1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
|
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"context"
"encoding/binary"
"expvar"
"math"
"os"
"path/filepath"
"sort"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/dgraph-io/badger/v2/options"
"github.com/dgraph-io/badger/v2/pb"
"github.com/dgraph-io/badger/v2/skl"
"github.com/dgraph-io/badger/v2/table"
"github.com/dgraph-io/badger/v2/y"
"github.com/dgraph-io/ristretto"
humanize "github.com/dustin/go-humanize"
"github.com/pkg/errors"
)
var (
badgerPrefix = []byte("!badger!") // Prefix for internal keys used by badger.
head = []byte("!badger!head") // For storing value offset for replay.
txnKey = []byte("!badger!txn") // For indicating end of entries in txn.
badgerMove = []byte("!badger!move") // For key-value pairs which got moved during GC.
lfDiscardStatsKey = []byte("!badger!discard") // For storing lfDiscardStats
)
type closers struct {
updateSize *y.Closer
compactors *y.Closer
memtable *y.Closer
writes *y.Closer
valueGC *y.Closer
pub *y.Closer
}
// DB provides the various functions required to interact with Badger.
// DB is thread-safe.
type DB struct {
sync.RWMutex // Guards list of inmemory tables, not individual reads and writes.
dirLockGuard *directoryLockGuard
// nil if Dir and ValueDir are the same
valueDirGuard *directoryLockGuard
closers closers
mt *skl.Skiplist // Our latest (actively written) in-memory table
imm []*skl.Skiplist // Add here only AFTER pushing to flushChan.
opt Options
manifest *manifestFile
lc *levelsController
vlog valueLog
vhead valuePointer // less than or equal to a pointer to the last vlog value put into mt
writeCh chan *request
flushChan chan flushTask // For flushing memtables.
closeOnce sync.Once // For closing DB only once.
// Number of log rotates since the last memtable flush. We will access this field via atomic
// functions. Since we are not going to use any 64bit atomic functions, there is no need for
// 64 bit alignment of this struct(see #311).
logRotates int32
blockWrites int32
isClosed uint32
orc *oracle
pub *publisher
registry *KeyRegistry
blockCache *ristretto.Cache
indexCache *ristretto.Cache
}
const (
kvWriteChCapacity = 1000
)
func (db *DB) replayFunction() func(Entry, valuePointer) error {
type txnEntry struct {
nk []byte
v y.ValueStruct
}
var txn []txnEntry
var lastCommit uint64
toLSM := func(nk []byte, vs y.ValueStruct) {
for err := db.ensureRoomForWrite(); err != nil; err = db.ensureRoomForWrite() {
db.opt.Debugf("Replay: Making room for writes")
time.Sleep(10 * time.Millisecond)
}
db.mt.Put(nk, vs)
}
first := true
return func(e Entry, vp valuePointer) error { // Function for replaying.
if first {
db.opt.Debugf("First key=%q\n", e.Key)
}
first = false
db.orc.Lock()
if db.orc.nextTxnTs < y.ParseTs(e.Key) {
db.orc.nextTxnTs = y.ParseTs(e.Key)
}
db.orc.Unlock()
nk := make([]byte, len(e.Key))
copy(nk, e.Key)
var nv []byte
meta := e.meta
if db.shouldWriteValueToLSM(e) {
nv = make([]byte, len(e.Value))
copy(nv, e.Value)
} else {
nv = vp.Encode()
meta = meta | bitValuePointer
}
// Update vhead. If the crash happens while replay was in progess
// and the head is not updated, we will end up replaying all the
// files starting from file zero, again.
db.updateHead([]valuePointer{vp})
v := y.ValueStruct{
Value: nv,
Meta: meta,
UserMeta: e.UserMeta,
ExpiresAt: e.ExpiresAt,
}
switch {
case e.meta&bitFinTxn > 0:
txnTs, err := strconv.ParseUint(string(e.Value), 10, 64)
if err != nil {
return errors.Wrapf(err, "Unable to parse txn fin: %q", e.Value)
}
y.AssertTrue(lastCommit == txnTs)
y.AssertTrue(len(txn) > 0)
// Got the end of txn. Now we can store them.
for _, t := range txn {
toLSM(t.nk, t.v)
}
txn = txn[:0]
lastCommit = 0
case e.meta&bitTxn > 0:
txnTs := y.ParseTs(nk)
if lastCommit == 0 {
lastCommit = txnTs
}
if lastCommit != txnTs {
db.opt.Warningf("Found an incomplete txn at timestamp %d. Discarding it.\n",
lastCommit)
txn = txn[:0]
lastCommit = txnTs
}
te := txnEntry{nk: nk, v: v}
txn = append(txn, te)
default:
// This entry is from a rewrite or via SetEntryAt(..).
toLSM(nk, v)
// We shouldn't get this entry in the middle of a transaction.
y.AssertTrue(lastCommit == 0)
y.AssertTrue(len(txn) == 0)
}
return nil
}
}
// Open returns a new DB object.
func Open(opt Options) (db *DB, err error) {
// It's okay to have zero compactors which will disable all compactions but
// we cannot have just one compactor otherwise we will end up with all data
// one level 2.
if opt.NumCompactors == 1 {
return nil, errors.New("Cannot have 1 compactor. Need at least 2")
}
if opt.InMemory && (opt.Dir != "" || opt.ValueDir != "") {
return nil, errors.New("Cannot use badger in Disk-less mode with Dir or ValueDir set")
}
opt.maxBatchSize = (15 * opt.MaxTableSize) / 100
opt.maxBatchCount = opt.maxBatchSize / int64(skl.MaxNodeSize)
// We are limiting opt.ValueThreshold to maxValueThreshold for now.
if opt.ValueThreshold > maxValueThreshold {
return nil, errors.Errorf("Invalid ValueThreshold, must be less or equal to %d",
maxValueThreshold)
}
// If ValueThreshold is greater than opt.maxBatchSize, we won't be able to push any data using
// the transaction APIs. Transaction batches entries into batches of size opt.maxBatchSize.
if int64(opt.ValueThreshold) > opt.maxBatchSize {
return nil, errors.Errorf("Valuethreshold greater than max batch size of %d. Either "+
"reduce opt.ValueThreshold or increase opt.MaxTableSize.", opt.maxBatchSize)
}
if !(opt.ValueLogFileSize <= 2<<30 && opt.ValueLogFileSize >= 1<<20) {
return nil, ErrValueLogSize
}
if !(opt.ValueLogLoadingMode == options.FileIO ||
opt.ValueLogLoadingMode == options.MemoryMap) {
return nil, ErrInvalidLoadingMode
}
// Return error if badger is built without cgo and compression is set to ZSTD.
if opt.Compression == options.ZSTD && !y.CgoEnabled {
return nil, y.ErrZstdCgo
}
// Keep L0 in memory if either KeepL0InMemory is set or if InMemory is set.
opt.KeepL0InMemory = opt.KeepL0InMemory || opt.InMemory
// Compact L0 on close if either it is set or if KeepL0InMemory is set. When
// keepL0InMemory is set we need to compact L0 on close otherwise we might lose data.
opt.CompactL0OnClose = opt.CompactL0OnClose || opt.KeepL0InMemory
if opt.ReadOnly {
// Can't truncate if the DB is read only.
opt.Truncate = false
// Do not perform compaction in read only mode.
opt.CompactL0OnClose = false
}
var dirLockGuard, valueDirLockGuard *directoryLockGuard
// Create directories and acquire lock on it only if badger is not running in InMemory mode.
