1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/*
* SPDX-FileCopyrightText: © Hypermode Inc. <hello@hypermode.com>
* SPDX-License-Identifier: Apache-2.0
*/
package badger
import (
"bytes"
"crypto/aes"
"crypto/rand"
"encoding/binary"
"hash/crc32"
"io"
"os"
"path/filepath"
"sync"
"time"
"github.com/dgraph-io/badger/v4/pb"
"github.com/dgraph-io/badger/v4/y"
"google.golang.org/protobuf/proto"
)
const (
// KeyRegistryFileName is the file name for the key registry file.
KeyRegistryFileName = "KEYREGISTRY"
// KeyRegistryRewriteFileName is the file name for the rewrite key registry file.
KeyRegistryRewriteFileName = "REWRITE-KEYREGISTRY"
)
// SanityText is used to check whether the given user provided storage key is valid or not
var sanityText = []byte("Hello Badger")
// KeyRegistry used to maintain all the data keys.
type KeyRegistry struct {
sync.RWMutex
dataKeys map[uint64]*pb.DataKey
lastCreated int64 //lastCreated is the timestamp(seconds) of the last data key generated.
nextKeyID uint64
fp *os.File
opt KeyRegistryOptions
}
type KeyRegistryOptions struct {
Dir string
ReadOnly bool
EncryptionKey []byte
EncryptionKeyRotationDuration time.Duration
InMemory bool
}
// newKeyRegistry returns KeyRegistry.
func newKeyRegistry(opt KeyRegistryOptions) *KeyRegistry {
return &KeyRegistry{
dataKeys: make(map[uint64]*pb.DataKey),
nextKeyID: 0,
opt: opt,
}
}
// OpenKeyRegistry opens key registry if it exists, otherwise it'll create key registry
// and returns key registry.
func OpenKeyRegistry(opt KeyRegistryOptions) (*KeyRegistry, error) {
// sanity check the encryption key length.
if len(opt.EncryptionKey) > 0 {
switch len(opt.EncryptionKey) {
default:
return nil, y.Wrapf(ErrInvalidEncryptionKey, "During OpenKeyRegistry")
case 16, 24, 32:
break
}
}
// If db is opened in InMemory mode, we don't need to write key registry to the disk.
if opt.InMemory {
return newKeyRegistry(opt), nil
}
path := filepath.Join(opt.Dir, KeyRegistryFileName)
var flags y.Flags
if opt.ReadOnly {
flags |= y.ReadOnly
} else {
flags |= y.Sync
}
fp, err := y.OpenExistingFile(path, flags)
// OpenExistingFile just open file.
// So checking whether the file exist or not. If not
// We'll create new keyregistry.
if os.IsNotExist(err) {
// Creating new registry file if not exist.
kr := newKeyRegistry(opt)
if opt.ReadOnly {
return kr, nil
}
// Writing the key registry to the file.
if err := WriteKeyRegistry(kr, opt); err != nil {
return nil, y.Wrapf(err, "Error while writing key registry.")
}
fp, err = y.OpenExistingFile(path, flags)
if err != nil {
return nil, y.Wrapf(err, "Error while opening newly created key registry.")
}
} else if err != nil {
return nil, y.Wrapf(err, "Error while opening key registry.")
}
kr, err := readKeyRegistry(fp, opt)
if err != nil {
// This case happens only if the file is opened properly and
// not able to read.
fp.Close()
return nil, err
}
if opt.ReadOnly {
// We'll close the file in readonly mode.
return kr, fp.Close()
}
kr.fp = fp
return kr, nil
}
// keyRegistryIterator reads all the datakey from the key registry
type keyRegistryIterator struct {
encryptionKey []byte
fp *os.File
// lenCrcBuf contains crc buf and data length to move forward.
lenCrcBuf [8]byte
}
// newKeyRegistryIterator returns iterator which will allow you to iterate
// over the data key of the key registry.
func newKeyRegistryIterator(fp *os.File, encryptionKey []byte) (*keyRegistryIterator, error) {
return &keyRegistryIterator{
encryptionKey: encryptionKey,
fp: fp,
lenCrcBuf: [8]byte{},
}, validRegistry(fp, encryptionKey)
}
// validRegistry checks that given encryption key is valid or not.
func validRegistry(fp *os.File, encryptionKey []byte) error {
iv := make([]byte, aes.BlockSize)
var err error
if _, err = fp.Read(iv); err != nil {
return y.Wrapf(err, "Error while reading IV for key registry.")
}
eSanityText := make([]byte, len(sanityText))
if _, err = fp.Read(eSanityText); err != nil {
return y.Wrapf(err, "Error while reading sanity text.")
