File: db.go

package info (click to toggle)
badger 4.8.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,672 kB
  • sloc: sh: 132; makefile: 61
file content (2077 lines) | stat: -rw-r--r-- 57,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
/*
 * SPDX-FileCopyrightText: © Hypermode Inc. <hello@hypermode.com>
 * SPDX-License-Identifier: Apache-2.0
 */

package badger

import (
	"bytes"
	"context"
	"encoding/binary"
	"errors"
	"expvar"
	"fmt"
	"math"
	"os"
	"path/filepath"
	"sort"
	"strings"
	"sync"
	"sync/atomic"
	"time"

	humanize "github.com/dustin/go-humanize"

	"github.com/dgraph-io/badger/v4/fb"
	"github.com/dgraph-io/badger/v4/options"
	"github.com/dgraph-io/badger/v4/pb"
	"github.com/dgraph-io/badger/v4/skl"
	"github.com/dgraph-io/badger/v4/table"
	"github.com/dgraph-io/badger/v4/y"
	"github.com/dgraph-io/ristretto/v2"
	"github.com/dgraph-io/ristretto/v2/z"
)

var (
	badgerPrefix = []byte("!badger!")       // Prefix for internal keys used by badger.
	txnKey       = []byte("!badger!txn")    // For indicating end of entries in txn.
	bannedNsKey  = []byte("!badger!banned") // For storing the banned namespaces.
)

type closers struct {
	updateSize  *z.Closer
	compactors  *z.Closer
	memtable    *z.Closer
	writes      *z.Closer
	valueGC     *z.Closer
	pub         *z.Closer
	cacheHealth *z.Closer
}

type lockedKeys struct {
	sync.RWMutex
	keys map[uint64]struct{}
}

func (lk *lockedKeys) add(key uint64) {
	lk.Lock()
	defer lk.Unlock()
	lk.keys[key] = struct{}{}
}

func (lk *lockedKeys) has(key uint64) bool {
	lk.RLock()
	defer lk.RUnlock()
	_, ok := lk.keys[key]
	return ok
}

func (lk *lockedKeys) all() []uint64 {
	lk.RLock()
	defer lk.RUnlock()
	keys := make([]uint64, 0, len(lk.keys))
	for key := range lk.keys {
		keys = append(keys, key)
	}
	return keys
}

// DB provides the various functions required to interact with Badger.
// DB is thread-safe.
type DB struct {
	testOnlyDBExtensions

	lock sync.RWMutex // Guards list of inmemory tables, not individual reads and writes.

	dirLockGuard *directoryLockGuard
	// nil if Dir and ValueDir are the same
	valueDirGuard *directoryLockGuard

	closers closers

	mt  *memTable   // Our latest (actively written) in-memory table
	imm []*memTable // Add here only AFTER pushing to flushChan.

	// Initialized via openMemTables.
	nextMemFid int

	opt       Options
	manifest  *manifestFile
	lc        *levelsController
	vlog      valueLog
	writeCh   chan *request
	flushChan chan *memTable // For flushing memtables.
	closeOnce sync.Once      // For closing DB only once.

	blockWrites atomic.Int32
	isClosed    atomic.Uint32

	orc              *oracle
	bannedNamespaces *lockedKeys
	threshold        *vlogThreshold

	pub        *publisher
	registry   *KeyRegistry
	blockCache *ristretto.Cache[[]byte, *table.Block]
	indexCache *ristretto.Cache[uint64, *fb.TableIndex]
	allocPool  *z.AllocatorPool
}

const (
	kvWriteChCapacity = 1000
)

func checkAndSetOptions(opt *Options) error {
	// It's okay to have zero compactors which will disable all compactions but
	// we cannot have just one compactor otherwise we will end up with all data
	// on level 2.
	if opt.NumCompactors == 1 {
		return errors.New("Cannot have 1 compactor. Need at least 2")
	}

	if opt.InMemory && (opt.Dir != "" || opt.ValueDir != "") {
		return errors.New("Cannot use badger in Disk-less mode with Dir or ValueDir set")
	}
	opt.maxBatchSize = (15 * opt.MemTableSize) / 100
	opt.maxBatchCount = opt.maxBatchSize / int64(skl.MaxNodeSize)

	// This is the maximum value, vlogThreshold can have if dynamic thresholding is enabled.
	opt.maxValueThreshold = math.Min(maxValueThreshold, float64(opt.maxBatchSize))
	if opt.VLogPercentile < 0.0 || opt.VLogPercentile > 1.0 {
		return errors.New("vlogPercentile must be within range of 0.0-1.0")
	}

	// We are limiting opt.ValueThreshold to maxValueThreshold for now.
	if opt.ValueThreshold > maxValueThreshold {
		return fmt.Errorf("Invalid ValueThreshold, must be less or equal to %d",
			maxValueThreshold)
	}

	// If ValueThreshold is greater than opt.maxBatchSize, we won't be able to push any data using
	// the transaction APIs. Transaction batches entries into batches of size opt.maxBatchSize.
	if opt.ValueThreshold > opt.maxBatchSize {
		return fmt.Errorf("Valuethreshold %d greater than max batch size of %d. Either "+
			"reduce opt.ValueThreshold or increase opt.BaseTableSize.",
			opt.ValueThreshold, opt.maxBatchSize)
	}
	// ValueLogFileSize should be strictly LESS than 2<<30 otherwise we will
	// overflow the uint32 when we mmap it in OpenMemtable.
	if !(opt.ValueLogFileSize < 2<<30 && opt.ValueLogFileSize >= 1<<20) {
		return ErrValueLogSize
	}

	if opt.ReadOnly {
		// Do not perform compaction in read only mode.
		opt.CompactL0OnClose = false
	}

	needCache := (opt.Compression != options.None) || (len(opt.EncryptionKey) > 0)
	if needCache && opt.BlockCacheSize == 0 {
		panic("BlockCacheSize should be set since compression/encryption are enabled")
	}
	return nil
}

// Open returns a new DB object.
func Open(opt Options) (*DB, error) {
	if err := checkAndSetOptions(&opt); err != nil {
		return nil, err
	}
	var dirLockGuard, valueDirLockGuard *directoryLockGuard

	// Create directories and acquire lock on it only if badger is not running in InMemory mode.
	// We don't have any directories/files in InMemory mode so we don't need to acquire
	// any locks on them.
	if !opt.InMemory {
		if err := createDirs(opt); err != nil {
			return nil, err
		}
		var err error
		if !opt.BypassLockGuard {
			dirLockGuard, err = acquireDirectoryLock(opt.Dir, lockFile, opt.ReadOnly)
			if err != nil {
				return nil, err
			}
			defer func() {
				if dirLockGuard != nil {
					_ = dirLockGuard.release()
				}
			}()
			absDir, err := filepath.Abs(opt.Dir)
			if err != nil {
				return nil, err
			}
			absValueDir, err := filepath.Abs(opt.ValueDir)
			if err != nil {
				return nil, err
			}
			if absValueDir != absDir {
				valueDirLockGuard, err = acquireDirectoryLock(opt.ValueDir, lockFile, opt.ReadOnly)
				if err != nil {
					return nil, err
				}
				defer func() {
					if valueDirLockGuard != nil {
						_ = valueDirLockGuard.release()
					}
				}()
			}
		}
	}

	manifestFile, manifest, err := openOrCreateManifestFile(opt)
	if err != nil {
		return nil, err
	}
	defer func() {
		if manifestFile != nil {
			_ = manifestFile.close()
		}
	}()

	db := &DB{
		imm:              make([]*memTable, 0, opt.NumMemtables),
		flushChan:        make(chan *memTable, opt.NumMemtables),
		writeCh:          make(chan *request, kvWriteChCapacity),
		opt:              opt,
		manifest:         manifestFile,
		dirLockGuard:     dirLockGuard,
		valueDirGuard:    valueDirLockGuard,
		orc:              newOracle(opt),
		pub:              newPublisher(),
		allocPool:        z.NewAllocatorPool(8),
		bannedNamespaces: &lockedKeys{keys: make(map[uint64]struct{})},
		threshold:        initVlogThreshold(&opt),
	}