// We don't have any directories/files in InMemory mode so we don't need to acquire
// any locks on them.
if !opt.InMemory {
if err := createDirs(opt); err != nil {
return nil, err
}
if !opt.BypassLockGuard {
dirLockGuard, err = acquireDirectoryLock(opt.Dir, lockFile, opt.ReadOnly)
if err != nil {
return nil, err
}
defer func() {
if dirLockGuard != nil {
_ = dirLockGuard.release()
}
}()
absDir, err := filepath.Abs(opt.Dir)
if err != nil {
return nil, err
}
absValueDir, err := filepath.Abs(opt.ValueDir)
if err != nil {
return nil, err
}
if absValueDir != absDir {
valueDirLockGuard, err = acquireDirectoryLock(opt.ValueDir, lockFile, opt.ReadOnly)
if err != nil {
return nil, err
}
defer func() {
if valueDirLockGuard != nil {
_ = valueDirLockGuard.release()
}
}()
}
}
}
manifestFile, manifest, err := openOrCreateManifestFile(opt)
if err != nil {
return nil, err
}
defer func() {
if manifestFile != nil {
_ = manifestFile.close()
}
}()
db = &DB{
imm: make([]*skl.Skiplist, 0, opt.NumMemtables),
flushChan: make(chan flushTask, opt.NumMemtables),
writeCh: make(chan *request, kvWriteChCapacity),
opt: opt,
manifest: manifestFile,
dirLockGuard: dirLockGuard,
valueDirGuard: valueDirLockGuard,
orc: newOracle(opt),
pub: newPublisher(),
}
// Cleanup all the goroutines started by badger in case of an error.
defer func() {
if err != nil {
db.cleanup()
db = nil
}
}()
if opt.BlockCacheSize > 0 {
config := ristretto.Config{
// Use 5% of cache memory for storing counters.
NumCounters: int64(float64(opt.BlockCacheSize) * 0.05 * 2),
MaxCost: int64(float64(opt.BlockCacheSize) * 0.95),
BufferItems: 64,
Metrics: true,
}
db.blockCache, err = ristretto.NewCache(&config)
if err != nil {
return nil, errors.Wrap(err, "failed to create data cache")
}
}
if opt.IndexCacheSize > 0 {
config := ristretto.Config{
// Use 5% of cache memory for storing counters.
NumCounters: int64(float64(opt.IndexCacheSize) * 0.05 * 2),
MaxCost: int64(float64(opt.IndexCacheSize) * 0.95),
BufferItems: 64,
Metrics: true,
}
db.indexCache, err = ristretto.NewCache(&config)
if err != nil {
return nil, errors.Wrap(err, "failed to create bf cache")
}
}
if db.opt.InMemory {
db.opt.SyncWrites = false
// If badger is running in memory mode, push everything into the LSM Tree.
db.opt.ValueThreshold = math.MaxInt32
}
krOpt := KeyRegistryOptions{
ReadOnly: opt.ReadOnly,
Dir: opt.Dir,
EncryptionKey: opt.EncryptionKey,
EncryptionKeyRotationDuration: opt.EncryptionKeyRotationDuration,
InMemory: opt.InMemory,
}
if db.registry, err = OpenKeyRegistry(krOpt); err != nil {
return db, err
}
db.calculateSize()
db.closers.updateSize = y.NewCloser(1)
go db.updateSize(db.closers.updateSize)
db.mt = skl.NewSkiplist(arenaSize(opt))
// newLevelsController potentially loads files in directory.
if db.lc, err = newLevelsController(db, &manifest); err != nil {
return db, err
}
// Initialize vlog struct.
db.vlog.init(db)
if !opt.ReadOnly {
db.closers.compactors = y.NewCloser(1)
db.lc.startCompact(db.closers.compactors)
db.closers.memtable = y.NewCloser(1)
go func() {
_ = db.flushMemtable(db.closers.memtable) // Need levels controller to be up.
}()
}
headKey := y.KeyWithTs(head, math.MaxUint64)
// Need to pass with timestamp, lsm get removes the last 8 bytes and compares key
vs, err := db.get(headKey)
if err != nil {
return db, errors.Wrap(err, "Retrieving head")
}
db.orc.nextTxnTs = vs.Version
var vptr valuePointer
if len(vs.Value) > 0 {
vptr.Decode(vs.Value)
}
replayCloser := y.NewCloser(1)
go db.doWrites(replayCloser)
if err = db.vlog.open(db, vptr, db.replayFunction()); err != nil {
replayCloser.SignalAndWait()
return db, y.Wrapf(err, "During db.vlog.open")
}
replayCloser.SignalAndWait() // Wait for replay to be applied first.
// Let's advance nextTxnTs to one more than whatever we observed via
// replaying the logs.
db.orc.txnMark.Done(db.orc.nextTxnTs)
// In normal mode, we must update readMark so older versions of keys can be removed during
// compaction when run in offline mode via the flatten tool.
db.orc.readMark.Done(db.orc.nextTxnTs)
db.orc.incrementNextTs()
db.closers.writes = y.NewCloser(1)
go db.doWrites(db.closers.writes)
if !db.opt.InMemory {
db.closers.valueGC = y.NewCloser(1)
go db.vlog.waitOnGC(db.closers.valueGC)
}
db.closers.pub = y.NewCloser(1)
go db.pub.listenForUpdates(db.closers.pub)
valueDirLockGuard = nil
dirLockGuard = nil
manifestFile = nil
return db, nil
}
// cleanup stops all the goroutines started by badger. This is used in open to
// cleanup goroutines in case of an error.