}
if len(encryptionKey) > 0 {
// Decrypting sanity text.
if eSanityText, err = y.XORBlockAllocate(eSanityText, encryptionKey, iv); err != nil {
return y.Wrapf(err, "During validRegistry")
}
}
// Check the given key is valid or not.
if !bytes.Equal(eSanityText, sanityText) {
return ErrEncryptionKeyMismatch
}
return nil
}
func (kri *keyRegistryIterator) next() (*pb.DataKey, error) {
var err error
// Read crc buf and data length.
if _, err = kri.fp.Read(kri.lenCrcBuf[:]); err != nil {
// EOF means end of the iteration.
if err != io.EOF {
return nil, y.Wrapf(err, "While reading crc in keyRegistryIterator.next")
}
return nil, err
}
l := int64(binary.BigEndian.Uint32(kri.lenCrcBuf[0:4]))
// Read protobuf data.
data := make([]byte, l)
if _, err = kri.fp.Read(data); err != nil {
// EOF means end of the iteration.
if err != io.EOF {
return nil, y.Wrapf(err, "While reading protobuf in keyRegistryIterator.next")
}
return nil, err
}
// Check checksum.
if crc32.Checksum(data, y.CastagnoliCrcTable) != binary.BigEndian.Uint32(kri.lenCrcBuf[4:]) {
return nil, y.Wrapf(y.ErrChecksumMismatch, "Error while checking checksum for data key.")
}
dataKey := &pb.DataKey{}
if err = proto.Unmarshal(data, dataKey); err != nil {
return nil, y.Wrapf(err, "While unmarshal of datakey in keyRegistryIterator.next")
}
if len(kri.encryptionKey) > 0 {
// Decrypt the key if the storage key exists.
if dataKey.Data, err = y.XORBlockAllocate(dataKey.Data, kri.encryptionKey, dataKey.Iv); err != nil {
return nil, y.Wrapf(err, "While decrypting datakey in keyRegistryIterator.next")
}
}
return dataKey, nil
}
// readKeyRegistry will read the key registry file and build the key registry struct.
func readKeyRegistry(fp *os.File, opt KeyRegistryOptions) (*KeyRegistry, error) {
itr, err := newKeyRegistryIterator(fp, opt.EncryptionKey)
if err != nil {
return nil, err
}
kr := newKeyRegistry(opt)
var dk *pb.DataKey
dk, err = itr.next()
for err == nil && dk != nil {
if dk.KeyId > kr.nextKeyID {
// Set the maximum key ID for next key ID generation.
kr.nextKeyID = dk.KeyId
}
if dk.CreatedAt > kr.lastCreated {
// Set the last generated key timestamp.
kr.lastCreated = dk.CreatedAt
}
// No need to lock since we are building the initial state.
kr.dataKeys[dk.KeyId] = dk
// Forward the iterator.
dk, err = itr.next()
}
// We read all the key. So, Ignoring this error.
if err == io.EOF {
err = nil
}
return kr, err
}
/*
Structure of Key Registry.
+-------------------+---------------------+--------------------+--------------+------------------+
| IV | Sanity Text | DataKey1 | DataKey2 | ... |
+-------------------+---------------------+--------------------+--------------+------------------+
*/
// WriteKeyRegistry will rewrite the existing key registry file with new one.
// It is okay to give closed key registry. Since, it's using only the datakey.
func WriteKeyRegistry(reg *KeyRegistry, opt KeyRegistryOptions) error {
buf := &bytes.Buffer{}
iv, err := y.GenerateIV()
y.Check(err)
// Encrypt sanity text if the encryption key is presents.
eSanity := sanityText
if len(opt.EncryptionKey) > 0 {
var err error
eSanity, err = y.XORBlockAllocate(eSanity, opt.EncryptionKey, iv)
if err != nil {
return y.Wrapf(err, "Error while encrpting sanity text in WriteKeyRegistry")
}
}
y.Check2(buf.Write(iv))
y.Check2(buf.Write(eSanity))
// Write all the datakeys to the buf.
for _, k := range reg.dataKeys {
// Writing the datakey to the given buffer.
if err := storeDataKey(buf, opt.EncryptionKey, k); err != nil {
return y.Wrapf(err, "Error while storing datakey in WriteKeyRegistry")
}
}
tmpPath := filepath.Join(opt.Dir, KeyRegistryRewriteFileName)
// Open temporary file to write the data and do atomic rename.
fp, err := y.OpenTruncFile(tmpPath, true)
if err != nil {
return y.Wrapf(err, "Error while opening tmp file in WriteKeyRegistry")
}
// Write buf to the disk.
if _, err = fp.Write(buf.Bytes()); err != nil {
// close the fd before returning error. We're not using defer
// because, for windows we need to close the fd explicitly before
// renaming.
fp.Close()
return y.Wrapf(err, "Error while writing buf in WriteKeyRegistry")
}
// In Windows the files should be closed before doing a Rename.
