1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
|
/*
* backward.hpp
* Copyright 2013 Google Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef H_6B9572DA_A64B_49E6_B234_051480991C89
#define H_6B9572DA_A64B_49E6_B234_051480991C89
#ifndef __cplusplus
#error "It's not going to compile without a C++ compiler..."
#endif
#if defined(BACKWARD_CXX11)
#elif defined(BACKWARD_CXX98)
#else
#if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800)
#define BACKWARD_CXX11
#define BACKWARD_ATLEAST_CXX11
#define BACKWARD_ATLEAST_CXX98
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define BACKWARD_ATLEAST_CXX17
#endif
#else
#define BACKWARD_CXX98
#define BACKWARD_ATLEAST_CXX98
#endif
#endif
// You can define one of the following (or leave it to the auto-detection):
//
// #define BACKWARD_SYSTEM_LINUX
// - specialization for linux
//
// #define BACKWARD_SYSTEM_DARWIN
// - specialization for Mac OS X 10.5 and later.
//
// #define BACKWARD_SYSTEM_WINDOWS
// - specialization for Windows (Clang 9 and MSVC2017)
//
// #define BACKWARD_SYSTEM_UNKNOWN
// - placebo implementation, does nothing.
//
#if defined(BACKWARD_SYSTEM_LINUX)
#elif defined(BACKWARD_SYSTEM_DARWIN)
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
#elif defined(BACKWARD_SYSTEM_WINDOWS)
#else
#if defined(__linux) || defined(__linux__)
#define BACKWARD_SYSTEM_LINUX
#elif defined(__APPLE__)
#define BACKWARD_SYSTEM_DARWIN
#elif defined(_WIN32)
#define BACKWARD_SYSTEM_WINDOWS
#else
#define BACKWARD_SYSTEM_UNKNOWN
#endif
#endif
#define NOINLINE __attribute__((noinline))
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <new>
#include <sstream>
#include <streambuf>
#include <string>
#include <vector>
#include <exception>
#include <iterator>
#if defined(BACKWARD_SYSTEM_LINUX)
// On linux, backtrace can back-trace or "walk" the stack using the following
// libraries:
//
// #define BACKWARD_HAS_UNWIND 1
// - unwind comes from libgcc, but I saw an equivalent inside clang itself.
// - with unwind, the stacktrace is as accurate as it can possibly be, since
// this is used by the C++ runtine in gcc/clang for stack unwinding on
// exception.
// - normally libgcc is already linked to your program by default.
//
// #define BACKWARD_HAS_LIBUNWIND 1
// - libunwind provides, in some cases, a more accurate stacktrace as it knows
// to decode signal handler frames and lets us edit the context registers when
// unwinding, allowing stack traces over bad function references.
//
// #define BACKWARD_HAS_BACKTRACE == 1
// - backtrace seems to be a little bit more portable than libunwind, but on
// linux, it uses unwind anyway, but abstract away a tiny information that is
// sadly really important in order to get perfectly accurate stack traces.
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_UNWIND == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_UNWIND == 1
#elif BACKWARD_HAS_LIBUNWIND == 1
#elif BACKWARD_HAS_BACKTRACE == 1
#else
#undef BACKWARD_HAS_UNWIND
#define BACKWARD_HAS_UNWIND 1
#undef BACKWARD_HAS_LIBUNWIND
#define BACKWARD_HAS_LIBUNWIND 0
#undef BACKWARD_HAS_BACKTRACE
#define BACKWARD_HAS_BACKTRACE 0
#endif
// On linux, backward can extract detailed information about a stack trace
// using one of the following libraries:
//
// #define BACKWARD_HAS_DW 1
// - libdw gives you the most juicy details out of your stack traces:
// - object filename
// - function name
// - source filename
// - line and column numbers
// - source code snippet (assuming the file is accessible)
// - variable names (if not optimized out)
// - variable values (not supported by backward-cpp)
// - You need to link with the lib "dw":
// - apt-get install libdw-dev
// - g++/clang++ -ldw ...
//
// #define BACKWARD_HAS_BFD 1
// - With libbfd, you get a fair amount of details:
// - object filename
// - function name
// - source filename
// - line numbers
// - source code snippet (assuming the file is accessible)
// - You need to link with the lib "bfd":
// - apt-get install binutils-dev
// - g++/clang++ -lbfd ...
//
// #define BACKWARD_HAS_DWARF 1
// - libdwarf gives you the most juicy details out of your stack traces:
// - object filename
// - function name
// - source filename
// - line and column numbers
// - source code snippet (assuming the file is accessible)
// - variable names (if not optimized out)
// - variable values (not supported by backward-cpp)
// - You need to link with the lib "dwarf":
// - apt-get install libdwarf-dev
// - g++/clang++ -ldwarf ...
//
// #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
// - backtrace provides minimal details for a stack trace:
// - object filename
// - function name
// - backtrace is part of the (e)glib library.
//
// The default is:
// #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_DW == 1
#elif BACKWARD_HAS_BFD == 1
#elif BACKWARD_HAS_DWARF == 1
#elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#else
#undef BACKWARD_HAS_DW
#define BACKWARD_HAS_DW 0
#undef BACKWARD_HAS_BFD
#define BACKWARD_HAS_BFD 0
#undef BACKWARD_HAS_DWARF
#define BACKWARD_HAS_DWARF 0
#undef BACKWARD_HAS_BACKTRACE_SYMBOL
#define BACKWARD_HAS_BACKTRACE_SYMBOL 1
#endif
#include <cxxabi.h>
#include <fcntl.h>
#ifdef __ANDROID__
// Old Android API levels define _Unwind_Ptr in both link.h and
// unwind.h Rename the one in link.h as we are not going to be using
// it
#define _Unwind_Ptr _Unwind_Ptr_Custom
#include <link.h>
#undef _Unwind_Ptr
#else
#include <link.h>
#endif
#include <signal.h>
#include <sys/stat.h>
#include <syscall.h>
#include <unistd.h>
#if BACKWARD_HAS_BFD == 1
// NOTE: defining PACKAGE{,_VERSION} is required before including
// bfd.h on some platforms, see also:
// https://sourceware.org/bugzilla/show_bug.cgi?id=14243
#ifndef PACKAGE
#define PACKAGE
#endif
#ifndef PACKAGE_VERSION
#define PACKAGE_VERSION
#endif
#include <bfd.h>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <dlfcn.h>
#undef _GNU_SOURCE
#else
#include <dlfcn.h>
#endif
#endif
#if BACKWARD_HAS_DW == 1
#include <dwarf.h>
#include <elfutils/libdw.h>
#include <elfutils/libdwfl.h>
#endif
#if BACKWARD_HAS_DWARF == 1
#include <algorithm>
#include <dwarf.h>
#include <libdwarf.h>
#include <libelf.h>
#include <map>
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <dlfcn.h>
#undef _GNU_SOURCE
#else
#include <dlfcn.h>
#endif
#endif
#if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
// then we shall rely on backtrace
#include <execinfo.h>
#endif
#endif // defined(BACKWARD_SYSTEM_LINUX)
#if defined(BACKWARD_SYSTEM_DARWIN)
// On Darwin, backtrace can back-trace or "walk" the stack using the following
// libraries:
//
// #define BACKWARD_HAS_UNWIND 1
// - unwind comes from libgcc, but I saw an equivalent inside clang itself.
// - with unwind, the stacktrace is as accurate as it can possibly be, since
// this is used by the C++ runtine in gcc/clang for stack unwinding on
// exception.
// - normally libgcc is already linked to your program by default.
//
// #define BACKWARD_HAS_LIBUNWIND 1
// - libunwind comes from clang, which implements an API compatible version.
// - libunwind provides, in some cases, a more accurate stacktrace as it knows
// to decode signal handler frames and lets us edit the context registers when
// unwinding, allowing stack traces over bad function references.
//
// #define BACKWARD_HAS_BACKTRACE == 1
// - backtrace is available by default, though it does not produce as much
// information as another library might.
//
// The default is:
// #define BACKWARD_HAS_UNWIND == 1
//
// Note that only one of the define should be set to 1 at a time.
//
#if BACKWARD_HAS_UNWIND == 1
#elif BACKWARD_HAS_BACKTRACE == 1
#elif BACKWARD_HAS_LIBUNWIND == 1
#else
#undef BACKWARD_HAS_UNWIND
#define BACKWARD_HAS_UNWIND 1
#undef BACKWARD_HAS_BACKTRACE
#define BACKWARD_HAS_BACKTRACE 0
#undef BACKWARD_HAS_LIBUNWIND
#define BACKWARD_HAS_LIBUNWIND 0
#endif
// On Darwin, backward can extract detailed information about a stack trace
// using one of the following libraries:
//
// #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
// - backtrace provides minimal details for a stack trace:
// - object filename
// - function name
//
// The default is:
// #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
//
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#else
#undef BACKWARD_HAS_BACKTRACE_SYMBOL
#define BACKWARD_HAS_BACKTRACE_SYMBOL 1
#endif
#include <cxxabi.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <sys/stat.h>
#include <unistd.h>
#if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
#include <execinfo.h>
#endif
#endif // defined(BACKWARD_SYSTEM_DARWIN)
#if defined(BACKWARD_SYSTEM_WINDOWS)
#include <condition_variable>
#include <mutex>
#include <thread>
#include <basetsd.h>
typedef SSIZE_T ssize_t;
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <winnt.h>
#include <psapi.h>
#include <signal.h>
#ifndef __clang__
#undef NOINLINE
#define NOINLINE __declspec(noinline)
#endif
#ifdef _MSC_VER
#pragma comment(lib, "psapi.lib")
#pragma comment(lib, "dbghelp.lib")
#endif
// Comment / packing is from stackoverflow:
// https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
// Some versions of imagehlp.dll lack the proper packing directives themselves
// so we need to do it.
#pragma pack(push, before_imagehlp, 8)
#include <imagehlp.h>
#pragma pack(pop, before_imagehlp)
// TODO maybe these should be undefined somewhere else?
#undef BACKWARD_HAS_UNWIND
#undef BACKWARD_HAS_BACKTRACE
#if BACKWARD_HAS_PDB_SYMBOL == 1
#else
#undef BACKWARD_HAS_PDB_SYMBOL
#define BACKWARD_HAS_PDB_SYMBOL 1
#endif
#endif
#if BACKWARD_HAS_UNWIND == 1
#include <unwind.h>
// while gcc's unwind.h defines something like that:
// extern _Unwind_Ptr _Unwind_GetIP (struct _Unwind_Context *);
// extern _Unwind_Ptr _Unwind_GetIPInfo (struct _Unwind_Context *, int *);
//
// clang's unwind.h defines something like this:
// uintptr_t _Unwind_GetIP(struct _Unwind_Context* __context);
//
// Even if the _Unwind_GetIPInfo can be linked to, it is not declared, worse we
// cannot just redeclare it because clang's unwind.h doesn't define _Unwind_Ptr
// anyway.
//
// Luckily we can play on the fact that the guard macros have a different name:
#ifdef __CLANG_UNWIND_H
// In fact, this function still comes from libgcc (on my different linux boxes,
// clang links against libgcc).
#include <inttypes.h>
extern "C" uintptr_t _Unwind_GetIPInfo(_Unwind_Context *, int *);
#endif
#endif // BACKWARD_HAS_UNWIND == 1
#if BACKWARD_HAS_LIBUNWIND == 1
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#endif // BACKWARD_HAS_LIBUNWIND == 1
#ifdef BACKWARD_ATLEAST_CXX11
#include <unordered_map>
#include <utility> // for std::swap
namespace backward {
namespace details {
template <typename K, typename V> struct hashtable {
typedef std::unordered_map<K, V> type;
};
using std::move;
} // namespace details
} // namespace backward
#else // NOT BACKWARD_ATLEAST_CXX11
#define nullptr NULL
#define override
#include <map>
namespace backward {
namespace details {
template <typename K, typename V> struct hashtable {
typedef std::map<K, V> type;
};
template <typename T> const T &move(const T &v) { return v; }
template <typename T> T &move(T &v) { return v; }
} // namespace details
} // namespace backward
#endif // BACKWARD_ATLEAST_CXX11
namespace backward {
namespace details {
#if defined(BACKWARD_SYSTEM_WINDOWS)
const char kBackwardPathDelimiter[] = ";";
#else
const char kBackwardPathDelimiter[] = ":";
#endif
} // namespace details
} // namespace backward
namespace backward {
namespace system_tag {
struct linux_tag; // seems that I cannot call that "linux" because the name
// is already defined... so I am adding _tag everywhere.
struct darwin_tag;
struct windows_tag;
struct unknown_tag;
#if defined(BACKWARD_SYSTEM_LINUX)
typedef linux_tag current_tag;
#elif defined(BACKWARD_SYSTEM_DARWIN)
typedef darwin_tag current_tag;
#elif defined(BACKWARD_SYSTEM_WINDOWS)
typedef windows_tag current_tag;
#elif defined(BACKWARD_SYSTEM_UNKNOWN)
typedef unknown_tag current_tag;
#else
#error "May I please get my system defines?"
#endif
} // namespace system_tag
namespace trace_resolver_tag {
#if defined(BACKWARD_SYSTEM_LINUX)
struct libdw;
struct libbfd;
struct libdwarf;
struct backtrace_symbol;
#if BACKWARD_HAS_DW == 1
typedef libdw current;
#elif BACKWARD_HAS_BFD == 1
typedef libbfd current;
#elif BACKWARD_HAS_DWARF == 1
typedef libdwarf current;
#elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
typedef backtrace_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#elif defined(BACKWARD_SYSTEM_DARWIN)
struct backtrace_symbol;
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
typedef backtrace_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#elif defined(BACKWARD_SYSTEM_WINDOWS)
struct pdb_symbol;
#if BACKWARD_HAS_PDB_SYMBOL == 1
typedef pdb_symbol current;
#else
#error "You shall not pass, until you know what you want."
#endif
#endif
} // namespace trace_resolver_tag
namespace details {
template <typename T> struct rm_ptr { typedef T type; };
template <typename T> struct rm_ptr<T *> { typedef T type; };
template <typename T> struct rm_ptr<const T *> { typedef const T type; };
template <typename R, typename T, R (*F)(T)> struct deleter {
template <typename U> void operator()(U &ptr) const { (*F)(ptr); }
};
template <typename T> struct default_delete {
void operator()(T &ptr) const { delete ptr; }
};
template <typename T, typename Deleter = deleter<void, void *, &::free>>
class handle {
struct dummy;
T _val;
bool _empty;
#ifdef BACKWARD_ATLEAST_CXX11
handle(const handle &) = delete;
handle &operator=(const handle &) = delete;
#endif
public:
~handle() {
if (!_empty) {
Deleter()(_val);
}
}
explicit handle() : _val(), _empty(true) {}
explicit handle(T val) : _val(val), _empty(false) {
if (!_val)
_empty = true;
}
#ifdef BACKWARD_ATLEAST_CXX11
handle(handle &&from) : _empty(true) { swap(from); }
handle &operator=(handle &&from) {
swap(from);
return *this;
}
#else
explicit handle(const handle &from) : _empty(true) {
// some sort of poor man's move semantic.
swap(const_cast<handle &>(from));
}
handle &operator=(const handle &from) {
// some sort of poor man's move semantic.
swap(const_cast<handle &>(from));
return *this;
}
#endif
void reset(T new_val) {
handle tmp(new_val);
swap(tmp);
}
void update(T new_val) {
_val = new_val;
_empty = !static_cast<bool>(new_val);
}
operator const dummy *() const {
if (_empty) {
return nullptr;
}
return reinterpret_cast<const dummy *>(_val);
}
T get() { return _val; }
T release() {
_empty = true;
return _val;
}
void swap(handle &b) {
using std::swap;
swap(b._val, _val); // can throw, we are safe here.
swap(b._empty, _empty); // should not throw: if you cannot swap two
// bools without throwing... It's a lost cause anyway!
