1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
|
/*
* SPDX-FileCopyrightText: © Hypermode Inc. <hello@hypermode.com>
* SPDX-License-Identifier: Apache-2.0
*/
package badger
import (
"bytes"
"context"
"encoding/hex"
"errors"
"fmt"
"math"
"math/rand"
"os"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
"github.com/dgraph-io/badger/v4/pb"
"github.com/dgraph-io/badger/v4/table"
"github.com/dgraph-io/badger/v4/y"
"github.com/dgraph-io/ristretto/v2/z"
)
type levelsController struct {
nextFileID atomic.Uint64
l0stallsMs atomic.Int64
// The following are initialized once and const.
levels []*levelHandler
kv *DB
cstatus compactStatus
}
// revertToManifest checks that all necessary table files exist and removes all table files not
// referenced by the manifest. idMap is a set of table file id's that were read from the directory
// listing.
func revertToManifest(kv *DB, mf *Manifest, idMap map[uint64]struct{}) error {
// 1. Check all files in manifest exist.
for id := range mf.Tables {
if _, ok := idMap[id]; !ok {
return fmt.Errorf("file does not exist for table %d", id)
}
}
// 2. Delete files that shouldn't exist.
for id := range idMap {
if _, ok := mf.Tables[id]; !ok {
kv.opt.Debugf("Table file %d not referenced in MANIFEST\n", id)
filename := table.NewFilename(id, kv.opt.Dir)
if err := os.Remove(filename); err != nil {
return y.Wrapf(err, "While removing table %d", id)
}
}
}
return nil
}
func newLevelsController(db *DB, mf *Manifest) (*levelsController, error) {
y.AssertTrue(db.opt.NumLevelZeroTablesStall > db.opt.NumLevelZeroTables)
s := &levelsController{
kv: db,
levels: make([]*levelHandler, db.opt.MaxLevels),
}
s.cstatus.tables = make(map[uint64]struct{})
s.cstatus.levels = make([]*levelCompactStatus, db.opt.MaxLevels)
for i := 0; i < db.opt.MaxLevels; i++ {
s.levels[i] = newLevelHandler(db, i)
s.cstatus.levels[i] = new(levelCompactStatus)
}
if db.opt.InMemory {
return s, nil
}
// Compare manifest against directory, check for existent/non-existent files, and remove.
if err := revertToManifest(db, mf, getIDMap(db.opt.Dir)); err != nil {
return nil, err
}
var mu sync.Mutex
tables := make([][]*table.Table, db.opt.MaxLevels)
var maxFileID uint64
// We found that using 3 goroutines allows disk throughput to be utilized to its max.
// Disk utilization is the main thing we should focus on, while trying to read the data. That's
// the one factor that remains constant between HDD and SSD.
throttle := y.NewThrottle(3)
start := time.Now()
var numOpened atomic.Int32
tick := time.NewTicker(3 * time.Second)
defer tick.Stop()
for fileID, tf := range mf.Tables {
fname := table.NewFilename(fileID, db.opt.Dir)
select {
case <-tick.C:
db.opt.Infof("%d tables out of %d opened in %s\n", numOpened.Load(),
len(mf.Tables), time.Since(start).Round(time.Millisecond))
default:
}
if err := throttle.Do(); err != nil {
closeAllTables(tables)
return nil, err
}
if fileID > maxFileID {
maxFileID = fileID
}
go func(fname string, tf TableManifest) {
var rerr error
defer func() {
throttle.Done(rerr)
numOpened.Add(1)
}()
dk, err := db.registry.DataKey(tf.KeyID)
if err != nil {
rerr = y.Wrapf(err, "Error while reading datakey")
return
}
topt := buildTableOptions(db)
// Explicitly set Compression and DataKey based on how the table was generated.
topt.Compression = tf.Compression
topt.DataKey = dk
mf, err := z.OpenMmapFile(fname, db.opt.getFileFlags(), 0)
if err != nil {
rerr = y.Wrapf(err, "Opening file: %q", fname)
return
}
t, err := table.OpenTable(mf, topt)
if err != nil {
if strings.HasPrefix(err.Error(), "CHECKSUM_MISMATCH:") {
db.opt.Errorf(err.Error())
db.opt.Errorf("Ignoring table %s", mf.Fd.Name())
// Do not set rerr. We will continue without this table.
} else {
rerr = y.Wrapf(err, "Opening table: %q", fname)
}
return
}
mu.Lock()
tables[tf.Level] = append(tables[tf.Level], t)
mu.Unlock()
}(fname, tf)
}
if err := throttle.Finish(); err != nil {
closeAllTables(tables)
return nil, err
}
db.opt.Infof("All %d tables opened in %s\n", numOpened.Load(),
time.Since(start).Round(time.Millisecond))
s.nextFileID.Store(maxFileID + 1)
for i, tbls := range tables {
s.levels[i].initTables(tbls)
}
// Make sure key ranges do not overlap etc.
if err := s.validate(); err != nil {
_ = s.cleanupLevels()
return nil, y.Wrap(err, "Level validation")
}
// Sync directory (because we have at least removed some files, or previously created the
// manifest file).
if err := syncDir(db.opt.Dir); err != nil {
_ = s.close()
return nil, err
}
return s, nil
}
// Closes the tables, for cleanup in newLevelsController. (We Close() instead of using DecrRef()
// because that would delete the underlying files.) We ignore errors, which is OK because tables
// are read-only.
func closeAllTables(tables [][]*table.Table) {
for _, tableSlice := range tables {
for _, table := range tableSlice {
_ = table.Close(-1)
}
}
}
func (s *levelsController) cleanupLevels() error {
var firstErr error
for _, l := range s.levels {
if err := l.close(); err != nil && firstErr == nil {
firstErr = err
}
}
return firstErr
}
// dropTree picks all tables from all levels, creates a manifest changeset,
// applies it, and then decrements the refs of these tables, which would result
// in their deletion.
func (s *levelsController) dropTree() (int, error) {
// First pick all tables, so we can create a manifest changelog.
var all []*table.Table
for _, l := range s.levels {
l.RLock()
all = append(all, l.tables...)
l.RUnlock()
}
if len(all) == 0 {
return 0, nil
}
// Generate the manifest changes.
changes := []*pb.ManifestChange{}
for _, table := range all {
// Add a delete change only if the table is not in memory.
if !table.IsInmemory {
changes = append(changes, newDeleteChange(table.ID()))
}
}
changeSet := pb.ManifestChangeSet{Changes: changes}
if err := s.kv.manifest.addChanges(changeSet.Changes, s.kv.opt); err != nil {
return 0, err
}
// Now that manifest has been successfully written, we can delete the tables.
for _, l := range s.levels {
l.Lock()
l.totalSize = 0
l.tables = l.tables[:0]
l.Unlock()
}
for _, table := range all {
if err := table.DecrRef(); err != nil {
return 0, err
}
}
return len(all), nil
}
// dropPrefix runs a L0->L1 compaction, and then runs same level compaction on the rest of the
// levels. For L0->L1 compaction, it runs compactions normally, but skips over
// all the keys with the provided prefix.
