File: sidl_fcomplex_IOR.c

package info (click to toggle)
babel 0.10.2-1
  • links: PTS
  • area: contrib
  • in suites: sarge
  • size: 43,932 kB
  • ctags: 29,707
  • sloc: java: 74,695; ansic: 73,142; cpp: 40,649; sh: 18,411; f90: 10,062; fortran: 6,727; python: 6,406; makefile: 3,866; xml: 118; perl: 48
file content (1514 lines) | stat: -rw-r--r-- 57,544 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
/*
 * File:        sidl_fcomplex_IOR.c
 * Copyright:   (c) 2001 The Regents of the University of California
 * Revision:    @(#) $Revision: 4434 $
 * Date:        $Date: 2005-03-17 09:05:29 -0800 (Thu, 17 Mar 2005) $
 * Description: fcomplex array implementation
 * AUTOMATICALLY GENERATED BY createarrays.py
 *
 */

#include "sidl_fcomplex_IOR.h"
#include <stdlib.h>
#include <string.h>

#ifdef MAX
#undef MAX
#endif
#ifdef MIN
#undef MIN
#endif
#define MAX(x,y) (((x) > (y)) ? (x) : (y))
#define MIN(x,y) (((x) < (y)) ? (x) : (y))

static void swap_i32(int32_t *i1, int32_t *i2)
{
  int32_t tmp = *i1;
  *i1 = *i2;
  *i2 = tmp;
}

#define COPY_VALUE(x) (x)
#define DESTROY_VALUE(x)
#define INIT_VALUES(ptr,size)

static struct sidl_fcomplex const sidl_fcomplex__array_zero = {0, 0};

/**
 * Destroy the given borrowed array. Trying to destroy a NULL array is
 * a noop.
 */
static void
sidl_fcomplex__array_bdestroy(struct sidl_fcomplex__array* array)
{
  if (array) {
    memset(array, 0, sizeof(struct sidl_fcomplex__array) +
           3 * array->d_metadata.d_dimen * sizeof(int32_t));
    free(array);
  }
}

/**
 * Destroy the given array. Trying to destroy a NULL array is a noop.
 */
static void
sidl_fcomplex__array_destroy(struct sidl_fcomplex__array* array)
{
  if (array) {
#ifdef DESTROY_VALUES_TOO
    struct sidl_fcomplex *ptr = array->d_firstElement;
    int32_t i;
    int32_t size = 1;
    for(i = 0; i < array->d_metadata.d_dimen;++i){
      size *= (1 + array->d_metadata.d_upper[i] -
                   array->d_metadata.d_lower[i]);
    }
    while (size--) {
      DESTROY_VALUE(*ptr);
      *(ptr++) = NULL;
    }
#endif
    free(array->d_firstElement);
    sidl_fcomplex__array_bdestroy(array);
  }
}

/**
 * Destroy the given rarray. Actually doesn't do anything.
 */
static void
sidl_fcomplex__array_rdestroy(struct sidl_fcomplex__array* array)
{ }
/**
 * Destroy the given sliced array. Trying to destroy a NULL array is
 * a noop.
 */
static void
sidl_fcomplex__array_sdestroy(struct sidl_fcomplex__array* array)
{
  if (array) {
    static const int arraySize = sizeof(struct sidl_fcomplex__array)
      + (sizeof(int32_t) - (sizeof(struct sidl_fcomplex__array)
                        % sizeof(int32_t))) % sizeof(int32_t);
    struct sidl_fcomplex__array **orig;
    orig = (struct sidl_fcomplex__array **)((char *)array + arraySize +
      3 * sizeof(int32_t)*array->d_metadata.d_dimen);
    if (*orig) {
      sidl_fcomplex__array_deleteRef(*orig);
      *orig = NULL;
    }
    sidl_fcomplex__array_bdestroy(array);
  }
}

/**
 * Smart copy routine for self-sufficient and sliced arrays.  This just
 * increments the reference count and returns the same array.
 */
static struct sidl_fcomplex__array*
sidl_fcomplex__array_smartCp(struct sidl_fcomplex__array* array)
{
  sidl_fcomplex__array_addRef(array);
  return array;
}

/**
 * Smart copy routine for self-sufficient and sliced arrays.  This just
 * increments the reference count and returns the same array.
 */
static struct sidl_fcomplex__array*
sidl_fcomplex__array_borrowSmartCp(struct sidl_fcomplex__array* array)
{
  struct sidl_fcomplex__array* copy = NULL;
  if (array) {
    if (sidl_fcomplex__array_isColumnOrder(array)) {
      copy = sidl_fcomplex__array_createCol(array->d_metadata.d_dimen,
                                                array->d_metadata.d_lower,
                                                array->d_metadata.d_upper);
    }
    else {
      copy = sidl_fcomplex__array_createRow(array->d_metadata.d_dimen,
                                                array->d_metadata.d_lower,
                                                array->d_metadata.d_upper);
    }
    sidl_fcomplex__array_copy(array, copy);
  }
  return copy;
}

/**
 * Simple function to return the type of the array.
 */
static int32_t
fcomplex_arrayType(void)
{
  return sidl_fcomplex_array;
}
/**
 * Virtual function table for rarrays.
 */

static const struct sidl__array_vtable rarray_fcomplex_vtable = {
  (void (*)(struct sidl__array *))sidl_fcomplex__array_rdestroy,
  (struct sidl__array *(*)(struct sidl__array *))
    sidl_fcomplex__array_borrowSmartCp,
  fcomplex_arrayType
};
/**
 * Virtual function table for normal, self-sufficient arrays.
 */

static const struct sidl__array_vtable normal_fcomplex_vtable = {
  (void (*)(struct sidl__array *))sidl_fcomplex__array_destroy,
  (struct sidl__array *(*)(struct sidl__array *))
    sidl_fcomplex__array_smartCp,
  fcomplex_arrayType
};
/**
 * Virtual function table for borrowed arrays.
 */

static const struct sidl__array_vtable borrowed_fcomplex_vtable = {
  (void (*)(struct sidl__array *))sidl_fcomplex__array_bdestroy,
  (struct sidl__array *(*)(struct sidl__array *))
    sidl_fcomplex__array_borrowSmartCp,
  fcomplex_arrayType
};
/**
 * Virtual function table for sliced arrays with self-sufficient original
 * arrays.
 */

