File: Readme.md

package info (click to toggle)
azure-data-lake-store-python 0.0.53-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 31,968 kB
  • sloc: python: 4,512; makefile: 192
file content (1429 lines) | stat: -rw-r--r-- 31,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
# azure-datalake-store

A pure-python interface to the Azure Data-lake Storage Gen 1 system, providing
pythonic file-system and file objects, seamless transition between Windows and
POSIX remote paths, high-performance up- and down-loader.

This software is under active development and not yet recommended for general
use.

*Note:* This library supports ADLS Gen 1. For Gen 2, please see
`azure-storage-file-datalake`, documented
[here](https://docs.microsoft.com/en-us/samples/azure/azure-sdk-for-python/storage-datalake-samples/)

## Installation

Using `pip`:

```
pip install azure-datalake-store
```

Manually (bleeding edge):

* Download the repo from [https://github.com/Azure/azure-data-lake-store-python](https://github.com/Azure/azure-data-lake-store-python)

* install the requirements (`pip install -r dev_requirements.txt`)

* install in develop mode (`python setup.py develop`)

## Auth

Although users can generate and supply their own tokens to the base file-system
class, and there is a password-based function in the `lib` module for
generating tokens, the most convenient way to supply credentials is via
environment parameters. This latter method is the one used by default in
library. The following variables are required:

* azure_tenant_id

* azure_username

* azure_password

* azure_store_name

* azure_url_suffix (optional)

## Pythonic Filesystem

The `AzureDLFileSystem` object is the main API for library usage of this
package. It provides typical file-system operations on the remote azure
store

```
token = lib.auth(tenant_id, username, password)
adl = core.AzureDLFileSystem(store_name, token)
# alternatively, adl = core.AzureDLFileSystem()
# uses environment variables

print(adl.ls())  # list files in the root directory
for item in adl.ls(detail=True):
    print(item)  # same, but with file details as dictionaries
print(adl.walk(''))  # list all files at any directory depth
print('Usage:', adl.du('', deep=True, total=True))  # total bytes usage
adl.mkdir('newdir')  # create directory
adl.touch('newdir/newfile') # create empty file
adl.put('remotefile', '/home/myuser/localfile') # upload a local file
```

In addition, the file-system generates file objects that are compatible with
the python file interface, ensuring compatibility with libraries that work on
python files. The recommended way to use this is with a context manager
(otherwise, be sure to call `close()` on the file object).

```
with adl.open('newfile', 'wb') as f:
    f.write(b'index,a,b\n')
    f.tell()   # now at position 9
    f.flush()  # forces data upstream
    f.write(b'0,1,True')

with adl.open('newfile', 'rb') as f:
    print(f.readlines())

with adl.open('newfile', 'rb') as f:
    df = pd.read_csv(f) # read into pandas.
```

To seamlessly handle remote path representations across all supported platforms,
the main API will take in numerous path types: string, Path/PurePath, and
AzureDLPath. On Windows in particular, you can pass in paths separated by either
forward slashes or backslashes.

```
import pathlib  # only >= Python 3.4
from pathlib2 import pathlib  # only <= Python 3.3

from azure.datalake.store.core import AzureDLPath

# possible remote paths to use on API
p1 = '\\foo\\bar'
p2 = '/foo/bar'
p3 = pathlib.PurePath('\\foo\\bar')
p4 = pathlib.PureWindowsPath('\\foo\\bar')
p5 = pathlib.PurePath('/foo/bar')
p6 = AzureDLPath('\\foo\\bar')
p7 = AzureDLPath('/foo/bar')

# p1, p3, and p6 only work on Windows
for p in [p1, p2, p3, p4, p5, p6, p7]:
  with adl.open(p, 'rb') as f:
      print(f.readlines())
```

## Performant up-/down-loading

Classes `ADLUploader` and `ADLDownloader` will chunk large files and send
many files to/from azure using multiple threads. A whole directory tree can
be transferred, files matching a specific glob-pattern or any particular file.

```
# download the whole directory structure using 5 threads, 16MB chunks
ADLDownloader(adl, '', 'my_temp_dir', 5, 2**24)
```
# API

#### class azure.datalake.store.core.AzureDLFileSystem(token=None, per_call_timeout_seconds=60, \*\*kwargs)
Access Azure DataLake Store as if it were a file-system


* **Parameters**

    **store_name: str (“”)**

        Store name to connect to.

    **token: credentials object**

        When setting up a new connection, this contains the authorization
        credentials (see lib.auth()).