}
T &operator->() { return _val; }
const T &operator->() const { return _val; }
typedef typename rm_ptr<T>::type &ref_t;
typedef const typename rm_ptr<T>::type &const_ref_t;
ref_t operator*() { return *_val; }
const_ref_t operator*() const { return *_val; }
ref_t operator[](size_t idx) { return _val[idx]; }
// Watch out, we've got a badass over here
T *operator&() {
_empty = false;
return &_val;
}
};
// Default demangler implementation (do nothing).
template <typename TAG> struct demangler_impl {
static std::string demangle(const char *funcname) { return funcname; }
};
#if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
template <> struct demangler_impl<system_tag::current_tag> {
demangler_impl() : _demangle_buffer_length(0) {}
std::string demangle(const char *funcname) {
using namespace details;
char *result = abi::__cxa_demangle(funcname, _demangle_buffer.get(),
&_demangle_buffer_length, nullptr);
if (result) {
_demangle_buffer.update(result);
return result;
}
return funcname;
}
private:
details::handle<char *> _demangle_buffer;
size_t _demangle_buffer_length;
};
#endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
struct demangler : public demangler_impl<system_tag::current_tag> {};
// Split a string on the platform's PATH delimiter. Example: if delimiter
// is ":" then:
// "" --> []
// ":" --> ["",""]
// "::" --> ["","",""]
// "/a/b/c" --> ["/a/b/c"]
// "/a/b/c:/d/e/f" --> ["/a/b/c","/d/e/f"]
// etc.
inline std::vector<std::string> split_source_prefixes(const std::string &s) {
std::vector<std::string> out;
size_t last = 0;
size_t next = 0;
size_t delimiter_size = sizeof(kBackwardPathDelimiter) - 1;
while ((next = s.find(kBackwardPathDelimiter, last)) != std::string::npos) {
out.push_back(s.substr(last, next - last));
last = next + delimiter_size;
}
if (last <= s.length()) {
out.push_back(s.substr(last));
}
return out;
}
} // namespace details
/*************** A TRACE ***************/
struct Trace {
void *addr;
size_t idx;
Trace() : addr(nullptr), idx(0) {}
explicit Trace(void *_addr, size_t _idx) : addr(_addr), idx(_idx) {}
};
struct ResolvedTrace : public Trace {
struct SourceLoc {
std::string function;
std::string filename;
unsigned line;
unsigned col;
SourceLoc() : line(0), col(0) {}
bool operator==(const SourceLoc &b) const {
return function == b.function && filename == b.filename &&
line == b.line && col == b.col;
}
bool operator!=(const SourceLoc &b) const { return !(*this == b); }
};
// In which binary object this trace is located.
std::string object_filename;
// The function in the object that contain the trace. This is not the same
// as source.function which can be an function inlined in object_function.
std::string object_function;
// The source location of this trace. It is possible for filename to be
// empty and for line/col to be invalid (value 0) if this information
// couldn't be deduced, for example if there is no debug information in the
// binary object.
SourceLoc source;
// An optionals list of "inliners". All the successive sources location
// from where the source location of the trace (the attribute right above)
// is inlined. It is especially useful when you compiled with optimization.
typedef std::vector<SourceLoc> source_locs_t;
source_locs_t inliners;
ResolvedTrace() : Trace() {}
ResolvedTrace(const Trace &mini_trace) : Trace(mini_trace) {}
};
/*************** STACK TRACE ***************/
// default implemention.
template <typename TAG> class StackTraceImpl {
public:
size_t size() const { return 0; }
Trace operator[](size_t) const { return Trace(); }
size_t load_here(size_t = 0) { return 0; }
size_t load_from(void *, size_t = 0, void * = nullptr, void * = nullptr) {
return 0;
}
size_t thread_id() const { return 0; }
void skip_n_firsts(size_t) {}
};
class StackTraceImplBase {
public:
StackTraceImplBase()
: _thread_id(0), _skip(0), _context(nullptr), _error_addr(nullptr) {}
size_t thread_id() const { return _thread_id; }
void skip_n_firsts(size_t n) { _skip = n; }
protected:
void load_thread_info() {
#ifdef BACKWARD_SYSTEM_LINUX
#ifndef __ANDROID__
_thread_id = static_cast<size_t>(syscall(SYS_gettid));
#else
_thread_id = static_cast<size_t>(gettid());
#endif
if (_thread_id == static_cast<size_t>(getpid())) {
// If the thread is the main one, let's hide that.
// I like to keep little secret sometimes.
_thread_id = 0;
}
#elif defined(BACKWARD_SYSTEM_DARWIN)
_thread_id = reinterpret_cast<size_t>(pthread_self());
if (pthread_main_np() == 1) {
// If the thread is the main one, let's hide that.
_thread_id = 0;
}
#endif
}
void set_context(void *context) { _context = context; }
void *context() const { return _context; }
void set_error_addr(void *error_addr) { _error_addr = error_addr; }
void *error_addr() const { return _error_addr; }
size_t skip_n_firsts() const { return _skip; }
private:
size_t _thread_id;
size_t _skip;
void *_context;
void *_error_addr;
};
class StackTraceImplHolder : public StackTraceImplBase {
public:
size_t size() const {
return (_stacktrace.size() >= skip_n_firsts())
? _stacktrace.size() - skip_n_firsts()
: 0;
}
Trace operator[](size_t idx) const {
if (idx >= size()) {
return Trace();
}
return Trace(_stacktrace[idx + skip_n_firsts()], idx);
}
void *const *begin() const {
if (size()) {
return &_stacktrace[skip_n_firsts()];
}
return nullptr;
}
protected:
std::vector<void *> _stacktrace;
};
#if BACKWARD_HAS_UNWIND == 1
namespace details {
template <typename F> class Unwinder {
public:
size_t operator()(F &f, size_t depth) {
_f = &f;
_index = -1;
_depth = depth;
_Unwind_Backtrace(&this->backtrace_trampoline, this);
return static_cast<size_t>(_index);
}
private:
F *_f;
ssize_t _index;
size_t _depth;
static _Unwind_Reason_Code backtrace_trampoline(_Unwind_Context *ctx,
void *self) {
return (static_cast<Unwinder *>(self))->backtrace(ctx);
}
_Unwind_Reason_Code backtrace(_Unwind_Context *ctx) {
if (_index >= 0 && static_cast<size_t>(_index) >= _depth)
return _URC_END_OF_STACK;
int ip_before_instruction = 0;
uintptr_t ip = _Unwind_GetIPInfo(ctx, &ip_before_instruction);
if (!ip_before_instruction) {
// calculating 0-1 for unsigned, looks like a possible bug to sanitiziers,
// so let's do it explicitly:
if (ip == 0) {
ip = std::numeric_limits<uintptr_t>::max(); // set it to 0xffff... (as
// from casting 0-1)
} else {
ip -= 1; // else just normally decrement it (no overflow/underflow will
// happen)
}
}
if (_index >= 0) { // ignore first frame.
(*_f)(static_cast<size_t>(_index), reinterpret_cast<void *>(ip));
}
_index += 1;
return _URC_NO_REASON;
}
};
template <typename F> size_t unwind(F f, size_t depth) {
Unwinder<F> unwinder;
return unwinder(f, depth);
}
} // namespace details
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_thread_info();
set_context(context);
set_error_addr(error_addr);
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth);
size_t trace_cnt = details::unwind(callback(*this), depth);
_stacktrace.resize(trace_cnt);
skip_n_firsts(0);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
private:
struct callback {
StackTraceImpl &self;
callback(StackTraceImpl &_self) : self(_self) {}
void operator()(size_t idx, void *addr) { self._stacktrace[idx] = addr; }
};
};
#elif BACKWARD_HAS_LIBUNWIND == 1
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
__attribute__((noinline)) size_t load_here(size_t depth = 32,
void *_context = nullptr,
void *_error_addr = nullptr) {
set_context(_context);
set_error_addr(_error_addr);
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth + 1);
int result = 0;
unw_context_t ctx;
size_t index = 0;
// Add the tail call. If the Instruction Pointer is the crash address it
// means we got a bad function pointer dereference, so we "unwind" the
// bad pointer manually by using the return address pointed to by the
// Stack Pointer as the Instruction Pointer and letting libunwind do
// the rest
if (context()) {
ucontext_t *uctx = reinterpret_cast<ucontext_t *>(context());
#ifdef REG_RIP // x86_64
if (uctx->uc_mcontext.gregs[REG_RIP] ==
reinterpret_cast<greg_t>(error_addr())) {
uctx->uc_mcontext.gregs[REG_RIP] =
*reinterpret_cast<size_t *>(uctx->uc_mcontext.gregs[REG_RSP]);
}
_stacktrace[index] =
reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_RIP]);
++index;
ctx = *reinterpret_cast<unw_context_t *>(uctx);
#elif defined(REG_EIP) // x86_32
if (uctx->uc_mcontext.gregs[REG_EIP] ==
reinterpret_cast<greg_t>(error_addr())) {
uctx->uc_mcontext.gregs[REG_EIP] =
*reinterpret_cast<size_t *>(uctx->uc_mcontext.gregs[REG_ESP]);
}
_stacktrace[index] =
reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_EIP]);
++index;
ctx = *reinterpret_cast<unw_context_t *>(uctx);
#elif defined(__arm__)
// libunwind uses its own context type for ARM unwinding.
// Copy the registers from the signal handler's context so we can
// unwind
unw_getcontext(&ctx);
ctx.regs[UNW_ARM_R0] = uctx->uc_mcontext.arm_r0;
ctx.regs[UNW_ARM_R1] = uctx->uc_mcontext.arm_r1;
ctx.regs[UNW_ARM_R2] = uctx->uc_mcontext.arm_r2;
ctx.regs[UNW_ARM_R3] = uctx->uc_mcontext.arm_r3;
ctx.regs[UNW_ARM_R4] = uctx->uc_mcontext.arm_r4;
ctx.regs[UNW_ARM_R5] = uctx->uc_mcontext.arm_r5;
ctx.regs[UNW_ARM_R6] = uctx->uc_mcontext.arm_r6;
ctx.regs[UNW_ARM_R7] = uctx->uc_mcontext.arm_r7;
ctx.regs[UNW_ARM_R8] = uctx->uc_mcontext.arm_r8;
ctx.regs[UNW_ARM_R9] = uctx->uc_mcontext.arm_r9;
ctx.regs[UNW_ARM_R10] = uctx->uc_mcontext.arm_r10;
ctx.regs[UNW_ARM_R11] = uctx->uc_mcontext.arm_fp;
ctx.regs[UNW_ARM_R12] = uctx->uc_mcontext.arm_ip;
ctx.regs[UNW_ARM_R13] = uctx->uc_mcontext.arm_sp;
ctx.regs[UNW_ARM_R14] = uctx->uc_mcontext.arm_lr;
ctx.regs[UNW_ARM_R15] = uctx->uc_mcontext.arm_pc;
// If we have crashed in the PC use the LR instead, as this was
// a bad function dereference
if (reinterpret_cast<unsigned long>(error_addr()) ==
uctx->uc_mcontext.arm_pc) {
ctx.regs[UNW_ARM_R15] =
uctx->uc_mcontext.arm_lr - sizeof(unsigned long);
}
_stacktrace[index] = reinterpret_cast<void *>(ctx.regs[UNW_ARM_R15]);
++index;
#elif defined(__APPLE__) && defined(__x86_64__)
unw_getcontext(&ctx);
// OS X's implementation of libunwind uses its own context object
// so we need to convert the passed context to libunwind's format
// (information about the data layout taken from unw_getcontext.s
// in Apple's libunwind source
ctx.data[0] = uctx->uc_mcontext->__ss.__rax;
ctx.data[1] = uctx->uc_mcontext->__ss.__rbx;
ctx.data[2] = uctx->uc_mcontext->__ss.__rcx;
ctx.data[3] = uctx->uc_mcontext->__ss.__rdx;
ctx.data[4] = uctx->uc_mcontext->__ss.__rdi;
ctx.data[5] = uctx->uc_mcontext->__ss.__rsi;
ctx.data[6] = uctx->uc_mcontext->__ss.__rbp;
ctx.data[7] = uctx->uc_mcontext->__ss.__rsp;
ctx.data[8] = uctx->uc_mcontext->__ss.__r8;
ctx.data[9] = uctx->uc_mcontext->__ss.__r9;
ctx.data[10] = uctx->uc_mcontext->__ss.__r10;
ctx.data[11] = uctx->uc_mcontext->__ss.__r11;
ctx.data[12] = uctx->uc_mcontext->__ss.__r12;
ctx.data[13] = uctx->uc_mcontext->__ss.__r13;
ctx.data[14] = uctx->uc_mcontext->__ss.__r14;
ctx.data[15] = uctx->uc_mcontext->__ss.__r15;
ctx.data[16] = uctx->uc_mcontext->__ss.__rip;
// If the IP is the same as the crash address we have a bad function
// dereference The caller's address is pointed to by %rsp, so we
// dereference that value and set it to be the next frame's IP.
if (uctx->uc_mcontext->__ss.__rip ==
reinterpret_cast<__uint64_t>(error_addr())) {
ctx.data[16] =
*reinterpret_cast<__uint64_t *>(uctx->uc_mcontext->__ss.__rsp);
}
_stacktrace[index] = reinterpret_cast<void *>(ctx.data[16]);
++index;
#elif defined(__APPLE__)
unw_getcontext(&ctx)
// TODO: Convert the ucontext_t to libunwind's unw_context_t like
// we do in 64 bits
if (ctx.uc_mcontext->__ss.__eip ==
reinterpret_cast<greg_t>(error_addr())) {
ctx.uc_mcontext->__ss.__eip = ctx.uc_mcontext->__ss.__esp;
}
_stacktrace[index] =
reinterpret_cast<void *>(ctx.uc_mcontext->__ss.__eip);
++index;
#endif
}
unw_cursor_t cursor;
if (context()) {
#if defined(UNW_INIT_SIGNAL_FRAME)
result = unw_init_local2(&cursor, &ctx, UNW_INIT_SIGNAL_FRAME);
#else
result = unw_init_local(&cursor, &ctx);
#endif
} else {
unw_getcontext(&ctx);
;
result = unw_init_local(&cursor, &ctx);
}
if (result != 0)
return 1;
unw_word_t ip = 0;
while (index <= depth && unw_step(&cursor) > 0) {
result = unw_get_reg(&cursor, UNW_REG_IP, &ip);
if (result == 0) {
_stacktrace[index] = reinterpret_cast<void *>(--ip);
++index;
}
}
--index;
_stacktrace.resize(index + 1);
skip_n_firsts(0);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
_stacktrace[i] = (void *)((uintptr_t)_stacktrace[i]);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
};
#elif defined(BACKWARD_HAS_BACKTRACE)
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
set_context(context);
set_error_addr(error_addr);
load_thread_info();
if (depth == 0) {
return 0;
}
_stacktrace.resize(depth + 1);
size_t trace_cnt = backtrace(&_stacktrace[0], _stacktrace.size());
_stacktrace.resize(trace_cnt);
skip_n_firsts(1);
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
_stacktrace[i] = (void *)((uintptr_t)_stacktrace[i] + 1);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
};
#elif defined(BACKWARD_SYSTEM_WINDOWS)
template <>
class StackTraceImpl<system_tag::current_tag> : public StackTraceImplHolder {
public:
// We have to load the machine type from the image info
// So we first initialize the resolver, and it tells us this info
void set_machine_type(DWORD machine_type) { machine_type_ = machine_type; }
void set_context(CONTEXT *ctx) { ctx_ = ctx; }
void set_thread_handle(HANDLE handle) { thd_ = handle; }
NOINLINE
size_t load_here(size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
set_context(static_cast<CONTEXT*>(context));
set_error_addr(error_addr);
CONTEXT localCtx; // used when no context is provided
if (depth == 0) {
return 0;
}
if (!ctx_) {
ctx_ = &localCtx;
RtlCaptureContext(ctx_);
}
if (!thd_) {
thd_ = GetCurrentThread();
}
HANDLE process = GetCurrentProcess();
STACKFRAME64 s;
memset(&s, 0, sizeof(STACKFRAME64));
// TODO: 32 bit context capture
s.AddrStack.Mode = AddrModeFlat;
s.AddrFrame.Mode = AddrModeFlat;
s.AddrPC.Mode = AddrModeFlat;
#ifdef _M_X64
s.AddrPC.Offset = ctx_->Rip;
s.AddrStack.Offset = ctx_->Rsp;
s.AddrFrame.Offset = ctx_->Rbp;
#else
s.AddrPC.Offset = ctx_->Eip;
s.AddrStack.Offset = ctx_->Esp;
s.AddrFrame.Offset = ctx_->Ebp;
#endif
if (!machine_type_) {
#ifdef _M_X64
machine_type_ = IMAGE_FILE_MACHINE_AMD64;
#else
machine_type_ = IMAGE_FILE_MACHINE_I386;
#endif
}
for (;;) {
// NOTE: this only works if PDBs are already loaded!
