File: examples.rst

package info (click to toggle)
babeltrace2 2.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 42,660 kB
  • sloc: cpp: 106,162; ansic: 78,276; python: 27,115; sh: 9,053; makefile: 1,807; xml: 46
file content (914 lines) | stat: -rw-r--r-- 29,988 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
..
   SPDX-FileCopyrightText: 2020 Philippe Proulx <eeppeliteloop@gmail.com>
   SPDX-License-Identifier: CC-BY-SA-4.0

.. include:: common.rst

.. _examples:

Examples
========
This section contains a few short and straightforward examples which
show how to use the Babeltrace |~| 2 Python bindings.

The :mod:`bt2` package provides the Babeltrace |~| 2 Python bindings.
Note that the :mod:`babeltrace` package is part of the Babeltrace |~| 1
project: it's somewhat out-of-date and not compatible with the
:mod:`bt2` package.

Assume that all the examples below are named :file:`example.py`.

.. _examples_tcmi:

Iterate trace events
--------------------
The most convenient and high-level way to iterate the events of one or
more traces is with a :class:`bt2.TraceCollectionMessageIterator`
object.

A :class:`bt2.TraceCollectionMessageIterator` object roughly offers the
same features as the ``convert`` command of the :command:`babeltrace2`
command-line program (see the :bt2man:`babeltrace2-convert(1)` manual
page), but in a programmatic, Pythonic way.

As of Babeltrace |~| |version|, the trace collection message iterator
class is a Python bindings-only feature: the Python code uses
libbabeltrace2 internally, but the latter does not offer this utility as
such.

The :class:`bt2.TraceCollectionMessageIterator` interface features:

* **Automatic source component (trace format) discovery**.

  ``convert`` command equivalent example:

  .. code-block:: text

     $ babeltrace2 /path/to/my/trace

* **Explicit component class instantiation**.

  ``convert`` command equivalent example:

  .. code-block:: text

     $ babeltrace2 --component=source.my.format

* **Passing initialization parameters to both auto-discovered and
  explicitly created components**.

  ``convert`` command equivalent example:

  .. code-block:: text

     $ babeltrace2 /path/to/my/trace --params=detailed=no \
                   --component=source.ctf.fs \
                   --params='inputs=["/path/to/my/trace"]'

* **Trace event muxing**.

  The message iterator muxes (combines) the events from multiple
  compatible streams into a single, time-sorted sequence of events.

  .. code-block:: text

     $ babeltrace2 /path/to/trace1 /path/to/trace2 /path/to/trace3

* **Stream intersection mode**.

  ``convert`` command equivalent example:

  .. code-block:: text

     $ babeltrace2 /path/to/my/trace --stream-intersection

* **Stream trimming with beginning and/or end times**.

  ``convert`` command equivalent example:

  .. code-block:: text

     $ babeltrace2 /path/to/my/trace --begin=22:14:38 --end=22:15:07

While the :command:`babeltrace2 convert` command creates a ``sink.text.pretty``
component class (by default) to pretty-print events as plain text lines,
a :class:`bt2.TraceCollectionMessageIterator` object is a Python
iterator which makes its user a message consumer (there's no sink
component)::

    import bt2

    for msg in bt2.TraceCollectionMessageIterator('/path/to/trace'):
        if type(msg) is bt2._EventMessageConst:
            print(msg.event.name)

.. _examples_tcmi_autodisc:

