1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/*
* SPDX-FileCopyrightText: © Hypermode Inc. <hello@hypermode.com>
* SPDX-License-Identifier: Apache-2.0
*/
package badger
import (
"bufio"
"bytes"
"crypto/aes"
cryptorand "crypto/rand"
"encoding/binary"
"fmt"
"hash/crc32"
"io"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"github.com/dgraph-io/badger/v4/pb"
"github.com/dgraph-io/badger/v4/skl"
"github.com/dgraph-io/badger/v4/y"
"github.com/dgraph-io/ristretto/v2/z"
)
// memTable structure stores a skiplist and a corresponding WAL. Writes to memTable are written
// both to the WAL and the skiplist. On a crash, the WAL is replayed to bring the skiplist back to
// its pre-crash form.
type memTable struct {
// TODO: Give skiplist z.Calloc'd []byte.
sl *skl.Skiplist
wal *logFile
maxVersion uint64
opt Options
buf *bytes.Buffer
}
func (db *DB) openMemTables(opt Options) error {
// We don't need to open any tables in in-memory mode.
if db.opt.InMemory {
return nil
}
files, err := os.ReadDir(db.opt.Dir)
if err != nil {
return errFile(err, db.opt.Dir, "Unable to open mem dir.")
}
var fids []int
for _, file := range files {
if !strings.HasSuffix(file.Name(), memFileExt) {
continue
}
fsz := len(file.Name())
fid, err := strconv.ParseInt(file.Name()[:fsz-len(memFileExt)], 10, 64)
if err != nil {
return errFile(err, file.Name(), "Unable to parse log id.")
}
fids = append(fids, int(fid))
}
// Sort in ascending order.
sort.Slice(fids, func(i, j int) bool {
return fids[i] < fids[j]
})
for _, fid := range fids {
flags := os.O_RDWR
if db.opt.ReadOnly {
flags = os.O_RDONLY
}
mt, err := db.openMemTable(fid, flags)
if err != nil {
return y.Wrapf(err, "while opening fid: %d", fid)
}
// If this memtable is empty we don't need to add it. This is a
// memtable that was completely truncated.
if mt.sl.Empty() {
mt.DecrRef()
continue
}
// These should no longer be written to. So, make them part of the imm.
db.imm = append(db.imm, mt)
}
if len(fids) != 0 {
db.nextMemFid = fids[len(fids)-1]
}
db.nextMemFid++
return nil
}
const memFileExt string = ".mem"
func (db *DB) openMemTable(fid, flags int) (*memTable, error) {
filepath := db.mtFilePath(fid)
s := skl.NewSkiplist(arenaSize(db.opt))
mt := &memTable{
sl: s,
opt: db.opt,
buf: &bytes.Buffer{},
}
// We don't need to create the wal for the skiplist in in-memory mode so return the mt.
if db.opt.InMemory {
return mt, z.NewFile
}
mt.wal = &logFile{
fid: uint32(fid),
path: filepath,
registry: db.registry,
writeAt: vlogHeaderSize,
opt: db.opt,
}
lerr := mt.wal.open(filepath, flags, 2*db.opt.MemTableSize)
if lerr != z.NewFile && lerr != nil {
return nil, y.Wrapf(lerr, "While opening memtable: %s", filepath)
}
// Have a callback set to delete WAL when skiplist reference count goes down to zero. That is,
// when it gets flushed to L0.