	db.syncChan = opt.syncChan

	// Cleanup all the goroutines started by badger in case of an error.
	defer func() {
		if err != nil {
			opt.Errorf("Received err: %v. Cleaning up...", err)
			db.cleanup()
			db = nil
		}
	}()

	if opt.BlockCacheSize > 0 {
		numInCache := opt.BlockCacheSize / int64(opt.BlockSize)
		if numInCache == 0 {
			// Make the value of this variable at least one since the cache requires
			// the number of counters to be greater than zero.
			numInCache = 1
		}

		config := ristretto.Config[[]byte, *table.Block]{
			NumCounters: numInCache * 8,
			MaxCost:     opt.BlockCacheSize,
			BufferItems: 64,
			Metrics:     true,
			OnExit:      table.BlockEvictHandler,
		}
		db.blockCache, err = ristretto.NewCache[[]byte, *table.Block](&config)
		if err != nil {
			return nil, y.Wrap(err, "failed to create data cache")
		}
	}

	if opt.IndexCacheSize > 0 {
		// Index size is around 5% of the table size.
		indexSz := int64(float64(opt.MemTableSize) * 0.05)
		numInCache := opt.IndexCacheSize / indexSz
		if numInCache == 0 {
			// Make the value of this variable at least one since the cache requires
			// the number of counters to be greater than zero.
			numInCache = 1
		}

		config := ristretto.Config[uint64, *fb.TableIndex]{
			NumCounters: numInCache * 8,
			MaxCost:     opt.IndexCacheSize,
			BufferItems: 64,
			Metrics:     true,
		}
		db.indexCache, err = ristretto.NewCache(&config)
		if err != nil {
			return nil, y.Wrap(err, "failed to create bf cache")
		}
	}

	db.closers.cacheHealth = z.NewCloser(1)
	go db.monitorCache(db.closers.cacheHealth)

	if db.opt.InMemory {
		db.opt.SyncWrites = false
		// If badger is running in memory mode, push everything into the LSM Tree.
		db.opt.ValueThreshold = math.MaxInt32
	}
	krOpt := KeyRegistryOptions{
		ReadOnly:                      opt.ReadOnly,
		Dir:                           opt.Dir,
		EncryptionKey:                 opt.EncryptionKey,
		EncryptionKeyRotationDuration: opt.EncryptionKeyRotationDuration,
		InMemory:                      opt.InMemory,
	}

	if db.registry, err = OpenKeyRegistry(krOpt); err != nil {
		return db, err
	}
	db.calculateSize()
	db.closers.updateSize = z.NewCloser(1)
	go db.updateSize(db.closers.updateSize)

	if err := db.openMemTables(db.opt); err != nil {
		return nil, y.Wrapf(err, "while opening memtables")
	}

	if !db.opt.ReadOnly {
		if db.mt, err = db.newMemTable(); err != nil {
			return nil, y.Wrapf(err, "cannot create memtable")
		}
	}

	// newLevelsController potentially loads files in directory.
	if db.lc, err = newLevelsController(db, &manifest); err != nil {
		return db, err
	}

	// Initialize vlog struct.
	db.vlog.init(db)

	if !opt.ReadOnly {
		db.closers.compactors = z.NewCloser(1)
		db.lc.startCompact(db.closers.compactors)

		db.closers.memtable = z.NewCloser(1)
		go func() {
			db.flushMemtable(db.closers.memtable) // Need levels controller to be up.
		}()
		// Flush them to disk asap.
		for _, mt := range db.imm {
			db.flushChan <- mt
		}
	}
	// We do increment nextTxnTs below. So, no need to do it here.
	db.orc.nextTxnTs = db.MaxVersion()
	db.opt.Infof("Set nextTxnTs to %d", db.orc.nextTxnTs)

	if err = db.vlog.open(db); err != nil {
		return db, y.Wrapf(err, "During db.vlog.open")
	}

	// Let's advance nextTxnTs to one more than whatever we observed via
	// replaying the logs.
	db.orc.txnMark.Done(db.orc.nextTxnTs)
	// In normal mode, we must update readMark so older versions of keys can be removed during
	// compaction when run in offline mode via the flatten tool.
	db.orc.readMark.Done(db.orc.nextTxnTs)
	db.orc.incrementNextTs()

	go db.threshold.listenForValueThresholdUpdate()

	if err := db.initBannedNamespaces(); err != nil {
		return db, fmt.Errorf("While setting banned keys: %w", err)
	}

	db.closers.writes = z.NewCloser(1)
	go db.doWrites(db.closers.writes)

	if !db.opt.InMemory {
		db.closers.valueGC = z.NewCloser(1)
		go db.vlog.waitOnGC(db.closers.valueGC)
	}

	db.closers.pub = z.NewCloser(1)
	go db.pub.listenForUpdates(db.closers.pub)

	valueDirLockGuard = nil
	dirLockGuard = nil
	manifestFile = nil
	return db, nil
}

// initBannedNamespaces retrieves the banned namespaces from the DB and updates in-memory structure.
func (db *DB) initBannedNamespaces() error {
	if db.opt.NamespaceOffset < 0 {
		return nil
	}
	return db.View(func(txn *Txn) error {
		iopts := DefaultIteratorOptions
		iopts.Prefix = bannedNsKey
		iopts.PrefetchValues = false
		iopts.InternalAccess = true
		itr := txn.NewIterator(iopts)
		defer itr.Close()
		for itr.Rewind(); itr.Valid(); itr.Next() {
			key := y.BytesToU64(itr.Item().Key()[len(bannedNsKey):])
			db.bannedNamespaces.add(key)
		}
		return nil
	})
}

func (db *DB) MaxVersion() uint64 {
	var maxVersion uint64
	update := func(a uint64) {
		if a > maxVersion {
			maxVersion = a
		}
	}
	db.lock.Lock()
	// In read only mode, we do not create new mem table.
	if !db.opt.ReadOnly {
		update(db.mt.maxVersion)
	}
	for _, mt := range db.imm {
		update(mt.maxVersion)
	}
	db.lock.Unlock()
	for _, ti := range db.Tables() {
		update(ti.MaxVersion)
	}
	return maxVersion
}

func (db *DB) monitorCache(c *z.Closer) {
	defer c.Done()
	count := 0
	analyze := func(name string, metrics *ristretto.Metrics) {
		// If the mean life expectancy is less than 10 seconds, the cache
		// might be too small.
		le := metrics.LifeExpectancySeconds()
		if le == nil {
			return
		}
		lifeTooShort := le.Count > 0 && float64(le.Sum)/float64(le.Count) < 10
		hitRatioTooLow := metrics.Ratio() > 0 && metrics.Ratio() < 0.4
		if lifeTooShort && hitRatioTooLow {
			db.opt.Warningf("%s might be too small. Metrics: %s\n", name, metrics)
			db.opt.Warningf("Cache life expectancy (in seconds): %+v\n", le)

		} else if le.Count > 1000 && count%5 == 0 {
			db.opt.Infof("%s metrics: %s\n", name, metrics)
		}
	}

	ticker := time.NewTicker(1 * time.Minute)
	defer ticker.Stop()
	for {
		select {
		case <-c.HasBeenClosed():
			return
		case <-ticker.C:
		}

		analyze("Block cache", db.BlockCacheMetrics())
		analyze("Index cache", db.IndexCacheMetrics())
		count++
	}
}

// cleanup stops all the goroutines started by badger. This is used in open to
// cleanup goroutines in case of an error.
func (db *DB) cleanup() {
	db.stopMemoryFlush()
	db.stopCompactions()

	db.blockCache.Close()
	db.indexCache.Close()
	if db.closers.updateSize != nil {
		db.closers.updateSize.Signal()
	}
	if db.closers.valueGC != nil {
		db.closers.valueGC.Signal()
	}
	if db.closers.writes != nil {
		db.closers.writes.Signal()
	}
	if db.closers.pub != nil {
		db.closers.pub.Signal()
	}

	db.orc.Stop()

	// Do not use vlog.Close() here. vlog.Close truncates the files. We don't
	// want to truncate files unless the user has specified the truncate flag.
}