Discover traces
~~~~~~~~~~~~~~~
Pass one or more file paths, directory paths, or other strings when you
build a :class:`bt2.TraceCollectionMessageIterator` object to let it
automatically determine which source components to create for you.

If you pass a directory path, the message iterator traverses the
directory recursively to find traces, automatically selecting the
appropriate source component classes to instantiate.

The :class:`bt2.TraceCollectionMessageIterator` object and the
:command:`babeltrace2 convert` CLI command share the same automatic
component discovery algorithm. See the
:bt2link:`Create implicit components from non-option arguments <https://babeltrace.org/docs/v@ver@/man1/babeltrace2-convert.1/#doc-comp-create-impl-non-opt>`
section of the :bt2man:`babeltrace2-convert(1)` manual page for more
details.

The following example shows how to use a
:class:`bt2.TraceCollectionMessageIterator` object to automatically
discover one or more traces from a single path (file or directory). For
each trace event, the example prints its name::

    import bt2
    import sys

    # Get the trace path from the first command-line argument.
    path = sys.argv[1]

    # Create a trace collection message iterator with this path.
    msg_it = bt2.TraceCollectionMessageIterator(path)

    # Iterate the trace messages.
    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        if type(msg) is bt2._EventMessageConst:
            # An event message holds a trace event.
            event = msg.event

            # Print event's name.
            print(event.name)

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/one/or/more/traces

Output example:

.. code-block:: text

    kmem_kmalloc
    kmem_kfree
    kmem_cache_alloc_node
    block_getrq
    kmem_kmalloc
    block_plug
    kmem_kfree
    block_rq_insert
    kmem_kmalloc
    kmem_kfree
    kmem_kmalloc
    kmem_kfree

The example above is simplistic; it does not catch the exceptions that
some statements can raise:

* ``bt2.TraceCollectionMessageIterator(path)`` raises an exception if
  it cannot find any trace.

* Each iteration of the loop, or, more precisely, the
  :meth:`bt2.TraceCollectionMessageIterator.__next__` method, raises
  an exception if there's any error during the iteration process.

  For example, an internal source component message iterator can fail
  when trying to decode a malformed trace file.

.. _examples_tcmi_expl:

Create explicit source components
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If `automatic source component discovery <#examples-tcmi-autodisc>`_
doesn't work for you (for example, because the source component class
you actually need to instantiate doesn't offer the
``babeltrace.support-info`` query object), create explicit source
components when you build a :class:`bt2.TraceCollectionMessageIterator`
object.

The following example builds a trace collection message iterator to
explicitly instantiate a ``source.ctf.fs`` component class (found in the
``ctf`` plugin). Again, for each trace event, the example prints its
name::

    import bt2
    import sys

    # Find the `ctf` plugin (shipped with Babeltrace 2).
    ctf_plugin = bt2.find_plugin('ctf')

    # Get the `source.ctf.fs` component class from the plugin.
    fs_cc = ctf_plugin.source_component_classes['fs']

    # Create a trace collection message iterator, instantiating a single
    # `source.ctf.fs` component class with the `inputs` initialization
    # parameter set to open a single CTF trace.
    msg_it = bt2.TraceCollectionMessageIterator(bt2.ComponentSpec(fs_cc, {
        # Get the CTF trace path from the first command-line argument.
        'inputs': [sys.argv[1]],
    }))

    # Iterate the trace messages.
    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        if type(msg) is bt2._EventMessageConst:
            # Print event's name.
            print(msg.event.name)

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/ctf/trace

Output example:

.. code-block:: text

    kmem_kmalloc
    kmem_kfree
    kmem_cache_alloc_node
    block_getrq
    kmem_kmalloc
    block_plug
    kmem_kfree
    block_rq_insert
    kmem_kmalloc
    kmem_kfree
    kmem_kmalloc
    kmem_kfree

The example above looks similar to the previous one using
`automatic source component discovery <#examples-tcmi-autodisc>`_,
but there are notable differences:

* A ``source.ctf.fs`` component expects to receive the path to a
  *single* `CTF <https://diamon.org/ctf/>`_ trace (a directory
  containing a file named ``metadata``).

  Unlike the previous example, you must pass the exact
  :abbr:`CTF (Common Trace Format)` trace directory path, *not* a
  parent directory path.

* Unlike the previous example, the example above can only read a single
  trace.

  If you want to read multiple :abbr:`CTF (Common Trace Format)` traces
  using explicit component class instantiation with a single trace
  collection message iterator, you must create one ``source.ctf.fs``
  component per trace.

Note that the :class:`bt2.ComponentSpec` class offers the
:meth:`from_named_plugin_and_component_class` convenience static method
which finds the plugin and component class for you. You could therefore
rewrite the trace collection message iterator creation part of the
