1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2002-2-1 (1.70)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Accessing SIDL Arrays From FORTRAN 90</TITLE>
<META NAME="description" CONTENT="Accessing SIDL Arrays From FORTRAN 90">
<META NAME="keywords" CONTENT="users_guide">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2002-2-1">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="users_guide.css">
<LINK REL="previous" HREF="node146.html">
<LINK REL="up" HREF="node140.html">
<LINK REL="next" HREF="node148.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html2900"
HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html2894"
HREF="node140.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html2890"
HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html2896"
HREF="node14.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<A NAME="tex2html2898"
HREF="node317.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2901"
HREF="node148.html">Java Bindings</A>
<B> Up:</B> <A NAME="tex2html2895"
HREF="node140.html">FORTRAN 90 Bindings</A>
<B> Previous:</B> <A NAME="tex2html2891"
HREF="node146.html">Implementing Classes in FORTRAN</A>
<B> <A NAME="tex2html2897"
HREF="node14.html">Contents</A></B>
<B> <A NAME="tex2html2899"
HREF="node317.html">Index</A></B>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<H1><A NAME="SECTION03470000000000000000"></A><A NAME="c:f90:arrayaccess"></A><A NAME="8158"></A>
<BR>
Accessing SIDL Arrays From FORTRAN 90
</H1>
<P>
SIDL r-arrays are passed to and from methods as normal FORTRAN 90
arrays. You do not need to include the index variables because the
values are determined from the FORTRAN 90 array extents in each
dimension.
<P>
The client-side interface for the <TT>solve</TT> example introduced in
Section <A HREF="node60.html#ss:r-arrays">5.4</A> behaves as if it is a FORTRAN 77 function
with the following overloaded interface:
<P>
<BR>
<PRE CLASS="verbatim"> private :: solve_1s, solve_2s
interface solve
module procedure solve_1s, solve_2s
end interface
recursive subroutine solve_1s(self, A, x, b)
implicit none
type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
! in array<double,2,column-major> A
type(sidl_double_2d) , intent(in) :: A
! inout array<double,column-major> x
type(sidl_double_1d) , intent(inout) :: x
! in array<double,column-major> b
type(sidl_double_1d) , intent(in) :: b
! details deleted
end subroutine solve_1s
recursive subroutine solve_2s(self, A, x, b)
implicit none
type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
! in rarray<double,2> A(m,n)
real (selected_real_kind(15, 307)) , intent(in), dimension(:, :) :: A
! inout rarray<double> x(n)
real (selected_real_kind(15, 307)) , intent(inout), dimension(:) :: x
! in rarray<double> b(m)
real (selected_real_kind(15, 307)) , intent(in), dimension(:) :: b
! details deleted
end subroutine solve_2s
</PRE></td></tr></table></blockquote>
<P>
You can use either normal FORTRAN 90 arrays or normal SIDL arrays when
calling a FORTRAN 90 method, but you cannot use a mixture.
<P>
The server-side interface for <TT>solve</TT> is similar. Note, the lower
index each dimension of every incoming array is always zero.
<P>
<BR>
<PRE CLASS="verbatim">recursive subroutine num_Linsol_solve_mi(self, A, x, b, m, n)
use num_Linsol
use sidl_double_array
use num_Linsol_impl
! DO-NOT-DELETE splicer.begin(num.Linsol.solve.use)
! DO-NOT-DELETE splicer.end(num.Linsol.solve.use)
implicit none
type(num_Linsol_t) :: self ! in
integer (selected_int_kind(9)) :: m ! in
integer (selected_int_kind(9)) :: n ! in
real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! inout
real (selected_real_kind(15, 307)), dimension(0:m-1) :: b ! in
! DO-NOT-DELETE splicer.begin(num.Linsol.solve)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(num.Linsol.solve)
end subroutine num_Linsol_solve_mi
</PRE></td></tr></table></blockquote>
<P>
For normal SIDL arrays, the normal SIDL C function API is available
from FORTRAN 90 to create, destroy, and access array elements and
meta-data. The array routines are in a module. For
<TT><I CLASS="slanted">sidl.SIDLException</I></TT>, the array module is named
<TT>sidl_SIDLException_array</TT>, and the array module is defined in
the <TT>sidl_SIDLException_array.F90</TT>.
