File: README.itex.xml

package info (click to toggle)
bali-phy 4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,392 kB
  • sloc: cpp: 120,442; xml: 13,966; haskell: 9,975; python: 2,936; yacc: 1,328; perl: 1,169; lex: 912; sh: 343; makefile: 26
file content (3463 lines) | stat: -rw-r--r-- 176,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
<!DOCTYPE book [
<!ENTITY  version        "4.0-beta16"         >

<!ENTITY  source.file    "&version;.tar.gz"         >
<!ENTITY  linux64.file   "bali-phy-&version;-linux64.tar.gz"         >
<!ENTITY  win32.file     "bali-phy-&version;-win32.tar.gz"         >
<!ENTITY  win64.file     "bali-phy-&version;-win64.tar.gz"         >
<!ENTITY  mac64.file     "bali-phy-&version;-mac64.tar.gz"         >

<!ENTITY  repo.url       "https://github.com/bredelings/BAli-Phy" >
<!ENTITY  source.url     "&repo.url;/archive/refs/tags/&source.file;" >
<!ENTITY  linux64.url    "&repo.url;/releases/download/&version;/&linux64.file;" >
<!ENTITY  win64.url      "&repo.url;/releases/download/&version;/&win64.file;" >
<!ENTITY  mac64.url      "&repo.url;/releases/download/&version;/&mac64.file;" >

<!ENTITY  install.prefix   "~/Applications"         >
<!ENTITY  install.path     "&install.prefix;/bali-phy-&version;"         >
<!ENTITY  exe.path         "&install.path;/bin/bali-phy"         >
<!ENTITY % sgml.features "IGNORE">
<!ENTITY % xml.features "INCLUDE">

<!ENTITY % dbcent 
	 PUBLIC "-//OASIS//ENTITIES DocBook Character Entities V4.5//EN"
	 "/usr/share/xml/docbook/schema/dtd/4.5/dbcentx.mod">
%dbcent;

<!ENTITY % ent-mmlalias
      PUBLIC "-//W3C//ENTITIES Aiases for MathML 2.0//EN"
             "/usr/share/xml/schema/w3c/mathml/dtd/mmlalias.ent" >
%ent-mmlalias;
]>
<article xmlns="http://docbook.org/ns/docbook" version="5.0" 
         xmlns:mml="http://www.w3.org/1998/Math/MathML"
	 xml:lang="en">
  <info><title><application>BAli-Phy</application> User's Guide v&version;</title>
    
    <author><personname><firstname>Benjamin</firstname><surname>Redelings</surname></personname></author>
  </info>

  <section xml:id="intro"><info><title>Introduction</title></info>
    <para><application>BAli-Phy</application> is a Unix command line program that is developed primarily on Linux.  <application>BAli-Phy</application> also runs on Windows and Mac OS X, but it is not a GUI program and so you must run it in a terminal.  Therefore, you might want to keep a <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.ee.surrey.ac.uk/Teaching/Unix">Unix tutorial</link> or <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.rain.org/~mkummel/unix.html">Unix cheat sheet</link> handy while you work.
    </para>

    <para>BAli-Phy analyses have two phases.  (This structure is common to all Bayesian analyses.) First the <command>bali-phy</command> program generates <emphasis>posterior samples</emphasis> of trees, alignments and parameters.  Second, the <command>bp-analyze</command> script creates <emphasis>posterior summaries</emphasis> that collapse the collection of posterior samples down to single trees, alignments, and parameter estimates.  It also diagnoses <emphasis>lack of convergence</emphasis>.
  </para>

  <para>In addition to the main <command>bali-phy</command> executable, <application>BAli-Phy</application> comes with a collection of small command-line utilities such as <command>alignment-cat</command>, <command>trees-consensus</command>, etc.  These utilities can be used to process alignments, assemble data sets, and summarize the results of MCMC.
    </para>
  </section>

  <section xml:id="installation"><info><title>Installation</title></info>

  <section xml:id="pre-requisites"><info><title>Hardware requirements</title></info>
    
    <para>
      We typically run <application>BAli-Phy</application> on workstations with at least 16Gb of RAM and 4 cores.  More cores will allow you to run more MCMC chains at once, and more RAM will allow you to run larger data sets.  However, it is often easier and faster to run BAli-Phy on a (Linux) computing cluster, if you have one available.
    </para>

    <para>
    </para>
  </section>

  <section xml:id="upgrades"><info><title>Upgrades</title></info>
  <para>If you have previously installed bali-phy, you do not have to remove the old version before installing the new version.  Simply follow the installation instructions for the new version.  If you are manually adding the new version of bali-phy to your PATH, just make sure that the new version comes before the old version in the PATH, or remove the old version from the PATH.</para>

  <para>In order to remove an older version, simply delete the directory <filename>bali-phy-<replaceable>oldversion</replaceable></filename>.  This will completely uninstall the old version from the system. BAli-Phy does not create hidden files that will remain after you remove its directory.</para>
  </section>

  <section><info><title>Install on MS Windows</title></info>
    <para>First check that you have a 64-bit version of the Windows operation system installed. The executables for download will only run on a 64-bit installation of Windows.  </para>
    <section><info><title>Install a Unix command line: Cygwin (recommended)</title></info>
    <para>
       Before you can use <application>BAli-Phy</application> on Windows, you need to install a Unix command-line environment.  
       We recommend installing <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cygwin.com/install.html">Cygwin</link>:
<itemizedlist>
<listitem>Run the Cygwin installer <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.cygwin.com/setup-x86_64.exe"><filename>setup-x86_64.exe</filename></link>. </listitem>
<listitem>In the installer, add the following extra packages: <userinput>R</userinput>, <userinput>gnuplot</userinput>, <userinput>perl</userinput>, <userinput>python3</userinput>, <userinput>wget</userinput>, and <userinput>nano</userinput>.</listitem>
</itemizedlist>
       Its easiest to find extra packages if you set the View to "Full" and enter each package name in the Search box.  
       After you run the installer, you can access the Unix command line environment by running the Cygwin shell (not the normal windows command line).  
       You can run the installer again to add more packages.
    </para>

    <para>BAli-Phy uses Windows-style filenames (such as <filename>C:\</filename>) because it is compiled as a native windows executable.  However, the Cygwin shell uses UNIX-style filenames.
<informaltable>
<tgroup cols="2">
<colspec colnum="1" colname="col1" colwidth="1*"/>
<colspec colnum="2" colname="col2" colwidth="1*"/>
<thead><row>
<entry>UNIX-style</entry>
<entry>Windows-style</entry>
</row></thead>
<tbody>
<row><entry>/home/<emphasis>username</emphasis></entry><entry>C:\cygwin64\home\<emphasis>username</emphasis></entry></row>
<row><entry>~/file</entry><entry>C:\cygwin64\home\<emphasis>username</emphasis>\file</entry></row>
<row><entry>/cygdrive/c/file</entry><entry>C:\file</entry></row>
</tbody>
</tgroup>
</informaltable>
You can use the <userinput>cygpath</userinput> program to convert between UNIX and Windows filenames:
<screen><prompt>%</prompt> cygpath -w ~/Applications
C:\cygwin64\home\<emphasis>username</emphasis>\Applications\
</screen>
</para>
    <note>If you supply UNIX-style filenames to BAli-Phy, then it will complain "<emphasis role="strong">file does not exist!</emphasis>".</note>

  </section>
</section>

    <section><info><title>Install on Mac OS X</title></info>
    <section><info><title>Install BAli-Phy using homebrew (recommended) </title></info>
    <para>First install the <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://developer.apple.com/xcode/">XCode</link> (version 11 or higher) command line tools:
    <screen><prompt>%</prompt> <userinput>xcode-select --install</userinput></screen>

    Then install <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://brew.sh/">homebrew</link> and use homebrew to compile and install <command>bali-phy</command>:
<screen><prompt>%</prompt> <userinput>brew tap brewsci/bio</userinput>
<prompt>%</prompt> <userinput>brew install bali-phy</userinput></screen>
Check that the executable runs:
<screen><prompt>%</prompt> <userinput>bali-phy --version</userinput></screen>
If you install with homebrew, you don't need to do anything extra to put bali-phy in your PATH.
    </para>
    </section>

    <section><info><title>Install BAli-Phy using executables from website (alternative)</title></info>
    <para>
      Open a windows in the Terminal app to access the UNIX command line.  Then download and extract the executables:
      <screen><prompt>%</prompt> <userinput>mkdir -p &install.prefix;</userinput>
<prompt>%</prompt> <userinput>cd &install.prefix;</userinput>
<prompt>%</prompt> <userinput>curl -LO &mac64.url;</userinput>
<prompt>%</prompt> <userinput>tar -zxf &mac64.file;</userinput></screen>
      Check that the executable runs:
      <screen><prompt>%</prompt> <userinput>~/Applications/bali-phy-&version;/bin/bali-phy --version</userinput></screen>
      You still need to add it to your PATH as described in <xref linkend="path"/>.
    </para>

    </section>

    <section><info><title>Install programs used by <command>bp-analyze</command> using homebrew</title></info>
    <para>
      You can install <application>gnuplot</application> via homebrew:
<screen><prompt>%</prompt> <userinput> brew install gnuplot</userinput></screen> 
You can install <application>R</application> via homebrew:
<screen><prompt>%</prompt> <userinput> brew tap caskroom/cask</userinput>
<prompt>%</prompt> <userinput> brew cask install xquartz</userinput>
<prompt>%</prompt> <userinput> brew install r</userinput></screen>
However, note that this might conflict with R installed from other places, such as <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://mran.microsoft.com/open/">MRAN</link>.
</para>
    </section>
    <section><info><title>Install some of the programs used for viewing the results using homebrew</title></info>
      <para>
	<!-- This might be a better formula https://github.com/tseemann/homebrew-bioinformatics-linux/blob/master/figtree.rb
	     I could copy it to bredelings/bioinformatics ...
	-->
	You can install Figtree with homebrew:
	<screen><prompt>%</prompt> <userinput>brew tap caskroom/cask</userinput>
<prompt>%</prompt> <userinput>brew cask install figtree</userinput></screen>
	However, Seaview and Tracer don't have homebrew packages at the moment.
      </para>
    </section>
    </section>

    <section><info><title>Install on Linux</title></info>

    <section><info><title>Install BAli-Phy using <command>apt-get</command></title></info>
    BAli-Phy is available on Ubuntu <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://launchpad.net/ubuntu/+source/bali-phy/">("Cosmic Cuttlefish" or later)</link>, and Debian (<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://packages.debian.org/search?keywords=bali-phy&amp;searchon=names&amp;section=all">testing and unstable</link>).
    <screen><prompt>%</prompt> <userinput>sudo apt-get install bali-phy</userinput></screen>
    Check that the executable runs:
    <screen><prompt>%</prompt> <userinput>bali-phy --version</userinput></screen>
    If you install with <command>apt-get</command>, you don't need to do anything extra to put bali-phy in your PATH.
    </section>

    <section><info><title>Install BAli-Phy using executables from website (alternative)</title></info>

    <para>First install <command>wget</command>.  If you have Debian or Ubuntu Linux, type:
    <screen><prompt>%</prompt> <userinput>sudo apt-get install wget</userinput></screen>
    </para>
    <para>
      Then download and extract the executables:
      <screen><prompt>%</prompt> <userinput>mkdir -p &install.prefix;</userinput>
<prompt>%</prompt> <userinput>cd &install.prefix;</userinput>
<prompt>%</prompt> <userinput>wget &linux64.url;</userinput>
<prompt>%</prompt> <userinput>tar -zxf &linux64.file;</userinput></screen>
      Second, check that the executable runs:
      <screen><prompt>%</prompt> <userinput>~/Applications/bali-phy-&version;/bin/bali-phy --version</userinput></screen>
      You still need to add it to your PATH as described in <xref linkend="path"/>.
    </para>
    </section>
    <section><info><title>Install programs used by <command>bp-analyze</command></title></info>
    <para>If you have Debian or Ubuntu Linux, you can install other recommended programs by typing:
    <screen><prompt>%</prompt> <userinput>sudo apt-get install gnuplot</userinput>
<prompt>%</prompt> <userinput>sudo apt-get install r-base</userinput></screen>
    </para>
    </section>
    <section><info><title>Install programs used to view the results</title></info>
    <para>
<screen><prompt>%</prompt> <userinput>sudo apt-get install seaview</userinput>
<prompt>%</prompt> <userinput>sudo apt-get install figtree</userinput></screen>
    However, there isn't a Debian or Ubuntu package for Tracer at the moment.
</para>
    </section>
    </section>

    <section xml:id="path"><info><title>Add BAli-Phy to your <envar>PATH</envar></title></info>

    <section><title>Is bali-phy in your PATH already?</title>
<para> First check if the executable is in your PATH.
<screen><prompt>%</prompt> <userinput>bali-phy --version</userinput></screen>
If this shows version info, then <command>bali-phy</command> is already in your PATH and you can skip this section.  This should be true if you installed <command>bali-phy</command> using a package manager such as homebrew or apt, or if you've already added it to your PATH.</para>
<para>If bali-phy is not in your path, then you should see:
<screen><prompt>%</prompt> <userinput>bali-phy --version</userinput>
bali-phy: command not found.</screen>
If bali-phy is not in your PATH, then continue with this section.
</para>
    </section>
    <section><title>Quick version</title>
<para>Add <command>bali-phy</command> to your PATH, so that the shell knows where to find it.  This command only affects the terminal in which it is typed, and will not affect new terminals:
<screen><prompt>%</prompt> <userinput>export PATH=~/Applications/bali-phy-&version;/bin:&#36;PATH</userinput></screen>
To set the PATH automatically for new terminals, type:
<screen><prompt>%</prompt> <userinput>test -r ~/.bash_profile &#38;&#38; echo 'export PATH=~/Applications/bali-phy-&version;/bin:&#36;PATH' &#62;&#62; ~/.bash_profile</userinput>
<prompt>%</prompt> <userinput>echo 'export PATH=~/Applications/bali-phy-&version;/bin:&#36;PATH' &#62;&#62; ~/.profile</userinput></screen>
This will affect new terminals only after you log out and log back in though.</para>
<para>
Now check that the executable runs:
<screen><prompt>%</prompt> <userinput>bali-phy --version</userinput></screen>
If it does, then your PATH is set up correctly, and you can probably skip the rest of this section. 
</para>
    
    </section>
      <section><title>I have a path?</title>
      <para>
	If you installed <application>BAli-Phy</application> to the directory
	<filename>&install.prefix;</filename>, then you can run
	bali-phy by typing <command>&exe.path;</command>.
	However, it would be much nicer to simply type
	<command>bali-phy</command> and let the computer find the
	executable for you.  This can be achieved by putting the directory
	that contains the <application>BAli-Phy</application> executables into
	your "path".  	The "path" is a colon-separated list of directories that is
	searched to find program names that you type.  It is stored in an
	environment variable called <envar>PATH</envar>.
	</para>
      <para>
	Setting your <envar>PATH</envar> is also a pre-requisite for running
	the <command>bp-analyze</command> script to summarize your
	MCMC runs.
      </para>
      </section>

      <section><title>Examining your <envar>PATH</envar></title>
      <para>
	You can examine the current value of
	this environment variable by typing:
	<screen><prompt>%</prompt> <userinput>echo &#36;PATH</userinput></screen>
	We will assume that you extracted the bali-phy archive in
	<filename>&install.prefix;</filename> and so you want to add
	<filename>&#36;HOME/Applications/bali-phy-&version;/bin</filename>
	to your <envar>PATH</envar>.  (If you installed to another directory,
	replace <filename>&#36;HOME/Applications/bali-phy-&version;/</filename> with that directory.)
      </para>
      </section>

      <section><title>Adding BAli-Phy to your <envar>PATH</envar></title>
      <para>The commands
	for doing this depend on what "shell" you are using.  Type
	<command>echo &#36;SHELL</command> to find out. If your
	shell is <command>sh</command> or 
	<command>bash</command> then the command looks like this: 
	<screen><prompt>%</prompt> <userinput>PATH=&#36;HOME/Applications/bali-phy-&version;/bin:&#36;PATH</userinput></screen>
	If your shell is <command>csh</command> or
	<command>tcsh</command>, then the command looks like this:
	<screen><prompt>%</prompt> <userinput>setenv PATH &#36;HOME/Applications/bali-phy-&version;/bin:&#36;PATH</userinput></screen>
	Note that these commands will only affect the window you are typing
	in, and will vanish when you reboot.   
      </para>
      </section>

      <section><title>Making the change stick</title>
	<para>
	  To make this change survives when you logout or reboot, open
	  your shell configuration file in a text editor, and add the
	  command on a line by itself.  This will ensure that it is
	  run every time you log in.
	</para>

	<para>To find the right configuration file, look in your &#36;HOME directory
	  for <filename>.profile</filename> (for the Bourne shell <command>sh</command>), 
	  <filename>.bash_profile</filename> (for BASH), or
	  <filename>.login</filename> (for tcsh).  You may have to
	  create the file if it is not present.  On Cygwin, you should
	  put the change in the file <filename>.bashrc</filename>.
	</para>

	<para>If you do not know which directory is your home
	directory, you can find its full name by typing:
	<screen><prompt>%</prompt> <userinput>echo &#36;HOME</userinput></screen>
	</para>
      </section>
    </section>

    <section xml:id="tests"><info><title>Test the installed software</title></info>
    <para>In order to determine that the software has been correctly installed, and the <envar>PATH</envar> has been correctly set, run the following commands:
    <screen><prompt>%</prompt> <userinput>cp &install.path;/share/doc/bali-phy/examples/sequences/5S-rRNA/25.fasta .</userinput>
<prompt>%</prompt> <userinput>bali-phy --version </userinput>
<prompt>%</prompt> <userinput>bali-phy help</userinput>
<prompt>%</prompt> <userinput>bali-phy 25.fasta --iter=200 </userinput>
<prompt>%</prompt> <userinput>bali-phy 25.fasta --iter=200 </userinput>
<prompt>%</prompt> <userinput>bp-analyze 25-1 25-2</userinput></screen>
    </para>

    <para>
      Then check that the file <filename>Results/index.html</filename> exists and can be opened in a web browser.
    </para>
    </section>


    <section xml:id="software_req"><info><title>Install programs used for viewing the results</title></info>

    <para>
      <itemizedlist>
	<listitem>
	  <para>
	    <link xmlns:xlink="http://www.w3.org/1999/xlink"
		  xlink:href="http://tree.bio.ed.ac.uk/software/tracer/">
	      Tracer
	    </link>
	    :  MCMC parameter/diagnostic viewer.
	  </para>
          <para>
            Check by opening: <filename>25-1/C1.log</filename> and <filename>25-2/C1.log</filename>
          </para>
	</listitem> 

	<listitem>
	  <para>
	    <link xmlns:xlink="http://www.w3.org/1999/xlink"
		  xlink:href="http://tree.bio.ed.ac.uk/software/figtree/">
	      FigTree
	    </link>
	    : Phylogeny Viewer
	  </para>
          <para>
            Check by opening: <filename>Results/c50.PP.tree</filename>
          </para>
	</listitem>
      
	<listitem>
	  <para>
	    <link xmlns:xlink="http://www.w3.org/1999/xlink"
		  xlink:href="http://pbil.univ-lyon1.fr/software/seaview.html">
	      SeaView
	    </link> and/or 
	    <link xmlns:xlink="http://www.w3.org/1999/xlink"
		  xlink:href="https://ormbunkar.se/aliview/">
	      AliView
	    </link>
	    : Alignment viewers.
          </para>
          <para>
            Check by opening: <filename>Results/P1.max.fasta</filename>
          </para>
	</listitem>
    </itemizedlist>