example above as::

    # Create a trace collection message iterator, instantiating a single
    # `source.ctf.fs` component class with the `inputs` initialization
    # parameter set to open a single CTF trace.
    msg_it = bt2.TraceCollectionMessageIterator(
        bt2.ComponentSpec.from_named_plugin_and_component_class('ctf', 'fs', {
            # Get the CTF trace path from the first command-line argument.
            'inputs': [sys.argv[1]],
        })
    )

.. _examples_tcmi_ev_field:

Get a specific event field's value
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :ref:`examples_tcmi_autodisc` and :ref:`examples_tcmi_expl` examples
show that a :class:`bt2.TraceCollectionMessageIterator` iterates the
time-sorted *messages* of one or more traces.

One specific type of message is :class:`bt2._EventMessageConst`, which
holds a trace event object.

.. note::

   Everything you can find in the :mod:`bt2` package is publicly
   accessible.

   Names which start with ``_`` (underscore), like
   :class:`bt2._EventMessageConst`, indicate that you can't
   *instantiate* such a class (you cannot call the class). However, the
   type itself remains public so that you can use its name to check an
   object's type:

   .. code-block:: python

       if type(msg) is bt2._EventMessageConst:
           # ...

   .. code-block:: python

       if isinstance(field, bt2._IntegerFieldConst):
           # ...

Access an event object's field by using the event as a simple mapping
(like a read-only :class:`dict`), where keys are field names. The field
can belong to any part of the event (contexts or payload) and to its
packet's context, if any::

    import bt2
    import sys

    # Create a trace collection message iterator from the first
    # command-line argument.
    msg_it = bt2.TraceCollectionMessageIterator(sys.argv[1])

    # Iterate the trace messages.
    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        # Only keep such messages.
        if type(msg) is not bt2._EventMessageConst:
            continue

        # An event message holds a trace event.
        event = msg.event

        # Only check `sched_switch` events.
        if event.name != 'sched_switch':
            continue

        # In an LTTng trace, the `cpu_id` field is a packet context field.
        # The mapping interface of `event` can still find it.
        cpu_id = event['cpu_id']

        # Previous and next process short names are found in the event's
        # `prev_comm` and `next_comm` fields.
        prev_comm = event['prev_comm']
        next_comm = event['next_comm']

        # Print line, using field values.
        msg = 'CPU {}: Switching process `{}` → `{}`'
        print(msg.format(cpu_id, prev_comm, next_comm))

The example above assumes that the traces to open are
`LTTng <https://lttng.org/>`_ Linux kernel traces.

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/one/or/more/lttng/traces

Output example:

.. code-block:: text

    CPU 2: Switching process `Timer` → `swapper/2`
    CPU 0: Switching process `swapper/0` → `firefox`
    CPU 0: Switching process `firefox` → `swapper/0`
    CPU 0: Switching process `swapper/0` → `rcu_preempt`
    CPU 0: Switching process `rcu_preempt` → `swapper/0`
    CPU 3: Switching process `swapper/3` → `alsa-sink-ALC26`
    CPU 2: Switching process `swapper/2` → `Timer`
    CPU 2: Switching process `Timer` → `swapper/2`
    CPU 2: Switching process `swapper/2` → `pulseaudio`
    CPU 0: Switching process `swapper/0` → `firefox`
    CPU 1: Switching process `swapper/1` → `threaded-ml`
    CPU 2: Switching process `pulseaudio` → `Timer`

If you need to access a specific field, use:

Event payload
  :attr:`bt2._EventConst.payload_field` property.

Event specific context
  :attr:`bt2._EventConst.specific_context_field` property.

Event common context
  :attr:`bt2._EventConst.common_context_field` property.

Packet context
  :attr:`bt2._PacketConst.context_field` property.

Use Python's ``in`` operator to verify if:

A specific "root" field (in the list above) contains a given field by name
 .. code-block:: python

    if 'next_comm' in event.payload_field:
           # ...

Any of the root fields contains a given field by name
 .. code-block:: python

    if 'next_comm' in event:
        # ...

The following example iterates the events of a given trace, printing the
value of the ``fd`` payload field if it's available::

    import bt2
    import sys

    # Create a trace collection message iterator from the first command-line
    # argument.
    msg_it = bt2.TraceCollectionMessageIterator(sys.argv[1])

    # Iterate the trace messages.
    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        if type(msg) is bt2._EventMessageConst:
            # Check if the `fd` event payload field exists.
            if 'fd' in msg.event.payload_field:
                # Print the `fd` event payload field's value.
                print(msg.event.payload_field['fd'])

Output example:

.. code-block:: text

    14
    15
    16
    19
    30
    31
    33
    42
    0
    1
    2
    3

.. _examples_tcmi_ev_time:

Get an event's time
~~~~~~~~~~~~~~~~~~~
The time, or timestamp, of an event object belongs to its message as
a *default clock snapshot*.