func (db *DB) cleanup() {
db.stopMemoryFlush()
db.stopCompactions()
db.blockCache.Close()
db.indexCache.Close()
if db.closers.updateSize != nil {
db.closers.updateSize.Signal()
}
if db.closers.valueGC != nil {
db.closers.valueGC.Signal()
}
if db.closers.writes != nil {
db.closers.writes.Signal()
}
if db.closers.pub != nil {
db.closers.pub.Signal()
}
db.orc.Stop()
// Do not use vlog.Close() here. vlog.Close truncates the files. We don't
// want to truncate files unless the user has specified the truncate flag.
db.vlog.stopFlushDiscardStats()
}
// BlockCacheMetrics returns the metrics for the underlying block cache.
func (db *DB) BlockCacheMetrics() *ristretto.Metrics {
if db.blockCache != nil {
return db.blockCache.Metrics
}
return nil
}
// IndexCacheMetrics returns the metrics for the underlying index cache.
func (db *DB) IndexCacheMetrics() *ristretto.Metrics {
if db.indexCache != nil {
return db.indexCache.Metrics
}
return nil
}
// Close closes a DB. It's crucial to call it to ensure all the pending updates make their way to
// disk. Calling DB.Close() multiple times would still only close the DB once.
func (db *DB) Close() error {
var err error
db.closeOnce.Do(func() {
err = db.close()
})
return err
}
// IsClosed denotes if the badger DB is closed or not. A DB instance should not
// be used after closing it.
func (db *DB) IsClosed() bool {
return atomic.LoadUint32(&db.isClosed) == 1
}
func (db *DB) close() (err error) {
db.opt.Debugf("Closing database")
atomic.StoreInt32(&db.blockWrites, 1)
if !db.opt.InMemory {
// Stop value GC first.
db.closers.valueGC.SignalAndWait()
}
// Stop writes next.
db.closers.writes.SignalAndWait()
// Don't accept any more write.
close(db.writeCh)
db.closers.pub.SignalAndWait()
// Now close the value log.
if vlogErr := db.vlog.Close(); vlogErr != nil {
err = errors.Wrap(vlogErr, "DB.Close")
}
// Make sure that block writer is done pushing stuff into memtable!
// Otherwise, you will have a race condition: we are trying to flush memtables
// and remove them completely, while the block / memtable writer is still
// trying to push stuff into the memtable. This will also resolve the value
// offset problem: as we push into memtable, we update value offsets there.
if !db.mt.Empty() {
db.opt.Debugf("Flushing memtable")
for {
pushedFlushTask := func() bool {
db.Lock()
defer db.Unlock()
y.AssertTrue(db.mt != nil)
select {
case db.flushChan <- flushTask{mt: db.mt, vptr: db.vhead}:
db.imm = append(db.imm, db.mt) // Flusher will attempt to remove this from s.imm.
db.mt = nil // Will segfault if we try writing!
db.opt.Debugf("pushed to flush chan\n")
return true
default:
// If we fail to push, we need to unlock and wait for a short while.
// The flushing operation needs to update s.imm. Otherwise, we have a deadlock.
// TODO: Think about how to do this more cleanly, maybe without any locks.
}
return false
}()
if pushedFlushTask {
break
}
time.Sleep(10 * time.Millisecond)
}
}
db.stopMemoryFlush()
db.stopCompactions()
// Force Compact L0
// We don't need to care about cstatus since no parallel compaction is running.
if db.opt.CompactL0OnClose {
err := db.lc.doCompact(173, compactionPriority{level: 0, score: 1.73})
switch err {
case errFillTables:
// This error only means that there might be enough tables to do a compaction. So, we
// should not report it to the end user to avoid confusing them.
case nil:
db.opt.Infof("Force compaction on level 0 done")
default:
db.opt.Warningf("While forcing compaction on level 0: %v", err)
}
}
if lcErr := db.lc.close(); err == nil {
err = errors.Wrap(lcErr, "DB.Close")
}
db.opt.Debugf("Waiting for closer")
db.closers.updateSize.SignalAndWait()
db.orc.Stop()
db.blockCache.Close()
db.indexCache.Close()
atomic.StoreUint32(&db.isClosed, 1)
if db.opt.InMemory {
return
}
if db.dirLockGuard != nil {
if guardErr := db.dirLockGuard.release(); err == nil {
err = errors.Wrap(guardErr, "DB.Close")
}
}
if db.valueDirGuard != nil {
if guardErr := db.valueDirGuard.release(); err == nil {
err = errors.Wrap(guardErr, "DB.Close")
}
}
if manifestErr := db.manifest.close(); err == nil {
err = errors.Wrap(manifestErr, "DB.Close")
}
if registryErr := db.registry.Close(); err == nil {
err = errors.Wrap(registryErr, "DB.Close")
}
// Fsync directories to ensure that lock file, and any other removed files whose directory
// we haven't specifically fsynced, are guaranteed to have their directory entry removal
// persisted to disk.
if syncErr := db.syncDir(db.opt.Dir); err == nil {
err = errors.Wrap(syncErr, "DB.Close")
}
if syncErr := db.syncDir(db.opt.ValueDir); err == nil {
err = errors.Wrap(syncErr, "DB.Close")
}
return err
}
// VerifyChecksum verifies checksum for all tables on all levels.
// This method can be used to verify checksum, if opt.ChecksumVerificationMode is NoVerification.
func (db *DB) VerifyChecksum() error {
return db.lc.verifyChecksum()
}
const (
lockFile = "LOCK"
)
// Sync syncs database content to disk. This function provides
// more control to user to sync data whenever required.
func (db *DB) Sync() error {
return db.vlog.sync(math.MaxUint32)
}
// getMemtables returns the current memtables and get references.
func (db *DB) getMemTables() ([]*skl.Skiplist, func()) {
db.RLock()
defer db.RUnlock()
tables := make([]*skl.Skiplist, len(db.imm)+1)
// Get mutable memtable.
tables[0] = db.mt
tables[0].IncrRef()
// Get immutable memtables.
last := len(db.imm) - 1
for i := range db.imm {
tables[i+1] = db.imm[last-i]
tables[i+1].IncrRef()
}
return tables, func() {
for _, tbl := range tables {
tbl.DecrRef()
}
}
}
// get returns the value in memtable or disk for given key.
// Note that value will include meta byte.
//
// IMPORTANT: We should never write an entry with an older timestamp for the same key, We need to
// maintain this invariant to search for the latest value of a key, or else we need to search in all
// tables and find the max version among them. To maintain this invariant, we also need to ensure
// that all versions of a key are always present in the same table from level 1, because compaction
// can push any table down.