// For Li->Li compactions, it picks up the tables which would have the prefix. The
// tables who only have keys with this prefix are quickly dropped. The ones which have other keys
// are run through MergeIterator and compacted to create new tables. All the mechanisms of
// compactions apply, i.e. level sizes and MANIFEST are updated as in the normal flow.
func (s *levelsController) dropPrefixes(prefixes [][]byte) error {
opt := s.kv.opt
// Iterate levels in the reverse order because if we were to iterate from
// lower level (say level 0) to a higher level (say level 3) we could have
// a state in which level 0 is compacted and an older version of a key exists in lower level.
// At this point, if someone creates an iterator, they would see an old
// value for a key from lower levels. Iterating in reverse order ensures we
// drop the oldest data first so that lookups never return stale data.
for i := len(s.levels) - 1; i >= 0; i-- {
l := s.levels[i]
l.RLock()
if l.level == 0 {
size := len(l.tables)
l.RUnlock()
if size > 0 {
cp := compactionPriority{
level: 0,
score: 1.74,
// A unique number greater than 1.0 does two things. Helps identify this
// function in logs, and forces a compaction.
dropPrefixes: prefixes,
}
if err := s.doCompact(174, cp); err != nil {
opt.Warningf("While compacting level 0: %v", err)
return nil
}
}
continue
}
// Build a list of compaction tableGroups affecting all the prefixes we
// need to drop. We need to build tableGroups that satisfy the invariant that
// bottom tables are consecutive.
// tableGroup contains groups of consecutive tables.
var tableGroups [][]*table.Table
var tableGroup []*table.Table
finishGroup := func() {
if len(tableGroup) > 0 {
tableGroups = append(tableGroups, tableGroup)
tableGroup = nil
}
}
for _, table := range l.tables {
if containsAnyPrefixes(table, prefixes) {
tableGroup = append(tableGroup, table)
} else {
finishGroup()
}
}
finishGroup()
l.RUnlock()
if len(tableGroups) == 0 {
continue
}
opt.Infof("Dropping prefix at level %d (%d tableGroups)", l.level, len(tableGroups))
for _, operation := range tableGroups {
cd := compactDef{
thisLevel: l,
nextLevel: l,
top: nil,
bot: operation,
dropPrefixes: prefixes,
t: s.levelTargets(),
}
_, span := otel.Tracer("").Start(context.TODO(), "Badger.Compaction")
span.SetAttributes(attribute.Int("Compaction level", l.level))
span.SetAttributes(attribute.String("Drop Prefixes", fmt.Sprintf("%v", prefixes)))
cd.t.baseLevel = l.level
if err := s.runCompactDef(-1, l.level, cd); err != nil {
opt.Warningf("While running compact def: %+v. Error: %v", cd, err)
span.End()
return err
}
span.SetAttributes(
attribute.Int("Top tables count", len(cd.top)),
attribute.Int("Bottom tables count", len(cd.bot)))
span.End()
}
}
return nil
}
func (s *levelsController) startCompact(lc *z.Closer) {
n := s.kv.opt.NumCompactors
lc.AddRunning(n - 1)
for i := 0; i < n; i++ {
go s.runCompactor(i, lc)
}
}
type targets struct {
baseLevel int
targetSz []int64
fileSz []int64
}
// levelTargets calculates the targets for levels in the LSM tree. The idea comes from Dynamic Level
// Sizes ( https://rocksdb.org/blog/2015/07/23/dynamic-level.html ) in RocksDB. The sizes of levels
// are calculated based on the size of the lowest level, typically L6. So, if L6 size is 1GB, then
// L5 target size is 100MB, L4 target size is 10MB and so on.
//
// L0 files don't automatically go to L1. Instead, they get compacted to Lbase, where Lbase is
// chosen based on the first level which is non-empty from top (check L1 through L6). For an empty
// DB, that would be L6. So, L0 compactions go to L6, then L5, L4 and so on.
//
// Lbase is advanced to the upper levels when its target size exceeds BaseLevelSize. For
// example, when L6 reaches 1.1GB, then L4 target sizes becomes 11MB, thus exceeding the
// BaseLevelSize of 10MB. L3 would then become the new Lbase, with a target size of 1MB <
// BaseLevelSize.
func (s *levelsController) levelTargets() targets {
adjust := func(sz int64) int64 {
if sz < s.kv.opt.BaseLevelSize {
return s.kv.opt.BaseLevelSize
}
return sz
}
t := targets{
targetSz: make([]int64, len(s.levels)),
fileSz: make([]int64, len(s.levels)),
}
// DB size is the size of the last level.
dbSize := s.lastLevel().getTotalSize()
for i := len(s.levels) - 1; i > 0; i-- {
ltarget := adjust(dbSize)
t.targetSz[i] = ltarget
if t.baseLevel == 0 && ltarget <= s.kv.opt.BaseLevelSize {
t.baseLevel = i
}
dbSize /= int64(s.kv.opt.LevelSizeMultiplier)
}
tsz := s.kv.opt.BaseTableSize
for i := 0; i < len(s.levels); i++ {
if i == 0 {
// Use MemTableSize for Level 0. Because at Level 0, we stop compactions based on the
// number of tables, not the size of the level. So, having a 1:1 size ratio between
// memtable size and the size of L0 files is better than churning out 32 files per
// memtable (assuming 64MB MemTableSize and 2MB BaseTableSize).
t.fileSz[i] = s.kv.opt.MemTableSize
} else if i <= t.baseLevel {
t.fileSz[i] = tsz
} else {
tsz *= int64(s.kv.opt.TableSizeMultiplier)
t.fileSz[i] = tsz
}
}
// Bring the base level down to the last empty level.
for i := t.baseLevel + 1; i < len(s.levels)-1; i++ {
if s.levels[i].getTotalSize() > 0 {
break
}
t.baseLevel = i
}
// If the base level is empty and the next level size is less than the
// target size, pick the next level as the base level.
b := t.baseLevel
lvl := s.levels
if b < len(lvl)-1 && lvl[b].getTotalSize() == 0 && lvl[b+1].getTotalSize() < t.targetSz[b+1] {
t.baseLevel++
}
return t
}
func (s *levelsController) runCompactor(id int, lc *z.Closer) {
defer lc.Done()
randomDelay := time.NewTimer(time.Duration(rand.Int31n(1000)) * time.Millisecond)
select {
case <-randomDelay.C:
case <-lc.HasBeenClosed():
randomDelay.Stop()
return
}
moveL0toFront := func(prios []compactionPriority) []compactionPriority {
idx := -1
for i, p := range prios {
if p.level == 0 {
idx = i
break
}
}
// If idx == -1, we didn't find L0.