    **url_suffix: str (None)**

        Domain to send REST requests to. The end-point URL is constructed
        using this and the store_name. If None, use default.

    **api_version: str (2018-09-01)**

        The API version to target with requests. Changing this value will
        change the behavior of the requests, and can cause unexpected behavior or
        breaking changes. Changes to this value should be undergone with caution.

    **per_call_timeout_seconds: float(60)**

        This is the timeout for each requests library call.

    **kwargs: optional key/values**

        See `lib.auth()`; full list: tenant_id, username, password, client_id,
        client_secret, resource


### Methods

<!-- !! processed by numpydoc !! -->

#### access(self, path, invalidate_cache=True)
Does such a file/directory exist?


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **invalidate_cache: bool**

        Whether to invalidate cache



* **Returns**

    True or false depending on whether the path exists.


<!-- !! processed by numpydoc !! -->

#### cat(self, path)
Return contents of file


* **Parameters**

    **path: str or AzureDLPath**

        Path to query



* **Returns**

    Contents of file


<!-- !! processed by numpydoc !! -->

#### chmod(self, path, mod)
Change access mode of path

Note this is not recursive.


* **Parameters**

    **path: str**

        Location to change

    **mod: str**

        Octal representation of access, e.g., “0777” for public read/write.
        See [docs]([http://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/WebHDFS.html#Permission](http://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/WebHDFS.html#Permission))


<!-- !! processed by numpydoc !! -->

#### chown(self, path, owner=None, group=None)
Change owner and/or owning group

Note this is not recursive.


* **Parameters**

    **path: str**

        Location to change

    **owner: str**

        UUID of owning entity

    **group: str**

        UUID of group


<!-- !! processed by numpydoc !! -->

#### concat(self, outfile, filelist, delete_source=False)
Concatenate a list of files into one new file


* **Parameters**

    **outfile: path**

        The file which will be concatenated to. If it already exists,
        the extra pieces will be appended.

    **filelist: list of paths**

        Existing adl files to concatenate, in order

    **delete_source: bool (False)**

        If True, assume that the paths to concatenate exist alone in a
        directory, and delete that whole directory when done.



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### connect(self)
Establish connection object.

<!-- !! processed by numpydoc !! -->

#### cp(self, path1, path2)
Not implemented. Copy file between locations on ADL

<!-- !! processed by numpydoc !! -->

#### classmethod current()
Return the most recently created AzureDLFileSystem

<!-- !! processed by numpydoc !! -->

#### df(self, path)
Resource summary of path


* **Parameters**

    **path: str**

        Path to query


<!-- !! processed by numpydoc !! -->

#### du(self, path, total=False, deep=False, invalidate_cache=True)
Bytes in keys at path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **total: bool**

        Return the sum on list

    **deep: bool**

        Recursively enumerate or just use files under current dir

    **invalidate_cache: bool**

        Whether to invalidate cache



* **Returns**

    List of dict of name:size pairs or total size.


<!-- !! processed by numpydoc !! -->

#### exists(self, path, invalidate_cache=True)
Does such a file/directory exist?


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **invalidate_cache: bool**

        Whether to invalidate cache



* **Returns**

    True or false depending on whether the path exists.


<!-- !! processed by numpydoc !! -->

#### get(self, path, filename)
Stream data from file at path to local filename


* **Parameters**

    **path: str or AzureDLPath**

        ADL Path to read

    **filename: str or Path**

        Local file path to write to



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### get_acl_status(self, path)
Gets Access Control List (ACL) entries for the specified file or directory.


* **Parameters**

    **path: str**

        Location to get the ACL.


<!-- !! processed by numpydoc !! -->

#### glob(self, path, details=False, invalidate_cache=True)
Find files (not directories) by glob-matching.


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **details: bool**

        Whether to include file details

    **invalidate_cache: bool**

        Whether to invalidate cache



* **Returns**

    List of files


<!-- !! processed by numpydoc !! -->

#### head(self, path, size=1024)
Return first bytes of file


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **size: int**

        How many bytes to return



* **Returns**

    First(size) bytes of file


<!-- !! processed by numpydoc !! -->

#### info(self, path, invalidate_cache=True, expected_error_code=None)
File information for path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **invalidate_cache: bool**

        Whether to invalidate cache or not

    **expected_error_code:  int**

        Optionally indicates a specific, expected error code, if any.