<P>
For SIDL types dcomplex, double, fcomplex , float, int, and long,
SIDL provides an array pointer to get direct access to the array elements.
For the other types, you must use the functional API to access array
elements.
<P>
The SIDL derived type for a SIDL array is named after the class,
interface or basic type that it holds and the dimension of the
array. For <TT><I CLASS="slanted">sidl.SIDLException</I></TT>, the array derived types are
named <TT>sidl_SIDLException_1d</TT>, <TT>sidl_SIDLException_2d</TT>,
<TT>sidl_SIDLException_3d</TT>, <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img25.png"
ALT="$\ldots$"></SPAN> up to
<TT>sidl_SIDLException_7d</TT>. For the basic types, they are treated
as <TT><I CLASS="slanted">sidl.dcomplex</I></TT>, <TT><I CLASS="slanted">sidl.double</I></TT>, <TT><I CLASS="slanted">sidl.fcomplex</I></TT>,
etc. Each of these derived types has a 64 bit integer to hold an
opaque pointer.
<P>
The derived type for SIDL types dcomplex, double, fcomplex , float,
int, and long also has a pointer to an array of the appropriate type
and dimension. For example, here is the derived type for 2d and 3d
arrays of doubles.
<P>
<BR>
<PRE CLASS="verbatim"> type sidl_double_2d
sequence
integer (selected_int_kind(18)) :: d_array
real (selected_real_kind(15, 307)), pointer, &
dimension(:,:) :: d_data
end type sidl_double_2d
type sidl_double_3d
sequence
integer (selected_int_kind(18)) :: d_array
real (selected_real_kind(15, 307)), pointer, &
dimension(:,:,:) :: d_data
end type sidl_double_3d
</PRE></td></tr></table></blockquote>
<P>
You can access the array with the F90 array pointer <TT>d_data</TT>
just like any other F90 array. However, you <EM>must not</EM> use the F90
builtins <TT>allocate</TT> or <TT>deallocate</TT> on <TT>d_data</TT>. You
must use SIDL functions <TT>createCol</TT>, <TT>createRow</TT>,
<TT>create1d</TT>, <TT>create2dRow</TT>, <TT>create2dCol</TT> to create a
new array. These SIDL routines initialize <TT>d_data</TT> to refer to
the data allocated in <TT>d_array</TT>.
<P>
You can call things like LINPACK or BLAS if you want,
but you should check the stride to make sure the array
is packed as needed. You can check
<TT>stride(i)</TT>, which indicates the distance between elements in dimension
<TT>i</TT>.
A value of 1 means elements are packed densely in dimension <TT>i</TT>.
Negative stride values are possible. When an array is sliced, the
resulting array might not even have one densely packed dimension.
<P>
<P>
<DIV CLASS="navigation"><HR>
<!--Navigation Panel-->
<A NAME="tex2html2900"
HREF="node148.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next.png"></A>
<A NAME="tex2html2894"
HREF="node140.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up.png"></A>
<A NAME="tex2html2890"
HREF="node146.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="prev.png"></A>
<A NAME="tex2html2896"
HREF="node14.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents" SRC="contents.png"></A>
<A NAME="tex2html2898"
HREF="node317.html">
<IMG WIDTH="43" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="index" SRC="index.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2901"
HREF="node148.html">Java Bindings</A>
<B> Up:</B> <A NAME="tex2html2895"
HREF="node140.html">FORTRAN 90 Bindings</A>
<B> Previous:</B> <A NAME="tex2html2891"
HREF="node146.html">Implementing Classes in FORTRAN</A>
<B> <A NAME="tex2html2897"
HREF="node14.html">Contents</A></B>
<B> <A NAME="tex2html2899"
HREF="node317.html">Index</A></B> </DIV>
<!--End of Navigation Panel-->
<ADDRESS>
<br><br>babel-0.10.2<br>users_guide Last Modified 2005-03-23<br><br><a href="http://www.llnl.gov/CASC/components">http://www.llnl.gov/CASC/components</a><br><a href="mailto:components@llnl.gov">components@llnl.gov</a>
</ADDRESS>
</BODY>
</HTML>
|