File: vector3.h

package info (click to toggle)
ball 1.4.3~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 318,984 kB
  • sloc: cpp: 346,579; ansic: 4,097; python: 2,664; yacc: 1,778; lex: 1,099; xml: 964; sh: 688; sql: 316; awk: 118; makefile: 108
file content (1158 lines) | stat: -rw-r--r-- 25,748 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_MATHS_VECTOR3_H
#define BALL_MATHS_VECTOR3_H

#ifndef BALL_COMMON_EXCEPTION_H
#	include <BALL/COMMON/exception.h>
#endif

#ifndef BALL_CONCEPT_PERSISTENCEMANAGER_H
#	include <BALL/CONCEPT/persistenceManager.h>
#endif

#ifndef BALL_MATHS_ANGLE_H
#	include <BALL/MATHS/angle.h>
#endif

#ifndef BALL_MATHS_COMMON_H
#	include <BALL/MATHS/common.h>
#endif

#ifdef BALL_HAS_IEEEFP_H
#	include <ieeefp.h>
#endif 


namespace BALL 
{
	/**	\defgroup Vector3 Three-dimensional vector.
			Representation of points and vectors in three-dimensional space: class  \link TVector3 TVector3 \endlink  and class  \link Vector3 Vector3 \endlink 
	\ingroup Primitives
	*/
	//@{

	template <typename T>
	class TVector3;

	/**	@name	Global binary operators for three-dimensional vectors.
	*/
	//@{

	/** Multiply a vector with a scalar. The symmetric case is a member of the
			vector class.
	*/
	template <typename T>
	BALL_INLINE 
	TVector3<T> operator * (const T& a, const TVector3<T>& b);

	/**	Input operator.
			Reads the values of <tt>three</tt> vector components of type <b>  T </b>
			from an istream. The components are read in the order of x, y, z.
	*/
	template <typename T>
	std::istream& operator >> (std::istream& s, TVector3<T>& vector);

	/**	Output operator.
			Writes the values of <tt>three</tt> vector components of type <b>  T </b>
			to an ostream. The components are writen in the order of x, y, z.
	*/
	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector3<T>& vector);

	//@}

	/** Generic Three-Dimensional Vector.
	*/
	template <typename T>
	class TVector3
	{
		public:

		/**	@name	Constructors and Destructors
		*/
		//@{

		/**	Default constructor.
				This method creates a new TVector3 object. The three components
				are initialized to <tt>(T)0</tt>.
		*/
		TVector3();

		/**	Array constructor.
				This constructor creates a TVector3 object from the first
				three elements pointed to by <tt>ptr</tt>.
				@param ptr the array to construct from
				@exception NullPointer if <tt>ptr == 0</tt>
		*/
		explicit TVector3(const T* ptr);

		/**	Scalar constructor.
				Create a new vector with all components set
				to the same <tt>value</tt>.
				@param	value the value of all components
		*/
		explicit TVector3(const T& value);

		/**
		 * Explicit type conversion constructor between a vector of type T and T2
		 */
		template<typename T2>
		explicit TVector3(const TVector3<T2>& vec);

		/**	Detailed constructor.
				Create a new TVector3 object from three variables of type <tt>T</tt>.
				@param	vx assigned to <tt>x</tt>
				@param	vy assigned to <tt>y</tt>
				@param	vz assigned to <tt>z</tt>
		*/
		TVector3(const T& vx, const T& vy, const T& vz);

		/**	Copy constructor.
				Create a new TVector3 object from another.
				@param vector the TVector3 object to be copied
		*/	
		TVector3(const TVector3& vector);
		
		/**	Spherical polar coordinate constructor.
				Create a TVector3 object and set its coordinates to 
				the point described by the three spherical polar coordinates
				<tt>r</tt> (radius), <tt>phi</tt> (azimuth), and <tt>theta</tt> (co-latitude).
				@see set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
				@param r the radius
				@param phi the azimuth 
				@param theta the co-latitude
		*/
		TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);

		/**	Destructor.	
				Destructs the TVector3 object. As there are no dynamic
				data structures, nothing happens.
		*/	
		~TVector3();

		/** Clear method
				The values are set to 0.
		*/
		void clear();

		//@}

		/**	@name	Assignment 
		*/
		//@{

		/**	Assign from an array.
				Assign the three components <tt>x</tt>, <tt>y</tt>, and <tt>z</tt> from
				the first three elements of the array pointed to by <tt>ptr</tt>.
				@param ptr an array
				@exception Nullpointer if <tt>ptr == 0</tt>
		*/
		void set(const T* ptr);