* **Returns**

    File information


<!-- !! processed by numpydoc !! -->

#### invalidate_cache(self, path=None)
Remove entry from object file-cache


* **Parameters**

    **path: str or AzureDLPath**

        Remove the path from object file-cache



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### listdir(self, path='', detail=False, invalidate_cache=True)
List all elements under directory specified with path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **detail: bool**

        Detailed info or not.

    **invalidate_cache: bool**

        Whether to invalidate cache or not



* **Returns**

    List of elements under directory specified with path


<!-- !! processed by numpydoc !! -->

#### ls(self, path='', detail=False, invalidate_cache=True)
List all elements under directory specified with path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **detail: bool**

        Detailed info or not.

    **invalidate_cache: bool**

        Whether to invalidate cache or not



* **Returns**

    List of elements under directory specified with path


<!-- !! processed by numpydoc !! -->

#### merge(self, outfile, filelist, delete_source=False)
Concatenate a list of files into one new file


* **Parameters**

    **outfile: path**

        The file which will be concatenated to. If it already exists,
        the extra pieces will be appended.

    **filelist: list of paths**

        Existing adl files to concatenate, in order

    **delete_source: bool (False)**

        If True, assume that the paths to concatenate exist alone in a
        directory, and delete that whole directory when done.



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### mkdir(self, path)
Make new directory


* **Parameters**

    **path: str or AzureDLPath**

        Path to create directory



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### modify_acl_entries(self, path, acl_spec, recursive=False, number_of_sub_process=None)
Modify existing Access Control List (ACL) entries on a file or folder.
If the entry does not exist it is added, otherwise it is updated based on the spec passed in.
No entries are removed by this process (unlike set_acl).

Note: this is by default not recursive, and applies only to the file or folder specified.


* **Parameters**

    **path: str**

        Location to set the ACL entries on.

    **acl_spec: str**

        The ACL specification to use in modifying the ACL at the path in the format
        ‘[default:]user|group|other:[entity id or UPN]:r|-w|-x|-,[default:]user|group|other:[entity id or UPN]:r|-w|-x|-,…’

    **recursive: bool**

        Specifies whether to modify ACLs recursively or not


<!-- !! processed by numpydoc !! -->

#### mv(self, path1, path2)
Move file between locations on ADL


* **Parameters**

    **path1:**

        Source Path

    **path2:**

        Destination path



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### open(self, path, mode='rb', blocksize=33554432, delimiter=None)
Open a file for reading or writing


* **Parameters**

    **path: string**

        Path of file on ADL

    **mode: string**

        One of ‘rb’, ‘ab’ or ‘wb’

    **blocksize: int**

        Size of data-node blocks if reading

    **delimiter: byte(s) or None**

        For writing delimiter-ended blocks


<!-- !! processed by numpydoc !! -->

#### put(self, filename, path, delimiter=None)
Stream data from local filename to file at path


* **Parameters**

    **filename: str or Path**

        Local file path to read from

    **path: str or AzureDLPath**

        ADL Path to write to

    **delimiter:**

        Optional delimeter for delimiter-ended blocks



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### read_block(self, fn, offset, length, delimiter=None)
Read a block of bytes from an ADL file

Starting at `offset` of the file, read `length` bytes.  If
`delimiter` is set then we ensure that the read starts and stops at
delimiter boundaries that follow the locations `offset` and `offset
+ length`.  If `offset` is zero then we start at zero.  The
bytestring returned WILL include the end delimiter string.

If offset+length is beyond the eof, reads to eof.


* **Parameters**

    **fn: string**

        Path to filename on ADL

    **offset: int**

        Byte offset to start read

    **length: int**

        Number of bytes to read

    **delimiter: bytes (optional)**

        Ensure reading starts and stops at delimiter bytestring


### Examples

```python
>>> adl.read_block('data/file.csv', 0, 13)  # doctest: +SKIP
b'Alice, 100\nBo'
>>> adl.read_block('data/file.csv', 0, 13, delimiter=b'\n')  # doctest: +SKIP
b'Alice, 100\nBob, 200\n'
```

Use `length=None` to read to the end of the file.
>>> adl.read_block(‘data/file.csv’, 0, None, delimiter=b’n’)  # doctest: +SKIP
b’Alice, 100nBob, 200nCharlie, 300’

<!-- !! processed by numpydoc !! -->

#### remove(self, path, recursive=False)
Remove a file or directory


* **Parameters**

    **path: str or AzureDLPath**

        The location to remove.

    **recursive: bool (True)**

        Whether to remove also all entries below, i.e., which are returned
        by walk().