// If idx == 0, then we don't need to do anything. L0 is already at the front.
if idx > 0 {
out := append([]compactionPriority{}, prios[idx])
out = append(out, prios[:idx]...)
out = append(out, prios[idx+1:]...)
return out
}
return prios
}
run := func(p compactionPriority) bool {
err := s.doCompact(id, p)
switch err {
case nil:
return true
case errFillTables:
// pass
default:
s.kv.opt.Warningf("While running doCompact: %v\n", err)
}
return false
}
var priosBuffer []compactionPriority
runOnce := func() bool {
prios := s.pickCompactLevels(priosBuffer)
defer func() {
priosBuffer = prios
}()
if id == 0 {
// Worker ID zero prefers to compact L0 always.
prios = moveL0toFront(prios)
}
for _, p := range prios {
if id == 0 && p.level == 0 {
// Allow worker zero to run level 0, irrespective of its adjusted score.
} else if p.adjusted < 1.0 {
break
}
if run(p) {
return true
}
}
return false
}
tryLmaxToLmaxCompaction := func() {
p := compactionPriority{
level: s.lastLevel().level,
t: s.levelTargets(),
}
run(p)
}
count := 0
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
for {
select {
// Can add a done channel or other stuff.
case <-ticker.C:
count++
// Each ticker is 50ms so 50*200=10seconds.
if s.kv.opt.LmaxCompaction && id == 2 && count >= 200 {
tryLmaxToLmaxCompaction()
count = 0
} else {
runOnce()
}
case <-lc.HasBeenClosed():
return
}
}
}
type compactionPriority struct {
level int
score float64
adjusted float64
dropPrefixes [][]byte
t targets
}
func (s *levelsController) lastLevel() *levelHandler {
return s.levels[len(s.levels)-1]
}
// pickCompactLevel determines which level to compact.
// Based on: https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
// It tries to reuse priosBuffer to reduce memory allocation,
// passing nil is acceptable, then new memory will be allocated.
func (s *levelsController) pickCompactLevels(priosBuffer []compactionPriority) (prios []compactionPriority) {
t := s.levelTargets()
addPriority := func(level int, score float64) {
pri := compactionPriority{
level: level,
score: score,
adjusted: score,
t: t,
}
prios = append(prios, pri)
}
// Grow buffer to fit all levels.
if cap(priosBuffer) < len(s.levels) {
priosBuffer = make([]compactionPriority, 0, len(s.levels))
}
prios = priosBuffer[:0]
// Add L0 priority based on the number of tables.
addPriority(0, float64(s.levels[0].numTables())/float64(s.kv.opt.NumLevelZeroTables))
// All other levels use size to calculate priority.
for i := 1; i < len(s.levels); i++ {
// Don't consider those tables that are already being compacted right now.
delSize := s.cstatus.delSize(i)
l := s.levels[i]
sz := l.getTotalSize() - delSize
addPriority(i, float64(sz)/float64(t.targetSz[i]))
}
y.AssertTrue(len(prios) == len(s.levels))
// The following code is borrowed from PebbleDB and results in healthier LSM tree structure.
// If Li-1 has score > 1.0, then we'll divide Li-1 score by Li. If Li score is >= 1.0, then Li-1
// score is reduced, which means we'll prioritize the compaction of lower levels (L5, L4 and so
// on) over the higher levels (L0, L1 and so on). On the other hand, if Li score is < 1.0, then
// we'll increase the priority of Li-1.
// Overall what this means is, if the bottom level is already overflowing, then de-prioritize
// compaction of the above level. If the bottom level is not full, then increase the priority of
// above level.
var prevLevel int
for level := t.baseLevel; level < len(s.levels); level++ {
if prios[prevLevel].adjusted >= 1 {
// Avoid absurdly large scores by placing a floor on the score that we'll
// adjust a level by. The value of 0.01 was chosen somewhat arbitrarily
const minScore = 0.01
if prios[level].score >= minScore {
prios[prevLevel].adjusted /= prios[level].adjusted
} else {
prios[prevLevel].adjusted /= minScore
}
}
prevLevel = level
}
// Pick all the levels whose original score is >= 1.0, irrespective of their adjusted score.
// We'll still sort them by their adjusted score below. Having both these scores allows us to
// make better decisions about compacting L0. If we see a score >= 1.0, we can do L0->L0
// compactions. If the adjusted score >= 1.0, then we can do L0->Lbase compactions.
out := prios[:0]
for _, p := range prios[:len(prios)-1] {
if p.score >= 1.0 {
out = append(out, p)
}
}
prios = out
// Sort by the adjusted score.
sort.Slice(prios, func(i, j int) bool {
return prios[i].adjusted > prios[j].adjusted
})
return prios
}
// checkOverlap checks if the given tables overlap with any level from the given "lev" onwards.
func (s *levelsController) checkOverlap(tables []*table.Table, lev int) bool {
kr := getKeyRange(tables...)
for i, lh := range s.levels {
if i < lev { // Skip upper levels.
continue
}
lh.RLock()
left, right := lh.overlappingTables(levelHandlerRLocked{}, kr)
lh.RUnlock()
if right-left > 0 {
return true
}
}
return false
}
// subcompact runs a single sub-compaction, iterating over the specified key-range only.
//
// We use splits to do a single compaction concurrently. If we have >= 3 tables
// involved in the bottom level during compaction, we choose key ranges to
// split the main compaction up into sub-compactions. Each sub-compaction runs
// concurrently, only iterating over the provided key range, generating tables.
// This speeds up the compaction significantly.
func (s *levelsController) subcompact(it y.Iterator, kr keyRange, cd compactDef,
inflightBuilders *y.Throttle, res chan<- *table.Table) {
// Check overlap of the top level with the levels which are not being
// compacted in this compaction.
hasOverlap := s.checkOverlap(cd.allTables(), cd.nextLevel.level+1)
// Pick a discard ts, so we can discard versions below this ts. We should
// never discard any versions starting from above this timestamp, because
// that would affect the snapshot view guarantee provided by transactions.
discardTs := s.kv.orc.discardAtOrBelow()
// Try to collect stats so that we can inform value log about GC. That would help us find which
// value log file should be GCed.
discardStats := make(map[uint32]int64)
updateStats := func(vs y.ValueStruct) {
// We don't need to store/update discard stats when badger is running in Disk-less mode.
if s.kv.opt.InMemory {
return
}
if vs.Meta&bitValuePointer > 0 {
var vp valuePointer
vp.Decode(vs.Value)
discardStats[vp.Fid] += int64(vp.Len)
}
}
// exceedsAllowedOverlap returns true if the given key range would overlap with more than 10
// tables from level below nextLevel (nextLevel+1). This helps avoid generating tables at Li
// with huge overlaps with Li+1.
exceedsAllowedOverlap := func(kr keyRange) bool {
n2n := cd.nextLevel.level + 1
if n2n <= 1 || n2n >= len(s.levels) {
return false
}
n2nl := s.levels[n2n]
n2nl.RLock()
defer n2nl.RUnlock()
l, r := n2nl.overlappingTables(levelHandlerRLocked{}, kr)
return r-l >= 10
}
var (
lastKey, skipKey []byte
numBuilds, numVersions int
// Denotes if the first key is a series of duplicate keys had
// "DiscardEarlierVersions" set
firstKeyHasDiscardSet bool
)
addKeys := func(builder *table.Builder) {
timeStart := time.Now()
var numKeys, numSkips uint64
var rangeCheck int
var tableKr keyRange
for ; it.Valid(); it.Next() {
// See if we need to skip the prefix.
