1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#include <fstream>
#include <BALL/QSAR/registry.h>
#include <BALL/QSAR/configIO.h>
using namespace BALL::QSAR;
using namespace BALL;
void startPrediction(std::ifstream& in, QSARData* q, String* data_filename)
{
PredictionConfiguration conf = ConfigIO::readPredictionConfiguration(&in);
if(conf.done) return; // stop processing this section
bool created_data_object=0;
if(q==NULL || data_filename==NULL || conf.data!=*data_filename)
{
if(q==NULL)
{
q = new QSARData;
created_data_object=1;
}
q->readFromFile(conf.data);
if(data_filename) *data_filename = conf.data;
}
Registry reg;
Model* m;
String model_type;
std::ifstream model_input(conf.model.c_str()); // read model-abbreviation
if(!model_input)
{
std::cout<<"Error: Model-file '"<<conf.model<<"' does not exist!!"<<std::endl;
return;
}
std::getline(model_input,model_type);
std::getline(model_input,model_type);
model_type = model_type.getField(0,"\t");
model_input.close();
RegistryEntry* entry = reg.getEntry(model_type);
bool regression = entry->regression;
if(!entry->kernel)
{
m = (*entry->create)(*q);
}
else
{
// parameters irrelevant; will be overwritten by those read from file
m = (*entry->createKernel1)(*q,1,1, -1);
}
m->readFromFile(conf.model.c_str()); // do NOT train again (done by ModelCreator) !!
m->model_val->selectStat(conf.statistic);
m->model_val->testInputData(1); // calculate prediction quality
m->model_val->setCVRes(m->model_val->getFitRes());
m->model_val->saveToFile(conf.output);
std::ofstream out(conf.output.c_str(),std::ios::app);
out<<std::endl<<"[Predictions]"<<std::endl;
int no_act = q->getNoResponseVariables();
int no_cols = no_act;
if(conf.print_expected)
{
no_cols*=2;
out<<"# format: predition0, expectation0, ..."<<std::endl;
}
out<<"expected_values = "<<conf.print_expected<<std::endl;
out<<"dimensions = "<<q->getNoSubstances()<<" "<<no_cols<<std::endl;
for(int i=0;i<q->getNoSubstances();i++)
{
vector<double>* v = q->getSubstance(i); // get UNcentered descriptor-vector of test compound
Eigen::VectorXd res = m->predict(*v,1); // transform val. data according to centering of training data
delete v;
vector<double>* exp = q->getActivity(i); // get UNcentered response value vector
for(int j=0; j<res.rows();j++)
{
out<<res[j]<<"\t";
if(conf.print_expected)
{
out<<(*exp)[j]<<"\t";
}
}
delete exp;
out<<std::endl;
}
if(created_data_object) delete q;
delete m;
}
#ifndef EXT_MAIN
int main(int argc, char* argv[])
{
if(argc<2)
{
std::cout<<"Please specify configuration file!"<<std::endl;
return 0;
}
std::ifstream in(argv[1]);
if(!in)
{
std::cout<<"Configuration file '"<<argv[1]<<"' not found!"<<std::endl;
return 0;
}
String line;
for(int i=0;!in.eof();i++) // read ALL Predictor sections
{
for(int j=0;!in.eof();j++) // skip everthing until the beginning of the next Validator-section
{
std::getline(in,line);
if(!line.hasPrefix("[Predictor]")) continue;
else break;
}
if(!line.hasPrefix("[Predictor]")) break; // there are no (more) Validator-sections!
ConfigIO::putbackLine(&in,line);
startPrediction(in,NULL,NULL);
}
}
#endif
|