f = real(f)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{realEigenvectors}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  float}\opRightPren{}%
}%
}%
{2}{(Matrix(Fraction(Integer)), Par)->
List(Record(outval:Par, outmult:Integer, outvect:List(Matrix(Par))))}
{NumericRealEigenPackage}
{\smath{\mbox{\bf realEigenvectors}\opLeftPren{}m, 
\allowbreak{} eps\opRightPren{}} returns a list of records, each
containing a real eigenvalue, its algebraic multiplicity, and
a list of associated eigenvectors.
All these results are computed to precision \smath{eps} as floats
or rational numbers depending on the type of \smath{eps}.
Argument \smath{m} is a matrix of rational functions.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{realElementary}}\opLeftPren{}
{\it expression\opt{, symbol}}\opRightPren{}%
}%
}%
{2}{(F, Symbol)->F}{ElementaryFunctionStructurePackage}
{\smath{\mbox{\bf realElementary}\opLeftPren{}f, 
\allowbreak{} sy\opRightPren{}} rewrites the kernels of \smath{f}
involving \smath{sy} in terms of the 4 fundamental 
real transcendental elementary functions: \smath{log, exp, tan, atan}. 
If \smath{sy}
is omitted, all kernels of \smath{f} are rewritten.

}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{realRoots}}\opLeftPren{}
{\it rationalfunctions}, \allowbreak{}{\it  v}\allowbreak $\,[$ , \allowbreak{}
{\it  w}$]$\opRightPren{}%
}%
}%
{3}{(List(Fraction(Polynomial(Fraction(Integer)))), List(Symbol), Par)->
List(List(Par))}{FloatingRealPackage}
{\smath{\mbox{\bf realRoots}\opLeftPren{}rf, 
\allowbreak{} eps\opRightPren{}} finds the real zeros of a 
univariate rational function
\smath{rf} with precision given by eps.
\newitem
\smath{\mbox{\bf realRoots}\opLeftPren{}lp, \allowbreak{} lv, 
\allowbreak{} eps\opRightPren{}} computes the list of the real solutions 
of the list \smath{lp} of rational functions with rational 
coefficients with respect to the 
variables in \smath{lv}, with precision \smath{eps}. 
Each solution is expressed 
as a list of numbers in order corresponding to the variables in \smath{lv}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{realZeros}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  rationalNumber}\allowbreak $\,[$ , 
\allowbreak{}{\it  option}$]$\opRightPren{}%
}%
}%
{2}{(Pol, Fraction(Integer))->List(Record(left:Fraction(Integer), 
right:Fraction(Integer)))}{RealZeroPackageQ}
{\smath{\mbox{\bf realZeros}\opLeftPren{}pol\opRightPren{}} 
returns a list of isolating intervals for all the real zeros of the univariate 
polynomial \smath{pol}.
\newitem
\smath{\mbox{\bf realZeros}\opLeftPren{}pol\optinner{, eps}\opRightPren{}} 
returns a list of intervals
of length less than the rational number \smath{eps}
for all the real roots of the polynomial \smath{pol}.
The default value of \smath{eps} is ???.
\newitem
\smath{\mbox{\bf realZeros}\opLeftPren{}pol, 
\allowbreak{} int\optinner{, eps}\opRightPren{}} returns a list of intervals of
length less than the rational number \smath{eps} for all the
real roots of the polynomial \smath{pol}
which lie in the interval expressed by the record \smath{int}.
The default value of \smath{eps} is ???.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{recip}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{Monoid}
{\smath{\mbox{\bf recip}\opLeftPren{}x\opRightPren{}} 
returns the multiplicative inverse for \smath{x},
or \mbox{\tt "failed"} if no inverse can be found.
\seeAlso{\spadtype{FiniteRankNonAssociativeAlgebra} and
\spadtype{MonadWithUnit}}
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{recur}}\opLeftPren{}{\it function}\opRightPren{}%
}%
}%
{ ((NNI, A)->A) -> ((NNI, A)->A)}{}{}
{\smath{\mbox{\bf recur}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function of type \spadsig{(NonNegativeInteger, R)}{R}
for some domain \smath{R},
returns  the function \smath{g} such that
\smath{g(n, x)= f(n, f(n-1, \ldots f(1, x)\ldots))}.
For related functions, see \spadtype{MappingPackage}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{red}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Color}
{\smath{\mbox{\bf red}\opLeftPren{}\opRightPren{}} returns 
the position of the red hue from total hues.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reduce}}\opLeftPren{}{\it op}, 
\allowbreak{}{\it  aggregate}\allowbreak $\,[$ , \allowbreak{}{\it  identity}, 
\allowbreak{}{\it  element}$]$\opRightPren{}%
}%
}%
{2}{((S, S)->S, \$)->S}{Collection}
{\smath{\mbox{\bf reduce}\opLeftPren{}f, 
\allowbreak{} u\optinner{, ident, a}\opRightPren{}} reduces the binary
operation \smath{f} across \smath{u}.
For example, if \smath{u} is \smath{[x_1, x_2, \ldots, x_n]} then
\smath{\mbox{\bf reduce}\opLeftPren{}f, \allowbreak{} u\opRightPren{}} 
returns \smath{f(\ldots f(x_1, x_2), \ldots, x_n)}.
\medbreak
An optional identity element of \smath{f}
provided as a third argument affects the result
if \smath{u} has less than two elements.
If \smath{u} is empty, the third argument is
returned if given, and a call to \spadfun{error} occurs
otherwise.
If \smath{u} has one element and the third argument is
given, the value returned is \smath{f(ident, x_1)}.
Otherwise \smath{x_1} is returned.
Thus both \smath{\mbox{\bf reduce}\opLeftPren{}+, 
\allowbreak{} u\opRightPren{}} and \smath{\mbox{\bf reduce}\opLeftPren{}+, 
\allowbreak{} u, \allowbreak{} 0\opRightPren{}}
return \smath{\sum\nolimits_{i=1}^n{x_i}}.
Similarly, \smath{\mbox{\bf reduce}\opLeftPren{}*, 
\allowbreak{} u\opRightPren{}} and 
\smath{\mbox{\bf reduce}\opLeftPren{}*, \allowbreak{} u, 
\allowbreak{} 1\opRightPren{}}
return \smath{\prod\nolimits_{i=1}^n{x_i}}.
\medbreak
An optional fourth argument \smath{z} acts as an
``absorbing element''.
\smath{\mbox{\bf reduce}\opLeftPren{}f, \allowbreak{} u, \allowbreak{} x, 
\allowbreak{} z\opRightPren{}} reduces the binary operation \smath{f} across 
\smath{u},
stopping when an ``absorbing element'' \smath{z} is encountered.
For example \smath{\mbox{\bf reduce}\opLeftPren{}or, \allowbreak{} u, 
\allowbreak{} false, \allowbreak{} true\opRightPren{}} will
stop iterating across \smath{u} returning
\smath{true} as soon as an \smath{x_i = true} is found.
Note: if \smath{u} has one element \smath{x},
\smath{\mbox{\bf reduce}\opLeftPren{}f, \allowbreak{} u\opRightPren{}} 
returns \smath{x}, or calls \spadfun{error} if \smath{u} is empty.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reduceBasisAtInfinity}}\opLeftPren{}
{\it basis}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Vector(\$)}{FunctionFieldCategory}
{\smath{\mbox{\bf reduceBasisAtInfinity}\opLeftPren{}b_1, 
\allowbreak{} \ldots, b_n\opRightPren{}},
where the \smath{b_i} are functions on a fixed curve,
returns \smath{(x^i \, b_j)} for all
\smath{i}, \smath{j} such that \smath{x^i \, b_j} is locally
integral at infinity.
\seeType{FunctionFieldCategory}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reducedContinuedFraction}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  stream}\opRightPren{}%
}%
}%
{2}{(R, Stream(R))->\$}{ContinuedFraction}
{\smath{\mbox{\bf reducedContinuedFraction}\opLeftPren{}b_0, 
\allowbreak{} b\opRightPren{}} returns a
continued fraction constructed as follows.
If \smath{b = [b_1, b_2, \ldots]} then the result
is the continued fraction \smath{b_0 + 1/(b_1 + 1/(b_2 + \cdots))}.
That is, the result is the same as
\smath{\mbox{\bf continuedFraction}\opLeftPren{}b_0, \allowbreak{} 
[1, \allowbreak{} 1, \allowbreak{} 1, \allowbreak{} \ldots], 
[b_1, b_2, b_3, \ldots]\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reducedForm}}\opLeftPren{}
{\it continuedFraction}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{ContinuedFraction}
{\smath{\mbox{\bf reducedForm}\opLeftPren{}x\opRightPren{}} 
puts the continued fraction \smath{x}
in reduced form, that is, the function returns an
equivalent continued fraction of the
form \smath{\mbox{\bf continuedFraction}\opLeftPren{}b_0, 
\allowbreak{} [1, \allowbreak{} 1, \allowbreak{} 1, \allowbreak{} \ldots], 
[b_1, b_2, b_3, \ldots]\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reducedSystem}}\opLeftPren{}
{\it matrix\opt{, vector}}\opRightPren{}%
}%
}%
{1}{(Matrix(\$))->Matrix(R)}{LinearlyExplicitRingOver}
{\smath{\mbox{\bf reducedSystem}\opLeftPren{}A, 
\allowbreak{} v\opRightPren{}} returns a matrix \smath{B} 
such that \smath{A x = v} 
and \smath{B x = v} have the same solutions.
By default, \smath{v = 0}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reductum}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{AbelianMonoidRing}
{\smath{\mbox{\bf reductum}\opLeftPren{}p\opRightPren{}} 
returns polynomial \smath{p} minus its leading
monomial, or zero if handed the zero element.
\seeAlso{\spadtype{IndexedDirectProdcutCategory} and 
\spadtype{MonogenicLinearOperator}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{refine}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  interval}, \allowbreak{}{\it  precision}\opRightPren{}%
}%
}%
{3}{(Pol, Record(left:Fraction(Integer), right:Fraction(Integer)), 
Fraction(Integer))->Record(left:Fraction(Integer), right:Fraction(Integer))}
{RealZeroPackageQ}
{\smath{\mbox{\bf refine}\opLeftPren{}pol, \allowbreak{} int, 
\allowbreak{} tolerance\opRightPren{}} refines the interval 
\smath{int} containing 
exactly one root of the univariate polynomial \smath{pol} to size less than
the indicated \smath{tolerance}.
Argument \smath{int} is an interval denoted by a record with
selectors \smath{left} and \smath{right}, each with rational number values.
The tolerance is either a rational number or another interval.
In the latter case, \mbox{\tt "failed"} is returned if no such
isolating interval exists.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{regularRepresentation}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  basis}\opRightPren{}%
}%
}%
{2}{(\$, Vector(\$))->Matrix(R)}{FiniteRankAlgebra}
{\smath{\mbox{\bf regularRepresentation}\opLeftPren{}a, 
\allowbreak{} basis\opRightPren{}} returns the matrix of the linear map 
defined by left multiplication by \smath{a} with respect 
to basis \smath{basis}.
Element \smath{a} is a complex element or
an element of a domain \smath{R} of category
\spadtype{FramedAlgebra}.
The second argument may be omitted when a fixed basis is defined for \smath{R}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reindex}}\opLeftPren{}
{\it cartesianTensor}, \allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(\$, List(Integer))->\$}{CartesianTensor}
{\smath{\mbox{\bf reindex}\opLeftPren{}t, \allowbreak{} 
[i_1, \allowbreak{} \ldots, i_{\rm dim}]\opRightPren{}} 
permutes the indices of
cartesian tensor \smath{t}.
For example, if \smath{r = {\bf reindex}(t, [4, 1, 2, 3])} for a rank 4
tensor \smath{t}, then \smath{r} is the rank 4 tensor
given by \smath{r(i, j, k, l) = t(l, i, j, k)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{relationsIdeal}}\opLeftPren{}
{\it listOfPolynomials}\opRightPren{}%
}%
}%
{1}{(List(DPoly))->SuchThat(List(Polynomial(F)), 
List(Equation(Polynomial(F))))}{PolynomialIdeals}
{\smath{\mbox{\bf relationsIdeal}\opLeftPren{}polyList\opRightPren{}} 
returns the ideal of relations among the polynomials in \smath{polyList}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{relerror}}\opLeftPren{}{\it float}, \allowbreak{}
{\it  float}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Integer}{Float}
{\smath{\mbox{\bf relerror}\opLeftPren{}x, \allowbreak{} y\opRightPren{}},
where \smath{x} and \smath{y} are floats,
computes the absolute value of \smath{x - y} divided by \smath{y},
when \smath{y \not= 0}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rem}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{NonNegativeInteger}
{\smath{a \rem b} returns the remainder of \smath{a} and \smath{b}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{remove}}\opLeftPren{}{\it predicate}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->\$}{ExtensibleLinearAggregate}
{\opkey{Argument \smath{u} is any extensible aggregate such as a list.}
\newitem
\smath{\mbox{\bf remove}\opLeftPren{}pred, \allowbreak{} u\opRightPren{}} 
returns a copy of \smath{u} removing all elements \smath{x} such that 
\smath{p(x)} is \smath{true}.
Argument \smath{u} may be any homogeneous aggregate including
infinite streams.
Note: for lists and streams, \code{remove(p, u) == [x for x in u | not p(x)]}.
\newitem
\smath{\mbox{\bf remove!}\opLeftPren{}pred, \allowbreak{} u\opRightPren{}} 
destructively removes all elements \smath{x} of \smath{u} such that 
\smath{\mbox{\bf pred}\opLeftPren{}x\opRightPren{}} is \smath{true}.
The value of \smath{u} after all such elements are removed is returned.
\newitem
\smath{\mbox{\bf remove!}\opLeftPren{}x, \allowbreak{} u\opRightPren{}} 
destructively removes all values \smath{x} from \smath{u}.
\newitem
\smath{\mbox{\bf remove!}\opLeftPren{}k, \allowbreak{} t\opRightPren{}},
where \smath{t} is a keyed dictionary,
searches the table \smath{t} for the key \smath{k},
removing and returning the entry if there.
If \smath{t} has no such key, it returns \mbox{\tt "failed"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{removeCoshSq}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf removeCoshSq}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\cosh(u)^2}
appearing in \smath{f} into \smath{1 - \sinh(x)^2}, and also 
reduces higher powers of \smath{\mbox{\bf cosh}\opLeftPren{}u\opRightPren{}} 
with that formula.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{removeDuplicates}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
 \opand \mbox{\axiomFun{removeDuplicates!}}\opLeftPren{}
{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{Collection}
{\smath{\mbox{\bf removeDuplicates}\opLeftPren{}u\opRightPren{}} 
returns a copy of \smath{u} with all duplicates removed.
\newitem
\smath{\mbox{\bf removeDuplicates!}\opLeftPren{}u\opRightPren{}} 
destructively removes duplicates from \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{removeSinhSq}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf removeSinhSq}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\sinh(u)^2}
appearing in \smath{f} into \smath{1 - \cosh(x)^2}, and also 
reduces higher powers of \smath{\mbox{\bf sinh}\opLeftPren{}u\opRightPren{}} 
with that formula.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{removeSinSq}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf removeSinSq}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\sin(u)^2}
appearing in \smath{f} into \smath{1 - \cos(x)^2}, and also 
reduces higher powers of \smath{\mbox{\bf sin}\opLeftPren{}u\opRightPren{}} 
with that formula.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{removeZeroes}}\opLeftPren{}
{\it \optinit{integer, }laurentSeries}\opRightPren{}%
}%
}%
{2}{(Integer, \$)->\$}{UnivariateLaurentSeriesConstructorCategory}
{\smath{\mbox{\bf removeZeroes}\opLeftPren{}\optfirst{n, }f(x)\opRightPren{}}
removes up to \smath{n} leading zeroes from the Laurent series \smath{f(x)}.
If no integer \smath{n} is given, all leading zeroes are removed.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reopen!}}\opLeftPren{}
{\it file}, \allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{2}{(\$, String)->\$}{FileCategory}
{\smath{\mbox{\bf reopen!}\opLeftPren{}f, \allowbreak{} mode\opRightPren{}} 
returns a file \smath{f}
reopened for operation in the indicated mode: \mbox{\tt "input"} or 
\mbox{\tt "output"}.
For example,
\smath{\mbox{\bf reopen!}\opLeftPren{}f, \allowbreak{} 
\mbox{\tt "input"}\opRightPren{}} will reopen the file \smath{f} for input.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{repeating}}\opLeftPren{}
{\it listOfElements\opt{, stream}}\opRightPren{}%
 \opand \mbox{\axiomFun{repeating?}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(List(S))->\$}{Stream}
{\smath{\mbox{\bf repeating}\opLeftPren{}l\opRightPren{}} 
is a repeating stream whose period is the list \smath{l}.
\newitem
\smath{\mbox{\bf repeating?}\opLeftPren{}l, 
\allowbreak{} s\opRightPren{}} tests if a stream \smath{s} is periodic
with period \smath{l}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{replace}}\opLeftPren{}{\it string}, 
\allowbreak{}{\it  segment}, \allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{3}{(\$, UniversalSegment(Integer), \$)->\$}{StringAggregate}
{\smath{\mbox{\bf replace}\opLeftPren{}s, \allowbreak{} i..j, 
\allowbreak{} t\opRightPren{}} replaces the substring \smath{s(i..j)}
of \smath{s} by string \smath{t}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{represents}}\opLeftPren{}
{\it listOfElements\opt{, listOfBasisElements}}\opRightPren{}%
}%
}%
{2}{(Vector(R), Vector(\$))->\$}{FiniteRankAlgebra}
{\smath{\mbox{\bf represents}\opLeftPren{}[a^1, \allowbreak{} .., 
\allowbreak{} a^n]\optinner{, [v^1, .., v^n]}\opRightPren{}}
returns \smath{a^1 v^1 + \cdots + a^n v^n}.
Arguments \smath{v_i} are elements of a domain of
category \spadtype{FiniteRankAlgebra} or
\spadtype{FiniteRankNonAssociativeAlgebra} built over a ring \smath{R}.
The \smath{a_i} are elements of \smath{R}.
In a framed algebra or finite algebra extension field domain
with a fixed basis, \smath{[v_1, \ldots, v_n]} defaults
to the elements of the fixed basis.
See \spadtype{FramedAlgebra}, \spadtype{FramedNonAssociateAlgebra},
and \spadtype{FiniteAlgebraicExtensionField}.
\newitem
\seeAlso{ \spadtype{FunctionFieldCategory}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{resetNew}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Void}{Symbol}
{\smath{\mbox{\bf resetNew}\opLeftPren{}\opRightPren{}} resets the 
internal counter that \smath{\mbox{\bf new}\opLeftPren{}\opRightPren{}} uses.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{resetVariableOrder}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Void}{UserDefinedVariableOrdering}
{\smath{\mbox{\bf resetVariableOrder}\opLeftPren{}\opRightPren{}} 
cancels any previous use of \spadfun{setVariableOrder}
and returns to the default system ordering.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rest}}\opLeftPren{}
{\it aggregate\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf rest}\opLeftPren{}u\opRightPren{}} returns an aggregate 
consisting of all but the first element of \smath{u} (equivalently, the 
next node of \smath{u}).
\newitem
\smath{\mbox{\bf rest}\opLeftPren{}u, \allowbreak{} n\opRightPren{}} 
returns the \eth{\smath{n}} node of \smath{u}.
Note: \smath{\mbox{\bf rest}\opLeftPren{}u, 0) = u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{resultant}}\opLeftPren{}
{\it polynomial}, \allowbreak{}
{\it  polynoial}\allowbreak $\,[$ , \allowbreak{}
{\it  variable}$]$\opRightPren{}%
}%
}%
{3}{(\$, \$, VarSet)->\$}{PolynomialCategory}
{\smath{\mbox{\bf resultant}\opLeftPren{}p, \allowbreak{} q, 
\allowbreak{} v\opRightPren{}} returns the resultant of the polynomials 
\smath{p} and \smath{q} with respect to the variable \smath{v}.
If \smath{p} and \smath{q} are univariate polynomials, the
variable \smath{v} defaults to the unique variable.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{retract}}\opLeftPren{}{\it element}\opRightPren{}%
 \opand \mbox{\axiomFun{retractIfCan}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(S, "failed")}{RetractableTo}
{\smath{\mbox{\bf retractIfCan}\opLeftPren{}a\opRightPren{}}\smath{@S} 
returns \smath{a} as an object
of type \smath{S}, or \mbox{\tt "failed"} if this is not possible.
\newitem
\smath{\mbox{\bf retract}\opLeftPren{}a\opRightPren{}}\smath{@S} 
transforms \smath{a} into an element of \smath{S},
or calls \spadfun{error} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{retractable?}}\opLeftPren{}
{\it typeAnyObject}\opRightPren{}%
}%
}%
{1}{(Any)->Boolean}{AnyFunctions1}
{\smath{\mbox{\bf retractable?}\opLeftPren{}a\opRightPren{}\$S} 
tests if object \smath{a}
of type \spadtype{Any} can be converted into an object of type \smath{S}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{reverse}}\opLeftPren{}
{\it linearAggregate}\opRightPren{}%
 \opand \mbox{\axiomFun{reverse!}}\opLeftPren{}
{\it linearAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{FiniteLinearAggregate}
{\smath{\mbox{\bf reverse}\opLeftPren{}a\opRightPren{}} returns a 
copy of linear aggregate \smath{a} with elements in reverse order.
\newitem
\smath{\mbox{\bf reverse!}\opLeftPren{}a\opRightPren{}} destructively 
puts the elements of
linear aggregate \smath{a} in reverse order.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightGcd}}\opLeftPren{}{\it lodOperator}, 
\allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf rightGcd}\opLeftPren{}a, \allowbreak{} b\opRightPren{}},
where \smath{a} and \smath{b} are linear ordinary differential operators,
computes the value \smath{g} of highest degree such that
\smath{a = g*aa} and \smath{b = g*bb} for some values \smath{aa}
and \smath{bb}. The value \smath{g} is computed using right-division.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rhs}}\opLeftPren{}
{\it rewriteRuleOrEquation}\opRightPren{}%
}%
}%
{1}{(\$)->F}{RewriteRule}
{\smath{\mbox{\bf rhs}\opLeftPren{}u\opRightPren{}} 
returns the right-hand side of the rewrite rule
or equation \smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{right}}\opLeftPren{}
{\it binaryRecursiveAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{BinaryRecursiveAggregate}
{\smath{\mbox{\bf right}\opLeftPren{}a\opRightPren{}} returns the right child.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightAlternative?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftAlternative?}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightCharacteristicPolynomial}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(R)}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftCharacteristicPolynomial}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightDiscriminant}}\opLeftPren{}
{\it basis}\opRightPren{}%
}%
}%
{0}{()->R}{FramedNonAssociativeAlgebra}
{See \spadfun{leftDiscriminant}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightMinimalPolynomial}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(R)}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftMinimalPolynomial}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightNorm}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->R}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftNorm}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightPower}}\opLeftPren{}
{\it monad}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->\$}{MonadWithUnit}
{See \spadfun{rightPower}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightRankPolynomial}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->SparseUnivariatePolynomial(Polynomial(R))}
{FramedNonAssociativeAlgebra}
{See \spadfun{leftRankPolynomial}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightRank}}\opLeftPren{}{\it basis}\opRightPren{}%
}%
}%
{1}{(A)->NonNegativeInteger}{AlgebraPackage}
{See \spadfun{leftRank}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightRecip}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Union(\$, "failed")}{MonadWithUnit}
{See \spadfun{leftRecip}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightRegularRepresentation}}\opLeftPren{}
{\it element\opt{, basis}}\opRightPren{}%
}%
}%
{1}{(\$)->Matrix(R)}{FramedNonAssociativeAlgebra}
{See \spadfun{leftRegularRepresentation}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightTraceMatrix}}\opLeftPren{}
{\it \opt{basis}}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Matrix(R)}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftTraceMatrix}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightTrim}}\opLeftPren{}{\it string}, 
\allowbreak{}{\it  various}\opRightPren{}%
}%
}%
{2}{(\$, Character)->\$}{StringAggregate}
{See \spadfun{leftTrim}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightUnits}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Union(\$, "failed")}{FiniteRankNonAssociativeAlgebra}
{See \spadfun{leftUnits}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rischNormalize}}\opLeftPren{}{\it expression}, 
\allowbreak{}{\it  x}\opRightPren{}%
}%
}%
{2}{(F, Symbol)->Record(func:F, kers:List(Kernel(F)), vals:List(F))}
{ElementaryFunctionStructurePackage}
{\smath{\mbox{\bf rischNormalize}\opLeftPren{}f, 
\allowbreak{} x\opRightPren{}} returns \smath{[g, [k_1, \ldots,
k_n], [h_1, \ldots, h_n]]} such that \smath{g = {\bf normalize}(f,
x)} and each \smath{k_i} was rewritten as \smath{h_i} during the
normalization.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rightLcm}}\opLeftPren{}
{\it lodOperator}, \allowbreak{}{\it  lodOperator}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{LinearOrdinaryDifferentialOperator}
{\smath{\mbox{\bf rightLcm}\opLeftPren{}a, \allowbreak{} b\opRightPren{}},
where \smath{a} and \smath{b} are linear ordinary differential operators,
computes the value \smath{m} of lowest degree 
such that \smath{m = aa*a = bb*b}
for some values \smath{aa} and \smath{bb}. 
The value \smath{m} is computed using right-division.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{roman}}\opLeftPren{}
{\it integerOrSymbol}\opRightPren{}%
}%
}%
{1}{(Integer)->\$}{RomanNumeral}
{\smath{\mbox{\bf roman}\opLeftPren{}x\opRightPren{}} creates a roman 
numeral for integer or symbol \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{romberg}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  threeIntegers}
\opRightPren{}%
\optand \mbox{\axiomFun{rombergOpen}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
 \opand \mbox{\axiomFun{rombergClose}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf romberg}\opLeftPren{}fn, \allowbreak{} a, 
\allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, 
\allowbreak{} nmax, \allowbreak{} nint\opRightPren{}}
uses an adaptive romberg method to numerically integrate function
\smath{fn} over the closed interval from \smath{a} to \smath{b},
with relative accuracy \smath{epsrel} and absolute accuracy
\smath{epsabs};
the refinement levels for the checking of convergence
vary from \smath{nmin} to \smath{nmax}.
The method is called ``adaptive'' since it requires an additional
parameter \smath{nint} giving the number of subintervals over which
the integrator independently applies the convergence criteria using
\smath{nmin} and \smath{nmax}.
This is useful when a large number of points are needed only
in a small fraction of the entire interval.
Parameter \smath{fn} is a function of type \spadsig{Float}{Float};
\smath{a}, \smath{b}, \smath{epsrel}, and \smath{epsabs} are floats;
\smath{nmin}, \smath{nmax}, and \smath{nint} are integers.
The operation returns a record containing:
{\tt value}, an estimate of the integral;
{\tt error}, an estimate of the error in the computation;
{\tt totalpts}, the total integral number of
function evaluations, and
{\tt success}, a boolean value that is \smath{true} if
the integral was computed within the user specified error criterion.
See \spadtype{NumericalQuadrature} for details.
\bigitem\smath{\mbox{\bf rombergClosed}\opLeftPren{}fn, 
\allowbreak{} a, \allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, \allowbreak{} nmax\opRightPren{}}
similarly uses the
Romberg method to numerically integrate function \smath{fn}
over the closed interval \smath{a} to \smath{b},
but is not adaptive.
\bigitem\smath{\mbox{\bf rombergOpen}\opLeftPren{}fn, 
\allowbreak{} a, \allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, \allowbreak{} nmax\opRightPren{}} is similar
to \spadfun{rombergClosed}, except that it
integrates function \smath{fn} over
the open interval from \smath{a} to \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{root}}\opLeftPren{}
{\it outputForm\opt{, positiveInteger}}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf root}\opLeftPren{}o\optinner{, n}\opRightPren{}},
where \smath{o} and \smath{n} are objects of type
\spadtype{OutputForm} (normally unexposed),
creates an output form for the \eth{\smath{n}} root of the form \smath{o}.
By default, \smath{n = 2}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rootOfIrreduciblePoly}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(SparseUnivariatePolynomial(GF))->F}{FiniteFieldPolynomialPackage2}
{\smath{\mbox{\bf rootOfIrreduciblePoly}\opLeftPren{}f\opRightPren{}} 
computes one root of the monic,
irreducible polynomial \smath{f}, whose degree must divide the
extension degree of \smath{F} over \smath{GF}.
That is, \smath{f} splits into linear factors over \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rootOf}}\opLeftPren{}
{\it polynomial\opt{, variable}}\opRightPren{}%
}%
}%
{1}{(Polynomial(\$))->\$}{AlgebraicallyClosedField}
{\smath{\mbox{\bf rootOf}\opLeftPren{}p\optinner{, y}\opRightPren{}} 
returns \smath{y} such that
\smath{p(y) = 0}.
The object returned displays as \smath{'y}.
The second argument may be omitted when \smath{p} is a polynomial in a unique
variable \smath{y}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rootSimp}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{AlgebraicManipulations}
{\smath{\mbox{\bf rootSimp}\opLeftPren{}f\opRightPren{}} 
transforms every radical of the form
\smath{(a b^{q n+r})^{1/n}}
appearing in expression \smath{f} into \smath{b^q  (a  b^r)^{1/n}}.
This transformation is not in general valid for all complex numbers \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rootsOf}}\opLeftPren{}
