File: Csequence_cluster_and_center_sequence.cpp

package info (click to toggle)
baitfisher 1.2.7%2Bgit20190123.241d060%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 28,228 kB
  • sloc: cpp: 30,737; makefile: 30; sh: 27
file content (1083 lines) | stat: -rw-r--r-- 32,216 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/*  BaitFisher (version 1.2.8) a program for designing DNA target enrichment baits
 *  Copyright 2013-2016 by Christoph Mayer
 *
 *  This source file is part of the BaitFisher-package.
 * 
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with BaitFisher.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 *  For any enquiries send an Email to Christoph Mayer
 *  c.mayer.zfmk@uni-bonn.de
 *
 *  When publishing work that is based on the results please cite:
 *  Mayer et al. 2016: BaitFisher: A software package for multi-species target DNA enrichment probe design
 *  
 */
#include "Csequence_cluster_and_center_sequence.h"
#include "DEBUG_STUFF.h"

using namespace std;

CDistance_Cluster *p_global_distcluster;
bool               global_bad_dist_this_range;


void call_back_distance(short i1, short i2, double dist)
{
  if (dist < 0)
    global_bad_dist_this_range = true;
  else
    p_global_distcluster->add(i1, i2, dist);
}



void Csequence_loci_cluster_collection::cluster_locus(faststring & region_name, const faststring &filename)
{
  // TODO:
  // We have to check how many (valid) sequences we have.
  // If this number is just 0 or 1, the clustering will fail and we need a workaround.

  // The number of valid sequences has been determined in the constructor of this object.
  if (number_of_valid_sequences < 2)
  {
    if (number_of_valid_sequences == 0)
    {
      if (global_VERBOSITY >= VERBOSITY_MOREWARNINGS)
      {
	cout << "WARNING: Found 0 valid sequences in bait window in Csequence_loci_cluster_collection::cluster_locus()." << endl;
	cout << "         Alignment file:          " << filename    << endl;
	cout << "         Region/gene name:        " << region_name << endl;
	cout << "         Within gene coordinates: " << pos_start+1 << "-" << pos_end << endl;
      }
    }
    if (number_of_valid_sequences == 1)
    {
      // TODO: Report this only if 
      if (global_VERBOSITY  >= VERBOSITY_MOREWARNINGS)
      {
	cout << "Note: Found 1 valid sequence in bait window in Csequence_loci_cluster_collection::cluster_locus(). Clustering will be skipped. Bait will be constructed from single sequence." << endl;
	cout << "      Alignment file:          " << filename    << endl;
	cout << "      Region/gene name:        " << region_name << endl;
	cout << "      Within gene coordinates: " << pos_start+1 << "-" << pos_end << endl;
      }

      // TODO: Uncomment and adapt:
      Csequence_cluster_and_center_sequence empty_cluster_and_center_sequence;

      // Add an empty object
      list_of_clusters.push_back(empty_cluster_and_center_sequence);
      
      if (global_VERBOSITY > 2000)
       {
	 cout << "Object that will be assigned: *******" << endl;
	 list_of_clusters.back().print(cout);
	 cout << "*************************************" << endl;
       }
       // Fill the object
      set<short> seq_set;
      unsigned   i, N = valid_sequences.size();
      for (i=0; i < N; ++i)
      {
	if (valid_sequences[i])
	  seq_set.insert(i);
      }
      list_of_clusters.back().assign(pos_start, pos_end, 0, seq_set, this, msa);
      if (global_VERBOSITY > 2000)
      {
	cout << "Object after having been assigned:***" << endl;
	list_of_clusters.back().print(cout);
	cout << "*************************************" << endl;
      }
    } // END if (number_of_valid_sequences == 1)
    // Prints data for all clusters in this locus. Center sequences are not computed yet.
    if (global_VERBOSITY > 2000)
    {
      print(cout);
    }
    return;
  } // END if (number_of_valid_sequences < 2)

  // Create cluster object:
  CDistance_Cluster cluster_object;

  // We initialise the global pointer to the cluster_object.
  // This pointer is used by the global call_back_distance function,
  // which we pass to the CSequences2 class where it is used to
  // fill the cluster_object with the distances of the sequences.
  p_global_distcluster = &cluster_object;

  // One problem exists with the sequences that contain gaps or Ns in the window we investigate.
  // The clustering algorithm assumes that all sequence numbers are present during clustering,
  // so we cannot skip sequences. So. we have to add distances for all sequences in the sequences objects.
  // We also do not want to copy the sequences to a new CSequences2 object. Then we have to keep track
  // of the new sequence number, and we have global unique numbers, sequence numbers in the exon,
  // sequence numbers in the window.
  // The best compromise is to add very large distances to the clustering algorithm and to remove
  // the "non-present" sequences after the clustering has been done.
  // Due to the large distances we assign to all sequence pairs in which one sequence is not valid, non of
  // the invalid sequences will be clustered with any other sequence.