		/**	Assign from a scalar.
				Assign <tt>value</tt> to the three vector components.
				@param	value the new value of the components
		*/
		void set(const T& value);

		/**	Assign the vector components.
				@param vx the new x component
				@param vy the new y component
				@param vz the new z component
		*/
		void set(const T& vx, const T& vy, const T& vz);

		/**	Assign from another TVector3.
				@param vector	the TVector3 object to assign from
		*/
		void set(const TVector3& vector);

		/**	Assign from spherical polar coordinates.
				The radius describes the distance of the point from the origin. \par
				<tt>phi</tt>	ranges from 0 to \f$2 \pi\f$, <tt>theta</tt> ranges from 0 (north pole, positive z-axis)
				to \f$\pi\f$ (south pole, negative z-axis). \par
				Coordinates are calculated according to the following formulae: \par
				\f[ x  =  r \sin \theta \cos \phi \f] \par
				\f[ y  =  r \sin \theta \sin \phi \f] \par
				\f[ z  =  r \cos \theta \f] 
				@param	r the radius
				@param	phi the azimuth
				@param	theta	the co-latitude
		*/
		void set(const T& r, const TAngle<T>& phi, const TAngle<T>& theta);

		/**	Assignment operator.
				Assign the vector components from another vector.
				@param v the vector to assign from
		**/
		TVector3& operator = (const TVector3& v);

		/**	Assignment operator.
				Assign a constant value to all three vector components.
				@param value the constant to assign to x, y, z
		**/
		TVector3& operator = (T value);

		/**	Array assignment operator.
				Assigns the first three elements of an array to the vector components.
				@param	ptr the array
				@exception	NullPointer if <tt>ptr == 0</tt>
		*/
		TVector3& operator = (const T* ptr);

		/**	Assign to an array.
				Sets the first three array elements pointed to by <tt>ptr</tt> 
				to the values of the three vector components.
				@param ptr the array
				@exception	NullPointer if <tt>ptr == 0</tt>
		*/
		void get(T* ptr) const;

		/**	Assign to three variables of type <tt>T</tt>.
				@param	x the x component
				@param	y the y component
				@param	z the z component
		*/
		void get(T& x, T& y, T& z) const;

		/**	Assign to another Vector3.
				Assigns the vector components to another vector.
				@param vector	the vector to be assigned to
		*/
		void get(TVector3& vector) const;

		/**	Assign to polar coordinates.
				Sets <tt>r</tt>, <tt>phi</tt>, and <tt>theta</tt> to the
				coordinates of the vector in spherical polar coordinates.
				@param	r the radius (returned)
				@param  phi the azimuth (returned)
				@param	theta the co-latitude (returned)
		*/
		void get(T& r, TAngle<T>& phi, TAngle<T>& theta) const;

		/**	Swap the contents of two vectors.
				@param	vector the vector to swap contents with
		*/
		void swap(TVector3& vector);

		/**	Return the length of the vector.
				The length of the vector is calculated as
				\f$\sqrt{x^2 + y^2 + z^2}\f$.
				@return T, the vector length
		*/	
		T getLength() const;

		/**	Return the squared length of the vector.
				This method avoids the square root needed in getLength,
				so this method is preferred if possible.
				@return T, \f$x^2 + y^2 + z^2\f$
		*/
		T getSquareLength() const;

		/**	Normalize the vector.
				The vector is scaled with its length:
				\f$\{x|y|z\} *= \sqrt{x^2 + y^2 + z^2}\f$.
				@return T, a reference to the normalized vector
				@exception DivisionByZero if the length of the vector is 0
		*/
		TVector3& normalize();

		/**	Negate the vector.
				Negate the three components of the vector
				@return T, a reference to {\em *this} vector
		*/
		TVector3& negate();

		/**	Return a vector with all components 0.
		*/
		static const TVector3& getZero();

		/**	Return a vector with all components 1.
				@return: TVector4(1, 1, 1, 1)
		*/
		static const TVector3& getUnit();

		/**	Mutable array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 2</tt>
		*/
		T& operator [] (Position position);

		/**	Constant array-like access to the components.
				@exception Exception::IndexOverflow if <tt>index > 2</tt>
		*/
		const T& operator [] (Position position) const;
		//@}
		
		/**	@name	Arithmetic operators
		*/
		//@{

		/**	Positive sign.
		*/
		const TVector3& operator + () const;