s.OnClose = func() {
if err := mt.wal.Delete(); err != nil {
db.opt.Errorf("while deleting file: %s, err: %v", filepath, err)
}
}
if lerr == z.NewFile {
return mt, lerr
}
err := mt.UpdateSkipList()
return mt, y.Wrapf(err, "while updating skiplist")
}
func (db *DB) newMemTable() (*memTable, error) {
mt, err := db.openMemTable(db.nextMemFid, os.O_CREATE|os.O_RDWR)
if err == z.NewFile {
db.nextMemFid++
return mt, nil
}
if err != nil {
db.opt.Errorf("Got error: %v for id: %d\n", err, db.nextMemFid)
return nil, y.Wrapf(err, "newMemTable")
}
return nil, fmt.Errorf("File %s already exists", mt.wal.Fd.Name())
}
func (db *DB) mtFilePath(fid int) string {
return filepath.Join(db.opt.Dir, fmt.Sprintf("%05d%s", fid, memFileExt))
}
func (mt *memTable) SyncWAL() error {
return mt.wal.Sync()
}
func (mt *memTable) isFull() bool {
if mt.sl.MemSize() >= mt.opt.MemTableSize {
return true
}
if mt.opt.InMemory {
// InMemory mode doesn't have any WAL.
return false
}
return int64(mt.wal.writeAt) >= mt.opt.MemTableSize
}
func (mt *memTable) Put(key []byte, value y.ValueStruct) error {
entry := &Entry{
Key: key,
Value: value.Value,
UserMeta: value.UserMeta,
meta: value.Meta,
ExpiresAt: value.ExpiresAt,
}
// wal is nil only when badger in running in in-memory mode and we don't need the wal.
if mt.wal != nil {
// If WAL exceeds opt.ValueLogFileSize, we'll force flush the memTable. See logic in
// ensureRoomForWrite.
if err := mt.wal.writeEntry(mt.buf, entry, mt.opt); err != nil {
return y.Wrapf(err, "cannot write entry to WAL file")
}
}
// We insert the finish marker in the WAL but not in the memtable.
if entry.meta&bitFinTxn > 0 {
return nil
}
// Write to skiplist and update maxVersion encountered.
mt.sl.Put(key, value)
if ts := y.ParseTs(entry.Key); ts > mt.maxVersion {
mt.maxVersion = ts
}
y.NumBytesWrittenToL0Add(mt.opt.MetricsEnabled, entry.estimateSizeAndSetThreshold(mt.opt.ValueThreshold))
return nil
}
func (mt *memTable) UpdateSkipList() error {
if mt.wal == nil || mt.sl == nil {
return nil
}
endOff, err := mt.wal.iterate(true, 0, mt.replayFunction(mt.opt))
if err != nil {
return y.Wrapf(err, "while iterating wal: %s", mt.wal.Fd.Name())
}
if endOff < mt.wal.size.Load() && mt.opt.ReadOnly {
return y.Wrapf(ErrTruncateNeeded, "end offset: %d < size: %d", endOff, mt.wal.size.Load())
}
return mt.wal.Truncate(int64(endOff))
}
// IncrRef increases the refcount
func (mt *memTable) IncrRef() {
mt.sl.IncrRef()
}
// DecrRef decrements the refcount, deallocating the Skiplist when done using it
func (mt *memTable) DecrRef() {
mt.sl.DecrRef()
}
func (mt *memTable) replayFunction(opt Options) func(Entry, valuePointer) error {
first := true
return func(e Entry, _ valuePointer) error { // Function for replaying.
if first {
opt.Debugf("First key=%q\n", e.Key)
}
first = false
if ts := y.ParseTs(e.Key); ts > mt.maxVersion {
mt.maxVersion = ts
}
v := y.ValueStruct{
Value: e.Value,
Meta: e.meta,
UserMeta: e.UserMeta,
ExpiresAt: e.ExpiresAt,
}
// This is already encoded correctly. Value would be either a vptr, or a full value
// depending upon how big the original value was. Skiplist makes a copy of the key and
// value.
mt.sl.Put(e.Key, v)
return nil
}
}
type logFile struct {
*z.MmapFile
path string
// This is a lock on the log file. It guards the fd’s value, the file’s
// existence and the file’s memory map.