// BlockCacheMetrics returns the metrics for the underlying block cache.
func (db *DB) BlockCacheMetrics() *ristretto.Metrics {
	if db.blockCache != nil {
		return db.blockCache.Metrics
	}
	return nil
}

// IndexCacheMetrics returns the metrics for the underlying index cache.
func (db *DB) IndexCacheMetrics() *ristretto.Metrics {
	if db.indexCache != nil {
		return db.indexCache.Metrics
	}
	return nil
}

// Close closes a DB. It's crucial to call it to ensure all the pending updates make their way to
// disk. Calling DB.Close() multiple times would still only close the DB once.
func (db *DB) Close() error {
	var err error
	db.closeOnce.Do(func() {
		err = db.close()
	})
	return err
}

// IsClosed denotes if the badger DB is closed or not. A DB instance should not
// be used after closing it.
func (db *DB) IsClosed() bool {
	return db.isClosed.Load() == 1
}

func (db *DB) close() (err error) {
	defer db.allocPool.Release()

	db.opt.Debugf("Closing database")
	db.opt.Infof("Lifetime L0 stalled for: %s\n", time.Duration(db.lc.l0stallsMs.Load()))

	db.blockWrites.Store(1)
	db.isClosed.Store(1)

	if !db.opt.InMemory {
		// Stop value GC first.
		db.closers.valueGC.SignalAndWait()
	}

	// Stop writes next.
	db.closers.writes.SignalAndWait()

	// Don't accept any more write.
	close(db.writeCh)

	db.closers.pub.SignalAndWait()
	db.closers.cacheHealth.Signal()

	// Make sure that block writer is done pushing stuff into memtable!
	// Otherwise, you will have a race condition: we are trying to flush memtables
	// and remove them completely, while the block / memtable writer is still
	// trying to push stuff into the memtable. This will also resolve the value
	// offset problem: as we push into memtable, we update value offsets there.
	if db.mt != nil {
		if db.mt.sl.Empty() {
			// Remove the memtable if empty.
			db.mt.DecrRef()
		} else {
			db.opt.Debugf("Flushing memtable")
			for {
				pushedMemTable := func() bool {
					db.lock.Lock()
					defer db.lock.Unlock()
					y.AssertTrue(db.mt != nil)
					select {
					case db.flushChan <- db.mt:
						db.imm = append(db.imm, db.mt) // Flusher will attempt to remove this from s.imm.
						db.mt = nil                    // Will segfault if we try writing!
						db.opt.Debugf("pushed to flush chan\n")
						return true
					default:
						// If we fail to push, we need to unlock and wait for a short while.
						// The flushing operation needs to update s.imm. Otherwise, we have a
						// deadlock.
						// TODO: Think about how to do this more cleanly, maybe without any locks.
					}
					return false
				}()
				if pushedMemTable {
					break
				}
				time.Sleep(10 * time.Millisecond)
			}
		}
	}
	db.stopMemoryFlush()
	db.stopCompactions()

	// Force Compact L0
	// We don't need to care about cstatus since no parallel compaction is running.
	if db.opt.CompactL0OnClose {
		err := db.lc.doCompact(173, compactionPriority{level: 0, score: 1.73})
		switch err {
		case errFillTables:
			// This error only means that there might be enough tables to do a compaction. So, we
			// should not report it to the end user to avoid confusing them.
		case nil:
			db.opt.Debugf("Force compaction on level 0 done")
		default:
			db.opt.Warningf("While forcing compaction on level 0: %v", err)
		}
	}

	// Now close the value log.
	if vlogErr := db.vlog.Close(); vlogErr != nil {
		err = y.Wrap(vlogErr, "DB.Close")
	}

	db.opt.Infof(db.LevelsToString())
	if lcErr := db.lc.close(); err == nil {
		err = y.Wrap(lcErr, "DB.Close")
	}
	db.opt.Debugf("Waiting for closer")
	db.closers.updateSize.SignalAndWait()
	db.orc.Stop()
	db.blockCache.Close()
	db.indexCache.Close()

	db.threshold.close()

	if db.opt.InMemory {
		return
	}

	if db.dirLockGuard != nil {
		if guardErr := db.dirLockGuard.release(); err == nil {
			err = y.Wrap(guardErr, "DB.Close")
		}
	}
	if db.valueDirGuard != nil {
		if guardErr := db.valueDirGuard.release(); err == nil {
			err = y.Wrap(guardErr, "DB.Close")
		}
	}
	if manifestErr := db.manifest.close(); err == nil {
		err = y.Wrap(manifestErr, "DB.Close")
	}
	if registryErr := db.registry.Close(); err == nil {
		err = y.Wrap(registryErr, "DB.Close")
	}

	// Fsync directories to ensure that lock file, and any other removed files whose directory
	// we haven't specifically fsynced, are guaranteed to have their directory entry removal
	// persisted to disk.
	if syncErr := db.syncDir(db.opt.Dir); err == nil {
		err = y.Wrap(syncErr, "DB.Close")
	}
	if syncErr := db.syncDir(db.opt.ValueDir); err == nil {
		err = y.Wrap(syncErr, "DB.Close")
	}

	return err
}

// VerifyChecksum verifies checksum for all tables on all levels.
// This method can be used to verify checksum, if opt.ChecksumVerificationMode is NoVerification.
func (db *DB) VerifyChecksum() error {
	return db.lc.verifyChecksum()
}

const (
	lockFile = "LOCK"
)

// Sync syncs database content to disk. This function provides
// more control to user to sync data whenever required.
func (db *DB) Sync() error {
	/**
	Make an attempt to sync both the logs, the active memtable's WAL and the vLog (1847).
	Cases:
	- All_ok			:: If both the logs sync successfully.

	- Entry_Lost		:: If an entry with a value pointer was present in the active memtable's WAL,
						:: and the WAL was synced but there was an error in syncing the vLog.
						:: The entry will be considered lost and this case will need to be handled during recovery.

	- Entries_Lost		:: If there were errors in syncing both the logs, multiple entries would be lost.

	- Entries_Lost      :: If the active memtable's WAL is not synced but the vLog is synced, it will
						:: result in entries being lost because recovery of the active memtable is done from its WAL.
						:: Check `UpdateSkipList` in memtable.go.

	- Nothing_lost		:: If an entry with its value was present in the active memtable's WAL, and the WAL was synced,
						:: but there was an error in syncing the vLog.
						:: Nothing is lost for this very specific entry because the entry is completely present in the memtable's WAL.

	- Partially_lost    :: If entries were written partially in either of the logs,
						:: the logs will be truncated during recovery.
						:: As a result of truncation, some entries might be lost.
					    :: Assume that 4KB of data is to be synced and invoking `Sync` results only in syncing 3KB
	                    :: of data and then the machine shuts down or the disk failure happens,
						:: this will result in partial writes. [[This case needs verification]]
	*/
	db.lock.RLock()
	memtableSyncError := db.mt.SyncWAL()
	db.lock.RUnlock()

	vLogSyncError := db.vlog.sync()
	return y.CombineErrors(memtableSyncError, vLogSyncError)
}

// getMemtables returns the current memtables and get references.
func (db *DB) getMemTables() ([]*memTable, func()) {
	db.lock.RLock()
	defer db.lock.RUnlock()

	var tables []*memTable

	// Mutable memtable does not exist in read-only mode.
	if !db.opt.ReadOnly {
		// Get mutable memtable.
		tables = append(tables, db.mt)
		db.mt.IncrRef()
	}

	// Get immutable memtables.
	last := len(db.imm) - 1
	for i := range db.imm {
		tables = append(tables, db.imm[last-i])
		db.imm[last-i].IncrRef()
	}
	return tables, func() {
		for _, tbl := range tables {
			tbl.DecrRef()
		}
	}
}

