File: Prob.hs

package info (click to toggle)
bali-phy 4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 15,392 kB
  • sloc: cpp: 120,442; xml: 13,966; haskell: 9,975; python: 2,936; yacc: 1,328; perl: 1,169; lex: 912; sh: 343; makefile: 26
file content (207 lines) | stat: -rw-r--r-- 7,413 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
module Numeric.Prob (Prob (..),
                     complement,
                     logOdds,
                     toFloating,
                     LogDouble
                    )
    where

import Numeric.Log
import Numeric.LogDouble
import Data.Ratio
import Data.Floating.Types

{- We need to handle numbers that are > 1 in the following cases:
     1/2   (2 > 1)
     1-3*p (3 > 1)
   So, we assume that IOdds z = 1 / Odds z -}

-- We could keep track of HOW MANY zeros!
-- ... | Zero Int | ...
-- Then we could penalize multiplying by an additional zero.
data Prob = Zero | Odds Double | One | IOdds Double | Infinity

complement Zero     = One
complement (Odds y) = (Odds (-y))
complement One      = Zero
complement _        = error "complement: not a probability"

fromProb :: (Real a, Pow a) => Prob -> a
fromProb Zero                 = 0
fromProb (Odds y) | y < 0     = let e = expTo y in e / (1 + e)
fromProb (Odds y) | otherwise = 1 / (1 + expTo(-y))
fromProb One                  = 1
fromProb (IOdds y)| y < 0     = let e = expTo y in (1 + e)/e
                  | otherwise = (1 + expTo(-y))
fromProb Infinity             = 1 / 0

toProb :: Double -> Prob
toProb p | p < 0         = error "Negative Probability!"
         | p == 0        = Zero
         | p < 1         = Odds $ log $ p / (1-p)
         | p == 1        = One
         | p > 1         = recip $ toProb (1/p)
         | isInfinite p  = Infinity
         | isNaN p       = error "toProb: NaN"
         | otherwise     = error ("toProb: unknown number: " ++ show p)

-- Only defined on non-zero probabilities.
logProb :: Prob -> Double
logProb Zero                 = error "Probability: log(0)"
logProb (Odds y) | y < 0     = y - log1p (exp y)
                 | otherwise = -log1p (exp (-y))
logProb One                  = 0
logProb (IOdds y)            = -logProb (Odds y)
logProb Infinity             = 1/0

expToProb :: Double -> Prob
expToProb z | z < 0     = Odds $ z - log1p (-exp z)
            | z == 0    = One
            | z > 0     = let Odds z2 = expToProb (-z) in IOdds z2

-- If y12 is only slightly more than zero, we should be able to do better
plus (Odds y1) (Odds y2) | y12 > 0    = toProb (fromProb (Odds y1) + fromProb (Odds y2))
                         | y12 == 0   = One
                         | y12 > (-1) = One - toProb (expm1 (y12) / (1 + exp y1) / (1 + exp y2) )
                         | otherwise      = toProb $ fromProb (Odds y1) + fromProb (Odds y2)
                         where y12 = y1 + y2
plus (Odds y)   One      | y < 0     = IOdds $ log1p(exp(y)) - y
                         | otherwise = IOdds $ log1p(exp(-y))
plus (IOdds y1) (Odds y2) = plus (Odds y2) (IOdds y1)
plus One        (Odds y)  = plus (Odds y) One
plus Zero      x        = x
plus x         Zero     = x
plus Infinity  x        = Infinity
plus x         Infinity = Infinity
plus x1         x2        = toProb (fromProb x1 + fromProb x2)


sub x        Zero        = x
sub Infinity Infinity    = error "Inf - Inf is undefined"
sub Infinity _           = Infinity
sub One      One         = Zero
sub One      (Odds y)   = Odds (-y)
sub p1@(Odds y1) p2@(Odds y2) | y1 >= y2  = p1 * (One - (p2/p1))
sub (IOdds y1) (Odds y2)                  = toProb (fromProb (IOdds y1) - fromProb (Odds y2))
sub (IOdds y1) (IOdds y2)     | y1 == y2  = Zero
                              | y1 <  y2  = toProb (fromProb (IOdds y1) - fromProb (IOdds y2))
sub _         _ = error "Negative probability"