  // Valid distances among sequences are in the range 0..1.
  // With a larger value we indicate a problem, e.g. Ns or gaps in the sequences.
  // In order not to cluster sequences that contain Ns or gaps, we 
  // set the dist_threshold to a maximum value of 10.
  // Distances with a value >10 will not be clustered.
  // A good value for distances of sequences that contain gaps or Ns is 100.

  // Add distances:
  seqs->get_sequences_distances(pos_start, pos_end,
				call_back_distance,
				valid_sequences, 0); 
    
  if (global_VERBOSITY > 3000)
  {
    cout << "Sorted distances in this cluster object" << endl;
    cluster_object.print_sorted(cout);
    cout << endl;
  }

  if (global_VERBOSITY >= 900)
  {
    // Print filename, region name, within gene/alignment coordinate, maximum sequence distance
    // for this starting position/locus.
    cout << "Maximum distance:\t" << filename << "\t" << region_name << "\t" << pos_start+1 << "\t"
	 << cluster_object.max_distance() << endl;
  }

  // Do clustering:
  cluster_object.run_clustering(dist_threshold);
    
  if (global_VERBOSITY > 900)
  {
    faststring cluster_string;
    cluster_object.get_cluster_string2(cluster_string);
    cout << "Clustering string: " << cluster_string << endl;
  }

  // Retrieve results: Store all valid clusters in the list of clusters "list_of_clusters" of this locus.
  set<short> seq_set;
  //  set<short> seq_set_uniq_numbers;
  set<short>::iterator it_set, it_set_end;
  double max_dist_in_clu;
  short i;
  bool  valid_cluster;

  Csequence_cluster_and_center_sequence empty_cluster_and_center_sequence;
  
  i=0;
  // For all clusters at this locus:
  while ( cluster_object.get_cluster_by_index(i, seq_set, max_dist_in_clu) )
  {
    valid_cluster = true;
    // Determine whether this is a good set of sequences in this range.
    // Bad sequences should never cluster with others with our settings. (distance=100)
    // So bad sequences should be clusters with just one sequence.
    if (seq_set.size() == 1)
    {
      it_set     = seq_set.begin();
      unsigned seq_index = *it_set;

      valid_cluster = valid_sequences[seq_index];
    }
    // else - the cluster must be valid in our setup since clusters with more than 1 element cannot contain bad sequences.


    // Do something with the cluster:
    // Debug code - more important it shows how to extract
    // the resulting clustering data
    if (global_VERBOSITY > 3000)
    {
      it_set     = seq_set.begin();
      it_set_end = seq_set.end();

      cout << "Found cluster: (";
      while (it_set != it_set_end)
      {
	cout << *it_set;
	++it_set;
	if (it_set != it_set_end)
	  cout << ",";
      }
      cout << "):" << max_dist_in_clu;
      if (valid_cluster)
	cout << endl;
      else
	cout << "(invalid)" << endl;
    }

    // Copy the clustering data to the Csequence_loci_cluster_collection data

    if (valid_cluster)
    {
      // Too bad: emplace_back is a C++11 feature
      //      list_of_clusters.emplace_back(pos_start, pos_end, max_dist_in_clu, seq_set, this);

      // Add an empty object
      list_of_clusters.push_back(empty_cluster_and_center_sequence);

      if (global_VERBOSITY > 2000)
      {
            cout << "Object that will be assigned: *******" << endl;
            list_of_clusters.back().print(cout);
            cout << "*************************************" << endl;
      }
      // Fill the object
      list_of_clusters.back().assign(pos_start, pos_end, max_dist_in_clu, seq_set, this, msa);
      if (global_VERBOSITY > 2000)
      {
	cout << "Object after having been assigned:***" << endl;
	list_of_clusters.back().print(cout);
	cout << "*************************************" << endl;
      }
    }
    ++i;

  } // END while ( cluster_object.get_cluster_by_index(i, seq_set, max_dist_in_clu) )