// get returns the value in memtable or disk for given key.
// Note that value will include meta byte.
//
// IMPORTANT: We should never write an entry with an older timestamp for the same key, We need to
// maintain this invariant to search for the latest value of a key, or else we need to search in all
// tables and find the max version among them.  To maintain this invariant, we also need to ensure
// that all versions of a key are always present in the same table from level 1, because compaction
// can push any table down.
//
// Update(23/09/2020) - We have dropped the move key implementation. Earlier we
// were inserting move keys to fix the invalid value pointers but we no longer
// do that. For every get("fooX") call where X is the version, we will search
// for "fooX" in all the levels of the LSM tree. This is expensive but it
// removes the overhead of handling move keys completely.
func (db *DB) get(key []byte) (y.ValueStruct, error) {
	if db.IsClosed() {
		return y.ValueStruct{}, ErrDBClosed
	}
	tables, decr := db.getMemTables() // Lock should be released.
	defer decr()

	var maxVs y.ValueStruct
	version := y.ParseTs(key)

	y.NumGetsAdd(db.opt.MetricsEnabled, 1)
	for i := 0; i < len(tables); i++ {
		vs := tables[i].sl.Get(key)
		y.NumMemtableGetsAdd(db.opt.MetricsEnabled, 1)
		if vs.Meta == 0 && vs.Value == nil {
			continue
		}
		// Found the required version of the key, return immediately.
		if vs.Version == version {
			y.NumGetsWithResultsAdd(db.opt.MetricsEnabled, 1)
			return vs, nil
		}
		if maxVs.Version < vs.Version {
			maxVs = vs
		}
	}
	return db.lc.get(key, maxVs, 0)
}

var requestPool = sync.Pool{
	New: func() interface{} {
		return new(request)
	},
}

func (db *DB) writeToLSM(b *request) error {
	// We should check the length of b.Prts and b.Entries only when badger is not
	// running in InMemory mode. In InMemory mode, we don't write anything to the
	// value log and that's why the length of b.Ptrs will always be zero.
	if !db.opt.InMemory && len(b.Ptrs) != len(b.Entries) {
		return fmt.Errorf("Ptrs and Entries don't match: %+v", b)
	}

	for i, entry := range b.Entries {
		var err error
		if entry.skipVlogAndSetThreshold(db.valueThreshold()) {
			// Will include deletion / tombstone case.
			err = db.mt.Put(entry.Key,
				y.ValueStruct{
					Value: entry.Value,
					// Ensure value pointer flag is removed. Otherwise, the value will fail
					// to be retrieved during iterator prefetch. `bitValuePointer` is only
					// known to be set in write to LSM when the entry is loaded from a backup
					// with lower ValueThreshold and its value was stored in the value log.
					Meta:      entry.meta &^ bitValuePointer,
					UserMeta:  entry.UserMeta,
					ExpiresAt: entry.ExpiresAt,
				})
		} else {
			// Write pointer to Memtable.
			err = db.mt.Put(entry.Key,
				y.ValueStruct{
					Value:     b.Ptrs[i].Encode(),
					Meta:      entry.meta | bitValuePointer,
					UserMeta:  entry.UserMeta,
					ExpiresAt: entry.ExpiresAt,
				})
		}
		if err != nil {
			return y.Wrapf(err, "while writing to memTable")
		}
	}
	if db.opt.SyncWrites {
		return db.mt.SyncWAL()
	}
	return nil
}

// writeRequests is called serially by only one goroutine.
func (db *DB) writeRequests(reqs []*request) error {
	if len(reqs) == 0 {
		return nil
	}

	done := func(err error) {
		for _, r := range reqs {
			r.Err = err
			r.Wg.Done()
		}
	}
	db.opt.Debugf("writeRequests called. Writing to value log")
	err := db.vlog.write(reqs)
	if err != nil {
		done(err)
		return err
	}

	db.opt.Debugf("Writing to memtable")
	var count int
	for _, b := range reqs {
		if len(b.Entries) == 0 {
			continue
		}
		count += len(b.Entries)
		var i uint64
		var err error
		for err = db.ensureRoomForWrite(); err == errNoRoom; err = db.ensureRoomForWrite() {
			i++
			if i%100 == 0 {
				db.opt.Debugf("Making room for writes")
			}
			// We need to poll a bit because both hasRoomForWrite and the flusher need access to s.imm.
			// When flushChan is full and you are blocked there, and the flusher is trying to update s.imm,
			// you will get a deadlock.
			time.Sleep(10 * time.Millisecond)
		}
		if err != nil {
			done(err)
			return y.Wrap(err, "writeRequests")
		}
		if err := db.writeToLSM(b); err != nil {
			done(err)
			return y.Wrap(err, "writeRequests")
		}
	}

	db.opt.Debugf("Sending updates to subscribers")
	db.pub.sendUpdates(reqs)

	done(nil)
	db.opt.Debugf("%d entries written", count)
	return nil
}

func (db *DB) sendToWriteCh(entries []*Entry) (*request, error) {
	if db.blockWrites.Load() == 1 {
		return nil, ErrBlockedWrites
	}
	var count, size int64
	for _, e := range entries {
		size += e.estimateSizeAndSetThreshold(db.valueThreshold())
		count++
	}
	y.NumBytesWrittenUserAdd(db.opt.MetricsEnabled, size)
	if count >= db.opt.maxBatchCount || size >= db.opt.maxBatchSize {
		return nil, ErrTxnTooBig
	}

	// We can only service one request because we need each txn to be stored in a contiguous section.
	// Txns should not interleave among other txns or rewrites.
	req := requestPool.Get().(*request)
	req.reset()
	req.Entries = entries
	req.Wg.Add(1)
	req.IncrRef()     // for db write
	db.writeCh <- req // Handled in doWrites.
	y.NumPutsAdd(db.opt.MetricsEnabled, int64(len(entries)))

	return req, nil
}

func (db *DB) doWrites(lc *z.Closer) {
	defer lc.Done()
	pendingCh := make(chan struct{}, 1)

	writeRequests := func(reqs []*request) {
		if err := db.writeRequests(reqs); err != nil {
			db.opt.Errorf("writeRequests: %v", err)
		}
		<-pendingCh
	}

	// This variable tracks the number of pending writes.
	reqLen := new(expvar.Int)
	y.PendingWritesSet(db.opt.MetricsEnabled, db.opt.Dir, reqLen)

	reqs := make([]*request, 0, 10)
	for {
		var r *request
		select {
		case r = <-db.writeCh:
		case <-lc.HasBeenClosed():
			goto closedCase
		}

		for {
			reqs = append(reqs, r)
			reqLen.Set(int64(len(reqs)))

			if len(reqs) >= 3*kvWriteChCapacity {
				pendingCh <- struct{}{} // blocking.
				goto writeCase
			}

			select {
			// Either push to pending, or continue to pick from writeCh.
			case r = <-db.writeCh:
			case pendingCh <- struct{}{}:
				goto writeCase
			case <-lc.HasBeenClosed():
				goto closedCase
			}
		}

	closedCase:
		// All the pending request are drained.
		// Don't close the writeCh, because it has be used in several places.
		for {
			select {
			case r = <-db.writeCh:
				reqs = append(reqs, r)
			default:
				pendingCh <- struct{}{} // Push to pending before doing a write.
				writeRequests(reqs)
				return
			}
		}

	writeCase:
		go writeRequests(reqs)
		reqs = make([]*request, 0, 10)
		reqLen.Set(0)
	}
}

// batchSet applies a list of badger.Entry. If a request level error occurs it
// will be returned.
//
//	Check(kv.BatchSet(entries))
func (db *DB) batchSet(entries []*Entry) error {
	req, err := db.sendToWriteCh(entries)
	if err != nil {
		return err
	}

	return req.Wait()
}

// batchSetAsync is the asynchronous version of batchSet. It accepts a callback
// function which is called when all the sets are complete. If a request level
// error occurs, it will be passed back via the callback.
//
//	err := kv.BatchSetAsync(entries, func(err error)) {
//	   Check(err)
//	}
func (db *DB) batchSetAsync(entries []*Entry, f func(error)) error {
	req, err := db.sendToWriteCh(entries)
	if err != nil {
		return err
	}
	go func() {
		err := req.Wait()
		// Write is complete. Let's call the callback function now.
		f(err)
	}()
	return nil
}

var errNoRoom = errors.New("No room for write")