mul (Odds y1) (Odds y2) | y1 > y2   = Odds $ y2 - log1p( exp(y2-y1) + exp(-y1) )
                        | otherwise = Odds $ y1 - log1p( exp(y1-y2) + exp(-y2) )
-- Note that as y1 and y2 increase, both tend towards 1, so whichever is SMALLER dominates.
mul (Odds y1) (IOdds y2) | y1 == y2   = One
                         | y1 < y2    = Odds $ y1 + log1pexp(-y2) - log1mexp(y1-y2)
                         | otherwise  = IOdds $ y2 + log1pexp(-y1) - log1mexp(y2-y1)
mul (IOdds y1) (Odds y2) = mul (Odds y2) (IOdds y1)
mul (IOdds y1) (IOdds y2) = recip $ mul (Odds y1) (Odds y2)
mul Zero      Infinity  = error "0 * Inf is undefined"
mul Infinity  Zero      = error "Inf * 0 is undefined"
mul Zero      x         = Zero
mul x         Zero      = Zero
mul One       x         = x
mul x         One       = x
mul Infinity  x         = Infinity
mul x         Infinity  = Infinity

instance Eq Prob where
    (Odds y1)  == (Odds y2)  = y1 == y2
    (IOdds y1) == (IOdds y2) = y1 == y2
    x          == y          = pord x == pord y

pord Zero      = 0
pord (Odds _)  = 1
pord One       = 2
pord (IOdds _) = 3
pord Infinity  = 4

instance Ord Prob where
    (Odds y1) < (Odds y2) = y1 < y2
    (IOdds y1) < (IOdds y2) = y1 > y2
    x < y  = pord x < pord y

instance Num Prob where
    (+) = plus
    (-) = sub
    (*) = mul
    abs = id
    negate = error "Can't negate a probability"
    signum Zero = 0
    signum _    = 1
    fromInteger 0 = Zero
    fromInteger 1 = One
    fromInteger x | x < 0     = error "Negative Probability!"
                  | otherwise = IOdds $ integerToInvLogOdds x

instance Real Prob where
    toRational Zero = 0 % 1
    toRational (Odds y) = toRational $ (fromProb (Odds y) :: Double)
    toRational One  = 1 % 1
    toRational (IOdds y) = toRational $ (fromProb (IOdds y) :: Double)
    toRational Infinity = 1 % 0

instance Fractional Prob where
    recip Zero      = Infinity
    recip (Odds y)  = IOdds y
    recip One       = One
    recip (IOdds y) = Odds y
    recip Infinity  = Zero

instance Show Prob where
    show Zero = "0"
    show (Odds y) = show $ (fromProb (Odds y) :: Double)
    show One = "1"
    show (IOdds y) = show $ (fromProb (IOdds y) :: Double)
    show Infinity = "Inf"


logOdds (Odds y) = y
logOdds Zero = -1/0
logOdds One = 1/0
logOdds (IOdds _) = error "logOdds(x) where x > 1"
logOdds Infinity = error "logOdds Infinity"


-- t regions: (-Inf,-1], (-1, 0), (0,1), [1,Inf)
-- y regions for t > 1: (-Inf,0),[0,30),[30,Inf)
--  maybe for t in (0,1) we need different y regions?

-- we need to avoid exp(t*y) when t*y is large and positive.

-- It would be nice if we could write y ** t, but t is not a Prob
powProb :: Prob -> Double -> Prob
powProb One       t             = One
powProb y         t | t == 0    = One
powProb Zero      t | t < 0     = Infinity
                    | otherwise = Zero      -- t > 0
powProb Infinity  t | t < 0     = Zero
                    | otherwise = Infinity  -- t > 0
-- This probably works best for t > 1, when exp(tx) < exp(x).
powProb (Odds y)  t | y > 30    = Odds $ y - log t
                    | y < 0     = Odds $ t*y - log ( (1+exp(y))**t - exp(t*y) )
                    | otherwise = Odds $ negate $ log $ expm1 ( t * log1p ( exp (-y)) )
powProb (IOdds y) t             = recip $ pow (Odds y) t

instance Pow Prob where
    ln = logProb
    pow = powProb
    expTo = expToProb

instance FloatConvert Prob Double where
    toFloating = fromProb

instance FloatConvert Prob LogDouble where
    toFloating = fromProb

instance FloatConvert LogDouble Prob where
    toFloating = expTo . ln

instance FloatConvert Double Prob where
    toFloating = toProb

-- Handle Int, Integer, and anything else that we can get a double from.
instance {-# OVERLAPPABLE #-} FloatConvert a Double => FloatConvert a Prob where
    toFloating i = toFloating (toFloating i :: Double)

foreign import bpcall "Real:" integerToInvLogOdds :: Integer -> Double