		/**	Negative sign.
		*/
		TVector3 operator - () const;

		/** Addition.
		*/
		TVector3 operator + (const TVector3& b) const;

		/** Subtraction.
		*/
		TVector3 operator - (const TVector3& b) const;

		/**	Add a vector to this vector.
				Add the components of <tt>vector</tt> to this vector.
				@param vector the vector to add
				@return TVector3&, {\em *this}
		*/
		TVector3& operator += (const TVector3& vector);

		/**	Subtract a vector from this vector.
				@param vector the vector to subtract
				@return TVector3&, {\em *this}
		*/
		TVector3& operator -= (const TVector3& vector);

		/**	Scalar product.
				Return <tt>TVector3(x * scalar, y * scalar, z * scalar)</tt>.
				@param scalar, the scalar to multiply by
				@return TVector3 the scalar product of this vector and <tt>scalar</tt>
		*/
		TVector3 operator * (const T& scalar) const;

		/**	Multiply by a scalar.
				Multiply all components of the vector by a <tt>scalar</tt> value.
				@param scalar the to multiply by
				@return TVector3&, {\em *this}
		*/
		TVector3& operator *= (const T& scalar);

		/**	Fraction of a vector.
				Return <tt>TVector3(x / lambda, y / lambda, z / lambda)</tt>.
				@param lambda the scalar value to divide by
				@return TVector3& 
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector3 operator / (const T& lambda) const;

		/**	Divide a vector by a scalar.
				@param lambda the scalar value to divide by
				@return TVector3&, {\em *this}
				@exception Exception::DivisionByZero if <tt>lambda == (T)0</tt>
		*/
		TVector3& operator /= (const T& lambda);

		/** Dot product.
				Return the dot product of this vector and <tt>vector</tt>.
		*/
		T operator * (const TVector3& vector) const;

		/** Cross product.
				Return the cross product of this vector and <tt>vector</tt>.
		*/
		TVector3 operator % (const TVector3& vector) const;

		/**	Assign to the cross product.
				Assign the vector to its cross product with another vector.
		*/
		TVector3& operator %= (const TVector3& vector);

		//@}

		/**	@name	Geometric properties
		*/
		//@{

		/**	Return the distance to another vector.
		*/
		T getDistance(const TVector3& vector) const;

		/**	Return the squared distance to another vector.
		*/
		T getSquareDistance(const TVector3& vector) const;

		/**	Return the enclosed angle of two vectors.
				@exception Exception::DivisionByZero if the product of the squared
								lengths of the two vectors equals <tt>(T)0</tt>
		*/
		TAngle<T> getAngle(const TVector3& vector) const;

		/**	Return the orthogonal projection of this vector onto another.
				@param direction the vector to project onto
		*/
		TVector3 getOrthogonalProjection(const TVector3& direction) const;

		/**	Return the perpendicular normalization of the vector
				@param a 1st vector
				@param b 2nd vector
				@param c 3rd vector
				@return TVector3 the perpendicular normalization
		*/
		static TVector3 getPerpendicularNormalization
			(const TVector3& a, const TVector3& b, const TVector3& c);

		/**	Triple product of three vectors.
				Calculate the parallelepipedal product of three vectors.
				@param a first vector
				@param b second vector
				@param v third vector
				@return T the triple product
		*/
		static T getTripleProduct (const TVector3<T>& a, const TVector3<T>& b, const TVector3<T>& c);

		//@}
	
		/**	@name	Predicates
		*/
		//@{

		/**	Equality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if all three vector components are equal, <b>false</b> otherwise
		*/
		bool operator == (const TVector3& vector) const;
	
		/**	Inequality operator.
				The function Maths::isEqual is used to compare the values. 
				 \link Maths::isEqual Maths::isEqual \endlink 
				@return bool, <b>true</b> if the two vectors differ in at least one component, <b>false</b> otherwise
		*/
		bool operator != (const TVector3& vector) const;

		/// Needed for MSVC
		bool operator < (const TVector3& vector) const;


		/**	Zero predicate.
				The function Maths::isZero is used to compare the values with zero. 
				 \link Maths::isZero Maths::isZero \endlink 
		*/
		bool isZero() const;

		/**	Orthogonality predicate.
		*/
		bool isOrthogonalTo(const TVector3& vector) const;

		//@}


    /** @name Storable Interface
    */
    //@{

    /** Persistent stream writing.
    */
    void write(PersistenceManager& pm) const;

    /** Persistent stream reading.
    */
		bool read(PersistenceManager& pm);