SetLastError(0);
if (!StackWalk64(machine_type_, process, thd_, &s, ctx_, NULL,
SymFunctionTableAccess64, SymGetModuleBase64, NULL))
break;
if (s.AddrReturn.Offset == 0)
break;
_stacktrace.push_back(reinterpret_cast<void *>(s.AddrPC.Offset));
if (size() >= depth)
break;
}
return size();
}
size_t load_from(void *addr, size_t depth = 32, void *context = nullptr,
void *error_addr = nullptr) {
load_here(depth + 8, context, error_addr);
for (size_t i = 0; i < _stacktrace.size(); ++i) {
if (_stacktrace[i] == addr) {
skip_n_firsts(i);
break;
}
}
_stacktrace.resize(std::min(_stacktrace.size(), skip_n_firsts() + depth));
return size();
}
private:
DWORD machine_type_ = 0;
HANDLE thd_ = 0;
CONTEXT *ctx_ = nullptr;
};
#endif
class StackTrace : public StackTraceImpl<system_tag::current_tag> {};
/*************** TRACE RESOLVER ***************/
class TraceResolverImplBase {
public:
virtual ~TraceResolverImplBase() {}
virtual void load_addresses(void *const*addresses, int address_count) {
(void)addresses;
(void)address_count;
}
template <class ST> void load_stacktrace(ST &st) {
load_addresses(st.begin(), (int)st.size());
}
virtual ResolvedTrace resolve(ResolvedTrace t) { return t; }
protected:
std::string demangle(const char *funcname) {
return _demangler.demangle(funcname);
}
private:
details::demangler _demangler;
};
template <typename TAG> class TraceResolverImpl;
#ifdef BACKWARD_SYSTEM_UNKNOWN
template <> class TraceResolverImpl<system_tag::unknown_tag>
: public TraceResolverImplBase {};
#endif
#ifdef BACKWARD_SYSTEM_LINUX
class TraceResolverLinuxBase : public TraceResolverImplBase {
public:
TraceResolverLinuxBase()
: argv0_(get_argv0()), exec_path_(read_symlink("/proc/self/exe")) {}
std::string resolve_exec_path(Dl_info &symbol_info) const {
// mutates symbol_info.dli_fname to be filename to open and returns filename
// to display
if (symbol_info.dli_fname == argv0_) {
// dladdr returns argv[0] in dli_fname for symbols contained in
// the main executable, which is not a valid path if the
// executable was found by a search of the PATH environment
// variable; In that case, we actually open /proc/self/exe, which
// is always the actual executable (even if it was deleted/replaced!)
// but display the path that /proc/self/exe links to.
// However, this right away reduces probability of successful symbol
// resolution, because libbfd may try to find *.debug files in the
// same dir, in case symbols are stripped. As a result, it may try
// to find a file /proc/self/<exe_name>.debug, which obviously does
// not exist. /proc/self/exe is a last resort. First load attempt
// should go for the original executable file path.
symbol_info.dli_fname = "/proc/self/exe";
return exec_path_;
} else {
return symbol_info.dli_fname;
}
}
private:
std::string argv0_;
std::string exec_path_;
static std::string get_argv0() {
std::string argv0;
std::ifstream ifs("/proc/self/cmdline");
std::getline(ifs, argv0, '\0');
return argv0;
}
static std::string read_symlink(std::string const &symlink_path) {
std::string path;
path.resize(100);
while (true) {
ssize_t len =
::readlink(symlink_path.c_str(), &*path.begin(), path.size());
if (len < 0) {
return "";
}
if (static_cast<size_t>(len) == path.size()) {
path.resize(path.size() * 2);
} else {
path.resize(static_cast<std::string::size_type>(len));
break;
}
}
return path;
}
};
template <typename STACKTRACE_TAG> class TraceResolverLinuxImpl;
#if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::backtrace_symbol>
: public TraceResolverLinuxBase {
public:
void load_addresses(void *const*addresses, int address_count) override {
if (address_count == 0) {
return;
}
_symbols.reset(backtrace_symbols(addresses, address_count));
}
ResolvedTrace resolve(ResolvedTrace trace) override {
char *filename = _symbols[trace.idx];
char *funcname = filename;
while (*funcname && *funcname != '(') {
funcname += 1;
}
trace.object_filename.assign(filename,
funcname); // ok even if funcname is the ending
// \0 (then we assign entire string)
if (*funcname) { // if it's not end of string (e.g. from last frame ip==0)
funcname += 1;
char *funcname_end = funcname;
while (*funcname_end && *funcname_end != ')' && *funcname_end != '+') {
funcname_end += 1;
}
*funcname_end = '\0';
trace.object_function = this->demangle(funcname);
trace.source.function = trace.object_function; // we cannot do better.
}
return trace;
}
private:
details::handle<char **> _symbols;
};
#endif // BACKWARD_HAS_BACKTRACE_SYMBOL == 1
#if BACKWARD_HAS_BFD == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libbfd>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _bfd_loaded(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
Dl_info symbol_info;
// trace.addr is a virtual address in memory pointing to some code.
// Let's try to find from which loaded object it comes from.
// The loaded object can be yourself btw.
if (!dladdr(trace.addr, &symbol_info)) {
return trace; // dat broken trace...
}
// Now we get in symbol_info:
// .dli_fname:
// pathname of the shared object that contains the address.
// .dli_fbase:
// where the object is loaded in memory.
// .dli_sname:
// the name of the nearest symbol to trace.addr, we expect a
// function name.
// .dli_saddr:
// the exact address corresponding to .dli_sname.
if (symbol_info.dli_sname) {
trace.object_function = demangle(symbol_info.dli_sname);
}
if (!symbol_info.dli_fname) {
return trace;
}
trace.object_filename = resolve_exec_path(symbol_info);
bfd_fileobject *fobj;
// Before rushing to resolution need to ensure the executable
// file still can be used. For that compare inode numbers of
// what is stored by the executable's file path, and in the
// dli_fname, which not necessarily equals to the executable.
// It can be a shared library, or /proc/self/exe, and in the
// latter case has drawbacks. See the exec path resolution for
// details. In short - the dli object should be used only as
// the last resort.
// If inode numbers are equal, it is known dli_fname and the
// executable file are the same. This is guaranteed by Linux,
// because if the executable file is changed/deleted, it will
// be done in a new inode. The old file will be preserved in
// /proc/self/exe, and may even have inode 0. The latter can
// happen if the inode was actually reused, and the file was
// kept only in the main memory.
//
struct stat obj_stat;
struct stat dli_stat;
if (stat(trace.object_filename.c_str(), &obj_stat) == 0 &&
stat(symbol_info.dli_fname, &dli_stat) == 0 &&
obj_stat.st_ino == dli_stat.st_ino) {
// The executable file, and the shared object containing the
// address are the same file. Safe to use the original path.
// this is preferable. Libbfd will search for stripped debug
// symbols in the same directory.
fobj = load_object_with_bfd(trace.object_filename);
} else{
// The original object file was *deleted*! The only hope is
// that the debug symbols are either inside the shared
// object file, or are in the same directory, and this is
// not /proc/self/exe.
fobj = nullptr;
}
if (fobj == nullptr || !fobj->handle) {
fobj = load_object_with_bfd(symbol_info.dli_fname);
if (!fobj->handle) {
return trace;
}
}
find_sym_result *details_selected; // to be filled.
// trace.addr is the next instruction to be executed after returning
// from the nested stack frame. In C++ this usually relate to the next
// statement right after the function call that leaded to a new stack
// frame. This is not usually what you want to see when printing out a
// stacktrace...
find_sym_result details_call_site =
find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
details_selected = &details_call_site;
#if BACKWARD_HAS_UNWIND == 0
// ...this is why we also try to resolve the symbol that is right
// before the return address. If we are lucky enough, we will get the
// line of the function that was called. But if the code is optimized,
// we might get something absolutely not related since the compiler
// can reschedule the return address with inline functions and
// tail-call optimisation (among other things that I don't even know
// or cannot even dream about with my tiny limited brain).
find_sym_result details_adjusted_call_site = find_symbol_details(
fobj, (void *)(uintptr_t(trace.addr) - 1), symbol_info.dli_fbase);
// In debug mode, we should always get the right thing(TM).
if (details_call_site.found && details_adjusted_call_site.found) {
// Ok, we assume that details_adjusted_call_site is a better estimation.
details_selected = &details_adjusted_call_site;
trace.addr = (void *)(uintptr_t(trace.addr) - 1);
}
if (details_selected == &details_call_site && details_call_site.found) {
// we have to re-resolve the symbol in order to reset some
// internal state in BFD... so we can call backtrace_inliners
// thereafter...
details_call_site =
find_symbol_details(fobj, trace.addr, symbol_info.dli_fbase);
}
#endif // BACKWARD_HAS_UNWIND
if (details_selected->found) {
if (details_selected->filename) {
trace.source.filename = details_selected->filename;
}
trace.source.line = details_selected->line;
if (details_selected->funcname) {
// this time we get the name of the function where the code is
// located, instead of the function were the address is
// located. In short, if the code was inlined, we get the
// function correspoding to the code. Else we already got in
// trace.function.
trace.source.function = demangle(details_selected->funcname);
if (!symbol_info.dli_sname) {
// for the case dladdr failed to find the symbol name of
// the function, we might as well try to put something
// here.
trace.object_function = trace.source.function;
}
}
// Maybe the source of the trace got inlined inside the function
// (trace.source.function). Let's see if we can get all the inlined
// calls along the way up to the initial call site.
trace.inliners = backtrace_inliners(fobj, *details_selected);
#if 0
if (trace.inliners.size() == 0) {
// Maybe the trace was not inlined... or maybe it was and we
// are lacking the debug information. Let's try to make the
// world better and see if we can get the line number of the
// function (trace.source.function) now.
//
// We will get the location of where the function start (to be
// exact: the first instruction that really start the
// function), not where the name of the function is defined.
// This can be quite far away from the name of the function
// btw.
//
// If the source of the function is the same as the source of
// the trace, we cannot say if the trace was really inlined or
// not. However, if the filename of the source is different
// between the function and the trace... we can declare it as
// an inliner. This is not 100% accurate, but better than
// nothing.
if (symbol_info.dli_saddr) {
find_sym_result details = find_symbol_details(fobj,
symbol_info.dli_saddr,
symbol_info.dli_fbase);
if (details.found) {
ResolvedTrace::SourceLoc diy_inliner;
diy_inliner.line = details.line;
if (details.filename) {
diy_inliner.filename = details.filename;
}
if (details.funcname) {
diy_inliner.function = demangle(details.funcname);
} else {
diy_inliner.function = trace.source.function;
}
if (diy_inliner != trace.source) {
trace.inliners.push_back(diy_inliner);
}
}
}
}
#endif
}
return trace;
}
private:
bool _bfd_loaded;
typedef details::handle<bfd *,
details::deleter<bfd_boolean, bfd *, &bfd_close>>
bfd_handle_t;
typedef details::handle<asymbol **> bfd_symtab_t;
struct bfd_fileobject {
bfd_handle_t handle;
bfd_vma base_addr;
bfd_symtab_t symtab;
bfd_symtab_t dynamic_symtab;
};
typedef details::hashtable<std::string, bfd_fileobject>::type fobj_bfd_map_t;
fobj_bfd_map_t _fobj_bfd_map;
bfd_fileobject *load_object_with_bfd(const std::string &filename_object) {
using namespace details;
if (!_bfd_loaded) {
using namespace details;
bfd_init();
_bfd_loaded = true;
}
fobj_bfd_map_t::iterator it = _fobj_bfd_map.find(filename_object);
if (it != _fobj_bfd_map.end()) {
return &it->second;
}
// this new object is empty for now.
bfd_fileobject *r = &_fobj_bfd_map[filename_object];
// we do the work temporary in this one;
bfd_handle_t bfd_handle;
int fd = open(filename_object.c_str(), O_RDONLY);
bfd_handle.reset(bfd_fdopenr(filename_object.c_str(), "default", fd));
if (!bfd_handle) {
close(fd);
return r;
}
if (!bfd_check_format(bfd_handle.get(), bfd_object)) {
return r; // not an object? You lose.
}
if ((bfd_get_file_flags(bfd_handle.get()) & HAS_SYMS) == 0) {
return r; // that's what happen when you forget to compile in debug.
}
ssize_t symtab_storage_size = bfd_get_symtab_upper_bound(bfd_handle.get());
ssize_t dyn_symtab_storage_size =
bfd_get_dynamic_symtab_upper_bound(bfd_handle.get());
if (symtab_storage_size <= 0 && dyn_symtab_storage_size <= 0) {
return r; // weird, is the file is corrupted?
}
bfd_symtab_t symtab, dynamic_symtab;
ssize_t symcount = 0, dyn_symcount = 0;
if (symtab_storage_size > 0) {
symtab.reset(static_cast<bfd_symbol **>(
malloc(static_cast<size_t>(symtab_storage_size))));
symcount = bfd_canonicalize_symtab(bfd_handle.get(), symtab.get());
}
if (dyn_symtab_storage_size > 0) {
dynamic_symtab.reset(static_cast<bfd_symbol **>(
malloc(static_cast<size_t>(dyn_symtab_storage_size))));
dyn_symcount = bfd_canonicalize_dynamic_symtab(bfd_handle.get(),
dynamic_symtab.get());
}
if (symcount <= 0 && dyn_symcount <= 0) {
return r; // damned, that's a stripped file that you got there!