static const struct sidl__array_vtable sliced_fcomplex_vtable = {
  (void (*)(struct sidl__array *))sidl_fcomplex__array_sdestroy,
  (struct sidl__array *(*)(struct sidl__array *))
    sidl_fcomplex__array_smartCp,
  fcomplex_arrayType
};
/**
 * Virtual function table for sliced arrays with borrowed original
 * arrays.
 */

static const struct sidl__array_vtable bsliced_fcomplex_vtable = {
  (void (*)(struct sidl__array *))sidl_fcomplex__array_sdestroy,
  (struct sidl__array *(*)(struct sidl__array *))
    sidl_fcomplex__array_borrowSmartCp,
  fcomplex_arrayType
};
/**
 * Allocate memory for the array meta-data and initialize the reference
 * count to one.
 */
static struct sidl_fcomplex__array*
newArray(int32_t dimen, const int32_t lower[], const int32_t upper[],
         struct sidl_fcomplex__array *orig)
{
  static const int arraySize = sizeof(struct sidl_fcomplex__array)
    + (sizeof(int32_t) - (sizeof(struct sidl_fcomplex__array)
                      % sizeof(int32_t))) % sizeof(int32_t);
  struct sidl_fcomplex__array *result = (struct sidl_fcomplex__array *)
    malloc(arraySize + 3 * sizeof(int32_t) * dimen +
           (orig ? sizeof(struct sidl_fcomplex__array *) : 0));
  result->d_metadata.d_dimen = dimen;
  result->d_metadata.d_refcount = 1;
  result->d_metadata.d_lower = (int32_t *)((char *)result + arraySize);
  result->d_metadata.d_upper = result->d_metadata.d_lower + dimen;
  result->d_metadata.d_stride = result->d_metadata.d_upper + dimen;
  if (orig) {
    struct sidl_fcomplex__array **ref;
    ref = (struct sidl_fcomplex__array **)
      ((char *)result + arraySize + 3 * sizeof(int32_t)*dimen);
    *ref = orig;
    sidl_fcomplex__array_addRef(orig);
    result->d_metadata.d_vtable = &sliced_fcomplex_vtable;
  }
  else {
    result->d_metadata.d_vtable = &normal_fcomplex_vtable;
  }
  memcpy(result->d_metadata.d_lower, lower, sizeof(int32_t)*dimen);
  memcpy(result->d_metadata.d_upper, upper, sizeof(int32_t)*dimen);
  return result;
}

/**
 * Create a dense fcomplex array of the given dimension with specified
 * index bounds in column-major order.  This array owns and manages its data.
 * This function does not initialize the contents of the array.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_createCol(int32_t       dimen,
                               const int32_t lower[],
                               const int32_t upper[])
{
  int32_t size=1, i;
  struct sidl_fcomplex__array *result = newArray(dimen, lower, upper, NULL);
  for(i = 0; i < dimen; ++i) {
    result->d_metadata.d_stride[i] = size;
    size *= (1 + upper[i] - lower[i]);
  }
  size *= sizeof(struct sidl_fcomplex);
  result->d_firstElement = (struct sidl_fcomplex *)malloc(size);
  INIT_VALUES(result->d_firstElement, size);
  return result;
}

/**
 * Create a dense fcomplex array of the given dimension with specified
 * index bounds in row-major order.  This array owns and manages its data.
 * This function does not initialize the contents of the array.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_createRow(int32_t       dimen,
                               const int32_t lower[],
                               const int32_t upper[])
{
  int32_t size=1, i;
  struct sidl_fcomplex__array *result = newArray(dimen, lower, upper, NULL);
  for(i = dimen-1; i >= 0; --i) {
    result->d_metadata.d_stride[i] = size;
    size *= (1 + upper[i] - lower[i]);
  }
  size *= sizeof(struct sidl_fcomplex);
  result->d_firstElement = (struct sidl_fcomplex *)malloc(size);
  INIT_VALUES(result->d_firstElement, size);
  return result;
}

/**
 * Initialize the array meta-data for this sidl array from the passed
 * in pointers. This is a little wierd, but all these pointers must
 * be allocated, but only upper and c_array actually need to be
 * initialized.  (We use upper, dim, andc_array to figure out the
 * correct values for the rest of the data.)
 * This function does not initialize the contents of the array.
 */
void
sidl_fcomplex__array_init(const struct sidl_fcomplex* c_array,
struct sidl_fcomplex__array* sidl_array, int32_t dim,
int32_t lower[], int32_t upper[], int32_t stride[])
{
  int32_t i = 0;
  int32_t size = 1;
  for(i=0; i < dim; ++i) 
     lower[i] = 0;

  for(i = 0; i < dim; ++i) {
    stride[i] = size;
    size *= (1 + upper[i] - lower[i]);
  }

  sidl_array->d_metadata.d_lower = lower;
  sidl_array->d_metadata.d_upper = upper;
  sidl_array->d_metadata.d_stride = stride;
  sidl_array->d_metadata.d_dimen = dim;	
  sidl_array->d_metadata.d_lower = lower;
  sidl_array->d_metadata.d_vtable = &rarray_fcomplex_vtable;
  sidl_array->d_metadata.d_refcount = 1;
  sidl_array->d_firstElement = (struct sidl_fcomplex *)c_array; 
}

/**
 * Create a dense one-dimensional vector of fcomplexs with a lower
 * index of 0 and an upper index of len-1. This array owns and manages
 * its data.
 * This function does not initialize the contents of the array.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_create1d(int32_t len)
{
  static const int32_t zero = 0;
  --len;
  return sidl_fcomplex__array_createCol(1, &zero, &len);
}