    //@}

		/**	@name	Debugging and Diagnostics
		*/
		//@{

		/** Internal state dump.
				Dump the current internal state of {\em *this} to 
				the output ostream <b>  s </b> with dumping depth <b>  depth </b>.
				@param   s - output stream where to output the internal state of {\em *this}
				@param   depth - the dumping depth
		*/
		void dump(std::ostream& s = std::cout, Size depth = 0) const;

		/**	Test if instance is valid.
				Always returns true.
				@return bool <b>true</b>
		*/
		bool isValid() const;

		//@}


		/**	@name	Vector components
				For easier access, the three components of the vector
				are public members.
		*/
		//@{
	
		/**	x component of the vector
		*/
		T x;

		/**	y component of the vector
		*/
		T y;

		/**	z component of the vector
		*/
		T z;
		//@}

		private:

		TAngle<T> getAngle_(const T& a, const T& b) const
		{
			TAngle<T> angle;
	
			if (Maths::isNotZero(a))
			{
				angle = atan(b / a);
			} 
			else	
			{
				angle = BALL_SGN(b) * Constants::PI / 2;
			}

			if (Maths::isLess(a, 0)) 
			{
				angle += Constants::PI;
			}

			if (Maths::isLess(angle.value, 0)) 
			{
				return (Angle)(angle.value += 2.0 * Constants::PI);
			} 
			else 
			{
				return angle;
			}
		}
	};
	//@}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3()
		:	x(0),
			y(0),
			z(0)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T* ptr)
	{
		if (ptr == 0) 
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		x = *ptr++;
		y = *ptr++;
		z = *ptr;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& value)
		:	x(value),
			y(value),
			z(value)
	{
	}

	template <typename T> template <typename T2>
	BALL_INLINE
	TVector3<T>::TVector3(const TVector3<T2>& vec)
		: x((T)vec.x),
		  y((T)vec.y),
			z((T)vec.z)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& vx, const T& vy, const T& vz)
		:	x(vx),
			y(vy),
			z(vz)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const TVector3& vector)
		:	x(vector.x),
			y(vector.y),
			z(vector.z)
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::TVector3(const T& r, const TAngle<T>& phi, const TAngle<T>& theta)
		:	x(r * cos(phi) * sin(theta)),
			y(r * sin(phi) * sin(theta)),
			z(r * cos(theta))
	{
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>::~TVector3()
	{
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::clear()
	{
		x = y = z = (T)0;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T* ptr)
	{
		if (ptr == 0)	
			throw Exception::NullPointer(__FILE__, __LINE__);
		
		x = *ptr++;
		y = *ptr++;
		z = *ptr;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T& value)
	{
		x = value;
		y = value;
		z = value;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const T& vx, const T& vy, const T& vz)
	{
		x = vx;
		y = vy;
		z = vz;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::set(const TVector3<T>& vector)
	{
		x = vector.x;
		y = vector.y;
		z = vector.z;
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::set(const T& r, const TAngle<T> &phi, const TAngle<T> &theta)
	{
		x = r * cos(phi) * sin(theta);
		y = r * sin(phi) * sin(theta);
		z = r * cos(theta);
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>& TVector3<T>::operator = (const T* ptr)
	{
		if (ptr == 0)
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		x = *ptr++;
		y = *ptr++;
		z = *ptr;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator = (const TVector3<T>& vector)
	{
		x = vector.x;
		y = vector.y;
		z = vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator = (T value)
	{
		x = y = z = value;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T* ptr) const
	{
		if (ptr == 0)
		{
			throw Exception::NullPointer(__FILE__, __LINE__);
		}

		*ptr++ = x;
		*ptr++ = y;
		*ptr   = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T& new_x, T& new_y, T& new_z) const
	{
		new_x = x;
		new_y = y;
		new_z = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(TVector3<T>& vector) const
	{
		vector.x = x;
		vector.y = y;
		vector.z = z;
	}

	template <typename T>
	BALL_INLINE 
	void TVector3<T>::get(T& r, TAngle<T>& phi, TAngle<T>& theta) const
	{
		r 		= sqrt(x * x + y * y + z * z);
		phi 	= (Angle)getAngle_(x, y);
		theta = getAngle_(z, sqrt(x * x + y * y));
	}

	template <typename T>
	BALL_INLINE
	void TVector3<T>::swap(TVector3<T>& vector)
	{
		T temp = x;
		x = vector.x;
		vector.x = temp;

		temp = y;
		y = vector.y;
		vector.y = temp;

		temp = z;
		z = vector.z;
		vector.z = temp;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getLength() const
	{
		return (T)sqrt(x * x + y * y + z * z);
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getSquareLength() const
	{
		return (x * x + y * y + z * z);
	}

	template <typename T>
	TVector3<T>& TVector3<T>::normalize()
	{
		T len = sqrt(x * x + y * y + z * z);

		if (Maths::isZero(len)) 
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		
		x /= len;
		y /= len;
		z /= len;