//
// Use shared ownership when reading/writing the file or memory map, use
// exclusive ownership to open/close the descriptor, unmap or remove the file.
lock sync.RWMutex
fid uint32
size atomic.Uint32
dataKey *pb.DataKey
baseIV []byte
registry *KeyRegistry
writeAt uint32
opt Options
}
func (lf *logFile) Truncate(end int64) error {
if fi, err := lf.Fd.Stat(); err != nil {
return fmt.Errorf("while file.stat on file: %s, error: %v\n", lf.Fd.Name(), err)
} else if fi.Size() == end {
return nil
}
y.AssertTrue(!lf.opt.ReadOnly)
lf.size.Store(uint32(end))
return lf.MmapFile.Truncate(end)
}
// encodeEntry will encode entry to the buf
// layout of entry
// +--------+-----+-------+-------+
// | header | key | value | crc32 |
// +--------+-----+-------+-------+
func (lf *logFile) encodeEntry(buf *bytes.Buffer, e *Entry, offset uint32) (int, error) {
h := header{
klen: uint32(len(e.Key)),
vlen: uint32(len(e.Value)),
expiresAt: e.ExpiresAt,
meta: e.meta,
userMeta: e.UserMeta,
}
hash := crc32.New(y.CastagnoliCrcTable)
writer := io.MultiWriter(buf, hash)
// encode header.
var headerEnc [maxHeaderSize]byte
sz := h.Encode(headerEnc[:])
y.Check2(writer.Write(headerEnc[:sz]))
// we'll encrypt only key and value.
if lf.encryptionEnabled() {
// TODO: no need to allocate the bytes. we can calculate the encrypted buf one by one
// since we're using ctr mode of AES encryption. Ordering won't changed. Need some
// refactoring in XORBlock which will work like stream cipher.
eBuf := make([]byte, 0, len(e.Key)+len(e.Value))
eBuf = append(eBuf, e.Key...)
eBuf = append(eBuf, e.Value...)
if err := y.XORBlockStream(
writer, eBuf, lf.dataKey.Data, lf.generateIV(offset)); err != nil {
return 0, y.Wrapf(err, "Error while encoding entry for vlog.")
}
} else {
// Encryption is disabled so writing directly to the buffer.
y.Check2(writer.Write(e.Key))
y.Check2(writer.Write(e.Value))
}
// write crc32 hash.
var crcBuf [crc32.Size]byte
binary.BigEndian.PutUint32(crcBuf[:], hash.Sum32())
y.Check2(buf.Write(crcBuf[:]))
// return encoded length.
return len(headerEnc[:sz]) + len(e.Key) + len(e.Value) + len(crcBuf), nil
}
func (lf *logFile) writeEntry(buf *bytes.Buffer, e *Entry, opt Options) error {
buf.Reset()
plen, err := lf.encodeEntry(buf, e, lf.writeAt)
if err != nil {
return err
}
y.AssertTrue(plen == copy(lf.Data[lf.writeAt:], buf.Bytes()))
lf.writeAt += uint32(plen)
lf.zeroNextEntry()
return nil
}
func (lf *logFile) decodeEntry(buf []byte, offset uint32) (*Entry, error) {
var h header
hlen := h.Decode(buf)
kv := buf[hlen:]
if lf.encryptionEnabled() {
var err error
// No need to worry about mmap. because, XORBlock allocates a byte array to do the
// xor. So, the given slice is not being mutated.
if kv, err = lf.decryptKV(kv, offset); err != nil {
return nil, err
}
}
e := &Entry{
meta: h.meta,
UserMeta: h.userMeta,
ExpiresAt: h.expiresAt,
offset: offset,
Key: kv[:h.klen],
Value: kv[h.klen : h.klen+h.vlen],
}
return e, nil
}
func (lf *logFile) decryptKV(buf []byte, offset uint32) ([]byte, error) {
return y.XORBlockAllocate(buf, lf.dataKey.Data, lf.generateIV(offset))
}
// KeyID returns datakey's ID.
func (lf *logFile) keyID() uint64 {
if lf.dataKey == nil {
// If there is no datakey, then we'll return 0. Which means no encryption.