if len(cd.dropPrefixes) > 0 && hasAnyPrefixes(it.Key(), cd.dropPrefixes) {
numSkips++
updateStats(it.Value())
continue
}
// See if we need to skip this key.
if len(skipKey) > 0 {
if y.SameKey(it.Key(), skipKey) {
numSkips++
updateStats(it.Value())
continue
} else {
skipKey = skipKey[:0]
}
}
if !y.SameKey(it.Key(), lastKey) {
firstKeyHasDiscardSet = false
if len(kr.right) > 0 && y.CompareKeys(it.Key(), kr.right) >= 0 {
break
}
if builder.ReachedCapacity() {
// Only break if we are on a different key, and have reached capacity. We want
// to ensure that all versions of the key are stored in the same sstable, and
// not divided across multiple tables at the same level.
break
}
lastKey = y.SafeCopy(lastKey, it.Key())
numVersions = 0
firstKeyHasDiscardSet = it.Value().Meta&bitDiscardEarlierVersions > 0
if len(tableKr.left) == 0 {
tableKr.left = y.SafeCopy(tableKr.left, it.Key())
}
tableKr.right = lastKey
rangeCheck++
if rangeCheck%5000 == 0 {
// This table's range exceeds the allowed range overlap with the level after
// next. So, we stop writing to this table. If we don't do this, then we end up
// doing very expensive compactions involving too many tables. To amortize the
// cost of this check, we do it only every N keys.
if exceedsAllowedOverlap(tableKr) {
// s.kv.opt.Debugf("L%d -> L%d Breaking due to exceedsAllowedOverlap with
// kr: %s\n", cd.thisLevel.level, cd.nextLevel.level, tableKr)
break
}
}
}
vs := it.Value()
version := y.ParseTs(it.Key())
isExpired := isDeletedOrExpired(vs.Meta, vs.ExpiresAt)
// Do not discard entries inserted by merge operator. These entries will be
// discarded once they're merged
if version <= discardTs && vs.Meta&bitMergeEntry == 0 {
// Keep track of the number of versions encountered for this key. Only consider the
// versions which are below the minReadTs, otherwise, we might end up discarding the
// only valid version for a running transaction.
numVersions++
// Keep the current version and discard all the next versions if
// - The `discardEarlierVersions` bit is set OR
// - We've already processed `NumVersionsToKeep` number of versions
// (including the current item being processed)
lastValidVersion := vs.Meta&bitDiscardEarlierVersions > 0 ||
numVersions == s.kv.opt.NumVersionsToKeep
if isExpired || lastValidVersion {
// If this version of the key is deleted or expired, skip all the rest of the
// versions. Ensure that we're only removing versions below readTs.
skipKey = y.SafeCopy(skipKey, it.Key())
switch {
// Add the key to the table only if it has not expired.
// We don't want to add the deleted/expired keys.
case !isExpired && lastValidVersion:
// Add this key. We have set skipKey, so the following key versions
// would be skipped.
case hasOverlap:
// If this key range has overlap with lower levels, then keep the deletion
// marker with the latest version, discarding the rest. We have set skipKey,
// so the following key versions would be skipped.
default:
// If no overlap, we can skip all the versions, by continuing here.
numSkips++
updateStats(vs)
continue // Skip adding this key.
}
}
}
numKeys++
var vp valuePointer
if vs.Meta&bitValuePointer > 0 {
vp.Decode(vs.Value)
}
switch {
case firstKeyHasDiscardSet:
// This key is same as the last key which had "DiscardEarlierVersions" set. The
// the next compactions will drop this key if its ts >
// discardTs (of the next compaction).
builder.AddStaleKey(it.Key(), vs, vp.Len)
case isExpired:
// If the key is expired, the next compaction will drop it if
// its ts > discardTs (of the next compaction).
builder.AddStaleKey(it.Key(), vs, vp.Len)
default:
builder.Add(it.Key(), vs, vp.Len)
}
}
s.kv.opt.Debugf("[%d] LOG Compact. Added %d keys. Skipped %d keys. Iteration took: %v",
cd.compactorId, numKeys, numSkips, time.Since(timeStart).Round(time.Millisecond))
} // End of function: addKeys
if len(kr.left) > 0 {
it.Seek(kr.left)
} else {
it.Rewind()
}
for it.Valid() {
if len(kr.right) > 0 && y.CompareKeys(it.Key(), kr.right) >= 0 {
break
}
bopts := buildTableOptions(s.kv)
// Set TableSize to the target file size for that level.
bopts.TableSize = uint64(cd.t.fileSz[cd.nextLevel.level])
builder := table.NewTableBuilder(bopts)
// This would do the iteration and add keys to builder.
addKeys(builder)
// It was true that it.Valid() at least once in the loop above, which means we
// called Add() at least once, and builder is not Empty().
if builder.Empty() {
// Cleanup builder resources:
builder.Finish()
builder.Close()
continue
}
numBuilds++
if err := inflightBuilders.Do(); err != nil {
// Can't return from here, until I decrRef all the tables that I built so far.
break
}
go func(builder *table.Builder, fileID uint64) {
var err error
defer inflightBuilders.Done(err)
defer builder.Close()
var tbl *table.Table
if s.kv.opt.InMemory {
tbl, err = table.OpenInMemoryTable(builder.Finish(), fileID, &bopts)
} else {
fname := table.NewFilename(fileID, s.kv.opt.Dir)
tbl, err = table.CreateTable(fname, builder)
}
// If we couldn't build the table, return fast.
if err != nil {
return
}
res <- tbl
}(builder, s.reserveFileID())
}
s.kv.vlog.updateDiscardStats(discardStats)
s.kv.opt.Debugf("Discard stats: %v", discardStats)
}
// compactBuildTables merges topTables and botTables to form a list of new tables.
func (s *levelsController) compactBuildTables(
lev int, cd compactDef) ([]*table.Table, func() error, error) {
topTables := cd.top
botTables := cd.bot
numTables := int64(len(topTables) + len(botTables))
y.NumCompactionTablesAdd(s.kv.opt.MetricsEnabled, numTables)
defer y.NumCompactionTablesAdd(s.kv.opt.MetricsEnabled, -numTables)
keepTable := func(t *table.Table) bool {
for _, prefix := range cd.dropPrefixes {
if bytes.HasPrefix(t.Smallest(), prefix) &&
bytes.HasPrefix(t.Biggest(), prefix) {
// All the keys in this table have the dropPrefix. So, this
// table does not need to be in the iterator and can be
// dropped immediately.
return false
}
}
return true
}
var valid []*table.Table
for _, table := range botTables {
if keepTable(table) {
valid = append(valid, table)
}
}
newIterator := func() []y.Iterator {
// Create iterators across all the tables involved first.