An event's clock snapshot is a *snapshot* (an immutable value) of the
value of the event's stream's clock when the event occurred. As of
Babeltrace |~| |version|, a stream can only have one clock: its default
clock.

Use the :attr:`default_clock_snapshot` property of an event message
to get its default clock snapshot. A clock snapshot object offers,
amongst other things, the following properties:

:attr:`value` (:class:`int`)
  Value of the clock snapshot in clock cycles.

  A stream clock can have any frequency (Hz).

:attr:`ns_from_origin` (:class:`int`)
  Number of nanoseconds from the stream clock's origin (often the Unix
  epoch).

The following example prints, for each event, its name, its date/time,
and the difference, in seconds, since the previous event's time (if
any)::

    import bt2
    import sys
    import datetime

    # Create a trace collection message iterator from the first command-line
    # argument.
    msg_it = bt2.TraceCollectionMessageIterator(sys.argv[1])

    # Last event's time (ns from origin).
    last_event_ns_from_origin = None

    # Iterate the trace messages.
    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        if type(msg) is bt2._EventMessageConst:
            # Get event message's default clock snapshot's ns from origin
            # value.
            ns_from_origin = msg.default_clock_snapshot.ns_from_origin

            # Compute the time difference since the last event message.
            diff_s = 0

            if last_event_ns_from_origin is not None:
                diff_s = (ns_from_origin - last_event_ns_from_origin) / 1e9

            # Create a `datetime.datetime` object from `ns_from_origin` for
            # presentation. Note that such an object is less accurate than
            # `ns_from_origin` as it holds microseconds, not nanoseconds.
            dt = datetime.datetime.fromtimestamp(ns_from_origin / 1e9)

            # Print line.
            fmt = '{} (+{:.6f} s): {}'
            print(fmt.format(dt, diff_s, msg.event.name))

            # Update last event's time.
            last_event_ns_from_origin = ns_from_origin

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/one/or/more/traces

Output example:

.. code-block:: text

    2015-09-09 22:40:41.551451 (+0.000004 s): lttng_ust_statedump:end
    2015-09-09 22:40:43.003397 (+1.451946 s): lttng_ust_dl:dlopen
    2015-09-09 22:40:43.003412 (+0.000015 s): lttng_ust_dl:build_id
    2015-09-09 22:40:43.003861 (+0.000449 s): lttng_ust_dl:dlopen
    2015-09-09 22:40:43.003865 (+0.000004 s): lttng_ust_dl:build_id
    2015-09-09 22:40:43.003879 (+0.000014 s): my_provider:my_first_tracepoint
    2015-09-09 22:40:43.003895 (+0.000016 s): my_provider:my_first_tracepoint
    2015-09-09 22:40:43.003898 (+0.000003 s): my_provider:my_other_tracepoint
    2015-09-09 22:40:43.003922 (+0.000023 s): lttng_ust_dl:dlclose

Bonus: Print top 5 running processes using LTTng
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As :ref:`examples_tcmi_ev_field` shows, a
:class:`bt2.TraceCollectionMessageIterator` can read
`LTTng <https://lttng.org/>`_ traces.