  // Prints data for all clusters in this locus. Center sequences are not computed yet.
  if (global_VERBOSITY > 1000)
  {
    print(cout);
  }
} // END Csequence_loci_cluster_collection::cluster_locus()

///////////////////////////////////////////////////////
///////////////// CLUSTERING //////////////////////////
///////////////////////////////////////////////////////

// Helper functions:

// Indices:
// First index:  Row, i.e. sequence
// Second index: Col, i.e. sequence position

void recode_range(char * b, char *e)
{
  while (b != e)
  {
    *b = recode_DNA(*b);
    ++b;
  }
}

void back_recode_range(char * b, char *e)
{
  while (b != e)
  {
    *b = backrecode_DNA(*b);
    ++b;
  }
}

// inline bool is_valid_recode_DNA_range(const char *p1, const char *p2)
// {
//   while (p1 != p2)
//   {
//     if (!is_valid_recode_DNA(*p1))
//       return false;
//     ++p1;
//   }
//   return true;
// }


void recode_MSA(char **sequences, int num_taxa, int num_pos)
{
  int  row;

  for (row=0; row < num_taxa; ++row)
  {
    recode_range(sequences[row], sequences[row]+num_pos);
  }
}

// Requires recoded sequences as input.
// The consensus will also be recoded.
////////////////// UPDATED/////////////////
void find_consensus(char **msa, int num_taxa, unsigned pos_start_msa,
		    unsigned pos_end_msa, char *consensus, char *isAmbig)
{
  int  row, col, col_in_msa;
  char c;

  int len = pos_end_msa - pos_start_msa;

  for (col=0, col_in_msa = pos_start_msa; col < len; ++col, ++col_in_msa)
  {
    c = msa[0][col_in_msa];  // Take symbol from row=0
    for (row=1; row < num_taxa; ++row)
    {
      c = c | msa[row][col_in_msa];  // Add all symbols of all other rows.
    }
    consensus[col] = c;
    if (recode_is_DNA_ambig(c) )
    {
      isAmbig[col] = 1; // Keep track of amibig characters: set isAmbig to true
    }
    else
    {
      isAmbig[col] = 0; // Keep track of amibig characters: set isAmbig to false
    }
  }
}

// ONLY DEBUGGING OUTPUT:
// Should work unchanged. CHECK!!!!
void print_all_variants(char *consensus, char *variant, char *isAmbig, int pos, int len)
{
  while (pos < len && !isAmbig[pos])
    ++pos;

  if (pos == len)
  {
    faststring p = variant;
    back_recode_range(p.begin(), p.end());
    cout << p << endl;
  }
  else
  {
    if (consensus[pos]&1)
    {
      variant[pos] = 1;
      print_all_variants(consensus, variant, isAmbig, pos+1, len);
    }
    if (consensus[pos]&2)
    {
      variant[pos] = 2;
      print_all_variants(consensus, variant, isAmbig, pos+1, len);
    }
    if (consensus[pos]&4)
    {
      variant[pos] = 4;
      print_all_variants(consensus, variant, isAmbig, pos+1, len);
    }
    if (consensus[pos]&8)
    {
      variant[pos] = 8;
      print_all_variants(consensus, variant, isAmbig, pos+1, len);
    }
  }
} // END find_consensus(..)




// Important: msa, consensus, and variant are expected to be passed as recoded msa.
//
// pos1 ... pos2 is the range to work on. pos2 is the index after the end of the range.
//
////////////////// UPDATED/////////////////
void find_center_sequence_exhaustive(char **msa, char *consensus,
				     char *variant, char *isAmbig,
				     int len_variant,
				     int pos_start, int num_taxa, 
				     int pos_start_msa, int pos_end_msa,
				     int *distances, faststring &best_variant,
				     int *p_best_maximum_distance)
{
  int i;
  int len_remaining = pos_end_msa - pos_start_msa;
  int pos_end       = pos_start   + len_remaining;

  // Skip all bases for which isAmbig == 0
  while (pos_start < pos_end && !isAmbig[pos_start])
  {
    ++pos_start;
    ++pos_start_msa;
  }

  if (pos_start == pos_end)
  {
    // We have a new variant:
    // Check wether this is better than the best we found so far.