var iters []y.Iterator
switch {
case lev == 0:
iters = appendIteratorsReversed(iters, topTables, table.NOCACHE)
case len(topTables) > 0:
y.AssertTrue(len(topTables) == 1)
iters = []y.Iterator{topTables[0].NewIterator(table.NOCACHE)}
}
// Next level has level>=1 and we can use ConcatIterator as key ranges do not overlap.
return append(iters, table.NewConcatIterator(valid, table.NOCACHE))
}
res := make(chan *table.Table, 3)
inflightBuilders := y.NewThrottle(8 + len(cd.splits))
for _, kr := range cd.splits {
// Initiate Do here so we can register the goroutines for buildTables too.
if err := inflightBuilders.Do(); err != nil {
s.kv.opt.Errorf("cannot start subcompaction: %+v", err)
return nil, nil, err
}
go func(kr keyRange) {
defer inflightBuilders.Done(nil)
it := table.NewMergeIterator(newIterator(), false)
defer it.Close()
s.subcompact(it, kr, cd, inflightBuilders, res)
}(kr)
}
var newTables []*table.Table
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
for t := range res {
newTables = append(newTables, t)
}
}()
// Wait for all table builders to finish and also for newTables accumulator to finish.
err := inflightBuilders.Finish()
close(res)
wg.Wait() // Wait for all tables to be picked up.
if err == nil {
// Ensure created files' directory entries are visible. We don't mind the extra latency
// from not doing this ASAP after all file creation has finished because this is a
// background operation.
err = s.kv.syncDir(s.kv.opt.Dir)
}
if err != nil {
// An error happened. Delete all the newly created table files (by calling DecrRef
// -- we're the only holders of a ref).
_ = decrRefs(newTables)
return nil, nil, y.Wrapf(err, "while running compactions for: %+v", cd)
}
sort.Slice(newTables, func(i, j int) bool {
return y.CompareKeys(newTables[i].Biggest(), newTables[j].Biggest()) < 0
})
return newTables, func() error { return decrRefs(newTables) }, nil
}
func buildChangeSet(cd *compactDef, newTables []*table.Table) pb.ManifestChangeSet {
changes := []*pb.ManifestChange{}
for _, table := range newTables {
changes = append(changes,
newCreateChange(table.ID(), cd.nextLevel.level, table.KeyID(), table.CompressionType()))
}
for _, table := range cd.top {
// Add a delete change only if the table is not in memory.
if !table.IsInmemory {
changes = append(changes, newDeleteChange(table.ID()))
}
}
for _, table := range cd.bot {
changes = append(changes, newDeleteChange(table.ID()))
}
return pb.ManifestChangeSet{Changes: changes}
}
func hasAnyPrefixes(s []byte, listOfPrefixes [][]byte) bool {
for _, prefix := range listOfPrefixes {
if bytes.HasPrefix(s, prefix) {
return true
}
}
return false
}
func containsPrefix(table *table.Table, prefix []byte) bool {
smallValue := table.Smallest()
largeValue := table.Biggest()
if bytes.HasPrefix(smallValue, prefix) {
return true
}
if bytes.HasPrefix(largeValue, prefix) {
return true
}
isPresent := func() bool {
ti := table.NewIterator(0)
defer ti.Close()
// In table iterator's Seek, we assume that key has version in last 8 bytes. We set
// version=0 (ts=math.MaxUint64), so that we don't skip the key prefixed with prefix.
ti.Seek(y.KeyWithTs(prefix, math.MaxUint64))
return bytes.HasPrefix(ti.Key(), prefix)
}
if bytes.Compare(prefix, smallValue) > 0 &&
bytes.Compare(prefix, largeValue) < 0 {
// There may be a case when table contains [0x0000,...., 0xffff]. If we are searching for
// k=0x0011, we should not directly infer that k is present. It may not be present.
return isPresent()
}
return false
}
func containsAnyPrefixes(table *table.Table, listOfPrefixes [][]byte) bool {
for _, prefix := range listOfPrefixes {
if containsPrefix(table, prefix) {
return true
}
}
return false
}
type compactDef struct {
compactorId int
t targets
p compactionPriority
thisLevel *levelHandler
nextLevel *levelHandler
top []*table.Table
bot []*table.Table
thisRange keyRange
nextRange keyRange
splits []keyRange
thisSize int64
dropPrefixes [][]byte
}
// addSplits can allow us to run multiple sub-compactions in parallel across the split key ranges.
func (s *levelsController) addSplits(cd *compactDef) {
cd.splits = cd.splits[:0]
// Let's say we have 10 tables in cd.bot and min width = 3. Then, we'll pick
// 0, 1, 2 (pick), 3, 4, 5 (pick), 6, 7, 8 (pick), 9 (pick, because last table).
// This gives us 4 picks for 10 tables.
// In an edge case, 142 tables in bottom led to 48 splits. That's too many splits, because it
// then uses up a lot of memory for table builder.
// We should keep it so we have at max 5 splits.
width := int(math.Ceil(float64(len(cd.bot)) / 5.0))
if width < 3 {
width = 3
}
skr := cd.thisRange
skr.extend(cd.nextRange)
addRange := func(right []byte) {
skr.right = y.Copy(right)
cd.splits = append(cd.splits, skr)
skr.left = skr.right
}
for i, t := range cd.bot {
// last entry in bottom table.
if i == len(cd.bot)-1 {
addRange([]byte{})
return
}
if i%width == width-1 {
// Right is assigned ts=0. The encoding ts bytes take MaxUint64-ts,
// so, those with smaller TS will be considered larger for the same key.
// Consider the following.
// Top table is [A1...C3(deleted)]
// bot table is [B1....C2]
// It will generate a split [A1 ... C0], including any records of Key C.
right := y.KeyWithTs(y.ParseKey(t.Biggest()), 0)
addRange(right)
}
}
}
func (cd *compactDef) lockLevels() {
cd.thisLevel.RLock()
cd.nextLevel.RLock()
}
func (cd *compactDef) unlockLevels() {
cd.nextLevel.RUnlock()
cd.thisLevel.RUnlock()
}
func (cd *compactDef) allTables() []*table.Table {
ret := make([]*table.Table, 0, len(cd.top)+len(cd.bot))
ret = append(ret, cd.top...)
ret = append(ret, cd.bot...)
return ret
}
func (s *levelsController) fillTablesL0ToL0(cd *compactDef) bool {
if cd.compactorId != 0 {
// Only compactor zero can work on this.
return false
}
cd.nextLevel = s.levels[0]
cd.nextRange = keyRange{}
cd.bot = nil
// Because this level and next level are both level 0, we should NOT acquire
// the read lock twice, because it can result in a deadlock. So, we don't
// call compactDef.lockLevels, instead locking the level only once and
// directly here.