// ensureRoomForWrite is always called serially.
func (db *DB) ensureRoomForWrite() error {
	var err error
	db.lock.Lock()
	defer db.lock.Unlock()

	y.AssertTrue(db.mt != nil) // A nil mt indicates that DB is being closed.
	if !db.mt.isFull() {
		return nil
	}

	select {
	case db.flushChan <- db.mt:
		db.opt.Debugf("Flushing memtable, mt.size=%d size of flushChan: %d\n",
			db.mt.sl.MemSize(), len(db.flushChan))
		// We manage to push this task. Let's modify imm.
		db.imm = append(db.imm, db.mt)
		db.mt, err = db.newMemTable()
		if err != nil {
			return y.Wrapf(err, "cannot create new mem table")
		}
		// New memtable is empty. We certainly have room.
		return nil
	default:
		// We need to do this to unlock and allow the flusher to modify imm.
		return errNoRoom
	}
}

func arenaSize(opt Options) int64 {
	return opt.MemTableSize + opt.maxBatchSize + opt.maxBatchCount*int64(skl.MaxNodeSize)
}

// buildL0Table builds a new table from the memtable.
func buildL0Table(iter y.Iterator, dropPrefixes [][]byte, bopts table.Options) *table.Builder {
	defer iter.Close()

	b := table.NewTableBuilder(bopts)
	for iter.Rewind(); iter.Valid(); iter.Next() {
		if len(dropPrefixes) > 0 && hasAnyPrefixes(iter.Key(), dropPrefixes) {
			continue
		}
		vs := iter.Value()
		var vp valuePointer
		if vs.Meta&bitValuePointer > 0 {
			vp.Decode(vs.Value)
		}
		b.Add(iter.Key(), iter.Value(), vp.Len)
	}

	return b
}

// handleMemTableFlush must be run serially.
func (db *DB) handleMemTableFlush(mt *memTable, dropPrefixes [][]byte) error {
	bopts := buildTableOptions(db)
	itr := mt.sl.NewUniIterator(false)
	builder := buildL0Table(itr, nil, bopts)
	defer builder.Close()

	// buildL0Table can return nil if the none of the items in the skiplist are
	// added to the builder. This can happen when drop prefix is set and all
	// the items are skipped.
	if builder.Empty() {
		builder.Finish()
		return nil
	}

	fileID := db.lc.reserveFileID()
	var tbl *table.Table
	var err error
	if db.opt.InMemory {
		data := builder.Finish()
		tbl, err = table.OpenInMemoryTable(data, fileID, &bopts)
	} else {
		tbl, err = table.CreateTable(table.NewFilename(fileID, db.opt.Dir), builder)
	}
	if err != nil {
		return y.Wrap(err, "error while creating table")
	}
	// We own a ref on tbl.
	err = db.lc.addLevel0Table(tbl) // This will incrRef
	_ = tbl.DecrRef()               // Releases our ref.
	return err
}

// flushMemtable must keep running until we send it an empty memtable. If there
// are errors during handling the memtable flush, we'll retry indefinitely.
func (db *DB) flushMemtable(lc *z.Closer) {
	defer lc.Done()

	for mt := range db.flushChan {
		if mt == nil {
			continue
		}

		for {
			if err := db.handleMemTableFlush(mt, nil); err != nil {
				// Encountered error. Retry indefinitely.
				db.opt.Errorf("error flushing memtable to disk: %v, retrying", err)
				time.Sleep(time.Second)
				continue
			}

			// Update s.imm. Need a lock.
			db.lock.Lock()
			// This is a single-threaded operation. mt corresponds to the head of
			// db.imm list. Once we flush it, we advance db.imm. The next mt
			// which would arrive here would match db.imm[0], because we acquire a
			// lock over DB when pushing to flushChan.
			// TODO: This logic is dirty AF. Any change and this could easily break.
			y.AssertTrue(mt == db.imm[0])
			db.imm = db.imm[1:]
			mt.DecrRef() // Return memory.
			// unlock
			db.lock.Unlock()
			break
		}
	}
}

func exists(path string) (bool, error) {
	_, err := os.Stat(path)
	if err == nil {
		return true, nil
	}
	if os.IsNotExist(err) {
		return false, nil
	}
	return true, err
}

// This function does a filewalk, calculates the size of vlog and sst files and stores it in
// y.LSMSize and y.VlogSize.
func (db *DB) calculateSize() {
	if db.opt.InMemory {
		return
	}
	newInt := func(val int64) *expvar.Int {
		v := new(expvar.Int)
		v.Add(val)
		return v
	}

	totalSize := func(dir string) (int64, int64) {
		var lsmSize, vlogSize int64
		err := filepath.Walk(dir, func(path string, info os.FileInfo, err error) error {
			if err != nil {
				return err
			}
			ext := filepath.Ext(path)
			switch ext {
			case ".sst":
				lsmSize += info.Size()
			case ".vlog":
				vlogSize += info.Size()
			}
			return nil
		})
		if err != nil {
			db.opt.Debugf("Got error while calculating total size of directory: %s", dir)
		}
		return lsmSize, vlogSize
	}

	lsmSize, vlogSize := totalSize(db.opt.Dir)
	y.LSMSizeSet(db.opt.MetricsEnabled, db.opt.Dir, newInt(lsmSize))
	// If valueDir is different from dir, we'd have to do another walk.
	if db.opt.ValueDir != db.opt.Dir {
		_, vlogSize = totalSize(db.opt.ValueDir)
	}
	y.VlogSizeSet(db.opt.MetricsEnabled, db.opt.ValueDir, newInt(vlogSize))
}

func (db *DB) updateSize(lc *z.Closer) {
	defer lc.Done()
	if db.opt.InMemory {
		return
	}

	metricsTicker := time.NewTicker(time.Minute)
	defer metricsTicker.Stop()

	for {
		select {
		case <-metricsTicker.C:
			db.calculateSize()
		case <-lc.HasBeenClosed():
			return
		}
	}
}

// RunValueLogGC triggers a value log garbage collection.
//
// It picks value log files to perform GC based on statistics that are collected
// during compactions.  If no such statistics are available, then log files are
// picked in random order. The process stops as soon as the first log file is
// encountered which does not result in garbage collection.
//
// When a log file is picked, it is first sampled. If the sample shows that we
// can discard at least discardRatio space of that file, it would be rewritten.
//
// If a call to RunValueLogGC results in no rewrites, then an ErrNoRewrite is
// thrown indicating that the call resulted in no file rewrites.
//
// We recommend setting discardRatio to 0.5, thus indicating that a file be
// rewritten if half the space can be discarded.  This results in a lifetime
// value log write amplification of 2 (1 from original write + 0.5 rewrite +
// 0.25 + 0.125 + ... = 2). Setting it to higher value would result in fewer
// space reclaims, while setting it to a lower value would result in more space
// reclaims at the cost of increased activity on the LSM tree. discardRatio
// must be in the range (0.0, 1.0), both endpoints excluded, otherwise an
// ErrInvalidRequest is returned.
//
// Only one GC is allowed at a time. If another value log GC is running, or DB
// has been closed, this would return an ErrRejected.
//
// Note: Every time GC is run, it would produce a spike of activity on the LSM
// tree.
func (db *DB) RunValueLogGC(discardRatio float64) error {
	if db.opt.InMemory {
		return ErrGCInMemoryMode
	}
	if discardRatio >= 1.0 || discardRatio <= 0.0 {
		return ErrInvalidRequest
	}

	// Pick a log file and run GC
	return db.vlog.runGC(discardRatio)
}

// Size returns the size of lsm and value log files in bytes. It can be used to decide how often to
// call RunValueLogGC.
func (db *DB) Size() (lsm, vlog int64) {
	if y.LSMSizeGet(db.opt.MetricsEnabled, db.opt.Dir) == nil {
		lsm, vlog = 0, 0
		return
	}
	lsm = y.LSMSizeGet(db.opt.MetricsEnabled, db.opt.Dir).(*expvar.Int).Value()
	vlog = y.VlogSizeGet(db.opt.MetricsEnabled, db.opt.ValueDir).(*expvar.Int).Value()
	return
}