/**
 * Create a dense one-dimensional vector of fcomplexs with a lower
 * index of 0 and an upper index of len-1. The initial data for this
 * new array is copied from data. For strings, this will make a newly
 * malloc'ed copy of each non-NULL string. For interfaces/objects, this
 * will increment the reference count of each non-NULL object/interface
 * reference.
 * 
 * This array owns and manages its data.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_create1dInit(int32_t len,
                                  const struct sidl_fcomplex* data)
{
  struct sidl_fcomplex__array *result;
  if (data && (len > 0)) {
    static const int32_t lower = 0;
    const int32_t upper = len - 1;
    result = newArray(1, &lower, &upper, NULL);
    if (result) {
      const struct sidl_fcomplex * restrict src =
        (const struct sidl_fcomplex * restrict)data;
      struct sidl_fcomplex * restrict dest;
      result->d_metadata.d_stride[0] = 1;
      result->d_firstElement =
        (struct sidl_fcomplex *)malloc(len*sizeof(struct sidl_fcomplex));
      dest = (struct sidl_fcomplex * restrict)(result->d_firstElement);
      while (len--) {
        *dest = COPY_VALUE(*src);
        ++dest;
        ++src;
      }
    }
  }
  else {
    result = sidl_fcomplex__array_create1d(len);
  }
  return result;
}

/**
 * Create a dense two-dimensional array of fcomplexs with a lower
 * indices of (0,0) and an upper indices of (m-1,n-1). The array is
 * stored in column-major order, and it owns and manages its data.
 * This function does not initialize the contents of the array.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_create2dCol(int32_t m, int32_t n)
{
  static const int32_t zero[2] = {0, 0};
  int32_t upper[2];
  upper[0] = m-1;
  upper[1] = n-1;
  return sidl_fcomplex__array_createCol(2, zero, upper);
}

/**
 * Create a dense two-dimensional array of fcomplexs with a lower
 * indices of (0,0) and an upper indices of (m-1,n-1). The array is
 * stored in row-major order, and it owns and manages its data.
 * This function does not initialize the contents of the array.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_create2dRow(int32_t m, int32_t n)
{
  static const int32_t zero[2] = {0, 0};
  int32_t upper[2];
  upper[0] = m-1;
  upper[1] = n-1;
  return sidl_fcomplex__array_createRow(2, zero, upper);
}

/**
 * Return the stride for a splice argument.
 */
static int32_t
getStride(const int32_t *srcStride, const int32_t i)
{
  return srcStride ? srcStride[i] : 1;
}
/**
 * Check the arguments of a splice call to make sure they're valid.
 */
static int
goodSliceArgs(struct sidl_fcomplex__array* src,
               int32_t       dimen,
               const int32_t *srcStart,
               const int32_t *srcStride,
               const int32_t *newStart,
               const int32_t *numElem)
{
  if (src && numElem && (dimen > 0) && (dimen <= src->d_metadata.d_dimen)) {
    int32_t i, numZeros;
    const int32_t *srcFirst = (srcStart ? srcStart : src->d_metadata.d_lower);
    for(i = 0, numZeros=0; i < src->d_metadata.d_dimen; ++i) {
      if ((srcFirst[i] < src->d_metadata.d_lower[i]) ||
          (srcFirst[i] > src->d_metadata.d_upper[i]) ||
          (numElem[i] &&
           (((srcFirst[i] + (numElem[i]-1)*getStride(srcStride,i)) >
              src->d_metadata.d_upper[i]) ||
            ((srcFirst[i] + (numElem[i]-1)*getStride(srcStride,i)) <
              src->d_metadata.d_lower[i]))))
        return 0;
      if (!numElem[i]) ++numZeros;
    }
    return (dimen + numZeros) == src->d_metadata.d_dimen;
  }
  return 0;
}

/**
 * Create a sub-array of another array. This resulting array shares
 * data with the original array. The new array can be of the same
 * dimension or potentially less assuming the original array has
 * dimension greater than 1.  If you are removing dimension, indicate the
 * dimensions to remove by setting numElem[i] to zero for any dimension i
 * that should go away in the new array.  The meaning of each argument
 * is covered below.
 * 
 * src       the array to be created will be a subset of this array. If
 *           this argument is NULL, NULL will be returned. The array
 *           returned borrows data from src, so modifying src or the
 *           returned array will modify both arrays.
 * 
 * dimen     this argument must be greater than zero and less than or
 *           equal to the dimension of src. An illegal value will cause
 *           a NULL return value.
 *           
 * numElem   this specifies how many elements from src should be taken in
 *           each dimension. A zero entry indicates that the dimension
 *           should not appear in the new array.  This argument should be
 *           an array with an entry for each dimension of src.  Passing
 *           NULL here will cause NULL to be returned.  If
 *           srcStart[i] + numElem[i]*srcStride[i] is greater than
 *           upper[i] for src or if srcStart[i] + numElem[i]*srcStride[i]
 *           is less than lower[i] for src, NULL will be returned.
 * 
 * srcStart  this array holds the coordinates of the first element of the
 *           new array. If this argument is NULL, the first element of
 *           src will be the first element of the new array. If non-NULL,
 *           this argument should be an array with an entry for each
 *           dimension of src.  If srcStart[i] is less than lower[i] for
 *           the array src, NULL will be returned.
 * 
 * srcStride this array lets you specify the stride between elements in
 *           each dimension of src. This stride is relative to the
 *           coordinate system of the src array. If this argument is
 *           NULL, the stride is taken to be one in each dimension.
 *           If non-NULL, this argument should be an array with an entry
 *           for each dimension of src.
 * 
 * newLower  this argument is like lower in a create method. It sets the
 *           coordinates for the first element in the new array.  If this
 *           argument is NULL, the values indicated by srcStart will be
 *           used. If non-NULL, this should be an array with dimen
 *           elements.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_slice(struct sidl_fcomplex__array *src,
                           int32_t       dimen,
                           const int32_t numElem[],
                           const int32_t *srcStart,
                           const int32_t *srcStride,
                           const int32_t *newStart)
{
  struct sidl_fcomplex__array *result = NULL;
  if (goodSliceArgs(src, dimen, srcStart, srcStride, newStart, numElem)) {
    const int32_t *srcFirst = (srcStart ? srcStart : src->d_metadata.d_lower);
    const int32_t *newFirst = (newStart ? newStart : srcFirst);
    int32_t *newLast = malloc(sizeof(int32_t)*dimen);
    int32_t i, j;
    if (!newLast) return NULL;
    for(i = 0, j = 0; i < src->d_metadata.d_dimen; ++i) {
      if (numElem[i]) {
        newLast[j] = newFirst[j] + numElem[i] - 1;
        ++j;
      }
    }
    result = newArray(dimen, newFirst, newLast, src);
    free(newLast);
    if (result) {
      result->d_firstElement = src->d_firstElement;
      for(i = 0, j = 0; i < src->d_metadata.d_dimen; ++i) {
        result->d_firstElement +=
          ((srcFirst[i] - src->d_metadata.d_lower[i])*
           src->d_metadata.d_stride[i]);
        if (numElem[i]) {
          result->d_metadata.d_stride[j] = src->d_metadata.d_stride[i]*
            getStride(srcStride, i);
          ++j;
        }
      }
      if (src->d_metadata.d_vtable->d_smartcopy ==
          (struct sidl__array *(*)(struct sidl__array *))
           sidl_fcomplex__array_smartCp) {
        result->d_metadata.d_vtable = &sliced_fcomplex_vtable;
      }
      else {
        result->d_metadata.d_vtable = &bsliced_fcomplex_vtable;
      }
    }
  }
  return result;
}