//
// Update (Sep 22, 2018): To maintain the above invariant, and to allow keys to be moved from one
// value log to another (while reclaiming space during value log GC), we have logically moved this
// need to write "old versions after new versions" to the badgerMove keyspace. Thus, for normal
// gets, we can stop going down the LSM tree once we find any version of the key (note however that
// we will ALWAYS skip versions with ts greater than the key version). However, if that key has
// been moved, then for the corresponding movekey, we'll look through all the levels of the tree
// to ensure that we pick the highest version of the movekey present.
func (db *DB) get(key []byte) (y.ValueStruct, error) {
if db.IsClosed() {
return y.ValueStruct{}, ErrDBClosed
}
tables, decr := db.getMemTables() // Lock should be released.
defer decr()
var maxVs *y.ValueStruct
var version uint64
if bytes.HasPrefix(key, badgerMove) {
// If we are checking badgerMove key, we should look into all the
// levels, so we can pick up the newer versions, which might have been
// compacted down the tree.
maxVs = &y.ValueStruct{}
version = y.ParseTs(key)
}
y.NumGets.Add(1)
for i := 0; i < len(tables); i++ {
vs := tables[i].Get(key)
y.NumMemtableGets.Add(1)
if vs.Meta == 0 && vs.Value == nil {
continue
}
// Found a version of the key. For user keyspace, return immediately. For move keyspace,
// continue iterating, unless we found a version == given key version.
if maxVs == nil || vs.Version == version {
return vs, nil
}
if maxVs.Version < vs.Version {
*maxVs = vs
}
}
return db.lc.get(key, maxVs, 0)
}
// updateHead should not be called without the db.Lock() since db.vhead is used
// by the writer go routines and memtable flushing goroutine.
func (db *DB) updateHead(ptrs []valuePointer) {
var ptr valuePointer
for i := len(ptrs) - 1; i >= 0; i-- {
p := ptrs[i]
if !p.IsZero() {
ptr = p
break
}
}
if ptr.IsZero() {
return
}
y.AssertTrue(!ptr.Less(db.vhead))
db.vhead = ptr
}
var requestPool = sync.Pool{
New: func() interface{} {
return new(request)
},
}
func (db *DB) shouldWriteValueToLSM(e Entry) bool {
return len(e.Value) < db.opt.ValueThreshold
}
func (db *DB) writeToLSM(b *request) error {
// We should check the length of b.Prts and b.Entries only when badger is not
// running in InMemory mode. In InMemory mode, we don't write anything to the
// value log and that's why the length of b.Ptrs will always be zero.
if !db.opt.InMemory && len(b.Ptrs) != len(b.Entries) {
return errors.Errorf("Ptrs and Entries don't match: %+v", b)
}
for i, entry := range b.Entries {
if entry.meta&bitFinTxn != 0 {
continue
}
if db.shouldWriteValueToLSM(*entry) { // Will include deletion / tombstone case.
db.mt.Put(entry.Key,
y.ValueStruct{
Value: entry.Value,
// Ensure value pointer flag is removed. Otherwise, the value will fail
// to be retrieved during iterator prefetch. `bitValuePointer` is only
// known to be set in write to LSM when the entry is loaded from a backup
// with lower ValueThreshold and its value was stored in the value log.
Meta: entry.meta &^ bitValuePointer,
UserMeta: entry.UserMeta,
ExpiresAt: entry.ExpiresAt,
})
} else {
db.mt.Put(entry.Key,
y.ValueStruct{
Value: b.Ptrs[i].Encode(),
Meta: entry.meta | bitValuePointer,
UserMeta: entry.UserMeta,
ExpiresAt: entry.ExpiresAt,
})
}
}
return nil
}
// writeRequests is called serially by only one goroutine.
func (db *DB) writeRequests(reqs []*request) error {
if len(reqs) == 0 {
return nil
}
done := func(err error) {
for _, r := range reqs {
r.Err = err
r.Wg.Done()
}
}
db.opt.Debugf("writeRequests called. Writing to value log")
err := db.vlog.write(reqs)
if err != nil {
done(err)
return err
}
db.opt.Debugf("Sending updates to subscribers")
db.pub.sendUpdates(reqs)
db.opt.Debugf("Writing to memtable")
var count int
for _, b := range reqs {
if len(b.Entries) == 0 {
continue
}
count += len(b.Entries)
var i uint64
for err = db.ensureRoomForWrite(); err == errNoRoom; err = db.ensureRoomForWrite() {
i++
if i%100 == 0 {
db.opt.Debugf("Making room for writes")
}
// We need to poll a bit because both hasRoomForWrite and the flusher need access to s.imm.
// When flushChan is full and you are blocked there, and the flusher is trying to update s.imm,
// you will get a deadlock.
time.Sleep(10 * time.Millisecond)
}
if err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
if err := db.writeToLSM(b); err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
db.Lock()
db.updateHead(b.Ptrs)
db.Unlock()
}
done(nil)
db.opt.Debugf("%d entries written", count)
return nil
}
func (db *DB) sendToWriteCh(entries []*Entry) (*request, error) {
if atomic.LoadInt32(&db.blockWrites) == 1 {
return nil, ErrBlockedWrites
}
var count, size int64
for _, e := range entries {
size += int64(e.estimateSize(db.opt.ValueThreshold))
count++
}
if count >= db.opt.maxBatchCount || size >= db.opt.maxBatchSize {
return nil, ErrTxnTooBig
}
// We can only service one request because we need each txn to be stored in a contigous section.
// Txns should not interleave among other txns or rewrites.
req := requestPool.Get().(*request)
req.reset()
req.Entries = entries
req.Wg.Add(1)
req.IncrRef() // for db write
db.writeCh <- req // Handled in doWrites.
y.NumPuts.Add(int64(len(entries)))
return req, nil
}
func (db *DB) doWrites(lc *y.Closer) {
defer lc.Done()
pendingCh := make(chan struct{}, 1)
writeRequests := func(reqs []*request) {
if err := db.writeRequests(reqs); err != nil {
db.opt.Errorf("writeRequests: %v", err)
}
<-pendingCh
}
// This variable tracks the number of pending writes.
reqLen := new(expvar.Int)
y.PendingWrites.Set(db.opt.Dir, reqLen)
reqs := make([]*request, 0, 10)
for {
var r *request
select {
case r = <-db.writeCh:
case <-lc.HasBeenClosed():
goto closedCase
}
for {
reqs = append(reqs, r)
reqLen.Set(int64(len(reqs)))
if len(reqs) >= 3*kvWriteChCapacity {
pendingCh <- struct{}{} // blocking.
goto writeCase
}
select {
// Either push to pending, or continue to pick from writeCh.
case r = <-db.writeCh:
case pendingCh <- struct{}{}:
goto writeCase
case <-lc.HasBeenClosed():
goto closedCase
}
}
closedCase:
// All the pending request are drained.