The following example is similar to :ref:`examples_tcmi_ev_time`: it
reads a whole LTTng Linux kernel trace, but instead of printing the time
difference for each event, it accumulates them to print the short names
of the top |~| 5 running processes on CPU |~| 0 during the whole trace.

.. code-block:: python

    import bt2
    import sys
    import collections

    # Create a trace collection message iterator from the first command-line
    # argument.
    msg_it = bt2.TraceCollectionMessageIterator(sys.argv[1])

    # This counter dictionary will hold execution times:
    #
    #     Task command name -> Total execution time (ns)
    exec_times = collections.Counter()

    # This holds the last `sched_switch` event time.
    last_ns_from_origin = None

    for msg in msg_it:
        # `bt2._EventMessageConst` is the Python type of an event message.
        # Only keep such messages.
        if type(msg) is not bt2._EventMessageConst:
            continue

        # An event message holds a trace event.
        event = msg.event

        # Only check `sched_switch` events.
        if event.name != 'sched_switch':
            continue

        # Keep only events which occurred on CPU 0.
        if event['cpu_id'] != 0:
            continue

        # Get event message's default clock snapshot's ns from origin value.
        ns_from_origin = msg.default_clock_snapshot.ns_from_origin

        if last_ns_from_origin is None:
            # We start here.
            last_ns_from_origin = ns_from_origin

        # Previous process's short name.
        prev_comm = str(event['prev_comm'])

        # Initialize an entry in our dictionary if not done yet.
        if prev_comm not in exec_times:
            exec_times[prev_comm] = 0

        # Compute previous process's execution time.
        diff_ns = ns_from_origin - last_ns_from_origin

        # Update execution time of this command.
        exec_times[prev_comm] += diff_ns

        # Update last event's time.
        last_ns_from_origin = ns_from_origin

    # Print top 5.
    for comm, ns in exec_times.most_common(5):
        print('{:20}{} s'.format(comm, ns / 1e9))

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/lttng/trace

Output example:

.. code-block:: text

    swapper/0           326.294314471 s
    chromium            2.500456202 s
    Xorg.bin            0.546656895 s
    threaded-ml         0.545098185 s
    pulseaudio          0.53677713 s

Note that ``swapper/0`` is the "idle" process of CPU |~| 0 on Linux;
since we weren't using the CPU that much when tracing, its first
position in the list makes sense.