//
// As per godocs on RWMutex:
// If a goroutine holds a RWMutex for reading and another goroutine might
// call Lock, no goroutine should expect to be able to acquire a read lock
// until the initial read lock is released. In particular, this prohibits
// recursive read locking. This is to ensure that the lock eventually
// becomes available; a blocked Lock call excludes new readers from
// acquiring the lock.
y.AssertTrue(cd.thisLevel.level == 0)
y.AssertTrue(cd.nextLevel.level == 0)
s.levels[0].RLock()
defer s.levels[0].RUnlock()
s.cstatus.Lock()
defer s.cstatus.Unlock()
top := cd.thisLevel.tables
var out []*table.Table
now := time.Now()
for _, t := range top {
if t.Size() >= 2*cd.t.fileSz[0] {
// This file is already big, don't include it.
continue
}
if now.Sub(t.CreatedAt) < 10*time.Second {
// Just created it 10s ago. Don't pick for compaction.
continue
}
if _, beingCompacted := s.cstatus.tables[t.ID()]; beingCompacted {
continue
}
out = append(out, t)
}
if len(out) < 4 {
// If we don't have enough tables to merge in L0, don't do it.
return false
}
cd.thisRange = infRange
cd.top = out
// Avoid any other L0 -> Lbase from happening, while this is going on.
thisLevel := s.cstatus.levels[cd.thisLevel.level]
thisLevel.ranges = append(thisLevel.ranges, infRange)
for _, t := range out {
s.cstatus.tables[t.ID()] = struct{}{}
}
// For L0->L0 compaction, we set the target file size to max, so the output is always one file.
// This significantly decreases the L0 table stalls and improves the performance.
cd.t.fileSz[0] = math.MaxUint32
return true
}
func (s *levelsController) fillTablesL0ToLbase(cd *compactDef) bool {
if cd.nextLevel.level == 0 {
panic("Base level can't be zero.")
}
// We keep cd.p.adjusted > 0.0 here to allow functions in db.go to artificially trigger
// L0->Lbase compactions. Those functions wouldn't be setting the adjusted score.
if cd.p.adjusted > 0.0 && cd.p.adjusted < 1.0 {
// Do not compact to Lbase if adjusted score is less than 1.0.
return false
}
cd.lockLevels()
defer cd.unlockLevels()
top := cd.thisLevel.tables
if len(top) == 0 {
return false
}
var out []*table.Table
if len(cd.dropPrefixes) > 0 {
// Use all tables if drop prefix is set. We don't want to compact only a
// sub-range. We want to compact all the tables.
out = top
} else {
var kr keyRange
// cd.top[0] is the oldest file. So we start from the oldest file first.
for _, t := range top {
dkr := getKeyRange(t)
if kr.overlapsWith(dkr) {
out = append(out, t)
kr.extend(dkr)
} else {
break
}
}
}
cd.thisRange = getKeyRange(out...)
cd.top = out
left, right := cd.nextLevel.overlappingTables(levelHandlerRLocked{}, cd.thisRange)
cd.bot = make([]*table.Table, right-left)
copy(cd.bot, cd.nextLevel.tables[left:right])
if len(cd.bot) == 0 {
cd.nextRange = cd.thisRange
} else {
cd.nextRange = getKeyRange(cd.bot...)
}
return s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd)
}
// fillTablesL0 would try to fill tables from L0 to be compacted with Lbase. If
// it can not do that, it would try to compact tables from L0 -> L0.
//
// Say L0 has 10 tables.
// fillTablesL0ToLbase picks up 5 tables to compact from L0 -> L5.
// Next call to fillTablesL0 would run L0ToLbase again, which fails this time.
// So, instead, we run fillTablesL0ToL0, which picks up rest of the 5 tables to
// be compacted within L0. Additionally, it would set the compaction range in
// cstatus to inf, so no other L0 -> Lbase compactions can happen.
// Thus, L0 -> L0 must finish for the next L0 -> Lbase to begin.
func (s *levelsController) fillTablesL0(cd *compactDef) bool {
if ok := s.fillTablesL0ToLbase(cd); ok {
return true
}
return s.fillTablesL0ToL0(cd)
}
// sortByStaleData sorts tables based on the amount of stale data they have.
// This is useful in removing tombstones.
func (s *levelsController) sortByStaleDataSize(tables []*table.Table, cd *compactDef) {
if len(tables) == 0 || cd.nextLevel == nil {
return
}
sort.Slice(tables, func(i, j int) bool {
return tables[i].StaleDataSize() > tables[j].StaleDataSize()
})
}
// sortByHeuristic sorts tables in increasing order of MaxVersion, so we
// compact older tables first.
func (s *levelsController) sortByHeuristic(tables []*table.Table, cd *compactDef) {
if len(tables) == 0 || cd.nextLevel == nil {
return
}
// Sort tables by max version. This is what RocksDB does.
sort.Slice(tables, func(i, j int) bool {
return tables[i].MaxVersion() < tables[j].MaxVersion()
})
}
// This function should be called with lock on levels.
func (s *levelsController) fillMaxLevelTables(tables []*table.Table, cd *compactDef) bool {
sortedTables := make([]*table.Table, len(tables))
copy(sortedTables, tables)
s.sortByStaleDataSize(sortedTables, cd)
if len(sortedTables) > 0 && sortedTables[0].StaleDataSize() == 0 {
// This is a maxLevel to maxLevel compaction and we don't have any stale data.
return false
}
cd.bot = []*table.Table{}
collectBotTables := func(t *table.Table, needSz int64) {
totalSize := t.Size()
j := sort.Search(len(tables), func(i int) bool {
return y.CompareKeys(tables[i].Smallest(), t.Smallest()) >= 0
})
y.AssertTrue(tables[j].ID() == t.ID())
j++
// Collect tables until we reach the the required size.
for j < len(tables) {
newT := tables[j]
totalSize += newT.Size()
if totalSize >= needSz {
break
}
cd.bot = append(cd.bot, newT)
cd.nextRange.extend(getKeyRange(newT))
j++
}
}
now := time.Now()
for _, t := range sortedTables {
// If the maxVersion is above the discardTs, we won't clean anything in
// the compaction. So skip this table.
if t.MaxVersion() > s.kv.orc.discardAtOrBelow() {
continue
}
if now.Sub(t.CreatedAt) < time.Hour {
// Just created it an hour ago. Don't pick for compaction.
continue
}
// If the stale data size is less than 10 MB, it might not be worth
// rewriting the table. Skip it.
if t.StaleDataSize() < 10<<20 {
continue
}
cd.thisSize = t.Size()
cd.thisRange = getKeyRange(t)
// Set the next range as the same as the current range. If we don't do
// this, we won't be able to run more than one max level compactions.
cd.nextRange = cd.thisRange
// If we're already compacting this range, don't do anything.
if s.cstatus.overlapsWith(cd.thisLevel.level, cd.thisRange) {
continue
}
// Found a valid table!
cd.top = []*table.Table{t}
needFileSz := cd.t.fileSz[cd.thisLevel.level]
// The table size is what we want so no need to collect more tables.
if t.Size() >= needFileSz {
break
}
// TableSize is less than what we want. Collect more tables for compaction.