// Don't close the writeCh, because it has be used in several places.
for {
select {
case r = <-db.writeCh:
reqs = append(reqs, r)
default:
pendingCh <- struct{}{} // Push to pending before doing a write.
writeRequests(reqs)
return
}
}
writeCase:
go writeRequests(reqs)
reqs = make([]*request, 0, 10)
reqLen.Set(0)
}
}
// batchSet applies a list of badger.Entry. If a request level error occurs it
// will be returned.
// Check(kv.BatchSet(entries))
func (db *DB) batchSet(entries []*Entry) error {
req, err := db.sendToWriteCh(entries)
if err != nil {
return err
}
return req.Wait()
}
// batchSetAsync is the asynchronous version of batchSet. It accepts a callback
// function which is called when all the sets are complete. If a request level
// error occurs, it will be passed back via the callback.
// err := kv.BatchSetAsync(entries, func(err error)) {
// Check(err)
// }
func (db *DB) batchSetAsync(entries []*Entry, f func(error)) error {
req, err := db.sendToWriteCh(entries)
if err != nil {
return err
}
go func() {
err := req.Wait()
// Write is complete. Let's call the callback function now.
f(err)
}()
return nil
}
var errNoRoom = errors.New("No room for write")
// ensureRoomForWrite is always called serially.
func (db *DB) ensureRoomForWrite() error {
var err error
db.Lock()
defer db.Unlock()
// Here we determine if we need to force flush memtable. Given we rotated log file, it would
// make sense to force flush a memtable, so the updated value head would have a chance to be
// pushed to L0. Otherwise, it would not go to L0, until the memtable has been fully filled,
// which can take a lot longer if the write load has fewer keys and larger values. This force
// flush, thus avoids the need to read through a lot of log files on a crash and restart.
// Above approach is quite simple with small drawback. We are calling ensureRoomForWrite before
// inserting every entry in Memtable. We will get latest db.head after all entries for a request
// are inserted in Memtable. If we have done >= db.logRotates rotations, then while inserting
// first entry in Memtable, below condition will be true and we will endup flushing old value of
// db.head. Hence we are limiting no of value log files to be read to db.logRotates only.
forceFlush := atomic.LoadInt32(&db.logRotates) >= db.opt.LogRotatesToFlush
if !forceFlush && db.mt.MemSize() < db.opt.MaxTableSize {
return nil
}
y.AssertTrue(db.mt != nil) // A nil mt indicates that DB is being closed.
select {
case db.flushChan <- flushTask{mt: db.mt, vptr: db.vhead}:
// After every memtable flush, let's reset the counter.
atomic.StoreInt32(&db.logRotates, 0)
// Ensure value log is synced to disk so this memtable's contents wouldn't be lost.
err = db.vlog.sync(db.vhead.Fid)
if err != nil {
return err
}
db.opt.Debugf("Flushing memtable, mt.size=%d size of flushChan: %d\n",
db.mt.MemSize(), len(db.flushChan))
// We manage to push this task. Let's modify imm.
db.imm = append(db.imm, db.mt)
db.mt = skl.NewSkiplist(arenaSize(db.opt))
// New memtable is empty. We certainly have room.
return nil
default:
// We need to do this to unlock and allow the flusher to modify imm.
return errNoRoom
}
}
func arenaSize(opt Options) int64 {
return opt.MaxTableSize + opt.maxBatchSize + opt.maxBatchCount*int64(skl.MaxNodeSize)
}
// buildL0Table builds a new table from the memtable.
func buildL0Table(ft flushTask, bopts table.Options) []byte {
iter := ft.mt.NewIterator()
defer iter.Close()
b := table.NewTableBuilder(bopts)
defer b.Close()
var vp valuePointer
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
if len(ft.dropPrefixes) > 0 && hasAnyPrefixes(iter.Key(), ft.dropPrefixes) {
continue
}
vs := iter.Value()
if vs.Meta&bitValuePointer > 0 {
vp.Decode(vs.Value)
}
b.Add(iter.Key(), iter.Value(), vp.Len)
}
return b.Finish()
}
type flushTask struct {
mt *skl.Skiplist
vptr valuePointer
dropPrefixes [][]byte
}
func (db *DB) pushHead(ft flushTask) error {
// We don't need to store head pointer in the in-memory mode since we will
// never be replay anything.
if db.opt.InMemory {
return nil
}
// Ensure we never push a zero valued head pointer.
if ft.vptr.IsZero() {
return errors.New("Head should not be zero")
}
// Store badger head even if vptr is zero, need it for readTs
db.opt.Infof("Storing value log head: %+v\n", ft.vptr)
val := ft.vptr.Encode()
// Pick the max commit ts, so in case of crash, our read ts would be higher than all the
// commits.
headTs := y.KeyWithTs(head, db.orc.nextTs())
ft.mt.Put(headTs, y.ValueStruct{Value: val})
return nil
}
// handleFlushTask must be run serially.
func (db *DB) handleFlushTask(ft flushTask) error {
// There can be a scenario, when empty memtable is flushed. For example, memtable is empty and
// after writing request to value log, rotation count exceeds db.LogRotatesToFlush.
if ft.mt.Empty() {
return nil
}
if err := db.pushHead(ft); err != nil {
return err
}
dk, err := db.registry.latestDataKey()
if err != nil {
return y.Wrapf(err, "failed to get datakey in db.handleFlushTask")
}
bopts := buildTableOptions(db.opt)
bopts.DataKey = dk
// Builder does not need cache but the same options are used for opening table.
bopts.BlockCache = db.blockCache
bopts.IndexCache = db.indexCache
tableData := buildL0Table(ft, bopts)
fileID := db.lc.reserveFileID()
if db.opt.KeepL0InMemory {
tbl, err := table.OpenInMemoryTable(tableData, fileID, &bopts)
if err != nil {
return errors.Wrapf(err, "failed to open table in memory")
}
return db.lc.addLevel0Table(tbl)
}
fd, err := y.CreateSyncedFile(table.NewFilename(fileID, db.opt.Dir), true)
if err != nil {
return y.Wrap(err)
}
// Don't block just to sync the directory entry.
dirSyncCh := make(chan error, 1)
go func() { dirSyncCh <- db.syncDir(db.opt.Dir) }()
if _, err = fd.Write(tableData); err != nil {
db.opt.Errorf("ERROR while writing to level 0: %v", err)
return err
}
if dirSyncErr := <-dirSyncCh; dirSyncErr != nil {
// Do dir sync as best effort. No need to return due to an error there.
db.opt.Errorf("ERROR while syncing level directory: %v", dirSyncErr)
}
tbl, err := table.OpenTable(fd, bopts)
if err != nil {
db.opt.Debugf("ERROR while opening table: %v", err)
return err
}
// We own a ref on tbl.
err = db.lc.addLevel0Table(tbl) // This will incrRef
_ = tbl.DecrRef() // Releases our ref.
return err
}
// flushMemtable must keep running until we send it an empty flushTask. If there
// are errors during handling the flush task, we'll retry indefinitely.
func (db *DB) flushMemtable(lc *y.Closer) error {
defer lc.Done()
for ft := range db.flushChan {
if ft.mt == nil {
// We close db.flushChan now, instead of sending a nil ft.mt.
continue
}
for {
err := db.handleFlushTask(ft)
if err == nil {
// Update s.imm. Need a lock.
db.Lock()
// This is a single-threaded operation. ft.mt corresponds to the head of
// db.imm list. Once we flush it, we advance db.imm. The next ft.mt
// which would arrive here would match db.imm[0], because we acquire a
// lock over DB when pushing to flushChan.