		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T>& TVector3<T>::negate()
	{
		x *= -1;
		y *= -1;
		z *= -1;
		return *this;
	}

	template <typename T>
	BALL_INLINE 
	const TVector3<T>& TVector3<T>::getZero()
	{
		static TVector3<T> null_vector(0, 0, 0);
		return null_vector;
	}

	template <typename T>
	BALL_INLINE 
	const TVector3<T>& TVector3<T>::getUnit()
	{
		static TVector3<T> unit_vector(1, 1, 1);
		return unit_vector;
	}

	template <typename T>
	BALL_INLINE 
	T& TVector3<T>::operator [] (Position position)
	{
		if (position > 2)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__, position);
		}
		switch (position) 
		{
			case 0: return x;
			case 1: return y;
			case 2:
			default:
				return z;
		}
	}

	template <typename T>
	BALL_INLINE 
	const T& TVector3<T>::operator [] (Position position) const
	{
		if (position > 2)
		{
			throw Exception::IndexOverflow(__FILE__, __LINE__);
		}
		switch (position) 
		{
			case 0: return x;
			case 1: return y;
			case 2:
			default:
				return z;
		}
	}

	template <typename T>
	BALL_INLINE
	const TVector3<T>& TVector3<T>::operator + () const	
	{
		return *this;
	}

	template <typename T>
	BALL_INLINE
	TVector3<T> TVector3<T>::operator - () const	
	{
		return TVector3<T>(-x, -y, -z);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator += (const TVector3<T>& vector)
	{
		x += vector.x;
		y += vector.y;
		z += vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator -= (const TVector3<T>& vector)
	{
		x -= vector.x;
		y -= vector.y;
		z -= vector.z;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::operator * (const T& scalar) const 
	{
		return TVector3<T>(x * scalar, y * scalar, z * scalar);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator *= (const T &scalar)
	{
		x *= scalar;
		y *= scalar;
		z *= scalar;

		return *this;
	}

	template <typename T>
	TVector3<T> TVector3<T>::operator / (const T& lambda) const
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		return TVector3<T>(x / lambda, y / lambda, z / lambda);
	}

	template <typename T>
	TVector3<T>& TVector3<T>::operator /= (const T& lambda)
	{
		if (lambda == (T)0)
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);		
		}
		x /= lambda;
		y /= lambda;
		z /= lambda;

		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::operator * (const TVector3<T>& vector) const
	{
		return (x * vector.x + y * vector.y + z * vector.z);
	}

	template <typename T>
	TVector3<T> TVector3<T>::operator % (const TVector3<T>& v) const
	{
		return TVector3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T>& TVector3<T>::operator %= (const TVector3<T>& v)
	{
		set(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
		return *this;
	}

	template <typename T>
	BALL_INLINE 
	T TVector3<T>::getDistance(const TVector3<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		T dz = z - v.z;
		
		return (T)sqrt(dx * dx + dy * dy + dz * dz); 
	}

	template <typename T>
	BALL_INLINE T
	TVector3<T>::getSquareDistance(const TVector3<T>& v) const
	{
		T dx = x - v.x;
		T dy = y - v.y;
		T dz = z - v.z;
		
		return (dx * dx + dy * dy + dz * dz); 
	}

	template <typename T>
	BALL_INLINE 
	TAngle<T> TVector3<T>::getAngle(const TVector3<T>& vector) const
	{
		T length_product = getSquareLength() * vector.getSquareLength();

		if (length_product == (T)0)	
		{
			throw Exception::DivisionByZero(__FILE__, __LINE__);
		}
		
		T acos_arg = ((*this) * vector) / sqrt(length_product);