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### remove_acl(self, path)
Remove the entire, non default, ACL from the file or folder, including unnamed entries.
Default entries cannot be removed this way, please use remove_default_acl for that.

Note: this is not recursive, and applies only to the file or folder specified.


* **Parameters**

    **path: str**

        Location to remove the ACL.


<!-- !! processed by numpydoc !! -->

#### remove_acl_entries(self, path, acl_spec, recursive=False, number_of_sub_process=None)
Remove existing, named, Access Control List (ACL) entries on a file or folder.
If the entry does not exist already it is ignored.
Default entries cannot be removed this way, please use remove_default_acl for that.
Unnamed entries cannot be removed in this way, please use remove_acl for that.

Note: this is by default not recursive, and applies only to the file or folder specified.


* **Parameters**

    **path: str**

        Location to remove the ACL entries.

    **acl_spec: str**

        The ACL specification to remove from the ACL at the path in the format (note that the permission portion is missing)
        ‘[default:]user|group|other:[entity id or UPN],[default:]user|group|other:[entity id or UPN],…’

    **recursive: bool**

        Specifies whether to remove ACLs recursively or not


<!-- !! processed by numpydoc !! -->

#### remove_default_acl(self, path)
Remove the entire default ACL from the folder.
Default entries do not exist on files, if a file
is specified, this operation does nothing.

Note: this is not recursive, and applies only to the folder specified.


* **Parameters**

    **path: str**

        Location to set the ACL on.


<!-- !! processed by numpydoc !! -->

#### rename(self, path1, path2)
Move file between locations on ADL


* **Parameters**

    **path1:**

        Source Path

    **path2:**

        Destination path



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### rm(self, path, recursive=False)
Remove a file or directory


* **Parameters**

    **path: str or AzureDLPath**

        The location to remove.

    **recursive: bool (True)**

        Whether to remove also all entries below, i.e., which are returned
        by walk().



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### rmdir(self, path)
Remove empty directory


* **Parameters**

    **path: str or AzureDLPath**

        Directory  path to remove



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### set_acl(self, path, acl_spec, recursive=False, number_of_sub_process=None)
Set the Access Control List (ACL) for a file or folder.

Note: this is by default not recursive, and applies only to the file or folder specified.


* **Parameters**

    **path: str**

        Location to set the ACL on.

    **acl_spec: str**

        The ACL specification to set on the path in the format
        ‘[default:]user|group|other:[entity id or UPN]:r|-w|-x|-,[default:]user|group|other:[entity id or UPN]:r|-w|-x|-,…’

    **recursive: bool**

        Specifies whether to set ACLs recursively or not


<!-- !! processed by numpydoc !! -->

#### set_expiry(self, path, expiry_option, expire_time=None)
Set or remove the expiration time on the specified file.
This operation can only be executed against files.

Note: Folders are not supported.


* **Parameters**

    **path: str**

        File path to set or remove expiration time

    **expire_time: int**

        The time that the file will expire, corresponding to the expiry_option that was set

    **expiry_option: str**

        Indicates the type of expiration to use for the file:

            1. NeverExpire: ExpireTime is ignored.

            1. RelativeToNow: ExpireTime is an integer in milliseconds representing the expiration date relative to when file expiration is updated.

            1. RelativeToCreationDate: ExpireTime is an integer in milliseconds representing the expiration date relative to file creation.

            1. Absolute: ExpireTime is an integer in milliseconds, as a Unix timestamp relative to 1/1/1970 00:00:00.


<!-- !! processed by numpydoc !! -->

#### stat(self, path, invalidate_cache=True, expected_error_code=None)
File information for path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **invalidate_cache: bool**

        Whether to invalidate cache or not

    **expected_error_code:  int**

        Optionally indicates a specific, expected error code, if any.



* **Returns**

    File information


<!-- !! processed by numpydoc !! -->

#### tail(self, path, size=1024)
Return last bytes of file


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **size: int**

        How many bytes to return



* **Returns**

    Last(size) bytes of file


<!-- !! processed by numpydoc !! -->

#### touch(self, path)
Create empty file


* **Parameters**

    **path: str or AzureDLPath**

        Path of file to create



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### unlink(self, path, recursive=False)
Remove a file or directory


* **Parameters**

    **path: str or AzureDLPath**

        The location to remove.

    **recursive: bool (True)**

        Whether to remove also all entries below, i.e., which are returned
        by walk().