}
r->handle = move(bfd_handle);
r->symtab = move(symtab);
r->dynamic_symtab = move(dynamic_symtab);
return r;
}
struct find_sym_result {
bool found;
const char *filename;
const char *funcname;
unsigned int line;
};
struct find_sym_context {
TraceResolverLinuxImpl *self;
bfd_fileobject *fobj;
void *addr;
void *base_addr;
find_sym_result result;
};
find_sym_result find_symbol_details(bfd_fileobject *fobj, void *addr,
void *base_addr) {
find_sym_context context;
context.self = this;
context.fobj = fobj;
context.addr = addr;
context.base_addr = base_addr;
context.result.found = false;
bfd_map_over_sections(fobj->handle.get(), &find_in_section_trampoline,
static_cast<void *>(&context));
return context.result;
}
static void find_in_section_trampoline(bfd *, asection *section, void *data) {
find_sym_context *context = static_cast<find_sym_context *>(data);
context->self->find_in_section(
reinterpret_cast<bfd_vma>(context->addr),
reinterpret_cast<bfd_vma>(context->base_addr), context->fobj, section,
context->result);
}
void find_in_section(bfd_vma addr, bfd_vma base_addr, bfd_fileobject *fobj,
asection *section, find_sym_result &result) {
if (result.found)
return;
#ifdef bfd_get_section_flags
if ((bfd_get_section_flags(fobj->handle.get(), section) & SEC_ALLOC) == 0)
#else
if ((bfd_section_flags(section) & SEC_ALLOC) == 0)
#endif
return; // a debug section is never loaded automatically.
#ifdef bfd_get_section_vma
bfd_vma sec_addr = bfd_get_section_vma(fobj->handle.get(), section);
#else
bfd_vma sec_addr = bfd_section_vma(section);
#endif
#ifdef bfd_get_section_size
bfd_size_type size = bfd_get_section_size(section);
#else
bfd_size_type size = bfd_section_size(section);
#endif
// are we in the boundaries of the section?
if (addr < sec_addr || addr >= sec_addr + size) {
addr -= base_addr; // oups, a relocated object, lets try again...
if (addr < sec_addr || addr >= sec_addr + size) {
return;
}
}
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
if (!result.found && fobj->symtab) {
result.found = bfd_find_nearest_line(
fobj->handle.get(), section, fobj->symtab.get(), addr - sec_addr,
&result.filename, &result.funcname, &result.line);
}
if (!result.found && fobj->dynamic_symtab) {
result.found = bfd_find_nearest_line(
fobj->handle.get(), section, fobj->dynamic_symtab.get(),
addr - sec_addr, &result.filename, &result.funcname, &result.line);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
}
ResolvedTrace::source_locs_t
backtrace_inliners(bfd_fileobject *fobj, find_sym_result previous_result) {
// This function can be called ONLY after a SUCCESSFUL call to
// find_symbol_details. The state is global to the bfd_handle.
ResolvedTrace::source_locs_t results;
while (previous_result.found) {
find_sym_result result;
result.found = bfd_find_inliner_info(fobj->handle.get(), &result.filename,
&result.funcname, &result.line);
if (result
.found) /* and not (
cstrings_eq(previous_result.filename,
result.filename) and
cstrings_eq(previous_result.funcname, result.funcname)
and result.line == previous_result.line
)) */
{
ResolvedTrace::SourceLoc src_loc;
src_loc.line = result.line;
if (result.filename) {
src_loc.filename = result.filename;
}
if (result.funcname) {
src_loc.function = demangle(result.funcname);
}
results.push_back(src_loc);
}
previous_result = result;
}
return results;
}
bool cstrings_eq(const char *a, const char *b) {
if (!a || !b) {
return false;
}
return strcmp(a, b) == 0;
}
};
#endif // BACKWARD_HAS_BFD == 1
#if BACKWARD_HAS_DW == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libdw>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _dwfl_handle_initialized(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
using namespace details;
Dwarf_Addr trace_addr = (Dwarf_Addr)trace.addr;
if (!_dwfl_handle_initialized) {
// initialize dwfl...
_dwfl_cb.reset(new Dwfl_Callbacks);
_dwfl_cb->find_elf = &dwfl_linux_proc_find_elf;
_dwfl_cb->find_debuginfo = &dwfl_standard_find_debuginfo;
_dwfl_cb->debuginfo_path = 0;
_dwfl_handle.reset(dwfl_begin(_dwfl_cb.get()));
_dwfl_handle_initialized = true;
if (!_dwfl_handle) {
return trace;
}
// ...from the current process.
dwfl_report_begin(_dwfl_handle.get());
int r = dwfl_linux_proc_report(_dwfl_handle.get(), getpid());
dwfl_report_end(_dwfl_handle.get(), NULL, NULL);
if (r < 0) {
return trace;
}
}
if (!_dwfl_handle) {
return trace;
}
// find the module (binary object) that contains the trace's address.
// This is not using any debug information, but the addresses ranges of
// all the currently loaded binary object.
Dwfl_Module *mod = dwfl_addrmodule(_dwfl_handle.get(), trace_addr);
if (mod) {
// now that we found it, lets get the name of it, this will be the
// full path to the running binary or one of the loaded library.
const char *module_name = dwfl_module_info(mod, 0, 0, 0, 0, 0, 0, 0);
if (module_name) {
trace.object_filename = module_name;
}
// We also look after the name of the symbol, equal or before this
// address. This is found by walking the symtab. We should get the
// symbol corresponding to the function (mangled) containing the
// address. If the code corresponding to the address was inlined,
// this is the name of the out-most inliner function.
const char *sym_name = dwfl_module_addrname(mod, trace_addr);
if (sym_name) {
trace.object_function = demangle(sym_name);
}
}
// now let's get serious, and find out the source location (file and
// line number) of the address.
// This function will look in .debug_aranges for the address and map it
// to the location of the compilation unit DIE in .debug_info and
// return it.
Dwarf_Addr mod_bias = 0;
Dwarf_Die *cudie = dwfl_module_addrdie(mod, trace_addr, &mod_bias);
#if 1
if (!cudie) {
// Sadly clang does not generate the section .debug_aranges, thus
// dwfl_module_addrdie will fail early. Clang doesn't either set
// the lowpc/highpc/range info for every compilation unit.
//
// So in order to save the world:
// for every compilation unit, we will iterate over every single
// DIEs. Normally functions should have a lowpc/highpc/range, which
// we will use to infer the compilation unit.
// note that this is probably badly inefficient.
while ((cudie = dwfl_module_nextcu(mod, cudie, &mod_bias))) {
Dwarf_Die die_mem;
Dwarf_Die *fundie =
find_fundie_by_pc(cudie, trace_addr - mod_bias, &die_mem);
if (fundie) {
break;
}
}
}
#endif
//#define BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
#ifdef BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
if (!cudie) {
// If it's still not enough, lets dive deeper in the shit, and try
// to save the world again: for every compilation unit, we will
// load the corresponding .debug_line section, and see if we can
// find our address in it.
Dwarf_Addr cfi_bias;
Dwarf_CFI *cfi_cache = dwfl_module_eh_cfi(mod, &cfi_bias);
Dwarf_Addr bias;
while ((cudie = dwfl_module_nextcu(mod, cudie, &bias))) {
if (dwarf_getsrc_die(cudie, trace_addr - bias)) {
// ...but if we get a match, it might be a false positive
// because our (address - bias) might as well be valid in a
// different compilation unit. So we throw our last card on
// the table and lookup for the address into the .eh_frame
// section.
handle<Dwarf_Frame *> frame;
dwarf_cfi_addrframe(cfi_cache, trace_addr - cfi_bias, &frame);
if (frame) {
break;
}
}
}
}
#endif
if (!cudie) {
return trace; // this time we lost the game :/
}
// Now that we have a compilation unit DIE, this function will be able
// to load the corresponding section in .debug_line (if not already
// loaded) and hopefully find the source location mapped to our
// address.
Dwarf_Line *srcloc = dwarf_getsrc_die(cudie, trace_addr - mod_bias);
if (srcloc) {
const char *srcfile = dwarf_linesrc(srcloc, 0, 0);
if (srcfile) {
trace.source.filename = srcfile;
}
int line = 0, col = 0;
dwarf_lineno(srcloc, &line);
dwarf_linecol(srcloc, &col);
trace.source.line = line;
trace.source.col = col;
}
deep_first_search_by_pc(cudie, trace_addr - mod_bias,
inliners_search_cb(trace));
if (trace.source.function.size() == 0) {
// fallback.
trace.source.function = trace.object_function;
}
return trace;
}
private:
typedef details::handle<Dwfl *, details::deleter<void, Dwfl *, &dwfl_end>>
dwfl_handle_t;
details::handle<Dwfl_Callbacks *, details::default_delete<Dwfl_Callbacks *>>
_dwfl_cb;
dwfl_handle_t _dwfl_handle;
bool _dwfl_handle_initialized;
// defined here because in C++98, template function cannot take locally
// defined types... grrr.
struct inliners_search_cb {
void operator()(Dwarf_Die *die) {
switch (dwarf_tag(die)) {
const char *name;
case DW_TAG_subprogram:
if ((name = dwarf_diename(die))) {
trace.source.function = name;
}
break;
case DW_TAG_inlined_subroutine:
ResolvedTrace::SourceLoc sloc;
Dwarf_Attribute attr_mem;
if ((name = dwarf_diename(die))) {
sloc.function = name;
}
if ((name = die_call_file(die))) {
sloc.filename = name;
}
Dwarf_Word line = 0, col = 0;
dwarf_formudata(dwarf_attr(die, DW_AT_call_line, &attr_mem), &line);
dwarf_formudata(dwarf_attr(die, DW_AT_call_column, &attr_mem), &col);
sloc.line = (unsigned)line;
sloc.col = (unsigned)col;
trace.inliners.push_back(sloc);
break;
};
}
ResolvedTrace &trace;
inliners_search_cb(ResolvedTrace &t) : trace(t) {}
};
static bool die_has_pc(Dwarf_Die *die, Dwarf_Addr pc) {
Dwarf_Addr low, high;
// continuous range
if (dwarf_hasattr(die, DW_AT_low_pc) && dwarf_hasattr(die, DW_AT_high_pc)) {
if (dwarf_lowpc(die, &low) != 0) {
return false;
}
if (dwarf_highpc(die, &high) != 0) {
Dwarf_Attribute attr_mem;
Dwarf_Attribute *attr = dwarf_attr(die, DW_AT_high_pc, &attr_mem);
Dwarf_Word value;
if (dwarf_formudata(attr, &value) != 0) {
return false;
}
high = low + value;
}
return pc >= low && pc < high;
}
// non-continuous range.
Dwarf_Addr base;
ptrdiff_t offset = 0;
while ((offset = dwarf_ranges(die, offset, &base, &low, &high)) > 0) {
if (pc >= low && pc < high) {
return true;
}
}
return false;
}
static Dwarf_Die *find_fundie_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
Dwarf_Die *result) {
if (dwarf_child(parent_die, result) != 0) {
return 0;
}
Dwarf_Die *die = result;
do {
switch (dwarf_tag(die)) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
if (die_has_pc(die, pc)) {
return result;
}
};
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
&declaration);
if (!declaration) {
// let's be curious and look deeper in the tree,
// function are not necessarily at the first level, but
// might be nested inside a namespace, structure etc.
Dwarf_Die die_mem;
Dwarf_Die *indie = find_fundie_by_pc(die, pc, &die_mem);
if (indie) {
*result = die_mem;
return result;
}
}
} while (dwarf_siblingof(die, result) == 0);
return 0;
}
template <typename CB>
static bool deep_first_search_by_pc(Dwarf_Die *parent_die, Dwarf_Addr pc,
CB cb) {
Dwarf_Die die_mem;
if (dwarf_child(parent_die, &die_mem) != 0) {
return false;
}
bool branch_has_pc = false;
Dwarf_Die *die = &die_mem;
do {
bool declaration = false;
Dwarf_Attribute attr_mem;
dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem),
&declaration);
if (!declaration) {
// let's be curious and look deeper in the tree, function are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
branch_has_pc = deep_first_search_by_pc(die, pc, cb);
}
if (!branch_has_pc) {
branch_has_pc = die_has_pc(die, pc);
}
if (branch_has_pc) {
cb(die);
}
} while (dwarf_siblingof(die, &die_mem) == 0);
return branch_has_pc;
}
static const char *die_call_file(Dwarf_Die *die) {
Dwarf_Attribute attr_mem;
Dwarf_Word file_idx = 0;
dwarf_formudata(dwarf_attr(die, DW_AT_call_file, &attr_mem), &file_idx);
if (file_idx == 0) {
return 0;
}
Dwarf_Die die_mem;
Dwarf_Die *cudie = dwarf_diecu(die, &die_mem, 0, 0);
if (!cudie) {
return 0;
}
Dwarf_Files *files = 0;
size_t nfiles;
dwarf_getsrcfiles(cudie, &files, &nfiles);
if (!files) {
return 0;
}
return dwarf_filesrc(files, file_idx, 0, 0);
}
};
#endif // BACKWARD_HAS_DW == 1
#if BACKWARD_HAS_DWARF == 1
template <>
class TraceResolverLinuxImpl<trace_resolver_tag::libdwarf>
: public TraceResolverLinuxBase {
public:
TraceResolverLinuxImpl() : _dwarf_loaded(false) {}
ResolvedTrace resolve(ResolvedTrace trace) override {
// trace.addr is a virtual address in memory pointing to some code.
// Let's try to find from which loaded object it comes from.
// The loaded object can be yourself btw.
Dl_info symbol_info;
int dladdr_result = 0;
#if defined(__GLIBC__)
link_map *link_map;
// We request the link map so we can get information about offsets
dladdr_result =
dladdr1(trace.addr, &symbol_info, reinterpret_cast<void **>(&link_map),
RTLD_DL_LINKMAP);
#else
// Android doesn't have dladdr1. Don't use the linker map.
dladdr_result = dladdr(trace.addr, &symbol_info);
#endif
if (!dladdr_result) {
return trace; // dat broken trace...
}
// Now we get in symbol_info:
// .dli_fname:
// pathname of the shared object that contains the address.
// .dli_fbase:
// where the object is loaded in memory.
// .dli_sname:
// the name of the nearest symbol to trace.addr, we expect a
// function name.
// .dli_saddr:
// the exact address corresponding to .dli_sname.
//
// And in link_map:
// .l_addr:
// difference between the address in the ELF file and the address
// in memory
// l_name:
// absolute pathname where the object was found
if (symbol_info.dli_sname) {
trace.object_function = demangle(symbol_info.dli_sname);
}
if (!symbol_info.dli_fname) {
return trace;
}
trace.object_filename = resolve_exec_path(symbol_info);
dwarf_fileobject &fobj = load_object_with_dwarf(symbol_info.dli_fname);
if (!fobj.dwarf_handle) {
return trace; // sad, we couldn't load the object :(
}
#if defined(__GLIBC__)
// Convert the address to a module relative one by looking at
// the module's loading address in the link map
Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr) -
reinterpret_cast<uintptr_t>(link_map->l_addr);
#else
Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr);
#endif
if (trace.object_function.empty()) {
symbol_cache_t::iterator it = fobj.symbol_cache.lower_bound(address);
if (it != fobj.symbol_cache.end()) {
if (it->first != address) {
if (it != fobj.symbol_cache.begin()) {
--it;
}
}
trace.object_function = demangle(it->second.c_str());
}
}
// Get the Compilation Unit DIE for the address
Dwarf_Die die = find_die(fobj, address);
if (!die) {
return trace; // this time we lost the game :/
}
// libdwarf doesn't give us direct access to its objects, it always
// allocates a copy for the caller. We keep that copy alive in a cache
// and we deallocate it later when it's no longer required.
die_cache_entry &die_object = get_die_cache(fobj, die);
if (die_object.isEmpty())
return trace; // We have no line section for this DIE
die_linemap_t::iterator it = die_object.line_section.lower_bound(address);
if (it != die_object.line_section.end()) {
if (it->first != address) {
if (it == die_object.line_section.begin()) {
// If we are on the first item of the line section
// but the address does not match it means that
// the address is below the range of the DIE. Give up.
return trace;
} else {
--it;
}
}
} else {
return trace; // We didn't find the address.