// TODO: This logic is dirty AF. Any change and this could easily break.
y.AssertTrue(ft.mt == db.imm[0])
db.imm = db.imm[1:]
ft.mt.DecrRef() // Return memory.
db.Unlock()
break
}
// Encountered error. Retry indefinitely.
db.opt.Errorf("Failure while flushing memtable to disk: %v. Retrying...\n", err)
time.Sleep(time.Second)
}
}
return nil
}
func exists(path string) (bool, error) {
_, err := os.Stat(path)
if err == nil {
return true, nil
}
if os.IsNotExist(err) {
return false, nil
}
return true, err
}
// This function does a filewalk, calculates the size of vlog and sst files and stores it in
// y.LSMSize and y.VlogSize.
func (db *DB) calculateSize() {
if db.opt.InMemory {
return
}
newInt := func(val int64) *expvar.Int {
v := new(expvar.Int)
v.Add(val)
return v
}
totalSize := func(dir string) (int64, int64) {
var lsmSize, vlogSize int64
err := filepath.Walk(dir, func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
ext := filepath.Ext(path)
switch ext {
case ".sst":
lsmSize += info.Size()
case ".vlog":
vlogSize += info.Size()
}
return nil
})
if err != nil {
db.opt.Debugf("Got error while calculating total size of directory: %s", dir)
}
return lsmSize, vlogSize
}
lsmSize, vlogSize := totalSize(db.opt.Dir)
y.LSMSize.Set(db.opt.Dir, newInt(lsmSize))
// If valueDir is different from dir, we'd have to do another walk.
if db.opt.ValueDir != db.opt.Dir {
_, vlogSize = totalSize(db.opt.ValueDir)
}
y.VlogSize.Set(db.opt.ValueDir, newInt(vlogSize))
}
func (db *DB) updateSize(lc *y.Closer) {
defer lc.Done()
if db.opt.InMemory {
return
}
metricsTicker := time.NewTicker(time.Minute)
defer metricsTicker.Stop()
for {
select {
case <-metricsTicker.C:
db.calculateSize()
case <-lc.HasBeenClosed():
return
}
}
}
// RunValueLogGC triggers a value log garbage collection.
//
// It picks value log files to perform GC based on statistics that are collected
// during compactions. If no such statistics are available, then log files are
// picked in random order. The process stops as soon as the first log file is
// encountered which does not result in garbage collection.
//
// When a log file is picked, it is first sampled. If the sample shows that we
// can discard at least discardRatio space of that file, it would be rewritten.
//
// If a call to RunValueLogGC results in no rewrites, then an ErrNoRewrite is
// thrown indicating that the call resulted in no file rewrites.
//
// We recommend setting discardRatio to 0.5, thus indicating that a file be
// rewritten if half the space can be discarded. This results in a lifetime
// value log write amplification of 2 (1 from original write + 0.5 rewrite +
// 0.25 + 0.125 + ... = 2). Setting it to higher value would result in fewer
// space reclaims, while setting it to a lower value would result in more space
// reclaims at the cost of increased activity on the LSM tree. discardRatio
// must be in the range (0.0, 1.0), both endpoints excluded, otherwise an
// ErrInvalidRequest is returned.
//
// Only one GC is allowed at a time. If another value log GC is running, or DB
// has been closed, this would return an ErrRejected.
//
// Note: Every time GC is run, it would produce a spike of activity on the LSM
// tree.
func (db *DB) RunValueLogGC(discardRatio float64) error {
if db.opt.InMemory {
return ErrGCInMemoryMode
}
if discardRatio >= 1.0 || discardRatio <= 0.0 {
return ErrInvalidRequest
}
// startLevel is the level from which we should search for the head key. When badger is running
// with KeepL0InMemory flag, all tables on L0 are kept in memory. This means we should pick head
// key from Level 1 onwards because if we pick the headkey from Level 0 we might end up losing
// data. See test TestL0GCBug.
startLevel := 0
if db.opt.KeepL0InMemory {
startLevel = 1
}
// Find head on disk
headKey := y.KeyWithTs(head, math.MaxUint64)
// Need to pass with timestamp, lsm get removes the last 8 bytes and compares key
val, err := db.lc.get(headKey, nil, startLevel)
if err != nil {
return errors.Wrap(err, "Retrieving head from on-disk LSM")
}
var head valuePointer
if len(val.Value) > 0 {
head.Decode(val.Value)
}
// Pick a log file and run GC
return db.vlog.runGC(discardRatio, head)
}
// Size returns the size of lsm and value log files in bytes. It can be used to decide how often to
// call RunValueLogGC.
func (db *DB) Size() (lsm, vlog int64) {
if y.LSMSize.Get(db.opt.Dir) == nil {
lsm, vlog = 0, 0
return
}
lsm = y.LSMSize.Get(db.opt.Dir).(*expvar.Int).Value()
vlog = y.VlogSize.Get(db.opt.ValueDir).(*expvar.Int).Value()
return
}
// Sequence represents a Badger sequence.
type Sequence struct {
sync.Mutex
db *DB
key []byte
next uint64
leased uint64
bandwidth uint64
}
// Next would return the next integer in the sequence, updating the lease by running a transaction
// if needed.
func (seq *Sequence) Next() (uint64, error) {
seq.Lock()
defer seq.Unlock()
if seq.next >= seq.leased {
if err := seq.updateLease(); err != nil {
return 0, err
}
}
val := seq.next
seq.next++
return val, nil
}
// Release the leased sequence to avoid wasted integers. This should be done right
// before closing the associated DB. However it is valid to use the sequence after
// it was released, causing a new lease with full bandwidth.