* **Returns**

    None


<!-- !! processed by numpydoc !! -->

#### walk(self, path='', details=False, invalidate_cache=True)
Get all files below given path


* **Parameters**

    **path: str or AzureDLPath**

        Path to query

    **details: bool**

        Whether to include file details

    **invalidate_cache: bool**

        Whether to invalidate cache



* **Returns**

    List of files


<!-- !! processed by numpydoc !! -->

#### class azure.datalake.store.multithread.ADLUploader(adlfs, rpath, lpath, nthreads=None, chunksize=268435456, buffersize=4194304, blocksize=4194304, client=None, run=True, overwrite=False, verbose=False, progress_callback=None, timeout=0)
Upload local file(s) using chunks and threads

Launches multiple threads for efficient uploading, with chunksize
assigned to each. The path can be a single file, a directory
of files or a glob pattern.


* **Parameters**

    **adlfs: ADL filesystem instance**

    **rpath: str**

        remote path to upload to; if multiple files, this is the dircetory
        root to write within

    **lpath: str**

        local path. Can be single file, directory (in which case, upload
        recursively) or glob pattern. Recursive glob patterns using \*\* are
        not supported.

    **nthreads: int [None]**

        Number of threads to use. If None, uses the number of cores.

    **chunksize: int [2\*\*28]**

        Number of bytes for a chunk. Large files are split into chunks. Files
        smaller than this number will always be transferred in a single thread.

    **buffersize: int [2\*\*22]**

        Number of bytes for internal buffer. This block cannot be bigger than
        a chunk and cannot be smaller than a block.

    **blocksize: int [2\*\*22]**

        Number of bytes for a block. Within each chunk, we write a smaller
        block for each API call. This block cannot be bigger than a chunk.

    **client: ADLTransferClient [None]**

        Set an instance of ADLTransferClient when finer-grained control over
        transfer parameters is needed. Ignores nthreads and chunksize
        set by constructor.

    **run: bool [True]**

        Whether to begin executing immediately.

    **overwrite: bool [False]**

        Whether to forcibly overwrite existing files/directories. If False and
        remote path is a directory, will quit regardless if any files would be
        overwritten or not. If True, only matching filenames are actually
        overwritten.

    **progress_callback: callable [None]**

        Callback for progress with signature function(current, total) where
        current is the number of bytes transfered so far, and total is the
        size of the blob, or None if the total size is unknown.

    **timeout: int (0)**

        Default value 0 means infinite timeout. Otherwise time in seconds before the
        process will stop and raise an exception if  transfer is still in progress



* **Attributes**

    **hash**


### Methods

<!-- !! processed by numpydoc !! -->

#### active(self)
Return whether the uploader is active

<!-- !! processed by numpydoc !! -->

#### static clear_saved()
Remove references to all persisted uploads.

<!-- !! processed by numpydoc !! -->

#### static load()
Load list of persisted transfers from disk, for possible resumption.


* **Returns**

    A dictionary of upload instances. The hashes are auto

        generated unique. The state of the chunks completed, errored, etc.,
        can be seen in the status attribute. Instances can be resumed with
        `run()`.


<!-- !! processed by numpydoc !! -->

#### run(self, nthreads=None, monitor=True)
Populate transfer queue and execute downloads


* **Parameters**

    **nthreads: int [None]**

        Override default nthreads, if given

    **monitor: bool [True]**

        To watch and wait (block) until completion.


<!-- !! processed by numpydoc !! -->

#### save(self, keep=True)
Persist this upload

Saves a copy of this transfer process in its current state to disk.
This is done automatically for a running transfer, so that as a chunk
is completed, this is reflected. Thus, if a transfer is interrupted,
e.g., by user action, the transfer can be restarted at another time.
All chunks that were not already completed will be restarted at that
time.

See methods `load` to retrieved saved transfers and `run` to
resume a stopped transfer.


* **Parameters**

    **keep: bool (True)**

        If True, transfer will be saved if some chunks remain to be
        completed; the transfer will be sure to be removed otherwise.


<!-- !! processed by numpydoc !! -->

#### successful(self)
Return whether the uploader completed successfully.

It will raise AssertionError if the uploader is active.

<!-- !! processed by numpydoc !! -->

#### class azure.datalake.store.multithread.ADLDownloader(adlfs, rpath, lpath, nthreads=None, chunksize=268435456, buffersize=4194304, blocksize=4194304, client=None, run=True, overwrite=False, verbose=False, progress_callback=None, timeout=0)
Download remote file(s) using chunks and threads

Launches multiple threads for efficient downloading, with chunksize
assigned to each. The remote path can be a single file, a directory
of files or a glob pattern.