}
// Get the Dwarf_Line that the address points to and call libdwarf
// to get source file, line and column info.
Dwarf_Line line = die_object.line_buffer[it->second];
Dwarf_Error error = DW_DLE_NE;
char *filename;
if (dwarf_linesrc(line, &filename, &error) == DW_DLV_OK) {
trace.source.filename = std::string(filename);
dwarf_dealloc(fobj.dwarf_handle.get(), filename, DW_DLA_STRING);
}
Dwarf_Unsigned number = 0;
if (dwarf_lineno(line, &number, &error) == DW_DLV_OK) {
trace.source.line = number;
} else {
trace.source.line = 0;
}
if (dwarf_lineoff_b(line, &number, &error) == DW_DLV_OK) {
trace.source.col = number;
} else {
trace.source.col = 0;
}
std::vector<std::string> namespace_stack;
deep_first_search_by_pc(fobj, die, address, namespace_stack,
inliners_search_cb(trace, fobj, die));
dwarf_dealloc(fobj.dwarf_handle.get(), die, DW_DLA_DIE);
return trace;
}
public:
static int close_dwarf(Dwarf_Debug dwarf) {
return dwarf_finish(dwarf, NULL);
}
private:
bool _dwarf_loaded;
typedef details::handle<int, details::deleter<int, int, &::close>>
dwarf_file_t;
typedef details::handle<Elf *, details::deleter<int, Elf *, &elf_end>>
dwarf_elf_t;
typedef details::handle<Dwarf_Debug,
details::deleter<int, Dwarf_Debug, &close_dwarf>>
dwarf_handle_t;
typedef std::map<Dwarf_Addr, int> die_linemap_t;
typedef std::map<Dwarf_Off, Dwarf_Off> die_specmap_t;
struct die_cache_entry {
die_specmap_t spec_section;
die_linemap_t line_section;
Dwarf_Line *line_buffer;
Dwarf_Signed line_count;
Dwarf_Line_Context line_context;
inline bool isEmpty() {
return line_buffer == NULL || line_count == 0 || line_context == NULL ||
line_section.empty();
}
die_cache_entry() : line_buffer(0), line_count(0), line_context(0) {}
~die_cache_entry() {
if (line_context) {
dwarf_srclines_dealloc_b(line_context);
}
}
};
typedef std::map<Dwarf_Off, die_cache_entry> die_cache_t;
typedef std::map<uintptr_t, std::string> symbol_cache_t;
struct dwarf_fileobject {
dwarf_file_t file_handle;
dwarf_elf_t elf_handle;
dwarf_handle_t dwarf_handle;
symbol_cache_t symbol_cache;
// Die cache
die_cache_t die_cache;
die_cache_entry *current_cu;
};
typedef details::hashtable<std::string, dwarf_fileobject>::type
fobj_dwarf_map_t;
fobj_dwarf_map_t _fobj_dwarf_map;
static bool cstrings_eq(const char *a, const char *b) {
if (!a || !b) {
return false;
}
return strcmp(a, b) == 0;
}
dwarf_fileobject &load_object_with_dwarf(const std::string &filename_object) {
if (!_dwarf_loaded) {
// Set the ELF library operating version
// If that fails there's nothing we can do
_dwarf_loaded = elf_version(EV_CURRENT) != EV_NONE;
}
fobj_dwarf_map_t::iterator it = _fobj_dwarf_map.find(filename_object);
if (it != _fobj_dwarf_map.end()) {
return it->second;
}
// this new object is empty for now
dwarf_fileobject &r = _fobj_dwarf_map[filename_object];
dwarf_file_t file_handle;
file_handle.reset(open(filename_object.c_str(), O_RDONLY));
if (file_handle.get() < 0) {
return r;
}
// Try to get an ELF handle. We need to read the ELF sections
// because we want to see if there is a .gnu_debuglink section
// that points to a split debug file
dwarf_elf_t elf_handle;
elf_handle.reset(elf_begin(file_handle.get(), ELF_C_READ, NULL));
if (!elf_handle) {
return r;
}
const char *e_ident = elf_getident(elf_handle.get(), 0);
if (!e_ident) {
return r;
}
// Get the number of sections
// We use the new APIs as elf_getshnum is deprecated
size_t shdrnum = 0;
if (elf_getshdrnum(elf_handle.get(), &shdrnum) == -1) {
return r;
}
// Get the index to the string section
size_t shdrstrndx = 0;
if (elf_getshdrstrndx(elf_handle.get(), &shdrstrndx) == -1) {
return r;
}
std::string debuglink;
// Iterate through the ELF sections to try to get a gnu_debuglink
// note and also to cache the symbol table.
// We go the preprocessor way to avoid having to create templated
// classes or using gelf (which might throw a compiler error if 64 bit
// is not supported
#define ELF_GET_DATA(ARCH) \
Elf_Scn *elf_section = 0; \
Elf_Data *elf_data = 0; \
Elf##ARCH##_Shdr *section_header = 0; \
Elf_Scn *symbol_section = 0; \
size_t symbol_count = 0; \
size_t symbol_strings = 0; \
Elf##ARCH##_Sym *symbol = 0; \
const char *section_name = 0; \
\
while ((elf_section = elf_nextscn(elf_handle.get(), elf_section)) != NULL) { \
section_header = elf##ARCH##_getshdr(elf_section); \
if (section_header == NULL) { \
return r; \
} \
\
if ((section_name = elf_strptr(elf_handle.get(), shdrstrndx, \
section_header->sh_name)) == NULL) { \
return r; \
} \
\
if (cstrings_eq(section_name, ".gnu_debuglink")) { \
elf_data = elf_getdata(elf_section, NULL); \
if (elf_data && elf_data->d_size > 0) { \
debuglink = \
std::string(reinterpret_cast<const char *>(elf_data->d_buf)); \
} \
} \
\
switch (section_header->sh_type) { \
case SHT_SYMTAB: \
symbol_section = elf_section; \
symbol_count = section_header->sh_size / section_header->sh_entsize; \
symbol_strings = section_header->sh_link; \
break; \
\
/* We use .dynsyms as a last resort, we prefer .symtab */ \
case SHT_DYNSYM: \
if (!symbol_section) { \
symbol_section = elf_section; \
symbol_count = section_header->sh_size / section_header->sh_entsize; \
symbol_strings = section_header->sh_link; \
} \
break; \
} \
} \
\
if (symbol_section && symbol_count && symbol_strings) { \
elf_data = elf_getdata(symbol_section, NULL); \
symbol = reinterpret_cast<Elf##ARCH##_Sym *>(elf_data->d_buf); \
for (size_t i = 0; i < symbol_count; ++i) { \
int type = ELF##ARCH##_ST_TYPE(symbol->st_info); \
if (type == STT_FUNC && symbol->st_value > 0) { \
r.symbol_cache[symbol->st_value] = std::string( \
elf_strptr(elf_handle.get(), symbol_strings, symbol->st_name)); \
} \
++symbol; \
} \
}
if (e_ident[EI_CLASS] == ELFCLASS32) {
ELF_GET_DATA(32)
} else if (e_ident[EI_CLASS] == ELFCLASS64) {
// libelf might have been built without 64 bit support
#if __LIBELF64
ELF_GET_DATA(64)
#endif
}
if (!debuglink.empty()) {
// We have a debuglink section! Open an elf instance on that
// file instead. If we can't open the file, then return
// the elf handle we had already opened.
dwarf_file_t debuglink_file;
debuglink_file.reset(open(debuglink.c_str(), O_RDONLY));
if (debuglink_file.get() > 0) {
dwarf_elf_t debuglink_elf;
debuglink_elf.reset(elf_begin(debuglink_file.get(), ELF_C_READ, NULL));
// If we have a valid elf handle, return the new elf handle
// and file handle and discard the original ones
if (debuglink_elf) {
elf_handle = move(debuglink_elf);
file_handle = move(debuglink_file);
}
}
}
// Ok, we have a valid ELF handle, let's try to get debug symbols
Dwarf_Debug dwarf_debug;
Dwarf_Error error = DW_DLE_NE;
dwarf_handle_t dwarf_handle;
int dwarf_result = dwarf_elf_init(elf_handle.get(), DW_DLC_READ, NULL, NULL,
&dwarf_debug, &error);
// We don't do any special handling for DW_DLV_NO_ENTRY specially.
// If we get an error, or the file doesn't have debug information
// we just return.
if (dwarf_result != DW_DLV_OK) {
return r;
}
dwarf_handle.reset(dwarf_debug);
r.file_handle = move(file_handle);
r.elf_handle = move(elf_handle);
r.dwarf_handle = move(dwarf_handle);
return r;
}
die_cache_entry &get_die_cache(dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Error error = DW_DLE_NE;
// Get the die offset, we use it as the cache key
Dwarf_Off die_offset;
if (dwarf_dieoffset(die, &die_offset, &error) != DW_DLV_OK) {
die_offset = 0;
}
die_cache_t::iterator it = fobj.die_cache.find(die_offset);
if (it != fobj.die_cache.end()) {
fobj.current_cu = &it->second;
return it->second;
}
die_cache_entry &de = fobj.die_cache[die_offset];
fobj.current_cu = &de;
Dwarf_Addr line_addr;
Dwarf_Small table_count;
// The addresses in the line section are not fully sorted (they might
// be sorted by block of code belonging to the same file), which makes
// it necessary to do so before searching is possible.
//
// As libdwarf allocates a copy of everything, let's get the contents
// of the line section and keep it around. We also create a map of
// program counter to line table indices so we can search by address
// and get the line buffer index.
//
// To make things more difficult, the same address can span more than
// one line, so we need to keep the index pointing to the first line
// by using insert instead of the map's [ operator.
// Get the line context for the DIE
if (dwarf_srclines_b(die, 0, &table_count, &de.line_context, &error) ==
DW_DLV_OK) {
// Get the source lines for this line context, to be deallocated
// later
if (dwarf_srclines_from_linecontext(de.line_context, &de.line_buffer,
&de.line_count,
&error) == DW_DLV_OK) {
// Add all the addresses to our map
for (int i = 0; i < de.line_count; i++) {
if (dwarf_lineaddr(de.line_buffer[i], &line_addr, &error) !=
DW_DLV_OK) {
line_addr = 0;
}
de.line_section.insert(std::pair<Dwarf_Addr, int>(line_addr, i));
}
}
}
// For each CU, cache the function DIEs that contain the
// DW_AT_specification attribute. When building with -g3 the function
// DIEs are separated in declaration and specification, with the
// declaration containing only the name and parameters and the
// specification the low/high pc and other compiler attributes.
//
// We cache those specifications so we don't skip over the declarations,
// because they have no pc, and we can do namespace resolution for
// DWARF function names.
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Die current_die = 0;
if (dwarf_child(die, ¤t_die, &error) == DW_DLV_OK) {
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
if (tag_value == DW_TAG_subprogram ||
tag_value == DW_TAG_inlined_subroutine) {
Dwarf_Bool has_attr = 0;
if (dwarf_hasattr(current_die, DW_AT_specification, &has_attr,
&error) == DW_DLV_OK) {
if (has_attr) {
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_specification, &attr_mem,
&error) == DW_DLV_OK) {
Dwarf_Off spec_offset = 0;
if (dwarf_formref(attr_mem, &spec_offset, &error) ==
DW_DLV_OK) {
Dwarf_Off spec_die_offset;
if (dwarf_dieoffset(current_die, &spec_die_offset, &error) ==
DW_DLV_OK) {
de.spec_section[spec_offset] = spec_die_offset;
}
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
}
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
break;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
}
return de;
}
static Dwarf_Die get_referenced_die(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Half attr, bool global) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Attribute attr_mem;
Dwarf_Die found_die = NULL;
if (dwarf_attr(die, attr, &attr_mem, &error) == DW_DLV_OK) {
Dwarf_Off offset;
int result = 0;
if (global) {
result = dwarf_global_formref(attr_mem, &offset, &error);
} else {
result = dwarf_formref(attr_mem, &offset, &error);
}
if (result == DW_DLV_OK) {
if (dwarf_offdie(dwarf, offset, &found_die, &error) != DW_DLV_OK) {
found_die = NULL;
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
return found_die;
}
static std::string get_referenced_die_name(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Half attr, bool global) {
Dwarf_Error error = DW_DLE_NE;
std::string value;
Dwarf_Die found_die = get_referenced_die(dwarf, die, attr, global);
if (found_die) {
char *name;
if (dwarf_diename(found_die, &name, &error) == DW_DLV_OK) {
if (name) {
value = std::string(name);
}
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
}
dwarf_dealloc(dwarf, found_die, DW_DLA_DIE);
}
return value;
}
// Returns a spec DIE linked to the passed one. The caller should
// deallocate the DIE
static Dwarf_Die get_spec_die(dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Off die_offset;
if (fobj.current_cu &&
dwarf_die_CU_offset(die, &die_offset, &error) == DW_DLV_OK) {
die_specmap_t::iterator it =
fobj.current_cu->spec_section.find(die_offset);
// If we have a DIE that completes the current one, check if
// that one has the pc we are looking for
if (it != fobj.current_cu->spec_section.end()) {
Dwarf_Die spec_die = 0;
if (dwarf_offdie(dwarf, it->second, &spec_die, &error) == DW_DLV_OK) {
return spec_die;
}
}
}
// Maybe we have an abstract origin DIE with the function information?
return get_referenced_die(fobj.dwarf_handle.get(), die,
DW_AT_abstract_origin, true);
}
static bool die_has_pc(dwarf_fileobject &fobj, Dwarf_Die die, Dwarf_Addr pc) {
Dwarf_Addr low_pc = 0, high_pc = 0;
Dwarf_Half high_pc_form = 0;
Dwarf_Form_Class return_class;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
bool has_lowpc = false;
bool has_highpc = false;
bool has_ranges = false;
if (dwarf_lowpc(die, &low_pc, &error) == DW_DLV_OK) {
// If we have a low_pc check if there is a high pc.
