1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/*
* Copyright (C) 1999-2000 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <gtk/gtk.h>
#include "global.h"
double RAD(double angle)
{
return (angle / 180.0) * PI;
}
double DEG(double angle)
{
return (angle / PI) * 180.0;
}
int Convert_Locator(char *buffer, double *latitude, double *longitude)
{
if (strlen(buffer) != 6 && strlen(buffer) != 8)
return FALSE;
if (buffer[0] < 'A' || buffer[0] > 'R' ||
buffer[1] < 'A' || buffer[1] > 'R' ||
buffer[2] < '0' || buffer[2] > '9' ||
buffer[3] < '0' || buffer[3] > '9' ||
buffer[4] < 'A' || buffer[4] > 'X' ||
buffer[5] < 'A' || buffer[5] > 'X')
return FALSE;
if (strlen(buffer) == 8 &&
(buffer[6] < '0' || buffer[6] > '9' ||
buffer[7] < '0' || buffer[7] > '9'))
return FALSE;
*longitude = -180.0 + FIELD_WIDTH * (buffer[0] - 'A') +
SQUARE_WIDTH * (buffer[2] - '0') +
SUB_WIDTH * (buffer[4] - 'A');
*latitude = -90.0 + FIELD_HEIGHT * (buffer[1] - 'A') +
SQUARE_HEIGHT * (buffer[3] - '0') +
SUB_HEIGHT * (buffer[5] - 'A');
if (strlen(buffer) == 8) {
*longitude += SUB_SUB_WIDTH * (buffer[6] - '0') + SUB_SUB_WIDTH / 2.0;
*latitude += SUB_SUB_HEIGHT * (buffer[7] - '0') + SUB_SUB_HEIGHT / 2.0;
} else {
*longitude += SUB_SUB_WIDTH * 5.0;
*latitude += SUB_SUB_HEIGHT * 5.0;
}
return TRUE;
}
int Convert_Angles(double Latitude, double Longitude, char *buffer)
{
int ILatitude, ILongitude;
if (Latitude > 90.0 || Latitude < -90.0)
return FALSE;
if (Longitude > 180.0 || Longitude < -180.0)
return FALSE;
Latitude += 90.0;
Longitude += 180.0;
ILongitude = (int)(Longitude / FIELD_WIDTH);
buffer[0] = ILongitude + 'A';
Longitude -= (double)ILongitude * FIELD_WIDTH;
ILongitude = (int)(Longitude / SQUARE_WIDTH);
buffer[2] = ILongitude + '0';
Longitude -= (double)ILongitude * SQUARE_WIDTH;
ILongitude = (int)(Longitude / SUB_WIDTH);
buffer[4] = ILongitude + 'A';
ILatitude = (int)(Latitude / FIELD_HEIGHT);
buffer[1] = ILatitude + 'A';
Latitude -= (double)ILatitude * FIELD_HEIGHT;
ILatitude = (int)(Latitude / SQUARE_HEIGHT);
buffer[3] = ILatitude + '0';
Latitude -= (double)ILatitude * SQUARE_HEIGHT;
ILatitude = (int)(Latitude / SUB_HEIGHT);
buffer[5] = ILatitude + 'A';
buffer[6] = '\0';
return TRUE;
}
/* Full distance calculation on elliptical earth (non-optimised).
John Morris, GM4ANB, 1994.