* **Parameters**

    **adlfs: ADL filesystem instance**

    **rpath: str**

        remote path/globstring to use to find remote files. Recursive glob
        patterns using \*\* are not supported.

    **lpath: str**

        local path. If downloading a single file, will write to this specific
        file, unless it is an existing directory, in which case a file is
        created within it. If downloading multiple files, this is the root
        directory to write within. Will create directories as required.

    **nthreads: int [None]**

        Number of threads to use. If None, uses the number of cores.

    **chunksize: int [2\*\*28]**

        Number of bytes for a chunk. Large files are split into chunks. Files
        smaller than this number will always be transferred in a single thread.

    **buffersize: int [2\*\*22]**

        Ignored in curret implementation.
        Number of bytes for internal buffer. This block cannot be bigger than
        a chunk and cannot be smaller than a block.

    **blocksize: int [2\*\*22]**

        Number of bytes for a block. Within each chunk, we write a smaller
        block for each API call. This block cannot be bigger than a chunk.

    **client: ADLTransferClient [None]**

        Set an instance of ADLTransferClient when finer-grained control over
        transfer parameters is needed. Ignores nthreads and chunksize set
        by constructor.

    **run: bool [True]**

        Whether to begin executing immediately.

    **overwrite: bool [False]**

        Whether to forcibly overwrite existing files/directories. If False and
        local path is a directory, will quit regardless if any files would be
        overwritten or not. If True, only matching filenames are actually
        overwritten.

    **progress_callback: callable [None]**

        Callback for progress with signature function(current, total) where
        current is the number of bytes transfered so far, and total is the
        size of the blob, or None if the total size is unknown.

    **timeout: int (0)**

        Default value 0 means infinite timeout. Otherwise time in seconds before the
        process will stop and raise an exception if  transfer is still in progress



* **Attributes**

    **hash**


### Methods

<!-- !! processed by numpydoc !! -->

#### active(self)
Return whether the downloader is active

<!-- !! processed by numpydoc !! -->

#### static clear_saved()
Remove references to all persisted downloads.

<!-- !! processed by numpydoc !! -->

#### static load()
Load list of persisted transfers from disk, for possible resumption.


* **Returns**

    A dictionary of download instances. The hashes are auto-

        generated unique. The state of the chunks completed, errored, etc.,
        can be seen in the status attribute. Instances can be resumed with
        `run()`.


<!-- !! processed by numpydoc !! -->

#### run(self, nthreads=None, monitor=True)
Populate transfer queue and execute downloads


* **Parameters**

    **nthreads: int [None]**

        Override default nthreads, if given

    **monitor: bool [True]**

        To watch and wait (block) until completion.


<!-- !! processed by numpydoc !! -->

#### save(self, keep=True)
Persist this download

Saves a copy of this transfer process in its current state to disk.
This is done automatically for a running transfer, so that as a chunk
is completed, this is reflected. Thus, if a transfer is interrupted,
e.g., by user action, the transfer can be restarted at another time.
All chunks that were not already completed will be restarted at that
time.

See methods `load` to retrieved saved transfers and `run` to
resume a stopped transfer.


* **Parameters**

    **keep: bool (True)**

        If True, transfer will be saved if some chunks remain to be
        completed; the transfer will be sure to be removed otherwise.


<!-- !! processed by numpydoc !! -->

#### successful(self)
Return whether the downloader completed successfully.

It will raise AssertionError if the downloader is active.

<!-- !! processed by numpydoc !! -->

#### azure.datalake.store.lib.auth(tenant_id=None, username=None, password=None, client_id='', client_secret=None, resource='https://datalake.azure.net/', require_2fa=False, authority=None, retry_policy=None, \*\*kwargs)
User/password authentication


* **Parameters**

    **tenant_id: str**

        associated with the user’s subscription, or “common”

    **username: str**

        active directory user

    **password: str**

        sign-in password

    **client_id: str**

        the service principal client

    **client_secret: str**

        the secret associated with the client_id

    **resource: str**

        resource for auth (e.g., [https://datalake.azure.net/](https://datalake.azure.net/))

    **require_2fa: bool**

        indicates this authentication attempt requires two-factor authentication

    **authority: string**

        The full URI of the authentication authority to authenticate against (such as [https://login.microsoftonline.com/](https://login.microsoftonline.com/))

    **kwargs: key/values**

        Other parameters, for future use



* **Returns**

    :type DataLakeCredential :mod: A DataLakeCredential object


<!-- !! processed by numpydoc !! -->