    </para>

    </section>
    </section>


  <section xml:id="running"><info><title>Running the program</title></info>
    
    <para>BAli-Phy analyses have two phases.  (This structure is common to all Bayesian analyses.) First the <command>bali-phy</command> program generates <emphasis>posterior samples</emphasis> of trees, alignments and parameters.  Second, the <command>bp-analyze</command> script creates <emphasis>posterior summaries</emphasis> that collapse the collection of posterior samples down to single trees, alignments, and parameter estimates.  It also diagnoses <emphasis>lack of convergence</emphasis>.
    </para>

    <para> The simplest way to run <command>BAli-Phy</command> is
      to type all the arguments on the command line:
      <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta</userinput></screen>
      You can run a traditional fixed-alignment Bayesian tree inference by adding <userinput>-I none</userinput>:
      <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta -I none</userinput></screen>
      You can also specify a character set for analysis:
      <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta:1-30,90-100</userinput></screen>
    </para>

    <section><info><title>Quick Start</title></info>
    <para>Let's run an example analysis using the 5S-rRNA 25-taxon data set.
    <screen><prompt>%</prompt> <userinput>cp &install.path;/share/doc/bali-phy/examples/sequences/5S-rRNA/25.fasta .</userinput></screen>
    We will now start 4 simultaneous runs:
    <screen><prompt>%</prompt> <userinput>bali-phy 25.fasta -S 'gtr +> Rates.free +> Covarion.hb02' --iter=1000 &amp; </userinput>
<prompt>%</prompt> <userinput>bali-phy 25.fasta -S 'gtr +> Rates.free +> Covarion.hb02' --iter=1000 &amp; </userinput>
<prompt>%</prompt> <userinput>bali-phy 25.fasta -S 'gtr +> Rates.free +> Covarion.hb02' --iter=1000 &amp; </userinput>
<prompt>%</prompt> <userinput>bali-phy 25.fasta -S 'gtr +> Rates.free +> Covarion.hb02' --iter=1000 &amp; </userinput></screen>
    These runs will all execute at the same time because of the "<userinput>&amp;</userinput>".  Each run will create a unique directory of the form <filename>25-<replaceable>number</replaceable></filename> to store its results.</para>

    <para>You can use the program <userinput>top</userinput> to verify that four copies of <userinput>bali-phy</userinput> are running:
    <screen><prompt>%</prompt> <userinput>top</userinput>                                   # use <userinput>q</userinput> to exit</screen>
    </para>

    <para>We can use program Tracer to assess the progress of the runs by loading the files
    <filename>25-1/C1.log</filename>, 
    <filename>25-2/C1.log</filename>, 
    <filename>25-3/C1.log</filename>,  and
    <filename>25-4/C1.log</filename>.
    All four log files should be loaded simultaneously in order to compare them.
    </para>

<para>When enough iterations have finished, we then run the script <userinput>bp-analyze</userinput> to summarize the results:
<screen><prompt>%</prompt> bp-analyze 25-1/ 25-2/ 25-3/ 25-4/
Creating new directory 'Results' for summary files.
Summarizing distribution of numerical parameters: done.
Analyzing scalar variables: done.

Summarizing topology distribution:  done.
Drawing trees: c50 c66 c80 c90 c95 c99 c100 greedy MAP . done.

Generate mixing diagnostics for topologies ... done.
Generate SRQ plot for partitions: done.
Generate SRQ plot for c50 tree: done.

Generate MDS plots of topology burnin:  done.
Computing initial alignments:  done.

Computing WPD alignments:  done.
Computing ancestral state alignment:  done.
Drawing alignments: **** done.
Generating AU values for 'P1.initial'... done.
Generating AU values for 'P1.max'... done.

NOTE: burnin (scalar) &lt;= Not Converged!
NOTE: min_ESS (scalar)    = 96.73
NOTE: min_ESS (partition)    = 96.278
NOTE: ASDSF = 0.035
NOTE: MSDSF = 0.117
NOTE: PSRF-80%CI = 1.077
NOTE: PSRF-RCF = 1.256

RUN 1: directory = 25-1     iterations = 1000     burnin = 100
RUN 2: directory = 25-2     iterations = 1000     burnin = 100
RUN 3: directory = 25-3     iterations = 1000     burnin = 100
RUN 4: directory = 25-4     iterations = 1000     burnin = 100

Report written to 'Results/index.html'
</screen>
Load the file <filename>Results/index.html</filename> in a web browser to view the results.  On Linux you can type:
<screen><prompt>%</prompt> firefox Results/index.html</screen>
The tree estimate, alignment estimate, mixing diagnostics and other information will be displayed in the HTML report.  The HTML report contains links to FASTA and Newick files in the <filename>Results/</filename> directory.
</para>

<para>We can also view the tree and alignment estimates directly:
      <itemizedlist>
	<listitem>
	  <para>The majority consensus tree is in the file <filename>Results/c50.PP.tree</filename>.  It can be viewed with <application>Figtree</application>.</para>
        </listitem>
        <listitem>
          <para>The consensus alignment is in the file <filename>Results/P1.max.fasta</filename>.  It can be viewed with <application>Seaview</application> or <application>Aliview</application>.</para>
        </listitem>
      </itemizedlist>

See section <xref linkend="analysis"/> for further description of the files in the <filename>Results/</filename> directory.

</para>

  </section>

    <section>
      <info><title>Input</title></info>
      <para><application>BAli-Phy</application> can read in sequences
	and alignments in both FastA and PHYLIP formats.  Filenames for
	FastA files should end in <userinput>.fasta</userinput>,
	<userinput>.mpfa</userinput>, <userinput>.fna</userinput>,
	<userinput>.fas</userinput>, <userinput>.fsa</userinput>, or
	<userinput>.fa</userinput>.  Filenames for PHYLIP files should
	end in <userinput>.phy</userinput>.  If one of these extensions
	is not used, then <application>BAli-Phy</application> will
	attempt to guess which format is being used.
      </para>

      <para>FASTA format prefixes sequence names with "&gt;":
    </para>
      <programlisting>>human       this is a comment and is not part of the sequence name
CTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAA
GTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTT
>tarsier     this is also a comment
CTGACTGCTGAAGAGAAGGCCGCCGTCACTGCCCTGTGGGGCAAGGTAGACGTGGAAGAT
GTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTCGTCTACCCATGGACCCAGAGGTTCTTT
>bushbaby
CTGACTCCTGATGAGAAGAATGCCGTTTGTGCCCTGTGGGGCAAGGTGAATGTGGAAGAA
GTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTTGTCTACCCATGGACCCAGAGGTTCTTT
>hare
CTGTCCGGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGCAAGGTGAATGTGGAAGAA
GTTGGTGGTGAGACCCTGGGCAGGCTGCTGGTTGTCTACCCATGGACCCAGAGGTTCTTC
</programlisting>
<para>If the sequence-name line contains a space, BAli-Phy treats everything after the space as a comment.</para>
<para>The sequences in the file do not need to be aligned unless you fix the alignment with <userinput>-I none</userinput>.</para>
<para></para>

      
    </section>

    <section><info><title>Command line options</title></info>
      
    <para>Sensible defaults are supplied for command line options that are not specified.  For example, if <filename>sequences.fasta</filename> contains DNA sequences, then
    <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta</userinput></screen>
    is equivalent to
    <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta -A DNA -S tn93 -I rs07</userinput></screen>
    Default values that are used will always be displayed on the screen and in the output files so that you do not have to guess.  You can specify a more complex substitution model using the <userinput>-S</userinput> option.  You will generally need to write the substitution model inside single quotes unless it is just a single word.

    <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta -S 'lg08&nbsp;+>&nbsp;Rates.gamma&nbsp;+>&nbsp;inv'</userinput></screen>
    Every short option like <userinput>-S</userinput> has an equivalent long option like <userinput>--smodel</userinput>.
    To see the most frequently-used command-line options, you can run
    <screen><prompt>%</prompt> <userinput>bali-phy help</userinput></screen>
    </para>

    </section>

   <section><info><title>Option files (Scripts)</title></info>
      
      <para>
	In addition to using the command line, you may also specify
	options in a file. Option files also use the long form of command line options.
	Each option is given on its own line using the syntax "<userinput>:option value</userinput>" instead of the syntax "<userinput>--option
	value</userinput>".  The value can be blank if the option does not take
	an argument. The <userinput>align</userinput> option indicates sequence files.
	Lines that begin with # are comments, and blank lines are ignored.
      </para>

	<para>
	  For example, consider the following
	  option file:
	  <programlisting># sequence data for 3 genes/partitions
:align ITS1.fasta
:align 5.8S.fasta
:align ITS2.fasta

# linked substitution model for 1st and 3rd partition
:smodel 1,3:tn93&nbsp; +> &nbsp;Rates.free(n=3)

# substitution model for 2nd partition
:smodel 2:tn93

# indel model for second partition
:imodel 2:none

# linked scale for 1st and 3rd partition
:scale 1,3:

# choose a name for output directories
:name ITS-analysis1
</programlisting>
Options files are specified with the <userinput>-c <replaceable>option_file</replaceable></userinput> option:
	<screen><prompt>%</prompt> <userinput>bali-phy -c analysis1.txt</userinput>                           # run the analysis
<prompt>%</prompt> <userinput>bali-phy -c analysis1.txt --name ITS-analysis1b</userinput>     # override the name</screen>
        Options given on the command line will override values given in the option file.
	</para>
	<!-- para>
	  The file <filename>~/.bali-phy</filename> is a special
	  option file called the <emphasis>configuration
	    file.</emphasis>  If it exists, it is always loaded.
	  Options given on the command line or an option file 
	  override values given in <filename>~/.bali-phy</filename>. 
	</para -->
    </section>

    <section xml:id="cluster"><info><title>Running on computing clusters</title></info>
    <para>
      Running <command>bali-phy</command> on a computing cluster is
      not necessary, but can speed up the analysis dramatically.
      This is because a cluster allows you to run several
      <emphasis>independent</emphasis> MCMC chains simultaneously and
      pool the resulting samples.  You can run multiple chains
      simultaneously simply by starting several different instances of
      <command>bali-phy</command>.  Each instance of bali-phy runs
      only one chain and does not require using MPI or special
    command-line options.</para>   

      <para>This approach to parallel computation is sometimes more
      efficient than MCMCMC-based parallelism involving heated chains.
      It is equivalent to running MCMCMC with no temperature
      difference between chains, with the exception that it allows
      results from <emphasis>all</emphasis> chains to be used, instead
      of just results from the single "cold" chain.  Thus, if you run
      10 independent chains in parallel, then you may gather samples
      10 times faster than a single chain. 
      </para>
    </section>


    <section><info><title>Is my data set too large?</title></info>
      
    <para>
      Bayesian inference programs must run for many iterations to complete an analysis.
      <!-- A Bayesian analysis is considered complete when the MCMC has converged and generated a sufficient number
      of samples. 
      (See section <xref linkend="mixing_and_convergence"/>). -->
      A data set is considered "too large" if waiting for it to complete takes "too long".
      <!-- (See also <xref linkend="cluster"/>.)   -->
    </para>

    <!-- para>
      MCMC convergence is necessary for obtaining measures of confidence and uncertainty.
      BAli-Phy can alternatively be used simply to construct an alignment estimate, similar to a maximum-likelihood search.
      In this case, you don't need very many samples after convergence.
    </para -->

      <section><info><title>Too many sequences?</title></info>
	

      <para>
        Bayesian phylogenetics analyses require more iterations to converge as the number of sequences increases.
        Additionally, the computing time for each iteration increases with the number of sequences.
      </para>

      <para>
        BAli-Phy has been successfully used to compute the full posterior with up to 150 sequences.
        Additionally, it has been used with up to 500 sequences to obtain alignment estimates that are more accurate than alignments from other software, but without measures of uncertainty.
      </para>

      <para>
        If you have many sequences, we recommend using the tool <application>alignment-thin</application> with the <userinput>--down-to=<replaceable>n</replaceable></userinput> option to construct a preliminary data set of 30-60 sequences.
        It is described in section <xref linkend="alignment-utilities"/> .
        Analyzing such a data set can complete much more quickly.
        You can then increase the size of your data set until a balance between speed and usefulness is reached.
      </para> 


      </section>

      <section><info><title>Sequences too long?</title></info>
	

      <para>
        Aligning just a pair of sequences takes $O(L^2)$ time
	and memory, where $L$ represents the sequence length.  Therefore
	sequences longer than (say) 1000 letters become increasingly
	slow.
      </para>

      <para>
        One solution to this problem is to divide a long gene into multiple partitions.
        Dividing a long gene into <replaceable>n</replaceable> partitions will be roughly <replaceable>n</replaceable> times as fast as a single partition.
        The downside of this approach is that it requires performing a preliminary alignment, perhaps with a different aligner, in order to identify the partition boundaries.
      </para>

      <para>
        When the multiple partitions can be categorized as introns or exons, then this approach allows treating intron and exon regions differently.
        It is possible to link all the intron partitions and link all the exon partitions, so that introns have one evolutionary rate and exons have another.
        Likewise, it is possible to fix the alignment for the exons, but infer the alignment for the introns.
        A similar approach can be taken with RNA stem and loop regions.
      </para>

	<!-- para>You can speed up alignment for long genes by specifying
	  alignment constraints (See <xref linkend="alignment_constraints"/>).
	  Ideally, 10 evenly spaced constraints should reduce the cost of
	  re-aligning a sequence by a factor of 10.
	</para -->
      </section>

    </section>

  </section>

  <section xml:id="output"><info><title>Output</title></info>

    <para>BAli-Phy analyses have two phases.  (This structure is common to all Bayesian analyses.) First the <command>bali-phy</command> program generates <emphasis>posterior samples</emphasis> of trees, alignments and parameters.  Second, the <command>bp-analyze</command> script creates <emphasis>posterior summaries</emphasis> that collapse the collection of posterior samples down to single trees, alignments, and parameter estimates.  It also diagnoses <emphasis>lack of convergence</emphasis>.
    </para>


    <section><info><title>Posterior samples</title></info>

    <section><info><title>Output directories</title></info>
      
      <para><application>BAli-Phy</application> creates a new
	directory to store its output files each time it is run.  By default, the
	directory name is the name of the sequence file, with a number
	added on the end to make it unique. <application>BAli-Phy</application>
	first checks  if there is already a directory called
	<filename><replaceable>file</replaceable>-1/</filename>, and then moves on to
	<filename><replaceable>file</replaceable>-2/</filename>, etc. until it finds an
	unused directory name.</para> 
      
      <para>You can specify a different name to use instead of the
	sequence-file name by using the <userinput>--name</userinput> option.</para>
    </section>

    <section><info><title>Output files</title></info>
    <para><application>BAli-Phy</application> writes the following output
	files inside the directory that it creates:</para>
      
      <variablelist>
	<varlistentry>
	  <term>C1.P$n$.fastas</term>
	  <listitem>
	    <para>Sampled alignments for partition $n$ including ancestral sequences.</para>
	  </listitem>
	</varlistentry>
	
	<varlistentry>
	  <term>C1.MAP</term>
	  <listitem>
	    <para>Successive estimates of the MAP alignment, tree and parameters.</para>
	  </listitem>
	</varlistentry>
	
	<varlistentry>
	  <term>C1.log</term>
	  <listitem>
	    <para>Numeric parameters: indel and substitution rates, etc. </para>
	    <para>(<emphasis>One sample per line.</emphasis>)</para>
	  </listitem>
	</varlistentry>
	
	<varlistentry>
	  <term>C1.trees</term>
	  <listitem>
	    <para>Tree samples in Newick format.</para>
	    <para>(<emphasis>One sample per line.</emphasis>)</para>
	  </listitem>
	</varlistentry>
	
	<varlistentry>
	  <term>C1.run.json</term>
	  <listitem>
	    <para>JSON file containing information about the command line, models, hostname, start time, etc.</para>
	  </listitem>
	</varlistentry>

      </variablelist>
    </section>
      
      <section><title>Field names in <filename>C1.log</filename></title>

      <para>This section explains the meaning of the various field names in the file <filename>C1.log</filename>.</para>


      <variablelist>
	<varlistentry>
	  <term>prior</term>
	  <listitem>
	    <para>The log prior probability. </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>likelihood</term>
	  <listitem>
	    <para>The log likelihood.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>posterior</term>
	  <listitem>
	    <para>The log of the posterior probability.</para>
	    <para>(<emphasis>The posterior probability is the product of the prior and the likelihood</emphasis>).</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>prior_A</term>
	  <listitem>
	    <para>The log-probability of the alignments in all partitions.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>|A|</term>
	  <listitem>
	    <para>The total number of alignment columns across all partitions.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>#indels</term>
	  <listitem>
	    <para>The total number of indel events across all partitions.</para>
	    <para>(<emphasis>Adjacent indels that occur on the same branch are merged</emphasis>).</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>|indels|</term>
	  <listitem>
	    <para>The total length of indel events across all partitions.</para>
	    <para>(<emphasis>Adjacent indels that occur on the same branch are merged</emphasis>).</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>#substs</term>
	  <listitem>
	    <para>The total unweighted parsimony score for substitutions across all partitions.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/likelihood</term>
	  <listitem>
	    <para>The substitution log-likelihood for partition $n$. </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/prior_A</term>
	  <listitem>
	    <para>The log-probability of the alignment for partition $n$.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/|A|</term>
	  <listitem>
	    <para>The length of the alignment in the $n$th partition.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/#indels</term>
	  <listitem>
	    <para>The number of indel events in partition $n$, if we group adjacent indels that occur on the same branch.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/|indels|</term>
	  <listitem>
	    <para>The length of indel events in partition $n$, if we group adjacent indels that occur on the same branch.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>P$n$/#substs</term>
	  <listitem>
	    <para>The unweighted parsimony score for substitutions in partition $n$.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>Scale[$m$]&nbsp;*&nbsp;|T|</term>
	  <listitem>
	    <para>The <emphasis>scaled</emphasis> branch lengths for partition group $m$.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>|T|</term>
	  <listitem>
	    <para>The <emphasis>unscaled</emphasis> tree length.  (This will probably be around 1.0).</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>Scale[$m$]</term>
	  <listitem>
	    <para>The average number of substitutions per site on the entire tree for partitions in the $m$th scale group.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>S$n$/<replaceable>name</replaceable></term>
	  <listitem>
	    <para>Parameter <replaceable>name</replaceable> in the $n$th substitution model.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>I$n$/<replaceable>name</replaceable></term>
	  <listitem>
	    <para>Parameter <replaceable>name</replaceable> in the $n$th insertion/deletion model.</para>
	  </listitem>
	</varlistentry>

      </variablelist>
      <para>The "prior" field includes the probability of the alignment, since the alignment is not observed.</para>
      <para>The likelihood is the probabilistic analogue to summed mismatch penalties.</para>
      <para>The prior_A is the probabilistic analogue to summed gap penalties.</para>
      <para>The prefixes "S$n$/" and "I$n$/" will be dropped if not necessary to disambiguate parameters with the same name in different sub-models.</para>

      </section>
    </section>

  <section xml:id="analysis"><info><title>Posterior summaries</title></info>

    <para>
      The <command>bp-analyze</command> script summarizes the posterior samples to create posterior summaries for the alignment, tree, and parameters.
      It creates an HTML page <filename>Results/index.html</filename> that summarizes the posterior distribution.
    </para>

  <para>You may run <command>bp-analyze</command> inside the output directory, like this:
<screen><prompt>%</prompt> bp-analyze --skip=<replaceable>iterations</replaceable></screen>
      You may also run it with one or more output directories as
      arguments, like this:
<screen><prompt>%</prompt> bp-analyze --skip=<replaceable>iterations</replaceable> <replaceable>directory</replaceable>-1/ <replaceable>directory</replaceable>-2/</screen>
      In this case, output from multiple runs will be used to assess convergence and mixing, as well as to increase the precision of the estimates.
    </para>

<para> All the commands that are executed by <command>bp-analyze</command> will be logged to
      <filename>Results/commands.log</filename>. You can also see these
      commands as they are executed by supplying the <command>--verbose</command> option:
<screen><prompt>%</prompt> bp-analyze --skip=<replaceable>iterations</replaceable> --verbose</screen>
    </para>

    <section><info><title>Meaning of generated files</title></info>
      
    <para>The <filename>Results/</filename> directory will contain
    the following useful files:</para>

      <variablelist>

	<varlistentry><term>Report</term><listitem>
	    <para>A summary of numerical parameters: credible
	    intervals and mixing.</para>
	</listitem></varlistentry>

	<varlistentry><term>consensus</term><listitem>
	    <para>A summary of supported splits (clades). </para>
	</listitem></varlistentry>

	<varlistentry><term>c-levels.plot</term><listitem>
	    <para>The number of splits (clades) supported at each LOD level.</para>
	</listitem></varlistentry>

	<varlistentry><term>c50.tree</term><listitem>	<para>The majority consensus topology + branch lengths (Newick format)</para> 
	</listitem></varlistentry>

	<varlistentry><term>c50.PP.tree</term><listitem>
	<para>The majority consensus topology + branch lengths +
	Posterior Probabilities (Newick format)</para> 
	</listitem></varlistentry>

	<varlistentry><term>MAP.tree</term><listitem>
	    <para>An estimate of the MAP topology + branch lengths (Newick format)</para>
	</listitem></varlistentry>

      </variablelist>
      <para> 
	The following files will be generated to summarize alignment uncertainty, unless the analysis uses a fixed alignment.