    // Determine maximum distance:
    int m_dist = maximum(distances, distances+num_taxa);

    if (global_VERBOSITY > 800)
    {
      cout << "Current sequence:\nDistance: " << m_dist << endl;
      faststring p = variant;
      back_recode_range(p.begin(), p.end());
      cout << p << endl;

      print_container(cout, distances, distances+num_taxa, "distances: ", ":", "\n\n");
    }

    if (m_dist < *p_best_maximum_distance) // We found a better sequence:
    {

      // Be careful in the following assignment: "=" does not work here, since variant is not 0 terminated!!!
      best_variant.assign(variant, 0, len_variant);
      *p_best_maximum_distance = m_dist;

      // Some debug output:
      if (global_VERBOSITY > 500)
      {
	cout << "*** New best variant: ***" << endl;
	faststring tmp = best_variant;
	back_recode_range(tmp.begin(), tmp.end() );
	cout << tmp << endl;
	cout << "Distance: " << *p_best_maximum_distance << endl << endl;
      }
    }
  }
  else
  {
    int *tmp_dist = new int [num_taxa];

    // If we get here, we have an non unique "consensus at pos_start.
    // So let us try all variants which are found in the msa.
    if (consensus[pos_start]&1)
    {
      variant[pos_start] = 1;

      // Determine new distances:
      memcpy(tmp_dist, distances, sizeof(int)*num_taxa);
      // Adjust distances for this new base:
      for (i=0; i<num_taxa; ++i)
      {
	if (variant[pos_start] != msa[i][pos_start_msa])
	  ++tmp_dist[i];
      }

      find_center_sequence_exhaustive(msa, consensus, variant, isAmbig, len_variant,
				      pos_start+1, num_taxa, pos_start_msa+1, pos_end_msa,
				      tmp_dist, best_variant, p_best_maximum_distance);
    }
    if (consensus[pos_start]&2)
    {
      variant[pos_start] = 2;

      // Determine new distances:
      memcpy(tmp_dist, distances, sizeof(int)*num_taxa);
      // Adjust distances for this new base:
      for (i=0; i<num_taxa; ++i)
      {
	if (variant[pos_start] != msa[i][pos_start_msa])
	  ++tmp_dist[i];
      }

      find_center_sequence_exhaustive(msa, consensus, variant, isAmbig, len_variant,
				      pos_start+1, num_taxa, pos_start_msa+1, pos_end_msa,
				      tmp_dist, best_variant, p_best_maximum_distance);
    }
    if (consensus[pos_start]&4)
    {
      variant[pos_start] = 4;

      // Determine new distances:
      memcpy(tmp_dist, distances, sizeof(int)*num_taxa);
      // Adjust distances for this new base:
      for (i=0; i<num_taxa; ++i)
      {
	if (variant[pos_start] != msa[i][pos_start_msa])
	  ++tmp_dist[i];
      }

      find_center_sequence_exhaustive(msa, consensus, variant, isAmbig, len_variant,
				      pos_start+1, num_taxa, pos_start_msa+1, pos_end_msa,
				      tmp_dist, best_variant, p_best_maximum_distance);
    }
    if (consensus[pos_start]&8)
    {
      variant[pos_start] = 8;

      // Determine new distances:
      memcpy(tmp_dist, distances, sizeof(int)*num_taxa);
      // Adjust distances for this new base:
      for (i=0; i<num_taxa; ++i)
      {
	if (variant[pos_start] != msa[i][pos_start_msa])
	  ++tmp_dist[i];
      }

      find_center_sequence_exhaustive(msa, consensus, variant, isAmbig, len_variant,
				      pos_start+1, num_taxa, pos_start_msa+1, pos_end_msa,
				      tmp_dist, best_variant, p_best_maximum_distance);
    }
    delete [] tmp_dist;
  } // END else of if (pos1 == pos2)
} // END void find_center_sequence_exhaustive

// distances must be initialised by caller.
void find_center_sequence_heuristic(char **msa,     char *consensus,
				    char *center,  char *isAmbig,
				    unsigned len_center,
				    unsigned pos_start, unsigned num_taxa, 
				    unsigned pos_start_msa, unsigned pos_end_msa,
				    unsigned *distances,
				    unsigned *p_best_maximum_distance)
{
  static char recode_A = recode_DNA('A');
  static char recode_C = recode_DNA('C');
  static char recode_G = recode_DNA('G');
  static char recode_T = recode_DNA('T');

  unsigned len_remaining = pos_end_msa - pos_start_msa;
  unsigned pos_end       = pos_start   + len_remaining;

  // pos_start walks through isAmbig and consensus.
  // pos_start_msa walks through the msa. 

