1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
\documentclass[dvipdfmx]{book}
\newcommand{\VolumeName}{Volume 3: Axiom Programmers Guide}
\input{bookheader.tex}
\mainmatter
\setcounter{chapter}{0} % Chapter 1
\chapter{Details for Programmers}
Axiom maintains internal representations for domains.
There are functions for examining the internals of objects of
a particular domain.
\section{Examining Internals}
One useful function is {\bf devaluate} which takes an object
and returns a Lisp pair. The CAR of the pair is the Axiom type.
The CDR of the pair is the object representation.
For instances, consider the session where we create a list of
objects using the domain {\bf List(Any)}.
\begin{verbatim}
(1) -> w:=[1,7.2,"luanne",3*x^2+5,_
(3*x^2+5)::FRAC(POLY(INT)),_
(3*x^2+5)::POLY(FRAC(INT)),_
(3*x^2+5)::EXPR(INT)]$LIST(ANY)
2 2 2 2
(1) [1,7.2,"luanne",3x + 5,3x + 5,3x + 5,3x + 5]
Type: List(Any)
\end{verbatim}
The first object, {\bf 1} is a primitive object that has the domain
{\bf PI} and uses the underlying Lisp representation for the number.
\begin{verbatim}
(2) -> devaluate(1)$Lisp
(2) 1
Type: SExpression
\end{verbatim}
The second object, {\bf 7.2} is a primitive object that has the domain
{\bf FLOAT} and uses the underlying Lisp representation for the number,
in this case, itself a pair whose CAR is the floating point base and whose
CDR is the mantissa,
\begin{verbatim}
(3) -> devaluate(7.2)$Lisp
(3) (265633114661417543270 . - 65)
Type: SExpression
\end{verbatim}
The third object, {\tt {\bf "luanne"}} is from the domain {\bf STRING}
and uses the Lisp string representation.
\begin{verbatim}
(4) -> devaluate("luanne")$Lisp
(4) luanne
Type: SExpression
\end{verbatim}
Now we get more complicated. We illustrate various ways to store the
formula $3x^2+5$ in different domains. Each domain has a chosen
representation.
\begin{verbatim}
(5) -> devaluate(3*x^2+5)$Lisp
(5) (1 x (2 0 . 3) (0 0 . 5))
Type: SExpression
\end{verbatim}
The fourth object, $3x^2+5$ is from the domain {\bf POLY(INT)}. It is stored
as the list
\begin{verbatim}
(1 x (2 0 . 3) (0 0 . 5))
\end{verbatim}
From the domain {\bf POLY} (Vol 10.3, POLY) we see that
\begin{verbatim}
Polynomial(R:Ring): ...
== SparseMultivariatePolynomial(R, Symbol) add ...
\end{verbatim}
So objects from this domain are represented as {\bf SMP(INT,SYMBOL)}.
From this domain we ss that
\begin{verbatim}
SparseMultivariatePolynomial(R: Ring,VarSet: OrderedSet): ...
== add
--representations
D := SparseUnivariatePolynomial(%)
\end{verbatim}
So objects from this domain are represented as a {\bf SUP(INT)}
\begin{verbatim}
SparseUnivariatePolynomial(R:Ring): ...
== PolynomialRing(R,NonNegativeInteger) add
\end{verbatim}
So objects from this domain are represented as {\bf PR(INT,NNI)}
\begin{verbatim}
PolynomialRing(R:Ring,E:OrderedAbelianMonoid): ...
FreeModule(R,E) add
--representations
Term:= Record(k:E,c:R)
Rep:= List Term
\end{verbatim}
So objects from this domain are represented as {\bf FM(INT,NNI)}
\begin{verbatim}
FreeModule(R:Ring,S:OrderedSet):
== IndexedDirectProductAbelianGroup(R,S) add
--representations
Term:= Record(k:S,c:R)
Rep:= List Term
\end{verbatim}
So objects from this domain are represented as {\bf IDPAG(INT,NNI)}
\begin{verbatim}
IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):
== IndexedDirectProductAbelianMonoid(A,S) add
\end{verbatim}
So objects from this domain are represented as {\bf IDPAM(INT,NNI)}
\begin{verbatim}
IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
== IndexedDirectProductObject(A,S) add
--representations
Term:= Record(k:S,c:A)
Rep:= List Term
\end{verbatim}
So objects from this domain are represented as {\bf IDPO(INT,NNI)}
\begin{verbatim}
IndexedDirectProductObject(A:SetCategory,S:OrderedSet):
== add
-- representations
Term:= Record(k:S,c:A)
Rep:= List Term
\end{verbatim}
\begin{verbatim}
(6) -> devaluate((3*x^2+5)::FRAC(POLY(INT)))$Lisp
(6) ((1 x (2 0 . 3) (0 0 . 5)) 0 . 1)
Type: SExpression
\end{verbatim}
\begin{verbatim}
(7) -> devaluate((3*x^2+5)::POLY(FRAC(INT)))$Lisp
(7) (1 x (2 0 3 . 1) (0 0 5 . 1))
Type: SExpression
\end{verbatim}
\begin{verbatim}
(8) -> devaluate((3*x^2+5)::EXPR(INT))$Lisp
(8) ((1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)
Type: SExpression
\end{verbatim}
\begin{verbatim}
(9) -> devaluate(w)$Lisp
(9)
(((PositiveInteger) . 1) ((Float) 265633114661417543270 . - 65)
((String) . luanne) ((Polynomial (Integer)) 1 x (2 0 . 3) (0 0 . 5))
((Fraction (Polynomial (Integer))) (1 x (2 0 . 3) (0 0 . 5)) 0 . 1)
((Polynomial (Fraction (Integer))) 1 x (2 0 3 . 1) (0 0 5 . 1))
((Expression (Integer))
(1 [[x,0,%symbol()()()],NIL,1,1024] (2 0 . 3) (0 0 . 5)) 0 . 1)
)
Type: SExpression
\end{verbatim}
\section{Makefile}
This book is actually a literate program\cite{Knut92} and can contain
executable source code. In particular, the Makefile for this book
is part of the source of the book and is included below.
\eject
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Bibliography}
\bibliographystyle{axiom}
\bibliography{axiom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}
\printindex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
|