// If the level has multiple small tables, we collect all of them
// together to form a bigger table.
collectBotTables(t, needFileSz)
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
cd.bot = cd.bot[:0]
cd.nextRange = keyRange{}
continue
}
return true
}
if len(cd.top) == 0 {
return false
}
return s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd)
}
func (s *levelsController) fillTables(cd *compactDef) bool {
cd.lockLevels()
defer cd.unlockLevels()
tables := make([]*table.Table, len(cd.thisLevel.tables))
copy(tables, cd.thisLevel.tables)
if len(tables) == 0 {
return false
}
// We're doing a maxLevel to maxLevel compaction. Pick tables based on the stale data size.
if cd.thisLevel.isLastLevel() {
return s.fillMaxLevelTables(tables, cd)
}
// We pick tables, so we compact older tables first. This is similar to
// kOldestLargestSeqFirst in RocksDB.
s.sortByHeuristic(tables, cd)
for _, t := range tables {
cd.thisSize = t.Size()
cd.thisRange = getKeyRange(t)
// If we're already compacting this range, don't do anything.
if s.cstatus.overlapsWith(cd.thisLevel.level, cd.thisRange) {
continue
}
cd.top = []*table.Table{t}
left, right := cd.nextLevel.overlappingTables(levelHandlerRLocked{}, cd.thisRange)
cd.bot = make([]*table.Table, right-left)
copy(cd.bot, cd.nextLevel.tables[left:right])
if len(cd.bot) == 0 {
cd.bot = []*table.Table{}
cd.nextRange = cd.thisRange
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
continue
}
return true
}
cd.nextRange = getKeyRange(cd.bot...)
if s.cstatus.overlapsWith(cd.nextLevel.level, cd.nextRange) {
continue
}
if !s.cstatus.compareAndAdd(thisAndNextLevelRLocked{}, *cd) {
continue
}
return true
}
return false
}
func (s *levelsController) runCompactDef(id, l int, cd compactDef) (err error) {
if len(cd.t.fileSz) == 0 {
return errors.New("Filesizes cannot be zero. Targets are not set")
}
timeStart := time.Now()
thisLevel := cd.thisLevel
nextLevel := cd.nextLevel
y.AssertTrue(len(cd.splits) == 0)
if thisLevel.level == nextLevel.level {
// don't do anything for L0 -> L0 and Lmax -> Lmax.
} else {
s.addSplits(&cd)
}
if len(cd.splits) == 0 {
cd.splits = append(cd.splits, keyRange{})
}
// Table should never be moved directly between levels,
// always be rewritten to allow discarding invalid versions.
newTables, decr, err := s.compactBuildTables(l, cd)
if err != nil {
return err
}
defer func() {
// Only assign to err, if it's not already nil.
if decErr := decr(); err == nil {
err = decErr
}
}()
changeSet := buildChangeSet(&cd, newTables)
// We write to the manifest _before_ we delete files (and after we created files)
if err := s.kv.manifest.addChanges(changeSet.Changes, s.kv.opt); err != nil {
return err
}
getSizes := func(tables []*table.Table) int64 {
size := int64(0)
for _, i := range tables {
size += i.Size()
}
return size
}
sizeNewTables := int64(0)
sizeOldTables := int64(0)
if s.kv.opt.MetricsEnabled {
sizeNewTables = getSizes(newTables)
sizeOldTables = getSizes(cd.bot) + getSizes(cd.top)
y.NumBytesCompactionWrittenAdd(s.kv.opt.MetricsEnabled, nextLevel.strLevel, sizeNewTables)
}
// See comment earlier in this function about the ordering of these ops, and the order in which
// we access levels when reading.
if err := nextLevel.replaceTables(cd.bot, newTables); err != nil {
return err
}
if err := thisLevel.deleteTables(cd.top); err != nil {
return err
}
// Note: For level 0, while doCompact is running, it is possible that new tables are added.
// However, the tables are added only to the end, so it is ok to just delete the first table.
from := append(tablesToString(cd.top), tablesToString(cd.bot)...)
to := tablesToString(newTables)
if dur := time.Since(timeStart); dur > 2*time.Second {
var expensive string
if dur > time.Second {
expensive = " [E]"
}
s.kv.opt.Infof("[%d]%s LOG Compact %d->%d (%d, %d -> %d tables with %d splits)."+
" [%s] -> [%s], took %v\n, deleted %d bytes",
id, expensive, thisLevel.level, nextLevel.level, len(cd.top), len(cd.bot),
len(newTables), len(cd.splits), strings.Join(from, " "), strings.Join(to, " "),
dur.Round(time.Millisecond), sizeOldTables-sizeNewTables)
}
if cd.thisLevel.level != 0 && len(newTables) > 2*s.kv.opt.LevelSizeMultiplier {
s.kv.opt.Infof("This Range (numTables: %d)\nLeft:\n%s\nRight:\n%s\n",
len(cd.top), hex.Dump(cd.thisRange.left), hex.Dump(cd.thisRange.right))
s.kv.opt.Infof("Next Range (numTables: %d)\nLeft:\n%s\nRight:\n%s\n",
len(cd.bot), hex.Dump(cd.nextRange.left), hex.Dump(cd.nextRange.right))
}
return nil
}
func tablesToString(tables []*table.Table) []string {
var res []string
for _, t := range tables {
res = append(res, fmt.Sprintf("%05d", t.ID()))
}
res = append(res, ".")
return res
}
var errFillTables = errors.New("Unable to fill tables")
// doCompact picks some table on level l and compacts it away to the next level.
func (s *levelsController) doCompact(id int, p compactionPriority) error {
l := p.level
y.AssertTrue(l < s.kv.opt.MaxLevels) // Sanity check.
if p.t.baseLevel == 0 {
p.t = s.levelTargets()
}
_, span := otel.Tracer("").Start(context.TODO(), "Badger.Compaction")
defer span.End()
cd := compactDef{
compactorId: id,
p: p,
t: p.t,
thisLevel: s.levels[l],
dropPrefixes: p.dropPrefixes,
}
// While picking tables to be compacted, both levels' tables are expected to
// remain unchanged.
if l == 0 {
cd.nextLevel = s.levels[p.t.baseLevel]
if !s.fillTablesL0(&cd) {
return errFillTables
}
} else {
cd.nextLevel = cd.thisLevel
// We're not compacting the last level so pick the next level.
if !cd.thisLevel.isLastLevel() {
cd.nextLevel = s.levels[l+1]
}
if !s.fillTables(&cd) {
return errFillTables
}
}
defer s.cstatus.delete(cd) // Remove the ranges from compaction status.
span.SetAttributes(attribute.String("Compaction", fmt.Sprintf("%+v", cd)))
if err := s.runCompactDef(id, l, cd); err != nil {
// This compaction couldn't be done successfully.