      </para>

      <variablelist>
	<varlistentry><term>P<replaceable>p</replaceable>-max.fasta</term><listitem>
	    <para>An estimate of the alignment for partition
	    <replaceable>p</replaceable> using maximum posterior decoding.</para>
	</listitem></varlistentry>

	<varlistentry><term>P<replaceable>p</replaceable>-max-AU.html</term><listitem>
	    <para>An AU plot of the maximum posterior decoding alignment for partition
	    <replaceable>p</replaceable>  (AA/DNA color-scheme).</para>
	</listitem></varlistentry>

	<!-- varlistentry><term>consensus.fasta</term><listitem>
	    <para>A consensus alignment, representing information shared by most alignment samples.
	</para></listitem></varlistentry>

	<varlistentry><term>consensus-AU.html</term><listitem><para>An AU plot of the consensus alignment (rainbow color-scheme).
	</para></listitem></varlistentry>

	<varlistentry><term>consensus-AU2.html</term><listitem><para>An AU plot of the MAP alignment (AA/DNA color-scheme).
	</para></listitem></varlistentry>

	<varlistentry><term>consensus-AU.prob</term><listitem><para>The probabilities for each letter in the consensus alignment AU plot.
	</para></listitem></varlistentry -->
	
      </variablelist>


      <para>The following files describe convergence and mixing:</para>


      <variablelist>

	<varlistentry><term>partitions.bs</term><listitem>
	    <para>Confidence intervals on the support for partitions, generated
	      using a block bootstrap.</para>
	</listitem></varlistentry>

	<varlistentry><term>partitions.SRQ</term><listitem><para>A collection of
	      SRQ plots for the supported partitions.
	</para></listitem></varlistentry>

	<varlistentry><term>c50.SRQ</term><listitem><para>An
	      SRQ plot for the majority consensus tree.
	</para></listitem></varlistentry>


      </variablelist>

      <para>The SRQ plots can be viewed by typing "<userinput>plot
	  '<replaceable>file</replaceable>' with lines</userinput>" in
	<application>gnuplot</application>.</para>


    </section>
      <section><info><title><filename>Mixing/partitions.bs</filename>: partition mixing</title></info>
	
	<para>
	  This file reports the quality of estimates of support for each
	  partition in terms of the posterior probability (PP) and
	  log-10 odds (LOD).  It also reports the auto-correlation time (ACT),
	  the effective sample size (Ne), the number of samples
	  that support (1) or do not support (0) the partition, and
	  the number of regenerations. 

	  Only partitions with PP &gt; 0.1 are shown by default.
	</para>
      </section>


  </section>

    <section><info><title>Posterior summaries (Advanced)</title></info>
      

      <para>This section is primarily about summarizing the posterior to extract estimates from posterior samples, not about assessing convergence.  See <xref linkend="mixing_and_convergence"/> for methods of determining effective sample sizes, and for checking mixing and convergence.</para>

      <section><info><title>Finding the majority consensus tree</title></info>
	
	<para>
To compute the majority consensus tree, do the following.  (The
program <link xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="http://tree.bio.ed.ac.uk/software/figtree/">FigTree</link>
allows you to view the resulting tree file graphically.)
<screen><prompt>%</prompt> trees-consensus <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees &gt; <filename>c50.PP.tree</filename></screen>
</para>

<para>By default, the first 10% of tree samples are skipped as burn-in (<userinput>--skip=10%</userinput> or <userinput>-s 10%</userinput>) and every generation is analyzed (<userinput>--subsample=1</userinput> or <userinput>-x 1</userinput>).  To discard the first 1000 tree samples and analyze every 10th sample:
<screen><prompt>%</prompt> trees-consensus -s 1000 -x 10 <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees &gt; <filename>c50.PP.tree</filename></screen>
By default, splits are included in the consensus tree if they have a
PP greater than 0.5.  You can specify a more stringent level
(e.g. 0.66) by adding the option
<userinput>--consensus-PP=0.66</userinput> as follows:
<screen><prompt>%</prompt> trees-consensus -s20% -x10 --consensus-PP=0.66 <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees &gt; <filename>c66.PP.tree</filename></screen>
You may also make the program write directly to the output file
(e.g. <filename>c66.PP.tree</filename>) by using the more general form
<userinput>--consensus-PP=0.66:c66.PP.tree</userinput>.  Leaving off 
the "<userinput>:c66.PP.tree</userinput>" part (as we did above) or specifying
"<userinput>:-</userinput>" sends the output to the standard output
(e.g. the terminal, if not redirected). 
<screen><prompt>%</prompt> trees-consensus -s20% -x10 <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees --consensus-PP=0.66:<filename>c66.PP.tree</filename></screen>
You can supply multiple levels and filenames separated by commas.
This is faster than running the program multiple times with different
consensus levels.
<screen><prompt>%</prompt> trees-consensus -s20% -x10 <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees --consensus-PP=0.5:<filename>c50.PP.tree</filename>,0.66:<filename>c66.PP.tree</filename></screen>
Finally, you may use the option <userinput>--consensus=</userinput>
instead of the option <userinput>--consensus-PP=</userinput> if you do
not wish the resulting tree to contain embedded posterior
probabilities on branches, as well as branch lengths.
<screen><prompt>%</prompt> trees-consensus -s20% -x10 <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees --consensus=0.5:<filename>c50.PP.tree</filename>,0.66:<filename>c66.PP.tree</filename></screen>
Both the <userinput>--consensus=</userinput> and 
<userinput>--consensus-PP=</userinput> options may be given simultaneously.
</para>

<para>
  See <userinput>trees-consensus --help</userinput> for a complete list of options.
</para>

      </section>

      <section><info><title>Finding the greedy consensus tree</title></info>
	
	<para>
	  The greedy consensus tree may be used instead of a majority-consensus tree when a fully resolved (e.g. bifurcating) tree is required.  When the topology has many tips and each topology may be sampled only once, the greedy consensus should be higher quality than the estimate of the MAP topology.  To obtained a fully resolved tree, the  greedy consensus strategy starts with the majority consensus and then adds the highest-supported split that does not conflict.</para>
	
	<para>To compute the <emphasis>greedy consensus</emphasis> tree do:
<screen><prompt>%</prompt> trees-consensus --skip=<replaceable>burnin</replaceable> <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees --greedy-consensus=<filename>greedy.tree</filename></screen>	
</para>

      </section>

      <section><info><title>Finding the M.A.P. tree</title></info>
	
	<para>
To compute the <emphasis>maximum a posteriori</emphasis> tree do:
<screen><prompt>%</prompt> trees-consensus --skip=<replaceable>burnin</replaceable> <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees --map-tree=<filename>MAP.tree</filename></screen>	
When the tree has many tips, each topology may be sampled only once, leading to low quality estimates of the MAP topology.  As a result, when you need a bifurcating tree you should probably use the greedy consensus instead.
</para>
      </section>

      <section><info><title>Checking topology convergence</title></info>
	
<para>
<screen><prompt>%</prompt> trees-bootstrap <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees</screen>	
This command computes the effective sample size for the posterior probability of each split.  It also computes the Average Standard Deviation of Split Frequencies (ASDSF) between two or more independent runs.</para>

<para>See <xref linkend="mixing_and_convergence"/> for more information.
</para>  
      </section>

      <section><info><title>Summarizing numerical parameters</title></info>
	
<para>
This command gives a median and confidence interval, ESS, and a stabilization time:
<screen><prompt>%</prompt> statreport <replaceable>dir-1</replaceable>/C1.log <replaceable>dir-2</replaceable>/C1.log &gt; Report </screen>	
When multiple runs are analyzed, this command gives PSRF and joint ESS values. The program <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://tree.bio.ed.ac.uk/software/tracer/">Tracer</link> allows you to view the same summaries graphically.</para>

<para>See <xref linkend="mixing_and_convergence"/> for more information.
</para>
      </section>

      <section><info><title>Computing an alignment using Posterior Decoding</title></info>
      <para>To construct an alignment estimate via posterior decoding, select any tree file <replaceable>tree</replaceable> that corresponds to your alignment.  It does not need to be fully resolved.
      </para>
      
      <screen><prompt>%</prompt> cut-range <replaceable>dir</replaceable>-1/C1.P<replaceable>p</replaceable>.fastas <replaceable>dir</replaceable>-2/C1.P<replaceable>p</replaceable>.fastas --skip=<replaceable>burn-in</replaceable> | alignment-chop-internal --tree <replaceable>tree</replaceable> | alignment-max &gt; P<replaceable>p</replaceable>-max.fasta</screen>

      <para>You can optionally replace <userinput>--tree <replaceable>tree</replaceable></userinput> with <userinput>-N <replaceable>n_sequences</replaceable></userinput>, where <replaceable>n_sequences</replaceable> is the number of non-ancestral sequences in your alignment.</para>

      <para>You can use the program <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://pbil.univ-lyon1.fr/software/seaview.html">SeaView</link> to view the alignment graphically.</para>

      </section>      

      <!-- section><info><title>Find the alignment from the maximum a posterior (MAP) point (<filename>C1.MAP</filename>)</title></info>
	
<screen><prompt>%</prompt> alignment-find &lt; C1.MAP &gt; P1-MAP.fasta</screen>

      This only works correctly on single-partition analyses.
      </section -->      

      <section><info><title>Create an Au (Alignment Uncertainty) plot</title></info>
	
<para>To annotate a specific alignment <replaceable>alignment</replaceable>.fasta, choose a fully resolved tree estimate <replaceable>tree</replaceable>:
<screen><prompt>%</prompt> cut-range <replaceable>dir</replaceable>-1/C1.P<replaceable>p</replaceable>.fastas <replaceable>dir</replaceable>-2/C1.P<replaceable>p</replaceable>.fastas --skip=<replaceable>burn-in</replaceable> | alignment-chop-internal --tree <replaceable>tree</replaceable>  | alignment-gild <replaceable>alignment</replaceable>.fasta <replaceable>tree</replaceable>  &gt; <replaceable>alignment</replaceable>-AU.prob
<prompt>%</prompt> alignment-draw <replaceable>alignment</replaceable>.fasta --AU <replaceable>alignment</replaceable>-AU.prob &gt; <replaceable>alignment</replaceable>-AU.html</screen>
The majority consensus tree is usually not fully resolved, so we recommend using the greedy consensus instead.
</para>
      </section>


    </section>

</section>


  <section xml:id="subst_models">
    <info><title>Substitution models</title></info>
      
    <section xml:id="dna_models">
      <info><title>DNA and RNA models</title></info>
	
      <para>The default substitution model for DNA and RNA is tn93.</para>
      <section>
	<info><title>Substitution rates</title></info>
      <para>All the DNA models are special cases of the GTR model.  </para>
      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>jc69</userinput></entry>
	      <entry>0</entry>
	      <entry><para>Equal rates and equal base frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1016/B978-1-4832-3211-9.50009-7">(Jukes and Cantor, 1969)</link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>k80</userinput></entry>
	      <entry>1</entry>
	      <entry><para>Unequal transition &amp; transversion rates, equal base frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007%2FBF01731581">(Kimura, 1980)</link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>f81</userinput></entry>
	      <entry>3</entry>
	      <entry><para>Equal exchangeabilities, unequal frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007%2FBF01734359">
		(Felsenstein, 1981)
	      </link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>hky85</userinput></entry>
	      <entry>4</entry>
	      <entry><para>Unequal Transition &amp; transversion rates, unequal base frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/BF02101694">
		(Hasegawa, Kishino, and Yano, 1985)
	      </link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>tn93</userinput></entry>
	      <entry>5</entry>
	      <entry>
		<para>Unequal rates for transitions (purines), transitions (pyrimidines) and transversions, unequal base frequencies.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040023">
		  (Tamura and Nei, 1993)
		</link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>gtr</userinput></entry>
	      <entry>8</entry>
	      <entry><para>Unequal exchangeabilities, unequal frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.damtp.cam.ac.uk/user/st321/CV_&amp;_Publications_files/STpapers-pdf/T86.pdf">
		(Tavare, 1986)
	      </link>
	      </entry>
	    </row>
	  
	  </tbody>
	</tgroup>
      </informaltable>
      </section>
    <section xml:id="nucleotide-frequencies">
      <info><title>Frequencies</title></info>
      <para>Frequencies are estimated by default.  Frequencies can be fixed by setting the <userinput>pi</userinput> parameter to a constant value, if the model allows unequal frequencies.</para>
      <para>Constant frequencies are specified as a list of pairs that associates each letter with its frequency:</para>
      <programlisting language="java">gtr(pi={"A":0.1, "C":0.2, "T":0.3, "G":0.4})</programlisting>
      <para>Frequencies can also be specified using functions:</para>

      <para>
	<programlisting language="java">gtr(pi=Frequencies.uniform)</programlisting>
      </para>

      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>Frequencies.uniform</userinput></entry>
	      <entry>0</entry>
	      <entry>Equal frequencies</entry>
	    </row>

	  </tbody>
	</tgroup>
      </informaltable>
    </section>


    </section>

    <section xml:id="protein_models">
      <info><title>Protein models</title></info>

      <para>The default substitution model for proteins is lg08.</para>

      <section>
	<info><title>Substitution rates</title></info>
      <informaltable>
	  
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>
	  
	  <tbody>
	    <row>
	      <entry><userinput>jc69</userinput></entry>
	      <entry>0</entry>
	      <entry><para>Equal rates and equal frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1016/B978-1-4832-3211-9.50009-7">(Jukes and Cantor, 1969)</link></entry>
	    </row>

	    <row>
	      <entry><userinput>f81</userinput></entry>
	      <entry>19</entry>
	      <entry><para>Equal exchangeabilities, unequal frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007%2FBF01734359">
		(Felsenstein, 1981)
	      </link>
	      </entry>
	    </row>

	    <row>
	      <entry>
		<para><userinput>jtt&nbsp;+>&nbsp;f</userinput></para>
	      </entry>
	      <entry>19</entry>
	      <entry>
		<para>Empirical exchange rates, all proteins.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/bioinformatics/8.3.275">
		  (Jones, Taylor, and Thornton, 1992)
		</link>
	      </entry>
	    </row>

	    <row>
	      <entry>
		<para><userinput>wag&nbsp;+>&nbsp;f</userinput></para>
	      </entry>
	      <entry>19</entry>
	      <entry>
		<para>Empirical exchange rates, all proteins.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a003851">
		  (Whelan and Goldman, 2001)
		</link>
	      </entry>
	    </row>

	    <row>
	      <entry>
		<para><userinput>lg08&nbsp;+>&nbsp;f</userinput></para>
	      </entry>
	      <entry>19</entry>
	      <entry>
		<para>Empirical exchange rates, all proteins.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/molbev/msn067">
		  (Le and Gascuel, 2008)
		</link>
	      </entry>
	    </row>

	    <row>
	      <entry>
		<para><userinput>empirical(<replaceable>file</replaceable>)&nbsp;+>&nbsp;f</userinput></para>
	      </entry>
	      <entry>19</entry>
	      <entry>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput>gtr</userinput></entry>
	      <entry>208</entry>
	      <entry><para>Unequal exchangeabilities, unequal frequencies.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.damtp.cam.ac.uk/user/st321/CV_&amp;_Publications_files/STpapers-pdf/T86.pdf">
		(Tavare, 1986)
	      </link>
	      </entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>
      </section>
    <section xml:id="amino-acid-frequencies">
      <info><title>Frequencies</title></info>
      <para>Frequencies are estimated by default.  Frequencies can be fixed by setting the <userinput>pi</userinput> parameter to a constant value, if the model allows unequal frequencies.</para>
      <para>Constant frequencies are specified as a list of pairs that associates each letter with its frequency:</para>
      <programlisting language="java">wag +> f({"A":0.047, "R":0.19,...})</programlisting>
      <para>Frequencies can also be specified using functions:</para>
      <para>
	<programlisting language="java">wag +> f(pi=Frequencies.uniform)</programlisting>
      </para>

      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>Frequencies.uniform</userinput></entry>
	      <entry>0</entry>
	      <entry>Equal frequencies</entry>
	    </row>

	    <row>
	      <entry><userinput>wag_freq</userinput></entry>
	      <entry>0</entry>
	      <entry>The constant amino-acid frequencies from the WAG paper.</entry>
	    </row>

	    <row>
	      <entry><userinput>lg08_freq</userinput></entry>
	      <entry>0</entry>
	      <entry>The constant amino-acid frequencies from the LG08 paper.</entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>
	  
      <para>The <userinput>+> fe</userinput> model is shorthand for <userinput>+> f(pi=Frequencies.uniform)</userinput>:</para>
      <para>
	<programlisting language="java">wag +> fe</programlisting>
      </para>
    </section>