/**
 * Create an array that uses data memory from another source. This initial
 * contents are determined by the data being borrowed.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_borrow(struct sidl_fcomplex* firstElement,
                            int32_t        dimen,
                            const int32_t  lower[],
                            const int32_t  upper[],
                            const int32_t  stride[])
{
  struct sidl_fcomplex__array *result = newArray(dimen, lower, upper, NULL);
  memcpy(result->d_metadata.d_stride, stride, sizeof(int32_t)*dimen);
  result->d_firstElement = firstElement;
  result->d_metadata.d_vtable = &borrowed_fcomplex_vtable;
  return result;
}

/**
 * If array is borrowed, allocate a new self-sufficient array and copy
 * the borrowed array into the new array; otherwise, increment the
 * reference count and return the array passed in. Use this whenever
 * you want to make a copy of a method argument because arrays passed
 * into methods aren't guaranteed to exist after the method call.
 */
struct sidl_fcomplex__array *
sidl_fcomplex__array_smartCopy(struct sidl_fcomplex__array *array)
{
  return (struct sidl_fcomplex__array *)
     sidl__array_smartCopy((struct sidl__array*)array);
}

/**
 * Increment the arrays internal reference count by one. To make a
 * persistent copy (i.e. that lives longer than the current method
 * call) use smartCopy.
 */
void
sidl_fcomplex__array_addRef(struct sidl_fcomplex__array* array)
{
  sidl__array_addRef((struct sidl__array*)array);
}

/**
 * Decrement the arrays internal reference count by one. If the reference
 * count goes to zero, destroy the array.
 * Return true iff the array is destroyed
 */
void
sidl_fcomplex__array_deleteRef(struct sidl_fcomplex__array* array)
{
  sidl__array_deleteRef((struct sidl__array*)array);
}

/**
 * Attempt to cast a generic array reference to an fcomplex
 * array. A non-NULL return value indicates that the cast was
 * successful, and the returned pointer is a valid fcomplex
 * array. A NULL return value indicates that the cast failed.
 * This function never alters the reference count of array.
 * 
 */
struct sidl_fcomplex__array*
sidl_fcomplex__array_cast(struct sidl__array* array)
{
  return (array &&
          (sidl_fcomplex_array == ((array->d_vtable->d_arraytype)())))
    ? (struct sidl_fcomplex__array *)array : NULL;
}