// Sequence represents a Badger sequence.
type Sequence struct {
	lock      sync.Mutex
	db        *DB
	key       []byte
	next      uint64
	leased    uint64
	bandwidth uint64
}

// Next would return the next integer in the sequence, updating the lease by running a transaction
// if needed.
func (seq *Sequence) Next() (uint64, error) {
	seq.lock.Lock()
	defer seq.lock.Unlock()
	if seq.next >= seq.leased {
		if err := seq.updateLease(); err != nil {
			return 0, err
		}
	}
	val := seq.next
	seq.next++
	return val, nil
}

// Release the leased sequence to avoid wasted integers. This should be done right
// before closing the associated DB. However it is valid to use the sequence after
// it was released, causing a new lease with full bandwidth.
func (seq *Sequence) Release() error {
	seq.lock.Lock()
	defer seq.lock.Unlock()
	err := seq.db.Update(func(txn *Txn) error {
		item, err := txn.Get(seq.key)
		if err != nil {
			return err
		}

		var num uint64
		if err := item.Value(func(v []byte) error {
			num = binary.BigEndian.Uint64(v)
			return nil
		}); err != nil {
			return err
		}

		if num == seq.leased {
			var buf [8]byte
			binary.BigEndian.PutUint64(buf[:], seq.next)
			return txn.SetEntry(NewEntry(seq.key, buf[:]))
		}

		return nil
	})
	if err != nil {
		return err
	}
	seq.leased = seq.next
	return nil
}

func (seq *Sequence) updateLease() error {
	return seq.db.Update(func(txn *Txn) error {
		item, err := txn.Get(seq.key)
		switch {
		case err == ErrKeyNotFound:
			seq.next = 0
		case err != nil:
			return err
		default:
			var num uint64
			if err := item.Value(func(v []byte) error {
				num = binary.BigEndian.Uint64(v)
				return nil
			}); err != nil {
				return err
			}
			seq.next = num
		}

		lease := seq.next + seq.bandwidth
		var buf [8]byte
		binary.BigEndian.PutUint64(buf[:], lease)
		if err = txn.SetEntry(NewEntry(seq.key, buf[:])); err != nil {
			return err
		}
		seq.leased = lease
		return nil
	})
}

// GetSequence would initiate a new sequence object, generating it from the stored lease, if
// available, in the database. Sequence can be used to get a list of monotonically increasing
// integers. Multiple sequences can be created by providing different keys. Bandwidth sets the
// size of the lease, determining how many Next() requests can be served from memory.
//
// GetSequence is not supported on ManagedDB. Calling this would result in a panic.
func (db *DB) GetSequence(key []byte, bandwidth uint64) (*Sequence, error) {
	if db.opt.managedTxns {
		panic("Cannot use GetSequence with managedDB=true.")
	}

	switch {
	case len(key) == 0:
		return nil, ErrEmptyKey
	case bandwidth == 0:
		return nil, ErrZeroBandwidth
	}
	seq := &Sequence{
		db:        db,
		key:       key,
		next:      0,
		leased:    0,
		bandwidth: bandwidth,
	}
	err := seq.updateLease()
	return seq, err
}

// Tables gets the TableInfo objects from the level controller. If withKeysCount
// is true, TableInfo objects also contain counts of keys for the tables.
func (db *DB) Tables() []TableInfo {
	return db.lc.getTableInfo()
}

// Levels gets the LevelInfo.
func (db *DB) Levels() []LevelInfo {
	return db.lc.getLevelInfo()
}

// EstimateSize can be used to get rough estimate of data size for a given prefix.
func (db *DB) EstimateSize(prefix []byte) (uint64, uint64) {
	var onDiskSize, uncompressedSize uint64
	tables := db.Tables()
	for _, ti := range tables {
		if bytes.HasPrefix(ti.Left, prefix) && bytes.HasPrefix(ti.Right, prefix) {
			onDiskSize += uint64(ti.OnDiskSize)
			uncompressedSize += uint64(ti.UncompressedSize)
		}
	}
	return onDiskSize, uncompressedSize
}

// Ranges can be used to get rough key ranges to divide up iteration over the DB. The ranges here
// would consider the prefix, but would not necessarily start or end with the prefix. In fact, the
// first range would have nil as left key, and the last range would have nil as the right key.
func (db *DB) Ranges(prefix []byte, numRanges int) []*keyRange {
	var splits []string
	tables := db.Tables()

	// We just want table ranges here and not keys count.
	for _, ti := range tables {
		// We don't use ti.Left, because that has a tendency to store !badger keys. Skip over tables
		// at upper levels. Only choose tables from the last level.
		if ti.Level != db.opt.MaxLevels-1 {
			continue
		}
		if bytes.HasPrefix(ti.Right, prefix) {
			splits = append(splits, string(ti.Right))
		}
	}

	// If the number of splits is low, look at the offsets inside the
	// tables to generate more splits.
	if len(splits) < 32 {
		numTables := len(tables)
		if numTables == 0 {
			numTables = 1
		}
		numPerTable := 32 / numTables
		if numPerTable == 0 {
			numPerTable = 1
		}
		splits = db.lc.keySplits(numPerTable, prefix)
	}

	// If the number of splits is still < 32, then look at the memtables.
	if len(splits) < 32 {
		maxPerSplit := 10000
		mtSplits := func(mt *memTable) {
			if mt == nil {
				return
			}
			count := 0
			iter := mt.sl.NewIterator()
			for iter.SeekToFirst(); iter.Valid(); iter.Next() {
				if count%maxPerSplit == 0 {
					// Add a split every maxPerSplit keys.
					if bytes.HasPrefix(iter.Key(), prefix) {
						splits = append(splits, string(iter.Key()))
					}
				}
				count += 1
			}
			_ = iter.Close()
		}

		db.lock.Lock()
		defer db.lock.Unlock()
		var memTables []*memTable
		memTables = append(memTables, db.imm...)
		for _, mt := range memTables {
			mtSplits(mt)
		}
		mtSplits(db.mt)
	}

	// We have our splits now. Let's convert them to ranges.
	sort.Strings(splits)
	var ranges []*keyRange
	var start []byte
	for _, key := range splits {
		ranges = append(ranges, &keyRange{left: start, right: y.SafeCopy(nil, []byte(key))})
		start = y.SafeCopy(nil, []byte(key))
	}
	ranges = append(ranges, &keyRange{left: start})

	// Figure out the approximate table size this range has to deal with.
	for _, t := range tables {
		tr := keyRange{left: t.Left, right: t.Right}
		for _, r := range ranges {
			if len(r.left) == 0 || len(r.right) == 0 {
				continue
			}
			if r.overlapsWith(tr) {
				r.size += int64(t.UncompressedSize)
			}
		}
	}

	var total int64
	for _, r := range ranges {
		total += r.size
	}
	if total == 0 {
		return ranges
	}
	// Figure out the average size, so we know how to bin the ranges together.
	avg := total / int64(numRanges)

	var out []*keyRange
	var i int
	for i < len(ranges) {
		r := ranges[i]
		cur := &keyRange{left: r.left, size: r.size, right: r.right}
		i++
		for ; i < len(ranges); i++ {
			next := ranges[i]
			if cur.size+next.size > avg {
				break
			}
			cur.right = next.right
			cur.size += next.size
		}
		out = append(out, cur)
	}
	return out
}

// MaxBatchCount returns max possible entries in batch
func (db *DB) MaxBatchCount() int64 {
	return db.opt.maxBatchCount
}

// MaxBatchSize returns max possible batch size
func (db *DB) MaxBatchSize() int64 {
	return db.opt.maxBatchSize
}

func (db *DB) stopMemoryFlush() {
	// Stop memtable flushes.
	if db.closers.memtable != nil {
		close(db.flushChan)
		db.closers.memtable.SignalAndWait()
	}
}

func (db *DB) stopCompactions() {
	// Stop compactions.
	if db.closers.compactors != nil {
		db.closers.compactors.SignalAndWait()
	}
}

func (db *DB) startCompactions() {
	// Resume compactions.
	if db.closers.compactors != nil {
		db.closers.compactors = z.NewCloser(1)
		db.lc.startCompact(db.closers.compactors)
	}
}

func (db *DB) startMemoryFlush() {
	// Start memory fluhser.
	if db.closers.memtable != nil {
		db.flushChan = make(chan *memTable, db.opt.NumMemtables)
		db.closers.memtable = z.NewCloser(1)
		go func() {
			db.flushMemtable(db.closers.memtable)
		}()
	}
}