// If we don't have a high pc this might mean we have a base
// address for the ranges list or just an address.
has_lowpc = true;
if (dwarf_highpc_b(die, &high_pc, &high_pc_form, &return_class, &error) ==
DW_DLV_OK) {
// We do have a high pc. In DWARF 4+ this is an offset from the
// low pc, but in earlier versions it's an absolute address.
has_highpc = true;
// In DWARF 2/3 this would be a DW_FORM_CLASS_ADDRESS
if (return_class == DW_FORM_CLASS_CONSTANT) {
high_pc = low_pc + high_pc;
}
// We have low and high pc, check if our address
// is in that range
return pc >= low_pc && pc < high_pc;
}
} else {
// Reset the low_pc, in case dwarf_lowpc failing set it to some
// undefined value.
low_pc = 0;
}
// Check if DW_AT_ranges is present and search for the PC in the
// returned ranges list. We always add the low_pc, as it not set it will
// be 0, in case we had a DW_AT_low_pc and DW_AT_ranges pair
bool result = false;
Dwarf_Attribute attr;
if (dwarf_attr(die, DW_AT_ranges, &attr, &error) == DW_DLV_OK) {
Dwarf_Off offset;
if (dwarf_global_formref(attr, &offset, &error) == DW_DLV_OK) {
Dwarf_Ranges *ranges;
Dwarf_Signed ranges_count = 0;
Dwarf_Unsigned byte_count = 0;
if (dwarf_get_ranges_a(dwarf, offset, die, &ranges, &ranges_count,
&byte_count, &error) == DW_DLV_OK) {
has_ranges = ranges_count != 0;
for (int i = 0; i < ranges_count; i++) {
if (ranges[i].dwr_addr1 != 0 &&
pc >= ranges[i].dwr_addr1 + low_pc &&
pc < ranges[i].dwr_addr2 + low_pc) {
result = true;
break;
}
}
dwarf_ranges_dealloc(dwarf, ranges, ranges_count);
}
}
}
// Last attempt. We might have a single address set as low_pc.
if (!result && low_pc != 0 && pc == low_pc) {
result = true;
}
// If we don't have lowpc, highpc and ranges maybe this DIE is a
// declaration that relies on a DW_AT_specification DIE that happens
// later. Use the specification cache we filled when we loaded this CU.
if (!result && (!has_lowpc && !has_highpc && !has_ranges)) {
Dwarf_Die spec_die = get_spec_die(fobj, die);
if (spec_die) {
result = die_has_pc(fobj, spec_die, pc);
dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
}
}
return result;
}
static void get_type(Dwarf_Debug dwarf, Dwarf_Die die, std::string &type) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Die child = 0;
if (dwarf_child(die, &child, &error) == DW_DLV_OK) {
get_type(dwarf, child, type);
}
if (child) {
type.insert(0, "::");
dwarf_dealloc(dwarf, child, DW_DLA_DIE);
}
char *name;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
type.insert(0, std::string(name));
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
type.insert(0, "<unknown>");
}
}
static std::string get_type_by_signature(Dwarf_Debug dwarf, Dwarf_Die die) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Sig8 signature;
Dwarf_Bool has_attr = 0;
if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) == DW_DLV_OK) {
if (has_attr) {
Dwarf_Attribute attr_mem;
if (dwarf_attr(die, DW_AT_signature, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formsig8(attr_mem, &signature, &error) != DW_DLV_OK) {
return std::string("<no type signature>");
}
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
}
Dwarf_Unsigned next_cu_header;
Dwarf_Sig8 tu_signature;
std::string result;
bool found = false;
while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, &tu_signature, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (strncmp(signature.signature, tu_signature.signature, 8) == 0) {
Dwarf_Die type_cu_die = 0;
if (dwarf_siblingof_b(dwarf, 0, 0, &type_cu_die, &error) == DW_DLV_OK) {
Dwarf_Die child_die = 0;
if (dwarf_child(type_cu_die, &child_die, &error) == DW_DLV_OK) {
get_type(dwarf, child_die, result);
found = !result.empty();
dwarf_dealloc(dwarf, child_die, DW_DLA_DIE);
}
dwarf_dealloc(dwarf, type_cu_die, DW_DLA_DIE);
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Unfortunately, libdwarf's
// next_cu_header API keeps its own iterator per Dwarf_Debug
// that can't be reset. We need to keep fetching elements until
// the end.
}
} else {
// If we couldn't resolve the type just print out the signature
std::ostringstream string_stream;
string_stream << "<0x" << std::hex << std::setfill('0');
for (int i = 0; i < 8; ++i) {
string_stream << std::setw(2) << std::hex
<< (int)(unsigned char)(signature.signature[i]);
}
string_stream << ">";
result = string_stream.str();
}
return result;
}
struct type_context_t {
bool is_const;
bool is_typedef;
bool has_type;
bool has_name;
std::string text;
type_context_t()
: is_const(false), is_typedef(false), has_type(false), has_name(false) {
}
};
// Types are resolved from right to left: we get the variable name first
// and then all specifiers (like const or pointer) in a chain of DW_AT_type
// DIEs. Call this function recursively until we get a complete type
// string.
static void set_parameter_string(dwarf_fileobject &fobj, Dwarf_Die die,
type_context_t &context) {
char *name;
Dwarf_Error error = DW_DLE_NE;
// typedefs contain also the base type, so we skip it and only
// print the typedef name
if (!context.is_typedef) {
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
if (!context.text.empty()) {
context.text.insert(0, " ");
}
context.text.insert(0, std::string(name));
dwarf_dealloc(fobj.dwarf_handle.get(), name, DW_DLA_STRING);
}
} else {
context.is_typedef = false;
context.has_type = true;
if (context.is_const) {
context.text.insert(0, "const ");
context.is_const = false;
}
}
bool next_type_is_const = false;
bool is_keyword = true;
Dwarf_Half tag = 0;
Dwarf_Bool has_attr = 0;
if (dwarf_tag(die, &tag, &error) == DW_DLV_OK) {
switch (tag) {
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
case DW_TAG_enumeration_type:
context.has_type = true;
if (dwarf_hasattr(die, DW_AT_signature, &has_attr, &error) ==
DW_DLV_OK) {
// If we have a signature it means the type is defined
// in .debug_types, so we need to load the DIE pointed
// at by the signature and resolve it
if (has_attr) {
std::string type =
get_type_by_signature(fobj.dwarf_handle.get(), die);
if (context.is_const)
type.insert(0, "const ");
if (!context.text.empty())
context.text.insert(0, " ");
context.text.insert(0, type);
}
// Treat enums like typedefs, and skip printing its
// base type
context.is_typedef = (tag == DW_TAG_enumeration_type);
}
break;
case DW_TAG_const_type:
next_type_is_const = true;
break;
case DW_TAG_pointer_type:
context.text.insert(0, "*");
break;
case DW_TAG_reference_type:
context.text.insert(0, "&");
break;
case DW_TAG_restrict_type:
context.text.insert(0, "restrict ");
break;
case DW_TAG_rvalue_reference_type:
context.text.insert(0, "&&");
break;
case DW_TAG_volatile_type:
context.text.insert(0, "volatile ");
break;
case DW_TAG_typedef:
// Propagate the const-ness to the next type
// as typedefs are linked to its base type
next_type_is_const = context.is_const;
context.is_typedef = true;
context.has_type = true;
break;
case DW_TAG_base_type:
context.has_type = true;
break;
case DW_TAG_formal_parameter:
context.has_name = true;
break;
default:
is_keyword = false;
break;
}
}
if (!is_keyword && context.is_const) {
context.text.insert(0, "const ");
}
context.is_const = next_type_is_const;
Dwarf_Die ref =
get_referenced_die(fobj.dwarf_handle.get(), die, DW_AT_type, true);
if (ref) {
set_parameter_string(fobj, ref, context);
dwarf_dealloc(fobj.dwarf_handle.get(), ref, DW_DLA_DIE);
}
if (!context.has_type && context.has_name) {
context.text.insert(0, "void ");
context.has_type = true;
}
}
// Resolve the function return type and parameters
static void set_function_parameters(std::string &function_name,
std::vector<std::string> &ns,
dwarf_fileobject &fobj, Dwarf_Die die) {
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Die current_die = 0;
std::string parameters;
bool has_spec = true;
// Check if we have a spec DIE. If we do we use it as it contains
// more information, like parameter names.
Dwarf_Die spec_die = get_spec_die(fobj, die);
if (!spec_die) {
has_spec = false;
spec_die = die;
}
std::vector<std::string>::const_iterator it = ns.begin();
std::string ns_name;
for (it = ns.begin(); it < ns.end(); ++it) {
ns_name.append(*it).append("::");
}
if (!ns_name.empty()) {
function_name.insert(0, ns_name);
}
// See if we have a function return type. It can be either on the
// current die or in its spec one (usually true for inlined functions)
std::string return_type =
get_referenced_die_name(dwarf, die, DW_AT_type, true);
if (return_type.empty()) {
return_type = get_referenced_die_name(dwarf, spec_die, DW_AT_type, true);
}
if (!return_type.empty()) {
return_type.append(" ");
function_name.insert(0, return_type);
}
if (dwarf_child(spec_die, ¤t_die, &error) == DW_DLV_OK) {
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
if (tag_value == DW_TAG_formal_parameter) {
// Ignore artificial (ie, compiler generated) parameters
bool is_artificial = false;
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_artificial, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
is_artificial = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!is_artificial) {
type_context_t context;
set_parameter_string(fobj, current_die, context);
if (parameters.empty()) {
parameters.append("(");
} else {
parameters.append(", ");
}
parameters.append(context.text);
}
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
break;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
}
if (parameters.empty())
parameters = "(";
parameters.append(")");
// If we got a spec DIE we need to deallocate it
if (has_spec)
dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
function_name.append(parameters);
}
// defined here because in C++98, template function cannot take locally
// defined types... grrr.
struct inliners_search_cb {
void operator()(Dwarf_Die die, std::vector<std::string> &ns) {
Dwarf_Error error = DW_DLE_NE;
Dwarf_Half tag_value;
Dwarf_Attribute attr_mem;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
dwarf_tag(die, &tag_value, &error);
switch (tag_value) {
char *name;
case DW_TAG_subprogram:
if (!trace.source.function.empty())
break;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
trace.source.function = std::string(name);
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
// We don't have a function name in this DIE.
// Check if there is a referenced non-defining
// declaration.
trace.source.function =
get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
if (trace.source.function.empty()) {
trace.source.function =
get_referenced_die_name(dwarf, die, DW_AT_specification, true);
}
}
// Append the function parameters, if available
set_function_parameters(trace.source.function, ns, fobj, die);
// If the object function name is empty, it's possible that
// there is no dynamic symbol table (maybe the executable
// was stripped or not built with -rdynamic). See if we have
// a DWARF linkage name to use instead. We try both
// linkage_name and MIPS_linkage_name because the MIPS tag
// was the unofficial one until it was adopted in DWARF4.
// Old gcc versions generate MIPS_linkage_name
if (trace.object_function.empty()) {
details::demangler demangler;
if (dwarf_attr(die, DW_AT_linkage_name, &attr_mem, &error) !=
DW_DLV_OK) {
if (dwarf_attr(die, DW_AT_MIPS_linkage_name, &attr_mem, &error) !=
DW_DLV_OK) {
break;
}
}
char *linkage;
if (dwarf_formstring(attr_mem, &linkage, &error) == DW_DLV_OK) {
trace.object_function = demangler.demangle(linkage);
dwarf_dealloc(dwarf, linkage, DW_DLA_STRING);
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
break;
case DW_TAG_inlined_subroutine:
ResolvedTrace::SourceLoc sloc;
if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
sloc.function = std::string(name);
dwarf_dealloc(dwarf, name, DW_DLA_STRING);
} else {
// We don't have a name for this inlined DIE, it could
// be that there is an abstract origin instead.
// Get the DW_AT_abstract_origin value, which is a
// reference to the source DIE and try to get its name
sloc.function =
get_referenced_die_name(dwarf, die, DW_AT_abstract_origin, true);
}
set_function_parameters(sloc.function, ns, fobj, die);
std::string file = die_call_file(dwarf, die, cu_die);
if (!file.empty())
sloc.filename = file;
Dwarf_Unsigned number = 0;
if (dwarf_attr(die, DW_AT_call_line, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
sloc.line = number;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (dwarf_attr(die, DW_AT_call_column, &attr_mem, &error) ==
DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &number, &error) == DW_DLV_OK) {
sloc.col = number;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
trace.inliners.push_back(sloc);
break;
};
}
ResolvedTrace &trace;
dwarf_fileobject &fobj;
Dwarf_Die cu_die;
inliners_search_cb(ResolvedTrace &t, dwarf_fileobject &f, Dwarf_Die c)
: trace(t), fobj(f), cu_die(c) {}
};
static Dwarf_Die find_fundie_by_pc(dwarf_fileobject &fobj,
Dwarf_Die parent_die, Dwarf_Addr pc,
Dwarf_Die result) {
Dwarf_Die current_die = 0;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
if (dwarf_child(parent_die, ¤t_die, &error) != DW_DLV_OK) {
return NULL;
}
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag_value;
dwarf_tag(current_die, &tag_value, &error);
switch (tag_value) {
case DW_TAG_subprogram:
case DW_TAG_inlined_subroutine:
if (die_has_pc(fobj, current_die, pc)) {
return current_die;
}
};
bool declaration = false;
Dwarf_Attribute attr_mem;
if (dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
declaration = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!declaration) {
// let's be curious and look deeper in the tree, functions are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
Dwarf_Die die_mem = 0;
Dwarf_Die indie = find_fundie_by_pc(fobj, current_die, pc, die_mem);
if (indie) {
result = die_mem;
return result;
}
}
int res = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (res == DW_DLV_ERROR) {
return NULL;
} else if (res == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != parent_die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
current_die = sibling_die;
}
return NULL;
}
template <typename CB>
static bool deep_first_search_by_pc(dwarf_fileobject &fobj,
Dwarf_Die parent_die, Dwarf_Addr pc,
std::vector<std::string> &ns, CB cb) {
Dwarf_Die current_die = 0;
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
if (dwarf_child(parent_die, ¤t_die, &error) != DW_DLV_OK) {
return false;
}
bool branch_has_pc = false;
bool has_namespace = false;
for (;;) {
Dwarf_Die sibling_die = 0;
Dwarf_Half tag;
if (dwarf_tag(current_die, &tag, &error) == DW_DLV_OK) {
if (tag == DW_TAG_namespace || tag == DW_TAG_class_type) {
char *ns_name = NULL;
if (dwarf_diename(current_die, &ns_name, &error) == DW_DLV_OK) {
if (ns_name) {
ns.push_back(std::string(ns_name));
} else {
ns.push_back("<unknown>");
}
dwarf_dealloc(dwarf, ns_name, DW_DLA_STRING);
} else {
ns.push_back("<unknown>");
}
has_namespace = true;
}
}
bool declaration = false;
Dwarf_Attribute attr_mem;
if (tag != DW_TAG_class_type &&
dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error) ==
DW_DLV_OK) {
Dwarf_Bool flag = 0;
if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
declaration = flag != 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
}
if (!declaration) {
// let's be curious and look deeper in the tree, function are
// not necessarily at the first level, but might be nested
// inside a namespace, structure, a function, an inlined
// function etc.
branch_has_pc = deep_first_search_by_pc(fobj, current_die, pc, ns, cb);
}
if (!branch_has_pc) {
branch_has_pc = die_has_pc(fobj, current_die, pc);
}
if (branch_has_pc) {
cb(current_die, ns);
}
int result = dwarf_siblingof(dwarf, current_die, &sibling_die, &error);
if (result == DW_DLV_ERROR) {
return false;
} else if (result == DW_DLV_NO_ENTRY) {
break;
}
if (current_die != parent_die) {
dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
current_die = 0;
}
if (has_namespace) {
has_namespace = false;
ns.pop_back();
}
current_die = sibling_die;
}
if (has_namespace) {
ns.pop_back();
}
return branch_has_pc;
}
static std::string die_call_file(Dwarf_Debug dwarf, Dwarf_Die die,
Dwarf_Die cu_die) {
Dwarf_Attribute attr_mem;
Dwarf_Error error = DW_DLE_NE;
Dwarf_Unsigned file_index;
std::string file;
if (dwarf_attr(die, DW_AT_call_file, &attr_mem, &error) == DW_DLV_OK) {
if (dwarf_formudata(attr_mem, &file_index, &error) != DW_DLV_OK) {
file_index = 0;
}
dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
if (file_index == 0) {
return file;
}
char **srcfiles = 0;
Dwarf_Signed file_count = 0;
if (dwarf_srcfiles(cu_die, &srcfiles, &file_count, &error) == DW_DLV_OK) {
if (file_count > 0 && file_index <= static_cast<Dwarf_Unsigned>(file_count)) {
file = std::string(srcfiles[file_index - 1]);
}
// Deallocate all strings!
for (int i = 0; i < file_count; ++i) {
dwarf_dealloc(dwarf, srcfiles[i], DW_DLA_STRING);
}
dwarf_dealloc(dwarf, srcfiles, DW_DLA_LIST);
}
}
return file;
}
Dwarf_Die find_die(dwarf_fileobject &fobj, Dwarf_Addr addr) {
// Let's get to work! First see if we have a debug_aranges section so
// we can speed up the search
Dwarf_Debug dwarf = fobj.dwarf_handle.get();
Dwarf_Error error = DW_DLE_NE;
Dwarf_Arange *aranges;
Dwarf_Signed arange_count;
Dwarf_Die returnDie;
bool found = false;
if (dwarf_get_aranges(dwarf, &aranges, &arange_count, &error) !=
DW_DLV_OK) {
aranges = NULL;
}
if (aranges) {
// We have aranges. Get the one where our address is.