  // The following static variables are initialised only when calling this function for the first time.
  static unsigned max_num_taxa = 20;
  static unsigned *dist_A = new unsigned [max_num_taxa];
  static unsigned *dist_C = new unsigned [max_num_taxa];
  static unsigned *dist_G = new unsigned [max_num_taxa];
  static unsigned *dist_T = new unsigned [max_num_taxa];

  if (num_taxa > max_num_taxa)
  {
    max_num_taxa = num_taxa; // max_num_taxa takes on the new maximum value. It will be used as size when reallocating new arrays.

    if (dist_A != NULL)
    {
      delete [] dist_A;
      delete [] dist_C;
      delete [] dist_G;
      delete [] dist_T;

      dist_A = new unsigned [max_num_taxa];
      dist_C = new unsigned [max_num_taxa];
      dist_G = new unsigned [max_num_taxa];
      dist_T = new unsigned [max_num_taxa];
    }
  }

  unsigned distances_sum_squares;
  unsigned dist_A_sum_squares;
  unsigned dist_C_sum_squares;
  unsigned dist_G_sum_squares;
  unsigned dist_T_sum_squares;

//   unsigned dist_max_A;
//   unsigned dist_max_C;
//   unsigned dist_max_G;
//   unsigned dist_max_T;
//   unsigned dist_max;

  unsigned j;

  // Search for first non-invariant site:
  while (pos_start < pos_end && !isAmbig[pos_start])
  {
    ++pos_start;
    ++pos_start_msa;
  }

  if (pos_start == pos_end) // This is the case if all sites are invariant.
  {
    return;
  }

  // pos_start is first non-invariant site:
  {
    unsigned A=0, C=0, G=0, T=0;
    char c;

    for (j=0; j<num_taxa; ++j)
    {
      if (msa[j][pos_start_msa] == recode_A )
	++A;
      else if (msa[j][pos_start_msa] == recode_C )
	++C;
      else if (msa[j][pos_start_msa] == recode_G )
	++G;
      else if (msa[j][pos_start_msa] == recode_T )
	++T;
    }

    if (A > C)
    {
      if (G > T)
      {
	if (A > G)
	  c = recode_A;
	else
	  c = recode_G;
      }
      else // (G <= T)
      {
	if (A > T)
	  c = recode_A;
	else
	  c = recode_T;
      }
    }
    else // (A <= C)
    {
      if (G > T)
      {
	if (C > G)
	  c = recode_C;
	else
	  c = recode_G;
      }
      else // (G <= T)
      {
	if (C > T)
	  c = recode_C;
	else
	  c = recode_T;
      }
    }
    center[pos_start] = c; // First position has been determined.
    distances_sum_squares = 0;
    //    dist_max = 0;

    for (j=0; j<num_taxa; ++j)
    {
      if (center[pos_start] != msa[j][pos_start_msa])
	++distances[j];
      distances_sum_squares += distances[j]*distances[j];
//       if (dist_max < distances[j])
// 	dist_max = distances[j];
    }
  } // pos_start is first non-invariant site:

  ++pos_start;
  ++pos_start_msa;

  while (pos_start < pos_end)
  {
    if (isAmbig[pos_start]) // He now search for best nucleotide in center.
    {
      // Try 'A'
      if (consensus[pos_start]&recode_A)
      {
	memcpy(dist_A, distances, sizeof(unsigned)*num_taxa);
	center[pos_start] = recode_A;
	dist_A_sum_squares = 0;
	for (j=0; j<num_taxa; ++j)
	{
	  if (center[pos_start] != msa[j][pos_start_msa])
	    ++dist_A[j];
	  dist_A_sum_squares += dist_A[j]*dist_A[j];
	}
      }
      else
	dist_A_sum_squares = -1u;
      // END // Try 'A'
      // Try 'C'
      if (consensus[pos_start]&recode_C)
      {
	memcpy(dist_C, distances, sizeof(unsigned)*num_taxa);
	center[pos_start] = recode_C;
	dist_C_sum_squares = 0;
	for (j=0; j<num_taxa; ++j)
	{
	  if (center[pos_start] != msa[j][pos_start_msa])
	    ++dist_C[j];
	  dist_C_sum_squares += dist_C[j]*dist_C[j];
	}
      }
      else
	dist_C_sum_squares = -1u;
 // END // Try 'C'
      // Try 'G'
      if (consensus[pos_start]&recode_G)
      {
	memcpy(dist_G, distances, sizeof(unsigned)*num_taxa);
	center[pos_start] = recode_G;
	dist_G_sum_squares = 0;
	for (j=0; j<num_taxa; ++j)
	{
	  if (center[pos_start] != msa[j][pos_start_msa])
	    ++dist_G[j];
	  dist_G_sum_squares += dist_G[j]*dist_G[j];
	}
      }
      else
	dist_G_sum_squares = -1u;
      // END // Try 'G'
      // Try 'T'
      if (consensus[pos_start]&recode_T)
      {
	memcpy(dist_T, distances, sizeof(unsigned)*num_taxa);
	center[pos_start] = recode_T;
	dist_T_sum_squares = 0;
	for (j=0; j<num_taxa; ++j)
	{
	  if (center[pos_start] != msa[j][pos_start_msa])
	    ++dist_T[j];
	  dist_T_sum_squares += dist_T[j]*dist_T[j];
	}
      }
      else
	dist_T_sum_squares = -1u;
      // END // Try 'T'