{\it polynomialOrExpression \opt{, symbol}}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(\$), Symbol)->List(\$)}
{AlgebraicallyClosedField}
{\smath{\mbox{\bf rootsOf}\opLeftPren{}p \optinner{, y}\opRightPren{}} returns
the value of \smath{[y_1, \ldots, y_n]} such that \smath{p(y_i) = 0}.
The \smath{y_i} are symbols of the form \%\smath{y} with a suffix number
which are bound in the interpreter to respective root values.
Argument \smath{p} is either an expression or a polynomial.
Argument \smath{y} may be omitted in which case \smath{p} must contain
exactly one symbol.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rootSplit}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{AlgebraicManipulations}
{\smath{\mbox{\bf rootSplit}\opLeftPren{}f\opRightPren{}} 
transforms every radical of the form
\smath{(a/b)^{1/n}} appearing in \smath{f} into \smath{a^{1/n} /
b^{1/n}}.
This transformation is
not in general valid for all complex numbers \smath{a} and \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rotate!}}\opLeftPren{}{\it queue}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{QueueAggregate}
{\smath{\mbox{\bf rotate!}\opLeftPren{}q\opRightPren{}} rotates 
queue \smath{q} so that the element at
the front of the queue goes to the back of the queue.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{round}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{RealNumberSystem}
{\smath{\mbox{\bf round}\opLeftPren{}x\opRightPren{}} computes the 
integer closest to \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{row}}\opLeftPren{}{\it matrix}, \allowbreak{}
{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->Row}{RectangularMatrixCategory}
{\smath{\mbox{\bf row}\opLeftPren{}m, \allowbreak{} i\opRightPren{}} 
returns the \eth{\smath{i}} row of the matrix
or
two-dimensional array \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rowEchelon}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{MatrixCategory}
{\smath{\mbox{\bf rowEchelon}\opLeftPren{}m\opRightPren{}} 
returns the row echelon form of the matrix
\smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rst}}\opLeftPren{}{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{LazyStreamAggregate}
{\smath{\mbox{\bf rst}\opLeftPren{}s\opRightPren{}} 
returns a pointer to the next node of stream
\smath{s}.
Caution: this function should only be called after a
\axiomFun{empty?} test returns
\smath{true} since no error check is performed.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rubiksGroup}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf rubiksGroup}\opLeftPren{}\opRightPren{}} 
constructs the permutation group representing Rubic's Cube
acting on integers \smath{10i+j} for
\smath{1 \leq i \leq 6, 1 \leq j \leq 8}.
The faces of Rubik's Cube are labelled: Front, Right, Up, 
Down, Left, Back and numbered from 1 to 6.
The pieces on each face (except the unmoveable center piece) 
are clockwise numbered
from 1 to 8 starting with the piece in the upper left corner.
The moves of the cube are represented as permutations on these pieces,
represented as a two digit integer \smath{ij} where 
\smath{i} is the number of the face
and \smath{j} is the number of the piece on this face.
The remaining ambiguities are resolved by looking at the 6 generators
representing  90-degree turns of the faces.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rule}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{2}{(F, F)->\$}{RewriteRule}
{Section \ref{ugUserRules} on page \pageref{ugUserRules}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rules}}\opLeftPren{}{\it ruleset}\opRightPren{}%
}%
}%
{1}{(\$)->List(RewriteRule(Base, R, F))}{Ruleset}
{\smath{\mbox{\bf rules}\opLeftPren{}r\opRightPren{}} 
returns the list of rewrite rules contained in ruleset \smath{r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{ruleset}}\opLeftPren{}
{\it listOfRules}\opRightPren{}%
}%
}%
{1}{(List(RewriteRule(Base, R, F)))->\$}{Ruleset}
{\smath{\mbox{\bf ruleset}\opLeftPren{}[r1, \allowbreak{} 
\ldots, rn]\opRightPren{}} creates a ruleset
from a list of rewrite rules \smath{r_1}, \ldots, \smath{r_n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{rungaKutta}}\opLeftPren{}
{\it vector}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  fourFloats}, \allowbreak{}
{\it  integer}, \allowbreak{}{\it  function}\opRightPren{}%
\opand \mbox{\axiomFun{rungaKuttaFixed}}\opLeftPren{}
{\it vector}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  float}, \allowbreak{}
{\it  float}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  function}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf rungaKutta}\opLeftPren{}y, \allowbreak{} n, 
\allowbreak{} a, \allowbreak{} b, \allowbreak{} eps, \allowbreak{} h, 
\allowbreak{} ncalls, \allowbreak{} derivs\opRightPren{}}
uses a \smath{4}--th order Runga-Kutta method to numerically
integrate the ordinary differential equation $dy/dx = f(y, x)$ 
from \smath{x_1} to \smath{x_2},
where \smath{y} is an \smath{n}--vector of
\smath{n} variables.
Initial and final values are provided by solution vector \smath{y}.
The local truncation error is kept within \smath{eps} by changing
the local step size.
Argument \smath{h} is a trial step size and
\smath{ncalls} is the maximum number of single steps the integrator is
allowed to take.
Argument \smath{derivs}
is a
function of type \spadsig{(Vector Float, Vector Float, Float)}{Void},
which computes the right-hand side of the ordinary differential
equation, then replaces the elements of the first argument
by updated elements.
\bigitem\smath{\mbox{\bf rungaKuttaFixed}\opLeftPren{}y, 
\allowbreak{} n, \allowbreak{} x_1, \allowbreak{} x_2, \allowbreak{} ns, 
\allowbreak{} derivs\opRightPren{}} is similar to
\spadfun{rungaKutta} except that it uses \smath{ns} fixed
steps to integrate the solution vector \smath{y}
from \smath{x_1} to \smath{x_2}, returning the values
in \smath{y}.
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{saturate}}\opLeftPren{}{\it ideal}, 
\allowbreak{}{\it  polynomial}\allowbreak $\,[$ , \allowbreak{}
{\it  listOfVariables}$]$\opRightPren{}%
}%
}%
{2}{(\$, DPoly)->\$}{PolynomialIdeals}
{\smath{\mbox{\bf saturate}\opLeftPren{}I, 
\allowbreak{} f\optinner{, lvar}\opRightPren{}} is the saturation of the
ideal \smath{I} with respect to the multiplicative set generated
by the polynomial \smath{f} in the variables given by
\smath{lvar}, a list of variables.
Argument \smath{lvar} may be omitted in which case \smath{lvar} is
taken to be the list of all variables appearing in \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{say}}\opLeftPren{}{\it strings}\opRightPren{}%
}%
}%
{1}{(List(String))->Void}{DisplayPackage}
{\smath{\mbox{\bf say}\opLeftPren{}u\opRightPren{}} 
sends a string or a list of strings \smath{u} to
output.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sayLength}}\opLeftPren{}
{\it listOfStrings}\opRightPren{}%
}%
}%
{1}{(List(String))->Integer}{DisplayPackage}
{\smath{\mbox{\bf sayLength}\opLeftPren{}ls\opRightPren{}} 
returns the total number of characters
in the list of strings \smath{ls}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{scalarMatrix}}\opLeftPren{}
{\it scalar\opt{, dimension}}\opRightPren{}%
}%
}%
{1}{(R)->\$}{SquareMatrixCategory}
{\smath{\mbox{\bf scalarMatrix}\opLeftPren{}r\optinner{, n}\opRightPren{}} 
returns an
\smath{n}-by-\smath{n} matrix with
scalar \smath{r} on the diagonal and zero elsewhere.
The dimension may be omitted if the result is to be an object
of type \smath{\mbox{\bf SquareMatrix}\opLeftPren{}n, 
\allowbreak{} R\opRightPren{}} for some \smath{n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{scan}}\opLeftPren{}{\it binaryFunction}, 
\allowbreak{}{\it  aggregate}, \allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{3}{((S, R)->R, A, R)->B}{FiniteLinearAggregateFunctions2}
{\smath{\mbox{\bf scan}\opLeftPren{}f, \allowbreak{} a, 
\allowbreak{} r\opRightPren{}} successively applies 
\smath{\mbox{\bf reduce}\opLeftPren{}f, 
\allowbreak{} x, \allowbreak{} r\opRightPren{}} to
more and more leading sub-aggregates \smath{x} of aggregrate \smath{a}.
More precisely, if \smath{a} is \smath{[a1, a2, \ldots]}, then
\smath{\mbox{\bf scan}\opLeftPren{}f, \allowbreak{} a, 
\allowbreak{} r\opRightPren{}} returns
\smath{[reduce(f, [a1], r), reduce(f, [a1, a2], r), \ldots]}.
Argument \smath{a} can be any linear aggregate including streams.
For example, if \smath{a} is a list or an infinite stream of 
the form \smath{[x_1, x_2, \ldots]},
then \code{scan(+, a, 0)} returns a list or stream
of the form \smath{[x_1, x_1 + x_2, \ldots]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{scanOneDimSubspaces}}\opLeftPren{}
{\it listOfVectors}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(List(Vector(R)), Integer)->Vector(R)}{RepresentationPackage2}
{\smath{\mbox{\bf scanOneDimSubspaces}\opLeftPren{}basis, 
\allowbreak{} n\opRightPren{}} gives a canonical
representative of the \eth{\smath{n}}
one-dimensional subspace of the vector space generated by the elements of
\smath{basis}.
Consult \spadtype{RepresentationPackage2} using details.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{script}}\opLeftPren{}{\it symbol}, 
\allowbreak{}{\it  listOfListsOfOutputForms}\opRightPren{}%
}%
}%
{2}{(\$, List(List(OutputForm)))->\$}{Symbol}
{\smath{\mbox{\bf script}\opLeftPren{}sy, \allowbreak{} 
[a, \allowbreak{} b, \allowbreak{} c, \allowbreak{} d, 
\allowbreak{} e]\opRightPren{}} 
returns \smath{sy} with
subscripts
\smath{a}, superscripts \smath{b}, pre-superscripts \smath{c},
pre-subscripts \smath{d}, and argument-scripts \smath{e}.
Omitted components are taken to be empty.
For example, \smath{\mbox{\bf script}\opLeftPren{}s, 
\allowbreak{} {\tt [}a, \allowbreak{} b, 
\allowbreak{} c{\tt ]}\opRightPren{}} is equivalent
to \smath{\mbox{\bf script}\opLeftPren{}s, \allowbreak{} 
{\tt [}a, \allowbreak{} b, \allowbreak{} c, \allowbreak{} {\tt []}, 
\allowbreak{} {\tt []]}\opRightPren{}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{scripted?}}\opLeftPren{}{\it symbol}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{Symbol}
{\smath{\mbox{\bf scripted?}\opLeftPren{}sy\opRightPren{}} tests 
if \smath{sy} has been given any scripts.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{scripts}}\opLeftPren{}
{\it symbolOrOutputForm\opt{, listOfOutputForms}}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf scripts}\opLeftPren{}o, \allowbreak{} lo\opRightPren{}},
where \smath{o} is an object of type \spadtype{OutputForm} 
(normally unexposed)
and \smath{lo} is a list \smath{[sub, super, presuper, presub]}
of four objects
of type \spadtype{OutputForm} (normally unexposed),
creates a form for \smath{o} with scripts on all four corners.
\newline\smath{\mbox{\bf scripts}\opLeftPren{}s\opRightPren{}} 
returns all the scripts of \smath{s} as a record with
selectors \smath{sub}, \smath{sup}, \smath{presup}, \smath{presub}, 
and \smath{args},
each with a list of output forms as a value.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{search}}\opLeftPren{}{\it key}, \allowbreak{}
{\it  table}\opRightPren{}%
}%
}%
{2}{(Key, \$)->Union(Entry, "failed")}{KeyedDictionary}
{\smath{\mbox{\bf search}\opLeftPren{}k, \allowbreak{} t\opRightPren{}} 
searches the table \smath{t} for the key
\smath{k},
returning the entry stored in \smath{t} for key \smath{k},
or \mbox{\tt "failed"} if \smath{t} has no such key.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sec}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{secIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\smath{\mbox{\bf sec}\opLeftPren{}x\opRightPren{}} 
returns the secant of \smath{x}.
\newitem
\smath{\mbox{\bf secIfCan}\opLeftPren{}z\opRightPren{}} 
returns \smath{\mbox{\bf sec}\opLeftPren{}z\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sec2cos}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf sec2cos}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\mbox{\bf sec}\opLeftPren{}u\opRightPren{}} 
appearing in \smath{f} into \smath{1/{\rm cos}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sech}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{sechIfCan}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\smath{\mbox{\bf sech}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic secant of \smath{x}.
\newitem
\smath{\mbox{\bf sechIfCan}\opLeftPren{}z\opRightPren{}} 
returns \smath{\mbox{\bf sech}\opLeftPren{}z\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sech2cosh}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf sech2cosh}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\mbox{\bf sech}\opLeftPren{}u\opRightPren{}} 
appearing in \smath{f} into \smath{1/{\rm cosh}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{second}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->S}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf second}\opLeftPren{}u\opRightPren{}} 
returns the second element of recursive aggregate \smath{u}.
Note: \smath{\mbox{\bf second}\opLeftPren{}u) = {\bf first}({\bf rest}(u))}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{segment}}\opLeftPren{}
{\it integer\opt{, integer}}\opRightPren{}%
}%
}%
{1}{(S)->\$}{UniversalSegment}
{\smath{\mbox{\bf segment}\opLeftPren{}i\optinner{, j}\opRightPren{}} returns
the segment \smath{i..j}.
If not qualified by a {\bf by} clause, this notation for
integers \smath{i} and \smath{j}
denotes the tuple of integers \smath{i}, \smath{i+1}, \ldots, \smath{j}.
When \smath{j} is omitted, 
\smath{\mbox{\bf segment}\opLeftPren{}i\opRightPren{}}
denotes the half open segment
\smath{i..}, that is, a segment with no upper bound.
\newline
\smath{\mbox{\bf segment}\opLeftPren{}x = bd\opRightPren{}},
where \smath{bd} is a binding, returns \smath{bd}.
For example, \smath{\mbox{\bf segment}\opLeftPren{}x = a..b\opRightPren{}} 
returns
\smath{a..b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{select}}\opLeftPren{}{\it pred}, \allowbreak{}
{\it  aggregate}\opRightPren{}%
 \opand \mbox{\axiomFun{select!}}\opLeftPren{}{\it pred}, \allowbreak{}
{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S)->Boolean, \$)->\$}{Collection}
{\smath{\mbox{\bf select}\opLeftPren{}p, 
\allowbreak{} u\opRightPren{}} returns a copy of \smath{u} containing only
those elements \smath{x} such that \smath{p(x)} is \smath{true}.
For a list \smath{l}, \smath{select(p, l) == [x {\mbox{ \tt for }
} x {\mbox{ \tt in }} l {\tt |} p(x)]}.
Argument \smath{u} may be any finite aggregate or infinite stream.
\newitem \smath{\mbox{\bf select!}\opLeftPren{}p, 
\allowbreak{} u\opRightPren{}} destructively changes \smath{u} by
keeping only values \smath{x} such that \smath{p(x)} is true.
Argument \smath{u} can be any extensible linear aggregate or
dictionary.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{semicolonSeparate}}\opLeftPren{}
{\it listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf semicolonSeparate}\opLeftPren{}lo\opRightPren{}}, 
where \smath{lo} is a list of
objects of type \spadtype{OutputForm} (normally unexposed),
returns an output form which separates the elements of \smath{lo}
by semicolons.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{separant}}\opLeftPren{}
{\it differentialPolynomial}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf separant}\opLeftPren{}polynomial\opRightPren{}} 
returns the partial derivative of
the differential polynomial \smath{p} with respect to its leader.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{separate}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Record(primePart:\$, commonPart:\$)}
{UnivariatePolynomialCategory}
{\smath{\mbox{\bf separate}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} returns \spad({a, b)} such that polynomial
\smath{p = a b} and \smath{a} is relatively prime to \smath{q}.
The result produced is a record with selectors \smath{primePart}
and \smath{commonPart}
with value \smath{a} and \smath{b} respectively.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{separateDegrees}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(FP)->List(Record(deg:NonNegativeInteger, prod:FP))}
{DistinctDegreeFactorize}
{\smath{\mbox{\bf separateDegrees}\opLeftPren{}p\opRightPren{}} 
splits the polynomial \smath{p} into factors.
Each factor is a record with selector \smath{deg},
a non-negative integer, and \smath{prod}, a product of irreducible polynomials
of degree \smath{deg}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{separateFactors}}\opLeftPren{}
{\it listOfRecords}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(List(Record(deg:NonNegativeInteger, prod:FP)), FP)->
List(FP)}{DistinctDegreeFactorize}
{\smath{\mbox{\bf separateFactors}\opLeftPren{}lfact, 
\allowbreak{} p\opRightPren{}} takes the list produced by
\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} along
with the original polynomial \smath{p}, and produces the 
complete list of factors.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{separateFactors}}\opLeftPren{}
{\it listOfRecords}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(List(Record(factor:U, degree:Integer)), 
Integer)->List(U)}{ModularDistinctDegreeFactorizer}
{\smath{\mbox{\bf separateFactors}\opLeftPren{}ddl, 
\allowbreak{} p\opRightPren{}} refines the distinct degree factorization 
produced by \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a 
complete list of factors.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sequences}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
\opand \mbox{\axiomFun{sequences}}\opLeftPren{}{\it listOfIntegers}, 
\allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(List(Integer), List(Integer))->Stream(List(Integer))}
{PartitionsAndPermutations}
{\smath{\mbox{\bf sequences}\opLeftPren{}[l_0, \allowbreak{} l_1, 
\allowbreak{} l_2, \allowbreak{} .., \allowbreak{} l_n]\opRightPren{}} 
is the set of 
all sequences
formed from \smath{l_0} 0's, \smath{l_1} 1's, \smath{l_2} 2's, \ldots, 
\smath{l_n} \smath{n}'s.
\newitem
\smath{\mbox{\bf sequences}\opLeftPren{}l1, \allowbreak{} l2\opRightPren{}} 
is the stream of all sequences that can be composed from
the multiset defined from two lists of integers \smath{l1} and \smath{l2}.
For example, the pair \smath{([1, 2, 4], [2, 3, 5])} represents multiset
with 1 \smath{2}, 2 \smath{3}'s, and 4 \smath{5}'s.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{series}}\opLeftPren{}
{\it specifications\opt{, \ldots}}\opRightPren{}%
}%
}%
{1}{(Stream(Coef))->\$}{UnivariateTaylorSeriesCategory}
{\smath{\mbox{\bf series}\opLeftPren{}expression\opRightPren{}} 
returns a series expansion of the expression \smath{f}.
Note: \smath{f} must have only one variable. The series will be 
expanded in powers
of that variable.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}sy\opRightPren{}}, 
where \smath{sy} is a symbol, returns \smath{sy} as a series.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}st\opRightPren{}},
where \smath{t} is a stream \smath{[a_0, a_1, a_2, \ldots]} 
of coefficients \smath{a_i}
from some ring,
creates the Taylor series \smath{a_0 + a_1 x + a_2 x^2 +\ldots}.
Also, if \smath{st} is a stream of elements of type 
\spadtype{Record(k:NonNegativeInteger, c:R)},
where \smath{k} denotes an exponent and \smath{c}, 
a non-zero coefficient from some ring \smath{R},
it creates a stream of non-zero terms.
The terms in \smath{st} must be ordered by increasing order of exponents.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}f, 
\allowbreak{} x = a\optinner{, n}\opRightPren{}} 
expands the expression \smath{f} as a
series in powers of \smath{(x - a)} with \smath{n} terms.
If \smath{n} is missing, the number of terms is governed by
the value set by the system command \spadsyscom{)set streams calculate}.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}f, \allowbreak{} n\opRightPren{}} 
returns a series expansion of the expression
\smath{f}.
Note: \smath{f} should have only one variable; the series will be
expanded in powers of that variable and terms will be computed up
to order at least \smath{n}.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}i {\tt +->} a(i), 
\allowbreak{} x = a, \allowbreak{} m..\optinner{n, k}\opRightPren{}} 
creates the series
\smath{\sum\nolimits_{i = m..n {\ \tt by \ } k}{a(i)  (x - a)^i}}.
Here \smath{m}, \smath{n}, and \smath{k} are rational numbers.
Upper-limit \smath{n} and stepsize \smath{k} are optional and 
have default values
\smath{n = \infty} and \smath{k = 1}.
\newitem
\smath{\mbox{\bf series}\opLeftPren{}a(i), \allowbreak{} i, 
\allowbreak{} x=a, \allowbreak{} m..\optinner{n, k}\opRightPren{}} returns
\smath{\sum\nolimits_{i = m..n {\bf by} k}{a(n) (x - a)^n}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{seriesSolve}}\opLeftPren{}{\it eq}, 
\allowbreak{}{\it  y}, \allowbreak{}{\it  x}, \allowbreak{}
{\it  c}\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{\bigopkey{\smath{eq} denotes an equation to be solved;
alternatively, an expression \smath{u} may be given for \smath{eq} 
in which case the equation
\smath{eq} is defined as \smath{u=0}.
\largerbreak\smath{leq} denotes a list \smath{[ eq_1\ldots eq_n]} of 
equations; alternatively,
a list of expressions \smath{[ u_1\ldots u_n]}
may be given of \smath{leq} in which case the equations \smath{eq_i} are
defined by \smath{u_i=0}.
}
\bigitem\smath{\mbox{\bf seriesSolve}\opLeftPren{}eq, \allowbreak{} y, 
\allowbreak{} x=a, \allowbreak{} \optinner{y(a)=}b\opRightPren{}} 
returns a Taylor series solution of
\smath{eq} around \smath{x=a} with initial condition \smath{y(a)=b}.
Note: \smath{eq} must be of the form
\smath{f(x, y)y'(x) + g(x, y) = h(x, y)}.
\bigitem\smath{\mbox{\bf seriesSolve}\opLeftPren{}eq, 
\allowbreak{} y, \allowbreak{} x=a, \allowbreak{} 
[ b_0, \ldots, b_{(n-1)}]\opRightPren{}} returns
a Taylor series solution of \smath{eq} around 
\smath{x=a} with initial conditions
\smath{y(a)=b_0},
\smath{y'(a)=b_1},
$\ldots$
\smath{y^{(n-1)}(a)=b_{(n-1)}}.
Equation \smath{eq} must be of the form
\smath{f(x, y, y', \ldots, y^{(n-1)})*y^{(n)}(x)+
g(x, y, x', \ldots, y^{(n-1)}) = h(x, y, y', \ldots, y^{(n-1)})}.
\bigitem\smath{seriesSolve(leq, [ y_1, \ldots, y_n], x =
a, [ y_1(a)=b_1, \ldots, y_n(a)=b_n])} returns a Taylor
series
solution of the equations \smath{eq_i} around \smath{x = a}
with initial conditions \smath{y_i(a)=b_i}.
Note: each \smath{eq_i} must be of the form
\smath{f_i(x, y_1, y_2, \ldots, y_n)y_1'(x) +
g_i(x, y_1, y_2, \ldots, y_n) = h(x, y_1, y_2, \ldots, y_n)}.
\bigitem\smath{seriesSolve(leq, [ y_1, \ldots, y_n], x =
a, [ b_1, \ldots, b_n])} is equivalent to the same
command with
fourth argument \smath{[ y_1(a)=b_1, \ldots, y_n(a)=b_n]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setchildren!}}\opLeftPren{}
{\it recursiveAggregate}\opRightPren{}%
}%
}%
{2}{(\$, List(\$))->\$}{RecursiveAggregate}
{\smath{\mbox{\bf setchildren!}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} replaces the current children of node
\smath{u} with the members of \smath{v} in left-to-right order.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setColumn!}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Col)->\$}{TwoDimensionalArrayCategory}
{\smath{\mbox{\bf setColumn!}\opLeftPren{}m, \allowbreak{} j, 
\allowbreak{} v\opRightPren{}} sets the \eth{\smath{j}} column of
matrix or two-dimensional array \smath{m} to \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setDifference}}\opLeftPren{}
{\it list}, \allowbreak{}{\it  list}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{List}
{\smath{\mbox{\bf setDifference}\opLeftPren{}l_1, 
\allowbreak{} l_2\opRightPren{}} returns a list of the 
elements of \smath{l_1} that are
not also in \smath{l_2}.
The order of elements in the resulting list is unspecified.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setelt}}\opLeftPren{}
{\it structure}, \allowbreak{}{\it  index}, \allowbreak{}
{\it  value}\allowbreak $\,[$ , \allowbreak{}{\it  option}$]$\opRightPren{}%
}%
}%
{3}{(\$, Dom, Im)->Im}{EltableAggregate}
{\smath{\mbox{\bf setelt}\opLeftPren{}u, 
\allowbreak{} x, \allowbreak{} y\opRightPren{}}, also written \smath{u.x := y},
sets the image of \smath{x} to be \smath{y} under \smath{u},
regarded as a function mapping values from the domain of \smath{x} to
the domain of \smath{y}. Specifically, if \smath{u} is:
\begin{simpleList}
\item a list: \smath{u.first := x} is equivalent to
\smath{\mbox{\bf setfirst!}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}}.
Also,
\smath{u.rest := x} is equivalent to 
\smath{\mbox{\bf setrest!}\opLeftPren{}u, \allowbreak{} x\opRightPren{}}, and
\smath{u.last := x} is equivalent to 
\smath{\mbox{\bf setlast!}\opLeftPren{}u, \allowbreak{} x\opRightPren{}}.
\item a linear aggregate,
\smath{u(i..j) := x} destructively replaces each element in the
segment \smath{u(i..j)} by \smath{x}. The value \smath{x} is returned.
Note: This function has the same effect as 
\code{for k in i..j repeat u.k := x; x}.
The length of \smath{u} is unchanged.
\item a recursive aggregate,
\smath{u.value := x} is equivalent to 
\smath{\mbox{\bf setvalue!}\opLeftPren{}u, \allowbreak{} x\opRightPren{}} and 
sets the value part of node \spad{u} to \spad{x}.
Also, if \spad{u} is a \spadtype{BinaryTreeAggregate},
\smath{u.left := x} is equivalent to 
\smath{\mbox{\bf setleft!}\opLeftPren{}u, \allowbreak{} x\opRightPren{}} 
and sets the left child
of \spad{u} to \spad{x}. Simiarly,
\smath{u.right := x} is equivalent to 
\smath{\mbox{\bf setright!}\opLeftPren{}u, \allowbreak{} x\opRightPren{}}.
See also \spadfun{setchildren!}.
\item a table of category TableAggregate(Key, Entry):
u(k) := e is equivalent to \smath{({\bf insert}([k, e], t); e)}, 
where \smath{k} is
a key and \smath{e} is an entry.
\item a library:
\smath{u.k := v} saves the value \smath{v} in the library \smath{u}, so that
it can later be extracted by \smath{u.k}.
\end{simpleList}
\smath{\mbox{\bf setelt}\opLeftPren{}u, 
\allowbreak{} i, \allowbreak{} j, 
\allowbreak{} r\opRightPren{}}, also written, \smath{u(i, j) := r}, sets
the element in the
\eth{\smath{i}} row and \eth{\smath{j}} column of matrix or
two-dimensional array \smath{u}
to \smath{r}.
\newitem
\smath{\mbox{\bf setelt}\opLeftPren{}u, 
\allowbreak{} rowList, \allowbreak{} colList, \allowbreak{} r\opRightPren{}},
also written \smath{u([i_1, i_2, \ldots, i_m], [j_1, j_2, \ldots, j_n]) := r},
where \smath{u} is a matrix or two-dimensional array and
\smath{r} is another \smath{m} by \smath{n} matrix or array,
destructively alters the matrix \smath{u}:
the \smath{x_{i_k, j_l}} is set to \smath{r(k, l)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setEpilogue!}}\opLeftPren{}
{\it formattedObject}, \allowbreak{}{\it  listOfStrings}\opRightPren{}%
}%
}%
{2}{(\$, List(String))->List(String)}{ScriptFormulaFormat}
{\smath{\mbox{\bf setEpilogue!}\opLeftPren{}t, 
\allowbreak{} strings\opRightPren{}} sets the epilogue section of a
formatted object \smath{t} to \smath{strings}.
Argument \smath{t} is either an IBM SCRIPT Formula 
Formatted or \TeX{} formatted object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setfirst!}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{2}{(\$, S)->S}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf setfirst!}\opLeftPren{}a, 
\allowbreak{} x\opRightPren{}} destructively 
changes the first element of recursive
aggregate \smath{a} to \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setFormula!}}\opLeftPren{}
{\it formattedObject}, \allowbreak{}{\it  listOfStrings}\opRightPren{}%
}%
}%
{2}{(\$, List(String))->List(String)}{ScriptFormulaFormat}  
{\smath{\mbox{\bf setFormula!}\opLeftPren{}t, 
\allowbreak{} strings\opRightPren{}} sets the formula section of a formatted 
object \smath{t} to \smath{strings}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setIntersection}}\opLeftPren{}
{\it list}, \allowbreak{}{\it  list}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{List}
{\smath{\mbox{\bf setIntersection}\opLeftPren{}l_1, 
\allowbreak{} l_2\opRightPren{}} returns a list of the 
elements that lists \smath{l_1}
and \smath{l_2} have in common. The order of elements 
in the resulting list is unspecified.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setlast!}}\opLeftPren{}
{\it aggregate}, \allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{2}{(\$, S)->S}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf setlast!}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}} destructively changes the last element of
\smath{u} to \smath{x}.
Note: \smath{u.last := x} is equivalent.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setleaves!}}\opLeftPren{}
{\it balancedBinaryTree}, \allowbreak{}{\it  listOfElements}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BinaryRecursiveAggregate}
{\smath{\mbox{\bf setleaves!}\opLeftPren{}t, 
\allowbreak{} ls\opRightPren{}} sets the leaves of balanced binary tree
\smath{t} in left-to-right order to the elements of \smath{ls}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setleft!}}\opLeftPren{}
{\it binaryRecursiveAggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BinaryRecursiveAggregate}
{\smath{\mbox{\bf setleft!}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}} sets the left child of \smath{a} to be
\smath{b}.
}




% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setPrologue!}}\opLeftPren{}
{\it formattedObject}, \allowbreak{}{\it  listOfStrings}\opRightPren{}%
}%
}%
{2}{(\$, List(String))->List(String)}{ScriptFormulaFormat}
{\smath{\mbox{\bf setPrologue!}\opLeftPren{}t, 
\allowbreak{} strings\opRightPren{}} sets the prologue 
section of a formatted object \smath{t} 
to \smath{strings}.
Argument \smath{t} is either an IBM SCRIPT Formula Formatted or 
\TeX{} formatted object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setProperties!}}\opLeftPren{}
{\it basicOperator}, \allowbreak{}{\it  associationList}\opRightPren{}%
}%
}%
{2}{(\$, AssociationList(String, None))->\$}{BasicOperator}
{\smath{\mbox{\bf setProperties!}\opLeftPren{}op, 
\allowbreak{} al\opRightPren{}} sets the property 
list of basic operator \smath{op} to
association list \smath{l}.
Note: argument \smath{op} is modified ``in place'', that is, no copy is made.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setProperty!}}\opLeftPren{}{\it basicOperator}, 
\allowbreak{}{\it  string}, \allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{3}{(\$, String, None)->\$}{BasicOperator}
{\smath{\mbox{\bf setProperty!}\opLeftPren{}op, 
\allowbreak{} s, \allowbreak{} v\opRightPren{}} attaches property \smath{s} to
\smath{op}, and sets its value to \smath{v}.
Argument \smath{op} is modified ``in place'', that is,
no copy is made.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setrest!}}\opLeftPren{}
{\it aggregate\optinit{, integer}, aggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{UnaryRecursiveAggregate}
{\opkey{Arguments \smath{u} and \smath{v} 
are finite or infinite aggregates of the same type.}
\newitem
\smath{\mbox{\bf setrest!}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} destructively 
changes the rest of \smath{u} to \smath{v}.
\newitem
\smath{\mbox{\bf setrest!}\opLeftPren{}x, \allowbreak{} n, 
\allowbreak{} y\opRightPren{}} destructively changes \smath{x}
so that \smath{\mbox{\bf rest}\opLeftPren{}x, 
\allowbreak{} n\opRightPren{}}, that is, \smath{x} 
after the \eth{\smath{n}} element, equals \smath{y}.
The function will expand cycles if necessary.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setright!}}\opLeftPren{}
{\it binaryRecursiveAggregate}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BinaryRecursiveAggregate}
{\smath{\mbox{\bf setright!}\opLeftPren{}a, 
\allowbreak{} x\opRightPren{}} sets the right child of \smath{t} to be
\smath{x}.}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setRow!}}\opLeftPren{}
{\it matrix}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  row}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Row)->\$}{TwoDimensionalArrayCategory}
{\smath{\mbox{\bf setRow!}\opLeftPren{}m, \allowbreak{} i, 
\allowbreak{} v\opRightPren{}} sets the \eth{\smath{i}} row of matrix or
two-dimensional array \smath{m} to \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setsubMatrix!}}\opLeftPren{}{\it matrix}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  matrix}\opRightPren{}%
}%
}%
{4}{(\$, Integer, Integer, \$)->\$}{MatrixCategory}
{\smath{\mbox{\bf setsubMatrix}\opLeftPren{}x, \allowbreak{} i_1, 
\allowbreak{} j_1, \allowbreak{} y\opRightPren{}} destructively 
alters the matrix \smath{x}.
Here \smath{x(i, j)} is set to \smath{y(i-i_1+1, j-j_1+1)} for
\smath{i = i_1, \ldots, i_1-1+{\bf nrows}(y)}
and \smath{j = j_1, \ldots, j_1-1+{\bf ncols}(y)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setTex!}}\opLeftPren{}
{\it text}, \allowbreak{}{\it  listOfStrings}\opRightPren{}%
}%
}%
{2}{(\$, List(String))->List(String)}{TexFormat}
{\smath{\mbox{\bf setTex!}\opLeftPren{}t, 
\allowbreak{} strings\opRightPren{}} sets the TeX section of a TeX form
\smath{t} to \smath{strings}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setUnion}}\opLeftPren{}
{\it list}, \allowbreak{}{\it  list}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{List}
{\smath{\mbox{\bf setUnion}\opLeftPren{}l_1, 
\allowbreak{} l_2\opRightPren{}} appends the two lists \smath{l_1} and
\smath{l_2}, then removes all duplicates.
The order of elements in the resulting list is unspecified.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setvalue!}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  value}\opRightPren{}%
}%
}%
{2}{(\$, S)->S}{RecursiveAggregate}
{\smath{\mbox{\bf setvalue!}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}} destructively changes the value of 
node \smath{u} to \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{setVariableOrder}}\opLeftPren{}
{\it listOfSymbols\opt{, listOfSymbols}}\opRightPren{}%
}%
}%
{1}{(List(Symbol))->Void}{UserDefinedVariableOrdering}
{\smath{\mbox{\bf setVariableOrder}\opLeftPren{}
[a_1, \allowbreak{} \ldots, a_m], [b_1, \ldots, b_n]\opRightPren{}} 
defines an ordering
on the variables given by \smath{a_1 > a_2 > \ldots > a_m >} other variables
\smath{b_1 > b_2 > \ldots > b_n}.
\newitem
\smath{\mbox{\bf setVariableOrder}\opLeftPren{}
[a1, \allowbreak{} \ldots, an]\opRightPren{}} defines an ordering given by
\smath{a_1 > a_2 > \ldots > a_n >} all
other variables.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sFunction}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{L I -> SPOL RN}{}{}
{\smath{\mbox{\bf sFunction}\opLeftPren{}li\opRightPren{}} 
is the S-function of the partition given by list of
linteger \smath{li},
expressed in terms of power sum symmetric functions.
See \spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shade}}\opLeftPren{}{\it palette}\opRightPren{}%
}%
}%
{1}{(\$)->Integer}{Palette}
{\smath{\mbox{\bf shade}\opLeftPren{}p\opRightPren{}} 
returns the shade index of the indicated palette \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shellSort}}\opLeftPren{}{\it sortingFunction}, 
\allowbreak{}{\it  aggregate}\opRightPren{}%
}%
}%
{2}{((S, S)->Boolean, V)->V}{FiniteLinearAggregateSort}
{\smath{\mbox{\bf shellSort}\opLeftPren{}f, \allowbreak{} a\opRightPren{}} 
sorts the aggregate \smath{a}
using the shellSort algorithm with sorting function \smath{f}.
Aggregate \smath{a} can be any finite linear aggregate which is
mutable (for example,
lists, vectors, and strings).
The sorting function \smath{f} has type \spadsig{(R, R)}{Boolean} where
\smath{R} is the domain of the elements of \smath{a}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shift}}\opLeftPren{}{\it integerNumber}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf shift}\opLeftPren{}a, \allowbreak{} i\opRightPren{}} 
shifts integer number or float \smath{a} by \smath{i} digits.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{showAll?}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Boolean}{Stream}
{\smath{\mbox{\bf showAll?}\opLeftPren{}\opRightPren{}} 
tests if all computed entries of streams will be displayed
according to system command \spadsyscom{)set streams showall}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{showAllElements}}\opLeftPren{}
{\it stream}\opRightPren{}%
}%
}%
{1}{(\$)->OutputForm}{Stream}
{\smath{\mbox{\bf showAllElements}\opLeftPren{}s\opRightPren{}} 
creates an output form displaying all the already
computed elements of stream \smath{s}. This command will not result in any
further computation of elements of \smath{s}. Also, the command has no effect
if the user has previously entered \spadsyscom{)set streams showall true}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{showTypeInOutput}}\opLeftPren{}
{\it boolean}\opRightPren{}%
}%
}%
{1}{(Boolean)->String}{Any}
{\smath{\mbox{\bf showTypeInOutput}\opLeftPren{}bool\opRightPren{}} 
affects the way objects of \spadtype{Any}
are displayed. If \smath{bool} is \smath{true}, the type of the original 
object
that was converted to \spadtype{Any} will be printed. 
If \smath{bool} is \smath{false},
it will not be printed.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shrinkable}}\opLeftPren{}{\it boolean}\opRightPren{}%
}%
}%
{1}{(Boolean)->String}{Any}
{\smath{\mbox{\bf shrinkable}\opLeftPren{}b\opRightPren{}\$R} 
tells Axiom that flexible arrays of domain \smath{R}
are or are not allowed to shrink (reduce their \spadfun{physicalLength})
according to whether \smath{b} is \smath{true} or \smath{false}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shufflein}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}{\it  streamOfListsOfIntegers}
\opRightPren{}%
}%
}%
{2}{(List(Integer), Stream(List(Integer)))->Stream(List(Integer))}
{PartitionsAndPermutations}
{\smath{\mbox{\bf shufflein}\opLeftPren{}li, 
\allowbreak{} sli\opRightPren{}} 
maps \smath{\mbox{\bf shuffle}\opLeftPren{}li, 
\allowbreak{} u\opRightPren{}} onto all members \smath{u}
of \smath{sli}, concatenating the results.
See \spadtype{PartitionsAndPermutations}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{shuffle}}\opLeftPren{}
{\it listOfIntegers}, \allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{2}{(List(Integer), List(Integer))->Stream(List(Integer))}
{PartitionsAndPermutations}
{\smath{\mbox{\bf shuffle}\opLeftPren{}l1, 
\allowbreak{} l2\opRightPren{}} forms the stream
of all shuffles of \smath{l1} and \smath{l2}, that is, 
all sequences that can
be formed from merging \smath{l1} and \smath{l2}.
See \spadtype{PartitionsAndPermutations}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sign}}\opLeftPren{}
{\it various\opt{, \ldots}}\opRightPren{}%
}%
}%
{4}{(Fraction(Polynomial(R)), Symbol, 
Fraction(Polynomial(R)), String)->Union(Integer, "failed")}
{RationalFunctionSign}
{\smath{\mbox{\bf sign}\opLeftPren{}x\opRightPren{}}, 
where \smath{x} is an element of an ordered ring,
returns 1 if \smath{x} is positive, \smath{-1} 
if \smath{x} is negative, 0 if \smath{x} equals 0.
\newitem
\smath{\mbox{\bf sign}\opLeftPren{}p\opRightPren{}}, 
where \smath{p} is a permutation, returns
\smath{1}, if \smath{p} is an even permutation, or \smath{-1}, if it is odd.
\newitem
\smath{\mbox{\bf sign}\opLeftPren{}f, \allowbreak{} x, 
\allowbreak{} a, \allowbreak{} s\opRightPren{}} returns 
the sign of rational function \smath{f} as
symbol \smath{x} nears \smath{a},
a real value represented by either a rational function or one of the
values {\tt \%plusInfinity}
or {\tt \%minusInfinity}.
If \smath{s} is:
\begin{simpleList}
\item the string {\tt "left"}: from the left (below).
\item the string {\tt "right}: from the right (above).
\item not given: from both sides if \smath{a} is finite.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{simplify}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf simplify}\opLeftPren{}f\opRightPren{}} 
performs the following simplifications on \smath{f:}
\begin{simpleList}
\item rewrites trigs and hyperbolic trigs in terms of \smath{sin},
\smath{cos}, \smath{sinh}, \smath{cosh}.
\item rewrites \smath{sin^2} and \smath{sinh^2} in terms of 
\smath{cos} and \smath{cosh}.
\item rewrites \smath{e^a e^b} as \smath{e^{a+b}}.
\end{simpleList}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{simplifyExp}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf simplifyExp}\opLeftPren{}f\opRightPren{}} 
converts every product \smath{e^a
e^b} appearing in \smath{f} into \smath{e^{a+b}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{simpson}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  threeIntegers}
\opRightPren{}%
\optand \mbox{\axiomFun{simpsonClosed}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
\opand \mbox{\axiomFun{simpsonOpen}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf simpson}\opLeftPren{}fn, \allowbreak{} a, 
\allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, 
\allowbreak{} nmax, \allowbreak{} nint\opRightPren{}} uses the
adaptive simpson method to numerically integrate function \smath{fn}
over the closed interval from \smath{a} to \smath{b}, with relative
accuracy \smath{epsrel} and absolute accuracy \smath{epsabs};
the refinement levels for the checking of convergence
vary from \smath{nmin} to \smath{nmax}.
The method is called ``adaptive'' since it requires an additional
parameter \smath{nint} giving the number of subintervals over which
the integrator independently applies the convergence criteria using
\smath{nmin} and \smath{nmax}.
This is useful when a large number of points are needed only
in a small fraction of the entire interval.
Parameter \smath{fn} is a function of type \spadsig{Float}{Float};
\smath{a}, \smath{b}, \smath{epsrel}, and \smath{epsabs} are floats;
\smath{nmin}, \smath{nmax}, and \smath{nint} are integers.
The operation returns a record containing:
{\tt value}, an estimate of the integral;
{\tt error}, an estimate of the error in the computation;
{\tt totalpts}, the total integral number of
function evaluations, and
{\tt success}, a boolean value which is \smath{true} if
the integral was computed within the user specified error criterion.
See \spadtype{NumericalQuadrature} for details.
\bigitem\smath{\mbox{\bf simpsonClosed}\opLeftPren{}fn, 
\allowbreak{} a, \allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, \allowbreak{} nmax\opRightPren{}} similarly uses
the Simpson method to numerically integrate function \smath{fn}
\index{Simpson's method}
over the closed interval \smath{a} to \smath{b},
but is not adaptive.
\bigitem\smath{\mbox{\bf simpsonOpen}\opLeftPren{}fn, 
\allowbreak{} a, \allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, \allowbreak{} nmax\opRightPren{}} is similar
to \spadfun{simpsonClosed}, except that it
integrates function \smath{fn} over
the open interval from \smath{a} to \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sin}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float}, 
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem
\smath{\mbox{\bf sin}\opLeftPren{}x\opRightPren{}} returns 
the sine of \smath{x} if possible, and
calls \spadfun{error} otherwise.
\newitem
\smath{\mbox{\bf sinIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf sin}\opLeftPren{}x\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sin2csc}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf sin2csc}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\mbox{\bf sin}\opLeftPren{}u\opRightPren{}} 
appearing in \smath{f} into \smath{1/{\rm csc}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{singular?}}\opLeftPren{}
{\it polynomialOrFunctionField}\opRightPren{}%
 \opand \mbox{\axiomFun{singularAtInfinity?}}\opLeftPren{}\opRightPren{}%
}%
}%
{1}{(F)->Boolean}{FunctionFieldCategory}
{\smath{\mbox{\bf singular?}\opLeftPren{}p\opRightPren{}} 
tests whether \smath{p(x) = 0} is singular.
\newitem
\smath{\mbox{\bf singular?}\opLeftPren{}a\opRightPren{}\$F} 
tests if \smath{x = a} is a singularity of the
algebraic function field \smath{F} (a domain of 
\spadtype{FunctionFieldCategory}).
\newitem
\smath{\mbox{\bf singularAtInfinity?}\opLeftPren{}\opRightPren{}\$F} 
tests if the
algebraic function field \smath{F} has a singularity at infinity.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sinh}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{sinhIfCan}}\opLeftPren{}{\it expression}
\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float}, 
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem
\smath{\mbox{\bf sinh}\opLeftPren{}x\opRightPren{}} returns the 
hyperbolic sine of \smath{x} if possible,
and calls \spadfun{error} otherwise.
\newitem
\smath{\mbox{\bf sinhIfCan}\opLeftPren{}x\opRightPren{}} returns 
\smath{\mbox{\bf sinh}\opLeftPren{}x\opRightPren{}} if possible, and 
\mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sinh2csch}}\opLeftPren{}{\it expression}
\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf sinh2csch}\opLeftPren{}f\opRightPren{}} converts 
every \smath{\mbox{\bf sinh}\opLeftPren{}u\opRightPren{}} appearing in 
\smath{f} into \smath{1/{\rm csch}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{size}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{Finite}
{\smath{\mbox{\bf size}\opLeftPren{}\opRightPren{}\$F} returns the 
number of elements in the domain of
category \spadtype{Finite}. By definition, each such domain must have
a finite number of elements.
\seeAlso{\spadtype{FreeAbelianMonoidCategory}}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{size?}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Boolean}{Aggregate}
{\smath{\mbox{\bf size?}\opLeftPren{}a, \allowbreak{} n\opRightPren{}} 
tests if aggregate \smath{a} has exactly \smath{n} elements.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sizeLess?}}\opLeftPren{}{\it element}, 
\allowbreak{}{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{EuclideanDomain}
{\smath{\mbox{\bf sizeLess?}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
tests whether \smath{x} is strictly smaller than \smath{y} with respect 
to the \spadfunFrom{euclideanSize}{EuclideanDomain}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sizeMultiplication}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{FiniteFieldNormalBasis}
{\smath{\mbox{\bf sizeMultiplication}\opLeftPren{}\opRightPren{}\$F} 
returns the number of entries in the
multiplication table of the field.
Note: The time of multiplication of field elements depends on this size.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{skewSFunction}}\opLeftPren{}{\it listOfIntegers}, 
\allowbreak{}{\it  listOfIntegers}\opRightPren{}%
}%
}%
{(L I, L I) -> SPOL RN}{}{}
{\smath{\mbox{\bf skewSFunction}\opLeftPren{}li_1, \allowbreak{} li_2
\opRightPren{}} is the S-function
of the partition difference \smath{li_1 - li_2},
expressed in terms of power sum symmetric functions.
See \spadtype{CycleIndicators} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{solve}}\opLeftPren{}{\it u}, \allowbreak{}
{\it  v}\allowbreak $\,[$ , \allowbreak{}{\it  w}$]$\opRightPren{}%
}%
}%
{1}{(Equation(Expression(R)))->List(Equation(Expression(R)))}
{TransSolvePackage}
{\bigopkey{\smath{eq} denotes an equation to be solved; alternatively,
an expression \smath{u} may be given for \smath{eq} in which case the
equation \smath{eq} is defined as \smath{u=0}.
\largerbreak\smath{leq} denotes a list \smath{[ eq_1\ldots eq_n]} of 
equations; alternatively,
a list of expressions \smath{[ u_1\ldots u_n]}
may be given for \smath{leq} in which case the equations \smath{eq_i} are
defined by \smath{u_i=0}.
\largerbreak\smath{epsilon} is either a rational number or a float.
}
\bigitem\smath{\mbox{\bf complexSolve}\opLeftPren{}eq, \allowbreak{} 
epsilon\opRightPren{}} finds all the real solutions
to precision \smath{epsilon}
of the univariate equation \smath{eq} of rational functions with
respect to the unique variable appearing in \smath{eq}.
The complex solutions are either expressed
as rational numbers or floats depending on the type of \smath{epsilon}.
\bigitem\smath{\mbox{\bf complexSolve}\opLeftPren{}[ eq_1\ldots eq_n], 
epsilon\opRightPren{}}
computes the real solutions to precision \smath{epsilon} of a system of
equations \smath{eq_i} involving rational functions.
The complex solutions are either expressed
as rational numbers or floats depending on the type of \smath{epsilon}.
\bigitem\smath{\mbox{\bf radicalSolve}\opLeftPren{}eq\optinner{, x}
\opRightPren{}} finds solutions expressed in terms of
radicals of the equation
\smath{eq} involving rational functions.
Solutions will be found with respect to a \spadtype{Symbol}
given as a second argument to the operation.
This second argument may be omitted when
\smath{eq} contains a unique symbol.
\bigitem\smath{\mbox{\bf radicalSolve}\opLeftPren{}leq{, lv}\opRightPren{}} 
finds solutions
expressed in terms of radicals of the system
of equations \smath{leq} involving rational functions.
Solutions are found with respect to a list \smath{lv} of \spadtype{Symbol}s,
or with respect to all variables appearing in the equations,
if no second argument is given.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}eq\optinner{, x}\opRightPren{}} 
finds exact symbolic solutions to equation
\smath{eq} involving either
rational functions or expressions of type \spadtype{Expression(R)}.
Solutions will be found with respect to a \spadtype{Symbol}
given as a second argument to the operation.
The second argument may be omitted when
\smath{eq} contains a unique symbol.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}leq{, lv}\opRightPren{}} 
finds exact solutions
to a system of equations \smath{leq} involving rational functions 
or expressions
of type \smath{\mbox{\bf Expression}\opLeftPren{}R\opRightPren{}}.
Solutions are found with respect to a list of \smath{lv} of 
\spadtype{Symbol}s,
or with respect to all variables appearing in the equations
if no second argument is given.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}eq, \allowbreak{} 
epsilon\opRightPren{}} finds all the real solutions
to precision \smath{epsilon}
of the univariate equation \smath{eq} of rational functions with
respect to the unique variable appearing in \smath{eq}.
The real solutions are either expressed
as rational numbers or floats depending on the type of \smath{epsilon}.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}[ eq_1\ldots eq_n], 
epsilon\opRightPren{}}
computes the real solutions to precision \smath{epsilon} of a system of
equations \smath{eq_i} involving rational functions.
The real solutions are either expressed
as rational numbers or floats depending on the type of \smath{epsilon}.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}M, 
\allowbreak{} v\opRightPren{}}, where \smath{M} is a matrix and
\smath{v} is a \spadtype{Vector} of coefficients, finds a particular
solution of the system \smath{Mx=v} and a basis of the associated 
homogeneous system
\smath{MX=0}.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}eq, \allowbreak{} y, 
\allowbreak{} x=a, \allowbreak{} [ y_0\ldots y_m]\opRightPren{}} returns either
the solution of the initial value problem \smath{eq},
\smath{y(a) = y_0}, \smath{y'(a)=a_1}, \smath{\ldots} or
\mbox{\tt "failed"} if no solution can be found.
Note: an error occurs if the equation \smath{eq} is not a linear
ordinary equation or of the form \smath{dy/dx = f(x, y)}.
\bigitem\smath{\mbox{\bf solve}\opLeftPren{}eq, \allowbreak{} y, 
\allowbreak{} x\opRightPren{}} returns either a solution of the
ordinary diffential equation \smath{eq} or \mbox{\tt "failed"} if no
non-trivial solution can be found. If \smath{eq} is a linear ordinary
differential equation, a solution is of the form
\smath{[ h, [ b_1, \ldots, ]]} where \smath{h}
is a particular solution and \smath{[ b_1, \ldots, b_m]} are
linearly independent solutions of the associated homogeneous equation
\smath{f(x, y) = 0}. The value returned is a basis for the solution
of the homogeneous equation which are found (note: this is not
always a full basis).
\bigitem See also
\spadfun{dioSolve},
\spadfun{contractSolve},
\spadfun{polSolve},
\spadfun{seriesSolve},
\spadfun{linSolve}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{solveLinearlyOverQ}}\opLeftPren{}
{\it vector}\opRightPren{}%
}%
}%
{2}{(Vector(R), R)->Union(Vector(Fraction(Integer)), "failed")}
{IntegerLinearDependence}
{\smath{\mbox{\bf solveLinearlyOverQ}\opLeftPren{}[v_1, 
\allowbreak{} \ldots, v_n], u\opRightPren{}} 
returns \smath{[c_1, \ldots, c_n]} such that
\smath{c_1v_1 + \cdots + c_n v_n = u}, or \mbox{\tt "failed"} if no such
rational numbers \smath{c_i} exist.
The elements of the \smath{v_i} and \smath{u} can
be from any extension ring with an explicit linear
dependence test, for example,
expressions, complex values, polynomials, rational functions, or exact numbers.
See \spadtype{LinearExplicitRingOver}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{solveLinearPolynomialEquation}}\opLeftPren{}
{\it listOfPolys}, \allowbreak{}{\it  poly}\opRightPren{}%
}%
}%
{2}{(List(SparseUnivariatePolynomial(\$)), 
SparseUnivariatePolynomial(\$))->Union(List(SparseUnivariatePolynomial(\$)),
 "failed")}
{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf solveLinearPolynomialEquation}\opLeftPren{}
[f_1, \allowbreak{} \ldots, f_n], g\opRightPren{}},
where \smath{g} is a polynomial and the \smath{f_i} 
are polynomials relatively prime to
one another,
returns a list of polynomials \smath{a_i} such that 
\smath{g/{\prod_i{f_i}} = \sum_i{ai/fi}},
or \mbox{\tt "failed"} if no such list of \smath{a_i}'s exists.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sort}}\opLeftPren{}{\it 
\optinit{predicate, }aggregate}\opRightPren{}%
 \opand \mbox{\axiomFun{sort!}}\opLeftPren{}{\it 
\optinit{predicate, }aggregate}\opRightPren{}%
}%
}%
{2}{((S, S)->Boolean, \$)->\$}{FiniteLinearAggregate}
{\smath{\mbox{\bf sort}\opLeftPren{}\optfirst{p, }a\opRightPren{}} 
returns a copy of
\smath{a} sorted using total ordering predicate \smath{p}.
\newitem
\smath{\mbox{\bf sort!}\opLeftPren{}\optfirst{p, }u\opRightPren{}} 
returns \smath{u} destructively changed with its
elements ordered by comparison function \smath{p}.
\newitem
By default, \smath{p} is the operation \smath{\leq}.
Thus both \smath{\mbox{\bf sort}\opLeftPren{}u\opRightPren{}} and 
\smath{\mbox{\bf sort!}\opLeftPren{}u\opRightPren{}} returns \smath{u} with
its elements in ascending order.
\newitem
Also: \smath{\mbox{\bf sort}\opLeftPren{}lp\opRightPren{}} 
sorts a list of permutations {\it lp}
according to cycle structure, first according to the length of cycles,
second, if \smath{S} has \spadtype{Finite} or \smath{S} has 
\spadtype{OrderedSet},
according to lexicographical order of entries in cycles of equal length.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{spherical}}\opLeftPren{}{\it point}\opRightPren{}%
}%
}%
{1}{(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf spherical}\opLeftPren{}pt\opRightPren{}} 
transforms point \smath{pt} from spherical coordinates to
Cartesian coordinates, mapping \smath{(r, \theta, \phi)} to
\smath{x = r \sin(\phi) \cos(\theta)}, \smath{y = r \sin(\phi)
\sin(\theta)}, \smath{z = r \cos(\phi)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{split}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  binarySearchTree}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf split}\opLeftPren{}x, \allowbreak{} t\opRightPren{}} 
splits binary search tree \smath{t} into two components, returning a
record of two components:
\smath{less}, a binary search tree whose components are all
less than x; and,
\smath{greater}, a binary search tree with all the rest of the 
components of \spad{t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{split!}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, Integer)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf split!}\opLeftPren{}u, 
\allowbreak{} n\opRightPren{}} splits \smath{u} into two aggregates:
the first consisting of \smath{v}, the first \smath{n}
elements of \smath{u}, and \smath{w} consisting of all the rest.
The value of \smath{w} is returned.
Thus \smath{v = {\bf first}(u, n)} and \smath{w := {\bf rest}(u, n)}.
Note: afterwards \smath{\mbox{\bf rest}\opLeftPren{}u, 
\allowbreak{} n\opRightPren{}} returns 
\smath{\mbox{\bf empty}\opLeftPren{}\opRightPren{}}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{splitDenominator}}\opLeftPren{}
{\it listOfFractions}\opRightPren{}%
}%
}%
{1}{(A)->Record(num:A, den:R)}{CommonDenominator}
{\smath{\mbox{\bf splitDenominator}\opLeftPren{}u\opRightPren{}},
where \smath{u} is a list of fractions
\smath{[q_1, \ldots, q_n]}, returns \smath{[[p_1, \ldots, p_n], d]} such that
\smath{q_i = p_i/d} and \smath{d} is a common denominator 
for the \smath{q_i}'s.
Similarly, the function is defined for a matrix (respectively, a polynomial)
\smath{u} in which case the \smath{q_i} are the elements of 
(respectively, the coefficients of)
\smath{u}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sqfrFactor}}\opLeftPren{}
{\it element}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(R, Integer)->\$}{Factored}
{\smath{\mbox{\bf sqfrFactor}\opLeftPren{}base, 
\allowbreak{} exponent\opRightPren{}} creates a factored object with
a single factor whose \smath{base} is asserted to be square-free
(flag = {\tt "sqfr"}).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sqrt}}\opLeftPren{}
{\it expression\opt{, option}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{RadicalCategory}
{\smath{\mbox{\bf sqrt}\opLeftPren{}x\opRightPren{}} 
returns the square root of \smath{x}.
\newitem
\smath{\mbox{\bf sqrt}\opLeftPren{}x, \allowbreak{} y\opRightPren{}}, 
where \smath{x} and
\smath{y} are \smath{p}-adic integers, returns a square root of \smath{x} where
argument \smath{y} is a square root of \smath{x \mod p}.
See also \spadtype{PAdicIntegerCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{square?}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{MatrixCategory}
{\smath{\mbox{\bf square?}\opLeftPren{}m\opRightPren{}} 
tests if \smath{m} is a square matrix.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{squareFree}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Factored(\$)}{UniqueFactorizationDomain}
{\smath{\mbox{\bf squareFree}\opLeftPren{}x\opRightPren{}} 
returns the square-free factorization of \smath{x},
that is, such that the factors are pairwise relatively 
prime and each has multiple prime factors.
Argument \smath{x} can be a member of any domain of
category \spadtype{UniqueFactorizationDomain} such as a polynomial or integer.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{squareFreePart}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{PolynomialCategory}
{\smath{\mbox{\bf squareFreePart}\opLeftPren{}p\opRightPren{}} 
returns product of all the prime factors of
\smath{p} each taken with multiplicity one.
Argument \smath{p} can be a member of any domain of
category \spadtype{UniqueFactorizationDomain} such as a polynomial or integer.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{squareFreePolynomial}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(SparseUnivariatePolynomial(\$))->
Factored(SparseUnivariatePolynomial(\$))}{PolynomialFactorizationExplicit}
{\smath{\mbox{\bf squareFreePolynomial}\opLeftPren{}p\opRightPren{}} 
returns the square-free factorization of the univariate polynomial \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{squareTop}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{MatrixCategory}
{\smath{\mbox{\bf squareTop}\opLeftPren{}A\opRightPren{}} 
returns an \smath{n}-by-\smath{n} matrix
consisting of the first \smath{n} rows of the
\smath{m}-by-\smath{n} matrix \smath{A}.
The operation calls \spadfun{error} if \smath{m < n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{stack}}\opLeftPren{}{\it list}\opRightPren{}%
}%
}%
{1}{(List(S))->\$}{StackAggregate}
{\smath{\mbox{\bf stack}\opLeftPren{}[x, \allowbreak{} y, 
\allowbreak{} \ldots, z]\opRightPren{}} creates a stack with first (top)
element \smath{x}, second element \smath{y}, \ldots, and last
element \smath{z}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{standardBasisOfCyclicSubmodule}}\opLeftPren{}
{\it listOfMatrices}, \allowbreak{}{\it  vector}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), Vector(R))->Matrix(R)}{RepresentationPackage2}
{\smath{\mbox{\bf standardBasisOfCyclicSubmodule}
\opLeftPren{}lm, \allowbreak{} v\opRightPren{}} returns a matrix
representation of cyclic submodule over a ring \smath{R}, where
\smath{lm} is a list of matrices and \smath{v} is a vector,
such that the non-zero column vectors are an \smath{R}-basis
for \smath{A v}.
\seeType{RepresentationPackage2}
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{stirling1}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
 \opand \mbox{\axiomFun{stirling2}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(I, I)->I}{IntegerCombinatoricFunctions}
{\smath{\mbox{\bf stirling1}\opLeftPren{}n, \allowbreak{} m\opRightPren{}} 
returns the Stirling number of the first kind.
\newitem
\smath{\mbox{\bf stirling2}\opLeftPren{}n, \allowbreak{} m\opRightPren{}} 
returns the Stirling number of the second kind.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{string?}}\opLeftPren{}{\it various}\opRightPren{}%
 \opand \mbox{\axiomFun{string}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf string?}\opLeftPren{}s\opRightPren{}} 
tests if \spadtype{SExpression} object \smath{s} is a string.
\newitem
\smath{\mbox{\bf string}\opLeftPren{}s\opRightPren{}} 
converts the symbol \smath{s} to a string.
An \spadfun{error} is called if the symbol is subscripted.
\newitem
\smath{\mbox{\bf string}\opLeftPren{}s\opRightPren{}} 
returns \spadtype{SExpression} object \smath{s} as
an element of \spadtype{String} if possible,
and otherwise calls \spadfun{error}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{strongGenerators}}\opLeftPren{}
{\it listOfPermutations}\opRightPren{}%
}%
}%
{1}{(\$)->List(Permutation(S))}{PermutationGroup}
{\smath{\mbox{\bf strongGenerators}\opLeftPren{}gp\opRightPren{}} 
returns strong generators for the permutation
group {\it gp}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{structuralConstants}}\opLeftPren{}
{\it basis}\opRightPren{}%
}%
}%
{0}{()->Vector(Matrix(R))}{FramedNonAssociativeAlgebra}
{\smath{\mbox{\bf structuralConstants}\opLeftPren{}basis\opRightPren{}} 
calculates the structural constants
\smath{[(\gamma_{i, j, k}) {\ \tt for\ }  k {\ \tt in\ } 1..rank()\$R]}
of a domain \smath{R} of category 
\spadtype{FramedNonAssociativeAlgebra} over a ring \smath{R},
defined by:
\smath{v_i  v_j = \gamma_{i, j, 1}  v_1 + \cdots + \gamma_{i, j, n}  v_n},
where \smath{v_1}, \ldots, \smath{v_n} is the fixed \smath{R}-module basis.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{style}}\opLeftPren{}{\it string}\opRightPren{}%
}%
}%
{1}{(String)->\$}{DrawOption}
{\smath{\mbox{\bf style}\opLeftPren{}s\opRightPren{}} 
specifies the drawing style in which the graph
will be plotted by the indicated string \smath{s}.
This option is expressed in the form \code{style == s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sub}}\opLeftPren{}{\it outputForm}, \allowbreak{}
{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf sub}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type
\spadtype{OutputForm} (normally unexposed),
creates an output form for \smath{o_1} subscripted by \smath{o_2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subMatrix}}\opLeftPren{}{\it matrix}, \allowbreak{}
{\it  integer}, \allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}, 
\allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{5}{(\$, Integer, Integer, Integer, Integer)->\$}{MatrixCategory}
{\smath{\mbox{\bf subMatrix}\opLeftPren{}m, \allowbreak{} i_1, 
\allowbreak{} i_2, \allowbreak{} j_1, \allowbreak{} j_2\opRightPren{}} 
extracts the submatrix \smath{[m(i, j)]} where the index
\smath{i} ranges from \smath{i_1} to \smath{i_2} and
the index \smath{j} ranges from \smath{j_1} to \smath{j_2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{submod}}\opLeftPren{}{\it integerNumber}, 
\allowbreak{}{\it  integerNumber}, \allowbreak{}
{\it  integerNumber}\opRightPren{}%
}%
}%
{3}{(\$, \$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf submod}\opLeftPren{}a, \allowbreak{} b, 
\allowbreak{} p\opRightPren{}}, where \smath{0 \leq a < b < p > 1}, returns 
\smath{a-b\mod p},
for integer numbers \smath{a}, \smath{b} and \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subResultantGcd}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  polynomial}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf subResultantGcd}\opLeftPren{}p, 
\allowbreak{} q\opRightPren{}} computes the \smath{gcd} of the polynomials 
\smath{p} and \smath{q} using the SubResultant \smath{GCD} algorithm.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subscript}}\opLeftPren{}{\it symbol}, 
\allowbreak{}{\it  listOfOutputForms}\opRightPren{}%
}%
}%
{2}{(\$, List(OutputForm))->\$}{Symbol}
{\smath{\mbox{\bf subscript}\opLeftPren{}s, \allowbreak{} 
[a1, \allowbreak{} \ldots, an]\opRightPren{}} returns symbol \smath{s} 
subscripted by output forms
\smath{a_1, \ldots, a_n} as a symbol.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subset}}\opLeftPren{}{\it integer}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(Integer, Integer, Integer)->List(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf subSet}\opLeftPren{}n, \allowbreak{} m, 
\allowbreak{} k\opRightPren{}} calculates the \eth{\smath{k}} \smath{m}-subset 
of the set
\smath{0, 1, \ldots, (n-1)} in the lexicographic order 
considered as a decreasing map from
\smath{0, \ldots, (m-1)} into \smath{0, \ldots, (n-1)}.
See \spadtype{SymmetricGroupCombinatoricFunctions}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subset?}}\opLeftPren{}{\it set}, 
\allowbreak{}{\it  set}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{SetAggregate}
{\smath{\mbox{\bf subset?}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} tests if set \smath{u} 
is a subset of set \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subspace}}\opLeftPren{}
{\it threeSpace}\opRightPren{}%
}%
}%
{1}{(\$)->SubSpace(3, R)}{ThreeSpace}
{\smath{\mbox{\bf subspace}\opLeftPren{}s\opRightPren{}} 
returns the space component which holds all the point
information in the \spadtype{ThreeSpace} object \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{substring?}}\opLeftPren{}{\it string}, 
\allowbreak{}{\it  string}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, \$, Integer)->Boolean}{StringAggregate}
{\smath{\mbox{\bf substring?}\opLeftPren{}s, \allowbreak{} t, 
\allowbreak{} i\opRightPren{}} tests if \smath{s} is a substring of \smath{t}
beginning at index \smath{i}. Note: \code{substring?(s, t, 0) = prefix?(s, t)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{subst}}\opLeftPren{}{\it expression}, 
\allowbreak{}{\it  equations}\opRightPren{}%
}%
}%
{2}{(\$, Equation(\$))->\$}{ExpressionSpace}
{\smath{\mbox{\bf subst}\opLeftPren{}f, \allowbreak{} k = g\opRightPren{}} 
formally replaces the kernel \smath{k} by \smath{g} in \smath{f}.
\newitem
\smath{\mbox{\bf subst}\opLeftPren{}f, \allowbreak{} 
[k_1 = g_1, \allowbreak{} \ldots, k_n = g_n]\opRightPren{}} 
formally replaces the kernels
\smath{k_1}, \ldots, \smath{k_n} by \smath{g_1}, \ldots, 
\smath{g_n} in \smath{f}.
\newitem
\smath{\mbox{\bf subst}\opLeftPren{}f, \allowbreak{} [k_1, 
\allowbreak{} \ldots, k_n], [g_1, \ldots, g_n]\opRightPren{}} 
formally replaces kernels
\smath{k_i} by \smath{g_i} in \smath{f}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{suchThat}}\opLeftPren{}{\it symbol}, 
\allowbreak{}{\it  predicates}\opRightPren{}%
}%
}%
{2}{(Symbol, List((D)->Boolean))->Expression(Integer)}{AttachPredicates}
{\smath{\mbox{\bf suchThat}\opLeftPren{}sy, 
\allowbreak{} pred\opRightPren{}} attaches the
predicate \smath{pred} to symbol \smath{sy}.
Argument \smath{pred} may also be a list \smath{[p_1, \ldots, p_n]}
of predicates \smath{p_i}. In this case,
the predicate \smath{pred} attached to \smath{sy}
is \smath{p_1 \and \ldots \and p_n}.
\newitem
\smath{\mbox{\bf suchThat}\opLeftPren{}r, \allowbreak{} [a_1, 
\allowbreak{} \ldots, a_n], f\opRightPren{}} returns the rewrite rule 
\smath{r} with the
predicate \smath{f(a1, \ldots, an)} attached to it.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{suffix?}}\opLeftPren{}{\it string}, 
\allowbreak{}{\it  string}\opRightPren{}%
}%
}%
{2}{(\$, \$)->Boolean}{StringAggregate}
{\smath{\mbox{\bf suffix?}\opLeftPren{}s, 
\allowbreak{} t\opRightPren{}} tests if the string \smath{s} 
is the final substring of \smath{t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sum}}\opLeftPren{}
{\it rationalFunction}, \allowbreak{}
{\it  symbolOrSegmentBinding}\opRightPren{}%
}%
}%
{2}{(Fraction(Polynomial(R)), 
Symbol)->Union(Fraction(Polynomial(R)), Expression(R))}{RationalFunctionSum}
{\smath{\mbox{\bf sum}\opLeftPren{}a(n), \allowbreak{} n\opRightPren{}},
where \smath{a(n)} is an rational function or expression involving
the symbol \smath{n},
returns the indefinite sum \smath{A} of \smath{a} with respect
to upward difference on \smath{n}, that is, 
\smath{A(n+1) - A(n) = a(n)}.
\newitem
\smath{\mbox{\bf sum}\opLeftPren{}f(n), 
\allowbreak{} n = a..b\opRightPren{}}, where
\smath{f(n)}, \smath{a}, and \smath{b} are rational functions (or polynomials),
computes and returns the sum \smath{f(a) + f(a+1) + \cdots + f(b)} 
as a rational function
(or polynomial).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{summation}}\opLeftPren{}
{\it expression}, \allowbreak{}{\it  segmentBinding}\opRightPren{}%
}%
}%
{2}{(\$, SegmentBinding(\$))->\$}{CombinatorialOpsCategory}
{\smath{\mbox{\bf summation}\opLeftPren{}f, 
\allowbreak{} n = a..b\opRightPren{}} returns the formal sum 
\smath{\sum_{n=a}^b f(n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sumOfDivisors}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf sumOfDivisors}\opLeftPren{}n\opRightPren{}} 
returns the sum of the integers between 1 and
integer \smath{n} (inclusive) which divide \smath{n}.
This sum is often denoted in the literature by \smath{\sigma(n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sumOfKthPowerDivisors}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(Integer, NonNegativeInteger)->Integer}{IntegerNumberTheoryFunctions}
{\smath{\mbox{\bf sumOfKthPowerDivisors}\opLeftPren{}n, 
\allowbreak{} k\opRightPren{}} returns the sum of the
\eth{\smath{k}} powers of the integers between 1 and \smath{n} (inclusive) 
which divide \smath{n}.
This sum is often denoted in the literature by \smath{\sigma_k(n)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sumSquares}}\opLeftPren{}{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->List(Integer)}{GaussianFactorizationPackage}
{\smath{\mbox{\bf sumSquares}\opLeftPren{}p\opRightPren{}} returns the 
list \smath{[a, b]} such that
\smath{a^2+b^2} is equal to the integer prime \smath{p}, and
calls \spadfun{error} if this is not possible.
It will succeed if \smath{p} is 2 or congruent to \smath{1 \mod 4}.
}



% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{sup}}\opLeftPren{}{\it element}, \allowbreak{}
{\it  element}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{OrderedAbelianMonoidSup}
{\smath{\mbox{\bf sup}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
returns the least element from which both \smath{x} and \smath{y} can 
be subtracted.
The purpose of \spadfun{sup} is to act as a supremum with
respect to the partial order imposed by the \smath{-} operation on the domain.
See \spadtype{OrderedAbelianMonoidSup} for details.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{super}}\opLeftPren{}{\it outputForm}, 
\allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf super}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of type 
\spadtype{OutputForm} (normally unexposed),
creates an output form for \smath{o_1} superscripted by \smath{o_2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{superscript}}\opLeftPren{}{\it symbol}, 
\allowbreak{}{\it  listOfOutputForms}\opRightPren{}%
}%
}%
{2}{(\$, List(OutputForm))->\$}{Symbol}
{\smath{\mbox{\bf superscript}\opLeftPren{}s, \allowbreak{} [a_1, 
\allowbreak{} \ldots, a_n]\opRightPren{}} returns symbol \smath{s} 
superscripted by
output forms \smath{[a_1, \ldots, a_n]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{supersub}}\opLeftPren{}{\it outputForm}, 
\allowbreak{}{\it  listOfOutputForms}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf supersub}\opLeftPren{}o, \allowbreak{} lo\opRightPren{}},
where \smath{o} is an object of type \spadtype{OutputForm}
(normally unexposed)
and \smath{lo} is a list of output forms of the form
\smath{[sub_1, super_1, sub_2, super_2, \ldots, sub_n, super_n]}
creates an output form with each subscript aligned under each superscript.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{surface}}\opLeftPren{}{\it function}, 
\allowbreak{}{\it  function}, \allowbreak{}{\it  function}\opRightPren{}%
}%
}%
{3}{(ComponentFunction, ComponentFunction, ComponentFunction)->\$}
{ParametricSurface}
{\smath{\mbox{\bf surface}\opLeftPren{}c_1, \allowbreak{} c_2, 
\allowbreak{} c_3\opRightPren{}} creates a surface from three 
parametric component functions
\smath{c_1}, \smath{c_2}, and \smath{c_3}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{swap!}}\opLeftPren{}{\it aggregate}, 
\allowbreak{}{\it  index}, \allowbreak{}{\it  index}\opRightPren{}%
}%
}%
{3}{(\$, Index, Index)->Void}{IndexedAggregate}
{\smath{\mbox{\bf swap!}\opLeftPren{}u, \allowbreak{} i, 
\allowbreak{} j\opRightPren{}} interchanges elements \smath{i} and \smath{j} 
of aggregate \smath{u}. No meaningful value is returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{swapColumns!}}\opLeftPren{}{\it matrix}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Integer)->\$}{MatrixCategory}
{\smath{\mbox{\bf swapColumns!}\opLeftPren{}m, \allowbreak{} i, 
\allowbreak{} j\opRightPren{}} interchanges the \eth{\smath{i}} and 
\eth{\smath{j}} columns of \smath{m}
returning \smath{m} which is destructively altered.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{swapRows!}}\opLeftPren{}{\it matrix}, 
\allowbreak{}{\it  integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{3}{(\$, Integer, Integer)->\$}{MatrixCategory}
{\smath{\mbox{\bf swapRows!}\opLeftPren{}m, \allowbreak{} i, 
\allowbreak{} j\opRightPren{}} interchanges the \eth{\smath{i}} and 
\eth{\smath{j}} rows of \smath{m},
returning \smath{m} which is destructively altered.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symbol?}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{SExpressionCategory}
{\smath{\mbox{\bf symbol?}\opLeftPren{}s\opRightPren{}} 
tests if \spadtype{SExpression} object \smath{s}
is a symbol.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symbol}}\opLeftPren{}{\it sExpression}\opRightPren{}%
}%
}%
{1}{(\$)->Sym}{SExpressionCategory}
{\smath{\mbox{\bf symbol}\opLeftPren{}s\opRightPren{}} 
returns \smath{s} as an element of type \spadtype{Symbol},
or calls \spadfun{error} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symmetric?}}\opLeftPren{}{\it matrix}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{MatrixCategory}
{\smath{\mbox{\bf symmetric?}\opLeftPren{}m\opRightPren{}} tests 
if the matrix \smath{m} is square and symmetric,
that is, if each \smath{m(i, j) = m(j, i)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symmetricDifference}}\opLeftPren{}{\it set}, 
\allowbreak{}{\it  set}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{SetAggregate}
{\smath{\mbox{\bf symmetricDifference}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} returns the set aggregate of
elements \smath{x} which are members of set aggregate \smath{u} or
set aggregate \smath{v} but not both.
If \smath{u} and \smath{v} have no elements in common,
\smath{\mbox{\bf symmetricDifference}\opLeftPren{}u, 
\allowbreak{} v\opRightPren{}} returns a copy of \smath{u}.
Note: \smath{symmetricDifference(u, v) = {\bf union}({\bf
difference}(u, v), {\bf difference}(v, u))}
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symmetricGroup}}\opLeftPren{}
{\it integers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf symmetricGroup}\opLeftPren{}n\opRightPren{}} 
constructs the symmetric group \smath{S_n} acting on the
integers 1, \ldots, \smath{n}.
The generators are the \smath{n}-cycle \smath{(1, \ldots, n)} 
and the 2-cycle \smath{(1, 2)}.
\newitem
\smath{\mbox{\bf symmetricGroup}\opLeftPren{}li\opRightPren{}}, 
where \smath{li} is a list of integers,
constructs the symmetric group acting on the
integers in the list \smath{li}.
The generators are the cycle given by \smath{li} and
the 2-cycle \smath{(li(1), li(2))}.
Duplicates in the list will be removed.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symmetricRemainder}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{IntegerNumberSystem}
{\smath{\mbox{\bf symmetricRemainder}\opLeftPren{}a, 
\allowbreak{} b\opRightPren{}}, where \smath{b > 1}, yields
\smath{r} where \smath{ -b/2 \leq r < b/2}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{symmetricTensors}}\opLeftPren{}
{\it matrices}, \allowbreak{}{\it  positiveInteger}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), PositiveInteger)->List(Matrix(R))}
{RepresentationPackage1}
{\smath{\mbox{\bf symmetricTensors}\opLeftPren{}la, 
\allowbreak{} n\opRightPren{}}, where \smath{la} is a list
\smath{[a_1, \ldots, a_k]} of \smath{m}-by-\smath{m} square
matrices, applies to each matrix \smath{a_i}, the irreducible,
polynomial representation of the general linear group \smath{GL_m}
corresponding to the partition \smath{(n, 0, \ldots, 0)} of
\smath{n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{systemCommand}}\opLeftPren{}
{\it string}\opRightPren{}%
}%
}%
{1}{(String)->Void}{MoreSystemCommands}
{\smath{\mbox{\bf systemCommand}\opLeftPren{}cmd\opRightPren{}} 
takes the string \smath{cmd} and
passes it to the runtime environment for execution as a system
command.
Although various things may be printed, no usable value is
returned.
}
% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tableau}}\opLeftPren{}
{\it listOfListOfElements}\opRightPren{}%
}%
}%
{1}{(List(List(S)))->\$}{Tableau}
{\smath{\mbox{\bf tableau}\opLeftPren{}ll\opRightPren{}} converts a 
list of lists \smath{ll} to an object
of type \spadtype{Tableau}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tableForDiscreteLogarithm}}\opLeftPren{}
{\it integer}\opRightPren{}%
}%
}%
{1}{(Integer)->Table(PositiveInteger, NonNegativeInteger)}{FiniteFieldCategory}
{\smath{\mbox{\bf tableForDiscreteLogarithm}\opLeftPren{}n\opRightPren{}} 
returns a table of the
discrete logarithms of \smath{a^0} up to \smath{a^{n-1}} which,
when called with the key 
\smath{\mbox{\bf lookup}\opLeftPren{}a^i\opRightPren{}}, returns \smath{i} for
\smath{i} in \smath{0..n-1} for a finite field.
This operation calls \spadfun{error} if
not called for prime divisors of order of multiplicative group.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{table}}\opLeftPren{}
{\it \opt{listOfRecords}}\opRightPren{}%
}%
}%
{1}{(List(Record(key:Key, entry:Entry)))->\$}{TableAggregate}
{\smath{\mbox{\bf table}\opLeftPren{}[p_1, \allowbreak{} p_2, 
\allowbreak{} \ldots, p_n]\opRightPren{}} creates a table with keys of
type \smath{Key} and entries of type \smath{Entry}.
Each pair \smath{p_i} is a record with selectors \smath{key} and
\smath{entry} with values from the corresponding domains
\smath{Key} and \smath{Entry}.
\newitem
\smath{\mbox{\bf table}\opLeftPren{}\opRightPren{}\$T} 
creates a empty table of domain \smath{T}
of category \spadtype{TableAggregate}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tail}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf tail}\opLeftPren{}a\opRightPren{}} 
returns the last node of recursive aggregate \smath{a}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tan}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{tanIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float},
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem
\smath{\mbox{\bf tan}\opLeftPren{}x\opRightPren{}} 
returns the tangent of \smath{x}.
\newitem
\smath{\mbox{\bf tanIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf tan}\opLeftPren{}x\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tan2cot}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf tan2cot}\opLeftPren{}f\opRightPren{}} converts 
every \smath{\mbox{\bf tan}\opLeftPren{}u\opRightPren{}} appearing in 
\smath{f} into \smath{1/{\rm cot}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tan2trig}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf tan2trig}\opLeftPren{}f\opRightPren{}} converts 
every \smath{\mbox{\bf tan}\opLeftPren{}u\opRightPren{}} appearing in 
\smath{f} into \smath{\mbox{\bf sin}\opLeftPren{}u)/{\rm cos}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tanh}}\opLeftPren{}{\it expression}\opRightPren{}%
 \opand \mbox{\axiomFun{tanhIfCan}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(K)->Union(K, "failed")}{PartialTranscendentalFunctions}
{\opkey{Argument x can be a \spadtype{Complex}, \spadtype{Float}, 
\spadtype{DoubleFloat}, or
\spadtype{Expression} value or a series. }
\newitem
\smath{\mbox{\bf tanh}\opLeftPren{}x\opRightPren{}} 
returns the hyperbolic tangent of \smath{x}.
\newitem
\smath{\mbox{\bf tanhIfCan}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf tanh}\opLeftPren{}x\opRightPren{}} if possible, 
and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tanh2coth}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf tanh2coth}\opLeftPren{}f\opRightPren{}} 
converts every \smath{\mbox{\bf tanh}\opLeftPren{}u\opRightPren{}} 
appearing in \smath{f} into \smath{1/{\rm coth}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tanh2trigh}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TranscendentalManipulations}
{\smath{\mbox{\bf tanh2trigh}\opLeftPren{}f\opRightPren{}} converts 
every \smath{\mbox{\bf tanh}\opLeftPren{}u\opRightPren{}} appearing in 
\smath{f} into \smath{\mbox{\bf sinh}\opLeftPren{}u)/{\rm cosh}(u)}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{taylor}}\opLeftPren{}{\it various}, 
\allowbreak{}{\it  ..}\opRightPren{}%
}%
}%
{1}{(\$)->UTS}{UnivariateLaurentSeriesConstructorCategory}
{\smath{\mbox{\bf taylor}\opLeftPren{}u\opRightPren{}} 
converts the Laurent series \smath{u(x)} to a Taylor series  if possible,
and if not, calls \spadfun{error}.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}f\opRightPren{}} 
converts the expression \smath{f} into a
Taylor expansion of the expression \smath{f}.
Note: \smath{f} must have only one variable.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}sy\opRightPren{}}, 
where \smath{sy} is a symbol, returns \smath{sy} as a Taylor series.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}n +-> a(n), 
\allowbreak{} x = a\opRightPren{}} returns \smath{\sum_{n = 0 \ldots}
a(n)(x-a)^n)}.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}f, 
\allowbreak{} x = a\optinner{, n}\opRightPren{}} 
expands the expression \smath{f} as a
series in powers of \smath{(x - a)} with \smath{n} terms.
If \smath{n} is missing, the number of terms is governed by
the value set by the system command \spadsyscom{)set streams calculate}.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}i +-> a(i), 
\allowbreak{} x = a, \allowbreak{} m..\optinner{n, k}\opRightPren{}} creates the
Taylor series
\smath{\sum\nolimits_{i = m..n {\ \tt by\ } k}{a(i) (x-a)^i}}.
Here \smath{m}, \smath{n} and \smath{k} are integers.
Upper-limit \smath{n} and stepsize \smath{k} are optional 
and have default values
\smath{n = \infty} and \smath{k = 1}.
\newitem
\smath{\mbox{\bf taylor}\opLeftPren{}a(i), \allowbreak{} i, 
\allowbreak{} x=a, \allowbreak{} m..\optinner{n, k}\opRightPren{}} returns
\smath{\sum\nolimits_{i = m..n {\bf by} k}{a(n) (x - a)^n}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{taylorIfCan}}\opLeftPren{}
{\it laurentSeries}\opRightPren{}%
}%
}%
{1}{(\$)->Union(UTS, "failed")}{UnivariateLaurentSeriesConstructorCategory}
{\smath{\mbox{\bf taylorIfCan}\opLeftPren{}f(x)\opRightPren{}} 
converts the Laurent series
\smath{f(x)} to a Taylor series if possible, and returns
\mbox{\tt "failed"} if this is not possible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{taylorRep}}\opLeftPren{}
{\it laurentSeries}\opRightPren{}%
}%
}%
{1}{(\$)->UTS}{UnivariateLaurentSeriesConstructorCategory}
{\smath{\mbox{\bf taylorRep}\opLeftPren{}f(x)\opRightPren{}} 
returns \smath{g(x)}, where \smath{f =
x^n  g(x)} is represented by \smath{[n, g(x)]}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tensorProduct}}\opLeftPren{}
{\it listOfMatrices\opt{, listOfMatrices}}\opRightPren{}%
}%
}%
{2}{(List(Matrix(R)), List(Matrix(R)))->List(Matrix(R))}
{RepresentationPackage1}
{\smath{\mbox{\bf tensorProduct}\opLeftPren{}[a_1, 
\allowbreak{} \ldots, a_k]\optinner{, [b_1, \ldots, b_k]}\opRightPren{}}
calculates the list of Kronecker products of the matrices
\smath{a_i} and \smath{b_i} for
\smath{1 \leq i \leq k}.
If a second argument is missing, the \smath{b_i} is defined as the 
corresponding \smath{a_i}.
Also, \smath{\mbox{\bf tensorProduct}\opLeftPren{}m\opRightPren{}}, 
where \smath{m} is a matrix,
is defined as \smath{\mbox{\bf tensorProduct}\opLeftPren{}[m], 
\allowbreak{} [m]\opRightPren{}}.
Note: If each list of matrices corresponds to a group representation
(representation of generators) of one group, then
these matrices correspond to the tensor product of the two representations.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{terms}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{1}{(\$)->List(Record(gen:S, exp:E))}{FreeAbelianMonoidCategory}
{\smath{\mbox{\bf terms}\opLeftPren{}s\opRightPren{}} 
returns a stream of the non-zero terms
of series \smath{s}.
Each term is returned as a record with selectors
\smath{k} and \smath{c}, which correspond to the
exponent and coefficient, respectively.
The terms are ordered by increasing order of exponents.
\newline
\smath{\mbox{\bf terms}\opLeftPren{}m\opRightPren{}},
where \smath{m} is a free abelian monoid of the form
\smath{e_1 a_1 + \cdots + e_n a_n},
returns \smath{[[a_1, e_1], \ldots, [a_n, e_n]]}.
See \spadtype{FreeAbelianMonoidCategory}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tex}}\opLeftPren{}
{\it formattedObject}\opRightPren{}%
}%
}%
{1}{(\$)->List(String)}{TexFormat}
{\smath{\mbox{\bf tex}\opLeftPren{}t\opRightPren{}} 
extracts the TeX section of a TeX formatted object \smath{t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{third}}\opLeftPren{}{\it aggregate}\opRightPren{}%
}%
}%
{1}{(\$)->S}{UnaryRecursiveAggregate}
{\smath{\mbox{\bf third}\opLeftPren{}u\opRightPren{}} 
returns the third element of a recursive aggregate \smath{u}.
Note: \smath{\mbox{\bf third}\opLeftPren{}u) = first(rest(rest(u)))}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{title}}\opLeftPren{}{\it string}\opRightPren{}%
}%
}%
{1}{(String)->\$}{DrawOption}
{\smath{\mbox{\bf title}\opLeftPren{}s\opRightPren{}} 
specifies string \smath{s} as the title for a plot.
This option is expressed as a option to the \spadfun{draw} command in the
form \code{title == s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{top}}\opLeftPren{}{\it stack}\opRightPren{}%
 \opand \mbox{\axiomFun{top!}}\opLeftPren{}{\it dequeue}\opRightPren{}%
}%
}%
{1}{(\$)->S}{StackAggregate}
{\smath{\mbox{\bf top}\opLeftPren{}s\opRightPren{}} 
returns the top element \smath{x} from \smath{s}.
\newitem
\smath{\mbox{\bf top!}\opLeftPren{}d\opRightPren{}} 
returns the element at the top (front) of the dequeue.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{toroidal}}\opLeftPren{}{\it value}\opRightPren{}%
}%
}%
{1}{(R)->(Point(R))->Point(R)}{CoordinateSystems}
{\smath{\mbox{\bf toroidal}\opLeftPren{}element\opRightPren{}} 
transforms from toroidal coordinates to Cartesian coordinates:
\smath{\mbox{\bf toroidal}\opLeftPren{}a\opRightPren{}} 
is a function that maps the point \smath{(u, v, \phi)} to
\smath{x = a{\sinh}(v){\cos}(\phi)/({\cosh}(v)-{\cos}(u))},
\smath{y = a{\sinh}(v){\sin}(\phi)/({\cosh}(v)-{\cos}(u))},
\smath{z = a{\sin}(u)/({\cosh}(v)-{\cos}(u))}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{toScale}}\opLeftPren{}{\it boolean}\opRightPren{}%
}%
}%
{1}{(Boolean)->\$}{DrawOption}
{\smath{\mbox{\bf toScale}\opLeftPren{}b\opRightPren{}} 
specifies whether or not a plot is to be drawn
to scale.
This command may be expressed as an option to the
\spadfun{draw} command in the form \smath{toScale == b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{totalDegree}}\opLeftPren{}
{\it polynomial}, \allowbreak{}{\it  listOfVariables}\opRightPren{}%
}%
}%
{2}{(\$, List(VarSet))->NonNegativeInteger}{PolynomialCategory}
{\smath{\mbox{\bf totalDegree}\opLeftPren{}p\optinner{, lv}\opRightPren{}} 
returns the maximum sum
(over all monomials of polynomial \smath{p})
of the variables in the list \smath{lv}.
If a second argument is missing, \smath{lv} is defined
to be all the variables appearing in \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{totalfract}}\opLeftPren{}
{\it polynomial}\opRightPren{}%
}%
}%
{1}{(PRF)->Record(sup:Polynomial(R), inf:Polynomial(R))}
{MPolyCatRationalFunctionFactorizer}
{\smath{\mbox{\bf totalfract}\opLeftPren{}prf\opRightPren{}} 
takes a polynomial whose coefficients are
themselves fractions of polynomials and returns a record
containing the numerator and denominator resulting from putting
\smath{prf} over a common denominator.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{totalGroebner}}\opLeftPren{}
{\it listOfPolynomials}, \allowbreak{}{\it  listOfVariables}\opRightPren{}%
}%
}%
{2}{(List(Polynomial(F)), List(Symbol))->List(Polynomial(F))}{PolyGroebner}
{\smath{\mbox{\bf totalGroebner}\opLeftPren{}lp, 
\allowbreak{} lv\opRightPren{}} computes the Gr\"obner basis for the
\index{Groebner basis@{Gr\protect\"{o}bner basis}}
list of polynomials \smath{lp} with the terms ordered first by
\index{basis!Groebner@{Gr\protect\"{o}bner}}
total degree and then refined by reverse lexicographic ordering.
The variables are ordered by their position in the list
\smath{lv}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tower}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->List(Kernel(\$))}{ExpressionSpace}
{\smath{\mbox{\bf tower}\opLeftPren{}f\opRightPren{}} 
returns all the kernels appearing in \smath{f}, regardless of level.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{trace}}\opLeftPren{}
{\it various}, \allowbreak{}{\it  ..}\opRightPren{}%
}%
}%
{1}{(\$)->R}{SquareMatrixCategory}
{\smath{\mbox{\bf trace}\opLeftPren{}m\opRightPren{}} 
returns the trace of the matrix \smath{m}, that is, the
sum of its diagonal elements.
\newitem\smath{\mbox{\bf trace}\opLeftPren{}a\opRightPren{}} 
returns the trace of the regular
representation of \smath{a},
an element of an algebra of finite rank.
See \spadtype{FiniteRankAlgebra}.
\newitem\smath{\mbox{\bf trace}\opLeftPren{}a\optinner{, d}\opRightPren{}},
where \smath{a} is an element of a finite algebraic extension field,
computes the trace of \smath{a} with respect to the field of
extension degree \smath{d}
over the ground field of size \smath{q}.
This operation calls \spadfun{error} if
\smath{d} does not divide the extension degree of \smath{a}.
The default value of \smath{d} is 1.
Note: 
\smath{\mbox{\bf trace}\opLeftPren{}a, d) = \sum_{i=0}^{n/d} a^{q^{d i}}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{traceMatrix}}\opLeftPren{}
{\it \opt{basis}}\opRightPren{}%
}%
}%
{1}{(Vector(\$))->Matrix(R)}{FiniteRankAlgebra}
{\smath{\mbox{\bf traceMatrix}\opLeftPren{}[v1, \allowbreak{} .., 
\allowbreak{} vn]\opRightPren{}} is the \smath{n}-by-\smath{n}
matrix
whose \smath{i}, \smath{j} element is  \smath{Tr(v_i  v_j)}.
If no argument is given, the \smath{v_i} are assumed to be elements
of the fixed basis.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tracePowMod}}\opLeftPren{}{\it poly}, 
\allowbreak{}{\it  nonNegativeInteger}, \allowbreak{}{\it  poly}
\opRightPren{}%
}%
}%
{3}{(FP, NonNegativeInteger, FP)->FP}{DistinctDegreeFactorize}
{\smath{\mbox{\bf tracePowMod}\opLeftPren{}u, \allowbreak{} k, 
\allowbreak{} v\opRightPren{}} returns \smath{\sum\nolimits_{i=0}^k
{u^{2^i}}}, all computed modulo the polynomial \smath{v}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{transcendenceDegree}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->NonNegativeInteger}{ExtensionField}
{\smath{\mbox{\bf transcendenceDegree}\opLeftPren{}\opRightPren{}\$F} 
returns the transcendence degree
of the field extension
\smath{F}, or 0 if the extension is algebraic.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{transcendent?}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{ExtensionField}
{\smath{\mbox{\bf transcendent?}\opLeftPren{}a\opRightPren{}} 
tests whether an element \smath{a} of
a domain that is an extension field over a ground field \smath{F}
is transcendent
with respect to \smath{F}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{transpose}}\opLeftPren{}
{\it matrix\opt{, options}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{MatrixCategory}
{\smath{\mbox{\bf transpose}\opLeftPren{}m\opRightPren{}} 
returns the transpose of the matrix \smath{m}.
\newitem
\smath{\mbox{\bf transpose}\opLeftPren{}t\optinner{, i, j}\opRightPren{}} 
exchanges the \eth{\smath{i}}
and \eth{\smath{j}} indices of \smath{t}.
For example, if \smath{r = {\bf transpose}(t, 2, 3)} for a rank four
tensor \smath{t}, then \smath{r} is the rank four tensor given by
\smath{r(i, j, k, l) = t(i, k, j, l)}.
If \smath{i} and \smath{j} are not given, they are assumed the
first and last index of \smath{t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tree}}\opLeftPren{}
{\it value\opt{, listOfChildren}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{MatrixCategory}
{\smath{\mbox{\bf tree}\opLeftPren{}x, \allowbreak{} ls\opRightPren{}} 
creates an element of \spadtype{Tree} with
value \smath{x} at the root node, and immediate children \spad{ls}
in left-to-right order.
\newitem
\smath{\mbox{\bf tree}\opLeftPren{}x\opRightPren{}} is equivalent to 
\smath{\mbox{\bf tree}\opLeftPren{}x, \allowbreak{} []\$List(S)\opRightPren{}} 
where
\spad{x} has type \spad{S}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{trapezoidal}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  threeIntegers}
\opRightPren{}%
\optand \mbox{\axiomFun{trapezoidalClosed}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
\opand \mbox{\axiomFun{trapezoidalOpen}}\opLeftPren{}{\it floatFunction}, 
\allowbreak{}{\it  fourFloats}, \allowbreak{}{\it  twoIntegers}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf trapezoidal}\opLeftPren{}fn, \allowbreak{} a, 
\allowbreak{} b, \allowbreak{} epsrel, \allowbreak{} epsabs, 
\allowbreak{} nmin, 
\allowbreak{} nmax, \allowbreak{} nint\opRightPren{}}
uses the adaptive trapezoidal method to numerically integrate
function \smath{fn} over the closed interval from \smath{a} to
\smath{b}, with relative accuracy \smath{epsrel} and absolute
accuracy \smath{epsabs}, where the refinement levels for the
checking of convergence vary from \smath{nmin} to \smath{nmax}.
The method is called ``adaptive'' since it requires an additional
parameter \smath{nint} giving the number of subintervals over
which the integrator independently applies the convergence
criteria using \smath{nmin} and \smath{nmax}; this is useful when
a large number of points are needed only in a small fraction of
the entire interval.
Parameter \smath{fn} is a function of type \spadsig{Float}{Float};
\smath{a}, \smath{b}, \smath{epsrel}, and \smath{epsabs} are
floats; \smath{nmin}, \smath{nmax}, and \smath{nint} are integers.
The operation returns a record containing: {\tt value}, an
estimate of the integral; {\tt error}, an estimate of the error in
the computation; {\tt totalpts}, the total integral number of
function evaluations, and {\tt success}, a boolean value that is
\smath{true} if the integral was computed within the user
specified error criterion.
See \spadtype{NumericalQuadrature} for details.
\bigitem\smath{trapezoidalClosed(fn, a, b, epsrel, epsabs, nmin,
nmax)} similarly uses the trapezoidal method to numerically
\index{trapezoidal method}
integrate function \smath{fn} over the closed interval \smath{a}
to \smath{b}, but is not adaptive.
\bigitem\smath{trapezoidalOpen(fn, a, b, epsrel, epsabs, nmin,
nmax)} is similar to \spadfun{trapezoidalClosed}, except that
it integrates function \smath{fn} over the open interval from
\smath{a} to \smath{b}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{triangularSystems}}\opLeftPren{}
{\it listOfFractions}, \allowbreak{}{\it  listOfSymbols}\opRightPren{}%
}%
}%
{2}{(List(Fraction(Polynomial(R))), 
List(Symbol))->List(List(Polynomial(R)))}{SystemSolvePackage}
{\smath{\mbox{\bf triangularSystems}\opLeftPren{}lf, 
\allowbreak{} lv\opRightPren{}} solves the system of equations
defined by
\smath{lf} with respect to the list of symbols \smath{lv}; the
system of equations is obtaining by equating to zero the list of
rational functions \smath{lf}.
The result is a list of solutions where each solution is expressed
as a ``reduced'' triangular system of polynomials.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{trigs}}\opLeftPren{}{\it expression}\opRightPren{}%
}%
}%
{1}{(F)->F}{TrigonometricManipulations}
{\smath{\mbox{\bf trigs}\opLeftPren{}f\opRightPren{}} 
rewrites all the complex logs and exponentials
appearing in \smath{f} in terms of trigonometric functions.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{trim}}\opLeftPren{}{\it string}, \allowbreak{}
{\it  characterOrCharacterClass}\opRightPren{}%
}%
}%
{2}{(\$, Character)->\$}{StringAggregate}
{\smath{\mbox{\bf trim}\opLeftPren{}s, \allowbreak{} c\opRightPren{}} 
returns \smath{s} with all characters \smath{c}
deleted from right and left ends.
For example, \code{trim(" abc ", char " ")} returns
\code{"abc"}.
Argument \smath{c} may also be a character class, in which case
\smath{s} is returned with all characters in \smath{cc} deleted
from right and left ends.
For example, \code{trim("(abc)", charClass "()")} returns
\spad{"abc"}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{truncate}}\opLeftPren{}
{\it various\opt{, options}}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{RealNumberSystem}
{\smath{\mbox{\bf truncate}\opLeftPren{}x\opRightPren{}} 
returns the integer between \smath{x} and 0
closest to \smath{x}.
\newitem
\smath{\mbox{\bf truncate}\opLeftPren{}f, 
\allowbreak{} m\optinner{, n}\opRightPren{}} returns a (finite) power series
consisting of the sum of all terms of \smath{f} of degree
\smath{d} with \smath{n \leq d \leq m}.
Upper bound \smath{m} is \smath{\infty} by default.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tubePoints}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{DrawOption}
{\smath{\mbox{\bf tubePoints}\opLeftPren{}n\opRightPren{}} 
specifies the number of points, \smath{n},
defining the circle that creates the tube around a \threedim{}
curve.
The default is 6.
This option is expressed in the form \code{tubePoints == n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tubePointsDefault}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->PositiveInteger}{ViewDefaultsPackage}
{\smath{\mbox{\bf tubePointsDefault}\opLeftPren{}i\opRightPren{}} 
sets the number of points to use
when creating the circle to be used in creating a \threedim{} tube
plot to \smath{i}.
\newitem
\smath{\mbox{\bf tubePointsDefault}\opLeftPren{}\opRightPren{}} 
returns the number of points to be
used when creating the circle to be used in creating a \threedim{}
tube plot.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tubeRadius}}\opLeftPren{}{\it float}\opRightPren{}%
}%
}%
{1}{(Float)->\$}{DrawOption}
{\smath{\mbox{\bf tubeRadius}\opLeftPren{}r\opRightPren{}} 
specifies a radius \smath{r} for a tube
plot around a \threedim{} curve.
This operation may be expressed as an option
to the \spadfun{draw} command in the form \code{tubeRadius == r}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{tubeRadiusDefault}}\opLeftPren{}
{\it \opt{float}}\opRightPren{}%
}%
}%
{0}{()->DoubleFloat}{ViewDefaultsPackage}
{\smath{\mbox{\bf tubeRadiusDefault}\opLeftPren{}r\opRightPren{}} 
sets the default radius for a
\threedim{} tube plot to \smath{r}.
\newitem
\smath{\mbox{\bf tubeRadiusDefault}\opLeftPren{}\opRightPren{}} 
returns the radius used for a
\threedim{} tube plot.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{twist}}\opLeftPren{}\opRightPren{}%
}%
}%
{ ((A, B)->C)    -> ((B, A)->C)}{}{}
{\smath{\mbox{\bf twist}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function of type \smath{(A, B)}{C},
is the function \smath{g} such that \smath{g(a, b)= f(b, a)}.
See \spadtype{MappingPackage} for related functions.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unary?}}\opLeftPren{}
{\it basicOperator}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{BasicOperator}
{\smath{\mbox{\bf unary?}\opLeftPren{}op\opRightPren{}} tests 
if basic operator \smath{op} is unary,
that is, takes exactly one argument.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{union}}\opLeftPren{}{\it set}, \allowbreak{}
{\it  elementOrSet}\opRightPren{}%
}%
}%
{2}{(\$, S)->\$}{SetAggregate}
{\smath{\mbox{\bf union}\opLeftPren{}u, 
\allowbreak{} x\opRightPren{}} returns the set aggregate \smath{u} with the
element \smath{x} added.
If \smath{u} already contains \smath{x}, 
\smath{\mbox{\bf union}\opLeftPren{}u, \allowbreak{} x\opRightPren{}}
returns a copy of \smath{x}.
\newitem
\smath{\mbox{\bf union}\opLeftPren{}u, \allowbreak{} v\opRightPren{}} 
returns the set aggregate of elements that are
members of either set aggregate \smath{u} or \smath{v}.
See also \axiomType{Multiset}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unit}}\opLeftPren{}{\it \opt{various}}\opRightPren{}%
}%
}%
{1}{(\$)->R}{Factored}
{\smath{\mbox{\bf unit}\opLeftPren{}\opRightPren{}} 
returns a unit of the algebra (necessarily
unique), or \mbox{\tt "failed"} if there is none.
\newitem
\smath{\mbox{\bf unit}\opLeftPren{}u\opRightPren{}} 
extracts the unit part of the factored object
\smath{u}.
\newitem
\smath{\mbox{\bf unit}\opLeftPren{}l\opRightPren{}} 
marks off the units on a viewport according to
the indicated list \smath{l}.
This option is expressed in the draw command in the form
\smath{{\tt unit ==} [f_1, f_2]}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unit?}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{IntegralDomain}
{\smath{\mbox{\bf unit?}\opLeftPren{}x\opRightPren{}} 
tests whether \smath{x} is a unit, that is, if
\smath{x} is invertible.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unitCanonical}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{IntegralDomain}
{\smath{\mbox{\bf unitCanonical}\opLeftPren{}x\opRightPren{}} 
returns \smath{\mbox{\bf unitNormal}\opLeftPren{}x).{canonical}}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unitNormalize}}\opLeftPren{}
{\it factored}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{Factored}
{\smath{\mbox{\bf unitNormalize}\opLeftPren{}u\opRightPren{}} 
normalizes the unit part of the
factorization.
For example, when working with factored integers, this operation
ensures that the bases are all positive integers.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unitNormal}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Record(unit:\$, canonical:\$, associate:\$)}{IntegralDomain}
{\smath{\mbox{\bf unitNormal}\opLeftPren{}x\opRightPren{}} 
tries to choose a canonical element from
the associate class of \smath{x}.
If successful, it returns a record with three components
``unit'', ``canonical'' and ``associate''.
The attribute {\tt canonicalUnitNormal}, if asserted, means
that the ``canonical'' element is the same across all associates
of \smath{x}.
If \smath{\mbox{\bf unitNormal}\opLeftPren{}x) = [u, c, a]} 
then \smath{ux = c},
\smath{au = 1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unitsColorDefault}}\opLeftPren{}
{\it \opt{palette}}\opRightPren{}%
}%
}%
{0}{()->Palette}{ViewDefaultsPackage}
{\smath{\mbox{\bf unitsColorDefault}\opLeftPren{}p\opRightPren{}} 
sets the default color of the unit
ticks in a \twodim{} viewport to the palette \smath{p}.
\newitem
\smath{\mbox{\bf unitsColorDefault}\opLeftPren{}\opRightPren{}} 
returns the default color of the unit
ticks in a \twodim{} viewport.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unitVector}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{DirectProductCategory}
{\smath{\mbox{\bf unitVector}\opLeftPren{}n\opRightPren{}} 
produces a vector with 1 in position
\smath{n} and zero elsewhere.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{univariate}}\opLeftPren{}
{\it polynomial\opt{, variable}}\opRightPren{}%
}%
}%
{1}{(\$)->SparseUnivariatePolynomial(R)}{PolynomialCategory}
{\smath{\mbox{\bf univariate}\opLeftPren{}p\optinner{, v}\opRightPren{}} 
converts the multivariate
polynomial \smath{p} into a univariate polynomial in \smath{v}
whose coefficients are multivariate polynomials in all the other
variables.
If \smath{v} is omitted, then \smath{p} must involve exactly one variable.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{universe}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{FiniteSetAggregate}
{\smath{\mbox{\bf universe}\opLeftPren{}\opRightPren{}}\$\smath{R} 
returns the universal set for
finite set aggregate \smath{R}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unparse}}\opLeftPren{}{\it inputForm}\opRightPren{}%
}%
}%
{ $ -> String}{}{}
{\smath{\mbox{\bf unparse}\opLeftPren{}f\opRightPren{}} 
returns a string \smath{s} such that the parser
would transform \smath{s} to \smath{f}, or
calls \spadfun{error} if \smath{f} is
not the parsed form of a string.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unrankImproperPartitions0}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  integer}\opRightPren{}%
}%
}%
{3}{(Integer, Integer, Integer)->List(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf unrankImproperPartitions0}\opLeftPren{}n, \allowbreak{} m, 
\allowbreak{} k\opRightPren{}} computes the
\eth{\smath{k}} improper partition of nonnegative \smath{n} in
\smath{m} nonnegative parts in reverse lexicographical order.
Example: \smath{ [0, 0, 3] < [0, 1, 2] < [0, 2, 1] < [0, 3, 0] < [1, 0, 2] <
[1, 1, 1] < [1, 2, 0] < [2, 0, 1] < [2, 1, 0] < [3, 0, 0]}.
The operation calls \spadfun{error} if \smath{k} is negative or
too big.
Note: counting of subtrees is done by
\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unrankImproperPartitions1}}\opLeftPren{}
{\it integer}, \allowbreak{}{\it  integer}, \allowbreak{}
{\it  integer}\opRightPren{}%
}%
}%
{3}{(Integer, Integer, Integer)->List(Integer)}
{SymmetricGroupCombinatoricFunctions}
{\smath{\mbox{\bf unrankImproperPartitions1}\opLeftPren{}n, \allowbreak{} m,
\allowbreak{} k\opRightPren{}} computes the
\eth{\smath{k}} improper partition of nonnegative \smath{n} in at most
\smath{m} nonnegative parts ordered as follows: first, in reverse
lexicographical order according to their non-zero parts, then
according to their positions (i.e.
lexicographical order using \smath{subSet}: \smath{[3, 0, 0] < [0, 3, 0]
< [0, 0, 3] < [2, 1, 0] < [2, 0, 1] < [0, 2, 1] < [1, 2, 0] < [1, 0, 2] <
[0, 1, 2] < [1, 1, 1]}).
Note: counting of subtrees is done by
\spadfun{numberOfImproperPartitionsInternal}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{unravel}}\opLeftPren{}
{\it listOfElement}\opRightPren{}%
}%
}%
{1}{(List(R))->\$}{CartesianTensor}
{\smath{\mbox{\bf unravel}\opLeftPren{}t\opRightPren{}} 
produces a tensor from a list of components such that
\smath{\mbox{\bf unravel}\opLeftPren{}{\bf ravel}(t)) = t}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{upperCase}}\opLeftPren{}{\it string}\opRightPren{}%
 \optand \mbox{\axiomFun{upperCase?}}\opLeftPren{}{\it string}\opRightPren{}%
 \opand \mbox{\axiomFun{upperCase!}}\opLeftPren{}{\it string}\opRightPren{}%
}%
}%
{1}{(\$)->\$}{StringAggregate}
{\smath{\mbox{\bf upperCase!}\opLeftPren{}s\opRightPren{}} 
destructively replaces the alphabetic
characters in \smath{s} by upper case characters.
\newitem
\smath{\mbox{\bf upperCase}\opLeftPren{}\opRightPren{}} 
returns the class of all characters for which
\spadfunFrom{upperCase?}{Character} is \smath{true}.
\newitem
\smath{\mbox{\bf upperCase}\opLeftPren{}c\opRightPren{}} 
converts a lower case letter
\smath{c} to the corresponding upper case letter.
If \smath{c} is not a lower case letter, then it is returned
unchanged.
\newitem
\smath{\mbox{\bf upperCase}\opLeftPren{}s\opRightPren{}} 
returns the string with all characters in
upper case.
\newitem
\smath{\mbox{\bf upperCase?}\opLeftPren{}c\opRightPren{}} tests 
if \smath{c} is an upper case letter,
that is, one of A..\smath{Z}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{validExponential}}\opLeftPren{}
{\it listOfKernels}, \allowbreak{}{\it  expression}, \allowbreak{}
{\it  symbol}\opRightPren{}%
}%
}%
{3}{(List(Kernel(F)), F, Symbol)->Union(F, "failed")}
{ElementaryFunctionStructurePackage}
{\smath{\mbox{\bf validExponential}\opLeftPren{}[k_1, 
\allowbreak{} \ldots, k_n], f, x\opRightPren{}} returns \smath{g}
if \smath{\mbox{\bf exp}\opLeftPren{}f)=g} and \smath{g} involves only
\smath{k_1\ldots{}k_n}, and \mbox{\tt "failed"} otherwise.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{value}}\opLeftPren{}
{\it recursiveAggregate}\opRightPren{}%
}%
}%
{1}{(\$)->S}{RecursiveAggregate}
{\smath{\mbox{\bf value}\opLeftPren{}a\opRightPren{}} 
returns the ``value'' part of a recursive
aggregate \spad{a}, typically the root of tree.
See, for example, \spadtype{BinaryTree}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{var1Steps}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{DrawOption}
{\smath{\mbox{\bf var1Steps}\opLeftPren{}n\opRightPren{}} 
indicates the number of subdivisions
\smath{n} of the first range variable.
This command may be expressed as an option
to the \spadfun{draw} command in the form \smath{{\bf var1Steps}== n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{var1StepsDefault}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{0}{()->PositiveInteger}{ViewDefaultsPackage}
{\smath{\mbox{\bf var1StepsDefault}\opLeftPren{}\opRightPren{}} 
returns the current setting for the
number of steps to take when creating a \threedim{} mesh in the
direction of the first defined free variable (a free variable is
considered defined when its range is specified (that is,
\smath{x=0}..10)).
\newitem
\smath{\mbox{\bf var1StepsDefault}\opLeftPren{}i\opRightPren{}} 
sets the number of steps to take when
creating a \threedim{} mesh in the direction of the first defined
free variable to \smath{i} (a free variable is considered defined
when its range is specified (that is, \smath{x=0}..10)).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{var2Steps}}\opLeftPren{}
{\it positiveInteger}\opRightPren{}%
}%
}%
{1}{(PositiveInteger)->\$}{DrawOption}
{\smath{\mbox{\bf var2Steps}\opLeftPren{}n\opRightPren{}} 
indicates the number of subdivisions,
\smath{n}, of the second range variable.
This option is expressed in the form \smath{{\bf var2Steps} == n}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{var2StepsDefault}}\opLeftPren{}
{\it \opt{positiveInteger}}\opRightPren{}%
}%
}%
{()->PositiveInteger}{ViewDefaultsPackage}
{\smath{\mbox{\bf var2StepsDefault}\opLeftPren{}\opRightPren{}} 
is the current setting for the number
of steps to take when creating a \threedim{} mesh in the direction
of the first defined free variable (a free variable is considered
defined when its range is specified (that is, \smath{x=0}..10)).
\newitem
\smath{\mbox{\bf var2StepsDefault}\opLeftPren{}i\opRightPren{}} 
sets the number of steps to take when
creating a \threedim{} mesh in the direction of the first defined
free variable to \smath{i} (a free variable is considered defined
when its range is specified (that is, \smath{x=0}..10)).
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{variable}}\opLeftPren{}
{\it various}\opRightPren{}%
}%
}%
{1}{(\$)->Symbol}{UnivariatePowerSeriesCategory}
{\smath{\mbox{\bf variable}\opLeftPren{}f\opRightPren{}} 
returns the (unique) power series variable of
the power series \smath{f}.
\newitem
\smath{\mbox{\bf variable}\opLeftPren{}segb\opRightPren{}} 
returns the variable from the left hand
side of the \spadtype{SegmentBinding} \smath{segb}.
For example, if \smath{segb} is \smath{v=a..b}, then
\smath{\mbox{\bf variable}\opLeftPren{}segb\opRightPren{}} 
returns \smath{v}.
\newitem
\smath{\mbox{\bf variable}\opLeftPren{}v\opRightPren{}} 
returns \smath{s} if \smath{v} is any
derivative of the differential indeterminate \smath{s}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{variables}}\opLeftPren{}
{\it expression}\opRightPren{}%
}%
}%
{1}{(\$)->List(Symbol)}{FunctionSpace}
{\smath{\mbox{\bf variables}\opLeftPren{}f\opRightPren{}} 
returns the list of all the variables of
expression, polynomial, rational function, or power series \smath{f}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{vconcat}}\opLeftPren{}
{\it outputForms\opt{, OutputForm} (normally unexposed)}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf vconcat}\opLeftPren{}o_1, 
\allowbreak{} o_2\opRightPren{}}, where \smath{o_1} and \smath{o_2} are
objects of type \spadtype{OutputForm} (normally unexposed),
returns an output form for the vertical concatenation of forms
\smath{o_1} and \smath{o_2}.
\newitem
\smath{\mbox{\bf vconcat}\opLeftPren{}lo\opRightPren{}}, 
where \smath{lo} is a list of objects of type
\spadtype{OutputForm} (normally unexposed), returns an output form
for the vertical concatenation of the elements of \smath{lo}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{vector}}\opLeftPren{}
{\it listOfElements}\opRightPren{}%
}%
}%
{1}{(List(R))->\$}{Vector}
{\smath{\mbox{\bf vector}\opLeftPren{}l\opRightPren{}} converts the 
list \smath{l} to a vector.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{vectorise}}\opLeftPren{}{\it polynomial}, 
\allowbreak{}{\it  nonNegativeInteger}\opRightPren{}%
}%
}%
{2}{(\$, NonNegativeInteger)->Vector(R)}{UnivariatePolynomialCategory}
{\smath{\mbox{\bf vectorise}\opLeftPren{}p, \allowbreak{} n\opRightPren{}} 
returns \smath{[a_0, \ldots, a_{n-1}]}
where \smath{p = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}} + higher
order terms.
The degree of polynomial \smath{p} can be different from
\smath{n-1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{vertConcat}}\opLeftPren{}{\it matrix}, 
\allowbreak{}{\it  matrix}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{MatrixCategory}
{\smath{\mbox{\bf vertConcat}\opLeftPren{}x, \allowbreak{} y\opRightPren{}} 
vertically concatenates two matrices with an
equal number of columns.
The entries of \smath{y} appear below the entries of \smath{x}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{viewDefaults}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->Void}{ViewDefaultsPackage}
{\smath{\mbox{\bf viewDefaults}\opLeftPren{}\opRightPren{}} 
resets all the default graphics settings.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{viewPosDefault}}\opLeftPren{}
{\it \opt{listOfNonNegativeIntegers}}\opRightPren{}%
}%
}%
{1}{(List(NonNegativeInteger))->List(NonNegativeInteger)}{ViewDefaultsPackage}
{\smath{\mbox{\bf viewPosDefault}\opLeftPren{}[x, \allowbreak{} y]
\opRightPren{}} sets the default \smath{X} and
\smath{Y} position of a viewport window.
Unless overridden explicitly, newly created viewports will have the
\smath{X} and \smath{Y} coordinates \smath{x}, \smath{y}.
\newitem
\smath{\mbox{\bf viewPosDefault}\opLeftPren{}\opRightPren{}} 
returns the default \smath{X} and
\smath{Y} position of a viewport window unless overridden
explicitly, newly created viewports will have these \smath{X} and
\smath{Y} coordinate.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{viewSizeDefault}}\opLeftPren{}
{\it \opt{listOfPositiveIntegers}}\opRightPren{}%
}%
}%
{1}{(List(PositiveInteger))->List(PositiveInteger)}{ViewDefaultsPackage}
{\smath{\mbox{\bf viewSizeDefault}\opLeftPren{}[w, \allowbreak{} h]
\opRightPren{}} sets the default viewport width to \smath{w} and 
height to \smath{h}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{viewWriteAvailable}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->List(String)}{ViewDefaultsPackage}
{\smath{\mbox{\bf viewWriteAvailable}\opLeftPren{}\opRightPren{}} returns 
a list of available methods for writing, such as BITMAP, POSTSCRIPT, etc.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{viewWriteDefault}}\opLeftPren{}
{\it listOfStrings}\opRightPren{}%
}%
}%
{0}{()->List(String)}{ViewDefaultsPackage}
{\smath{\mbox{\bf viewWriteDefault}\opLeftPren{}\opRightPren{}} 
returns the list of things to write in
a viewport data file; a viewAlone file is always generated.
\newitem
\smath{\mbox{\bf viewWriteDefault}\opLeftPren{}l\opRightPren{}} 
sets the default list of things to
write in a viewport data file to the strings in \smath{l}; a
viewAlone file is always generated.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{void}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Void}
{\smath{\mbox{\bf void}\opLeftPren{}\opRightPren{}} produces a void object.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{weakBiRank}}\opLeftPren{}
{\it element}\opRightPren{}%
}%
}%
{1}{(A)->NonNegativeInteger}{AlgebraPackage}
{\smath{\mbox{\bf weakBiRank}\opLeftPren{}x\opRightPren{}} 
determines the number of linearly
independent elements in the \smath{b_i x b_j}, \smath{i, j=1,
\ldots, n}, where \smath{b=[b_1, \ldots, b_n]} is the fixed basis of
a domain of category \spadtype{FramedNonAssociativeAlgebra}.}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{weight}}\opLeftPren{}{\it u}\opRightPren{}%
}%
}%
{1}{(\$)->NonNegativeInteger}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf weight}\opLeftPren{}u\opRightPren{}} returns
\begin{simpleList}
\item if u is a differential polynomial: the maximum weight of all
differential monomials appearing in the differential polynomial
\smath{u}.
\item if u is a derivative:
the weight of the derivative \smath{u}.
\item if u is a basic operator: the weight attached to \smath{u}.
\end{simpleList}
\smath{\mbox{\bf weight}\opLeftPren{}p, \allowbreak{} s\opRightPren{}} 
returns the maximum weight of all differential monomials appearing in 
the differential polynomial \smath{p} when \smath{p} is viewed as a 
differential polynomial in the differential indeterminate \smath{s} alone.
\newitem
\smath{\mbox{\bf weight}\opLeftPren{}op, 
\allowbreak{} n\opRightPren{}} attaches the weight \smath{n} to \smath{op}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{weights}}\opLeftPren{}
{\it differentialPolynomial}, \allowbreak{}
{\it  differentialIndeterminated}\opRightPren{}%
}%
}%
{2}{(\$, S)->List(NonNegativeInteger)}{DifferentialPolynomialCategory}
{\smath{\mbox{\bf weights}\opLeftPren{}p, 
\allowbreak{} s\opRightPren{}} returns a list of weights of differential
monomials appearing in the differential polynomial \smath{p} when
\smath{p} is viewed as a differential polynomial in the
differential indeterminate \smath{s} alone.
If \smath{s} is missing, a list of weights of differential
monomials appearing in differential polynomial \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{whatInfinity}}\opLeftPren{}
{\it orderedCompletion}\opRightPren{}%
}%
}%
{1}{(\$)->SingleInteger}{OrderedCompletion}
{\smath{\mbox{\bf whatInfinity}\opLeftPren{}x\opRightPren{}} 
returns 0 if \smath{x} is finite, 1 if
\smath{x} is \smath{\infty}, and \smath{-1} if \smath{x} is
\smath{-\infty}.
}


% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wholePart}}\opLeftPren{}
{\it various}\opRightPren{}%
}%
}%
{1}{(\$)->R}{ContinuedFraction}
{\smath{\mbox{\bf wholePart}\opLeftPren{}x\opRightPren{}} 
returns the whole part of the fraction
\smath{x}, that is,
the truncated quotient of the numerator by the denominator.
\newitem
\smath{\mbox{\bf wholePart}\opLeftPren{}x\opRightPren{}} 
extracts the whole part of \smath{x}.
That is,
if \smath{x = {\bf continuedFraction}
(b_0, [a_1, a_2, \ldots], [b_1, b_2, \ldots])},
then \smath{\mbox{\bf wholePart}\opLeftPren{}x) = b_0}.
\newitem
\smath{\mbox{\bf wholePart}\opLeftPren{}p\opRightPren{}} 
extracts the whole part of the partial
fraction \smath{p}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wholeRadix}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(List(Integer))->\$}{RadixExpansion}
{\smath{\mbox{\bf wholeRadix}\opLeftPren{}l\opRightPren{}} 
creates an integral radix expansion from a
list of ragits.
For example, \smath{\mbox{\bf wholeRadix}\opLeftPren{}[1, \allowbreak{} 3, 
\allowbreak{} 4]\opRightPren{}} returns \smath{134}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wholeRagits}}\opLeftPren{}
{\it listOfIntegers}\opRightPren{}%
}%
}%
{1}{(\$)->List(Integer)}{RadixExpansion}
{\smath{\mbox{\bf wholeRagits}\opLeftPren{}rx\opRightPren{}} 
returns the ragits of the integer part of
a radix expansion.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wordInGenerators}}\opLeftPren{}{\it permutation}, 
\allowbreak{}{\it  permutationGroup}\opRightPren{}%
}%
}%
{2}{(Permutation(S), \$)->List(NonNegativeInteger)}{PermutationGroup}
{\smath{\mbox{\bf wordInGenerators}\opLeftPren{}p, 
\allowbreak{} gp\opRightPren{}} returns the word for the
permutation \smath{p} in the original generators of the
permutation group {\it gp}, represented by the indices of the
list, given by \spadfun{generators}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wordInStrongGenerators}}\opLeftPren{}
{\it permutation}, \allowbreak{}{\it  permutationGroup}\opRightPren{}%
}%
}%
{2}{(Permutation(S), \$)->List(NonNegativeInteger)}{PermutationGroup}
{\smath{\mbox{\bf wordInStrongGenerators}\opLeftPren{}p, 
\allowbreak{} gp\opRightPren{}} returns the word for the
permutation \smath{p} in the strong generators of the permutation
group {\it gp}, represented by the indices of the list, given by
\spadfun{strongGenerators}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wordsForStrongGenerators}}\opLeftPren{}
{\it listOfListsOfIntegers}\opRightPren{}%
}%
}%
{1}{(\$)->List(List(NonNegativeInteger))}{PermutationGroup}
{\smath{\mbox{\bf wordsForStrongGenerators}\opLeftPren{}gp\opRightPren{}} 
returns the words for the
strong generators
of the permutation group {\it gp} in the original generators of {\it gp},
represented by their indices in the list of nonnegative integers,
given by \spadfun{generators}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{wreath}}\opLeftPren{}{\it symmetricPolynomial}, 
\allowbreak{}{\it  symmetricPolynomial}\opRightPren{}%
}%
}%
{ (SPOL RN, SPOL RN) -> SPOL RN}{}{}
{\smath{\mbox{\bf wreath}\opLeftPren{}s_1, \allowbreak{} s_2\opRightPren{}} 
is the cycle index of the wreath product
of the two groups whose cycle indices are \smath{s_1} and
\smath{s_2}, symmetric polynomials with rational number
coefficients.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{writable?}}\opLeftPren{}{\it file}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{FileNameCategory}
{\smath{\mbox{\bf writable?}\opLeftPren{}f\opRightPren{}} 
tests if the named file can be opened for
writing.
The named file need not already exist.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{write!}}\opLeftPren{}{\it file}, \allowbreak{}
{\it  value}\opRightPren{}%
}%
}%
{2}{(\$, S)->S}{FileCategory}
{\smath{\mbox{\bf write!}\opLeftPren{}f, \allowbreak{} s\opRightPren{}} 
puts the value \smath{s} into the file \smath{f}.
The state of \smath{f} is modified so that subsequent
calls to {\bf write!} will append values to the end of the
file.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{writeLine!}}\opLeftPren{}
{\it textfile\opt{, string}}\opRightPren{}%
}%
}%
{1}{(\$)->String}{TextFile}
{\smath{\mbox{\bf writeLine!}\opLeftPren{}f\opRightPren{}} 
finishes the current line in the file
\smath{f}.
An empty string is returned.
The call \smath{\mbox{\bf writeLine!}\opLeftPren{}f\opRightPren{}} 
is equivalent to
\smath{\mbox{\bf writeLine!}\opLeftPren{}f, \allowbreak{} 
{\tt ""}\opRightPren{}}.
\newitem
\smath{\mbox{\bf writeLine!}\opLeftPren{}f, \allowbreak{} s\opRightPren{}} 
writes the contents of the string
\smath{s} and finishes the current line in the file \smath{f}.
The value of \smath{s} is returned.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{xor}}\opLeftPren{}{\it boolean}, \allowbreak{}
{\it  boolean}\opRightPren{}%
}%
}%
{2}{(\$, \$)->\$}{BitAggregate}
{\smath{\mbox{\bf xor}\opLeftPren{}a, \allowbreak{} b\opRightPren{}} 
returns the logical {\it exclusive-or} of
booleans or bit aggregates \smath{a} and \smath{b}.
\newitem
\smath{\mbox{\bf xor}\opLeftPren{}n, \allowbreak{} m\opRightPren{}} 
returns the bit-by-bit logical {\it xor} of the
small integers \smath{n} and \smath{m}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{xRange}}\opLeftPren{}{\it curve}\opRightPren{}%
}%
}%
{1}{(\$)->Segment(DoubleFloat)}{PlottablePlaneCurveCategory}
{\smath{\mbox{\bf xRange}\opLeftPren{}c\opRightPren{}} 
returns the range of the \smath{x}-coordinates
of the points on the curve \smath{c}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{yCoordinates}}\opLeftPren{}
{\it function}\opRightPren{}%
}%
}%
{1}{(\$)->Record(num:Vector(UP), den:UP)}{FunctionFieldCategory}
{\smath{\mbox{\bf yCoordinates}\opLeftPren{}f\opRightPren{}},
where \smath{f} is a function defined over a curve,
returns the coordinates of \smath{f} with
respect to the natural basis for the curve.
Specifically, the operation returns
\smath{[ [a_1, \ldots, a_n], d]} 
such that \smath{f = (a_1 +\ldots+ a_n y^{n-1}) / d}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{yellow}}\opLeftPren{}\opRightPren{}%
}%
}%
{0}{()->\$}{Color}
{\smath{\mbox{\bf yellow}\opLeftPren{}\opRightPren{}} 
returns the position of the yellow hue from
total hues.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{youngGroup}}\opLeftPren{}{\it various}\opRightPren{}%
}%
}%
{1}{(List(Integer))->PermutationGroup(Integer)}{PermutationGroupExamples}
{\smath{\mbox{\bf youngGroup}\opLeftPren{}
[n_1, \allowbreak{} \ldots, n_k]\opRightPren{}} constructs the direct
product of the
symmetric groups \smath{Sn_1}, \ldots, \smath{Sn_k}.
\newitem
\smath{\mbox{\bf youngGroup}\opLeftPren{}lambda\opRightPren{}} 
constructs the direct product of the
symmetric groups given by the parts of the partition {\it lambda}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{yRange}}\opLeftPren{}{\it curve}\opRightPren{}%
}%
}%
{1}{(\$)->Segment(DoubleFloat)}{PlottablePlaneCurveCategory}
{\smath{\mbox{\bf yRange}\opLeftPren{}c\opRightPren{}} 
returns the range of the \smath{y}-coordinates
of the points on the curve \smath{c}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zag}}\opLeftPren{}
{\it outputForm}, \allowbreak{}{\it  outputForm}\opRightPren{}%
}%
}%
{}{}{}
{\smath{\mbox{\bf zag}\opLeftPren{}o_1, \allowbreak{} o_2\opRightPren{}},
where \smath{o_1} and \smath{o_2} are objects of 
type \spadtype{OutputForm} (normally unexposed),
return an output form displaying
the continued fraction form for \smath{o_2} over \smath{o_1}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zero}}\opLeftPren{}
{\it nonNegativeInteger\opt{, nonNegativeInteger}}\opRightPren{}%
}%
}%
{1}{(NonNegativeInteger)->\$}{VectorCategory}
{\smath{\mbox{\bf zero}\opLeftPren{}n\opRightPren{}} 
creates a zero vector of length \smath{n}.
\newitem
\smath{\mbox{\bf zero}\opLeftPren{}m, \allowbreak{} n\opRightPren{}} 
returns an \smath{m}-by-\smath{n} zero matrix.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zero?}}\opLeftPren{}{\it element}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{AbelianMonoid}
{\smath{\mbox{\bf zero?}\opLeftPren{}x\opRightPren{}} 
tests if \smath{x} is equal to 0.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zeroDim?}}\opLeftPren{}{\it ideal}\opRightPren{}%
}%
}%
{1}{(\$)->Boolean}{PolynomialIdeals}
{\smath{\mbox{\bf zeroDim?}\opLeftPren{}I\opRightPren{}} 
tests if the ideal \smath{I} is zero
dimensional, that is, all its associated primes are maximal.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zeroDimPrimary?}}\opLeftPren{}
{\it ideal}\opRightPren{}%
}%
}%
{1}{(PolynomialIdeals(Fraction(Integer), 
DirectProduct(nv, NonNegativeInteger), vl, 
DistributedMultivariatePolynomial(vl, Fraction(Integer))))->Boolean}
{IdealDecompositionPackage}
{\smath{\mbox{\bf zeroDimPrimary?}\opLeftPren{}I\opRightPren{}} 
tests if the ideal \smath{I} is
0-dimensional primary.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zeroDimPrime?}}\opLeftPren{}
{\it ideal}\opRightPren{}%
}%
}%
{1}{(PolynomialIdeals(Fraction(Integer), 
DirectProduct(nv, NonNegativeInteger), vl, 
DistributedMultivariatePolynomial(vl, Fraction(Integer))))->Boolean}
{IdealDecompositionPackage}
{\smath{\mbox{\bf zeroDimPrime?}\opLeftPren{}I\opRightPren{}} 
tests if the ideal \smath{I} is a
0-dimensional prime.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zeroOf}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{2}{(SparseUnivariatePolynomial(\$), Symbol)->\$}{AlgebraicallyClosedField}
{\smath{\mbox{\bf zeroOf}\opLeftPren{}p\optinner{, y}\opRightPren{}} 
returns \smath{y} such that
\smath{p(y) = 0}.
If possible, \smath{y} is expressed in terms of radicals.
Otherwise it is an implicit algebraic quantity that displays as \smath{'y}.
If no second argument is given, then \smath{p} must have a unique
variable \smath{y}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zerosOf}}\opLeftPren{}
{\it polynomial\opt{, symbol}}\opRightPren{}%
}%
}%
{1}{(Polynomial(\$))->List(\$)}{AlgebraicallyClosedField}
{\smath{\mbox{\bf zerosOf}\opLeftPren{}p, \allowbreak{} y\opRightPren{}} 
returns \smath{[y_1, \ldots, y_n]} such
that \smath{p(y_i) = 0}.
The \smath{y_i}'s are expressed in radicals if possible.
Otherwise they are implicit algebraic quantities that display as
\smath{y_i}.
The returned symbols \smath{y_1}, \ldots, \smath{y_n} are bound in
the interpreter to respective root values.
If no second argument is given, then \smath{p} must have a unique
variable \smath{y}.
}