Dwarf_Arange arange;
if (dwarf_get_arange(aranges, arange_count, addr, &arange, &error) ==
DW_DLV_OK) {
// We found our address. Get the compilation-unit DIE offset
// represented by the given address range.
Dwarf_Off cu_die_offset;
if (dwarf_get_cu_die_offset(arange, &cu_die_offset, &error) ==
DW_DLV_OK) {
// Get the DIE at the offset returned by the aranges search.
// We set is_info to 1 to specify that the offset is from
// the .debug_info section (and not .debug_types)
int dwarf_result =
dwarf_offdie_b(dwarf, cu_die_offset, 1, &returnDie, &error);
found = dwarf_result == DW_DLV_OK;
}
dwarf_dealloc(dwarf, arange, DW_DLA_ARANGE);
}
}
if (found)
return returnDie; // The caller is responsible for freeing the die
// The search for aranges failed. Try to find our address by scanning
// all compilation units.
Dwarf_Unsigned next_cu_header;
Dwarf_Half tag = 0;
returnDie = 0;
while (!found &&
dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (returnDie)
dwarf_dealloc(dwarf, returnDie, DW_DLA_DIE);
if (dwarf_siblingof(dwarf, 0, &returnDie, &error) == DW_DLV_OK) {
if ((dwarf_tag(returnDie, &tag, &error) == DW_DLV_OK) &&
tag == DW_TAG_compile_unit) {
if (die_has_pc(fobj, returnDie, addr)) {
found = true;
}
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Libdwarf's next_cu_header API
// keeps its own iterator per Dwarf_Debug that can't be reset.
// We need to keep fetching elements until the end.
}
}
if (found)
return returnDie;
// We couldn't find any compilation units with ranges or a high/low pc.
// Try again by looking at all DIEs in all compilation units.
Dwarf_Die cudie;
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
if (dwarf_siblingof(dwarf, 0, &cudie, &error) == DW_DLV_OK) {
Dwarf_Die die_mem = 0;
Dwarf_Die resultDie = find_fundie_by_pc(fobj, cudie, addr, die_mem);
if (resultDie) {
found = true;
break;
}
}
}
if (found) {
while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
&next_cu_header, 0, &error) == DW_DLV_OK) {
// Reset the cu header state. Libdwarf's next_cu_header API
// keeps its own iterator per Dwarf_Debug that can't be reset.
// We need to keep fetching elements until the end.
}
}
if (found)
return cudie;
// We failed.
return NULL;
}
};
#endif // BACKWARD_HAS_DWARF == 1
template <>
class TraceResolverImpl<system_tag::linux_tag>
: public TraceResolverLinuxImpl<trace_resolver_tag::current> {};
#endif // BACKWARD_SYSTEM_LINUX
#ifdef BACKWARD_SYSTEM_DARWIN
template <typename STACKTRACE_TAG> class TraceResolverDarwinImpl;
template <>
class TraceResolverDarwinImpl<trace_resolver_tag::backtrace_symbol>
: public TraceResolverImplBase {
public:
void load_addresses(void *const*addresses, int address_count) override {
if (address_count == 0) {
return;
}
_symbols.reset(backtrace_symbols(addresses, address_count));
}
ResolvedTrace resolve(ResolvedTrace trace) override {
// parse:
// <n> <file> <addr> <mangled-name> + <offset>
char *filename = _symbols[trace.idx];
// skip "<n> "
while (*filename && *filename != ' ')
filename++;
while (*filename == ' ')
filename++;
// find start of <mangled-name> from end (<file> may contain a space)
char *p = filename + strlen(filename) - 1;
// skip to start of " + <offset>"
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
char *funcname_end = p + 1;
// skip to start of "<manged-name>"
while (p > filename && *p != ' ')
p--;
char *funcname = p + 1;
// skip to start of " <addr> "
while (p > filename && *p == ' ')
p--;
while (p > filename && *p != ' ')
p--;
while (p > filename && *p == ' ')
p--;
// skip "<file>", handling the case where it contains a
char *filename_end = p + 1;
if (p == filename) {
// something went wrong, give up
filename_end = filename + strlen(filename);
funcname = filename_end;
}
trace.object_filename.assign(
filename, filename_end); // ok even if filename_end is the ending \0
// (then we assign entire string)
if (*funcname) { // if it's not end of string
*funcname_end = '\0';
trace.object_function = this->demangle(funcname);
trace.object_function += " ";
trace.object_function += (funcname_end + 1);
trace.source.function = trace.object_function; // we cannot do better.
}
return trace;
}
private:
details::handle<char **> _symbols;
};
template <>
class TraceResolverImpl<system_tag::darwin_tag>
: public TraceResolverDarwinImpl<trace_resolver_tag::current> {};
#endif // BACKWARD_SYSTEM_DARWIN
#ifdef BACKWARD_SYSTEM_WINDOWS
// Load all symbol info
// Based on:
// https://stackoverflow.com/questions/6205981/windows-c-stack-trace-from-a-running-app/28276227#28276227
struct module_data {
std::string image_name;
std::string module_name;
void *base_address;
DWORD load_size;
};
class get_mod_info {
HANDLE process;
static const int buffer_length = 4096;
public:
get_mod_info(HANDLE h) : process(h) {}
module_data operator()(HMODULE module) {
module_data ret;
char temp[buffer_length];
MODULEINFO mi;
GetModuleInformation(process, module, &mi, sizeof(mi));
ret.base_address = mi.lpBaseOfDll;
ret.load_size = mi.SizeOfImage;
GetModuleFileNameExA(process, module, temp, sizeof(temp));
ret.image_name = temp;
GetModuleBaseNameA(process, module, temp, sizeof(temp));
ret.module_name = temp;
std::vector<char> img(ret.image_name.begin(), ret.image_name.end());
std::vector<char> mod(ret.module_name.begin(), ret.module_name.end());
SymLoadModule64(process, 0, &img[0], &mod[0], (DWORD64)ret.base_address,
ret.load_size);
return ret;
}
};
template <> class TraceResolverImpl<system_tag::windows_tag>
: public TraceResolverImplBase {
public:
TraceResolverImpl() {
HANDLE process = GetCurrentProcess();
std::vector<module_data> modules;
DWORD cbNeeded;
std::vector<HMODULE> module_handles(1);
SymInitialize(process, NULL, false);
DWORD symOptions = SymGetOptions();
symOptions |= SYMOPT_LOAD_LINES | SYMOPT_UNDNAME;
SymSetOptions(symOptions);
EnumProcessModules(process, &module_handles[0],
module_handles.size() * sizeof(HMODULE), &cbNeeded);
module_handles.resize(cbNeeded / sizeof(HMODULE));
EnumProcessModules(process, &module_handles[0],
module_handles.size() * sizeof(HMODULE), &cbNeeded);
std::transform(module_handles.begin(), module_handles.end(),
std::back_inserter(modules), get_mod_info(process));
void *base = modules[0].base_address;
IMAGE_NT_HEADERS *h = ImageNtHeader(base);
image_type = h->FileHeader.Machine;
}
static const int max_sym_len = 255;
struct symbol_t {
SYMBOL_INFO sym;
char buffer[max_sym_len];
} sym;
DWORD64 displacement;
ResolvedTrace resolve(ResolvedTrace t) override {
HANDLE process = GetCurrentProcess();
char name[256];
memset(&sym, 0, sizeof(sym));
sym.sym.SizeOfStruct = sizeof(SYMBOL_INFO);
sym.sym.MaxNameLen = max_sym_len;
if (!SymFromAddr(process, (ULONG64)t.addr, &displacement, &sym.sym)) {
// TODO: error handling everywhere
char* lpMsgBuf;
DWORD dw = GetLastError();
if (FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, dw, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(char*)&lpMsgBuf, 0, NULL)) {
std::fprintf(stderr, "%s\n", lpMsgBuf);
LocalFree(lpMsgBuf);
}
// abort();
}
UnDecorateSymbolName(sym.sym.Name, (PSTR)name, 256, UNDNAME_COMPLETE);
DWORD offset = 0;
IMAGEHLP_LINE line;
if (SymGetLineFromAddr(process, (ULONG64)t.addr, &offset, &line)) {
t.object_filename = line.FileName;
t.source.filename = line.FileName;
t.source.line = line.LineNumber;
t.source.col = offset;
}
t.source.function = name;
t.object_filename = "";
t.object_function = name;
return t;
}
DWORD machine_type() const { return image_type; }
private:
DWORD image_type;
};
#endif
class TraceResolver : public TraceResolverImpl<system_tag::current_tag> {};
/*************** CODE SNIPPET ***************/
class SourceFile {
public:
typedef std::vector<std::pair<unsigned, std::string>> lines_t;
SourceFile() {}
SourceFile(const std::string &path) {
// 1. If BACKWARD_CXX_SOURCE_PREFIXES is set then assume it contains
// a colon-separated list of path prefixes. Try prepending each
// to the given path until a valid file is found.
const std::vector<std::string> &prefixes = get_paths_from_env_variable();
for (size_t i = 0; i < prefixes.size(); ++i) {
// Double slashes (//) should not be a problem.
std::string new_path = prefixes[i] + '/' + path;
_file.reset(new std::ifstream(new_path.c_str()));
if (is_open())
break;
}
// 2. If no valid file found then fallback to opening the path as-is.
if (!_file || !is_open()) {
_file.reset(new std::ifstream(path.c_str()));
}
}
bool is_open() const { return _file->is_open(); }
lines_t &get_lines(unsigned line_start, unsigned line_count, lines_t &lines) {
using namespace std;
// This function make uses of the dumbest algo ever:
// 1) seek(0)
// 2) read lines one by one and discard until line_start
// 3) read line one by one until line_start + line_count
//
// If you are getting snippets many time from the same file, it is
// somewhat a waste of CPU, feel free to benchmark and propose a
// better solution ;)
_file->clear();
_file->seekg(0);
string line;
unsigned line_idx;
for (line_idx = 1; line_idx < line_start; ++line_idx) {
std::getline(*_file, line);
if (!*_file) {
return lines;
}
}
// think of it like a lambda in C++98 ;)
// but look, I will reuse it two times!
// What a good boy am I.
struct isspace {
bool operator()(char c) { return std::isspace(c); }
};
bool started = false;
for (; line_idx < line_start + line_count; ++line_idx) {
getline(*_file, line);
if (!*_file) {
return lines;
}
if (!started) {
if (std::find_if(line.begin(), line.end(), not_isspace()) == line.end())
continue;
started = true;
}
lines.push_back(make_pair(line_idx, line));
}
lines.erase(
std::find_if(lines.rbegin(), lines.rend(), not_isempty()).base(),
lines.end());
return lines;
}
lines_t get_lines(unsigned line_start, unsigned line_count) {
lines_t lines;
return get_lines(line_start, line_count, lines);
}
// there is no find_if_not in C++98, lets do something crappy to
// workaround.
struct not_isspace {
bool operator()(char c) { return !std::isspace(c); }
};
// and define this one here because C++98 is not happy with local defined
// struct passed to template functions, fuuuu.
struct not_isempty {
bool operator()(const lines_t::value_type &p) {
return !(std::find_if(p.second.begin(), p.second.end(), not_isspace()) ==
p.second.end());
}
};
void swap(SourceFile &b) { _file.swap(b._file); }
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(SourceFile &&from) : _file(nullptr) { swap(from); }
SourceFile &operator=(SourceFile &&from) {
swap(from);
return *this;
}
#else
explicit SourceFile(const SourceFile &from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile &>(from));
}
SourceFile &operator=(const SourceFile &from) {
// some sort of poor man's move semantic.
swap(const_cast<SourceFile &>(from));
return *this;
}
#endif
private:
details::handle<std::ifstream *, details::default_delete<std::ifstream *>>
_file;
std::vector<std::string> get_paths_from_env_variable_impl() {
std::vector<std::string> paths;
const char *prefixes_str = std::getenv("BACKWARD_CXX_SOURCE_PREFIXES");
if (prefixes_str && prefixes_str[0]) {
paths = details::split_source_prefixes(prefixes_str);
}
return paths;
}
const std::vector<std::string> &get_paths_from_env_variable() {
static std::vector<std::string> paths = get_paths_from_env_variable_impl();
return paths;
}
#ifdef BACKWARD_ATLEAST_CXX11
SourceFile(const SourceFile &) = delete;
SourceFile &operator=(const SourceFile &) = delete;
#endif
};
class SnippetFactory {
public:
typedef SourceFile::lines_t lines_t;
lines_t get_snippet(const std::string &filename, unsigned line_start,
unsigned context_size) {
SourceFile &src_file = get_src_file(filename);
unsigned start = line_start - context_size / 2;
return src_file.get_lines(start, context_size);
}
lines_t get_combined_snippet(const std::string &filename_a, unsigned line_a,
const std::string &filename_b, unsigned line_b,
unsigned context_size) {
SourceFile &src_file_a = get_src_file(filename_a);
SourceFile &src_file_b = get_src_file(filename_b);
lines_t lines =
src_file_a.get_lines(line_a - context_size / 4, context_size / 2);
src_file_b.get_lines(line_b - context_size / 4, context_size / 2, lines);
return lines;
}
lines_t get_coalesced_snippet(const std::string &filename, unsigned line_a,
unsigned line_b, unsigned context_size) {
SourceFile &src_file = get_src_file(filename);
using std::max;
using std::min;
unsigned a = min(line_a, line_b);
unsigned b = max(line_a, line_b);
if ((b - a) < (context_size / 3)) {
return src_file.get_lines((a + b - context_size + 1) / 2, context_size);
}
lines_t lines = src_file.get_lines(a - context_size / 4, context_size / 2);
src_file.get_lines(b - context_size / 4, context_size / 2, lines);
return lines;
}
private:
typedef details::hashtable<std::string, SourceFile>::type src_files_t;
src_files_t _src_files;
SourceFile &get_src_file(const std::string &filename) {
src_files_t::iterator it = _src_files.find(filename);
if (it != _src_files.end()) {
return it->second;
}
SourceFile &new_src_file = _src_files[filename];
new_src_file = SourceFile(filename);
return new_src_file;
}
};
/*************** PRINTER ***************/
namespace ColorMode {
enum type { automatic, never, always };
}
class cfile_streambuf : public std::streambuf {
public:
cfile_streambuf(FILE *_sink) : sink(_sink) {}
int_type underflow() override { return traits_type::eof(); }
int_type overflow(int_type ch) override {
if (traits_type::not_eof(ch) && fputc(ch, sink) != EOF) {
return ch;
}
return traits_type::eof();
}
std::streamsize xsputn(const char_type *s, std::streamsize count) override {
return static_cast<std::streamsize>(
fwrite(s, sizeof *s, static_cast<size_t>(count), sink));
}
#ifdef BACKWARD_ATLEAST_CXX11
public:
cfile_streambuf(const cfile_streambuf &) = delete;
cfile_streambuf &operator=(const cfile_streambuf &) = delete;
#else
private:
cfile_streambuf(const cfile_streambuf &);
cfile_streambuf &operator=(const cfile_streambuf &);
#endif
private:
FILE *sink;
std::vector<char> buffer;
};
#ifdef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type { yellow = 33, purple = 35, reset = 39 };
} // namespace Color
class Colorize {
public:
Colorize(std::ostream &os) : _os(os), _reset(false), _enabled(false) {}
void activate(ColorMode::type mode) { _enabled = mode == ColorMode::always; }
void activate(ColorMode::type mode, FILE *fp) { activate(mode, fileno(fp)); }
void set_color(Color::type ccode) {
if (!_enabled)
return;
// I assume that the terminal can handle basic colors. Seriously I
// don't want to deal with all the termcap shit.