    </section>
      
    <section xml:id="doublet_models">
      <info><title>Doublet models (RNA stems)</title></info>
      <para>The doublets alphabet consists of 16 RNA dinucleotides.  It is used to model RNA stems, where two nucleotides matched in the RNA secondary structure are highly correlated.</para>
      <para>The default substitution model for doublets is <userinput>tn93_sym&nbsp;+>&nbsp;x2_sym&nbsp;+>&nbsp;f</userinput>.</para>
      <section xml:id="doublet-data">
	<info><title>Doublet data</title></info>
	<para>As of version 3.4, BAli-Phy does not yet allow specifying which nucleotides are paired either with a string like <userinput>((.))</userinput> or with a "pairs" file.  Instead you must manually extract the paired nucleotides and put them in their own partition (for stems), and then manually extract each loop and put it in its own partition.</para>
	<para>The stems should be arranged so that paired nucleotides are adjacent. For example, suppose the sequence <userinput>AGGCT</userinput> was paired according to <userinput>((.))</userinput>.  Then the input file for the stems should contain a sequence of doublets that looks like <userinput>ATGC</userinput>, where <userinput>AT</userinput> is the first pair, and <userinput>GC</userinput> is the second pair.  Later versions of the software should allow extracting stems and loops from nucleotide sequences using parenthesis notation or a "pairs" file.
	</para>
      </section>
      <section>
	<info><title>Substitution rates</title></info>
      <informaltable>

	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>
	  
	  <tbody>
	    <row>
	      <entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x2</userinput></entry>
	      <entry>df(nuc_model)</entry>
	      <entry>
		<para>The the same as <replaceable>nuc_model</replaceable>, but on dinucleotides instead of nucleotides.</para>
		<para>Simultaneous changes of both letters are <emphasis>not</emphasis> allowed.</para>
		<para>Dinucleotide frequencies are the product of independent nucleotide frequencies.</para>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x2&nbsp;+>&nbsp;mut_sel</userinput></entry>
	      <entry>df(nuc_model)+15</entry>
	      <entry>
		<para>Mutation-selection model: neutral mutation follows <replaceable>nuc_model</replaceable> and scaled selection coefficients 2Ns on dinucleotides.</para>
		<para>Simultaneous changes of both letters are <emphasis>not</emphasis> allowed.</para>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x2_sym&nbsp;+>&nbsp;f</userinput></entry>
	      <entry>df(nuc_model)+15</entry>
	      <entry><para>This model has separate frequencies for each dinucleotide.</para>
	      <para>Simultaneous changes of both letters are <emphasis>not</emphasis> allowed.</para>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>RNA.m16a</replaceable></userinput></entry>
	      <entry>19</entry>
	      <entry>
		<para>This model has separate frequencies for each dinucleotide, and distinguishes between transitions and transversion between match states (including GU/UG).</para>
		<para>Simultaneous changes of both letters <emphasis>are</emphasis> allowed, but only between match states.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/genetics/157.1.399">
		(Savill et al., 2001)
	      </link>
	      </entry>
	    </row>

	    <!-- row> This is too advanced
	      <entry><userinput>x2x2[q1,q2]</userinput></entry>
	      <entry>df(q1)+df(q2)</entry>
	      <entry><para>Doublet rate matrix constructed from a nucleotide rate matrix for each doublet position.</para>
	      </entry>
	    </row -->

	    <row>
	      <entry><userinput>gtr</userinput></entry>
	      <entry>134</entry>
	      <entry><para>Unequal exchangeabilities, unequal frequencies.</para>
	      <para>It is unlikely that you would want to use this model, since it has so many parameters.</para>
	      <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.damtp.cam.ac.uk/user/st321/CV_&amp;_Publications_files/STpapers-pdf/T86.pdf">
		(Tavare, 1986)
	      </link>
	      </entry>
	    </row>

	  </tbody>
	</tgroup>
      </informaltable>
      </section>
    <section xml:id="doublet-frequencies">
      <info><title>Frequencies</title></info>
      <para>Frequencies are estimated by default.  Frequencies can be fixed by setting the <userinput>pi</userinput> parameter to a constant value, if the model allows unequal frequencies.</para>
      <para>Constant frequencies are specified as a list of pairs that associates each letter with its frequency.</para>
      <programlisting language="java">hky85(pi={"A":0.1, "C":0.2, "T":0.3, "G":0.4}) +> x2

hky85_sym +> x2_sym +> f({"AA":0.01, "AC":0.01, "AG":0.01, "AU":0.22, "CA":0.01, "CC":0.01, "CG":0.22, "CU":0.01, "GA":0.01, "GC":0.22, "GG":0.01, "GU":0.01, "UA":0.22, "UC":0.01, "UG":0.01, "UU":0.01})</programlisting>

      <para>Frequencies can also be specified using functions:</para>
      <!-- para>
	<programlisting language="java">hky85_sym +> x2_sym +> f(pi=f1x4)            // nucleotide frequencies are estimated</programlisting>
      </para -->


      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>Frequencies.uniform</userinput></entry>
	      <entry>0</entry>
	      <entry>Equal frequencies on dinucleotides</entry>
	    </row>

	    <!-- row>  Maybe this should take (i) one set of nuc frequencies, and (ii) one set of fitness parameters?
	      <entry><userinput>f1x4</userinput></entry>
	      <entry>3</entry>
	      <entry>Constructs doublet frequencies from independent nucleotide frequencies.</entry>
	    </row -->

	    <!-- row>
	      <entry><userinput>f2x4</userinput></entry>
	      <entry>6</entry>
	      <entry>Constructs doublet frequencies from independent nucleotide frequencies for each doublet position.</entry>
	    </row -->
	    
	  </tbody>
	</tgroup>
      </informaltable>
    </section>

    <section xml:id="doublet-branch-lengths">
      <info><title>Branch lengths</title></info>
      <para>BAli-Phy interprets branch lengths for doublet models as 1/2 the number of substitutions per doublet.  Thus, they should be comparable to branch lengths under DNA/RNA nucleotide models.</para>
    </section>
      

  </section>

    <section xml:id="triplet_models">
      <info><title>Triplet models</title></info>
      <para>The triplets alphabet is similar to the codons alphabet, except that stop codons are included. Unlike the codons alphabet, the triplets alphabet has no knowledge of the genetic code.</para>
      <para>The default substitution model for triplets is tn93 +> x3.</para>
      <section>
	<info><title>Substitution rates</title></info>
      <informaltable>

	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>
	  
	  <tbody>
	    <row>
	      <entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3_sym&nbsp;+>&nbsp;f</userinput></entry>
	      <entry>df(<replaceable>nuc_model</replaceable>)+63</entry>
	      <entry><para>GY94-style rate matrix constructed from nucleotide exchangeability matrix.</para>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3</userinput></entry>
	      <entry>df(<replaceable>nuc_model</replaceable>)</entry>
	      <entry><para>MG94-style rate matrix constructed from nucleotide rate matrix.</para>
	             <para>This model should give the same likelihood as <replaceable>nuc_model</replaceable> on triplets, but not on codons.</para>
	      </entry>
	    </row>

	    <!-- row> This is too advanced
	      <entry><userinput>x3x3(q1,q2,q3)</userinput></entry>
	      <entry>df(q1)+df(q2)+df(q3)</entry>
	      <entry><para>Triplet rate matrix constructed from a nucleotide rate matrix for each codon position.</para>
	      </entry>
	    </row -->

	      <row>
		<entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3&nbsp;+>&nbsp;mut_sel</userinput></entry>
		<entry>df(<replaceable>nuc_model</replaceable>)+63</entry>
		<entry><para>Mutation-selection model with neutral mutation following <replaceable>nuc_model</replaceable> and scaled selection coefficients 2Ns <emphasis>for each codon</emphasis>.</para>
		</entry>
	      </row>

	  </tbody>
	</tgroup>
      </informaltable>
      </section>
    <section xml:id="triplet-frequencies">
      <info><title>Frequencies</title></info>
      <para>Frequencies are estimated by default.  Frequencies can be fixed by setting the <userinput>pi</userinput> parameter to a constant value, if the model allows unequal frequencies.</para>
      <para>Constant frequencies are specified as a list of pairs that associates each letter with its frequency.</para>
      <programlisting language="java">hky85(pi={"A":0.1, "C":0.2, "T":0.3, "G":0.4}) +> x3</programlisting>
      <para>Frequencies can also be specified using functions:</para>
      <para>
	<programlisting language="java">hky85_sym +> x3_sym +> f(pi=f1x4)            // nucleotide frequencies are estimated</programlisting>
      </para>


      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>Frequencies.uniform</userinput></entry>
	      <entry>0</entry>
	      <entry>Equal frequencies</entry>
	    </row>

	    <row>
	      <entry><userinput>f1x4</userinput></entry>
	      <entry>3</entry>
	      <entry>Constructs triplet frequencies from independent nucleotide frequencies.</entry>
	    </row>

	    <row>
	      <entry><userinput>f3x4</userinput></entry>
	      <entry>9</entry>
	      <entry>Constructs triplet frequencies from independent nucleotide frequencies for each codon position.</entry>
	    </row>
	    
	  </tbody>
	</tgroup>
      </informaltable>
	<para>The <userinput>+> fe</userinput> model is shorthand for <userinput>+> f(pi=Frequencies.uniform)</userinput>:</para>
	<para>
	  <programlisting language="java">hky85_sym +> x3_sym +> fe</programlisting>
	</para>
    </section>

      <para>BAli-Phy interprets branch lengths for codon models as 1/3 the number of substitutions per triplet.  Thus, they should be comparable to branch lengths under DNA/RNA nucleotide models.</para>
      

    </section>

    <section xml:id="codon_models">
      <info><title>Codon models</title></info>

      <para>The default substitution model for codons is gy94.</para>

      <section>
	<info><title>Substitution rates</title></info>
	
	<informaltable>
	  
	  <tgroup cols="3">
	    <colspec colnum="1" colname="col1" colwidth="1*"/>
	    <colspec colnum="2" colname="col2" colwidth="1*"/>
	    <colspec colnum="3" colname="col3" colwidth="1*"/>
	    <thead><row>
	      <entry>Model</entry>
	      <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	      <entry>Summary</entry>
	    </row></thead>

	    <tbody>
	      <row>
		<entry><userinput>gy94</userinput></entry>
		<entry>62</entry>
		<entry><para>Model of dN/dS with a separate frequency for each codon.</para>
		<para>Rate for changing a nucleotide depends on neighboring nucleotides.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040153">
		  (Goldman and Yang, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>gy94(pi=f1x4)</userinput></entry>
		<entry>5</entry>
		<entry><para>The GY94 model with codon frequencies constructed from nucleotide frequencies.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040153">
		  (Goldman and Yang, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>gy94(pi=f3x4)</userinput></entry>
		<entry>11</entry>
		<entry><para>The GY94 model with codon frequencies constructed from nucleotide frequencies for each codon position.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040153">
		  (Goldman and Yang, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>gy94_ext(<replaceable>nuc_model</replaceable>)</userinput></entry>
		<entry>df(<replaceable>nuc_model</replaceable>)+61</entry>
		<entry><para>GY94 model extended with a generic nucleotide exchangeability matrix.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040153">
		  (Goldman and Yang, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>mg94</userinput></entry>
		<entry>4</entry>
		<entry>
		  <para>Model of dN/dS with f81 as the neutral model.</para>
		  <para>Rate for changing a nucleotide depends only on that nucleotide.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040152">
		    (Muse and Gaut, 1994)
		  </link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>mg94k</userinput></entry>
		<entry>5</entry>
		<entry><para>Model of dN/dS with hky85 as the neutral model.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040152">
		  (Muse and Gaut, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>mg94_ext(<replaceable>nuc_model</replaceable>)</userinput></entry>
		<entry>df(<replaceable>nuc_model</replaceable>)+1</entry>
		<entry><para>Model of dN/dS with <replaceable>nuc_model</replaceable> as the neutral model.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a040152">
		  (Muse and Gaut, 1994)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>fMutSel</userinput></entry>
		<entry>65</entry>
		<entry><para>MG94-like model with fitnesses for each codon.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/molbev/msm284">
		  (Yang and Nielsen, 2008)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>fMutSel0</userinput></entry>
		<entry>24</entry>
		<entry><para>MG94-like model with fitnesses for each amino-acid.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/molbev/msm284">
		  (Yang and Nielsen, 2008)
		</link>
		</entry>
	      </row>
	      
	      <row>
		<entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3_sym&nbsp;+>&nbsp;f</userinput></entry>
		<entry>df(nuc_model)+60</entry>
		<entry><para>GY94-style rate matrix constructed from nucleotide exchangeability matrix (dN/dS = 1).</para>
	               <para>This model should give the same likelihood as <replaceable>nuc_model</replaceable> on codons only if the frequency of stop codons is zero.</para>
		</entry>
	      </row>

	      <row>
		<entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3</userinput></entry>
		<entry>df(nuc_model)</entry>
		<entry><para>MG94-style rate matrix constructed from nucleotide rate matrix (dN/dS = 1).</para>
		</entry>
	      </row>

	      <!-- row>
		<entry><userinput>x3x3(q1,q2,q3)</userinput></entry>
		<entry>df(q1)+df(q2)+df(q3)</entry>
		<entry><para>Triplet rate matrix constructed from a nucleotide rate matrix for each codon position (dN/dS = 1).</para>
		</entry>
	      </row -->

	      <row>
		<entry><userinput><replaceable>codon_model</replaceable> +> dNdS(omega)</userinput></entry>
		<entry>df(<replaceable>codon_model</replaceable>)+1</entry>
		<entry><para>Scales non-synonymous rates by <replaceable>omega</replaceable>.</para>
		</entry>
	      </row>

	      <row>
		<entry><userinput><replaceable>codon_model</replaceable> +> mut_sel</userinput></entry>
		<entry>df(<replaceable>codon_model</replaceable>)+60</entry>
		<entry><para>Mutation-selection model with neutral mutation following <replaceable>codon_model</replaceable> and scaled selection coefficients 2Ns <emphasis>for each codon</emphasis>.</para>
		</entry>
	      </row>

	      <row>
		<entry><userinput><replaceable>nuc_model</replaceable>&nbsp;+>&nbsp;x3&nbsp;+>&nbsp;mut_sel_aa</userinput></entry>
		<entry>df(<replaceable>nuc_model</replaceable>)+19</entry>
		<entry><para>Mutation-selection model with neutral mutation following <replaceable>nuc_model</replaceable> and scaled selection coefficients 2Ns <emphasis>for each amino acid</emphasis>.</para>
		</entry>
	      </row>
	      
	    </tbody>
	  </tgroup>
	</informaltable>


	<para>BAli-Phy interprets branch lengths for codon models as 1/3 of the number of substitutions per codon.  Thus, they should be comparable to branch lengths under DNA/RNA models.</para>
	<para>The <userinput>x3</userinput>, <userinput>x3_sym</userinput>, <userinput>x3x3</userinput>, <userinput>dNdS</userinput>, and <userinput>mut_sel</userinput> models
	can be used to build up codon models piecewise:
	<itemizedlist>
	  <listitem><userinput>mg94</userinput> is equivalent to <userinput>f81 +> x3 +> dNdS</userinput>.</listitem>
	  <listitem><userinput>mg94k</userinput> is equivalent to <userinput>hky85 +> x3 +> dNdS</userinput>.</listitem>
	  <listitem><userinput>gy94</userinput> is equivalent to <userinput>hky85_sym +> x3_sym +> f +> dNdS</userinput>.</listitem>
	  <listitem><userinput>fMutSel</userinput> is equivalent to <userinput>gtr +> x3 +> dNdS +> mut_sel</userinput>.</listitem>
	  <listitem><userinput>fMutSel0</userinput> is equivalent to <userinput>gtr +> x3 +> dNdS +> mut_sel_aa</userinput>.</listitem>
	</itemizedlist>
	</para>
      </section>

      <section xml:id="codon-frequencies">
      <info><title>Frequencies</title></info>
      <para>Frequencies are estimated by default.  Frequencies can be fixed by setting the <userinput>pi</userinput> parameter to a constant value, if the model allows unequal frequencies.</para>
      <para>Constant frequencies are specified as a list of pairs that associates each letter with its frequency.</para>
      <programlisting language="java">gy94(pi={"AAA":0.01, "C":0.02,...})
mg94(pi={"A":0.1, "C":0.2, "T":0.3, "G":0.4})
</programlisting>
      <para>Frequencies can also be specified using functions:</para>
      <para>
	<programlisting language="java">gy94(pi=f1x4)              // nucleotide frequencies are estimated</programlisting>
      </para>


      <informaltable>
	<tgroup cols="3">
	  <colspec colnum="1" colname="col1" colwidth="1*"/>
	  <colspec colnum="2" colname="col2" colwidth="1*"/>
	  <colspec colnum="3" colname="col3" colwidth="1*"/>
	  <thead><row>
	    <entry>Model</entry>
	    <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	    <entry>Summary</entry>
	  </row></thead>

	  <tbody>
	    <row>
	      <entry><userinput>Frequencies.uniform</userinput></entry>
	      <entry>0</entry>
	      <entry>Equal frequencies</entry>
	    </row>

	    <row>
	      <entry><userinput>f1x4</userinput></entry>
	      <entry>3</entry>
	      <entry>Constructs codon frequencies from independent nucleotide frequencies.</entry>
	    </row>

	    <row>
	      <entry><userinput>f3x4</userinput></entry>
	      <entry>9</entry>
	      <entry>Constructs codon frequencies from independent nucleotide frequencies for each codon position.</entry>
	    </row>
	    
	  </tbody>
	</tgroup>
      </informaltable>
    </section>

      <section xml:id="genetic-codes">
	<info><title>Genetic Codes</title></info>
      
	<para>When using a codon-based substitution model like <userinput>gy94</userinput>, you may select the genetic code by specifying <userinput>-A Codons(,<replaceable>genetic-code</replaceable>)</userinput>.
        Available genetic codes are:</para>
	<informaltable>
	  <tgroup cols="3">
	    <thead><row>
	      <entry>Name</entry>
	      <entry>Number</entry>
	      <entry>Description</entry>
	    </row></thead>
	    <tbody>
<row><entry>standard</entry><entry> 1</entry><entry>Standard</entry></row>
<row><entry>mt-vert</entry><entry> 2</entry><entry>Mt: Vertebrate</entry></row>
<row><entry>mt-yeast</entry><entry> 3</entry><entry>Mt: Yeast</entry></row>
<row><entry>mt-protozoa</entry><entry> 4</entry><entry>*: Mold, Protozoan and Coelenterate Mitochondrial Code and Mycoplasma/Spiroplasma</entry></row>
<row><entry>mt-invert</entry><entry> 5</entry><entry>Mt: Invertebrate</entry></row>
<row><entry>nuc-ciliate</entry><entry> 6</entry><entry>Nuc: Ciliate, Dasycladacean and Hexamita</entry></row>
<row><entry>mt-echinoderm</entry><entry> 9</entry><entry>Mt:  Echinoderm and Flatworm</entry></row>
<row><entry>nuc-euplotid</entry><entry> 10</entry><entry>Nuc: Euplotid</entry></row>
<row><entry>bacteria</entry><entry> 11</entry><entry>*:   Bacterial, Archaeal and Plant Plastid</entry></row>
<row><entry>nuc-yeast-alt</entry><entry> 12</entry><entry>Nuc: Alternative Yeast</entry></row>
<row><entry>mt-ascidian</entry><entry> 13</entry><entry>Mt:  Ascidian</entry></row>
<row><entry>mt-flatworm-alt</entry><entry> 14</entry><entry>Mt:  Alternative Flatworm</entry></row>
<row><entry>nuc-blepharisma</entry><entry> 15</entry><entry>Nuc: Blepharisma Nuclear Code</entry></row>
<row><entry>mt-chlorophycean</entry><entry> 16</entry><entry>Mt:  Chlorophycean</entry></row>
<row><entry>mt-trematode</entry><entry> 21</entry><entry>Mt:   Trematode</entry></row>
<row><entry>mt-scenedesmus-obliquus</entry><entry> 22</entry><entry>Mt:   Scenedesmus obliquus</entry></row>
<row><entry>mt-thraustochytrium</entry><entry> 23</entry><entry>Mt:   Thraustochytrium</entry></row>
<row><entry>mt-rhabdopleuridae</entry><entry> 24</entry><entry>Mt:   Rhabdopleuridae</entry></row>
<row><entry>bacteria-sr1</entry><entry> 25</entry><entry>*:    Candidate Division SR1 and Gracilibacteria</entry></row>
<row><entry>nuc-pachysolen-tannophilus</entry><entry> 26</entry><entry>Nuc:  Pachysolen tannophilus</entry></row>
<row><entry>nuc-karyorelict</entry><entry> 27</entry><entry>Nuc:  Karyorelict</entry></row>
<row><entry>nuc-condylostoma</entry><entry> 28</entry><entry>Nuc:  Condylostoma</entry></row>
<row><entry>nuc-mesodinium</entry><entry> 29</entry><entry>Nuc:  Mesodinium</entry></row>
<row><entry>nuc-peritrich</entry><entry> 30</entry><entry>Nuc:  Peritrich</entry></row>
<row><entry>nuc-blastocrithidia</entry><entry> 31</entry><entry>Nuc:  Blastocrithidia</entry></row>
<row><entry>mt-cephalodiscidae</entry><entry> 33</entry><entry>Mt:   Cephalodiscidae UAA-Tyr</entry></row>