func (seq *Sequence) Release() error {
seq.Lock()
defer seq.Unlock()
err := seq.db.Update(func(txn *Txn) error {
item, err := txn.Get(seq.key)
if err != nil {
return err
}
var num uint64
if err := item.Value(func(v []byte) error {
num = binary.BigEndian.Uint64(v)
return nil
}); err != nil {
return err
}
if num == seq.leased {
var buf [8]byte
binary.BigEndian.PutUint64(buf[:], seq.next)
return txn.SetEntry(NewEntry(seq.key, buf[:]))
}
return nil
})
if err != nil {
return err
}
seq.leased = seq.next
return nil
}
func (seq *Sequence) updateLease() error {
return seq.db.Update(func(txn *Txn) error {
item, err := txn.Get(seq.key)
switch {
case err == ErrKeyNotFound:
seq.next = 0
case err != nil:
return err
default:
var num uint64
if err := item.Value(func(v []byte) error {
num = binary.BigEndian.Uint64(v)
return nil
}); err != nil {
return err
}
seq.next = num
}
lease := seq.next + seq.bandwidth
var buf [8]byte
binary.BigEndian.PutUint64(buf[:], lease)
if err = txn.SetEntry(NewEntry(seq.key, buf[:])); err != nil {
return err
}
seq.leased = lease
return nil
})
}
// GetSequence would initiate a new sequence object, generating it from the stored lease, if
// available, in the database. Sequence can be used to get a list of monotonically increasing
// integers. Multiple sequences can be created by providing different keys. Bandwidth sets the
// size of the lease, determining how many Next() requests can be served from memory.
//
// GetSequence is not supported on ManagedDB. Calling this would result in a panic.
func (db *DB) GetSequence(key []byte, bandwidth uint64) (*Sequence, error) {
if db.opt.managedTxns {
panic("Cannot use GetSequence with managedDB=true.")
}
switch {
case len(key) == 0:
return nil, ErrEmptyKey
case bandwidth == 0:
return nil, ErrZeroBandwidth
}
seq := &Sequence{
db: db,
key: key,
next: 0,
leased: 0,
bandwidth: bandwidth,
}
err := seq.updateLease()
return seq, err
}
// Tables gets the TableInfo objects from the level controller. If withKeysCount
// is true, TableInfo objects also contain counts of keys for the tables.
func (db *DB) Tables(withKeysCount bool) []TableInfo {
return db.lc.getTableInfo(withKeysCount)
}
// KeySplits can be used to get rough key ranges to divide up iteration over
// the DB.
func (db *DB) KeySplits(prefix []byte) []string {
var splits []string
// We just want table ranges here and not keys count.
for _, ti := range db.Tables(false) {
// We don't use ti.Left, because that has a tendency to store !badger
// keys.
if bytes.HasPrefix(ti.Right, prefix) {
splits = append(splits, string(ti.Right))
}
}
sort.Strings(splits)
return splits
}
// MaxBatchCount returns max possible entries in batch
func (db *DB) MaxBatchCount() int64 {
return db.opt.maxBatchCount
}
// MaxBatchSize returns max possible batch size
func (db *DB) MaxBatchSize() int64 {
return db.opt.maxBatchSize
}
func (db *DB) stopMemoryFlush() {
// Stop memtable flushes.
if db.closers.memtable != nil {
close(db.flushChan)
db.closers.memtable.SignalAndWait()
}
}
func (db *DB) stopCompactions() {
// Stop compactions.
if db.closers.compactors != nil {
db.closers.compactors.SignalAndWait()
}
}
func (db *DB) startCompactions() {
// Resume compactions.
if db.closers.compactors != nil {
db.closers.compactors = y.NewCloser(1)
db.lc.startCompact(db.closers.compactors)
}
}
func (db *DB) startMemoryFlush() {
// Start memory fluhser.
if db.closers.memtable != nil {
db.flushChan = make(chan flushTask, db.opt.NumMemtables)
db.closers.memtable = y.NewCloser(1)
go func() {
_ = db.flushMemtable(db.closers.memtable)
}()
}
}
// Flatten can be used to force compactions on the LSM tree so all the tables fall on the same
// level. This ensures that all the versions of keys are colocated and not split across multiple
// levels, which is necessary after a restore from backup. During Flatten, live compactions are
// stopped. Ideally, no writes are going on during Flatten. Otherwise, it would create competition
// between flattening the tree and new tables being created at level zero.
func (db *DB) Flatten(workers int) error {
db.stopCompactions()
defer db.startCompactions()
compactAway := func(cp compactionPriority) error {
db.opt.Infof("Attempting to compact with %+v\n", cp)
errCh := make(chan error, 1)
for i := 0; i < workers; i++ {
go func() {
errCh <- db.lc.doCompact(175, cp)
}()
}
var success int
var rerr error
for i := 0; i < workers; i++ {
err := <-errCh
if err != nil {
rerr = err
db.opt.Warningf("While running doCompact with %+v. Error: %v\n", cp, err)
} else {
success++
}
}
if success == 0 {
return rerr
}
// We could do at least one successful compaction. So, we'll consider this a success.
db.opt.Infof("%d compactor(s) succeeded. One or more tables from level %d compacted.\n",
success, cp.level)
return nil
}
hbytes := func(sz int64) string {
return humanize.Bytes(uint64(sz))
}
for {
db.opt.Infof("\n")
var levels []int
for i, l := range db.lc.levels {
sz := l.getTotalSize()
db.opt.Infof("Level: %d. %8s Size. %8s Max.\n",
i, hbytes(l.getTotalSize()), hbytes(l.maxTotalSize))
if sz > 0 {
levels = append(levels, i)
}
}
if len(levels) <= 1 {
prios := db.lc.pickCompactLevels()
if len(prios) == 0 || prios[0].score <= 1.0 {
db.opt.Infof("All tables consolidated into one level. Flattening done.\n")
return nil
}
if err := compactAway(prios[0]); err != nil {
return err
}
continue
}
// Create an artificial compaction priority, to ensure that we compact the level.
cp := compactionPriority{level: levels[0], score: 1.71}
if err := compactAway(cp); err != nil {
return err
}
}
}
func (db *DB) blockWrite() error {
// Stop accepting new writes.
if !atomic.CompareAndSwapInt32(&db.blockWrites, 0, 1) {
return ErrBlockedWrites
}
// Make all pending writes finish. The following will also close writeCh.
db.closers.writes.SignalAndWait()
db.opt.Infof("Writes flushed. Stopping compactions now...")
return nil
}
func (db *DB) unblockWrite() {
db.closers.writes = y.NewCloser(1)
go db.doWrites(db.closers.writes)
// Resume writes.
atomic.StoreInt32(&db.blockWrites, 0)
}
func (db *DB) prepareToDrop() (func(), error) {
if db.opt.ReadOnly {
panic("Attempting to drop data in read-only mode.")