Inspect event classes
~~~~~~~~~~~~~~~~~~~~~
Each event stream is a *stream class* instance.

A stream class contains *event classes*. A stream class's event classes
describe all the possible events you can find in its instances. Stream
classes and event classes form the *metadata* of streams and events.

The following example shows how to list all the event classes of a
stream class. For each event class, the example also prints the names of
its payload field class's first-level members.

.. note::

   As of Babeltrace |~| |version|, there's no way to access a stream class
   without consuming at least one message for one of its instances
   (streams).

   A source component can add new event classes to existing stream
   classes during the trace processing task. Therefore, this example
   only lists the initial stream class's event classes.

.. code-block:: python

    import bt2
    import sys

    # Create a trace collection message iterator from the first command-line
    # argument.
    msg_it = bt2.TraceCollectionMessageIterator(sys.argv[1])

    # Get the message iterator's first stream beginning message.
    for msg in msg_it:
        # `bt2._StreamBeginningMessageConst` is the Python type of a stream
        # beginning message.
        if type(msg) is bt2._StreamBeginningMessageConst:
            break

    # A stream beginning message holds a stream.
    stream = msg.stream

    # Get the stream's class.
    stream_class = stream.cls

    # The stream class object offers a mapping interface (like a read-only
    # `dict`), where keys are event class IDs and values are
    # `bt2._EventClassConst` objects.
    for event_class in stream_class.values():
        print('{}:'.format(event_class.name))

        # The `payload_field_class` property of an event class returns a
        # `bt2._StructureFieldClassConst` object. This object offers a
        # mapping interface, where keys are member names and values are
        # `bt2._StructureFieldClassMemberConst` objects.
        for member in event_class.payload_field_class.values():
            fmt = '  {}: `{}.{}`'
            print(fmt.format(member.name, bt2.__name__,
                             member.field_class.__class__.__name__))

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/trace

Output example:

.. code-block:: text

    sched_migrate_task:
      comm: `bt2._StringFieldClassConst`
      tid: `bt2._SignedIntegerFieldClassConst`
      prio: `bt2._SignedIntegerFieldClassConst`
      orig_cpu: `bt2._SignedIntegerFieldClassConst`
      dest_cpu: `bt2._SignedIntegerFieldClassConst`
    sched_switch:
      prev_comm: `bt2._StringFieldClassConst`
      prev_tid: `bt2._SignedIntegerFieldClassConst`
      prev_prio: `bt2._SignedIntegerFieldClassConst`
      prev_state: `bt2._SignedIntegerFieldClassConst`
      next_comm: `bt2._StringFieldClassConst`
      next_tid: `bt2._SignedIntegerFieldClassConst`
      next_prio: `bt2._SignedIntegerFieldClassConst`
    sched_wakeup_new:
      comm: `bt2._StringFieldClassConst`
      tid: `bt2._SignedIntegerFieldClassConst`
      prio: `bt2._SignedIntegerFieldClassConst`
      target_cpu: `bt2._SignedIntegerFieldClassConst`

.. _examples_graph:

Build and run a trace processing graph
--------------------------------------
Internally, a :class:`bt2.TraceCollectionMessageIterator` object (see
:ref:`examples_tcmi`) builds a *trace processing graph*, just like the
:bt2man:`babeltrace2-convert(1)` CLI command, and then offers a
Python iterator interface on top of it.

See the :bt2man:`babeltrace2-intro(7)` manual page to learn more about
the Babeltrace |~| 2 project and its core concepts.

The following examples shows how to manually build and then run a trace
processing graph yourself (like the :bt2man:`babeltrace2-run(1)` CLI
command does). The general steps to do so are:

#. Create an empty graph.

#. Add components to the graph.

   This process is also known as *instantiating a component class*
   because the graph must first create the component from its class
   before adding it.

   A viable graph contains at least one source component and one sink
   component.

#. Connect component ports.

   On initialization, components add input and output ports, depending
   on their type.

   You can connect component output ports to input ports within a graph.

#. Run the graph.

   This is a blocking operation which makes each sink component consume
   some messages in a round robin fashion until there are no more.

.. code-block:: python

    import bt2
    import sys

    # Create an empty graph.
    graph = bt2.Graph()

    # Add a `source.text.dmesg` component.
    #
    # graph.add_component() returns the created and added component.
    #
    # Such a component reads Linux kernel ring buffer messages (see
    # `dmesg(1)`) from the standard input and creates corresponding event
    # messages. See `babeltrace2-source.text.dmesg(7)`.
    #
    # `my source` is the unique name of this component within `graph`.
    comp_cls = bt2.find_plugin('text').source_component_classes['dmesg']
    src_comp = graph.add_component(comp_cls, 'my source')