% ----------------------------------------------------------------------
\opdata{{\mbox{\axiomFun{zRange}}\opLeftPren{}{\it curve}\opRightPren{}%
}%
}%
{1}{(\$)->Segment(DoubleFloat)}{PlottableSpaceCurveCategory}
{\smath{\mbox{\bf zRange}\opLeftPren{}c\opRightPren{}} 
returns the range of the \smath{z}-coordinates
of the points on the curve \smath{c}.
}
}\onecolumn
%\setcounter{chapter}{5} % Appendix F

%Original Page 691

\chapter{Programs for Axiom Images}
\label{ugAppGraphics}

%
This appendix contains the Axiom programs used to generate
the images in the gallery color insert of this book.
All these input files are included
with the Axiom system.
To produce the images
on page 6 of the gallery insert, for example, issue the command:
\begin{verbatim}
)read images6
\end{verbatim}

These images were produced on an IBM RS/6000 model 530 with a
standard color graphics adapter.  The smooth shaded images
were made from X Window System screen dumps.
The remaining images were produced with Axiom-generated
PostScript output.  The images were reproduced from slides made on an Agfa
ChromaScript PostScript interpreter with a Matrix Instruments QCR camera.


\section{images1.input}
\label{ugFimagesOne}


\begin{verbatim}
)read tknot                                      Read torus knot program

torusKnot(15,17, 0.1, 6, 700)                    A (15,17) torus knot
\end{verbatim}
\index{torus knot}

\newpage

\section{images2.input}
\label{ugFimagesTwo}

These images illustrate how Newton's method converges when computing the
\index{Newton iteration}
complex cube roots of 2.   Each point in the $(x,y)$-plane represents the
complex number $x + iy,$ which is given as a starting point for Newton's
method.  The poles in these images represent bad starting values.
The flat areas are the regions of convergence to the three roots.

\begin{verbatim}
)read newton                               Read the programs from
)read vectors                              Chapter 10
f := newtonStep(x**3 - 2)                  Create a Newton's iteration
                                            function for $x^3 = 2$
\end{verbatim}

The function $f^n$ computes $n$ steps of Newton's method.

\begin{verbatim}
clipValue := 4                              Clip values with magnitude > 4
drawComplexVectorField(f**3, -3..3, -3..3)  The vector field for $f^3$
drawComplex(f**3, -3..3, -3..3)             The surface for $f^3$
drawComplex(f**4, -3..3, -3..3)             The surface for $f^4$
\end{verbatim}

\section{images3.input}
\label{ugFimagesThree}


\begin{verbatim}
)r tknot
for i in 0..4 repeat torusKnot(2, 2 + i/4, 0.5, 25, 250)
\end{verbatim}

\section{images5.input}
\label{ugFimagesFive}


The parameterization of the Etruscan Venus is due to George Frances.
\index{Etruscan Venus}

\begin{verbatim}
venus(a,r,steps) ==
  surf := (u:DFLOAT, v:DFLOAT): Point DFLOAT +->
    cv := cos(v)
    sv := sin(v)
    cu := cos(u)
    su := sin(u)
    x := r * cos(2*u) * cv + sv * cu
    y := r * sin(2*u) * cv - sv * su
    z := a * cv
    point [x,y,z]
  draw(surf, 0..\%pi, -\%pi..\%pi, var1Steps==steps,
       var2Steps==steps, title == "Etruscan Venus")

venus(5/2, 13/10, 50)                                  The Etruscan Venus
\end{verbatim}

The Figure-8 Klein Bottle
\index{Klein bottle}
parameterization is from
``Differential Geometry and Computer Graphics'' by Thomas Banchoff,
in {\it Perspectives in Mathematics,} Anniversary of Oberwolfasch 1984,
Birkh\"{a}user-Verlag, Basel, pp. 43-60.

\begin{verbatim}
klein(x,y) ==
  cx := cos(x)
  cy := cos(y)
  sx := sin(x)
  sy := sin(y)
  sx2 := sin(x/2)
  cx2 := cos(x/2)
  sq2 := sqrt(2.0@DFLOAT)
  point [cx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _
         sx * (cx2 * (sq2 + cy) + (sx2 * sy * cy)), _
         -sx2 * (sq2 + cy) + cx2 * sy * cy]

draw(klein, 0..4*\%pi, 0..2*\%pi, var1Steps==50,       Figure-8 Klein bottle
     var2Steps==50,title=="Figure Eight Klein Bottle")
\end{verbatim}

The next two images are examples of generalized tubes.

\begin{verbatim}
)read ntube
rotateBy(p, theta) ==                            Rotate a point $p$ by
  c := cos(theta)                                $\theta$ around the origin
  s := sin(theta)
  point [p.1*c - p.2*s, p.1*s + p.2*c]

bcircle t ==                                     A circle in three-space
  point [3*cos t, 3*sin t, 0]

twist(u, t) ==                                   An ellipse that twists
  theta := 4*t                                   around four times as
  p := point [sin u, cos(u)/2]                   $t$ revolves once
  rotateBy(p, theta)

ntubeDrawOpt(bcircle, twist, 0..2*\%pi, 0..2*\%pi,    Twisted Torus
             var1Steps == 70, var2Steps == 250)

twist2(u, t) ==                                 Create a twisting circle
  theta := t
  p := point [sin u, cos(u)]
  rotateBy(p, theta)

cf(u,v) == sin(21*u)                    Color function with $21$ stripes

ntubeDrawOpt(bcircle, twist2, 0..2*\%pi, 0..2*\%pi,        Striped Torus
  colorFunction == cf, var1Steps == 168,
  var2Steps == 126)
\end{verbatim}

\section{images6.input}
\label{ugFimagesSix}

\begin{verbatim}
-- The height and coloar are the real and argument parts
-- of the Gamma function, respectively.
gam(x,y) ==                                        
  g := Gamma complex(x,y)                          
  point [x,y,max(min(real g, 4), -4), argument g]  
                                                   

draw(gam, -\%pi..\%pi, -\%pi..\%pi,                The Gamma Function
     title == "Gamma(x + \%i*y)", _
     var1Steps == 100, var2Steps == 100)

b(x,y) == Beta(x,y)

draw(b, -3.1..3, -3.1 .. 3, title == "Beta(x,y)")  The Beta Function

atf(x,y) == 
  a := atan complex(x,y)
  point [x,y,real a, argument a]

draw(atf, -3.0..\%pi, -3.0..\%pi)                  The Arctangent function
\end{verbatim}
\index{function!Gamma}
\index{function!Euler Beta}
\index{Euler!Beta function}


\section{images7.input}
\label{ugFimagesSeven}

First we look at the conformal
\index{conformal map}
map $z \mapsto z + 1/z$.
\begin{verbatim}
)read conformal                                    
-- Read program for drawing conformal maps

-- The coordinate grid for the complex plane
f z == z                                           

-- Mapping 1: Source                                                   
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")  

-- The map z mapsto z + 1/z
f z == z + 1/z                                     

-- Mapping 1: Target
conformalDraw(f, -2..2, -2..2, 9, 9, "cartesian")  

\end{verbatim}

The map $z \mapsto -(z+1)/(z-1)$ maps
the unit disk to the right half-plane, as shown
\index{Riemann!sphere}
on the Riemann sphere.

\begin{verbatim}
-- The unit disk
f z == z                                                      

-- Mapping 2: Source
riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")      

-- The map x mapsto -(z+1)/(z-1)
f z == -(z+1)/(z-1)                            

-- Mapping 2: Target
riemannConformalDraw(f,0.1..0.99,0..2*\%pi,7,11,"polar")      

-- Riemann Sphere Mapping
riemannSphereDraw(-4..4, -4..4, 7, 7, "cartesian")       
\end{verbatim}

\section{images8.input}
\label{ugFimagesEight}

\begin{verbatim}
)read dhtri
)read tetra
drawPyramid 4                              Sierpinsky's Tetrahedron

Sierpinsky's Tetrahedron
)read antoine
drawRings 2                                      Antoine's Necklace

Aintoine's Necklace
)read scherk
drawScherk(3,3)                            Scherk's Minimal Surface

)read ribbonsnew
drawRibbons([x**i for i in 1..5], x=-1..1, y=0..2)      Ribbon Plot
\end{verbatim}
\index{Scherk's minimal surface}


%\input{gallery/conformal.htex}
\section{conformal.input}
\label{ugFconformal}
%
The functions in this section draw conformal maps both on the
\index{conformal map}
plane and on the Riemann sphere.
\index{Riemann!sphere}

%-- Compile, don't interpret functions.
%\xmpLine{)set fun comp on}{}
\begin{verbatim}
C := Complex DoubleFloat                        Complex Numbers
S := Segment DoubleFloat                        Draw ranges
R3 := Point DFLOAT                              Points in 3-space
\end{verbatim}

{\bf conformalDraw}{\it (f, rRange, tRange, rSteps, tSteps, coord)}
draws the image of the coordinate grid under {\it f} in the complex plane.
The grid may be given in either polar or Cartesian coordinates.
Argument {\it f} is the function to draw;
{\it rRange} is the range of the radius (in polar) or real (in Cartesian);
{\it tRange} is the range of $\theta$ (in polar) or imaginary (in Cartesian);
{\it tSteps, rSteps}, are the number of intervals in the {\it r} and
$\theta$ directions; and
{\it coord} is the coordinate system to use (either {\tt "polar"} or
{\tt "cartesian"}).

\begin{verbatim}
conformalDraw: (C -> C, S, S, PI, PI, String) -> VIEW3D
conformalDraw(f,rRange,tRange,rSteps,tSteps,coord) ==
  -- Function for changing an (x,y)
  transformC :=                               
    -- pair into a complex number
    coord = "polar" => polar2Complex                 
    cartesian2Complex
  cm := makeConformalMap(f, transformC)
  -- Create a fresh space
  sp := createThreeSpace()                            
  -- Plot the coordinate lines
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)   
  -- Draw the image
  makeViewport3D(sp, "Conformal Map")                 
\end{verbatim}

{\bf riemannConformalDraw}{\it (f, rRange, tRange, rSteps, tSteps, coord)}
draws the image of the coordinate grid under {\it f} on the Riemann sphere.
The grid may be given in either polar or Cartesian coordinates.
Its arguments are the same as those for {\bf conformalDraw}.

\begin{verbatim}
riemannConformalDraw:(C->C,S,S,PI,PI,String)->VIEW3D
riemannConformalDraw(f, rRange, tRange,
                     rSteps, tSteps, coord) ==
  -- Function for changing an $(x,y)$
  transformC :=                               
    -- pair into a complex number
    coord = "polar" => polar2Complex          
    cartesian2Complex
  -- Create a fresh space
  sp := createThreeSpace()                    
  cm := makeRiemannConformalMap(f, transformC)
  -- Plot the coordinate lines
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)  
  curve(sp,[point [0,0,2.0@DFLOAT,0],point [0,0,2.0@DFLOAT,0] ])
  -- Add an invisible point at the north pole for scaling
  makeViewport3D(sp,"Map on the Riemann Sphere")     

-- Plot the coordinate grid
adaptGrid(sp, f, uRange, vRange,  uSteps, vSteps) == 
  -- using adaptive plotting for coordinate lines, and draw
  -- tubes around the lines
  delU := (hi(uRange) - lo(uRange))/uSteps         
  delV := (hi(vRange) - lo(vRange))/vSteps        
  uSteps := uSteps + 1; vSteps := vSteps + 1      
  u := lo uRange
  -- Draw coordinate lines in the v direction; curve c fixes the
  -- current value of u
  for i in 1..uSteps repeat                    
    c := curryLeft(f,u)                        
    cf := (t:DFLOAT):DFLOAT +-> 0             
    makeObject(c,vRange::SEG Float,colorFunction==cf,
      -- Draw the v coordinate line
      space == sp, tubeRadius == .02, tubePoints == 6)
    u := u + delU
  v := lo vRange
  -- Draw coodinate lines in the u direction; curve c fixes the
  -- current value of v
  for i in 1..vSteps repeat                    
    c := curryRight(f,v)                      
    cf := (t:DFLOAT):DFLOAT +-> 1              
    makeObject(c,uRange::SEG Float,colorFunction==cf,
      -- Draw the u coordinate line
      space == sp, tubeRadius == .02, tubePoints == 6)
    v := v + delV
  void()

-- Map a point in the complex plane to the Riemann sphere
riemannTransform(z) ==                         
  r := sqrt norm z                            
  cosTheta := (real z)/r
  sinTheta := (imag z)/r
  cp := 4*r/(4+r**2)
  sp := sqrt(1-cp*cp)
  if r>2 then sp := -sp
  point [cosTheta*cp, sinTheta*cp, -sp + 1]

-- Convert Cartesian coordinates to complex Cartesian form
cartesian2Complex(r:DFLOAT, i:DFLOAT):C ==   
  complex(r, i)                              

-- Convert polar coordinates to complex Cartesian form
polar2Complex(r:DFLOAT, th:DFLOAT):C ==       
  complex(r*cos(th), r*sin(th))               

-- Convert complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3
-- in the complex plane
makeConformalMap(f, transformC) ==            
  (u:DFLOAT,v:DFLOAT):R3 +->                  
    z := f transformC(u, v)                   
    point [real z, imag z, 0.0@DFLOAT]

-- Convert a complex function f to a mapping: (DFLOAT,DFLOAT) maps to R3
-- on the Riemann sphere
makeRiemannConformalMap(f, transformC) ==     
  (u:DFLOAT, v:DFLOAT):R3 +->                 
    riemannTransform f transformC(u, v)       

-- Draw a picture of the mapping of the complex plane to
-- the Riemann sphere
riemannSphereDraw: (S, S, PI, PI, String) -> VIEW3D
riemannSphereDraw(rRange,tRange,rSteps,tSteps,coord) ==
  transformC :=
    coord = "polar" => polar2Complex
    cartesian2Complex
  -- Coordinate grid function
  grid := (u:DFLOAT, v:DFLOAT): R3 +->                 
    z1 := transformC(u, v)
    point [real z1, imag z1, 0]
  -- Create a fresh space
  sp := createThreeSpace()                                 
  -- Draw the flat grid
  adaptGrid(sp, grid, rRange, tRange, rSteps, tSteps)      
  connectingLines(sp,grid,rRange,tRange,rSteps,tSteps)
  -- Draw the sphere
  makeObject(riemannSphere,0..2*\%pi,0..\%pi,space==sp)    
  f := (z:C):C +-> z
  cm := makeRiemannConformalMap(f, transformC)
  -- Draw the sphere grid
  adaptGrid(sp, cm, rRange, tRange, rSteps, tSteps)        
  makeViewport3D(sp, "Riemann Sphere")
 
-- Draw the lines that connect the points in the complex
-- plane to the north pole of the Riemann sphere
connectingLines(sp,f,uRange,vRange,uSteps,vSteps) ==
  delU := (hi(uRange) - lo(uRange))/uSteps          
  delV := (hi(vRange) - lo(vRange))/vSteps          
  uSteps := uSteps + 1; vSteps := vSteps + 1        
  u := lo uRange
  for i in 1..uSteps repeat                         
    v := lo vRange
    for j in 1..vSteps repeat                       
      p1 := f(u,v)
      -- Project p1 onto the sphere
      p2 := riemannTransform complex(p1.1, p1.2)    
      -- Create a line function
      fun := lineFromTo(p1,p2)                      
      cf := (t:DFLOAT):DFLOAT +-> 3
      -- Draw the connecting line
      makeObject(fun, 0..1,space==sp,tubePoints==4, 
                 tubeRadius==0.01,colorFunction==cf)
      v := v + delV
    u := u + delU
  void()

-- A sphere sitting on the complex plane, with radius 1
riemannSphere(u,v) ==                              
  sv := sin(v)                                     
  0.99@DFLOAT*(point [cos(u)*sv,sin(u)*sv,cos(v),0.0@DFLOAT])+
    point [0.0@DFLOAT, 0.0@DFLOAT, 1.0@DFLOAT, 4.0@DFLOAT]
 
-- Create a line function that goes from p1 to p2
lineFromTo(p1, p2) ==                              
  d := p2 - p1                                     
  (t:DFLOAT):Point DFLOAT +->
    p1 + t*d
\end{verbatim}

%\input{gallery/tknot.htex}
\section{tknot.input}
\label{ugFtknot}
%
Create a $(p,q)$ torus-knot with radius $r$ around the curve.
The formula was derived by Larry Lambe.

\begin{verbatim}
)read ntube
torusKnot: (DFLOAT, DFLOAT, DFLOAT, PI, PI) -> VIEW3D
torusKnot(p, q ,r, uSteps, tSteps) ==
  -- Function for the torus knot
  knot := (t:DFLOAT):Point DFLOAT +->               
    fac := 4/(2.2@DFLOAT-sin(q*t))
    fac * point [cos(p*t), sin(p*t), cos(q*t)]
  -- The cross section
  circle := (u:DFLOAT, t:DFLOAT): Point DFLOAT +->  
    r * point [cos u, sin u]
  -- Draw the circle around the knot
  ntubeDrawOpt(knot, circle, 0..2*\%pi, 0..2*\%pi,                             
               var1Steps == uSteps, var2Steps == tSteps)

\end{verbatim}

%\input{gallery/ntube.htex}
\section{ntube.input}
\label{ugFntube}
%
The functions in this file create generalized tubes (also known as generalized
cylinders).
These functions draw a 2-d curve in the normal
planes around a 3-d curve.

\begin{verbatim}
R3 := Point DFLOAT                    Points in 3-Space
R2 := Point DFLOAT                    Points in 2-Space
S := Segment Float                    Draw ranges
                                      Introduce types for functions:
ThreeCurve := DFLOAT -> R3            --the space curve function
TwoCurve := (DFLOAT, DFLOAT) -> R2    --the plane curve function
Surface := (DFLOAT, DFLOAT) -> R3     --the surface function
                                      Frenet frames define a
FrenetFrame :=                        coordinate system around a
   Record(value:R3,tangent:R3,normal:R3,binormal:R3)
                                      point on a space curve
frame: FrenetFrame                    The current Frenet frame
                                      for a point on a curve
\end{verbatim}

{\bf ntubeDraw}{\it (spaceCurve, planeCurve,}
$u_0 .. u_1,$ $t_0 .. t_1)$
draws {\it planeCurve} in the normal planes of {\it spaceCurve.}
The parameter $u_0 .. u_1$ specifies
the parameter range for {\it planeCurve}
and $t_0 .. t_1$ specifies the parameter range for {\it spaceCurve}.
Additionally, the plane curve function takes
a second parameter: the current parameter of {\it spaceCurve}.
This allows the plane curve to change shape
as it goes around the space curve.
See \sectionref{ugFimagesFive} for an example of this.
%
\begin{verbatim}
ntubeDraw: (ThreeCurve,TwoCurve,S,S) -> VIEW3D
ntubeDraw(spaceCurve,planeCurve,uRange,tRange) ==
  ntubeDrawOpt(spaceCurve, planeCurve, uRange, _
               tRange, []$List DROPT)

ntubeDrawOpt: (ThreeCurve,TwoCurve,S,S,List DROPT) -> VIEW3D
-- This function is similar to ntubeDraw, but takes
-- optional parameters that it passes to the draw command
ntubeDrawOpt(spaceCurve,planeCurve,uRange,tRange,l) ==
  delT:DFLOAT := (hi(tRange) - lo(tRange))/10000  
  oldT:DFLOAT := lo(tRange) - 1                   
  fun := ngeneralTube(spaceCurve,planeCurve,delT,oldT)
  draw(fun, uRange, tRange, l)

\end{verbatim}

{\bf nfrenetFrame}{\it (c, t, delT)}
numerically computes the Frenet frame
about the curve {\it c} at {\it t}.
Parameter {\it delT} is a small number used to
compute derivatives.
\begin{verbatim}
nfrenetFrame(c, t, delT) ==
  f0 := c(t)
  f1 := c(t+delT)
  t0 := f1 - f0                              The tangent
  n0 := f1 + f0
  b := cross(t0, n0)                         The binormal
  n := cross(b,t0)                           The normal
  ln := length n
  lb := length b
  ln = 0 or lb = 0 =>
      error "Frenet Frame not well defined"
  n := (1/ln)*n                              Make into unit length vectors
  b := (1/lb)*b
  [f0, t0, n, b]$FrenetFrame
\end{verbatim}

{\bf ngeneralTube}{\it (spaceCurve, planeCurve,}{\it  delT, oltT)}
creates a function that can be passed to the system axiomFun{draw} command.
The function is a parameterized surface for the general tube
around {\it spaceCurve}.  {\it delT} is a small number used to compute
derivatives. {\it oldT} is used to hold the current value of the
{\it t} parameter for {\it spaceCurve.}  This is an efficiency measure
to ensure that frames are only computed once for each value of {\it t}.
\begin{verbatim}
ngeneralTube: (ThreeCurve, TwoCurve, DFLOAT, DFLOAT) -> Surface
ngeneralTube(spaceCurve, planeCurve, delT, oldT) ==
  -- Indicate that frame is global
  free frame                                   
  (v:DFLOAT, t: DFLOAT): R3 +->
    -- If not already computed compute new frame
    if (t $\sim$= oldT) then                      
      frame := nfrenetFrame(spaceCurve, t, delT)  
      oldT := t
    p := planeCurve(v, t)
    -- Project $p$ into the normal plane
    frame.value + p.1*frame.normal + p.2*frame.binormal
                                              
\end{verbatim}

%\input{gallery/dhtri.htex}
\section{dhtri.input}
\label{ugFdhtri}
%
Create affine transformations (DH matrices) that transform
a given triangle into another.

\begin{verbatim}
tri2tri: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
-- Compute a DHMATRIX that transforms t1 to t2, where
-- t1 and t2 are the vertices of two triangles in 3-space
tri2tri(t1, t2) ==                              
  n1 := triangleNormal(t1)                      
  n2 := triangleNormal(t2)                     
  tet2tet(concat(t1, n1), concat(t2, n2))

tet2tet: (List Point DFLOAT, List Point DFLOAT) -> DHMATRIX(DFLOAT)
-- Compute a DHMATRIX that transforms t1 to t2, where t1 and t2 
-- are the vertices of two tetrahedrons in 3-space
tet2tet(t1, t2) ==                             
  m1 := makeColumnMatrix t1                     
  m2 := makeColumnMatrix t2                     
  m2 * inverse(m1)                              

-- Put the vertices of a tetrahedron into matrix form
makeColumnMatrix(t) ==                          
  m := new(4,4,0)$DHMATRIX(DFLOAT)              
  for x in t for i in 1..repeat
    for j in 1..3 repeat
      m(j,i) := x.j
    m(4,i) := 1
  m

-- Compute a vector normal to the given triangle, whose
-- length is the square root of the area of the triangle
triangleNormal(t) ==                            
  a := triangleArea t                           
  p1 := t.2 - t.1                               
  p2 := t.3 - t.2                               
  c := cross(p1, p2)
  len := length(c)
  len = 0 => error "degenerate triangle!"
  c := (1/len)*c
  t.1 + sqrt(a) * c

-- Compute the area of a triangle using Heron's formula
triangleArea t ==                               
  a := length(t.2 - t.1)                        
  b := length(t.3 - t.2)                        
  c := length(t.1 - t.3)
  s := (a+b+c)/2
  sqrt(s*(s-a)*(s-b)*(s-c))
\end{verbatim}

\section{tetra.input}
\label{ugFtetra}
%
%\input{gallery/tetra.htex}
%\outdent{Sierpinsky's Tetrahedron}

\begin{verbatim}
-- Bring DH matrices into the environment
)set expose add con DenavitHartenbergMatrix      
                                         
-- Set up the coordinates of the corners of the tetrahedron.
x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT)         
x2:DFLOAT := sqrt(3.0@DFLOAT)/6                  

p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT]       
p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT]
p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT]
p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]

-- The base of the tetrahedron
baseTriangle  := [p2, p1, p3]                    

-- The middle triangle inscribed in the base of the tetrahedron
-- The bases of the triangles of the subdivided tetrahedron
mt  := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]
                                                 
bt1 := [mt.1, p1, mt.2]                          
bt2 := [p2, mt.1, mt.3]                          
bt3 := [mt.2, p3, mt.3]
bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]

-- Create the transformations that bring the base of the
-- tetrahedron to the bases of the subdivided tetrahedron
tt1 := tri2tri(baseTriangle, bt1)                
tt2 := tri2tri(baseTriangle, bt2)                
tt3 := tri2tri(baseTriangle, bt3)                
tt4 := tri2tri(baseTriangle, bt4)                

-- Draw a Sierpinsky tetrahedron with n levels of recursive
-- subdivision
drawPyramid(n) ==                                
  s := createThreeSpace()                        
  dh := rotatex(0.0@DFLOAT)                      
  drawPyramidInner(s, n, dh)
  makeViewport3D(s, "Sierpinsky Tetrahedron")

-- Recursively draw a Sierpinsky tetrahedron
-- Draw the 4 recursive pyramids
drawPyramidInner(s, n, dh) ==                    
  n = 0 => makeTetrahedron(s, dh, n)             
  drawPyramidInner(s, n-1, dh * tt1)             
  drawPyramidInner(s, n-1, dh * tt2)
  drawPyramidInner(s, n-1, dh * tt3)
  drawPyramidInner(s, n-1, dh * tt4)

-- Draw a tetrahedron into the given space with the given
-- color, transforming it by the given DH matrix
makeTetrahedron(sp, dh, color) ==                
  w1 := dh*p1                                    
  w2 := dh*p2                                    
  w3 := dh*p3                                    
  w4 := dh*p4
  polygon(sp, [w1, w2, w4])
  polygon(sp, [w1, w3, w4])
  polygon(sp, [w2, w3, w4])
  void()
\end{verbatim}
\index{Sierpinsky's Tetrahedron}


%\input{gallery/antoine.htex}
\section{antoine.input}
\label{ugFantoine}
%
Draw Antoine's Necklace.
\index{Antoine's Necklace}
Thank you to Matthew Grayson at IBM's T.J Watson Research Center for the idea.

\begin{verbatim}
-- Bring DH matrices into the environment
)set expose add con DenavitHartenbergMatrix           
                                         
-- The transformation for drawing a sub ring
torusRot: DHMATRIX(DFLOAT)                            
                                                      
-- Draw Antoine's Necklace with n levels of recursive subdivision
-- The number of subrings is 10^n. Do the real work
drawRings(n) ==                                
  s := createThreeSpace()                      
  dh:DHMATRIX(DFLOAT) := identity()            
  drawRingsInner(s, n, dh)                     
  makeViewport3D(s, "Antoine's Necklace")