// Flatten can be used to force compactions on the LSM tree so all the tables fall on the same
// level. This ensures that all the versions of keys are colocated and not split across multiple
// levels, which is necessary after a restore from backup. During Flatten, live compactions are
// stopped. Ideally, no writes are going on during Flatten. Otherwise, it would create competition
// between flattening the tree and new tables being created at level zero.
func (db *DB) Flatten(workers int) error {

	db.stopCompactions()
	defer db.startCompactions()

	compactAway := func(cp compactionPriority) error {
		db.opt.Infof("Attempting to compact with %+v\n", cp)
		errCh := make(chan error, 1)
		for i := 0; i < workers; i++ {
			go func() {
				errCh <- db.lc.doCompact(175, cp)
			}()
		}
		var success int
		var rerr error
		for i := 0; i < workers; i++ {
			err := <-errCh
			if err != nil {
				rerr = err
				db.opt.Warningf("While running doCompact with %+v. Error: %v\n", cp, err)
			} else {
				success++
			}
		}
		if success == 0 {
			return rerr
		}
		// We could do at least one successful compaction. So, we'll consider this a success.
		db.opt.Infof("%d compactor(s) succeeded. One or more tables from level %d compacted.\n",
			success, cp.level)
		return nil
	}

	hbytes := func(sz int64) string {
		return humanize.IBytes(uint64(sz))
	}

	t := db.lc.levelTargets()
	for {
		db.opt.Infof("\n")
		var levels []int
		for i, l := range db.lc.levels {
			sz := l.getTotalSize()
			db.opt.Infof("Level: %d. %8s Size. %8s Max.\n",
				i, hbytes(l.getTotalSize()), hbytes(t.targetSz[i]))
			if sz > 0 {
				levels = append(levels, i)
			}
		}
		if len(levels) <= 1 {
			prios := db.lc.pickCompactLevels(nil)
			if len(prios) == 0 || prios[0].score <= 1.0 {
				db.opt.Infof("All tables consolidated into one level. Flattening done.\n")
				return nil
			}
			if err := compactAway(prios[0]); err != nil {
				return err
			}
			continue
		}
		// Create an artificial compaction priority, to ensure that we compact the level.
		cp := compactionPriority{level: levels[0], score: 1.71}
		if err := compactAway(cp); err != nil {
			return err
		}
	}
}

func (db *DB) blockWrite() error {
	// Stop accepting new writes.
	if !db.blockWrites.CompareAndSwap(0, 1) {
		return ErrBlockedWrites
	}

	// Make all pending writes finish. The following will also close writeCh.
	db.closers.writes.SignalAndWait()
	db.opt.Infof("Writes flushed. Stopping compactions now...")
	return nil
}

func (db *DB) unblockWrite() {
	db.closers.writes = z.NewCloser(1)
	go db.doWrites(db.closers.writes)

	// Resume writes.
	db.blockWrites.Store(0)
}

func (db *DB) prepareToDrop() (func(), error) {
	if db.opt.ReadOnly {
		panic("Attempting to drop data in read-only mode.")
	}
	// In order prepare for drop, we need to block the incoming writes and
	// write it to db. Then, flush all the pending memtable. So that, we
	// don't miss any entries.
	if err := db.blockWrite(); err != nil {
		return func() {}, err
	}
	reqs := make([]*request, 0, 10)
	for {
		select {
		case r := <-db.writeCh:
			reqs = append(reqs, r)
		default:
			if err := db.writeRequests(reqs); err != nil {
				db.opt.Errorf("writeRequests: %v", err)
			}
			db.stopMemoryFlush()
			return func() {
				db.opt.Infof("Resuming writes")
				db.startMemoryFlush()
				db.unblockWrite()
			}, nil
		}
	}
}

// DropAll would drop all the data stored in Badger. It does this in the following way.
// - Stop accepting new writes.
// - Pause memtable flushes and compactions.
// - Pick all tables from all levels, create a changeset to delete all these
// tables and apply it to manifest.
// - Pick all log files from value log, and delete all of them. Restart value log files from zero.
// - Resume memtable flushes and compactions.
//
// NOTE: DropAll is resilient to concurrent writes, but not to reads. It is up to the user to not do
// any reads while DropAll is going on, otherwise they may result in panics. Ideally, both reads and
// writes are paused before running DropAll, and resumed after it is finished.
func (db *DB) DropAll() error {
	f, err := db.dropAll()
	if f != nil {
		f()
	}
	return err
}

func (db *DB) dropAll() (func(), error) {
	db.opt.Infof("DropAll called. Blocking writes...")
	f, err := db.prepareToDrop()
	if err != nil {
		return f, err
	}
	// prepareToDrop will stop all the incoming write and flushes any pending memtables.
	// Before we drop, we'll stop the compaction because anyways all the datas are going to
	// be deleted.
	db.stopCompactions()
	resume := func() {
		db.startCompactions()
		f()
	}
	// Block all foreign interactions with memory tables.
	db.lock.Lock()
	defer db.lock.Unlock()

	// Remove inmemory tables. Calling DecrRef for safety. Not sure if they're absolutely needed.
	db.mt.DecrRef()
	for _, mt := range db.imm {
		mt.DecrRef()
	}
	db.imm = db.imm[:0]
	db.mt, err = db.newMemTable() // Set it up for future writes.
	if err != nil {
		return resume, y.Wrapf(err, "cannot open new memtable")
	}

	num, err := db.lc.dropTree()
	if err != nil {
		return resume, err
	}
	db.opt.Infof("Deleted %d SSTables. Now deleting value logs...\n", num)

	num, err = db.vlog.dropAll()
	if err != nil {
		return resume, err
	}
	db.lc.nextFileID.Store(1)
	db.opt.Infof("Deleted %d value log files. DropAll done.\n", num)
	db.blockCache.Clear()
	db.indexCache.Clear()
	db.threshold.Clear(db.opt)
	return resume, nil
}

// DropPrefix would drop all the keys with the provided prefix. It does this in the following way:
//   - Stop accepting new writes.
//   - Stop memtable flushes before acquiring lock. Because we're acquiring lock here
//     and memtable flush stalls for lock, which leads to deadlock
//   - Flush out all memtables, skipping over keys with the given prefix, Kp.
//   - Write out the value log header to memtables when flushing, so we don't accidentally bring Kp
//     back after a restart.
//   - Stop compaction.
//   - Compact L0->L1, skipping over Kp.
//   - Compact rest of the levels, Li->Li, picking tables which have Kp.
//   - Resume memtable flushes, compactions and writes.
func (db *DB) DropPrefix(prefixes ...[]byte) error {
	if len(prefixes) == 0 {
		return nil
	}
	db.opt.Infof("DropPrefix called for %s", prefixes)
	f, err := db.prepareToDrop()
	if err != nil {
		return err
	}
	defer f()

	var filtered [][]byte
	if filtered, err = db.filterPrefixesToDrop(prefixes); err != nil {
		return err
	}
	// If there is no prefix for which the data already exist, do not do anything.
	if len(filtered) == 0 {
		db.opt.Infof("No prefixes to drop")
		return nil
	}
	// Block all foreign interactions with memory tables.
	db.lock.Lock()
	defer db.lock.Unlock()

	db.imm = append(db.imm, db.mt)
	for _, memtable := range db.imm {
		if memtable.sl.Empty() {
			memtable.DecrRef()
			continue
		}
		db.opt.Debugf("Flushing memtable")
		if err := db.handleMemTableFlush(memtable, filtered); err != nil {
			db.opt.Errorf("While trying to flush memtable: %v", err)
			return err
		}
		memtable.DecrRef()
	}
	db.stopCompactions()
	defer db.startCompactions()
	db.imm = db.imm[:0]
	db.mt, err = db.newMemTable()
	if err != nil {
		return y.Wrapf(err, "cannot create new mem table")
	}