/**
 * Retrieve element i1 of a one-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get1(const struct sidl_fcomplex__array* array,
                          const int32_t i1)
{
  if (array && (1 == array->d_metadata.d_dimen) &&
      ((array->d_metadata.d_lower[0] <= i1) &&
      (array->d_metadata.d_upper[0] >= i1))) {
    return COPY_VALUE(*(array->d_firstElement +
                        (i1 - array->d_metadata.d_lower[0])*
                        array->d_metadata.d_stride[0]));
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2) of a two-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get2(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2)
{
  if (array && (2 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_upper[0] >= i1);
    register int c3 = (array->d_metadata.d_lower[1] <= i2);
    register int c4 = (array->d_metadata.d_upper[1] >= i2);
    c1 = c1 && c2;
    c3 = c3 && c4;
    if (c1 && c3) {
      return COPY_VALUE(*(array->d_firstElement +
                          (i1 - array->d_metadata.d_lower[0])*
                           array->d_metadata.d_stride[0] +
                          (i2 - array->d_metadata.d_lower[1])*
                           array->d_metadata.d_stride[1]));
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2,i3) of a three-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get3(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3)
{
  if (array && (3 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    if (c1 && c2 && c3) {
      return COPY_VALUE(*(array->d_firstElement +
                          (i1 - array->d_metadata.d_lower[0])*
                           array->d_metadata.d_stride[0] +
                          (i2 - array->d_metadata.d_lower[1])*
                           array->d_metadata.d_stride[1] +
                          (i3 - array->d_metadata.d_lower[2])*
                           array->d_metadata.d_stride[2]));
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2,i3,i4) of a four-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get4(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4)
{
  if (array && (4 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking to avoid strict left to right */
    /* evaluation of && which serializes evaluation */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c1 = c1 && c2;
    c3 = c3 && c4;
    if (c1 && c3) {
      return COPY_VALUE(*(array->d_firstElement +
                         (((i1 - array->d_metadata.d_lower[0])*
                          array->d_metadata.d_stride[0] +
                           (i2 - array->d_metadata.d_lower[1])*
                            array->d_metadata.d_stride[1]) +
                          ((i3 - array->d_metadata.d_lower[2])*
                           array->d_metadata.d_stride[2] +
                           (i4 - array->d_metadata.d_lower[3])*
                            array->d_metadata.d_stride[3]))));
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2,i3,i4,i5) of a five-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get5(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5)
{
  if (array && (5 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    register int c5 = (array->d_metadata.d_lower[4] <= i5);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
    c1 = c1 && c2;
    c3 = c3 && c4;
    c1 = c1 && c3;
    if (c1 && c5) {
      return COPY_VALUE(*(array->d_firstElement +
                          (i1 - array->d_metadata.d_lower[0])*
                           array->d_metadata.d_stride[0] +
                          (i2 - array->d_metadata.d_lower[1])*
                           array->d_metadata.d_stride[1] +
                          (i3 - array->d_metadata.d_lower[2])*
                           array->d_metadata.d_stride[2] +
                          (i4 - array->d_metadata.d_lower[3])*
                           array->d_metadata.d_stride[3] +
                          (i5 - array->d_metadata.d_lower[4])*
                           array->d_metadata.d_stride[4]));
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2,i3,i4,i5,i6) of a six-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get6(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5,
                          const int32_t i6)
{
  if (array && (6 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    register int c5 = (array->d_metadata.d_lower[4] <= i5);
    register int c6 = (array->d_metadata.d_lower[5] <= i6);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
    c6 = c6 && (array->d_metadata.d_upper[5] >= i6);
    c1 = c1 && c2;
    c3 = c3 && c4;
    c5 = c5 && c6;
    c1 = c1 && c3;
    if (c1 && c5) {
      return COPY_VALUE(*(array->d_firstElement +
                          (i1 - array->d_metadata.d_lower[0])*
                           array->d_metadata.d_stride[0] +
                          (i2 - array->d_metadata.d_lower[1])*
                           array->d_metadata.d_stride[1] +
                          (i3 - array->d_metadata.d_lower[2])*
                           array->d_metadata.d_stride[2] +
                          (i4 - array->d_metadata.d_lower[3])*
                           array->d_metadata.d_stride[3] +
                          (i5 - array->d_metadata.d_lower[4])*
                           array->d_metadata.d_stride[4] +
                          (i6 - array->d_metadata.d_lower[5])*
                           array->d_metadata.d_stride[5]));
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element (i1,i2,i3,i4,i5,i6,i7) of a seven-dimensional array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get7(const struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5,
                          const int32_t i6,
                          const int32_t i7)
{
  if (array) {
    switch(array->d_metadata.d_dimen) {
    case 1: return sidl_fcomplex__array_get1(array, i1);
    case 2: return sidl_fcomplex__array_get2(array, i1, i2);
    case 3: return sidl_fcomplex__array_get3(array, i1, i2, i3);
    case 4: return sidl_fcomplex__array_get4(array, i1, i2, i3, i4);
    case 5: return sidl_fcomplex__array_get5(array, i1, i2, i3, i4, i5);
    case 6: return sidl_fcomplex__array_get6(array, i1, i2, i3, i4, i5, i6);
    case 7:
      {
        /* unserialize array bounds checking (i.e. avoid strict left to right */
        /* evaluation of && which serializes evaluation) */
        register int c1 = (array->d_metadata.d_lower[0] <= i1);
        register int c2 = (array->d_metadata.d_lower[1] <= i2);
        register int c3 = (array->d_metadata.d_lower[2] <= i3);
        register int c4 = (array->d_metadata.d_lower[3] <= i4);
        register int c5 = (array->d_metadata.d_lower[4] <= i5);
        register int c6 = (array->d_metadata.d_lower[5] <= i6);
        register int c7 = (array->d_metadata.d_lower[6] <= i7);
        c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
        c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
        c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
        c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
        c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
        c6 = c6 && (array->d_metadata.d_upper[5] >= i6);
        c7 = c7 && (array->d_metadata.d_upper[6] >= i7);
        c1 = c1 && c2;
        c3 = c3 && c4;
        c5 = c5 && c6;
        c1 = c1 && c3;
        c5 = c5 && c7;
        if (c1 && c5) {
          return COPY_VALUE(*(array->d_firstElement +
                              (i1 - array->d_metadata.d_lower[0])*
                               array->d_metadata.d_stride[0] +
                              (i2 - array->d_metadata.d_lower[1])*
                               array->d_metadata.d_stride[1] +
                              (i3 - array->d_metadata.d_lower[2])*
                               array->d_metadata.d_stride[2] +
                              (i4 - array->d_metadata.d_lower[3])*
                               array->d_metadata.d_stride[3] +
                              (i5 - array->d_metadata.d_lower[4])*
                               array->d_metadata.d_stride[4] +
                              (i6 - array->d_metadata.d_lower[5])*
                               array->d_metadata.d_stride[5] +
                              (i7 - array->d_metadata.d_lower[6])*
                               array->d_metadata.d_stride[6]));
        }
      }
    }
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Retrieve element indices of an n-dimensional array. Indices is assumed
 * to have the right number of elements for the dimension of array.
 */
struct sidl_fcomplex
sidl_fcomplex__array_get(const struct sidl_fcomplex__array* array,
                         const int32_t indices[])
{
  if (array) {
    struct sidl_fcomplex *result = array->d_firstElement;
    int32_t i = 0;
    while (i < array->d_metadata.d_dimen) {
      if ((indices[i] < array->d_metadata.d_lower[i]) ||
          (indices[i] > array->d_metadata.d_upper[i]))
        return sidl_fcomplex__array_zero;
      result += ((indices[i] - array->d_metadata.d_lower[i])*
       array->d_metadata.d_stride[i]);
      ++i;
    }
    return COPY_VALUE(*result);
  }
  return sidl_fcomplex__array_zero;
}

/**
 * Set element i1 of a one-dimensional array to value.
 */
void
sidl_fcomplex__array_set1(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const struct sidl_fcomplex value)
{
  if (array && (1 == array->d_metadata.d_dimen) &&
      ((array->d_metadata.d_lower[0] <= i1) &&
       (array->d_metadata.d_upper[0] >= i1))) {
    DESTROY_VALUE(*(array->d_firstElement +
      (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0]));
    *(array->d_firstElement +
      (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0]) =
       COPY_VALUE(value);
  }
}

/**
 * Set element (i1,i2) of a two-dimensional array to value.
 */
void
sidl_fcomplex__array_set2(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const struct sidl_fcomplex value)
{
  if (array && (2 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_upper[0] >= i1);
    register int c3 = (array->d_metadata.d_lower[1] <= i2);
    register int c4 = (array->d_metadata.d_upper[1] >= i2);
    c1 = c1 && c2;
    c3 = c3 && c4;
    if (c1 && c3) {
      DESTROY_VALUE(*(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1]));
      *(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1]) =
         COPY_VALUE(value);
    }
  }
}