s.kv.opt.Warningf("[Compactor: %d] LOG Compact FAILED with error: %+v: %+v", id, err, cd)
return err
}
span.SetAttributes(
attribute.Int("Top tables count", len(cd.top)),
attribute.Int("Bottom tables count", len(cd.bot)))
s.kv.opt.Debugf("[Compactor: %d] Compaction for level: %d DONE", id, cd.thisLevel.level)
return nil
}
func (s *levelsController) addLevel0Table(t *table.Table) error {
// Add table to manifest file only if it is not opened in memory. We don't want to add a table
// to the manifest file if it exists only in memory.
if !t.IsInmemory {
// We update the manifest _before_ the table becomes part of a levelHandler, because at that
// point it could get used in some compaction. This ensures the manifest file gets updated in
// the proper order. (That means this update happens before that of some compaction which
// deletes the table.)
err := s.kv.manifest.addChanges([]*pb.ManifestChange{
newCreateChange(t.ID(), 0, t.KeyID(), t.CompressionType()),
}, s.kv.opt)
if err != nil {
return err
}
}
for !s.levels[0].tryAddLevel0Table(t) {
// Before we unstall, we need to make sure that level 0 is healthy.
timeStart := time.Now()
for s.levels[0].numTables() >= s.kv.opt.NumLevelZeroTablesStall {
time.Sleep(10 * time.Millisecond)
}
dur := time.Since(timeStart)
if dur > time.Second {
s.kv.opt.Infof("L0 was stalled for %s\n", dur.Round(time.Millisecond))
}
s.l0stallsMs.Add(int64(dur.Round(time.Millisecond)))
}
return nil
}
func (s *levelsController) close() error {
err := s.cleanupLevels()
return y.Wrap(err, "levelsController.Close")
}
// get searches for a given key in all the levels of the LSM tree. It returns
// key version <= the expected version (version in key). If not found,
// it returns an empty y.ValueStruct.
func (s *levelsController) get(key []byte, maxVs y.ValueStruct, startLevel int) (
y.ValueStruct, error) {
if s.kv.IsClosed() {
return y.ValueStruct{}, ErrDBClosed
}
// It's important that we iterate the levels from 0 on upward. The reason is, if we iterated
// in opposite order, or in parallel (naively calling all the h.RLock() in some order) we could
// read level L's tables post-compaction and level L+1's tables pre-compaction. (If we do
// parallelize this, we will need to call the h.RLock() function by increasing order of level
// number.)
version := y.ParseTs(key)
for _, h := range s.levels {
// Ignore all levels below startLevel. This is useful for GC when L0 is kept in memory.
if h.level < startLevel {
continue
}
vs, err := h.get(key) // Calls h.RLock() and h.RUnlock().
if err != nil {
return y.ValueStruct{}, y.Wrapf(err, "get key: %q", key)
}
if vs.Value == nil && vs.Meta == 0 {
continue
}
y.NumBytesReadsLSMAdd(s.kv.opt.MetricsEnabled, int64(len(vs.Value)))
if vs.Version == version {
return vs, nil
}
if maxVs.Version < vs.Version {
maxVs = vs
}
}
if len(maxVs.Value) > 0 {
y.NumGetsWithResultsAdd(s.kv.opt.MetricsEnabled, 1)
}
return maxVs, nil
}
func appendIteratorsReversed(out []y.Iterator, th []*table.Table, opt int) []y.Iterator {
for i := len(th) - 1; i >= 0; i-- {
// This will increment the reference of the table handler.
out = append(out, th[i].NewIterator(opt))
}
return out
}
// appendIterators appends iterators to an array of iterators, for merging.
// Note: This obtains references for the table handlers. Remember to close these iterators.
func (s *levelsController) appendIterators(
iters []y.Iterator, opt *IteratorOptions) []y.Iterator {
// Just like with get, it's important we iterate the levels from 0 on upward, to avoid missing
// data when there's a compaction.
for _, level := range s.levels {
iters = level.appendIterators(iters, opt)
}
return iters
}
// TableInfo represents the information about a table.
type TableInfo struct {
ID uint64
Level int
Left []byte
Right []byte
KeyCount uint32 // Number of keys in the table
OnDiskSize uint32
StaleDataSize uint32
UncompressedSize uint32
MaxVersion uint64
IndexSz int
BloomFilterSize int
}
func (s *levelsController) getTableInfo() (result []TableInfo) {
for _, l := range s.levels {
l.RLock()
for _, t := range l.tables {
info := TableInfo{
ID: t.ID(),
Level: l.level,
Left: t.Smallest(),
Right: t.Biggest(),
KeyCount: t.KeyCount(),
OnDiskSize: t.OnDiskSize(),
StaleDataSize: t.StaleDataSize(),
IndexSz: t.IndexSize(),
BloomFilterSize: t.BloomFilterSize(),
UncompressedSize: t.UncompressedSize(),
MaxVersion: t.MaxVersion(),
}
result = append(result, info)
}
l.RUnlock()
}
sort.Slice(result, func(i, j int) bool {
if result[i].Level != result[j].Level {
return result[i].Level < result[j].Level
}
return result[i].ID < result[j].ID
})
return
}
type LevelInfo struct {
Level int
NumTables int
Size int64
TargetSize int64
TargetFileSize int64
IsBaseLevel bool
Score float64
Adjusted float64
StaleDatSize int64
}
func (s *levelsController) getLevelInfo() []LevelInfo {
t := s.levelTargets()
prios := s.pickCompactLevels(nil)
result := make([]LevelInfo, len(s.levels))
for i, l := range s.levels {
l.RLock()
result[i].Level = i
result[i].Size = l.totalSize
result[i].NumTables = len(l.tables)
result[i].StaleDatSize = l.totalStaleSize
l.RUnlock()
result[i].TargetSize = t.targetSz[i]
result[i].TargetFileSize = t.fileSz[i]
result[i].IsBaseLevel = t.baseLevel == i
}
for _, p := range prios {
result[p.level].Score = p.score
result[p.level].Adjusted = p.adjusted
}
return result
}
// verifyChecksum verifies checksum for all tables on all levels.
func (s *levelsController) verifyChecksum() error {
var tables []*table.Table
for _, l := range s.levels {
l.RLock()
tables = tables[:0]
for _, t := range l.tables {
tables = append(tables, t)
t.IncrRef()
}
l.RUnlock()
for _, t := range tables {
errChkVerify := t.VerifyChecksum()
if err := t.DecrRef(); err != nil {
s.kv.opt.Errorf("unable to decrease reference of table: %s while "+
"verifying checksum with error: %s", t.Filename(), err)
}
if errChkVerify != nil {
return errChkVerify
}
}
}
return nil
}
// Returns the sorted list of splits for all the levels and tables based
// on the block offsets.
func (s *levelsController) keySplits(numPerTable int, prefix []byte) []string {
splits := make([]string, 0)
for _, l := range s.levels {
l.RLock()
for _, t := range l.tables {
tableSplits := t.KeySplits(numPerTable, prefix)
splits = append(splits, tableSplits...)
}
l.RUnlock()
}
sort.Strings(splits)
return splits
}
|