      // Which "Try" is the best?
      {
	// Smallest dist_x_sum_squares is the best:
	if (dist_A_sum_squares  < dist_C_sum_squares) // A is better than C
	{
	  if (dist_G_sum_squares  < dist_T_sum_squares) // G is better than T
	  {
	    if (dist_A_sum_squares  < dist_G_sum_squares) // A is better than G
	    {
	      // A is the best: 
	      center[pos_start] = recode_A;
	      memcpy(distances, dist_A, sizeof(unsigned)*num_taxa);
	    }
	    else
	    {
	      // G is the best:
	      center[pos_start] = recode_G;
	      memcpy(distances, dist_G, sizeof(unsigned)*num_taxa);
	    }
	  }
	  else  // T is better than or equal to G
	  {
	    if (dist_A_sum_squares  < dist_T_sum_squares) // A is better than T
	    {
	      // A is the best
	      center[pos_start] = recode_A;
	      memcpy(distances, dist_A, sizeof(unsigned)*num_taxa);
	    }
	    else
	    {
	      // T is the best
	      center[pos_start] = recode_T;
	      memcpy(distances, dist_T, sizeof(unsigned)*num_taxa);
	    }
	  }
	}
	else // C is better than or equal to A
	{
	  if (dist_G_sum_squares  < dist_T_sum_squares) // G is better than T
	  {
	    if (dist_C_sum_squares  < dist_G_sum_squares) // C is better than G
	    {
	      // C is the best: 
	      center[pos_start] = recode_C;
	      memcpy(distances, dist_C, sizeof(unsigned)*num_taxa);
	    }
	    else
	    {
	      // G is the best:
	      center[pos_start] = recode_G;
	      memcpy(distances, dist_G, sizeof(unsigned)*num_taxa);
	    }
	  }
	  else  // T is better than or equal to G
	  {
	    if (dist_C_sum_squares  < dist_T_sum_squares) // C is better than T
	    {
	      // C is the best
	      center[pos_start] = recode_C;
	      memcpy(distances, dist_C, sizeof(unsigned)*num_taxa);
	    }
	    else
	    {
	      // T is the best
	      center[pos_start] = recode_T;
	      memcpy(distances, dist_T, sizeof(unsigned)*num_taxa);
	    }
	  }
	} // END C is better than or equal to A
      } // END Which "Try" is the best?
    } // END ELSE (!isAmbig[pos_start])
    ++pos_start;
    ++pos_start_msa;
  } // END while (pos_start < pos_end)
  // We have the greedy center sequence.
 *p_best_maximum_distance = maximum(distances, distances+num_taxa);
} // END find_center_sequence_heuristic




// TODO ///////////////////

// Requires:
// Multiple sequence alignment that is already recoded.
// References to (empty) faststrings for the center.
// Number of taxa
// Start and end indices of range for which the center sequence shall be computed.
// The center sequence is returned in recoded form.
void find_center_sequence_for_msa_exhaustive(char **msa, faststring &center_seq,
					     int num_taxa,
					     int pos_start_msa, int pos_end_msa,
					     double &mdist)
{
  faststring cons;
  faststring isAmbig;
  faststring variant;
  faststring best_variant;
  int        best_maximum_distance = INT_MAX;
  // The equality len_variant = pos_end - pos_start is only valid before ever incrementing
  // pos_start, which is always true in this function.
  int        len_variant = pos_end_msa - pos_start_msa;
  int        pos_start   = 0;
  //  int        pos_end     = len_variant;


  cons.assign(len_variant,    ' ');
  isAmbig.assign(len_variant, ' ');