/**
 * Set element (i1,i2,i3) of a three-dimensional array to value.
 */
void
sidl_fcomplex__array_set3(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const struct sidl_fcomplex value)
{
  if (array && (3 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    if (c1 && c2 && c3) {
      DESTROY_VALUE(*(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2]));
      *(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2]) =
         COPY_VALUE(value);
    }
  }
}

/**
 * Set element (i1,i2,i3,i4) of a four-dimensional array to value.
 */
void
sidl_fcomplex__array_set4(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const struct sidl_fcomplex value)
{
  if (array && (array->d_metadata.d_dimen == 4)) {
    /* unserialize array bounds checking to. avoid strict left to right */
    /* evaluation of && which serializes evaluation */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c1 = c1 && c2;
    c3 = c3 && c4;
    if (c1 && c3) {
      DESTROY_VALUE(*(array->d_firstElement +
        (((i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
          (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1]) +
         ((i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
          (i4 - array->d_metadata.d_lower[3])*
           array->d_metadata.d_stride[3]))));
      *(array->d_firstElement +
        (((i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
          (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1]) +
         ((i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
         (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3]))) =
         COPY_VALUE(value);
    }
  }
}

/**
 * Set element (i1,i2,i3,i4,i5) of a five-dimensional array to value.
 */
void
sidl_fcomplex__array_set5(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5,
                          const struct sidl_fcomplex value)
{
  if (array && (5 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    register int c5 = (array->d_metadata.d_lower[4] <= i5);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
    c1 = c1 && c2;
    c3 = c3 && c4;
    c1 = c1 && c3;
    if (c1 && c5) {
      DESTROY_VALUE(*(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
        (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
        (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4]));
      *(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
        (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
        (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4]) =
         COPY_VALUE(value);
    }
  }
}

/**
 * Set element (i1,i2,i3,i4,i5,i6) of a six-dimensional array to value.
 */
void
sidl_fcomplex__array_set6(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5,
                          const int32_t i6,
                          const struct sidl_fcomplex value)
{
  if (array && (6 == array->d_metadata.d_dimen)){
    /* unserialize array bounds checking (i.e. avoid strict left to right */
    /* evaluation of && which serializes evaluation) */
    register int c1 = (array->d_metadata.d_lower[0] <= i1);
    register int c2 = (array->d_metadata.d_lower[1] <= i2);
    register int c3 = (array->d_metadata.d_lower[2] <= i3);
    register int c4 = (array->d_metadata.d_lower[3] <= i4);
    register int c5 = (array->d_metadata.d_lower[4] <= i5);
    register int c6 = (array->d_metadata.d_lower[5] <= i6);
    c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
    c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
    c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
    c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
    c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
    c6 = c6 && (array->d_metadata.d_upper[5] >= i6);
    c1 = c1 && c2;
    c3 = c3 && c4;
    c5 = c5 && c6;
    c1 = c1 && c3;
    if (c1 && c5) {
      DESTROY_VALUE(*(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
        (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
        (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4] +
        (i6 - array->d_metadata.d_lower[5])*array->d_metadata.d_stride[5]));
      *(array->d_firstElement +
        (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
        (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
        (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
        (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
        (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4] +
        (i6 - array->d_metadata.d_lower[5])*array->d_metadata.d_stride[5]) =
         COPY_VALUE(value);
    }
  }
}

/**
 * Set element (i1,i2,i3,i4,i5,i6,i7) of a seven-dimensional array to value.
 */
void
sidl_fcomplex__array_set7(struct sidl_fcomplex__array* array,
                          const int32_t i1,
                          const int32_t i2,
                          const int32_t i3,
                          const int32_t i4,
                          const int32_t i5,
                          const int32_t i6,
                          const int32_t i7,
                          const struct sidl_fcomplex value)
{
  if (array) {
    switch(array->d_metadata.d_dimen) {
    case 1: sidl_fcomplex__array_set1(array, i1, value); break;
    case 2: sidl_fcomplex__array_set2(array, i1, i2, value); break;
    case 3: sidl_fcomplex__array_set3(array, i1, i2, i3, value); break;
    case 4: sidl_fcomplex__array_set4(array, i1, i2, i3, i4, value); break;
    case 5: sidl_fcomplex__array_set5(array, i1, i2, i3, i4, i5, value); break;
    case 6: sidl_fcomplex__array_set6(array, i1, i2, i3, i4, i5, i6, value); break;
    case 7:
      {
        /* unserialize array bounds checking (i.e. avoid strict left to right */
        /* evaluation of && which serializes evaluation) */
        register int c1 = (array->d_metadata.d_lower[0] <= i1);
        register int c2 = (array->d_metadata.d_lower[1] <= i2);
        register int c3 = (array->d_metadata.d_lower[2] <= i3);
        register int c4 = (array->d_metadata.d_lower[3] <= i4);
        register int c5 = (array->d_metadata.d_lower[4] <= i5);
        register int c6 = (array->d_metadata.d_lower[5] <= i6);
        register int c7 = (array->d_metadata.d_lower[6] <= i7);
        c1 = c1 && (array->d_metadata.d_upper[0] >= i1);
        c2 = c2 && (array->d_metadata.d_upper[1] >= i2);
        c3 = c3 && (array->d_metadata.d_upper[2] >= i3);
        c4 = c4 && (array->d_metadata.d_upper[3] >= i4);
        c5 = c5 && (array->d_metadata.d_upper[4] >= i5);
        c6 = c6 && (array->d_metadata.d_upper[5] >= i6);
        c7 = c7 && (array->d_metadata.d_upper[6] >= i7);
        c1 = c1 && c2;
        c3 = c3 && c4;
        c5 = c5 && c6;
        c1 = c1 && c3;
        c5 = c5 && c7;
        if (c1 && c5) {
           DESTROY_VALUE(*(array->d_firstElement +
            (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
            (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
            (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
            (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
            (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4] +
            (i6 - array->d_metadata.d_lower[5])*array->d_metadata.d_stride[5] +
            (i7 - array->d_metadata.d_lower[6])*array->d_metadata.d_stride[6]));
          *(array->d_firstElement +
            (i1 - array->d_metadata.d_lower[0])*array->d_metadata.d_stride[0] +
            (i2 - array->d_metadata.d_lower[1])*array->d_metadata.d_stride[1] +
            (i3 - array->d_metadata.d_lower[2])*array->d_metadata.d_stride[2] +
            (i4 - array->d_metadata.d_lower[3])*array->d_metadata.d_stride[3] +
            (i5 - array->d_metadata.d_lower[4])*array->d_metadata.d_stride[4] +
            (i6 - array->d_metadata.d_lower[5])*array->d_metadata.d_stride[5] +
            (i7 - array->d_metadata.d_lower[6])*array->d_metadata.d_stride[6])
             = COPY_VALUE(value);
        }
      }
    }
  }
}