	// Drop prefixes from the levels.
	if err := db.lc.dropPrefixes(filtered); err != nil {
		return err
	}
	db.opt.Infof("DropPrefix done")
	return nil
}

func (db *DB) filterPrefixesToDrop(prefixes [][]byte) ([][]byte, error) {
	var filtered [][]byte
	for _, prefix := range prefixes {
		err := db.View(func(txn *Txn) error {
			iopts := DefaultIteratorOptions
			iopts.Prefix = prefix
			iopts.PrefetchValues = false
			itr := txn.NewIterator(iopts)
			defer itr.Close()
			itr.Rewind()
			if itr.ValidForPrefix(prefix) {
				filtered = append(filtered, prefix)
			}
			return nil
		})
		if err != nil {
			return filtered, err
		}
	}
	return filtered, nil
}

// Checks if the key is banned. Returns the respective error if the key belongs to any of the banned
// namepspaces. Else it returns nil.
func (db *DB) isBanned(key []byte) error {
	if db.opt.NamespaceOffset < 0 {
		return nil
	}
	if len(key) <= db.opt.NamespaceOffset+8 {
		return nil
	}
	if db.bannedNamespaces.has(y.BytesToU64(key[db.opt.NamespaceOffset:])) {
		return ErrBannedKey
	}
	return nil
}

// BanNamespace bans a namespace. Read/write to keys belonging to any of such namespace is denied.
func (db *DB) BanNamespace(ns uint64) error {
	if db.opt.NamespaceOffset < 0 {
		return ErrNamespaceMode
	}
	db.opt.Infof("Banning namespace: %d", ns)
	// First set the banned namespaces in DB and then update the in-memory structure.
	key := y.KeyWithTs(append(bannedNsKey, y.U64ToBytes(ns)...), 1)
	entry := []*Entry{{
		Key:   key,
		Value: nil,
	}}
	req, err := db.sendToWriteCh(entry)
	if err != nil {
		return err
	}
	if err := req.Wait(); err != nil {
		return err
	}
	db.bannedNamespaces.add(ns)
	return nil
}

// BannedNamespaces returns the list of prefixes banned for DB.
func (db *DB) BannedNamespaces() []uint64 {
	return db.bannedNamespaces.all()
}

// KVList contains a list of key-value pairs.
type KVList = pb.KVList

// Subscribe can be used to watch key changes for the given key prefixes and the ignore string.
// At least one prefix should be passed, or an error will be returned.
// You can use an empty prefix to monitor all changes to the DB.
// Ignore string is the byte ranges for which prefix matching will be ignored.
// For example: ignore = "2-3", and prefix = "abc" will match for keys "abxxc", "abdfc" etc.
// This function blocks until the given context is done or an error occurs.
// The given function will be called with a new KVList containing the modified keys and the
// corresponding values.
func (db *DB) Subscribe(ctx context.Context, cb func(kv *KVList) error, matches []pb.Match) error {
	if cb == nil {
		return ErrNilCallback
	}

	c := z.NewCloser(1)
	s, err := db.pub.newSubscriber(c, matches)
	if err != nil {
		return y.Wrapf(err, "while creating a new subscriber")
	}
	slurp := func(batch *pb.KVList) error {
		for {
			select {
			case kvs := <-s.sendCh:
				batch.Kv = append(batch.Kv, kvs.Kv...)
			default:
				if len(batch.GetKv()) > 0 {
					return cb(batch)
				}
				return nil
			}
		}
	}

	drain := func() {
		for {
			select {
			case _, ok := <-s.sendCh:
				if !ok {
					// Channel is closed.
					return
				}
			default:
				return
			}
		}
	}
	for {
		select {
		case <-c.HasBeenClosed():
			// No need to delete here. Closer will be called only while
			// closing DB. Subscriber will be deleted by cleanSubscribers.
			err := slurp(new(pb.KVList))
			// Drain if any pending updates.
			c.Done()
			return err
		case <-ctx.Done():
			c.Done()
			s.active.Store(0)
			drain()
			db.pub.deleteSubscriber(s.id)
			// Delete the subscriber to avoid further updates.
			return ctx.Err()
		case batch := <-s.sendCh:
			err := slurp(batch)
			if err != nil {
				c.Done()
				s.active.Store(0)
				drain()
				// Delete the subscriber if there is an error by the callback.
				db.pub.deleteSubscriber(s.id)
				return err
			}
		}
	}
}

func (db *DB) syncDir(dir string) error {
	if db.opt.InMemory {
		return nil
	}
	return syncDir(dir)
}

func createDirs(opt Options) error {
	for _, path := range []string{opt.Dir, opt.ValueDir} {
		dirExists, err := exists(path)
		if err != nil {
			return y.Wrapf(err, "Invalid Dir: %q", path)
		}
		if !dirExists {
			if opt.ReadOnly {
				return fmt.Errorf("Cannot find directory %q for read-only open", path)
			}
			// Try to create the directory
			err = os.MkdirAll(path, 0700)
			if err != nil {
				return y.Wrapf(err, "Error Creating Dir: %q", path)
			}
		}
	}
	return nil
}

// Stream the contents of this DB to a new DB with options outOptions that will be
// created in outDir.
func (db *DB) StreamDB(outOptions Options) error {
	outDir := outOptions.Dir

	// Open output DB.
	outDB, err := OpenManaged(outOptions)
	if err != nil {
		return y.Wrapf(err, "cannot open out DB at %s", outDir)
	}
	defer outDB.Close()
	writer := outDB.NewStreamWriter()
	if err := writer.Prepare(); err != nil {
		return y.Wrapf(err, "cannot create stream writer in out DB at %s", outDir)
	}

	// Stream contents of DB to the output DB.
	stream := db.NewStreamAt(math.MaxUint64)
	stream.LogPrefix = fmt.Sprintf("Streaming DB to new DB at %s", outDir)

	stream.Send = func(buf *z.Buffer) error {
		return writer.Write(buf)
	}
	if err := stream.Orchestrate(context.Background()); err != nil {
		return y.Wrapf(err, "cannot stream DB to out DB at %s", outDir)
	}
	if err := writer.Flush(); err != nil {
		return y.Wrapf(err, "cannot flush writer")
	}
	return nil
}

// Opts returns a copy of the DB options.
func (db *DB) Opts() Options {
	return db.opt
}

type CacheType int

const (
	BlockCache CacheType = iota
	IndexCache
)

// CacheMaxCost updates the max cost of the given cache (either block or index cache).
// The call will have an effect only if the DB was created with the cache. Otherwise it is
// a no-op. If you pass a negative value, the function will return the current value
// without updating it.
func (db *DB) CacheMaxCost(cache CacheType, maxCost int64) (int64, error) {
	if db == nil {
		return 0, nil
	}

	if maxCost < 0 {
		switch cache {
		case BlockCache:
			return db.blockCache.MaxCost(), nil
		case IndexCache:
			return db.indexCache.MaxCost(), nil
		default:
			return 0, errors.New("invalid cache type")
		}
	}

	switch cache {
	case BlockCache:
		db.blockCache.UpdateMaxCost(maxCost)
		return maxCost, nil
	case IndexCache:
		db.indexCache.UpdateMaxCost(maxCost)
		return maxCost, nil
	default:
		return 0, errors.New("invalid cache type")
	}
}

func (db *DB) LevelsToString() string {
	levels := db.Levels()
	h := func(sz int64) string {
		return humanize.IBytes(uint64(sz))
	}
	base := func(b bool) string {
		if b {
			return "B"
		}
		return " "
	}

	var b strings.Builder
	b.WriteRune('\n')
	for _, li := range levels {
		b.WriteString(fmt.Sprintf(
			"Level %d [%s]: NumTables: %02d. Size: %s of %s. Score: %.2f->%.2f"+
				" StaleData: %s Target FileSize: %s\n",
			li.Level, base(li.IsBaseLevel), li.NumTables,
			h(li.Size), h(li.TargetSize), li.Score, li.Adjusted, h(li.StaleDatSize),
			h(li.TargetFileSize)))
	}
	b.WriteString("Level Done\n")
	return b.String()
}