  // Here we can pass .data() since we do not assign it
  find_consensus(msa, num_taxa, pos_start_msa, pos_end_msa, cons.begin(), isAmbig.begin() );
  variant = cons;

  int *dist_array = new int [num_taxa];
  memset(dist_array, 0, num_taxa*sizeof(int));
//   for (i=0; i< num_taxa; ++i)
//   {
//     dist_array[i] = 0;
//   }

   //  print_all_variants(cons.data(), variant.data(), isAmbig.data(), 0, len);
  
//   if (global_VERBOSITY > 5)
//   {
//     cout << "Start time: " << time(NULL) << endl;
//   }

  find_center_sequence_exhaustive(msa, cons.data(), variant.data(), isAmbig.data(),
				  len_variant,
				  pos_start, num_taxa,
				  pos_start_msa, pos_end_msa,
				  dist_array, best_variant,
				  &best_maximum_distance);

//   if (global_VERBOSITY > 5)
//   {
//     cout << "End time: " << time(NULL) << endl;
//   }

  center_seq = best_variant;
  // TODO remove if is clear this cannot happen
  if (len_variant == 0)
  {
    cerr << "ERROR: len_variant == 0 in find_center_sequence_for_msa_exhaustive. Please report this bug." << endl;
    exit(-54);
  }
  mdist = (double)best_maximum_distance/len_variant;

  delete [] dist_array;
  // 
  //  back_recode_range(center_seq.begin(), center_seq.end() );
} // END find_center_sequence_for_msa_exhaustive

// Requires:
// Multiple sequence alignment that is already recoded.
// References to (empty) faststrings for the center.
// Number of taxa
// Start and end indices of range for which the center sequence shall be computed.
// The center sequence is returned in recoded form.
void find_center_sequence_for_msa_heuristic(char **msa, faststring &center_seq,
					    int num_taxa,
					    int pos_start_msa, int pos_end_msa,
					    double &mdist)
{
  faststring cons;
  faststring isAmbig;
  faststring variant;
  unsigned   best_maximum_distance = 0;
  // The equality len_variant = pos_end - pos_start is only valid before ever incrementing
  // pos_start, which is always true in this function.
  unsigned   len_variant = pos_end_msa - pos_start_msa;
  unsigned   pos_start   = 0;
  //  unsigned   pos_end     = len_variant;


  cons.assign(len_variant,    ' ');
  isAmbig.assign(len_variant, ' ');

  // Here we can pass .data() since we do not assign it
  find_consensus(msa, num_taxa, pos_start_msa, pos_end_msa, cons.begin(), isAmbig.begin() );
  variant = cons;

  unsigned *dist_array = new unsigned [num_taxa];
  memset(dist_array, 0, num_taxa*sizeof(int));
//   for (i=0; i< num_taxa; ++i)
//   {
//     dist_array[i] = 0;
//   }

   //  print_all_variants(cons.data(), variant.data(), isAmbig.data(), 0, len);

//   if (global_VERBOSITY > 5)
//   {
//     cout << "Start time: " << time(NULL) << endl;
//   }

  find_center_sequence_heuristic(msa, cons.data(), variant.data(), isAmbig.data(),
				 len_variant,
				 pos_start, num_taxa,
				 pos_start_msa, pos_end_msa,
				 dist_array, &best_maximum_distance);

//   if (global_VERBOSITY > 5)
//   {
//     cout << "End time: " << time(NULL) << endl;
//   }

//   for (i=0; i< num_taxa; ++i)
//   {
//     if (dist_array[i] > best_maximum_distance)
//       best_maximum_distance = dist_array[i];
//   }
//  best_maximum_distance = maximum(distances, distances+num_taxa);

  center_seq = variant;

  // TODO remove is clear this cannot happen
  if (len_variant == 0)
  {
    cerr << "ERROR: len_variant == 0 in find_center_sequence_for_msa_heuristic. Please report this bug." << endl;
    exit(-55);
  }

  mdist = (double)best_maximum_distance/len_variant;

  if (global_VERBOSITY > 100)
  {
    cout << "Reporting mdist for a center sequence with starting position: " << pos_start << " " << mdist << endl;
  }
  // 
  //  back_recode_range(center_seq.begin(), center_seq.end() );
  delete [] dist_array;
} // END find_center_sequence_for_msa_heuristic


void Csequence_cluster_and_center_sequence::compute_center(char center_computation_mode)
{
  // The msa is prepared for the center algorithm:
  // We still need: the "consensus" and the "ambig" strings.