		// ensure that the argument of acos is in the correct range
		// (might happen if the angle between the two vectors is
		// very close to zero)
		if (fabs(acos_arg) > 1.0)
		{	
			return (TAngle<T>)0.0;
		}
		
		return (TAngle<T>)acos(acos_arg);
	}

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::getOrthogonalProjection(const TVector3<T>& direction) const
	{
		return ((direction * (*this)) / (direction * direction) * direction);
	}

	template <typename T>
	TVector3<T> TVector3<T>::getPerpendicularNormalization
		(const TVector3<T> &a, const TVector3<T> &b, const TVector3<T> &c)
	{
		TVector3 diff1(b.x - a.x, b.y - a.y, b.z - a.z);
		TVector3 diff2(b.x - c.x, b.y - c.y, b.z - c.z);

		return TVector3
			(diff1.y * diff2.z - diff1.z * diff2.y,
			 diff1.z * diff2.x - diff1.x * diff2.z,
			 diff1.x * diff2.y - diff1.y * diff2.x);
	}

	template <typename T>
	BALL_INLINE
	T TVector3<T>::getTripleProduct
		(const TVector3<T>& a,
		 const TVector3<T>& b,
		 const TVector3<T>& c)
	{
		return (  a.x * (b.y * c.z - b.z * c.y)
						+ a.y * (b.z * c.x - b.x * c.z)
						+ a.z * (b.x * c.y - b.y * c.x));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator == (const TVector3<T>& v) const
	{
		return (Maths::isEqual(x, v.x) && Maths::isEqual(y, v.y) && Maths::isEqual(z, v.z));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator < (const TVector3<T>& v) const
	{
		return (x < v.x || y < v.y || z < v.z);
	}


	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::operator != (const TVector3<T>& v) const
	{
		return (Maths::isNotEqual(x, v.x) || Maths::isNotEqual(y, v.y) || Maths::isNotEqual(z, v.z));
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isOrthogonalTo(const TVector3<T>& v) const
	{
		return Maths::isZero((*this) * v);
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isValid() const
	{
		return true;
	}

	template <typename T>
	BALL_INLINE 
	bool TVector3<T>::isZero() const
	{
		return (Maths::isZero(x) && Maths::isZero(y) && Maths::isZero(z));
	}

	template <typename T>
	void TVector3<T>::dump(std::ostream& s, Size depth) const
	{
		BALL_DUMP_STREAM_PREFIX(s);

		BALL_DUMP_HEADER(s, this, this);

		BALL_DUMP_DEPTH(s, depth);
		s << "  (x =  " << x << ", y = " << y << ", z = " << z << ")" << std::endl;

		BALL_DUMP_STREAM_SUFFIX(s);
	}

	/**	Default three-dimensional vector class.
			This is the class used in BALL kernel to represent points, coordinates.
	*/
	typedef TVector3<float> Vector3;

	template <typename T>
	BALL_INLINE 
	TVector3<T> TVector3<T>::operator + (const TVector3<T>& b) const
	{
		return TVector3<T>(x + b.x, y + b.y, z + b.z);
	}
	
	template <typename T>
	BALL_INLINE
	TVector3<T> TVector3<T>::operator - (const TVector3<T>& b) const
	{
		return TVector3<T>(x - b.x, y - b.y, z - b.z);
	}

	template <typename T>
  void TVector3<T>::write(PersistenceManager& pm) const
  {
    pm.writePrimitive(x, "x");
    pm.writePrimitive(y, "y");
    pm.writePrimitive(z, "z");
	}

	template <typename T>			
  bool TVector3<T>::read(PersistenceManager& pm)
  {
    pm.readPrimitive(x, "x");
    pm.readPrimitive(y, "y");
    pm.readPrimitive(z, "z");

    return true;
	}


	template <typename T>
	BALL_INLINE 
	TVector3<T> operator * (const T& scalar, const TVector3<T>& vector)
	{
		return TVector3<T>(scalar * vector.x, scalar * vector.y, scalar * vector.z);
	}

	template <typename T>
	std::istream& operator >> (std::istream& s, TVector3<T>& v)
	{
		char c;
		s >> c >> v.x >> v.y >> v.z >> c;

		return s;
	}

	template <typename T>
	std::ostream& operator << (std::ostream& s, const TVector3<T>& v)
	{
		s << "(" << v.x << ' ' << v.y << ' ' << v.z << ')';

		return s;
	}
// required for visual studio
#ifdef BALL_COMPILER_MSVC
#include <vector>
#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT std::vector<Vector3>;
#elif
template class BALL_EXPORT std::vector<Vector3>;
#endif
#endif

#ifdef BALL_HAS_EXTERN_TEMPLATES
extern template class BALL_EXPORT TVector3<float>;
#endif

}// namespace BALL

#endif // BALL_MATHS_VECTOR3_H