            </tbody>
          </tgroup>
        </informaltable>
	      

	<para>Genetic codes may be specified by name or by <userinput>code<replaceable>n</replaceable></userinput> where <replaceable>n</replaceable> is the code number.
        For example <userinput>code1</userinput> is the standard code.
If the genetic code is not specified, then the standard code is used:
<screen><prompt>%</prompt> bali-phy <replaceable>sequence-file</replaceable> -S gy94 -A Codons
<prompt>%</prompt> bali-phy <replaceable>sequence-file</replaceable> -S gy94 -A Codons(RNA)</screen>
	These examples specify the vertebrate mitochondrial code:
	<screen><prompt>%</prompt> bali-phy <replaceable>sequence-file</replaceable> -S gy94 -A Codons(DNA,mt-vert)
<prompt>%</prompt> bali-phy <replaceable>sequence-file</replaceable> -S gy94 -A Codons(,mt-vert)</screen>	
</para>
      </section>
      <section>
	<info><title>Heterogeneous dN/dS and tests for positive selection</title></info>
	<informaltable>
	  <tgroup cols="3">
	    <thead><row>
	      <entry>Model</entry>
	      <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	      <entry>Summary</entry>
	    </row></thead>
	    <tbody>
	      
	      <row>
		<entry>
		  <para><userinput>m1a</userinput></para>
		</entry>
		<entry>df(<replaceable>submodel</replaceable>)+2</entry>
		<entry>
		  <para>A mixture of conserved and neutral sites.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1534/genetics.104.031153">
		    (Wong et al., 2004)
		  </link>
		</entry>
	      </row>

	      <row>
		<entry>
		  <para><userinput>m2a</userinput></para>
		</entry>
		<entry>df(<replaceable>submodel</replaceable>)+4</entry>
		<entry>
		  <para>A mixture of conserved, neutral, and positively-selected sites.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1534/genetics.104.031153">
		    (Wong et al., 2004)
		  </link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>m2a_test</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+4</entry>
		<entry>
		  <para>A Bayesian test for positive selection that compares M2a with M1a.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1534/genetics.104.031153">
		    (Wong et al., 2004)
		  </link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>m3</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+2*$n$-1</entry>
		<entry><para>An free mixture of $n$ categories of conserved dN/dS values.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/genetics/155.1.431">
		  (Yang et al., 2000)
		</link>
		</entry>
	      </row>

	      <row>
		<entry>
		  <para><userinput>m3_test</userinput></para>
		</entry>
		<entry>df(<replaceable>submodel</replaceable>)+2*$n$+1</entry>
		<entry>
		  <para>A Bayesian test for positive selection based on the M3 model extended with an extra category of either neutral of positively-selected sites.</para>
		</entry>
	      </row>

	      <row>
		<entry><para><userinput>m7</userinput></para></entry>
		<entry>df(<replaceable>submodel</replaceable>)+2</entry>
		<entry><para>The M7 model places a beta distribution on dN/dS.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/genetics/155.1.431">
		  (Yang et al., 2000)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>m8a</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+3</entry>
		<entry><para>The M8a model adds a category of <emphasis>neutral</emphasis> sites to the M7 model.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a004233">
		  (Swanson et al., 2003)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>m8</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+4</entry>
		<entry><para>The M8 model adds a category of <emphasis>positively-selected</emphasis> sites to the M7 model.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/genetics/155.1.431">
		  (Yang et al., 2000)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>m8a_test</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+4</entry>
		<entry><para>A Bayesian test for positive selection that compares the M8 to the M8a model.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a004233">
		  (Swanson et al., 2003)
		</link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>branch_site</userinput></entry>
		<entry>df(<replaceable>submodel</replaceable>)+4</entry>
		<entry><para>A Bayesian test for positive selection that on some (unknown) sites and some (known) branches.</para>
		<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/molbev/msi237">
		  (Zhang et al., 2005)
		</link>
		</entry>

	      </row>

	    </tbody>

	  </tgroup>
	</informaltable>
      </section>

      <section><info><title>The branch-site substitution model</title></info>
      <para>In order to use the branch-site substitution model, the user needs to specify an unrooted tree topology and fix the topology:
    <screen><prompt>%</prompt> bali-phy <replaceable>alignment</replaceable>.fasta -S branch_site --fix topology=<replaceable>treefile</replaceable></screen>
    The tree file should be in Newick format, with foreground branches labelled using &amp; attributes. The attribute must be applied to the branch, not the node, so it must occur after a colon.

<example><title>An tree with a foreground branch</title>
(((A1, B1),(C1, D1)),((E1:[&amp;foreground=1], F1:[&amp;foreground=1]),(G1, H1)),(((A2, B2),(C2, D2)),((E2, F2),(G2, H2))));
</example>
      </para>
      <para>The posterior probability of positive selection is the posterior mean of the posSelection parameter.  This may be computed using the statreport program with the <userinput>--mean</userinput> option. In case this probability is extremely close to 1 or 0, you may wish to add the option <userinput>--Rao-Blackwellize branch_site:posSelection</userinput>.  This will report the log-probability of positive selection each iteration.  The user may exponentiate the reported values and then average them (using R, for example) in order to compute a more accurate estimate of the posterior probability of positive selection.
      </para>
      </section>

    </section>

    <section><info><title>Heterogenous Rates across Sites</title></info>
    
    <para>
      Complex substitution models in <application>BAli-Phy</application>
      are constructed as mixtures of reversible CTMC models that run at different rates (e.g. $\Gamma_4 + INV$)
      or have different parameters (e.g. an M2a codon model).
    </para>

      <informaltable>

      <tgroup cols="3">
	  <thead><row>
	      <entry>Model</entry>
	      <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	      <entry>Summary</entry>
	  </row></thead>
	  <tbody>

	    <row>
	      <entry><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Rates.gamma</userinput></entry>
	      <entry>df(<replaceable>submodel</replaceable>)+1</entry>
	      <entry><para>Site rates follow a discrete approximation to the Gamma distribution</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/BF00160154">
		    (Yang, 1994)
		  </link>
	      </entry>
	    </row>

	    <row>
	      <entry>
		<para><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Rates.logNormal</userinput></para>
	      </entry>
	      <entry>df(<replaceable>submodel</replaceable>)+1</entry>
	      <entry><para>Site rates follow a discrete approximation to the logNormal distribution</para>
	      </entry>
	    </row>

	    <row>
	      <entry><para><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Rates.free</userinput></para></entry>
	      <entry>df(<replaceable>submodel</replaceable>)+2($n$-1)</entry>
	      <entry><para>Sites fall in one of $n$ categories. Each category has its own rate.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1093/genetics/139.2.993">
		    (Yang, 1995)
		  </link>
	      </entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;multi_rate(<replaceable>dist</replaceable>)</userinput></entry>
	      <entry>df(<replaceable>submodel</replaceable>)+df(<replaceable>dist</replaceable>)</entry>
	      <entry><para>Site rates follow a discrete approximation to the distribution <replaceable>dist</replaceable>.</para></entry>
	    </row>

	    <row>
	      <entry><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;inv</userinput></entry>
	      <entry>df(<replaceable>submodel</replaceable>)+1</entry>
	      <entry><para>Some fraction inv:p_inv of sites are invariable.</para>
	      </entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>

    </section>
    <section xml:id="covarion_models">
      <info><title>Heterotachy models</title></info>
      <para>
        These models attempt to model the fact that evolutionary rates may change over time within a single column.
        These models are sometimes called "covarion" models, based on the idea that changes in rate might be caused
        by changes in an unspecified covarying site.
      </para>
      <para>
        These models are "Markov modulated" models that create multiple different states for each letter by augmenting
        each letter with some unobserved hidden state.  They attempt to model the fact that substitution processes might
        not be Markov on the letters, but might become more Markov given the hidden state.
      </para>

      <informaltable>
      <tgroup cols="3">
	  <thead><row>
	      <entry>Model</entry>
	      <entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
	      <entry>Summary</entry>
	  </row></thead>
	  <tbody>

	    <row>
	      <entry><userinput><replaceable>Q</replaceable>&nbsp;+>&nbsp;Covarion.ts98</userinput></entry>
	      <entry>df(<replaceable>submodel</replaceable>)+2</entry>
	      <entry>
                <para>Each state in rate matrix Q is split into an ON and OFF variant.  Models burstiness.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink"  xlink:href="https://doi.org/10.1016/S0025-5564(97)00081-3">
		    (Tuffley and Steel, 1998)
		  </link>
	      </entry>
	    </row>

	    <row>
	      <entry>
                <para><userinput><replaceable>Q</replaceable>&nbsp;+>&nbsp;Rates.gamma&nbsp;+>&nbsp;Covarion.hb02</userinput></para>
                <para><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Covarion.hb02</userinput></para>
              </entry>
	      <entry>
                <para>df(<replaceable>Q+Rates.gamma</replaceable>)+2</para>
                <para>df(<replaceable>submodel</replaceable>)+2</para>
              </entry>
	      <entry>
                <para>Combines Gamma (or other) rate heterogeneity with the Tuffley-Steel model.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink"  xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a004128">
		    (Huelsenbeck, 2002)
		  </link>
	      </entry>
	    </row>

	    <row>
	      <entry>
                <para><userinput><replaceable>Q</replaceable>&nbsp;+>&nbsp;Rates.gamma&nbsp;+>&nbsp;Covarion.gt01</userinput></para>
                <para><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Covarion.gt01</userinput></para>
              </entry>
	      <entry>
                <para>df(<replaceable>Q+Rates.gamma</replaceable>)+2</para>
                <para>df(<replaceable>submodel</replaceable>)+2</para>
              </entry>
	      <entry>
                <para>Allows switching between Gamma (or other) rate classes over time.  Models changes in conservation.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink"  xlink:href="https://doi.org/10.1093/oxfordjournals.molbev.a003868">
		    (Galtier, 2001)
		  </link>
	      </entry>
	    </row>

	    <row>
	      <entry>
                <para><userinput><replaceable>Q</replaceable>&nbsp;+>&nbsp;Rates.gamma&nbsp;+>&nbsp;Covarion.wssr07</userinput></para>
                <para><userinput><replaceable>submodel</replaceable>&nbsp;+>&nbsp;Covarion.wssr07</userinput></para>
              </entry>
	      <entry>
                <para>df(<replaceable>Q+Rates.gamma</replaceable>)+4</para>
                <para>df(<replaceable>submodel</replaceable>)+4</para>
              </entry>
	      <entry>
                <para>Allows switching between ON/OFF states and <emphasis>also</emphasis> between Gamma (or other) rate classes over time.  Models both burstiness and changes in conservation.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink"  xlink:href="https://doi.org/10.1093/molbev/msl155">
		    (Wang et al., 2007)
		  </link>
	      </entry>
	    </row>
          </tbody>1
	</tgroup>
      </informaltable>
      <para>
        <note>
          Note that the obvious way to combine the Tuffley-Steel model with rate heterogeneity is wrong:
          <itemizedlist>
            <listitem><para><userinput>Q +> Covarion.ts98 +> Rates.gamma</userinput>: This is incorrect.  Under this model, sites with faster substitution rates will switch between the ON/OFF states faster.</para></listitem>
            <listitem><para><userinput>Q +> Rates.gamma +> Covarion.hb02</userinput>: This is correct.  Sites switch between ON/OFF states independent of the speed of substitution.</para></listitem>
          </itemizedlist>
        </note>
      </para>
    </section>
  </section>


    <section xml:id="indel_models"><info><title>Insertion/deletion models</title></info>
      
    <para>Each of these models is a probability distribution on pairwise alignments.  The probability distribution on multiple sequence alignments $\Pr(A|T,\tau,\Lambda)$ is constructed by factoring the multiple sequence alignment into pairwise alignments along each branch of the tree, as described in Redelings and Suchard (2005).</para>

	<para>The default insertion/deletion model is <userinput>rs07</userinput>.</para>
	
    <informaltable>
	  
	  <tgroup cols="3">
	    <colspec colnum="1" colname="col1" colwidth="1*"/>
	    <colspec colnum="2" colname="col2" colwidth="1*"/>
	    <colspec colnum="3" colname="col3" colwidth="1*"/>
	    <thead><row>
		<entry>Model</entry>
		<entry>&nbsp;&nbsp;d.f.&nbsp;&nbsp;</entry>
		<entry>Summary</entry>
	    </row></thead>
	    <tbody>	    
	      <row>
		<entry><userinput>rs05</userinput></entry>
		<entry>3</entry>
		<entry>
		  <para>A symmetric insertion-deletion model with geometrically-distributed indel lengths.</para>
		  <para>Indels occur on all branches with the same probability, regardless of branch length.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1080/10635150590947041">
		    (Redelings and Suchard, 2005)
		  </link>
		</entry>
	      </row>

	      <row>
		<entry><userinput>rs07</userinput></entry>
		<entry>2</entry>
		<entry>
		  <para>A symmetric insertion-deletion model with geometrically-distributed indel lengths.</para>
		  <para>Longer branches have more indels.</para>
		  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1186/1471-2148-7-40">
		    (Redelings and Suchard, 2007)
		  </link>
		</entry>
	      </row>
	      
	      <row>
		<entry>
		  <para><userinput>none</userinput></para>
		</entry>
		<entry/>
		<entry>
		  <para>No indel model for the partition, indels uninformative.</para>
		  <para>Fixed alignment for the partition.</para>
		</entry>
	      </row>
	      
	    </tbody>
	  </tgroup>
	</informaltable>
	    
	<para>The user can specify priors and parameters for indel models (See section <xref linkend="functions"/>):
<programlisting>rs07(log_rate~logLaplace(-4,0.707),mean_length=2)</programlisting>
	</para>

    </section>

  <section xml:id="functions"><info><title>Models and Priors</title></info>

  <section><info><title>Models and distributions are functions</title></info>
  <para>Models, probability distributions, and functions are treated the same in BAli-Phy because all of them have parameters or arguments. Parameters have names in BAli-Phy.  Parameter values are specified using square brackets as follows:
  <programlisting>hky85(kappa=2)            // model
log(x=2)                  // function
normal(mean=0,sigma=1)    // probability distribution</programlisting>
It is possible to specify parameter values by position instead of by name:
  <programlisting>hky85(2)
log(2)
normal(0,1)</programlisting>
It is even possible to mix positional and named arguments, as long as all the positional arguments come before all the named arguments:
<programlisting>normal(0,sigma=1)   // OK
normal(mean=0,1)    // not OK</programlisting>

  The order and type of parameters for a function can be found with the <userinput>help</userinput> command.  For example,
<screen><prompt>%</prompt> <userinput>bali-phy help hky85</userinput></screen>
A value must be given for each parameter, unless the parameter has a default value (See <xref linkend="default_values"/>).
  </para>
	<note>
	  <para>
	    You need to put single quotes around terms with parenthesis or square brackets on the command-line:
<screen><prompt>%</prompt> <userinput>bali-phy file.fasta -S 'hky85(kappa=2)'</userinput>
<prompt>%</prompt> <userinput>bali-phy file.fasta -S 'mixture([tn93,hky85(2)])'</userinput></screen>
	  </para>

	  <para>If you do not add quotes, the shell will try to interpret the parentheses or square brackets and give an error message
                without running bali-phy.  For example, "<computeroutput>-bash: syntax error near unexpected token `('</computeroutput>" (for <command>bash</command>) or
          "<computeroutput>Badly placed ()'s</computeroutput>" (for <command>csh</command>) or "<computeroutput>zsh: no matches found: mixture([tn93,hky85(2)])</computeroutput>" (for <command>zsh</command>).
	  </para>
	</note>

  </section>

  <section><info><title>Model stacking and '<userinput>+></userinput>' notation</title></info>
  <para>Models in phylogenetics literature are often combined using <userinput>+</userinput>. For example, the model <userinput>WAG + F + G4 + I</userinput> starts with the WAG amino-acid model, and places several modifiers, like " + G4" on the right.</para>
  <para>BAli-Phy follows this convention by treating <userinput>A +> B</userinput> as an abbreviation for <userinput>B(A)</userinput>.  When there are multiple '<userinput>+></userinput>' symbols they associate to the left, so that <userinput>A +> B +> C</userinput> is understood to mean <userinput>(A +> B) +> C</userinput>, which is equivalent to <userinput>C(B(A))</userinput>.  For example:
<programlisting>hky85 + Rates.gamma               // rewritten to Rates.gamma(hky85)
hky85 +> inv                      // rewritten to inv(hky85)
wag +> f                          // rewritten to f(wag)
wag +> f +> Rates.gamma +> inv    // rewritten to inv(Rates.gamma(f(wag)))
</programlisting>
This allows a simple method for combining models, when one model is an argument to another model.
</para>
  </section>

  <section xml:id="priors"><info><title>Priors</title></info>
  <section><info><title>Specifying priors</title></info>
<para>Priors on model parameters are specified by giving a random value. Random values can be obtained from distributions using the function <userinput>sample</userinput>.  For example, this places a log-normal prior on the parameter <userinput>kappa</userinput> of the <userinput>hky85</userinput> model:
<programlisting>hky85(kappa=sample(logNormal(1,1)))</programlisting>
You can write <userinput>~Dist</userinput> as a shorthand for <userinput>sample(Dist)</userinput>:
<programlisting>hky85(kappa = ~logNormal(1,1))</programlisting>
The <userinput>=~</userinput> can be further shortened to just <userinput>~</userinput>:
<programlisting>hky85(kappa ~ logNormal(1,1))</programlisting>
</para>
</section>