if err = fp.Close(); err != nil {
return y.Wrapf(err, "Error while closing tmp file in WriteKeyRegistry")
}
// Rename to the original file.
if err = os.Rename(tmpPath, filepath.Join(opt.Dir, KeyRegistryFileName)); err != nil {
return y.Wrapf(err, "Error while renaming file in WriteKeyRegistry")
}
// Sync Dir.
return syncDir(opt.Dir)
}
// DataKey returns datakey of the given key id.
func (kr *KeyRegistry) DataKey(id uint64) (*pb.DataKey, error) {
kr.RLock()
defer kr.RUnlock()
if id == 0 {
// nil represent plain text.
return nil, nil
}
dk, ok := kr.dataKeys[id]
if !ok {
return nil, y.Wrapf(ErrInvalidDataKeyID, "Error for the KEY ID %d", id)
}
return dk, nil
}
// LatestDataKey will give you the latest generated datakey based on the rotation
// period. If the last generated datakey lifetime exceeds the rotation period.
// It'll create new datakey.
func (kr *KeyRegistry) LatestDataKey() (*pb.DataKey, error) {
if len(kr.opt.EncryptionKey) == 0 {
// nil is for no encryption.
return nil, nil
}
// validKey return datakey if the last generated key duration less than
// rotation duration.
validKey := func() (*pb.DataKey, bool) {
// Time diffrence from the last generated time.
diff := time.Since(time.Unix(kr.lastCreated, 0))
if diff < kr.opt.EncryptionKeyRotationDuration {
return kr.dataKeys[kr.nextKeyID], true
}
return nil, false
}
kr.RLock()
key, valid := validKey()
kr.RUnlock()
if valid {
// If less than EncryptionKeyRotationDuration, returns the last generated key.
return key, nil
}
kr.Lock()
defer kr.Unlock()
// Key might have generated by another go routine. So,
// checking once again.
key, valid = validKey()
if valid {
return key, nil
}
k := make([]byte, len(kr.opt.EncryptionKey))
iv, err := y.GenerateIV()
if err != nil {
return nil, err
}
_, err = rand.Read(k)
if err != nil {
return nil, err
}
// Otherwise Increment the KeyID and generate new datakey.
kr.nextKeyID++
dk := &pb.DataKey{
KeyId: kr.nextKeyID,
Data: k,
CreatedAt: time.Now().Unix(),
Iv: iv,
}
// Don't store the datakey on file if badger is running in InMemory mode.
if !kr.opt.InMemory {
// Store the datekey.
buf := &bytes.Buffer{}
if err = storeDataKey(buf, kr.opt.EncryptionKey, dk); err != nil {
return nil, err
}
// Persist the datakey to the disk
if _, err = kr.fp.Write(buf.Bytes()); err != nil {
return nil, err
}
}
// storeDatakey encrypts the datakey So, placing un-encrypted key in the memory.
dk.Data = k
kr.lastCreated = dk.CreatedAt
kr.dataKeys[kr.nextKeyID] = dk
return dk, nil
}
// Close closes the key registry.
func (kr *KeyRegistry) Close() error {
if !(kr.opt.ReadOnly || kr.opt.InMemory) {
return kr.fp.Close()
}
return nil
}
// storeDataKey stores datakey in an encrypted format in the given buffer. If storage key preset.
func storeDataKey(buf *bytes.Buffer, storageKey []byte, k *pb.DataKey) error {
// xor will encrypt the IV and xor with the given data.
// It'll used for both encryption and decryption.
xor := func() error {
if len(storageKey) == 0 {
return nil
}
var err error
k.Data, err = y.XORBlockAllocate(k.Data, storageKey, k.Iv)
return err
}
// In memory datakey will be plain text so encrypting before storing to the disk.
var err error
if err = xor(); err != nil {
return y.Wrapf(err, "Error while encrypting datakey in storeDataKey")
}
var data []byte
if data, err = proto.Marshal(k); err != nil {
err = y.Wrapf(err, "Error while marshaling datakey in storeDataKey")
var err2 error
// decrypting the datakey back.
if err2 = xor(); err2 != nil {
return y.Wrapf(err,
y.Wrapf(err2, "Error while decrypting datakey in storeDataKey").Error())
}
return err
}
var lenCrcBuf [8]byte
binary.BigEndian.PutUint32(lenCrcBuf[0:4], uint32(len(data)))
binary.BigEndian.PutUint32(lenCrcBuf[4:8], crc32.Checksum(data, y.CastagnoliCrcTable))
y.Check2(buf.Write(lenCrcBuf[:]))
y.Check2(buf.Write(data))
// Decrypting the datakey back since we're using the pointer.
return xor()
}
|