return 0
}
return lf.dataKey.KeyId
}
func (lf *logFile) encryptionEnabled() bool {
return lf.dataKey != nil
}
// Acquire lock on mmap/file if you are calling this
func (lf *logFile) read(p valuePointer) (buf []byte, err error) {
offset := p.Offset
// Do not convert size to uint32, because the lf.Data can be of size
// 4GB, which overflows the uint32 during conversion to make the size 0,
// causing the read to fail with ErrEOF. See issue #585.
size := int64(len(lf.Data))
valsz := p.Len
lfsz := lf.size.Load()
if int64(offset) >= size || int64(offset+valsz) > size ||
// Ensure that the read is within the file's actual size. It might be possible that
// the offset+valsz length is beyond the file's actual size. This could happen when
// dropAll and iterations are running simultaneously.
int64(offset+valsz) > int64(lfsz) {
err = y.ErrEOF
} else {
buf = lf.Data[offset : offset+valsz]
}
return buf, err
}
// generateIV will generate IV by appending given offset with the base IV.
func (lf *logFile) generateIV(offset uint32) []byte {
iv := make([]byte, aes.BlockSize)
// baseIV is of 12 bytes.
y.AssertTrue(12 == copy(iv[:12], lf.baseIV))
// remaining 4 bytes is obtained from offset.
binary.BigEndian.PutUint32(iv[12:], offset)
return iv
}
func (lf *logFile) doneWriting(offset uint32) error {
if lf.opt.SyncWrites {
if err := lf.Sync(); err != nil {
return y.Wrapf(err, "Unable to sync value log: %q", lf.path)
}
}
// Before we were acquiring a lock here on lf.lock, because we were invalidating the file
// descriptor due to reopening it as read-only. Now, we don't invalidate the fd, but unmap it,
// truncate it and remap it. That creates a window where we have segfaults because the mmap is
// no longer valid, while someone might be reading it. Therefore, we need a lock here again.
lf.lock.Lock()
defer lf.lock.Unlock()
if err := lf.Truncate(int64(offset)); err != nil {
return y.Wrapf(err, "Unable to truncate file: %q", lf.path)
}
// Previously we used to close the file after it was written and reopen it in read-only mode.
// We no longer open files in read-only mode. We keep all vlog files open in read-write mode.
return nil
}
// iterate iterates over log file. It doesn't not allocate new memory for every kv pair.
// Therefore, the kv pair is only valid for the duration of fn call.
func (lf *logFile) iterate(readOnly bool, offset uint32, fn logEntry) (uint32, error) {
if offset == 0 {
// If offset is set to zero, let's advance past the encryption key header.
offset = vlogHeaderSize
}
// For now, read directly from file, because it allows
reader := bufio.NewReader(lf.NewReader(int(offset)))
read := &safeRead{
k: make([]byte, 10),
v: make([]byte, 10),
recordOffset: offset,
lf: lf,
}
var lastCommit uint64
var validEndOffset uint32 = offset
var entries []*Entry
var vptrs []valuePointer
loop:
for {
e, err := read.Entry(reader)
switch {
// We have not reached the end of the file but the entry we read is
// zero. This happens because we have truncated the file and
// zero'ed it out.
case err == io.EOF:
break loop
case err == io.ErrUnexpectedEOF || err == errTruncate:
break loop
case err != nil:
return 0, err
case e == nil:
continue
case e.isZero():
break loop
}
var vp valuePointer
vp.Len = uint32(e.hlen + len(e.Key) + len(e.Value) + crc32.Size)
read.recordOffset += vp.Len
vp.Offset = e.offset
vp.Fid = lf.fid
switch {
case e.meta&bitTxn > 0:
txnTs := y.ParseTs(e.Key)
if lastCommit == 0 {
lastCommit = txnTs
}
if lastCommit != txnTs {
break loop
}
entries = append(entries, e)
vptrs = append(vptrs, vp)
case e.meta&bitFinTxn > 0:
txnTs, err := strconv.ParseUint(string(e.Value), 10, 64)
if err != nil || lastCommit != txnTs {
break loop
}
// Got the end of txn. Now we can store them.