  <section><info><title>Random function arguments</title></info>
<para>It also is possible to use random values as inputs to other functions.  For example:
<programlisting>1.0 + ~exponential(10)</programlisting>
In such cases the parameter value should be specified with <userinput>=</userinput>, as in the following example:
<programlisting>rs07(mean_length=1.0 + ~exponential(10))</programlisting>
</para>
  </section>
<section><info><title>Distributions are not random values</title></info>
<para>Random values and distributions have different types.  For example, the
following is of type <userinput>Distribution&lt;Double&gt;</userinput>:
<programlisting>uniform(0,1)</programlisting>
In contrast, the following are both of type <userinput>Double</userinput>:
<programlisting>sample(uniform(0,1))
~uniform(0,1)</programlisting>
This is important when passing distributions as arguments to other
distributions and functions.  For example, the distribution <userinput>iid</userinput> is used to generate a specific number of samples from another distribution.  Thus, it needs to receive a distribution as an argument:
<programlisting>~iid(4, normal(0,1))      // OK    : 4 samples from the normal(0,1) distribution
~iid(4, ~normal(0,1))     // not OK: 4 samples from ... a random number?</programlisting>
(See <xref linkend="types"/>.)
</para>
  </section>
  </section>

  <section xml:id="default_values"><info><title>Default values and default priors</title></info>
  <para>
Some function arguments have default values.  For example, the <userinput>Rates.gamma</userinput> parameter <userinput>n</userinput> has a default value of 4.  Thus the following are equivalent:
<programlisting>hky85 +> Rates.gamma(n=4) +> inv
hky85 +> Rates.gamma +> inv</programlisting></para>

  <para>When the default value is random, then the argument has a default prior. For example, the <userinput>kappa</userinput> parameter of <userinput>hky85</userinput> has a default value of <userinput>~logNormal(log(2),0.25)</userinput>, so the following are equivalent:
<programlisting>hky85(kappa~logNormal(log(2),0.25))
hky85</programlisting>
The <userinput>help</userinput> command can be used to determine the default value for a parameter, if there is one.</para>
  </section>

  <section xml:id="types"><info><title>Argument and result types</title></info>
  <para>  Every function has a <emphasis>result type</emphasis>, as well as an <emphasis>argument type</emphasis> for each argument.  The argument type specifies what kind of arguments are acceptable, and the result type specifies what kind of result the function produces.  Types include <userinput>Int</userinput> for integers, <userinput>Double</userinput> for double-precision floating point numbers, and <userinput>String</userinput> for text strings.  Integer arguments are implicitly converted to <userinput>Double</userinput> when the argument type is <userinput>Double</userinput>.</para>

  <para>Some types contain parameters.  For example <userinput>List&lt;Int&gt;</userinput> indicates a list of integers and <userinput>List&lt;Double&gt;</userinput> indicates a list of real numbers.  In order to indicate a list of unknown type, we use a <emphasis>type variable</emphasis> <userinput>a</userinput> and write <userinput>List&lt;a&gt;</userinput>.  Type variables always begin with a lower-case letter.  They are able to match any specific type, and their value is found by pattern-matching.  For example, the function <userinput>x+y</userinput> takes two arguments of type <userinput>a</userinput> and has a result of type <userinput>a</userinput>.  Thus:
<programlisting>1 + 2        // arguments are a=Int, so result is of type Int
1.0 + 2.0    // arguments are a=Double, so result is of type Double</programlisting>
<userinput>(a,b)</userinput> is a parameterized type that can be specialized to (for example) <userinput>(String,Double)</userinput> and <userinput>(Int,Int)</userinput>.
  </para>

  <para>Types for components of substitution models are often parameterized by type of the alphabet.  For example, hky85 has a result type of <userinput>RevCTMC&lt;a&gt;</userinput>, where <userinput>a</userinput> could be <userinput>DNA</userinput> or <userinput>RNA</userinput>.  The use of alphabet types in substitution models prevents combining substitution models with mismatched alphabets.
  </para>

  </section>
  </section>
    

    <section><info><title>Partitioned data sets</title></info>

    <section><info><title>Partitions</title></info>
    <para>You should analyze multiple genes under different evolutionary models by putting each one it its own data partition.  Placing different genes in different partitions means that their alignments vary independently.  It also prevents sequences in one gene from being aligned against sequences in another gene.</para>

    <para>Different partitions share the same tree topology and a common set of unscaled branch lengths.  However, branch lengths are scaled by a different factor in each partition, since some genes may evolve faster than others.</para>

    <para>To put different genes in different partitions, you can place the sequences from each partition in a different FASTA or Phylip file.     The sequence names in files for all partitions should be the same. 
    <screen><prompt>%</prompt> <userinput>bali-phy gene1.fasta gene2.fasta</userinput></screen>
    You can also select different sites from a single larger file:
    <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta:3-350 sequences.fasta:351-570</userinput></screen>
    </para>
    </section>

    <section><info><title>Unlinked models</title></info>
    <para>By default, each partition will have its own substitution model, insertion/deletion model, and scaled tree length.  For example, even if all partitions are assigned a <userinput>tn93</userinput> substitution model, their base frequencies will all be estimated independently.  When parameters are estimated separately for two partitions, we say that the parameters for those partitions are "unlinked".</para>

    <para>A substitution model or insertion-deletion model that is specified without qualification will apply to every partition.  However, each partition will recieve its own copy of each model with unlinked parameter values:
      <screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S tn93 -I rs07</userinput></screen></para>

<para>You can select partition-specific values for 4 options: <userinput>-S</userinput>, <userinput>-I</userinput>, <userinput>-A</userinput>, and <userinput>--scale</userinput>.  For example, to specify different substitution models but the same alphabet:
<screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S 1:tn93 -S 2:gtr -A DNA</userinput></screen></para>
    </section>

    <section><info><title>Fixing the alignment in some partitions</title></info>
<para>You can fix the alignment and ignore insertion/deletion information in one partition, while allowing the alignment to vary and using insertion/deletion information in another partition:
<screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -I 2:none</userinput></screen>
Since alignments are estimated by default, the alignment will be estimated in the first partition, but fixed in the second partition.</para>
<para>Specifying specify <userinput>-I none</userinput> fixes the alignment in all partitions:
<screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -I none</userinput></screen>
</para>
    </section>
    <section><info><title>Linked models</title></info>
<para>You can also specify that two partitions share a single copy of a single substitution model or indel model.  For example, if two partitions both have a <userinput>tn93</userinput> model, linking these models would force the partitions to have the same nucleotide frequencies and substitution rates.  Linking partitions reduces the number of parameters that need to be estimated, and also pools information between the partitions:
<screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S 1,2:tn93 -I 1,2:rs07</userinput></screen>
By default each partition has a separate scale, but you can force groups of partitions to share a scale as follows:
<screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> --scale 1,2:</userinput></screen>
</para>
    </section>
    <section><info><title>Linking models via the <userinput>link</userinput> command</title></info>

    <para>The <userinput>--link</userinput> command is provided to allow specifying a model for each partition separately, and then afterwards choose which partitions to link.
    <screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S 1:tn93 -S 2:tn93 --link=1,2 -t</userinput>
<prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S tn93             --link=1,2 -t</userinput>   </screen>
    If the linked partitions are given different models, BAli-Phy will give an error and refuse to run:
    <screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> -S 1:tn93 --link=1,2 -t</userinput>
bali-phy: Error! Partitions 1 and 2 cannot be linked because they have differing values 'tn93' and ''</screen></para>
    <para>You can also specify which of the 3 attributes "smodel", "imodel", and "scale" are being linked:
    <screen><prompt>%</prompt> <userinput>bali-phy <replaceable>sequence-file1</replaceable> <replaceable>sequence-file2</replaceable> --link=1,2:smodel,scale -t</userinput>    // Don&apos;t link the indel model</screen>
    </para>
    </section>
    </section>

    <section xml:id="ancestral_sequence_reconstruction">
      <info><title>Ancestral sequence reconstruction</title></info>

      <section>
        <info><title>Ancestral sequences with gaps</title></info>
        <para>
          BAli-Phy can reconstruct ancestral sequences for all internal nodes. Unlike some programs,
          BAli-Phy explicitly infers the presence and absence of characters in ancestral sequences. This
          means that if the ancestral sequence has no character for a column, the reconstructed
          ancestor will have a gap there. BAli-Phy reconstructs ancestors for fixed-alignment partitions
          as well as variable-alignment partitions, but it won&apos;t write out fixed alignment samples unless
          you add the flag <userinput>--set write-fixed-alignments=true</userinput>. Additionally, if you
          have an ambiguous character such as <userinput>N</userinput> in an observed sequence BAli-Phy
          will impute this character. <!-- , but will not do so unless you add the flag <userinput> \-\-set infer-ambiguous-observed=true</userinput>. -->
        </para>
      </section>

    <section>
      <info><title>Generating a consensus alignment with ancestral sequences</title></info>

    <para>BAli-Phy can reconstruct ancestral sequences for a given tree topology and (leaf sequence) alignment.
    This is similar to the ancestor-reconstruction that is usually done for fixed-alignment analyses.
    However, it is not quite the same, because of uncertainty in the tree and the alignment.
    When computing the probability of an ancestral residue, this summary averages over uncertainty in the topology,
    the alignment, and the ancestral state itself. 

    <screen># Construct the leaf sequence alignment to annotate using posterior decoding
<prompt>%</prompt> <userinput>cut-range <replaceable>dir</replaceable>-1/C1.P1.fastas <replaceable>dir</replaceable>-2/C1.P1.fastas --skip=<replaceable>burn-in</replaceable> | alignment-chop-internal --tree c50.tree | alignment-max &gt; P1-max.fasta</userinput>
# Construct the tree topology to annotate
<prompt>%</prompt> <userinput>trees-consensus <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees | tree-tool - --strip-internal-names --name-all-nodes &gt; c50.tree</userinput>
# Reconstruct ancestral sequences on the given tree and alignment
<prompt>%</prompt> <userinput>summarize-ancestors P1.max.fasta -A <replaceable>dir</replaceable>-1/C1.P1.fastas -T <replaceable>dir</replaceable>-1/C1.trees -A <replaceable>dir</replaceable>-2/C1.P1.fastas -T <replaceable>dir</replaceable>-2/C1.trees -n c50.tree -g c50.tree > P1.ancestors.fasta</userinput></screen>
    
BAli-Phy uses an alignment estimate (here, <filename>P1-max.fasta</filename>) as a template to construct a consensus alignment with ancestral sequences.  BAli-Phy doesn&apos;t condition on the alignment columns, because (i) many columns occur only once in a posterior sample and (ii) conditioning on the column gives too much weight to the template alignment.
</para>

<para>Because the alignment is uncertain, residues in the same column of the template alignment may end up in different columns in an MCMC sample.  Therefore, in a given MCMC sample, different leaf residues in the same column may have different ancestors at the same internal node!  However, in our ancestral reconstruction, a given column may only display a single ancestral residue.</para>

<para>BAli-Phy addresses this problem by averaging across the different ancestral residues in each column of the template alignment.  When identifying the ancestral character to column C from a sampled alignment A, we random select a residue in C and use it to select a column from A.  This procedure has the nice property that it will yield the traditional ancestral residue prediction if the alignment column is fixed.
    </para>
    </section>

      <section>
        <info><title>Sampled alignments contain ancestral sequences</title></info>
        <para>
          Ancestral sequences are written as part of the alignment matrix in each iteration.  Ancestral sequences
          are given names starting with the letter <userinput>A</userinput>.  For example, in the
          following alignment, the sequences <userinput>A5</userinput>, <userinput>A6</userinput>, and
          <userinput>A7</userinput> are reconstructed ancestors:
          <programlisting>&gt;Halobacterium
-T-TAAGGCGGCCATAGCGGTGGGGTTACTCCCGTAC
&gt;Pyrococcus
GG-TACGGCGGTCATAGCGGGGGGGCCACACCCGGTC
&gt;Sulfolobus
GC-CCACCCGGTCACAGTGAGCGGGCAACACCCGGAC
&gt;Homo
GTCTACGGC---CATACCACCCTGAACGCGCCCGATC
&gt;Escherichia
TG-CCTGGCGGCCGTAGCGCGGTGGTCCCACCTGACC
&gt;A5   
GG-CAAGGCGGCCATAGCGGGGGGGCCACACCCGGCC
&gt;A6   
GT-CAAGGCGGCCATAGCGGGGGGGCTACACCCGGTC
&gt;A7   
GT-CAAGGCGGCCATAGCGGGGGGGCTACACCCGGTC</programlisting>
          Sampled alignments for the <replaceable>n</replaceable>th partition are in the file.
          <filename>C1.P<replaceable>n</replaceable>.fastas</filename>. 
        </para>
        <para>
          Ancestral states in these alignments are randomly sampled from their joint posterior and do
          <emphasis>not</emphasis> represent the most probable ancestral state.  The alignment of
          ancestral sequences is also inferred, so these sequences may contain gaps.  The length of
          ancestral sequences may vary between samples when the length of the ancestral sequence is
          uncertain.
        </para>
      </section>

      <section>
        <info><title>Sampled alignments correspond to specific sampled trees</title></info>
        <para>
          Each sampled alignment matrix corresponds to a tree in the file <filename>C1.trees</filename>
          that is written in the same iteration. This tree specifies the phylogenetic location of each
          ancestral sequence by labelling the internal nodes of the tree.  For example, the tree below
          shows where the internal nodes <userinput>A5</userinput>, <userinput>A6</userinput>, and <userinput>A7</userinput> are
          located on the tree:
          <programlisting>(Halobacterium:0.213240,((Escherichia:0.435762,Pyrococcus:0.122678)<emphasis role="strong">A5</emphasis>:0.114725,Sulfolobus:0.427210))<emphasis role="strong">A6</emphasis>:0.042527,Homo:0.427026))<emphasis role="strong">A7</emphasis>;</programlisting>
          While the tree is written every iteration, the alignment is only written every 10 iterations
          (by default) in order to save disk space.  One method for extracting the trees that correspond
          to saved alignments is to extract every 10th tree with the program
          <userinput>bali-subsample</userinput>: 
            <screen><prompt>%</prompt> <userinput>bali-subsample 10 &lt; C1.trees &gt; C1.10.trees</userinput></screen>
        </para>
      </section>

      <section><info><title>Using the sampled alignments instead of a consensus</title></info>

      <para>
        Instead of constructing consensus ancestral sequences, you can also analyze the sampled alignments and their ancestral sequences directly.
        This approach involves performing a downstream analysis on <emphasis>each</emphasis> sampled (alignment,tree) pair,
        yielding the posterior distribution of the downstream analysis.
        Averaging these results then yields the posterior mean analysis result.
      </para>
        
      <para>
        When this approach is feasible, it is more statistically rigorous than analyzing the consensus ancestral sequence alignment.
        The consensus ancestral sequence alignment does not account for uncertainty in the ancestral sequences, and is not a joint reconstruction.
        In contrast, analyzing the posterior samples accounts for uncertainty in the ancestral sequences, the alignment, and the tree.
        Furthermore, it also analyzes joint reconstructions instead of a marginal reconstruction.
      </para>
      </section>


    <section>
      <info><title>Tree uncertainty in ancestral sequence reconstruction.</title></info>
      <para>
        In Bayesian phylogenetic analyses, the tree is not fixed. Therefore the internal node
        corresponding to the ancestral sequence you wish to reconstruct may not exist in every posterior sample.
        The standard Bayesian approach to tree uncertainty is to reconstruct the ancestor for each 
        node by conditioning on the existence of that node in the tree.  This allows the reconstructed
        ancestor for each node to average over uncertainty about the existence of other nodes.
      </para>
      <para>
        BAli-Phy additionally allows the researcher to condition on branches, since a branch
        condition is less restrictive.  BAli-Phy does not run a separate MCMC chain with a tree constraint for each node, but instead performs conditioning by selecting samples from a single run that satisfy the  condition.
      </para>
    <section>
      <info><title>Extracting and naming sequences that satisfy a query</title></info>
      <para>
        Note that the sequence names (e.g. A6) for internal nodes may change over time. Therefore, you
        cannot simply extract ancestral sequences with a given name.

        To extract ancestral sequences for a given node, you need to specify a method of identifying
        that node on a tree, and a name to give to the sequence at that node.  This is called a
        <emphasis>query</emphasis>.
      </para>
        <para>For example, you might
        specify how to identify the ancestor node of Eukaryotes, and the name "Eukaryotes" to use for the
        sequence there.  You can then use the program <userinput>extract-ancestors</userinput> to
        extract ancestral sequences from the sampled trees and alignment, and label them with useable names.

    <screen><prompt>%</prompt> <userinput>trees-consensus <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees | tree-tool - --strip-internal-names --name-all-nodes &gt; c50.tree</userinput>
<prompt>%</prompt> <userinput>extract-ancestors -A <replaceable>dir</replaceable>-1/C1.P1.fastas -T <replaceable>dir</replaceable>-1/C1.trees -A <replaceable>dir</replaceable>-2/C1.P1.fastas -T <replaceable>dir</replaceable>-2/C1.trees -n c50.tree -g c50.tree > P1.ancestors.fastas</userinput></screen>
       Here the options <userinput>-n c50.tree</userinput> and <userinput>-g c50.tree</userinput> specify
       node-based queries and branch-based queries.
    </para>
    </section>

    <section><info><title>Conditioning on a node: node-based queries</title></info>
    <para>A node exists in a sampled tree if every branch connected to that node exists in the sampled tree.
    A node-based query asks for the reconstructed ancestral sequence only from samples where every branch
    connected to that node exists. A node-based query is more stringent than a branch-based query, since it
    requires multiple branches to exist.</para>
    <para>BAli-Phy allows constructing node-based queries by passing in a Newick tree with labelled internal nodes.
    A node-based query is automatically constructed from each internal node that is labelled.
    </para>
    </section>

    <section><info><title>Conditioning on a branch: branch-based queries</title></info>
    <para>A branch-based query requires only that a single branch exist in a sampled tree.  The branch-based
    query asks for the reconstructed ancestral sequence on one endpoint of that (directed) branch.  When the focus
    is on changes that occur on a particular branch, this makes more sense than a node-based query.
    </para>
    <para>BAli-Phy allows constructing branch-based queries from a file where every line is either a Newick tree <emphasis>or</emphasis> a named group of taxa.  For each line that contains a Newick tree, a branch-based query is automatically constructed from each branch where <emphasis>both</emphasis> endpoints are labelled.  For a branch from <userinput>node1</userinput> to <userinput>node2</userinput>, the query is named <userinput>"node2&lt;=node1"</userinput>.
    </para>
    <para>
      Branch-based query files can also contain lines of the form
      <programlisting>name = taxon1 taxon2 ... taxonN</programlisting>
      This matches branches that separate the listed taxa from all other taxa, and points toward the listed taxa.
    </para>
    </section>

    </section>

    <!-- section><info><title>Alignment uncertainty in ancestral sequence reconstruction.</title></info>
    <para>
      Most programs for reconstructing ancestral sequences assume that the alignment is known.
      When this is true, identifying the ancestor at a particular node and column is trivial if the node exists in the tree.
    </para>
    <para>
      However, BAli-Phy allows estimating ancestral sequences when the alignment is not known.  This is more
      complicated, the length of the ancestral sequence at a given node may be different between different sample.
      Even worse, identifying the ancestral character in a given column no longer makes sense, since the particular
      set of leaf characters that identify the column may not always be aligned.
    </para>
    <para>
      Another way of stating this problem is that if we seek to identify the ancestral character for
      one letter in a column, it may be different that the ancestral character for another letter in the same column,
      since those two letters may not be homologous in a given ancestral sample.
    </para>
    <para>
      BAli-Phy currently solves this problem by selecting a representative letter in a template alignment to identify
      that column.  When finding the ancestral character from a particular sampled alignment, BAli-Phy chooses the
      ancestral character from the sampled alignment column that contains the representative letter.
      This approach collapses to the standard approach for columns that are definitely homologous.
      However, this is a challenging problem that is not completely solved.
    </para>
    </section -->