/**
 * Set element indices of an n-dimensional array to value. indices is assumed
 * to have the right number of elements for the dimension of array.
 */
void
sidl_fcomplex__array_set(struct sidl_fcomplex__array* array,
                         const int32_t indices[],
                         const struct sidl_fcomplex value)
{
  if (array) {
    struct sidl_fcomplex *result = array->d_firstElement;
    int32_t i = 0;
    while (i < array->d_metadata.d_dimen) {
      if ((indices[i] < array->d_metadata.d_lower[i]) ||
          (indices[i] > array->d_metadata.d_upper[i])) return;
      result += ((indices[i] - array->d_metadata.d_lower[i])*
       array->d_metadata.d_stride[i]);
      ++i;
    }
    DESTROY_VALUE(*result);
    *result = COPY_VALUE(value);
  }
}

/**
 * Return the dimension of array. If the array pointer is NULL,
 * zero is returned.
 */
int32_t
sidl_fcomplex__array_dimen(const struct sidl_fcomplex__array* array)
{
  return sidl__array_dimen((const struct sidl__array*)array);
}

/**
 * Return the lower index bound on dimension ind. If ind is not a valid
 * dimension, zero is returned. The valid range for ind is 0 to dimen-1.
 */
int32_t
sidl_fcomplex__array_lower(const struct sidl_fcomplex__array* array,
                           const int32_t ind)
{
  return sidl__array_lower((const struct sidl__array*)array, ind);
}

/**
 * Return the upper index bound on dimension ind. If ind is not a valid
 * dimension, negative one is returned. The valid range for ind is 0 to
 * dimen-1.
 */
int32_t
sidl_fcomplex__array_upper(const struct sidl_fcomplex__array* array,
                           const int32_t ind)
{
  return sidl__array_upper((const struct sidl__array*)array, ind);
}

/**
 * Return the number of element in dimension ind. If ind is not a valid
 * dimension, negative one is returned. The valid range for ind is 0 to
 * dimen-1.
 */
int32_t
sidl_fcomplex__array_length(const struct sidl_fcomplex__array* array,
                            const int32_t ind)
{
  return sidl__array_length((const struct sidl__array*)array, ind);
}

/**
 * Return the stride of dimension ind. If ind is not a valid
 * dimension, zero is returned. The valid range for ind is 0 to
 * dimen-1.
 */
int32_t
sidl_fcomplex__array_stride(const struct sidl_fcomplex__array* array,
                            const int32_t ind)
{
  return sidl__array_stride((const struct sidl__array*)array, ind);
}

/**
 * Return a true value iff the array is a contiguous column-major ordered
 * array.  A NULL array argument causes 0 to be returned.
 */
sidl_bool
sidl_fcomplex__array_isColumnOrder(const struct sidl_fcomplex__array* array)
{
  return sidl__array_isColumnOrder((const struct sidl__array*)array);
}

/**
 * Return a true value iff the array is a contiguous row-major ordered
 * array.  A NULL array argument causes 0 to be returned.
 */
sidl_bool
sidl_fcomplex__array_isRowOrder(const struct sidl_fcomplex__array* array)
{
  return sidl__array_isRowOrder((const struct sidl__array*)array);
}