\end{verbatim}

In order to draw Antoine rings, we take one ring, scale it down to
a smaller size, rotate it around its central axis, translate it
to the edge of the larger ring and rotate it around the edge to
a point corresponding to its count (there are 10 positions around
the edge of the larger ring). For each of these new rings we
recursively perform the operations, each ring becoming 10 smaller
rings. Notice how the {\bf DHMATRIX} operations are used to build up
the proper matrix composing all these transformations.

\begin{verbatim}
-- Recursively draw Antoine's Necklace
drawRingsInner(s, n, dh) ==                   
  n = 0 =>                                    
    drawRing(s, dh)
    void()
  t := 0.0@DFLOAT               Angle around ring
  p := 0.0@DFLOAT               Angle of subring from plane
  tr := 1.0@DFLOAT              Amount to translate subring
  inc := 0.1@DFLOAT             The translation increment
  for i in 1..10 repeat         Subdivide into 10 linked rings
    tr := tr + inc
    inc := -inc
    -- Transform ring in center to a link
    dh' := dh*rotatez(t)*translate(tr,0.0@DFLOAT,0.0@DFLOAT)*
           rotatey(p)*scale(0.35@DFLOAT, 0.48@DFLOAT, 0.4@DFLOAT)
    drawRingsInner(s, n-1, dh')
    t := t + 36.0@DFLOAT
    p := p + 90.0@DFLOAT
  void()

-- Draw a single ring into the given subspace,
-- transformed by the given DHMATRIX
drawRing(s, dh) ==                            
  free torusRot                               
  torusRot := dh                              
  makeObject(torus, 0..2*\%pi, 0..2*\%pi, var1Steps == 6,
             space == s, var2Steps == 15)

-- Parameterization of a torus, transformed by the
-- DHMATRIX in torusRot.
torus(u ,v) ==                                
  cu := cos(u)/6                              
                                              
  torusRot*point [(1+cu)*cos(v),(1+cu)*sin(v),(sin u)/6]
\end{verbatim}

%\input{gallery/scherk.htex}
\section{scherk.input}
\label{ugFscherk}
%

Scherk's minimal surface, defined by:
\index{Scherk's minimal surface}
$e^z \cos(x) = \cos(y)$.
See: {\it A Comprehensive Introduction to Differential Geometry,} Vol. 3,
by Michael Spivak, Publish Or Perish, Berkeley, 1979, pp. 249-252.

\begin{verbatim}
-- Offsets for a single piece of Scherk's minimal surface
(xOffset, yOffset):DFLOAT                        

-- Draw Scherk's minimal surface on an m by n patch
drawScherk(m,n) ==                               
  free xOffset, yOffset                         
  space := createThreeSpace()
  for i in 0..m-1 repeat
    xOffset := i*\%pi
    for j in 0 .. n-1 repeat
      -- Draw only odd patches
      rem(i+j, 2) = 0 => 'iter                   
      yOffset := j*\%pi
      -- Draw a patch
      drawOneScherk(space)                       
  makeViewport3D(space, "Scherk's Minimal Surface")

-- The first patch that makes up a single piece of
--  Scherk's minimal surface
scherk1(u,v) ==                                     
  x := cos(u)/exp(v)                                
  point [xOffset + acos(x), yOffset + u, v, abs(v)] 

-- The second patch
scherk2(u,v) ==                                      
  x := cos(u)/exp(v)
  point [xOffset - acos(x), yOffset + u, v, abs(v)]

-- The third patch
scherk3(u,v) ==                                      
  x := exp(v) * cos(u)
  point [xOffset + u, yOffset + acos(x), v, abs(v)]

-- The fourth patch
scherk4(u,v) ==                                     
  x := exp(v) * cos(u)
  point [xOffset + u, yOffset - acos(x), v, abs(v)]

-- Draw the surface by breaking it into four
-- patches and then drawing the patches
drawOneScherk(s) ==                                 
  makeObject(scherk1,-\%pi/2..\%pi/2,0..\%pi/2,space==s,
             var1Steps == 28, var2Steps == 28)       
  makeObject(scherk2,-\%pi/2..\%pi/2,0..\%pi/2,space==s,
             var1Steps == 28, var2Steps == 28)
  makeObject(scherk3,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,
             var1Steps == 28, var2Steps == 28)
  makeObject(scherk4,-\%pi/2..\%pi/2,-\%pi/2..0,space==s,
             var1Steps == 28, var2Steps == 28)
  void()
\end{verbatim}

%Original Page 703

{

%\setcounter{chapter}{6} % Appendix G
\chapter{Glossary}
\label{ugGlossary}

\sloppy

\ourGloss{\glossarySyntaxTerm{!}}{%
{\it (syntax)}
Suffix character
\index{operation!destructive}
for destructive operations.
}

\ourGloss{\glossarySyntaxTerm{,}}{%
{\it (syntax)}
a separator for items in a {\it tuple},
for example, to separate arguments of a function $f(x,y)$.
}


\ourGloss{\glossarySyntaxTerm{\tt =>}}{%
{\it (syntax)}
the expression $a => b$ is equivalent to $if a
then$ {\it exit} $b$.
}


\ourGloss{\glossarySyntaxTerm{?}}{%
1.
{\it (syntax)} a suffix character for Boolean-valued {\bf function}
names, for example, {\bf odd?}.
2.
Prefix character for ``optional'' pattern variables. For example,
the pattern $f(x + y)$ does not match the expression $f(7)$,
but $f(?x + y)$ does, with $x$ matching 0 and $y$ matching 7.
3.
The special type {\bf ?} means {\it don't care}.
For example, the declaration: $x : Polynomial ?$ means
that values assigned to $x$ must be polynomials over an arbitrary
{\it underlying domain}.
}

\ourGloss{\glossaryTerm{abstract datatype}}{%
a programming language principle used in Axiom where a datatype definition has
defined in two parts: (1) a {\it public} part describing a set of
exports,
principally operations that apply to objects of that
type, and (2) a {\it private} part describing the implementation of the
datatype usually in terms of a {\it representation} for objects of
the type.
Programs that create and otherwise manipulate objects of the type may
only do so through its exports.
The representation and other implementation information is specifically
hidden.
}

\ourGloss{\glossaryTerm{abstraction}}{%
described functionally or conceptually without regard to implementation.
}


\ourGloss{\glossaryTerm{accuracy}}{%
the degree of exactness of an approximation or measurement.
In computer algebra systems, computations are typically carried out with
complete accuracy using integers or rational numbers of indefinite size.
Domain {\bf Float} provides a function
\spadfunFrom{precision}{Float} to change the precision for floating-point
computations. Computations using {\bf DoubleFloat} have a fixed
precision but uncertain accuracy.
}


\ourGloss{\glossaryTerm{add-chain}}{%
a hierarchy formed by domain extensions.
If domain $A$ extends domain $B$ and domain $B$ extends
domain $C$, then $A$ has {\it add-chain} $B$-$C$.
}


\ourGloss{\glossaryTerm{aggregate}}{%
a data structure designed to hold multiple values.
Examples of aggregates are {\bf List}, {\bf Set},
{\bf Matrix} and {\bf Bits}.
}


\ourGloss{\glossaryTerm{AKCL}}{%
Austin Kyoto Common LISP, a version of {\it KCL} produced
by William Schelter, Austin, Texas.
}


\ourGloss{\glossaryTerm{algorithm}}{%
a step-by-step procedure for a solution of a problem; a program
}


\ourGloss{\glossaryTerm{ancestor}}{%
(of a domain or category) a category that is a {\it parent}, or
a {\it parent} of a {\it parent}, and so on.
See a {\bf Cross Reference} page of a constructor in Browse.
}


\ourGloss{\glossaryTerm{application}}{%
{\it (syntax)} an expression denoting ``application'' of a function to a
set of {\it argument} parameters.
Applications are written as a {\it parameterized form}.
For example, the form $f(x,y)$ indicates the ``application of the
function $f$ to the tuple of arguments $x$ and $y$.''
See also {\it evaluation} and {\it invocation}.
}


\ourGloss{\glossaryTerm{apply}}{%
See {\it application}.
}


\ourGloss{\glossaryTerm{argument}}{%
1.
(actual argument) a value passed to a function at the time of a
function call; also called an {\it actual
parameter}. 2.
(formal argument) a variable used in the definition of a function to
denote the actual argument passed when the function is called.
}


\ourGloss{\glossaryTerm{arity}}{%
1.
(function) the number of arguments.
2.
(operator or operation) corresponds to the arity of a function
implementing the operator or operation.
}


\ourGloss{\glossaryTerm{assignment}}{%
{\it (syntax)} an expression of the form $x := e$, meaning
``assign the value of $e$ to $x$.''
After {\it evaluation}, the {\it variable} $x$
points to an object obtained by evaluating
the expression $e$.
If $x$ has a {\it type} as a result of a previous
{\it declaration}, the object assigned to $x$ must have
that type.
The interpreter must often coerce the
value of $e$ to make that happen.
For example, the expression $x : Float := 11$
first declares $x$ to be a float, then
forces the interpreter to coerce the integer $11$ to
$11.0$ in order to assign a floating-point value to $x$.
}


\ourGloss{\glossaryTerm{attribute}}{%
a name or functional form denoting {\it any} 
useful computational or mathematical
property. For example, {\bf commutative($"*"$)} asserts that
$*$ is commutative.
Also, {\bf finiteAggregate} is used to assert that an aggregate has
a finite number of immediate components.
}


\ourGloss{\glossaryTerm{basis}}{%
{\it (algebra)} $S$ is a basis of a module $M$ over a
{\it ring} if $S$ generates $M$, and $S$ is linearly
independent.
}


\ourGloss{\glossaryTerm{benefactor}}{%
(of a given domain) a domain or package that the given domain explicitly
references (for example, calls functions from) in its implementation.
See a {\bf Cross Reference} page of a constructor in Browse.
}


\ourGloss{\glossaryTerm{binary}}{%
operation or function with {\it arity} 2.
}


\ourGloss{\glossaryTerm{binding}}{%
the association of a variable with properties such as {\it value}
and {\it type}.
The top-level {\it environment} in the interpreter consists of
bindings for all user variables and functions.
When a {\it function} is applied to arguments, a local environment
of bindings is created, one for
each formal {\it argument} and {\it local variable}.
}


\ourGloss{\glossaryTerm{block}}{%
{\it (syntax)} a control structure where expressions are sequentially
evaluated.
}


\ourGloss{\glossaryTerm{body}}{%
a {\it function body} or {\it loop body}.
}


\ourGloss{\glossaryTerm{boolean}}{%
objects denoted by the literals {\tt true} and
{\tt false}; elements of domain {\bf Boolean}.
\index{Boolean}
See also {\bf Bits}.
}


\ourGloss{\glossaryTerm{built-in function}}{%
a {\it function} in the standard Axiom library.
\index{function!built-in}
Contrast {\it user function}.
}

v
\ourGloss{\glossaryTerm{cache}}{%
1.
(noun) a mechanism for immediate retrieval of previously computed data.
For example, a function that does a lengthy computation might store its
values in a {\it hash table} using the function argument as
the key.
The hash table then serves as a cache for the function (see also
{\tt )set function cache}).
Also, when recurrence relations that depend upon $n$
previous values are compiled, the previous $n$ values are normally
cached (use {\tt )set functions recurrence} to change this).
2.
(verb) to save values in a cache.
}


\ourGloss{\glossaryTerm{capsule}}{%
the part of the body of a
{\it domain constructor} that defines the functions implemented by
the constructor.
}


\ourGloss{\glossaryTerm{case}}{%
{\it (syntax)} an operator used to evaluate code conditionally based on
the branch of a {\bf Union}.
\index{Union}
For example, if value $u$ is $Union(Integer, "failed")$, the
conditional expression $if u case Integer then A else B$ evaluates
$A$ if $u$ is an integer and $B$ otherwise.
}


\ourGloss{\glossaryTerm{Category}}{%
the distinguished object denoting the type of a category; the class of
all categories.
}


\ourGloss{\glossaryTerm{category}}{%
{\it (basic concept)} types denoting
classes of domains.
Examples of categories are {\bf Ring} (``the class of all
rings'') and {\bf Aggregate} (``the class of all aggregates'').
Categories form a hierarchy (formally, a directed acyclic graph)
with the distinquished category {\bf Type}
at the top.
Each category inherits the properties of all its ancestors.
Categories optionally provide ``default definitions'' for
operations they export.
Categories are defined in Axiom by functions called
category constructors.
Technically, a category designates a class of domains with common
operations and
attributes but usually with different
functions
and representations for its
constituent objects.
Categories are always defined using the Axiom library
language (see also {\it category extension}).
See also file {\bf catdef.spad} for definitions of basic algebraic
\index{file!catdef.spad @{\bf catdef.spad}}
categories in Axiom, {\bf aggcat.spad} for data structure
\index{file!aggcat.spad @{\bf aggcat.spad}}
}


\ourGloss{\glossaryTerm{category constructor}}{%
a function that creates categories, described by an abstract datatype in
\index{constructor!category}
the Axiom programming language.
For example, the category constructor {\bf Module} is a function
that takes a domain parameter $R$ and creates the category ``modules
over $R$.''
}


\ourGloss{\glossaryTerm{category extension}}{%
A category $A$ {\it directly extends} a category $B$ if
its definition has the form $A == B with ...$ or
$A == Join(...,B,...)$.
In this case, we also say that $B$ is the {\it parent} of $A$.
We say that a category $A$ extends $B$ if $B$ is
an {\it ancestor} of $A$.
A category $A$ may also directly extend $B$ if
$B$ appears in a conditional expression within the {\tt Exports} part
of the definition to the right of a {\tt with}.
See, for example, file {\bf catdef.spad} for definitions of the
\index{file!catdef.spad @{\bf catdef.spad}}
algebra categories in Axiom, {\bf aggcat.spad} for data structure
\index{file!aggcat.spad @{\bf aggcat.spad}}
categories.
}

\ourGloss{\glossaryTerm{category hierarchy}}{%
hierarchy formed by category extensions.
The root category is {\bf Type}.
\index{Type}
A category can be defined as a {\it Join} of two or more
categories so as to have multiple parents.
Categories may also be parameterized so as to allow conditional
inheritance.
}

\ourGloss{\glossaryTerm{character}}{%
1.
an element of a character set, as represented by a keyboard key.
2.
a component of a string.
For example, the $1$st element of the string $"hello there"$ is the
character {\it h}.
}


\ourGloss{\glossaryTerm{client}}{%
(of a given domain) any domain or package that explicitly calls
functions from the given domain.
See a {\bf Cross Reference} page of a constructor in Browse.
}


\ourGloss{\glossaryTerm{coercion}}{%
an automatic transformation of an object of one {\it type} to an
object of a similar or desired target type.
In the interpreter, coercions and retractions
are done
automatically by the interpreter when a type mismatch occurs.
Compare {\it conversion}.
}


\ourGloss{\glossaryTerm{comment}}{%
textual remarks imbedded in code.
Comments are preceded by a double dash ({\tt --}).
For Axiom library code, stylized comments for on-line
documentation are preceded by two plus signs ({\tt ++}).
}


\ourGloss{\glossaryTerm{Common LISP}}{%
A version of {\it LISP} adopted as an informal standard by major
users and suppliers of LISP.
}


\ourGloss{\glossaryTerm{compile-time}}{%
the time when category or domain constructors are compiled.
Contrast {\it run-time}.
}


\ourGloss{\glossaryTerm{compiler}}{%
a program that generates low-level code from a higher-level source
language. Axiom has three compilers.
A {\it graphics compiler} converts graphical formulas to a compiled
subroutine so that points can be rapidly produced for graphics commands.
An {\it interpreter compiler} optionally compiles
user functions
when first invoked (use
{\tt )set functions compile} to turn this feature on).
A {\it library compiler} compiles all constructors (available on an ``as-is''
basis for Release 1).
}


\ourGloss{\glossaryTerm{computational object}}{%
In Axiom, domains are objects.
This term is used to distinguish the objects that are members of
domains rather than the domains themselves.
}


\ourGloss{\glossaryTerm{conditional}}{%
a {\it control structure} of the form $if A then B else C$.
\index{if}
The {\it evaluation} of $A$ produces {\tt true} or
{\tt false}. If {\tt true}, $B$ evaluates to produce a value;
otherwise $C$ evaluates to produce a value.
When the value is not required, the $else C$ part can be omitted.
}


\ourGloss{\glossaryTerm{constant}}{%
{\it (syntax)} a reserved word used in signatures in
Axiom programming language to signify that an operation always
returns the same value.
For example, the signature $0: constant -> \$$ in the source code
of {\bf AbelianMonoid} tells the Axiom compiler that $0$
is a constant so that suitable optimizations might be performed.
}


\ourGloss{\glossaryTerm{constructor}}{%
a {\it function} that creates a {\it category},
{\it domain}, or {\it package}.
}


\ourGloss{\glossaryTerm{continuation}}{%
when a line of a program is so long that it must be broken into several
lines, then all but the first line are called {\it continuation lines}.
If such a line is given interactively, then each incomplete line must
end with an underscore.
}


\ourGloss{\glossaryTerm{control structure}}{%
program structures that can specify a departure from normal sequential
execution. Axiom has four kinds of control structures:
blocks, {\it case} statements,
conditionals, and loops.
}


\ourGloss{\glossaryTerm{conversion}}{%
the transformation of an object of one {\it type} to one of
another type.
Conversions that can be performed automatically by the
interpreter are called
coercions. These happen when the
interpreter encounters a type mismatch and a similar or declared
target type is needed.
In general, the user must use the infix operation {\tt ::}
to cause this transformation.
}


\ourGloss{\glossaryTerm{copying semantics}}{%
the programming language semantics used in PASCAL
\index{PASCAL}
but {\it not} in
\index{semantics!copying}
Axiom. See also {\it pointer semantics} for details.
\index{semantics!pointer}
}


\ourGloss{\glossaryTerm{data structure}}{%
a structure for storing data in the computer.
Examples are lists
and hash tables.
}


\ourGloss{\glossaryTerm{datatype}}{%
equivalent to {\it domain} in Axiom.
}


\ourGloss{\glossaryTerm{declaration}}{%
{\it (syntax)} an expression of the form $x : T$ where $T$ is
some {\it type}.
A declaration forces all values assigned to
$x$ to be of that type.
If a value is of a different type, the interpreter will try to
coerce the value to type $T$.
Declarations are necessary in case of ambiguity or when a user wants to
introduce an unexposed domain.
}


\ourGloss{\glossaryTerm{default definition}}{%
a function defined by a {\it category}.
Such definitions appear in category definitions of the form \newline
$C: Category == T add I$ \newline
in an optional implementation part $I$ to the
right of the keyword $add$.
}


\ourGloss{\glossaryTerm{default package}}{%
an optional {\it package}
of functions associated with a category.
Such functions are necessarily defined in terms of other operations
exported by the category.
}


\ourGloss{\glossaryTerm{definition}}{%
{\it (syntax)} 1.
An expression of the form $f(a) == b$ defining function $f$
with formal arguments
$a$ and {\it body} $b$;
equivalent to the statement $f == (a) +-> b$.
2.
An expression of the form $a == b$ where $a$ is a
{\it symbol}, equivalent to $a() == b$.
See also {\it macro} where a similar substitution is done at
{\it parse} time.
}


\ourGloss{\glossaryTerm{delimiter}}{%
a {\it character} that marks the beginning or end of some
syntactically correct unit in the language, for example,
{\tt "} for strings, blanks for identifiers.
}

\ourGloss{\glossaryTerm{dependent}}{%
(of a given constructor) another constructor that mentions the given
constructor as an argument or among the types of an exported operation.
See a {\bf Cross Reference} page of a constructor in Browse.
}


\ourGloss{\glossaryTerm{destructive operation}}{%
An operation that changes a component or structure of a value.
\index{operation!destructive}
In Axiom, destructive operations have names ending
with an exclamation mark ({\tt !}).
For example, domain {\bf List} has two operations to reverse
the elements of a list, one named \spadfunFrom{reverse}{List}
that returns a copy of the original list with the elements
reversed, another named \spadfunFrom{reverse}{List} that
reverses the elements {\it in place,} thus destructively changing
the original list.
}

\ourGloss{\glossaryTerm{documentation}}{%
1.
on-line or hard-copy descriptions of Axiom; 2.
text in library code preceded by {\tt ++} comments as opposed to general
comments preceded by {\tt --}.
}


\ourGloss{\glossaryTerm{domain}}{%
{\it (basic concept)} a domain corresponds to the usual notion of
datatypes.
Examples of domains are
{\bf List Float} (``lists of floats''),
{\bf Fraction Polynomial Integer} (``fractions of polynomials of integers''),
and {\bf Matrix Stream CardinalNumber}
(``matrices of infinite streams of cardinal numbers'').
The term {\it domain} actually abbreviates {\it domain of
computation}.
Technically, a domain denotes a class of objects, a class of
operations for creating and otherwise
manipulating these objects, and a class of
attributes describing computationally
useful properties.
Domains may also define functions for its exported operations,
often in terms of some {\it representation} for the objects.
A domain itself is an {\it object} created by a
{\it function} called a {\it domain constructor}.
The types of the exported operations of a domain are arbitary; this gives
rise to a special class of domains called packages.
}


\ourGloss{\glossaryTerm{domain constructor}}{%
a function that creates domains, described by an abstract datatype in
\index{constructor!domain}
the Axiom programming language.
Simple domains like {\bf Integer} and {\bf Boolean} are
created by domain constructors with no arguments.
Most domain constructors take one or more parameters, one usually
denoting an {\it underlying domain}.
For example, the domain {\bf Matrix(R)} denotes ``matrices over
$R$.''
\index{Mapping}
Domains {\bf Mapping},
\index{Record}
{\bf Record}, and {\bf Union} are
\index{Union}
primitive domains.
All other domains are written in the Axiom programming language
and can be modified by users with access to the library source code
and the library compiler.
}


\ourGloss{\glossaryTerm{domain extension}}{%
a domain constructor $A$ is said to {\it extend} a domain
constructor $B$ if $A$'s definition has the form $A
== B add ...$.
This intuitively means ``functions not defined by $A$ are assumed to
come from $B$.''
Successive domain extensions form add-chains
affecting the
search order for functions not implemented
directly by the domain during {\it dynamic lookup}.
}


\ourGloss{\glossaryTerm{dot notation}}{%
using an infix dot ({\tt .}) for the
operation {\bf elt}.
If $u$ is the list $[7,4,-11]$ then both $u(2)$ and
$u.2$ return $4$.
Dot notation nests to the left:
$f.g.h$ is equivalent to $(f.g).h$.
}


\ourGloss{\glossaryTerm{dynamic}}{%
that which is done at {\it run-time} as opposed to
{\it compile-time}.
For example, the interpreter may build a domain ``matrices over
integers'' dynamically in response to user input.
However, the compilation of all functions for matrices and
integers is done during {\it compile-time}.
Constrast {\it static}.
}


\ourGloss{\glossaryTerm{dynamic lookup}}{%
In Axiom, a {\it domain} may or may not explicitly provide
{\it function} definitions for all its exported
operations. These definitions may instead come from domains
in the {\it add-chain} or from default packages.
When a function call is made for an
operation in the domain, up to five steps are carried out.
\begin{enumerate}
\item  If the domain itself implements a function for the operation,
that function is returned.
\item  Each of the domains in the {\it add-chain} are searched;
if one of these domains implements the function, that function is
returned.
\item Each of the default packages
for the
domain are searched in order of the {\it lineage}.
If any of the default packages implements the function, the first one
found is returned.
\item  Each of the default packages
for each of the
domains in the {\it add-chain} are searched in the order of their
{\it lineage}. If any of the default packages implements the
function, the first one found is returned.
\item  If all of the above steps fail, an error message is reported.
\end{enumerate}
}


\ourGloss{\glossaryTerm{empty}}{%
the unique value of objects with type {\bf Void}.
}


\ourGloss{\glossaryTerm{environment}}{%
a set of bindings.
}


\ourGloss{\glossaryTerm{evaluation}}{%
a systematic process that transforms an {\it expression} into an
object called the {\it value} of the expression.
Evaluation may produce side effects.
}

%tpdclip1


\ourGloss{\glossaryTerm{exit}}{%
{\it (reserved word)} an {\it operator} that forces an exit from
the current {\it block}.
For example, the block $(a := 1; if i > 0 then exit a;
a := 2)$ will prematurely exit at the second statement with value 1 if
the value of $i$ is greater than zero.
See {\tt =>} for an alternate syntax.
}

%tpdhere
%tpdhere
%tpdhere
%tpdhere

\ourGloss{\glossaryTerm{explicit export}}{%
1.
(of a domain $D$) any {\it attribute}, {\it operation},
\index{export!explicit}
or {\it category} explicitly mentioned in the {\it type}
exports part $E$ for the domain constructor definition
$D: E == I$ 2.
(of a category $C$) any {\it attribute},
{\it operation}, or {\it category} explicitly mentioned in
the {\it type} specification part $E$ for the category
constructor definition $C: {\it Category} == E$
}


\ourGloss{\glossaryTerm{export}}{%
{\it explicit export} or {\it implicit export} of a domain
or category
}


\ourGloss{\glossaryTerm{expose}}{%
some constructors are {\it exposed}, others {\it unexposed}.
Exposed domains and packages are recognized by the interpreter.
Use {\tt )set expose} to control what is exposed.
Unexposed constructors will appear in Browse prefixed by a star (``{\tt *}'').
}


\ourGloss{\glossaryTerm{expression}}{%
1.
any syntactically correct program fragment.
2.
an element of domain {\bf Expression}.
}


\ourGloss{\glossaryTerm{extend}}{%
see {\it category extension} or {\it domain extension}.
}


\ourGloss{\glossaryTerm{field}}{%
{\it (algebra)} a {\it domain} that is a {\it ring} where
every non-zero element is invertible and where $xy=yx$; a member of
category {\bf Field}.
For a complete list of fields, click on {\bf Domains} under {\bf Cross
Reference} for {\bf Field} in Browse.
}


\ourGloss{\glossaryTerm{file}}{%
1. a program or collection of data stored on disk, tape or other medium.
2. an object of a {\bf File} domain.
}


\ourGloss{\glossaryTerm{float}}{%
a floating-point number with user-specified precision; an element of
domain {\bf Float}.
\index{Float}
Floats are literals written either without an
exponent (for example, $3.1416$), or with an exponent
(for example, $3.12E-12$).
Use function {\it precision} to change the precision of the
mantissa ($20$ digits by default).
See also {\it small float}.
}


\ourGloss{\glossaryTerm{formal parameter}}{%
(of a function) an identifier bound to the value
of an actual {\it argument} on {\it invocation}.
In the function definition $f(x,y) == u$, for example, $x$ and
$y$ are the formal parameters.
}


\ourGloss{\glossaryTerm{frame}}{%
the basic unit of an interactive session; each frame has its own
{\it step number}, {\it environment}, and
{\it history}. In one interactive session, users can create and
drop frames, and have several active frames simultaneously.
}


\ourGloss{\glossaryTermNoIndex{free}}{%
{\it (syntax)}
A keyword used in user-defined functions to declare that
a variable is a {\it free variable} of that function.
\index{free}
For example, the statement $free x$ declares the variable $x$
within the body of a function $f$ to be a free variable in $f$.
Without such a declaration, any variable $x$ that appears on the
left-hand side of an assignment before it is referenced
is regarded as a {\it local variable} of that function.
If the intention of the assignment is to give a value to a
{\it global variable} $x$, the body of that function must
contain the statement $free x$.
A variable that is a parameter to the function is always local.
%This should be a reported bug--->
%, even
%if it has a $free$ declaration.
}


\ourGloss{\glossaryTerm{free variable}}{%
(of a function) a variable that appears in a body of a function but is
not bound by that function.
Contrast with {\it local variable}.
}

\ourGloss{\glossaryTerm{function}}{%
implementation of {\it operation}.
A function takes zero or more {\it argument} parameters and
produces a single return value.
Functions are objects that can be passed as parameters to
functions and can be returned as values of functions.
Functions can also create other functions (see also
{\bf InputForm}).
See also {\it application} and {\it invocation}.
The terms {\it operation} and {\it function} are distinct notions
in Axiom.
An operation is an abstraction of a function, described by
a {\it name} and a {\it signature}.
A function is created by providing an implementation of that
operation by Axiom code.
Consider the example of defining a user-function $fact$ to
compute the {\bf factorial} of a nonnegative integer.
The Axiom statement $fact: Integer -> Integer$
describes the operation, whereas the statement $fact(n) =
reduce(*,[1..n])$ defines the function.
See also {\it generic function}.
}


\ourGloss{\glossaryTerm{function body}}{%
the part of a {\it function}'s definition that is
evaluated when the function is called at {\it run-time}; the part
of the function definition to the right of the {\tt ==}.
}


\ourGloss{\glossaryTerm{garbage collection}}{%
a system function that automatically recycles memory cells from the
{\it heap}. Axiom is built upon {\it Common LISP} that
provides this facility.
}


\ourGloss{\glossaryTerm{garbage collector}}{%
a mechanism for reclaiming storage in the {\it heap}.
}


\ourGloss{\glossaryTerm{Gaussian}}{%
a complex-valued expression, for example, one with both a real and
imaginary part; a member of a {\bf Complex} domain.
}


\ourGloss{\glossaryTerm{generic function}}{%
the use of one function to operate on objects of different types.
One might regard Axiom as supporting generic
operations but not generic functions.
One operation $+: (D, D) -> D$ exists for adding elements in a
ring; each ring however provides its own type-specific function
for implementing this operation.
}


\ourGloss{\glossaryTerm{global variable}}{%
A variable that can be referenced freely by functions.
\index{variable!global}
In Axiom, all top-level user-defined variables defined during an
interactive user session are global variables.
Axiom does not allow {\it fluid variables}, that is, variables
\index{variable!fluid}
bound by a function $f$ that can be referenced by
functions that $f$ calls.
}


\ourGloss{\glossaryTermNoIndex{Gr\protect\"{o}bner basis}}{%
{\it (algebra)} a special basis for a polynomial ideal that allows a
\index{Groebner basis @{Gr\protect\"{o}bner basis}}
simple test for membership.
\index{basis!Groebner@{Gr\protect\"{o}bner}}
It is useful in solving systems of polynomial equations.
}



\ourGloss{\glossaryTerm{group}}{%
{\it (algebra)} a monoid where every element has a multiplicative
inverse.
}


\ourGloss{\glossaryTerm{hash table}}{%
a data structure designed for fast lookup of information stored under ``keys''.
A hash table consists of a set of {\it entries}, each of which
associates a {\it key} with a {\it value}.
Finding the object stored under a key can be fast for
a large number of entries since keys are {\it hashed} into numerical
codes for fast lookup.
}


\ourGloss{\glossaryTerm{heap}}{%
1. an area of storage used by data in programs.
For example, Axiom will use the heap to hold the partial results of
symbolic computations.
When cancellations occur, these results remain in the heap until
garbage collected.
2. an object of a {\bf Heap} domain.
}


\ourGloss{\glossaryTerm{history}}{%
a mechanism that records input and output data for an interactive session.
Using the history facility, users can save computations, review previous
steps of a computation, and restore a previous interactive session at
some later time.
For details, issue the system command {\it )history ?} to the
interpreter. See also {\it frame}.
}


\ourGloss{\glossaryTerm{ideal}}{%
{\it (algebra)} a subset of a ring that is closed under addition and
multiplication by arbitrary ring elements; thus an ideal is
a module over the ring.
}


\ourGloss{\glossaryTerm{identifier}}{%
{\it (syntax)} an Axiom name; a {\it literal} of type
{\bf Symbol}. An identifier begins with an alphabetical character,
\%, ?, or !, and may be followed by any of these or digits.
Certain distinguished reserved words are not allowed as
identifiers but have special meaning in Axiom.
}