    # Add a `sink.text.pretty` component.
    #
    # Such a component pretty-prints event messages on the standard output
    # (one message per line). See `babeltrace2-sink.text.pretty(7)`.
    #
    # The `babeltrace2 convert` CLI command uses a `sink.text.pretty`
    # sink component by default.
    comp_cls = bt2.find_plugin('text').sink_component_classes['pretty']
    sink_comp = graph.add_component(comp_cls, 'my sink')

    # Connect the `out` output port of the `source.text.dmesg` component
    # to the `in` input port of the `sink.text.pretty` component.
    graph.connect_ports(src_comp.output_ports['out'],
                        sink_comp.input_ports['in'])

    # Run the trace processing graph.
    graph.run()

Run this example:

.. code-block:: text

   $ dmesg -t | python3 example.py

Output example:

.. code-block:: text

    string: { str = "ata1.00: NCQ Send/Recv Log not supported" }
    string: { str = "ata1.00: ACPI cmd ef/02:00:00:00:00:a0 (SET FEATURES) succeeded" }
    string: { str = "ata1.00: ACPI cmd f5/00:00:00:00:00:a0 (SECURITY FREEZE LOCK) filtered out" }
    string: { str = "ata1.00: ACPI cmd ef/10:03:00:00:00:a0 (SET FEATURES) filtered out" }
    string: { str = "ata1.00: NCQ Send/Recv Log not supported" }
    string: { str = "ata1.00: configured for UDMA/133" }
    string: { str = "ata1.00: Enabling discard_zeroes_data" }
    string: { str = "OOM killer enabled." }
    string: { str = "Restarting tasks ... done." }
    string: { str = "PM: suspend exit" }

Query a component class
-----------------------
Component classes, provided by plugins, can implement a method to
support *query operations*.

A query operation is similar to a function call: the caller makes a
request (a query) with parameters and the component class's query
method returns a result object.

The query operation feature exists so that you can benefit from a
component class's implementation to get information about a trace, a
stream, a distant server, and so on. For example, the
``source.ctf.lttng-live`` component class (see
:bt2man:`babeltrace2-source.ctf.lttng-live(7)`) offers the ``sessions``
object to list the available
`LTTng live <https://lttng.org/docs/#doc-lttng-live>`_ tracing
session names and other properties.

The semantics of the query parameters and the returned object are
completely defined by the component class implementation: the library
and its Python bindings don't enforce or suggest any layout.
The best way to know which objects you can query from a component class,
what are the expected and optional parameters, and what the returned
object contains is to read this component class's documentation.

The following example queries the "standard" ``babeltrace.support-info``
query object (see
:bt2man:`babeltrace2-query-babeltrace.support-info(7)`) from the
``source.ctf.fs`` component class
(see :bt2man:`babeltrace2-source.ctf.fs(7)`) and
pretty-prints the result. The ``babeltrace.support-info`` query object
indicates whether or not a given path locates a
:abbr:`CTF (Common Trace Format)` trace directory::

    import bt2
    import sys

    # Get the `source.ctf.fs` component class from the `ctf` plugin.
    comp_cls = bt2.find_plugin('ctf').source_component_classes['fs']

    # The `babeltrace.support-info` query operation expects a `type`
    # parameter (set to `directory` here) and an `input` parameter (the
    # actual path or string to check, in this case the first command-line
    # argument).
    #
    # See `babeltrace2-query-babeltrace.support-info(7)`.
    params = {
        'type': 'directory',
        'input': sys.argv[1],
    }

    # Create a query executor.
    #
    # This is the environment in which query operations happens. The
    # queried component class has access to this executor, for example to
    # retrieve the query operation's logging level.
    query_exec = bt2.QueryExecutor(comp_cls, 'babeltrace.support-info',
                                   params)

    # Query the component class through the query executor.
    #
    # This method returns the result.
    result = query_exec.query()

    # Print the result.
    print(result)

As you can see, no trace processing graph is involved (like in
:ref:`examples_tcmi` and :ref:`examples_graph`): a query operation
is *not* a sequential trace processing task, but a simple, atomic
procedure call.

Run this example:

.. code-block:: text

   $ python3 example.py /path/to/ctf/trace

Output example:

.. code-block:: text

    {'group': '21c63a42-40bc-4c08-9761-3815ae01f43d', 'weight': 0.75}

This result indicates that the component class is 75 |~| % confident that
:file:`/path/to/ctf/trace` is a CTF trace directory path. It also shows
that this specific CTF trace belongs to the
``21c63a42-40bc-4c08-9761-3815ae01f43d`` group; a single component can
handle multiple traces which belong to the same group.

Let's try the sample example with a path that doesn't locate a CTF
trace:

.. code-block:: text

   $ python3 example.py /etc

Output:

.. code-block:: text

    {'weight': 0.0}

As expected, the zero weight indicates that ``/etc`` isn't a CTF trace
directory path.