_os << "\033[" << static_cast<int>(ccode) << "m";
_reset = (ccode != Color::reset);
}
~Colorize() {
if (_reset) {
set_color(Color::reset);
}
}
private:
void activate(ColorMode::type mode, int fd) {
activate(mode == ColorMode::automatic && isatty(fd) ? ColorMode::always
: mode);
}
std::ostream &_os;
bool _reset;
bool _enabled;
};
#else // ndef BACKWARD_SYSTEM_LINUX
namespace Color {
enum type { yellow = 0, purple = 0, reset = 0 };
} // namespace Color
class Colorize {
public:
Colorize(std::ostream &) {}
void activate(ColorMode::type) {}
void activate(ColorMode::type, FILE *) {}
void set_color(Color::type) {}
};
#endif // BACKWARD_SYSTEM_LINUX
class Printer {
public:
bool snippet;
ColorMode::type color_mode;
bool address;
bool object;
int inliner_context_size;
int trace_context_size;
Printer()
: snippet(true), color_mode(ColorMode::automatic), address(false),
object(false), inliner_context_size(5), trace_context_size(7) {}
template <typename ST> FILE *print(ST &st, FILE *fp = stderr) {
cfile_streambuf obuf(fp);
std::ostream os(&obuf);
Colorize colorize(os);
colorize.activate(color_mode, fp);
print_stacktrace(st, os, colorize);
return fp;
}
template <typename ST> std::ostream &print(ST &st, std::ostream &os) {
Colorize colorize(os);
colorize.activate(color_mode);
print_stacktrace(st, os, colorize);
return os;
}
template <typename IT>
FILE *print(IT begin, IT end, FILE *fp = stderr, size_t thread_id = 0) {
cfile_streambuf obuf(fp);
std::ostream os(&obuf);
Colorize colorize(os);
colorize.activate(color_mode, fp);
print_stacktrace(begin, end, os, thread_id, colorize);
return fp;
}
template <typename IT>
std::ostream &print(IT begin, IT end, std::ostream &os,
size_t thread_id = 0) {
Colorize colorize(os);
colorize.activate(color_mode);
print_stacktrace(begin, end, os, thread_id, colorize);
return os;
}
TraceResolver const &resolver() const { return _resolver; }
private:
TraceResolver _resolver;
SnippetFactory _snippets;
template <typename ST>
void print_stacktrace(ST &st, std::ostream &os, Colorize &colorize) {
print_header(os, st.thread_id());
_resolver.load_stacktrace(st);
for (size_t trace_idx = st.size(); trace_idx > 0; --trace_idx) {
print_trace(os, _resolver.resolve(st[trace_idx - 1]), colorize);
}
}
template <typename IT>
void print_stacktrace(IT begin, IT end, std::ostream &os, size_t thread_id,
Colorize &colorize) {
print_header(os, thread_id);
for (; begin != end; ++begin) {
print_trace(os, *begin, colorize);
}
}
void print_header(std::ostream &os, size_t thread_id) {
os << "Stack trace (most recent call last)";
if (thread_id) {
os << " in thread " << thread_id;
}
os << ":\n";
}
void print_trace(std::ostream &os, const ResolvedTrace &trace,
Colorize &colorize) {
os << "#" << std::left << std::setw(2) << trace.idx << std::right;
bool already_indented = true;
if (!trace.source.filename.size() || object) {
os << " Object \"" << trace.object_filename << "\", at " << trace.addr
<< ", in " << trace.object_function << "\n";
already_indented = false;
}
for (size_t inliner_idx = trace.inliners.size(); inliner_idx > 0;
--inliner_idx) {
if (!already_indented) {
os << " ";
}
const ResolvedTrace::SourceLoc &inliner_loc =
trace.inliners[inliner_idx - 1];
print_source_loc(os, " | ", inliner_loc);
if (snippet) {
print_snippet(os, " | ", inliner_loc, colorize, Color::purple,
inliner_context_size);
}
already_indented = false;
}
if (trace.source.filename.size()) {
if (!already_indented) {
os << " ";
}
print_source_loc(os, " ", trace.source, trace.addr);
if (snippet) {
print_snippet(os, " ", trace.source, colorize, Color::yellow,
trace_context_size);
}
}
}
void print_snippet(std::ostream &os, const char *indent,
const ResolvedTrace::SourceLoc &source_loc,
Colorize &colorize, Color::type color_code,
int context_size) {
using namespace std;
typedef SnippetFactory::lines_t lines_t;
lines_t lines = _snippets.get_snippet(source_loc.filename, source_loc.line,
static_cast<unsigned>(context_size));
for (lines_t::const_iterator it = lines.begin(); it != lines.end(); ++it) {
if (it->first == source_loc.line) {
colorize.set_color(color_code);
os << indent << ">";
} else {
os << indent << " ";
}
os << std::setw(4) << it->first << ": " << it->second << "\n";
if (it->first == source_loc.line) {
colorize.set_color(Color::reset);
}
}
}
void print_source_loc(std::ostream &os, const char *indent,
const ResolvedTrace::SourceLoc &source_loc,
void *addr = nullptr) {
os << indent << "Source \"" << source_loc.filename << "\", line "
<< source_loc.line << ", in " << source_loc.function;
if (address && addr != nullptr) {
os << " [" << addr << "]";
}
os << "\n";
}
};
/*************** SIGNALS HANDLING ***************/
#if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
class SignalHandling {
public:
static std::vector<int> make_default_signals() {
const int posix_signals[] = {
// Signals for which the default action is "Core".
SIGABRT, // Abort signal from abort(3)
SIGBUS, // Bus error (bad memory access)
SIGFPE, // Floating point exception
SIGILL, // Illegal Instruction
SIGIOT, // IOT trap. A synonym for SIGABRT
SIGQUIT, // Quit from keyboard
SIGSEGV, // Invalid memory reference
SIGSYS, // Bad argument to routine (SVr4)
SIGTRAP, // Trace/breakpoint trap
SIGXCPU, // CPU time limit exceeded (4.2BSD)
SIGXFSZ, // File size limit exceeded (4.2BSD)
#if defined(BACKWARD_SYSTEM_DARWIN)
SIGEMT, // emulation instruction executed
#endif
};
return std::vector<int>(posix_signals,
posix_signals +
sizeof posix_signals / sizeof posix_signals[0]);
}
SignalHandling(const std::vector<int> &posix_signals = make_default_signals())
: _loaded(false) {
bool success = true;
const size_t stack_size = 1024 * 1024 * 8;
_stack_content.reset(static_cast<char *>(malloc(stack_size)));
if (_stack_content) {
stack_t ss;
ss.ss_sp = _stack_content.get();
ss.ss_size = stack_size;
ss.ss_flags = 0;
if (sigaltstack(&ss, nullptr) < 0) {
success = false;
}
} else {
success = false;
}
for (size_t i = 0; i < posix_signals.size(); ++i) {
struct sigaction action;
memset(&action, 0, sizeof action);
action.sa_flags =
static_cast<int>(SA_SIGINFO | SA_ONSTACK | SA_NODEFER | SA_RESETHAND);
sigfillset(&action.sa_mask);
sigdelset(&action.sa_mask, posix_signals[i]);
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdisabled-macro-expansion"
#endif
action.sa_sigaction = &sig_handler;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
int r = sigaction(posix_signals[i], &action, nullptr);
if (r < 0)
success = false;
}
_loaded = success;
}
bool loaded() const { return _loaded; }
static void handleSignal(int, siginfo_t *info, void *_ctx) {
ucontext_t *uctx = static_cast<ucontext_t *>(_ctx);
StackTrace st;
void *error_addr = nullptr;
#ifdef REG_RIP // x86_64
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_RIP]);
#elif defined(REG_EIP) // x86_32
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.gregs[REG_EIP]);
#elif defined(__arm__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.arm_pc);
#elif defined(__aarch64__)
#if defined(__APPLE__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__pc);
#else
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.pc);
#endif
#elif defined(__mips__)
error_addr = reinterpret_cast<void *>(
reinterpret_cast<struct sigcontext *>(&uctx->uc_mcontext)->sc_pc);
#elif defined(__ppc__) || defined(__powerpc) || defined(__powerpc__) || \
defined(__POWERPC__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.regs->nip);
#elif defined(__riscv)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.__gregs[REG_PC]);
#elif defined(__s390x__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext.psw.addr);
#elif defined(__APPLE__) && defined(__x86_64__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__rip);
#elif defined(__APPLE__)
error_addr = reinterpret_cast<void *>(uctx->uc_mcontext->__ss.__eip);
#else
#warning ":/ sorry, ain't know no nothing none not of your architecture!"
#endif
if (error_addr) {
st.load_from(error_addr, 32, reinterpret_cast<void *>(uctx),
info->si_addr);
} else {
st.load_here(32, reinterpret_cast<void *>(uctx), info->si_addr);
}
Printer printer;
printer.address = true;
printer.print(st, stderr);
#if _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
psiginfo(info, nullptr);
#else
(void)info;
#endif
}
private:
details::handle<char *> _stack_content;
bool _loaded;
#ifdef __GNUC__
__attribute__((noreturn))
#endif
static void
sig_handler(int signo, siginfo_t *info, void *_ctx) {
handleSignal(signo, info, _ctx);
// try to forward the signal.
raise(info->si_signo);
// terminate the process immediately.
puts("watf? exit");
_exit(EXIT_FAILURE);
}
};
#endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
#ifdef BACKWARD_SYSTEM_WINDOWS
class SignalHandling {
public:
SignalHandling(const std::vector<int> & = std::vector<int>())
: reporter_thread_([]() {
/* We handle crashes in a utility thread:
backward structures and some Windows functions called here
need stack space, which we do not have when we encounter a
stack overflow.
To support reporting stack traces during a stack overflow,
we create a utility thread at startup, which waits until a
crash happens or the program exits normally. */
{
std::unique_lock<std::mutex> lk(mtx());
cv().wait(lk, [] { return crashed() != crash_status::running; });
}
if (crashed() == crash_status::crashed) {
handle_stacktrace(skip_recs());
}
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::ending;
}
cv().notify_one();
}) {
SetUnhandledExceptionFilter(crash_handler);
signal(SIGABRT, signal_handler);
_set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT);
std::set_terminate(&terminator);
#ifndef BACKWARD_ATLEAST_CXX17
std::set_unexpected(&terminator);
#endif
_set_purecall_handler(&terminator);
_set_invalid_parameter_handler(&invalid_parameter_handler);
}
bool loaded() const { return true; }
~SignalHandling() {
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::normal_exit;
}
cv().notify_one();
reporter_thread_.join();
}
private:
static CONTEXT *ctx() {
static CONTEXT data;
return &data;
}
enum class crash_status { running, crashed, normal_exit, ending };
static crash_status &crashed() {
static crash_status data;
return data;
}
static std::mutex &mtx() {
static std::mutex data;
return data;
}
static std::condition_variable &cv() {
static std::condition_variable data;
return data;
}
static HANDLE &thread_handle() {
static HANDLE handle;
return handle;
}
std::thread reporter_thread_;
// TODO: how not to hardcode these?
static const constexpr int signal_skip_recs =
#ifdef __clang__
// With clang, RtlCaptureContext also captures the stack frame of the
// current function Below that, there ar 3 internal Windows functions
4
#else
// With MSVC cl, RtlCaptureContext misses the stack frame of the current
// function The first entries during StackWalk are the 3 internal Windows
// functions
3
#endif
;
static int &skip_recs() {
static int data;
return data;
}
static inline void terminator() {
crash_handler(signal_skip_recs);
abort();
}
static inline void signal_handler(int) {
crash_handler(signal_skip_recs);
abort();
}
static inline void __cdecl invalid_parameter_handler(const wchar_t *,
const wchar_t *,
const wchar_t *,
unsigned int,
uintptr_t) {
crash_handler(signal_skip_recs);
abort();
}
NOINLINE static LONG WINAPI crash_handler(EXCEPTION_POINTERS *info) {
// The exception info supplies a trace from exactly where the issue was,
// no need to skip records
crash_handler(0, info->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
}
NOINLINE static void crash_handler(int skip, CONTEXT *ct = nullptr) {
if (ct == nullptr) {
RtlCaptureContext(ctx());
} else {
memcpy(ctx(), ct, sizeof(CONTEXT));
}
DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &thread_handle(), 0, FALSE,
DUPLICATE_SAME_ACCESS);
skip_recs() = skip;
{
std::unique_lock<std::mutex> lk(mtx());
crashed() = crash_status::crashed;
}
cv().notify_one();
{
std::unique_lock<std::mutex> lk(mtx());
cv().wait(lk, [] { return crashed() != crash_status::crashed; });
}
}
static void handle_stacktrace(int skip_frames = 0) {
// printer creates the TraceResolver, which can supply us a machine type
// for stack walking. Without this, StackTrace can only guess using some
// macros.
// StackTrace also requires that the PDBs are already loaded, which is done
// in the constructor of TraceResolver
Printer printer;
StackTrace st;
st.set_machine_type(printer.resolver().machine_type());
st.set_thread_handle(thread_handle());
st.load_here(32 + skip_frames, ctx());
st.skip_n_firsts(skip_frames);
printer.address = true;
printer.print(st, std::cerr);
}
};
#endif // BACKWARD_SYSTEM_WINDOWS
#ifdef BACKWARD_SYSTEM_UNKNOWN
class SignalHandling {
public:
SignalHandling(const std::vector<int> & = std::vector<int>()) {}
bool init() { return false; }
bool loaded() { return false; }
};
#endif // BACKWARD_SYSTEM_UNKNOWN
} // namespace backward
#endif /* H_GUARD */
|