    </section>
  <section xml:id="mixing_and_convergence"><info><title>Convergence and Mixing: Is it done yet?</title></info>
    

    <para>
      When using Markov chain Monte Carlo (MCMC) programs like
      <application>MrBayes</application>, <application>BEAST</application> or
      <application>BAli-Phy</application>, it is hard to determine in
      advance how many iterations are required to give a good
      estimate. The number depends on the specific data set that is
      being examined. As a result, <application>BAli-Phy</application>
      relies on the user to analyze the output of a running chain
      periodically in order to determine when enough samples have been
      obtained.  This section describes a number of techniques to
      diagnose when more samples must be taken.
    </para>

    <para>Some of the better diagnostics for lack of convergence rely on running at least 2 independent copies of the Markov chain (preferably 4-10) from different random starting points to see if the sampled posterior distributions for each chain are the same.  Unfortunately, when the distributions all seem to be this same, this doesn&apos;t <emphasis>prove</emphasis> that they have all converged to the equilibrium distribution.  However, if the distributions are different then you can reject either convergence or good mixing.</para>

    <section><info><title>Definition of Convergence</title></info>
      

      <para>Convergence refers to the the tendency of a Markov chain to
	to "forget" its starting value and become typical of its
	equilibrium distribution. Note that convergence is a property
	of the Markov chain itself, not of individual runs of the
	Markov chain.  Ideally a number of individual runs should be
	examined in order to determine how many initial iterations to
	discard as "burnin".
      </para>
    </section>
    
    <section><info><title>Definition of Mixing</title></info>
      
      <para>
	In MCMC, each sample is not fully independent of previous
	samples.  In fact, even after a Markov chain has converged,
	it can get "stuck" in one part of the parameter space for a
	long time, before jumping to an equally important part.  When
	this happens, each new sample contributes very little new
	information, and we need to obtain many more samples to get
	good precision on our parameter estimates.  In such a case, we say 
	that the chain isn&apos;t "mixing" well. 
      </para>
    </section>

    
    <section><info><title>Diagnostics: Variation in split frequencies across runs (ASDSF/MSDSF)</title></info>
      
      <section><info><title>ASDSF and MSDSF</title></info>
	
<para>
To calculate the ASDSF and MSDSF run:
<screen><prompt>%</prompt> trees-bootstrap <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees ... <replaceable>dir-n</replaceable>/C1.trees &gt; partitions.bs</screen>	
For each split, the SDSF value is just the standard deviation across
runs of the Posterior Probabilities for that split.  By averaging the
resulting SDSF values across splits, we may obtain the ASDSF value
(Huelsenbeck and Ronquist 2001).  This is commonly considered
acceptable if it is &lt; 0.01.
</para>

<para>However, it is also useful to consider the maximum of the SDSF
  values (MSDSF).  This represents the range of variation in PP across
  the runs for the split with the most variation.
</para>
      </section>
      <section><info><title>Split-frequency comparison plot</title></info>
	
	<para>To generate the split-frequency comparison plot, you must have R installed.  Locate the script <filename>compare-runs.R</filename>.  Then run:
<screen><prompt>%</prompt> trees-bootstrap <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees ... <replaceable>dir-n</replaceable>/C1.trees --LOD-table=LOD-table &gt; partitions.bs 
<prompt>%</prompt> R --slave --vanilla --args LOD-table compare-SF.pdf &lt; compare-runs.R</screen>
	  Following <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1080/10635150600812544">Beiko et al. (2006)</link>, this displays the variation in
	  estimates of split frequencies across runs.  Splits are
	  arranged on the x-axis in increasing order of 
	  Posterior Probability (PP), which is obtained by averaging over
	  runs.  We then plot a vertical bar from the minimum PP to the
	  maximum PP.
	</para>
	</section>
    </section>


    <section><info><title>Diagnostics: Potential Scale Reduction Factors (PSRF)</title></info>
      
<para>
Potential Scale Reduction Factors check that different runs have
similar posterior distributions.  Only numerical variables may have a
PSRF. To calculate the PSRF for each
numerical parameter, you may run: 

<screen><prompt>%</prompt> statreport <replaceable>dir-1</replaceable>/C1.log <replaceable>dir-2</replaceable>/C2.p ... <replaceable>dir-n</replaceable>/C1.log &gt; Report </screen>
The PSRF is a ratio of the width of the pooled distribution to the
average width of each distribution, and should ideally be 1.  The PSRF
is customarily considered to be small enough if it is less than 1.01.
</para>

<para>
We compare the PSRF based on the length of 80% credible intervals
(Brooks and Gelman 1998) and report the result as PSRF-80%CI.  For
integer-valued parameters, we avoid excessively large PSRF values by
subtracting 1 from the width of the pooled CI.
</para>

<para>
We also report a new PSRF that is more sensitive for integer
distributions.  For each individual distribution, we find the 80%
credible interval.  We divide the probability of that interval (which
may be more than 80%) by the probability of the same interval under the
pooled distribution.  The average of this measure over all
distributions gives us a PSRF that we report as PSRF-RCF.
</para>

<para>This convergence diagnostic gives a criterion for
detecting when a parameter value has stabilized at different
values in several independent runs, indicating a lack of
convergence. This situation might occur if different runs of
the Markov chain were trapped in different modes and failed to
adequately mix between modes.</para>
    </section>

    <section><info><title>Diagnostics: Effective sample sizes (ESS)</title></info>
      
      <section><info><title>ESS for numerical values</title></info>
	
      <para>To calculate the split ESS values, run:
<screen><prompt>%</prompt> statreport <replaceable>dir-1</replaceable>/C1.log <replaceable>dir-2</replaceable>/C1.log ... <replaceable>dir-n</replaceable>/C1.log &gt; Report </screen>
      We calculate effective sample sizes based on integrated
      autocorrelation times.  This method has the nice property that
      simply duplicating every sample does not increase the ESS.
      </para>

      <para>The
      program <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://evolve.zoo.ox.ac.uk/software/tracer/">Tracer</link>
      also computes ESS values.</para>
      </section>

      <section><info><title>ESS for split frequencies</title></info>
	
      <para>As desribed in <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.3852/10-120">Gaya et al. (2011)</link>, we can also compute ESS values for splits on the tree:
<screen><prompt>%</prompt> trees-bootstrap <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees ... <replaceable>dir-n</replaceable>/C1.trees &gt; partitions.bs</screen>
      To compute the ESS for a split, we consider the presence or absence
      of a split in each iteration as a series of binary values.  We
      compute the integrated autocorrelation time for this binary
      sequence, which leads to an ESS.  This approach is similar to
      dividing the iterations into blocks and computing the ESS on the
      PP estimates in the blocks.  It is also similar to estimating
      the variance reduction under a block bootstrap.
      </para>
    </section>
</section>

    <section><info><title>Diagnostics: Stabilization</title></info>
      
      <section><info><title>Stabilization of numerical values</title></info>
	
<para>To obtain estimates of the stabilization time for each
numerical  parameter, you may run:
<screen><prompt>%</prompt> statreport C1.log &gt; Report </screen>
Each series of values is counted as having stabilized after
the series crosses its upper and then lower 95% confidence bounds
twice (if the initial value is below the median) or crosses its lower
and then upper confidence bounds twice (if the initial value is above
the median). The confidence bounds are those based on its
equilibrium distribution as calculated from the last third of the
values in the sequence.</para>
      </section>

      <section><info><title>Stabilization of tree topologies and tree distances</title></info>
	
	<para>In addition to examining convergence diagnostics for continuous
	parameters, it is important to examine convergence diagnostics
	for the topology as well
	(<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1080/10635150600812544">Beiko
	et al., 2006</link>).  In theory, we recommend the web tool <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://ceb.csit.fsu.edu/awty/">Are We There Yet (AWTY)</link> (Wilgenbush et al., 2004).  However, AWTY gives incorrect results if you upload plain NEWICK tree samples -- which is what BAli-Phy outputs.  Therefore, if you wish to use AWTY, you must convert the tree samples files to NEXUS before you upload them to AWTY in order to get correct results.</para>

<para>It is also be possible to assess stabilization of tree topologies using tools distributed with <application>bali-phy</application> by using commands like the following.  Here, sub-sampling and burnin does not apply to the equilibrium tree files. Also, note that you need to manually construct the equilibrium samples, which we recommend to contain at least 500 trees; you might do this by sub-sampling using the <application>BAli-Phy</application> tool <command>sub-sample</command>.</para>

<orderedlist inheritnum="ignore" continuation="restarts">
<listitem><para>To report the average distances within and between two tree samples:
<screen><prompt>%</prompt> trees-distances --skip=<replaceable>burnin</replaceable> --subsample=<replaceable>factor</replaceable> compare <replaceable>dir-1</replaceable>/C1.trees <replaceable>dir-2</replaceable>/C1.trees</screen>
</para></listitem>

<listitem><para>To compute the distance from each tree in C1.trees to all trees equilibrium.trees, as a time series:
<screen><prompt>%</prompt> trees-distances --skip=<replaceable>burnin</replaceable> --subsample=<replaceable>factor</replaceable> convergence <filename>C1.trees</filename> <filename>equilibrium.trees</filename></screen>
</para></listitem>

<listitem><para>To assess when the above time series stabilizes:
<screen><prompt>%</prompt> trees-distances --skip=<replaceable>burnin</replaceable> --subsample=<replaceable>factor</replaceable> converged <filename>C1.trees</filename> <filename>equilibrium.trees</filename></screen>
The stabilization criterion is the same one described above for numerical values.
</para></listitem>
</orderedlist>

<para>Note that the running time is the product of the number of trees in the two files.  Therefore, comparing two complete tree samples without sub-sampling will take too long.</para>

   </section>
	
    </section>

    <!-- sect2>
      <title>Diagnostics: Visual Inspection</title>
      <sect3>
	<title>Numerical Parameters</title>
	<para>
	  To inspect the Markov chain generated by
	  <application>BAli-Phy</application>, we recommend the program
	  <ulink url="http://evolve.zoo.ox.ac.uk/software/tracer/">Tracer</ulink>. 
	  You can open the file <filename>C1.log</filename> in Tracer to view
	  traceplots and to estimate the effective sample size.
	</para>
      </sect3>
      <sect3>
	<title>Topologies</title>
      <para>
	<screen><prompt>%</prompt> trees-view2 C1.trees C2.trees</screen>
      </para>
    </sect3>
  </sect2 -->
  </section>


  <section xml:id="alignment-utilities"><info><title>Alignment utilities: brief overview</title></info>
    

  <para>This section gives a brief overview showing <emphasis>some</emphasis> of the things that can be done with the included alignment utilities.  It is intended to be helpful, but not exhaustive.  To see the full set of options for each tool, give the argument "<userinput>--help</userinput>" on the command line.</para>

    <section><info><title>alignment-info</title></info>
      
      <para>Show basic information about the alignment:</para>
<screen><prompt>%</prompt> alignment-info file.fasta
<prompt>%</prompt> alignment-info file.fasta file.tree</screen>
    </section>
    
    <section><info><title>alignment-cat</title></info>
      
      <para>To select columns from an alignment:</para>
<screen><prompt>%</prompt> alignment-cat -c1-10,50-100,600- file.fasta > result.fasta
<prompt>%</prompt> alignment-cat -c5-250/3 file.fasta > first_codon_position.fasta
<prompt>%</prompt> alignment-cat -c6-250/3 file.fasta > second_codon_position.fasta</screen>

  <para>To concatenate two or more alignments:</para>
  <screen><prompt>%</prompt> alignment-cat file1.fasta file2.fasta > all.fasta</screen>
    </section>
    
    <section><info><title>alignment-thin</title></info>
      <para>Remove columns without a minimum number of letters:</para> 
      <screen><prompt>%</prompt> alignment-thin --min-letters=5 <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>-thinned.fasta</screen>
      <para>Remove sequences by name:</para>
      <screen><prompt>%</prompt> alignment-thin --remove=seq1,seq2 <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>2.fasta</screen>
      <para>Remove short sequences:</para>
      <screen><prompt>%</prompt> alignment-thin --longer-than=250 <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>-long.fasta</screen>
      <para>Remove sequences with &lt;= 5 differences from the closest other sequence:</para>
      <screen><prompt>%</prompt> alignment-thin --cutoff=5 file.fasta > more-than-5-differences.fasta</screen>
      <para>Like <userinput>--cutoff</userinput>, but stop when we have the right number of sequences:</para>
      <screen><prompt>%</prompt> alignment-thin --down-to=30 <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>-30taxa.fasta</screen>
      <para>Protect some sequences from being removed:</para>
      <screen><prompt>%</prompt> alignment-thin --down-to=30 <replaceable>file</replaceable>.fasta --protect=seq1,seq2 > <replaceable>file</replaceable>-30taxa.fasta</screen>
      <para>Remove sequences that are missing conserved columns:</para> 
      <screen><prompt>%</prompt> alignment-thin --remove-crazy=10 <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>2.fasta</screen>
    </section>

    <section><info><title>alignment-draw</title></info>
      
      <para>Draw an alignment to HTML, optionally coloring residues by AU.</para>
<screen><prompt>%</prompt>  alignment-draw <replaceable>file</replaceable>.fasta --show-ruler --color-scheme=DNA+contrast > <replaceable>file</replaceable>.html
<prompt>%</prompt>  alignment-draw <replaceable>file</replaceable>.fasta --show-ruler --AU=<replaceable>file</replaceable>-AU.prob --color-scheme=DNA+contrast+fade+fade+fade+fade > <replaceable>file</replaceable>-AU.html</screen>
    </section>

    <section><info><title>alignment-find</title></info>
      
      <para>Find the last (or first) FastA alignment in a file.</para>
<screen><prompt>%</prompt> alignment-find --first &lt; <replaceable>file</replaceable>.fastas &gt; first.fasta
<prompt>%</prompt> alignment-find &lt; <replaceable>file</replaceable>.fastas &gt; last.fasta</screen>
    </section>

    <section><info><title>alignment-indices</title></info>
      
      <para>Turn columns from a template alignment into alignment constraints:</para>
<screen><prompt>%</prompt> alignment-indices template.fasta > constraints.txt
<prompt>%</prompt> alignment-indices -c100-110,200,300- template.fasta > constraints.txt</screen>

      <para>Each line in this file corresponds to one
	alignment column.</para>
    </section>

    <section><info><title>alignment-chop-internal</title></info>
      
      <para>Remove internal-node ancestral sequences from an alignment.  (This
	probably only works for alignments output by bali-phy.) </para>
<screen><prompt>%</prompt> alignment-chop-internal <replaceable>file</replaceable>.fasta > <replaceable>file</replaceable>-chopped.fasta</screen>
    </section>

  </section>

  <section xml:id="tree-utilities"><info><title>Tree utilities: brief overview</title></info>

  <para>This section gives a brief overview showing <emphasis>some</emphasis> of the things that can be done with the included tree utilities.  It is intended to be helpful, but not exhaustive.  To see the full set of options for each tool, give the argument "<userinput>--help</userinput>" on the command line.</para>
    
    <section><info><title>trees-consensus</title></info>
      
      <para>This program analyzes the tree sample contained in
	<replaceable>file</replaceable>.  It reports the MAP topology, the
	supported taxa partitions (including partial partitions), and the
	majority consensus topology.
      </para> 
    </section>

    <section><info><title>trees-bootstrap</title></info>
      
      <para>Usage: trees-bootstrap <replaceable>file1</replaceable>
	[<replaceable>file2</replaceable> ... ] --predicates
	<replaceable>predicate-file</replaceable> [OPTIONS] </para>
      <para>This program analyzes the tree samples contained in
	<replaceable>file1</replaceable>, <replaceable>file2</replaceable>,
	etc.  It gives the support of each tree sample for each predicate in
	<replaceable>predicate-file</replaceable>, and reports a confidence
	interval based on the block bootstrap.
      </para> 

      <para>Each predicate is the intersection of a set of partitions, and
	is specified as a list of partitions or (multifurcating) trees, one
	per line.  Predicates are separated by blank lines.
      </para>
    </section>

    <section><info><title>trees-to-SRQ</title></info>
      

      <para>Usage: trees-to-SRQ <replaceable>predicate-file</replaceable> [OPTIONS] <replaceable>trees-file</replaceable> </para>

      <para>This program analyzes the tree samples contained in
	<replaceable>trees-file</replaceable>.  It uses them to produce an
	SRQ plot for each predicate in
	<replaceable>predicate-file</replaceable>.  Plots are produced in
	<application>gnuplot</application> format, with one point per line
	and with plots separated by a blank line.</para>

      <para>If <userinput>--mode sum </userinput> is specified, then a "sum"
	plot is produced instead of an SRQ plot.  In this plot, the slope of
	the curve corresponds to the posterior probability of the event.  If the
	<userinput>--invert</userinput> option is used then the slope of the
	curve correspond to the probability of the inverse event.  This is
	recommended if the probability of the event is near 1.0, because the
	sum plot does not distinguish variation in probabilities near 1.0 well.
      </para>

    </section>

  </section>

    <section xml:id="compilation"><info><title>Compiling <application>BAli-Phy</application></title></info>
    

    <para>Compiling <application>BAli-Phy</application> is intended to be a relatively painless process.  However, most people will want to use the pre-compiled binaries as described in the standard installation instructions at <xref linkend="installation"/> instead of compiling BAli-Phy themselves.  You might want to compile BAli-Phy yourself if you want to 
    <itemizedlist>
      <listitem>run BAli-Phy on a non-Intel CPU (such as ARM64 or Alpha).</listitem>
      <listitem>run BAli-Phy on a computing cluster.</listitem>
      <listitem>test an unreleased version of bali-phy.</listitem>
      <listitem>change the optimization options used to compile BAli-Phy in the pre-compiled binaries.</listitem>
      <listitem>compile with debugging options to find the cause of a bug, and maybe fix it.</listitem>
      <listitem>modify the source code and submit a patch with new functionality.</listitem>
    </itemizedlist>
    Otherwise, the pre-compiled binaries will be fine.
    </para>

    <section><info><title>Setup</title></info>
      

    <para>In order to compile BAli-Phy, you need
    <itemizedlist>
      <listitem>a <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://en.wikipedia.org/wiki/C%2B%2B14">C++20</link> compiler</listitem>
      <listitem><link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://mesonbuild.com">meson</link> (version >= 1.1)</listitem>
    </itemizedlist>
    We recommend the GNU C++ Compiler (<link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org">GCC</link>) version 12.0 (or higher) or the <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://clang.llvm.org">Clang</link> compiler version 17 or higher. The <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cairographics.org/">Cairo</link> graphics library is optional, but if it is missing, the <command>drawtree</command> tool that is used to draw consensus trees won&apos;t be built. See also <xref linkend="software_req"/>. </para>

    <section><info><title>Linux</title></info>
    <para>On Debian and Ubuntu, you can type:
<screen><prompt>%</prompt> <userinput>sudo apt-get install g++ git libcairo2-dev pandoc libboost-all-dev</userinput></screen>

    </para>
If your version of Debian or Ubuntu is recent enough to contain meson version 1.1 or higher, you can install meson with apt-get:
<screen><prompt>%</prompt> <userinput>sudo apt-get install meson</userinput>
<prompt>%</prompt> <userinput>meson --version</userinput>
1.6.0
</screen>

<para>On computing clusters, you might want to use miniconda to install the build tools.