/**
 * Copy the contents of one array (src) to a second array (dest). For
 * the copy to take place, both arrays must exist and be of the same
 * dimension. This method will not modify dest's size, index bounds,
 * or stride; only the array element values of dest may be changed by
 * this function. No part of src is ever changed by copy.
 * 
 * On exit, dest[i][j][k]... = src[i][j][k]... for all indices i,j,k...
 * that are in both arrays. If dest and src have no indices in common,
 * nothing is copied. For example, if src is a 1-d array with elements
 * 0-5 and dest is a 1-d array with elements 2-3, this function will
 * make the following assignments:
 *   dest[2] = src[2],
 *   dest[3] = src[3].
 * The function copied the elements that both arrays have in common.
 * If dest had elements 4-10, this function will make the following
 * assignments:
 *   dest[4] = src[4],
 *   dest[5] = src[5].
 * 
 */
void
sidl_fcomplex__array_copy(const struct sidl_fcomplex__array* src,
                                struct sidl_fcomplex__array* dest)
{
  if (src && dest && (src != dest) &&
     (src->d_metadata.d_dimen == dest->d_metadata.d_dimen) &&
      src->d_metadata.d_dimen) {
    const int32_t dimen = src->d_metadata.d_dimen;
    int32_t * restrict overlap = (int32_t *)malloc(sizeof(int32_t)*dimen*4);
    if (overlap) {
      register struct sidl_fcomplex const * restrict srcFirst =
        src->d_firstElement;
      register struct sidl_fcomplex * restrict destFirst =
        dest->d_firstElement;
      register int32_t i;
      int32_t * restrict current = overlap + dimen;
      int32_t * restrict src_stride = current + dimen;
      int32_t * restrict dst_stride = src_stride + dimen;
      int32_t lower, upper, fastMover = dimen - 1, moverRank = 0;
      for(i = 0; i < dimen; ++i){
        lower = MAX(src->d_metadata.d_lower[i],dest->d_metadata.d_lower[i]);
        upper = MIN(src->d_metadata.d_upper[i],dest->d_metadata.d_upper[i]);
        overlap[i] = 1 + upper - lower;
        if (overlap[i] <= 0) goto cleanup;
        srcFirst += (src->d_metadata.d_stride[i]*
           (lower - src->d_metadata.d_lower[i]));
        destFirst += (dest->d_metadata.d_stride[i]*
           (lower - dest->d_metadata.d_lower[i]));
        current[i] = 0;
        src_stride[i] = src->d_metadata.d_stride[i];
        dst_stride[i] = dest->d_metadata.d_stride[i];
        if (((src_stride[i] == 1) || (src_stride[i] == -1) ||
             (dst_stride[i] == 1) || (dst_stride[i] == -1)) &&
            (overlap[i] >= moverRank)) {
          moverRank = overlap[i];
          fastMover = i;
        }
      }
      if (fastMover != dimen - 1) { /* move stride 1 to inner loop */
        /* this *might* improve cache performance */
        swap_i32(&overlap[fastMover], &overlap[dimen-1]);
        swap_i32(&src_stride[fastMover], &src_stride[dimen-1]);
        swap_i32(&dst_stride[fastMover], &dst_stride[dimen-1]);
      }
      switch(dimen) {
      case 1: /* handle a common special case */
        {
          const int32_t bound = overlap[0];
          const int32_t dstride = dst_stride[0];
          const int32_t sstride = src_stride[0];
          for(i = 0; i < bound; ++i) {
            DESTROY_VALUE(*destFirst);
            *destFirst = COPY_VALUE(*srcFirst);
            destFirst += dstride;
            srcFirst += sstride;
          }
        }
        break;
      case 2: /* handle a common special case (2-d arrays) */
        {
          const int32_t bound0 = overlap[0];
          const int32_t bound1 = overlap[1];
          const int32_t dstride1 = dst_stride[1];
          const int32_t sstride1 = src_stride[1];
          const int32_t dstride0 = dst_stride[0] - bound1*dstride1;
          const int32_t sstride0 = src_stride[0] - bound1*sstride1;
          int32_t j;
          for(i = 0; i < bound0; ++i) {
            for(j = 0; j < bound1; ++j) {
              DESTROY_VALUE(*destFirst);
              *destFirst = COPY_VALUE(*srcFirst);
              destFirst += dstride1;
              srcFirst += sstride1;
            }
            destFirst += dstride0;
            srcFirst += sstride0;
          }
        }
        break;
      case 3: /* handle a common special case (3-d arrays) */
        {
          const int32_t bound0 = overlap[0];
          const int32_t bound1 = overlap[1];
          const int32_t bound2 = overlap[2];
          const int32_t dstride2 = dst_stride[2];
          const int32_t sstride2 = src_stride[2];
          const int32_t dstride1 = dst_stride[1] - bound2*dstride2;
          const int32_t sstride1 = src_stride[1] - bound2*sstride2;
          const int32_t dstride0 = dst_stride[0] - bound1*(dstride1 + bound2*dstride2);
          const int32_t sstride0 = src_stride[0] - bound1*(sstride1 + bound2*sstride2);
          
          int32_t j, k;
          for(i = 0; i < bound0; ++i) {
            for(j = 0; j < bound1; ++j) {
              for(k = 0; k < bound2; ++k) {
                DESTROY_VALUE(*destFirst);
                *destFirst = COPY_VALUE(*srcFirst);
                destFirst += dstride2;
                srcFirst += sstride2;
              }
              destFirst += dstride1;
              srcFirst += sstride1;
            }
            destFirst += dstride0;
            srcFirst += sstride0;
          }
        }
        break;
      default: /* handle the general case */
        do {
          DESTROY_VALUE(*destFirst);
          *destFirst = COPY_VALUE(*srcFirst);
          for(i = dimen - 1; i >= 0; --i) {
            ++(current[i]);
            if (current[i] >= overlap[i]) {
              current[i] = 0;
              destFirst -= ((overlap[i]-1) * dst_stride[i]);
              srcFirst -= ((overlap[i]-1) * src_stride[i]);
            }
            else {
              destFirst += dst_stride[i];
              srcFirst += src_stride[i];
              break; /* exit for loop */
            }
          }
        } while (i >= 0);
        break;
      }
cleanup:
      free(overlap);
    }
  }
}

/**
 * If necessary, convert a general matrix into a matrix with the required
 * properties. This checks the dimension and ordering of the matrix.
 * If both these match, it simply returns a new reference to the existing
 * matrix. If the dimension of the incoming array doesn't match, it
 * returns NULL. If the ordering of the incoming array doesn't match the
 * specification, a new array is created with the desired ordering and
 * the content of the incoming array is copied to the new array.
 * 
 * The ordering parameter should be one of the constants defined in
 * enum sidl_array_ordering (e.g. sidl_general_order,
 * sidl_column_major_order, or sidl_row_major_order). If you
 * specify sidl_general_order, this routine will only check the
 * dimension because any matrix is sidl_general_order.
 * 
 * The caller assumes ownership of the returned reference unless it's NULL.
 * 
 */
struct sidl_fcomplex__array*
sidl_fcomplex__array_ensure(struct sidl_fcomplex__array* src,
                            int32_t                dimen,
                            int                    ordering)
{
  struct sidl_fcomplex__array* result = NULL;
  if (src && (src->d_metadata.d_dimen == dimen)) {
    switch(ordering) {
    case sidl_column_major_order:
      if (sidl_fcomplex__array_isColumnOrder(src)) {
        sidl_fcomplex__array_addRef(src);
        result = src;
      }
      else {
        result = sidl_fcomplex__array_createCol
          (dimen, src->d_metadata.d_lower, src->d_metadata.d_upper);
        sidl_fcomplex__array_copy(src, result);
      }
      break;
    case sidl_row_major_order:
      if (sidl_fcomplex__array_isRowOrder(src)) {
        sidl_fcomplex__array_addRef(src);
        result = src;
      }
      else {
        result = sidl_fcomplex__array_createRow
          (dimen, src->d_metadata.d_lower, src->d_metadata.d_upper);
        sidl_fcomplex__array_copy(src, result);
      }
      break;
    default:
      sidl_fcomplex__array_addRef(src);
      result = src;
      break;
    }
  }
  return result;
}

/**
 * Return a pointer to the first element of the data space of the array.
 * Using the lower and stride information, you can access elements of the
 * array without using a function call. NULL is returned iff array is NULL.
 * 
 * Direct access should only be used when efficiency requires it.
 */
struct sidl_fcomplex *
sidl_fcomplex__array_first(const struct sidl_fcomplex__array* array)
{
  return array ? array->d_firstElement : NULL;
}