  int num_sequences = taxon_set.size();

//   if (global_VERBOSITY > 5)
//   {
//     cout << "Computing center sequence: " << endl << flush;
//   }

  if (num_sequences == 1)
  {
    center_sequence.assign(msa[0]+pos_start, msa[0]+pos_end);
    max_dist_bait_to_msa = 0;
  }
  else // We have to compute a center sequence:
  {
    if (center_computation_mode == 0) // exhaustive
    {
      find_center_sequence_for_msa_exhaustive(msa, center_sequence, num_sequences, pos_start, pos_end, max_dist_bait_to_msa);
    }
    else if (center_computation_mode == 1) // heuristic
    {
      find_center_sequence_for_msa_heuristic(msa, center_sequence, num_sequences, pos_start, pos_end, max_dist_bait_to_msa);
    }
    else // Comparison mode
    {
      std::set<short>::iterator it;
      it     = taxon_set.begin();

      {
	unsigned i;
	cout << "The MSA for the result below:" << endl;
	cout << "Time: " << time(NULL) << endl;
	
	for (i=0; i<taxon_set.size(); ++i, ++it)
	{
	  faststring tmp( msa[i]+pos_start, msa[i]+pos_end);
	  back_recode_range(tmp.begin(), tmp.end());
	  cout.width(4);
	  cout << *it << ":" << tmp << std::endl;
	}
      }

      unsigned t1, t2, t3;
      faststring c1, c2;
      double md1, md2;
      t1 = time(NULL);
      find_center_sequence_for_msa_exhaustive(msa, c1, num_sequences, pos_start, pos_end, md1);
      t2 = time(NULL);
      find_center_sequence_for_msa_heuristic(msa, c2, num_sequences, pos_start, pos_end, md2);
      t3 = time(NULL);
    
      // This assignment must come before back recoding c1.
      // Otherwise we back recode twice, which is not correct.
      center_sequence = c1;

      back_recode_range(c1.begin(), c1.end());
      back_recode_range(c2.begin(), c2.end());

      cout << "Cent1:     " << c1    << endl;
      cout << "max_dist1: " << md1   << endl;
      cout << "Tdiff1:    " << t2-t1 << endl;
      
      cout << "Cent2:     " << c2    << endl;
      cout << "max_dist2: " << md2   << endl;
      cout << "Tdiff2:    " << t3-t2 << endl;


      max_dist_bait_to_msa = md1;

      if (md1 != md2)
      {
	cout << "Deviating distances found: " << md2-md1 << " " << (md2-md1)*120 << endl;
      }
      else 
      {
	cout << "Same distance." << endl;
      }
    } // END  else // Comparison mode
  } // END  else // We have to compute a center sequence:

  //  cout << "LOG: pos: " << pos_start << " mis " << max_dist_bait_to_msa*120 << endl;

  // We have to back recode the center sequence:
  back_recode_range(center_sequence.begin(), center_sequence.end() );
  
  if (!center_sequence.empty())
  {
    unsigned CG, AT;
    
    CG_AT_content_in_region(center_sequence.begin_str(), center_sequence.end_str(), AT, CG);
    double dCG=CG, dAT=AT;
    CG_content = (dCG / (dCG+dAT));
  }
}


void Csequence_loci_cluster_collection::compute_center_for_all_clusters(char center_computation_mode)
{
  std::list<Csequence_cluster_and_center_sequence>::iterator it_list     =  list_of_clusters.begin();
  std::list<Csequence_cluster_and_center_sequence>::iterator it_list_end =  list_of_clusters.end();

  //  unsigned t1, t2;

  while (it_list != it_list_end)
  {
//     t1 = time(NULL);
//     cout << "T1: " << t1 << endl;
    it_list->compute_center(center_computation_mode);
//     t2 = time(NULL);
//     cout << "T2: " << t2 << endl;
//     cout << "Tdiff: " << t2-t1 << endl;
    

    if (!it_list->center_computed() )
    {
      cerr << "ERROR: Internal error: Center sequence not computed even though it was requested! Number of sequences in cluster: " << it_list->get_number_of_elements_in_cluster() << endl;
    }

    ++it_list;
  }
  
}