<screen><prompt>%</prompt> <userinput>conda create -n devel -c conda-forge --strict-channel-priority</userinput>
<prompt>%</prompt> <userinput>conda activate devel</userinput>
<prompt>%</prompt> <userinput>conda install meson gxx boost-cpp cmake pkg-config cairo</userinput>
<prompt>%</prompt> <userinput>export BOOST_ROOT=$CONDA_PREFIX</userinput></screen>
</para>


<para>
Otherwise you can install meson through pip3:
<screen><prompt>%</prompt> <userinput>sudo apt-get install python3 python3-pip ninja</userinput>
<prompt>%</prompt> <userinput>python3 -m venv meson</userinput>
<prompt>%</prompt> <userinput>source meson/bin/activate</userinput>
<prompt>%</prompt> <userinput>pip3 install meson</userinput>
</screen>
</para>
    </section>

    <section><info><title>Mac</title></info>
    <para>On Mac OS X, the simplest way to get a compiler is to install <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://developer.apple.com/xcode/">XCode</link> version 15 (or newer) command line tools, which come with <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://clang.llvm.org">clang</link>.
 <screen><prompt>%</prompt> <userinput>xcode-select --install</userinput></screen>    To get the other tools, first install <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://brew.sh/">homebrew</link>, and then type:
<screen><prompt>%</prompt> <userinput>brew install git meson cairo pandoc</userinput></screen>
    </para>
    <!-- para>You can also install BAli-Phy with homebrew.  The recipe is in <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/Homebrew/homebrew-science/blob/master/README.md">homebrew/science</link>. However, this recipe may not install the latest version.</para -->

    </section>
    
    <section><info><title>Windows (native)</title></info>
    <para>The <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.msys2.org">MSYS2</link> project provides an MINGW64 compiler that can create native windows executables.  MSYS2 itself is actually non-native (it is derived from cygwin), and therefore the MSYS2 shell refers to drives as <filename>/c/</filename> instead of <filename>C:/</filename>.</para>
    <screen><prompt>%</prompt> <userinput>pacman --needed --noconfirm -Sy pacman-mirrors</userinput>
<prompt>%</prompt> <userinput>pacman -Sy</userinput>
<prompt>%</prompt> <userinput>pacman -S mingw-w64-x86_64-ninja</userinput>
<prompt>%</prompt> <userinput>pacman -S mingw-w64-x86_64-toolchain</userinput>
<prompt>%</prompt> <userinput>pacman -S mingw-w64-python3-pip</userinput>
<prompt>%</prompt> <userinput>PATH=/c/msys64/mingw64/bin:&#36;PATH</userinput> # Put the mingw64 executables into your path
<prompt>%</prompt> <userinput>pip3 install meson</userinput></screen>
    <para>Keep in mind that MSYS2 keeps its (non-native) executables in <filename>C:/msys64/usr/bin</filename>, while it keeps the (native) MINGW executables in <filename>C:/msys64/mingw64/bin</filename>.  If you want to use the native MINGW executables, you need to make sure that <filename>/c/msys64/mingw64/bin/</filename> is in your PATH.  If you forget to put the MINGW executables in the path, some of the installed MINGW programs (such as pip3 above) will show up as missing when you try to run them.</para>
    </section>

    <!-- section><info><title>Windows (Cygwin)</title></info>
    The <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cygwin.com/">Cygwin</link> project provides a non-native POSIX environment.
    </section -->
    <!-- section><info><title>Windows (non-native)</title></info>
    <para>BAli-Phy can be compiled as either a <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cygwin.com/">Cygwin</link> executable or a native Windows executable.  The Cygwin executable needs the <filename>cygwin1.dll</filename> to run, and can handle cygwin filenames like <filename>/cygdrive/C/Users/</filename>.  To compile bali-phy for Cygwin, install Cygwin and the Cygwin packages for gcc, git, meson, and cairo.  Then you can build bali-phy within Cygwin using the build instructions below.</para>

    <para>You can also compile native windows executables using the <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://mingw-w64.org/doku.php">Mingw-w64</link> version of GCC.  These native windows executables do not need <filename>cygwin1.dll</filename>, and only understand Windows filenames, like <filename>C:\Users\</filename>.  You can build these executables in the <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.msys2.org">MSYS2</link> shell, which is a modified version of Cygwin for compiling native windows executables using the Mingw-w64 compiler.</para>

    <para>You can also build Mingw-w64 executables using either Linux or Cygwin as the host environment, if you install a mingw-w64 "cross-compiler".  You can obtain cross compilers for Mingw-w64 on both Linux and Cygwin.  To inform the <filename>configure.sh</filename> script that you wish to use a cross compiler, add the flag <userinput>- -host=x86_64-w64-mingw32</userinput> to build for 64-bit windows, and <userinput>- -host=i686-w64-mingw32</userinput> to build 32-bit executables.</para>
    </section -->

	  
    </section>

    <section xml:id="quickstart"><info><title>Clone, Configure, Compile</title></info>
       
    <para>First check out the code using git:
<screen><prompt>%</prompt><userinput> git clone https://github.com/bredelings/BAli-Phy.git</userinput>
<prompt>%</prompt><userinput> cd BAli-Phy</userinput></screen>
</para>
<para>
Then run meson to configure the build process:
<screen><prompt>%</prompt><userinput> meson setup build --prefix=&#36;HOME/Applications/bali-phy-&version;/ --buildtype=release</userinput></screen>
</para>
<para>
Finally, build and install the software:
<screen><prompt>%</prompt><userinput> ninja -C build test</userinput>
<prompt>%</prompt><userinput> ninja -C build install</userinput>
</screen>
The command <command>bali-phy</command> and its associated tools should then be located in <filename>&install.path;/bin/</filename>. To install to another directory <replaceable>dir</replaceable>, specify --prefix=<replaceable>dir</replaceable> to <command>meson</command>.
      </para>

    </section>
      <section><info><title>Options: compiler and linker flags</title></info>
	
      <para>You can select the C++ compiler by setting the CXX variable.  A useful example of this is to use <command>g++-14</command> on systems where <command>g++</command> invokes a compiler that is too old:
 <screen><prompt>%</prompt> <userinput>CXX=g++-14 meson setup build --prefix=&#36;HOME/Applications/bali-phy-&version; --buildtype=release</userinput></screen>
 You may also set compiler and linker options using the CPPFLAGS, CXXFLAGS, and LDFLAGS variables.  For example, you can instruct the compiler to use all the features of your chip, instead of producing generic code that will run anywhere:
 <screen><prompt>%</prompt> <userinput>CXXFLAGS="-mtune=native -march=native" meson setup --prefix=&#36;HOME/Applications/bali-phy-&version;</userinput></screen>

 For example, you can set the CPPFLAGS and LDFLAGS variables to instruct the compiler where to look for libraries, such as cairo:
	  <screen><prompt>%</prompt> <userinput>CPPFLAGS="-I/usr/local/include" LDFLAGS="-L/usr/local/lib" meson setup build --prefix=&#36;HOME/Applications/bali-phy-&version; --buildtype=release</userinput></screen>
 Another useful example of this is to produce an OS X executable on that can run on older versions of OS X:
	  <screen><prompt>%</prompt> <userinput>CXXFLAGS="-mmacosx-version-min=10.9" LDFLAGS="-mmacosx-version-min=10.9" meson setup build --prefix=&#36;HOME/Applications/bali-phy-&version; --buildtype=release</userinput></screen>	</para>
      </section>

    </section>


  <section xml:id="FAQ"><info><title>Frequently Asked Questions (FAQ)</title></info>
    
    <section><info><title>Input files</title></info>
      <qandaset>
	<qandaentry>
	  <question><para>Does BAli-Phy accept the wildcard characters "N" or "X"?  How does it treat them?</para></question>
	  <answer>
	    <para>Yes, BAli-Phy accepts the wildcard characters "N"
	    (for DNA) and "X" (for proteins).  These characters
	    indicate that some letter is present (as opposed to a
	    gap), but that you don&apos;t know <emphasis>which</emphasis>
	    letter it is.  
	    </para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Does BAli-Phy accept "?" characters?</para></question>
	  <answer>
	    <para>
	      No.  "?" characters are often used to indicate
	      <emphasis>either</emphasis> letter presence (e.g. "N",
	      "X") <emphasis>or</emphasis> absence (e.g. "-").
	      BAli-phy will insist that you replace each "?" with
	      either "N"/"X" or "-" to indicate which one you mean. 
	    </para>

	    <para>(Most programs ignore indels and consider only
	    substitutions, and in that case "N" and "-" have the same
	    effect on the likelihood or parsimony score.  However,
	    since BAli-Phy takes indels into account, these two
	    alternatives are quite different.)
	    </para>

	  </answer>
	</qandaentry>

      <qandaentry>
	<question><para>Does BAli-Phy accept the characters "R" and "Y", etc.?</para></question>
	  <answer>
	    <para>
	      Yes.  BAli-Phy accepts the characters Y, R, W, S, K, M,
	      B, D, H, and V for DNA, RNA, and Codon alphabets.
	      BAli-Phy also accepts the characters B, Z, and J 
	      for amino acids.  These characters indicate partial
	      knowledge about a letter.  For example, R indicates
	      that a nucleotide is present, and is a puRine (A or
	      G). J indicates that an amino acid is present and is
	      either I or L.  
	    </para>

	    <para>
	      (Note that sequences sometimes contain such ambiguity
	      codes because the DNA that was sequenced contains
	      <emphasis>both</emphasis> values.  This might occur when
	      sequencing a heterozygote or when sequencing pooled DNA
	      from several individuals.  However, the model in
	      BAli-Phy (and other phylogeny inference programs) is
	      that only one letter is correct, but we do not know
	      which one it is.  This is probably not problematic when
	      dealing with pooled sequences, but should be considered.)
	    </para>
	  </answer>
	</qandaentry>

      <!-- qandaentry>
	<question><para>Can I specify a stop codon?</para></question>
	  <answer>
	  <para>
	  Well, yes...  but how do the models treat it?
	  </para>
	  </answer>
      </qandaentry -->

      </qandaset>
    </section>

    <section><info><title>Running <command>bali-phy</command>.</title></info>

      <qandaset>
	<qandaentry>
	  <question><para>Can I fix the alignment and ignore indel information, like MrBayes, BEAST, PhyloBayes and other MCMC programs?</para></question>
	  <answer>
	    <para>Yes.  Add <userinput>-Inone</userinput> or <userinput>-I none</userinput> on the command line.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Can I fix the tree topology, while allowing the alignment to vary?</para></question>
	  <answer>
	    <para>Yes.  Add <userinput>--fix topology=<replaceable>treefile</replaceable></userinput> on the command line.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Can I fix the tree topology and <emphasis>absolute</emphasis> branch lengths <emphasis>in all data partitions</emphasis>, while allowing the alignment to vary?</para></question>
	  <answer>
	    <para>Yes.  Add <userinput>--fix tree=<replaceable>treefile</replaceable></userinput> on the command line.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Can I fix the tree topology and <emphasis>relative</emphasis> branch lengths, while allowing the alignment to vary?</para></question>
	  <answer>
	    <para>Yes.  Add <userinput>--fix tree=<replaceable>treefile</replaceable> '--scale=~gamma(0.5,2)'</userinput> on the command line.</para>
	  </answer>
	</qandaentry>

      </qandaset>

    </section>

    <section><info><title>Run-time error messages</title></info>
      
      
      <qandaset>
	<qandaentry>
	  <question><para>I tried to use <userinput>-S lg08+>Rates.gamma(6)</userinput> and I got an error message "bali-phy: No match."  What gives?</para></question>
	  <answer>
	    <para>You are probably using the C-shell as your command line shell.  It is trying to interpret <userinput>lg08+>Rates.gamma(6)</userinput> as an array before running the command, and it is not succeeding.  Therefore, it doesn&apos;t even run <command>bali-phy</command>.</para>
	    <para>To avoid this, put quotes around the substitution model, like this: <userinput>-S 'lg08 +> Rates.gamma(6)'</userinput>.  This will keep the C-shell from interfering with your command.
	    </para>
	  </answer>
	</qandaentry>
      </qandaset>
    </section>

    <section><info><title>Stopping <command>bali-phy</command>.</title></info>
      

      <qandaset>
	<qandaentry>
	  <question><para>Why is <command>bali-phy</command> still
	      running? How long will it take?</para></question>
	  <answer>
	    <para>It runs until you stop it.  Stop it when its done.</para>
	    <para>The longer answer is that is is hard to predict how long MCMC will take to converge, since it depends on each data set in complex ways.  Automatic rules for determining when to stop an MCMC chain can be difficult to get right.  BAli-Phy does not contain an automatic stopping rule yet, so it relies on the user to run convergence diagnostics and determine when to stop the run.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How do I stop a <command>bali-phy</command>
	  run on my personal computer?</para></question>
	  <answer>
	    <para>Simply kill the process -- there is no special
	    command to stop <command>bali-phy</command>. If you are
	    running it on your personal workstation, then you can use
	    the command <command>kill</command>.  To do that, you need
	    to find the PID (process ID) of the running program.  You
	    can find this by examining the beginning of the file
	    <filename>C1.run.json</filename>.  For 
	    example:
            <screen><prompt>%</prompt> less 5d-1/C1.run.json
    ...            
    "partitions": [
        {
            "alphabet": "DNA",
            "filename": "5d-muscle.fasta",
            "imodel": 0,
            "range": "",
            "scale": 0,
            "smodel": 0
        }
    ],
    <emphasis>"pid": 549319</emphasis>,
    "program": {
        "arch": "linux x86_64",
        "build-date": "Mar  2 2024 11:27:23",
        "compiler": "gcc 13.2.0 x86_64",
        "name": "bali-phy",
        "revision": "[HEAD -> master, origin/master, origin/HEAD commit d394a4fb6]  (Mar 02 2024 11:11:25)",
        "version": "4.0-beta9-preview"
    },
    ...
</screen>
Here the PID is 549319.  Therefore you can type:
<screen><prompt>%</prompt> kill 549319</screen>
On some operating systems you can also type:
<screen><prompt>%</prompt> killall bali-phy</screen>
However, be aware that this will terminate <emphasis>all</emphasis> of
your <command>bali-phy</command> runs on that computer.
	    </para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How do I stop a <command>bali-phy</command>
	  run on a computing cluster?</para></question>
	  <answer>
	    <para>Simply terminate the submitted job.  The specific command
	    to terminate a job will depend on the queue manager that
	    is installed on your cluster.  Examine the documentation
	    for your cluster, or ask your cluster support staff how to delete
	    running jobs on your cluster.
	    </para>

	    <para>As an example, if the SLURM software is used
	    to submit jobs, then the command <command>squeue</command>
	    should list your jobs and their job ID numbers (which is
	    different than the process ID number).  You can then use
	    the command <command>scancel</command> to delete jobs by ID
	    number.  The SLURM documentation describes how to use these
	    commands. 
	    </para>
	  </answer>
	</qandaentry>


	<qandaentry>
	  <question><para>So, how can I know when to stop it?</para></question>
	  <answer>
	    <para>You can stop when it has both converged and also run for long enough to give
	      you &gt;1000 effectively independent samples.  </para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How can I tell when the chain has converged?</para></question>
	  <answer>
	    <para>See section <xref linkend="mixing_and_convergence"/>.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How can I check how many iterations the chain
	      has finished?</para></question>
	  <answer>
	    <para>Run <command>wc -l C1.log</command> inside the output
	      directory, and subtract 2.
	    </para>
	  </answer>
	</qandaentry>
      </qandaset>
    </section>


    <section><info><title>Running <command>bp-analyze</command>.</title></info>
      <qandaset>

	<qandaentry>
	  <question><para>Why does <command>bp-analyze</command> say "Program 'draw-tree' not found.  Tree pictures will not be generated"?</para></question>
	  <answer>
	    <para>The program <command>draw-tree</command> was not distributed on this platform (Windows, Mac).  This is not a fatal error message, it just means that a pretty picture of the tree will not be generated automatically.  You can still view the tree with <application>FigTree</application>, for example.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Why does <command>bp-analyze</command> say "Program 'gnuplot' not found.  Trace plots will not be generated"?</para></question>
	  <answer>
	    <para>This is because you have not installed <application>gnuplot</application>.  This is not a fatal error message, it just means that pictures of partition support, and SRQ plots will not be generated automatically.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Why does <command>bp-analyze</command> say "Program 'R' not found.  Some mixing graphs will not be generated"?</para></question>
	  <answer>
	    <para>This is because you have not installed <application>R</application>.  This is not a fatal error message, it just means that a plot showing differences in clade probabilities between runs will not be generated.</para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>Why is <command>bp-analyze</command> stopping early, or failing to generate some files?</para></question>
	  <answer>
	    <para>Look in the file <filename>Results/commands.log</filename>.  This should contain the specific tool commands that were run, along with error message from these commands.  Identify the first tool command that fails, and read the error message.</para>
	  </answer>
	</qandaentry>
      </qandaset>
    </section>


    <section><info><title>Interpreting the results.</title></info>
      

      <qandaset>
	<qandaentry>
	  <question><para>How do I compute the clade support?</para></question>
	  <answer>
	    <para>Actually, BAli-Phy uses unrooted trees, so it only estimates bi-partition support.  A bi-partition is a division of taxa into two groups, but it does not specify which group contains the root. </para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How do I compute the split/bi-partition support?</para></question>
	  <answer>
	    <para>After you analyze the output (<xref linkend="analysis"/>), the partition support is indicated in
	      <filename>Results/consensus</filename> and in <filename>Results/c50.PP.tree</filename>. </para> 
	  </answer>
	</qandaentry>
      </qandaset>
    </section>

    <section><info><title>How do I...</title></info>
      
      <qandaset>
	<qandaentry>
	  <question><para>How do I concatenate alignments?</para></question>
	  <answer><para>
 	    <screen><prompt>%</prompt> <userinput>alignment-cat <replaceable>filename1.fasta</replaceable> <replaceable>filename2.fasta</replaceable> &gt; result.fasta</userinput></screen>
	      The alignments must have the same sequence names, but
	      the names need not be in the same order.
	    </para>
	  </answer>
	</qandaentry>

	<qandaentry>
	  <question><para>How do I select columns from an alignment?</para></question>
	  <answer><para>
	    You can select columns for analysis by specifying a range:
	    <screen><prompt>%</prompt> <userinput>bali-phy sequences.fasta:1-200,401-600 sequences.fasta:201-400</userinput></screen>
	    You can create a new alignment from selected columns using <userinput>alignment-cat</userinput>:
	    <screen><prompt>%</prompt> <userinput>alignment-cat -c1-10,50-100,600- <replaceable>filename.fasta</replaceable> &gt; result.fasta</userinput></screen>
	    The resulting alignment will contain the selected columns in the order you specified.
	  </para>
	  </answer>
	</qandaentry>

	<!-- qandaentry>
	  <question xml:id="generating_constraint_files"><para>How do I create an alignment-constraint file
	      from an alignment?</para></question>
	  <answer>
	    <para>To constrain the alignment to match some alignment
	      file <replaceable>filename.fasta</replaceable> in columns
	      100, 200-250, and 300, run:
	      <screen><prompt>%</prompt> alignment-indices -c100,200-250,300 <replaceable>filename.fasta</replaceable> &gt; filename.constraint</screen>
	    </para>
	  </answer>	
	</qandaentry -->

      </qandaset>
    </section>
  </section>

</article>