}
// In order prepare for drop, we need to block the incoming writes and
// write it to db. Then, flush all the pending flushtask. So that, we
// don't miss any entries.
if err := db.blockWrite(); err != nil {
return nil, err
}
reqs := make([]*request, 0, 10)
for {
select {
case r := <-db.writeCh:
reqs = append(reqs, r)
default:
if err := db.writeRequests(reqs); err != nil {
db.opt.Errorf("writeRequests: %v", err)
}
db.stopMemoryFlush()
return func() {
db.opt.Infof("Resuming writes")
db.startMemoryFlush()
db.unblockWrite()
}, nil
}
}
}
// DropAll would drop all the data stored in Badger. It does this in the following way.
// - Stop accepting new writes.
// - Pause memtable flushes and compactions.
// - Pick all tables from all levels, create a changeset to delete all these
// tables and apply it to manifest.
// - Pick all log files from value log, and delete all of them. Restart value log files from zero.
// - Resume memtable flushes and compactions.
//
// NOTE: DropAll is resilient to concurrent writes, but not to reads. It is up to the user to not do
// any reads while DropAll is going on, otherwise they may result in panics. Ideally, both reads and
// writes are paused before running DropAll, and resumed after it is finished.
func (db *DB) DropAll() error {
f, err := db.dropAll()
if f != nil {
f()
}
return err
}
func (db *DB) dropAll() (func(), error) {
db.opt.Infof("DropAll called. Blocking writes...")
f, err := db.prepareToDrop()
if err != nil {
return f, err
}
// prepareToDrop will stop all the incomming write and flushes any pending flush tasks.
// Before we drop, we'll stop the compaction because anyways all the datas are going to
// be deleted.
db.stopCompactions()
resume := func() {
db.startCompactions()
f()
}
// Block all foreign interactions with memory tables.
db.Lock()
defer db.Unlock()
// Remove inmemory tables. Calling DecrRef for safety. Not sure if they're absolutely needed.
db.mt.DecrRef()
for _, mt := range db.imm {
mt.DecrRef()
}
db.imm = db.imm[:0]
db.mt = skl.NewSkiplist(arenaSize(db.opt)) // Set it up for future writes.
num, err := db.lc.dropTree()
if err != nil {
return resume, err
}
db.opt.Infof("Deleted %d SSTables. Now deleting value logs...\n", num)
num, err = db.vlog.dropAll()
if err != nil {
return resume, err
}
db.vhead = valuePointer{} // Zero it out.
db.lc.nextFileID = 1
db.opt.Infof("Deleted %d value log files. DropAll done.\n", num)
db.blockCache.Clear()
db.indexCache.Clear()
return resume, nil
}
// DropPrefix would drop all the keys with the provided prefix. It does this in the following way:
// - Stop accepting new writes.
// - Stop memtable flushes before acquiring lock. Because we're acquring lock here
// and memtable flush stalls for lock, which leads to deadlock
// - Flush out all memtables, skipping over keys with the given prefix, Kp.
// - Write out the value log header to memtables when flushing, so we don't accidentally bring Kp
// back after a restart.
// - Stop compaction.
// - Compact L0->L1, skipping over Kp.
// - Compact rest of the levels, Li->Li, picking tables which have Kp.
// - Resume memtable flushes, compactions and writes.
func (db *DB) DropPrefix(prefixes ...[]byte) error {
db.opt.Infof("DropPrefix Called")
f, err := db.prepareToDrop()
if err != nil {
return err
}
defer f()
// Block all foreign interactions with memory tables.
db.Lock()
defer db.Unlock()
db.imm = append(db.imm, db.mt)
for _, memtable := range db.imm {
if memtable.Empty() {
memtable.DecrRef()
continue
}
task := flushTask{
mt: memtable,
// Ensure that the head of value log gets persisted to disk.
vptr: db.vhead,
dropPrefixes: prefixes,
}
db.opt.Debugf("Flushing memtable")
if err := db.handleFlushTask(task); err != nil {
db.opt.Errorf("While trying to flush memtable: %v", err)
return err
}
memtable.DecrRef()
}
db.stopCompactions()
defer db.startCompactions()
db.imm = db.imm[:0]
db.mt = skl.NewSkiplist(arenaSize(db.opt))
// Drop prefixes from the levels.
if err := db.lc.dropPrefixes(prefixes); err != nil {
return err
}
db.opt.Infof("DropPrefix done")
return nil
}
// KVList contains a list of key-value pairs.
type KVList = pb.KVList
// Subscribe can be used to watch key changes for the given key prefixes.
// At least one prefix should be passed, or an error will be returned.
// You can use an empty prefix to monitor all changes to the DB.
// This function blocks until the given context is done or an error occurs.
// The given function will be called with a new KVList containing the modified keys and the
// corresponding values.
func (db *DB) Subscribe(ctx context.Context, cb func(kv *KVList) error, prefixes ...[]byte) error {
if cb == nil {
return ErrNilCallback
}
c := y.NewCloser(1)
recvCh, id := db.pub.newSubscriber(c, prefixes...)
slurp := func(batch *pb.KVList) error {
for {
select {
case kvs := <-recvCh:
batch.Kv = append(batch.Kv, kvs.Kv...)
default:
if len(batch.GetKv()) > 0 {
return cb(batch)
}
return nil
}
}
}
for {
select {
case <-c.HasBeenClosed():
// No need to delete here. Closer will be called only while
// closing DB. Subscriber will be deleted by cleanSubscribers.
err := slurp(new(pb.KVList))
// Drain if any pending updates.
c.Done()
return err
case <-ctx.Done():
c.Done()
db.pub.deleteSubscriber(id)
// Delete the subscriber to avoid further updates.
return ctx.Err()
case batch := <-recvCh:
err := slurp(batch)
if err != nil {
c.Done()
// Delete the subscriber if there is an error by the callback.
db.pub.deleteSubscriber(id)
return err
}
}
}
}
// shouldEncrypt returns bool, which tells whether to encrypt or not.
func (db *DB) shouldEncrypt() bool {
return len(db.opt.EncryptionKey) > 0
}
func (db *DB) syncDir(dir string) error {
if db.opt.InMemory {
return nil
}
return syncDir(dir)
}
func createDirs(opt Options) error {
for _, path := range []string{opt.Dir, opt.ValueDir} {
dirExists, err := exists(path)
if err != nil {
return y.Wrapf(err, "Invalid Dir: %q", path)
}
if !dirExists {
if opt.ReadOnly {
return errors.Errorf("Cannot find directory %q for read-only open", path)
}
// Try to create the directory
err = os.Mkdir(path, 0700)
if err != nil {
return y.Wrapf(err, "Error Creating Dir: %q", path)
}
}
}
return nil
}
|