\ourGloss{\glossaryTerm{immutable}}{%
an object is immutable if it cannot be changed by an
{\it operation}; it is not a mutable object.
Algebraic objects are generally immutable: changing an algebraic expression
involves copying parts of the original object.
One exception is an object of type {\bf Matrix}.
Examples of mutable objects are data structures such as those of type
\index{semantics!pointer}
{\bf List}. See also {\it pointer semantics}.
}


\ourGloss{\glossaryTerm{implicit export}}{%
(of a domain or category)
\index{export!implicit}
any exported {\it attribute} or {\it operation} or {\it category}
that is not an {\it explicit export}.
For example, {\bf Monoid} and {\bf *} are implicit exports of
{\bf Ring}.
}


\ourGloss{\glossaryTerm{index}}{%
1.
a variable that counts the number of times a {\it loop} is
repeated.
2. the ``address'' of an element in a data structure (see also category
{\bf LinearAggregate}).
}


\ourGloss{\glossaryTerm{infix}}{%
{\it (syntax)} an {\it operator} placed between two
operands; also called a {\it binary
operator}.
For example, in the expression $a + b$, $+$ is the
infix operator.
An infix operator may also be used as a {\it prefix}.
Thus $+(a,b)$ is also permissible in the Axiom
language.
Infix operators have a {\it precedence} relative to one another.
% relative to what?
}


\ourGloss{\glossaryTerm{input area}}{%
a rectangular area on a HyperDoc screen into which users can enter
text.
}


\ourGloss{\glossaryTerm{instantiate}}{%
to build a {\it category}, {\it domain}, or
{\it package} at run-time.
}


\ourGloss{\glossaryTerm{integer}}{%
a {\it literal} object of domain {\bf Integer}, the class of
integers with an unbounded number of digits.
Integer literals consist of one or more consecutive digits (0-9) with no
embedded blanks.
Underscores can be used to separate digits in long integers if
desirable.
}


\ourGloss{\glossaryTerm{interactive}}{%
a system where the user interacts with the computer step-by-step.
}


\ourGloss{\glossaryTerm{interpreter}}{%
the part of Axiom responsible for handling user input
during an interactive session.
%The following is a somewhat simplified description of the typical action of
%the interpreter.
The interpreter parses the user's input expression to create an
expression tree, then does a bottom-up traversal of the tree.
Each subtree encountered that is not a value consists of a root node
denoting an operation name and one or more leaf nodes denoting
operands.
The interpreter resolves type mismatches and uses
type-inferencing and a library database to determine appropriate types for
the operands and the result, and an operation to be performed.
The interpreter next builds a domain to perform the indicated operation,
and invokes a function from the domain to compute a value.
The subtree is then replaced by that value and the process continues.
Once the entire tree has been processed, the value replacing the top
node of the tree is displayed back to the user as the value of the
expression.
}

\ourGloss{\glossaryTerm{invocation}}{%
(of a function) the run-time process involved in
evaluating a {\it function}
{\it application}. This process has two steps.
First, a local {\it environment} is created where
formal arguments
are locally bound by
{\it assignment} to their respective actual {\it argument}.
Second, the {\it function body} is evaluated in that local
environment. The evaluation of a function is terminated either by
completely evaluating the function body or by the evaluation of a
{\tt return} expression.
\index{return}
}

\ourGloss{\glossaryTerm{iteration}}{%
repeated evaluation of an expression or a sequence of expressions.
Iterations use the reserved words
{\tt for},
\index{for}
{\tt while},
\index{while}
and {\tt repeat}.
\index{repeat}
}

\ourGloss{\glossaryTerm{Join}}{%
a primitive Axiom function taking two or more categories as
arguments and producing a category containing all of the operations and
attributes from the respective categories.
}


\ourGloss{\glossaryTerm{KCL}}{%
Kyoto Common LISP, a version of {\it Common LISP} that features
compilation of LISP into the $C$ Programming
Language.
}


\ourGloss{\glossaryTerm{library}}{%
In Axiom, a collection of compiled modules respresenting
{\it category} or {\it domain} constructors.
}


\ourGloss{\glossaryTerm{lineage}}{%
the sequence of
default packages
for a given domain to be
searched during {\it dynamic lookup}.
This sequence is computed first by ordering the category
ancestors of the domain according to their {\it level
number}, an integer equal to the minimum distance of the domain from
the category.
Parents have level 1, parents of parents have level 2, and so on.
Among categories with equal level numbers, ones that appear in the
left-most branches of {\tt Join}s in the source code come first.
See a {\bf Cross Reference} page of a constructor in Browse.
See also {\it dynamic lookup}.
}

\ourGloss{\glossaryTerm{LISP}}{%
acronym for List Processing Language, a language designed for the
manipulation of non-numerical data.
The Axiom library is translated into LISP then compiled into
machine code by an underlying LISP system.
}


\ourGloss{\glossaryTerm{list}}{%
an object of a {\bf List} domain.
}


\ourGloss{\glossaryTerm{literal}}{%
an object with a special syntax in the language.
In Axiom, there are five types of literals:
booleans,
integers,
floats,
strings, and
symbols.
}


\ourGloss{\glossaryTerm{local}}{%
{\it (syntax)}
A keyword used in user-defined functions to declare that
a variable is a {\it local variable} of that function.
Because of default assumptions on variables, such a declaration is
often not necessary but is available to the user for clarity when appropriate.
}

\ourGloss{\glossaryTerm{local variable}}{%
(of a function) a variable bound by that
function and such that its binding is invisible to any function
that function calls.
Also called a {\it lexical} variable.
By default in the interpreter:
\begin{enumerate}
\item
any variable $x$ that appears on the left-hand side of an
assignment
is normally regarded a local variable of that function.
%The right-hand side of an assignment is looked at before the
%left-hand side.
If the intention of an assignment is to change the value of a
{\it global variable} $x$, the body of the function must then
contain the statement $free x$.
\item
any other variable is regarded as a {\it free variable}.
\end{enumerate}
An optional declaration $local x$ is available to declare
explicitly a variable to be a local variable.
All formal parameters
are local variables to the function.
}

\ourGloss{\glossaryTerm{loop}}{%
1.
an expression containing a {\tt repeat}.
\index{repeat}
2.
a collection expression having a
{\tt for} or a
\index{for}
{\tt while},
\index{while}
for example, $[f(i) for i in S]$.
\index{while}
}


\ourGloss{\glossaryTerm{loop body}}{%
the part of a loop following the {\tt repeat}
\index{repeat}
that tells what to do each iteration.
For example, the body of the loop $for x in S repeat B$ is
$B$. For a collection expression, the body of the loop precedes the
initial {\tt for}
\index{for}
or {\tt while}.
\index{while}
}


\ourGloss{\glossaryTerm{macro}}{%
1. {\it (interactive syntax)}
An expression of the form $macro a == b$ where $a$ is a
{\it symbol} causes $a$ to be textually replaced by the
expression $b$ at {\it parse} time.
2.
An expression of the form $macro f(a) == b$ defines a parameterized
macro expansion for a parameterized form $f$. This macro causes a
form $f$($x$) to be textually replaced by the expression
$c$ at parse time, where $c$ is the expression obtained by
replacing $a$ by $x$ everywhere in $b$.
See also {\it definition} where a similar substitution is done
during {\it evaluation}.
3. {\it (programming language syntax)}
An expression of the form $a ==> b$ where $a$ is a symbol.
}


\ourGloss{\glossaryTerm{mode}}{%
a type expression containing a question-mark ({\tt ?}).
For example, the mode {\sf POLY ?} designates {\it the class of all
polynomials over an arbitrary ring}.
}


\ourGloss{\glossaryTerm{mutable}}{%
objects that contain pointers
to other objects and that
\index{semantics!pointer}
have operations defined on them that alter these pointers.
Contrast {\it immutable}.
Axiom uses {\it pointer semantics} as does {\it LISP}
\index{semantics!copying}
in contrast with many other languages such as PASCAL
\index{PASCAL}
that use
{\it copying semantics}.
See {\it pointer semantics} for details.
}

\ourGloss{\glossaryTerm{name}}{%
1.
a {\it symbol} denoting a {\it variable}, such as
the variable $x$.
2.
a {\it symbol} denoting an {\it operation},
that is, the operation $divide: (Integer, Integer) -> Integer$.
}



\ourGloss{\glossaryTerm{nullary}}{%
a function with no arguments, for example,
{\bf characteristic}; operation or function with {\it arity} zero.
}



\ourGloss{\glossaryTerm{object}}{%
a data entity created or manipulated by programs.
Elements of domains, functions, and domains themselves are objects.
The most basic objects are literals; all other objects must
be created by functions.
Objects can refer to other objects using pointers
and can be {\it mutable}.
}

\ourGloss{\glossaryTerm{object code}}{%
code that can be directly executed by hardware; also known as {\it
machine language}.
}


\ourGloss{\glossaryTerm{operand}}{%
an argument of an {\it operator} (regarding an operator as a
{\it function}).
}


\ourGloss{\glossaryTerm{operation}}{%
an abstraction of a {\it function}, described by a
{\it signature}. For example,\\
$fact: NonNegativeInteger -> NonNegativeInteger$ describes an operation for
``the factorial of a (non-negative) integer.''
}


\ourGloss{\glossaryTerm{operator}}{%
special reserved words in the language such as $+$ and
$*$; operators can be either {\it prefix} or
{\it infix} and have a relative {\it precedence}.
}


\ourGloss{\glossaryTerm{overloading}}{%
the use of the same name to denote distinct operations; an
operation is
identified by a {\it signature} identifying its name, the number
and types of its arguments, and its return types.
If two functions can have identical signatures, a {\it package
call} must be made to distinguish the two.
}


\ourGloss{\glossaryTerm{package}}{%
a special case of a domain, one for which the exported operations
depend solely on the parameters
and other explicit domains (contain no \$).
Intuitively, packages are collections of
({\it polymorphic}) functions.
Facilities for integration, differential equations, solution of
linear or polynomial equations, and group theory are provided by
packages.
}


\ourGloss{\glossaryTerm{package call}}{%
{\it (syntax)} an expression of the form $e \$ P$ where $e$ is
an {\it application} and $P$ denotes some {\it package}
(or {\it domain}).
}


\ourGloss{\glossaryTerm{package constructor}}{%
same
\index{constructor!package}
as {\it domain constructor}.
}

\ourGloss{\glossaryTerm{parameter}}{%
see {\it argument}.
}

\ourGloss{\glossaryTerm{parameterized datatype}}{%
a domain that is built on another, for example, polynomials with integer
\index{datatype!parameterized}
coefficients.
}


\ourGloss{\glossaryTerm{parameterized form}}{%
a expression of the form $f(x,y)$, an {\it application} of a
function.
}

\ourGloss{\glossaryTerm{parent}}{%
(of a domain or category) a category which is 
explicitly declared in the source code
definition for the domain either to the left of the {\tt with} or
as an {\it export} of the domain.
See {\it category extension}.
See also a {\bf Cross Reference} page of a constructor in Browse.
}


\ourGloss{\glossaryTerm{parse}}{%
1.
(verb) to transform a user input string representing a valid
Axiom expression into an internal representation as a
tree-structure; the
resulting internal representation is then ``interpreted'' by Axiom to
perform some indicated action.
}

\ourGloss{\glossaryTerm{partially ordered set}}{%
a set with a reflexive, transitive and antisymetric {\it binary}
operation.
}


\ourGloss{\glossaryTerm{pattern matching}}{%
1.
(on expressions) Given an expression called the ``subject'' $u$, the
attempt to rewrite $u$ using a set of ``rewrite rules.''
Each rule has the form $A == B$ where $A$ indicates an
expression called a ``pattern'' and $B$ denotes a ``replacement.''
The meaning of this rule is ``replace $A$ by $B$.''
If a given pattern $A$ matches a subexpression of $u$, that
subexpression is replaced by $B$.
Once rewritten, pattern matching continues until no further changes
occur. 2.
(on strings) the attempt to match a string indicating a ``pattern'' to
another string called a ``subject'', for example, for the purpose of
identifying a list of names.
In Browse, users may enter search strings
for the purpose
of identifying constructors, operations, and attributes.
}

\ourGloss{\glossaryTerm{pile}}{%
alternate syntax for a block, using indentation and column alignment
(see also {\it block}).
}

\ourGloss{\glossaryTerm{pointer}}{%
a reference implemented by a link directed from one object to another in
the computer memory.
An object is said to {\it refer} to another if it has a pointer to that
other object.
Objects can also refer to themselves (cyclic references are legal).
\index{semantics!pointer}
Also more than one object can refer to the same object.
See also {\it pointer semantics}.
}


\ourGloss{\glossaryTerm{pointer semantics}}{%
the programming language semantics used in languages such as LISP that
\index{semantics!copying}
allow objects to be {\it mutable}.
\index{semantics!pointer}
Consider the following sequence of Axiom statements:
\newline
$x : Vector Integer := [1,4,7]$ \newline
$y := x$ \newline
$swap!(x,2,3)$ \newline
The function \spadfunFrom{swap}{Vector}
is used to interchange the second and third value in the list
$x$, producing the value $[1,7,4]$.
What value does $y$ have after evaluation of the third statement?
The answer is different in Axiom than it is in a language with
{\it copying semantics}.
In Axiom, first the vector $[1,2,3]$ is created and the variable
$x$ set to point to this object.
Let's call this object $V$.
Next, the variable $y$ is made to point to $V$ just as
$x$ does.
Now the third statement interchanges the last 2 elements of $V$
(the {\tt !} at the end of the name \spadfunFrom{swap}{Vector} tells you
that this operation is destructive, that is, it changes the elements {\it
in place}).
\index{operation!destructive}
Both $x$ and $y$ perceive this change to $V$.
\index{semantics!copying}
Thus both $x$ and $y$ then have the value $[1,7,4]$.
In PASCAL, the second statement causes a copy of $V$ to be stored
\index{PASCAL}
under $y$.
Thus the change to $V$ made by the third statement does not affect
$y$.
}

\ourGloss{\glossaryTerm{polymorphic}}{%
a {\it function} (for example, one implementing an {\it algorithm})
defined with categorical types so as to be
applicable over a variety of domains
(the domains which are members of the categorical types).
Every Axiom function defined in a domain or package constructor with a
domain-valued parameter is polymorphic.
For example, the same matrix $+$ function is used to add
``matrices over integers'' as ``matrices over matrices over integers.''
}

\ourGloss{\glossaryTerm{postfix}}{%
an {\it operator} that follows its single {\it operand}.
Postfix operators are not available in Axiom.
}

\ourGloss{\glossaryTerm{precedence}}{%
{\it (syntax)} refers to the so-called {\it binding power} of an
operator. For example, $*$ has higher binding power than $+$ so
that the expression $a + b * c$ is equivalent to $a + (b * c)$.
}

\ourGloss{\glossaryTerm{precision}}{%
the number of digits in the specification of a number.
The operation \spadfunFrom{digits}{Float} sets this for objects
of {\bf Float}.
\index{Float}
}

\ourGloss{\glossaryTerm{predicate}}{%
1.
a Boolean-valued function, for example, $odd: Integer -> Boolean$.
2.
a Boolean-valued expression.
}

\ourGloss{\glossaryTerm{prefix}}{%
{\it (syntax)} an {\it operator} such as $-$
that is written {\it before} its single {\it operand}.
Every function of one argument can be used as a prefix operator.
For example, all of the following have equivalent meaning in
Axiom: $f(x)$, $f x$, and $f.x$.
See also {\it dot notation}.
}

\ourGloss{\glossaryTerm{quote}}{%
the prefix {\it operator} {\tt '} meaning {\it do not
evaluate}.
}

\ourGloss{\glossaryTermNoIndex{Record}}{%
(basic domain constructor) a domain constructor used to create an
\index{Record}
inhomogeneous aggregate composed of pairs of
selectors and
values.
A {\bf Record} domain is written in the form
$Record(a1: D1, \ldots, an: Dn)$ ($n > 0$) where
$a1$, \ldots, $an$ are identifiers called the {\it selectors}
of the record, and $D1$, \ldots, $Dn$ are domains indicating
the type of the component stored under selector $an$.
}

\ourGloss{\glossaryTerm{recurrence relation}}{%
A relation that can be expressed as a function $f$ with some
argument $n$ which depends on the value of $f$ at $k$
previous values.
In most cases, Axiom will rewrite a recurrence relation on
compilation so as to {\it cache} its previous $k$ values and
therefore make the computation significantly more efficient.
}


\ourGloss{\glossaryTerm{recursion}}{%
use of a self-reference within the body of a function.
Indirect recursion is when a function uses a function below it in the
call chain.
}

\ourGloss{\glossaryTerm{recursive}}{%
1.
A function that calls itself, either directly or indirectly through
another function.
2.
self-referential.
See also {\it recursive}.
}

\ourGloss{\glossaryTerm{reference}}{%
see {\it pointer}
}

\ourGloss{\glossaryTerm{relative}}{%
(of a domain) A package that exports operations relating to the domain,
in addition to those exported by the domain.
See a {\bf Cross Reference} page of a constructor in Browse.
}

%\ourGloss{\glossaryTermNoIndex{Rep}}{%
%a special identifier used as a {\it local variable} of a domain
%\index{Rep}
%constructor body to denote the representation domain for objects of a
%domain. See {\it representation}.
%}

\ourGloss{\glossaryTerm{representation}}{%
a {\it domain} providing a data structure for elements of a
domain, generally denoted by the special identifier {\it Rep} in
the Axiom programming language.
As domains are abstract datatypes,
this representation is
not available to users of the domain, only to functions defined in the
{\it function body} for a domain constructor.
Any domain can be used as a representation.
}

\ourGloss{\glossaryTerm{reserved word}}{%
a special sequence of non-blank characters with special meaning in the
Axiom language.
Examples of reserved words are names such as {\tt for},
\index{for}
$if$,
\index{if}
and $free$,
\index{free}
operator names such as
$+$ and {\bf mod}, special character strings such as
{\tt ==} and {\tt :=}.
}

\ourGloss{\glossaryTerm{retraction}}{%
to move an object in a parameterized domain back to the underlying
domain, for example to move the object $7$ from a ``fraction of
integers'' (domain {\bf Fraction Integer}) to ``the integers'' (domain
{\bf Integer}).
}

\ourGloss{\glossaryTerm{return}}{%
when leaving a function, the value of the expression following
{\tt return}
\index{return}
becomes the value of the function.
}

\ourGloss{\glossaryTerm{ring}}{%
a set with a commutative addition, associative multiplication, a unit
element, where multiplication is distributive over addition and subtraction.
}

\ourGloss{\glossaryTerm{rule}}{%
{\it (syntax)} 1.
An expression of the form $rule A == B$ indicating a ``rewrite
rule.'' 2.
An expression of the form $rule (R1;...;Rn)$ indicating a set of
``rewrite rules'' $R1$,...,$Rn$.
See {\it pattern matching} for details.
}


\ourGloss{\glossaryTerm{run-time}}{%
the time when computation is done.
Contrast with {\it compile-time}, and
{\it dynamic} as opposed to {\it static}.
For example, the decision of the intepreter to build
a structure such as ``matrices with power series entries'' in response to
user input is made at run-time.
}


\ourGloss{\glossaryTerm{run-time check}}{%
an error-checking that can be done only when the program receives user
input; for example, confirming that a value is in the proper range for a
computation.
}

\ourGloss{\glossaryTerm{search string}}{%
a string entered into an {\it input area} on a HyperDoc screen.
}


\ourGloss{\glossaryTerm{selector}}{%
an identifier used to address a component value of a
{\bf Record} datatype.
\index{Record}
}


\ourGloss{\glossaryTerm{semantics}}{%
the relationships between symbols and their meanings.
The rules for obtaining the {\it meaning} of any syntactically valid
expression.
}

\ourGloss{\glossaryTerm{semigroup}}{%
{\it (algebra)} a {\it monoid} which need not have an identity; it
is closed and associative.
}


\ourGloss{\glossaryTerm{side effect}}{%
action that changes a component or structure of a value.
\index{operation!destructive}
See {\it destructive operation} for details.
}


\ourGloss{\glossaryTerm{signature}}{%
{\it (syntax)} an expression describing the type of an {\it operation}.
A signature has the form $name : source -> target$, where
$source$ is the type of the arguments of the operation, and
$target$ is the type of the result.
}


\ourGloss{\glossaryTerm{small float}}{%
an object of
the domain {\bf DoubleFloat}
for floating-point arithmetic as provided by the
\index{DoubleFloat}
computer hardware.
}


\ourGloss{\glossaryTerm{small integer}}{%
an object of
the domain {\bf SingleInteger}
for integer arithmetic
\index{SingleInteger}
as provided by the computer hardware.
}


\ourGloss{\glossaryTerm{source}}{%
the {\it type} of the argument of a {\it function}; the type
expression before the $->$ in a {\it signature}.
For example, the source of $f : (Integer, Integer) -> Integer$ is
$(Integer, Integer)$.
}


\ourGloss{\glossaryTerm{sparse}}{%
data structure whose elements are mostly identical (a sparse matrix is
one filled mostly with zeroes).
}


\ourGloss{\glossaryTerm{static}}{%
that computation done before run-time, such as compilation.
Contrast {\it dynamic}.
}


\ourGloss{\glossaryTerm{step number}}{%
the number that precedes user input lines in an interactive session;
the output of user results is also labeled by this number.
}


\ourGloss{\glossaryTerm{stream}}{%
an object of {\bf Stream(R)}, a generalization of a
{\it list} to allow an infinite number of elements.
Elements of a stream are computed ``on demand.''
Streams are used to implement various forms of power series.
}


\ourGloss{\glossaryTerm{string}}{%
an object of domain {\bf String}.
Strings are literals consisting of an arbitrary sequence of
characters surrounded by double-quotes ({\tt "}),
for example, $"Look here!"$.
}

\ourGloss{\glossaryTerm{subdomain}}{%
{\it (basic concept)} a {\it domain} together with a
{\it predicate} characterizing the members of the domain
that belong to the subdomain.
The exports of a subdomain are usually distinct from the domain
itself.
A fundamental assumption however is that values in the subdomain
are automatically coerceable to values in
the domain.
For example, if $n$ and $m$ are declared to be members
of a subdomain of the integers, then {\it any} {\it binary}
operation from {\bf Integer} is available on $n$ and
$m$.
On the other hand, if the result of that operation is to be
assigned to, say, $k$, also declared to be of that subdomain,
a {\it run-time} check is generally necessary to ensure that
the result belongs to the subdomain.
}


\ourGloss{\glossaryTerm{such that clause}}{%
{\it (syntax)}
the use of {\tt |} followed by an expression to filter an
iteration.
}


\ourGloss{\glossaryTerm{suffix}}{%
{\it (syntax)} an {\it operator} that is placed after its operand.
Suffix operators are not allowed in the Axiom language.
}


\ourGloss{\glossaryTerm{symbol}}{%
objects denoted by {\it identifier} literals; an
element of domain {\bf Symbol}.
The interpreter, by default, converts the symbol $x$ into
{\bf Variable(x)}.
}


\ourGloss{\glossaryTerm{syntax}}{%
rules of grammar and punctuation for forming correct expressions.
}


\ourGloss{\glossaryTerm{system commands}}{%
top-level Axiom statements that begin with {\tt )}.
System commands allow users to query the database, read files, trace
functions, and so on.
}


\ourGloss{\glossaryTerm{tag}}{%
an identifier used to discriminate a branch of a {\bf Union} type.
\index{Union}
}


\ourGloss{\glossaryTerm{target}}{%
the {\it type} of the result of a {\it function}; the type
expression following the {\tt ->} in a {\it signature}.
}

\ourGloss{\glossaryTerm{top-level}}{%
refers to direct user interactions with the Axiom interpreter.
}


\ourGloss{\glossaryTerm{totally ordered set}}{%
{\it (algebra)} a partially ordered set where any two elements are
comparable.
}


\ourGloss{\glossaryTerm{trace}}{%
use of system function {\tt )trace} to track the arguments passed to
a function and the values returned.
}


\ourGloss{\glossaryTerm{tuple}}{%
an expression of two or more other expressions separated by commas,
for example, $4,7,11$.
Tuples are also used for multiple arguments both for
applications (for example, $f(x,y)$) and in
signatures
(for example, $(Integer, Integer) ->
Integer$). A tuple is not a data structure, rather a syntax mechanism for
grouping expressions.
}


\ourGloss{\glossaryTerm{type}}{%
The type of any {\it category} is the unique symbol {\it
Category}.
The type of a {\it domain} is any {\it category} to
which the domain belongs.
The type of any other object is either the (unique) domain to
which the object belongs or a {\it subdomain} of that domain.
The type of objects is in general not unique.
}

\ourGloss{\glossaryTermNoIndex{Type}}{%
a category with no operations or attributes, of which all other categories
\index{Type}
in Axiom are extensions.
}

\ourGloss{\glossaryTerm{type checking}}{%
a system function that determines whether the datatype of an object is
appropriate for a given operation.
}


\ourGloss{\glossaryTerm{type constructor}}{%
a {\it domain constructor} or {\it category constructor}.
}


\ourGloss{\glossaryTerm{type inference}}{%
when the interpreter chooses the type for an object based on context.
For example, if the user interactively issues the definition
$f(x) == (x + \%i)**2$ then issues $f(2)$, the
interpreter will infer the type of $f$ to be $Integer ->
Complex Integer$.
}


\ourGloss{\glossaryTerm{unary}}{%
operation or function with {\it arity} 1.
}


\ourGloss{\glossaryTerm{underlying domain}}{%
for a {\it domain} that has a single domain-valued parameter, the
{\it underlying domain} refers to that parameter.
For example, the domain ``matrices of integers'' ({\bf Matrix
Integer}) has underlying domain {\bf Integer}.
}


\ourGloss{\glossaryTermNoIndex{Union}}{%
(basic domain constructor) a domain constructor used to combine any set
\index{Union}
of domains into a single domain.
A {\bf Union}
domain is written in the form $Union(a1: D1, ..., an: Dn)$
($n > 0$) where $a1$, ..., $an$ are identifiers called the
{\it tags} of the union, and $D1$, ..., $Dn$ are domains called
the {\it branches} of the union.
The tags $$ai$$ are optional, but required when two of the
$$Di$$ are equal, for example,
$Union(inches: Integer, centimeters: Integer)$. In the interpreter,
values of union domains are automatically coerced to values in the
branches and vice-versa as appropriate.
See also {\it case}.
}


\ourGloss{\glossaryTerm{unit}}{%
{\it (algebra)} an invertible element.
}


\ourGloss{\glossaryTerm{user function}}{%
a function defined by a user during an interactive session.
Contrast {\it built-in function}.
}


\ourGloss{\glossaryTerm{user variable}}{%
a variable created by the user at top-level during an interactive
session.
}


\ourGloss{\glossaryTerm{value}}{%
1.
the result of evaluating an expression.
2.
a property associated with a {\it variable} in a
{\it binding} in an {\it environment}.
}

\ourGloss{\glossaryTerm{variable}}{%
a means of referring to an object, but not an object itself.
A variable has a name and an associated {\it binding} created by
{\it evaluation} of Axiom expressions such as
declarations,
assignments, and
definitions.
In the top-level {\it environment} of the
interpreter, variables are
global variables.
Such variables can be freely referenced in user-defined functions
although a $free$ declaration is needed to assign values to
\index{free}
them. See {\it local variable} for details.
}

\ourGloss{\glossaryTermNoIndex{Void}}{%
the type given when the {\it value} and {\it type} of an
expression are not needed.
\index{Void}
Also used when there is no guarantee at run-time that a value and
predictable mode will result.
}


\ourGloss{\glossaryTerm{wild card}}{%
a symbol that matches any substring including the empty string; for
example, the search string ``{\tt *an*}'' matches any word containing the
consecutive letters ``{\tt a}'' and ``{\tt n}''.
}


\ourGloss{\glossaryTerm{workspace}}{%
an interactive record of the user input and output held in an
interactive history file.
Each user input and corresponding output expression in the workspace has
a corresponding {\it step number}.
The current output expression in the workspace is referred to as
$\%$. The output expression associated with step number $n$ is
referred to by $\%\%(n)$.
The $k$-th previous output expression relative to the current step
number $n$ is referred to by $\%\%(- k)$.
Each interactive {\it frame} has its own workspace.
}

}\onecolumn\fussy


\vfill
\eject
%\setcounter{chapter}{7} % Appendix H
\chapter{BackMatter Quotes}
\begin{quote}
``AXIOM is a milestone in the history of computation. It sets a new
standard for depth and breadth of mathematical software. AXIOM is
a fully integrated environment for exploratory research in mathematics,
easily extensible to new domains. I recommend this book to all researchers
and teachers of advanced courses in scientific and mathematical 
disciplines.''\\
{\bf Anil Nerode}\\
Director, Mathematical Sciences Institute\\
Goldwin Smit Professor of Mathematics, Cornell Univerity
\end{quote}

\begin{quote}
``The AXIOM language is a jewel that should receive wide attention among
mathematicians as potential users and among computer scientists as a
model for excellence in lanuage design''\\
{\bf Michael Rabin}\\
Thomas J. Watson, Sr., Professor of Computer Science\\
Harvard University\\
Albert Einstein Professor of Mathematics\\
Hebrew University
\end{quote}

\begin{quote}
``AXIOM has captured the excitement of the French mathematical community.
It is the first of a new generation of computer algebra systems, and is
highly efficient for large and difficult computations.''\\
{\bf Daniel Lazard}\\
Professor d'Informatique\\
Universite Pierre et Marie Curie, Paris VI
\end{quote}

\begin{quote}
``The abstraction capabilities of AXIOM are unparalleled among presently
available computer algebra systems. Many natural mathematical constructions,
very awkward in other systems, remain natural and simple in AXIOM''\\
{\bf Willard Miller, Jr.}\\
Professor and Associate Director\\
Institute for Mathematics and its Applications\\
University of Minnesota
\end{quote}

\begin{quote}
``AXIOM is the culmination of a quarter of a century of research at IBM.
It represents an important new generation of computer algebra systems.''\\
{\bf Joel Moses}\\
Dean of Engineering\\
D.C. Jackson Professor of Computer Science and Engineering\\
Massachusetts Institute of Technology
\end{quote}

\begin{quote}
``AXIOM is a dream come true - a powerful, fast, flexible system soundly
based on the principles of modern mathematics. For anyone who does a
substantial amount of empirical mathematics, AXIOM is a godsend.''\\
{\bf George E. Andrews}\\
Evan Pugh Professor of Mathematics\\
Pennsylvania State University
\end{quote}

\begin{quote}
``I strongly recommend that statisticians acquaint themselves with AXIOM
for at least two very good reasons. Its algebraic strength offers help
with the combinatoric problems of design of experiments while the
tensor-calculus facilities can provide powerful tools for likelihood
inference.''\\
{\bf John Nelder}\\
Fellow of the Royal Society\\
Professor of Imperial College, London
\end{quote}

\chapter{License}
\begin{verbatim}
Portions Copyright (c) 2005 Timothy Daly

The Blue Bayou image Copyright (c) 2004 Jocelyn Guidry

Portions Copyright (c) 2004 Martin Dunstan

Portions Copyright (c) 1991-2002, 
The Numerical ALgorithms Group Ltd.
All rights reserved.

This book and the Axiom software is licensed as follows:

Redistribution and use in source and binary forms, with or 
without modification, are permitted provided that the following 
conditions are
met:

    - Redistributions of source code must retain the above 
      copyright notice, this list of conditions and the 
      following disclaimer.

    - Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the 
      following disclaimer in the documentation and/or other 
      materials provided with the distribution.

    - Neither the name of The Numerical ALgorithms Group Ltd. 
      nor the names of its contributors may be used to endorse 
      or promote products derived from this software without 
      specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGE.
\end{verbatim}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Bibliography}
\bibliographystyle{axiom}
\bibliography{axiom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}
\printindex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}