lastCommit = 0
validEndOffset = read.recordOffset
for i, e := range entries {
vp := vptrs[i]
if err := fn(*e, vp); err != nil {
if err == errStop {
break
}
return 0, errFile(err, lf.path, "Iteration function")
}
}
entries = entries[:0]
vptrs = vptrs[:0]
default:
if lastCommit != 0 {
// This is most likely an entry which was moved as part of GC.
// We shouldn't get this entry in the middle of a transaction.
break loop
}
validEndOffset = read.recordOffset
if err := fn(*e, vp); err != nil {
if err == errStop {
break
}
return 0, errFile(err, lf.path, "Iteration function")
}
}
}
return validEndOffset, nil
}
// Zero out the next entry to deal with any crashes.
func (lf *logFile) zeroNextEntry() {
z.ZeroOut(lf.Data, int(lf.writeAt), int(lf.writeAt+maxHeaderSize))
}
func (lf *logFile) open(path string, flags int, fsize int64) error {
mf, ferr := z.OpenMmapFile(path, flags, int(fsize))
lf.MmapFile = mf
if ferr == z.NewFile {
if err := lf.bootstrap(); err != nil {
os.Remove(path)
return err
}
lf.size.Store(vlogHeaderSize)
} else if ferr != nil {
return y.Wrapf(ferr, "while opening file: %s", path)
}
lf.size.Store(uint32(len(lf.Data)))
if lf.size.Load() < vlogHeaderSize {
// Every vlog file should have at least vlogHeaderSize. If it is less than vlogHeaderSize
// then it must have been corrupted. But no need to handle here. log replayer will truncate
// and bootstrap the logfile. So ignoring here.
return nil
}
// Copy over the encryption registry data.
buf := make([]byte, vlogHeaderSize)
y.AssertTruef(vlogHeaderSize == copy(buf, lf.Data),
"Unable to copy from %s, size %d", path, lf.size.Load())
keyID := binary.BigEndian.Uint64(buf[:8])
// retrieve datakey.
if dk, err := lf.registry.DataKey(keyID); err != nil {
return y.Wrapf(err, "While opening vlog file %d", lf.fid)
} else {
lf.dataKey = dk
}
lf.baseIV = buf[8:]
y.AssertTrue(len(lf.baseIV) == 12)
// Preserved ferr so we can return if this was a new file.
return ferr
}
// bootstrap will initialize the log file with key id and baseIV.
// The below figure shows the layout of log file.
// +----------------+------------------+------------------+
// | keyID(8 bytes) | baseIV(12 bytes)| entry... |
// +----------------+------------------+------------------+
func (lf *logFile) bootstrap() error {
var err error
// generate data key for the log file.
var dk *pb.DataKey
if dk, err = lf.registry.LatestDataKey(); err != nil {
return y.Wrapf(err, "Error while retrieving datakey in logFile.bootstarp")
}
lf.dataKey = dk
// We'll always preserve vlogHeaderSize for key id and baseIV.
buf := make([]byte, vlogHeaderSize)
// write key id to the buf.
// key id will be zero if the logfile is in plain text.
binary.BigEndian.PutUint64(buf[:8], lf.keyID())
// generate base IV. It'll be used with offset of the vptr to encrypt the entry.
if _, err := cryptorand.Read(buf[8:]); err != nil {
return y.Wrapf(err, "Error while creating base IV, while creating logfile")
}
// Initialize base IV.
lf.baseIV = buf[8:]
y.AssertTrue(len(lf.baseIV) == 12)
// Copy over to the logFile.
y.AssertTrue(vlogHeaderSize == copy(lf.Data[0:], buf))
// Zero out the next entry.
lf.zeroNextEntry()
return nil
}
|