*/
void Calc_Distance_Bearing(double lat1, double lon1, double lat2, double lon2, double *bearing, double *distance)
{
double e, si, co, th, ca, a1, a2, l1, l2, ep; /* Locals */
double hangle;
int rev = FALSE;
lat1 = RAD(lat1);
lat2 = RAD(lat2);
lon1 = RAD(lon1);
lon2 = RAD(lon2);
e = 1.0 - (RB * RB) / (RA * RA); /* Eccentricity squared */
/* Convert latitudes to geocentric */
lat1 = atan((RB * RB) / (RA * RA) * tan(lat1));
lat2 = atan((RB * RB) / (RA * RA) * tan(lat2));
/* Calculate central angle */
ca = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1));
/* Calculate angles along great ellipse from equator */
if (lat1 > lat2) {
double t;
t = lat2;
lat2 = lat1;
lat1 = t;
rev = TRUE;
}
si = sin(lat1) * sin(ca);
co = sin(lat2) - sin(lat1) * cos(ca);
a1 = atan2(si, co);
a2 = a1 + ca;
/* Calculate ellipticity (squared) of great circle */
th = sin(lat2) / sin(a2);
ep = e * th * th;
/* Calculate great circle distance from equator for each */
l1 = a1 - ep * a1 / 4.0 + ep * sin(2.0 * a1) / 8.0;
l2 = a2 - ep * a2 / 4.0 + ep * sin(2.0 * a2) / 8.0;
hangle = l2 - l1;
*distance = RA * hangle; /* Station distance is difference */
*bearing = DEG(acos((sin(lat2) - sin(lat1) * cos(hangle)) / (cos(lat1) * sin(hangle))));
if (lon1 > lon2 && !rev)
*bearing = 360.0 - *bearing;
else if (lon1 > lon2 && rev)
*bearing = 180.0 + *bearing;
else if (lon1 < lon2 && rev)
*bearing = 180.0 - *bearing;
}
int Calc_Scatter_Point(double lat1, double long1, double bear1S, double lat2, double long2, double bear2S, double *slat, double *slong, double *dist1S, double *dist2S)
{
double bear12, bear21, dist12, dist21;
double lat1r, long1r, bear1Sr, bear12r;
double lat2r, long2r, bear2Sr, bear21r;
double bear1dr, bear2dr, dist12r, dist21r;
double dist1Sr, dist2Sr, slatr, slongr;
double za, zg, zb;
double ye;
Calc_Distance_Bearing(lat1, long1, lat2, long2, &bear12, &dist12);
Calc_Distance_Bearing(lat2, long2, lat1, long1, &bear21, &dist21);
lat1r = RAD(lat1); long1r = RAD(long1); bear1Sr = RAD(bear1S);
lat2r = RAD(lat2); long2r = RAD(long2); bear2Sr = RAD(bear2S);
bear12r = RAD(bear12); bear21r = RAD(bear21);
dist12r = dist12 / RA; dist21r = dist21 / RA;
bear1dr = fabs(bear12r - bear1Sr);
bear2dr = fabs(bear21r - bear2Sr);
if (bear1dr == 0.0 || bear1dr == PI)
return FALSE;
if (bear1dr >= PI)
bear1dr = (2.0 * PI) - bear1dr;
if (bear2dr >= PI)
bear2dr = (2.0 * PI) - bear2dr;
zg = -cos(bear1dr) * cos(bear2dr) + sin(bear1dr) * sin(bear2dr) * cos(dist12r);
ye = atan2(sqrt(1.0 - pow(zg, 2.0)), zg);
if (ye < 0.0) ye += PI;
za = (cos(bear2dr) + cos(bear1dr) * cos(ye)) / (sin(bear1dr) * sin(ye));
dist1Sr = atan2(sqrt(1.0 - pow(za, 2.0)), za);
if (dist1Sr < 0.0) dist1Sr += PI;
zb = (cos(bear1dr) + cos(bear2dr) * cos(ye)) / (sin(bear2dr) * sin(ye));
dist2Sr = atan2(sqrt(1.0 - pow(zb, 2.0)), zb);
if (dist2Sr < 0.0) dist2Sr += PI;
if (bear1Sr == 0.0) {
slongr = long1r + dist1Sr;
slatr = lat1r;
} else if (bear1Sr == PI) {
slongr = long1r - dist1Sr;
slatr = lat1r;
} else if (bear2Sr == 0.0) {
slongr = long2r + dist2Sr;
slatr = lat2r;
} else if (bear2Sr == PI) {
slongr = long2r - dist2Sr;
slatr = lat2r;
} else {
double ix, s1, zc, xm, zf, zh;
if (bear1Sr < PI)
ix = bear1Sr;
else if (bear1Sr > PI)
ix = (2.0 * PI) - bear1Sr;
else
return FALSE;
s1 = (PI / 2.0) - long1r;
zc = cos(dist1Sr) * cos(s1) + sin(dist1Sr) * sin(s1) * cos(ix);
xm = atan2(sqrt(1.0 - pow(zc, 2.0)), zc);
zf = sin(dist1Sr) * sin(ix) / sin(xm);
zh = atan2(zf, sqrt(1.0 - pow(zf, 2.0)));
slongr = (PI / 2.0) - xm;
if (bear1Sr < PI)
slatr = lat1r + zh;
else
slatr = lat1r - zh;
}
*slat = DEG(slatr);
*slong = DEG(slongr);
*dist1S = dist1Sr * RA;
*dist2S = dist2Sr * RA;
return TRUE;
}
|