File: validationItem.C

package info (click to toggle)
ball 1.4.3~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 318,984 kB
  • sloc: cpp: 346,579; ansic: 4,097; python: 2,664; yacc: 1,778; lex: 1,099; xml: 964; sh: 688; sql: 316; awk: 118; makefile: 108
file content (555 lines) | stat: -rw-r--r-- 14,375 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/* TRANSLATOR BALL::QSAR

		Necessary for lupdate.
*/
#include <validationItem.h>
#include <exception.h>
#include <mainWindow.h>
#include <validationResultDialog.h>
#include <BALL/QSAR/configIO.h>

#include <QtGui/QDrag>
#include <QtCore/QMimeData>

#include <BALL/VIEW/KERNEL/iconLoader.h>
#include <BALL/QSAR/classificationModel.h>

using namespace BALL::QSAR;
using namespace BALL::Exception;

namespace BALL
{
	namespace VIEW
	{

		ValidationItem::ValidationItem(int type, DataItemView* view):
			DataItem(view),
			k_(0),
			num_of_samples_(0),
			num_of_runs_(0),
			model_item_(NULL),
			q2_(0.0),
			r2_(0.0)
		{
			nested_val_item_ = NULL;
			type_ = type;
			partitioner_ = NULL;
			validation_statistic_ = 0;
			init();	
		}

		ValidationItem::ValidationItem(ValidationItem& item):
		DataItem(item.view_)
		{
			type_ = item.type_;
			k_ = item.k_;
			num_of_samples_ = item.num_of_samples_;
			num_of_runs_ = item.num_of_runs_;
			model_item_ = item.model_item_;
			q2_ = -1;
			r2_ = -1;
			nested_val_item_ = NULL;
			partitioner_ = NULL;
			validation_statistic_ = 0;
			init();	
		}

		ValidationItem::~ValidationItem()
		{
			if (view_->name == "view")
			{
				//if the item was connected to others, delete it from its respective pipeline
				if (!removeDisconnectedItem())
				{
					removeFromPipeline();
				}
			}
			if(nested_val_item_!=NULL && view_->data_scene->main_window->val_pipeline_.contains(nested_val_item_))
			{
				nested_val_item_->external_validations_.remove(this);
				
				// one fold validation (this item) is being deleted, so that the average of the remaining predictive qualities has to calculated anew ...
				nested_val_item_->change();
			}
			delete plotter_;
		}


		ValidationItem::ValidationItem(String& configfile_section, std::map<String, DataItem*>& filenames_map, std::list<std::pair<double,double> >* item_positions, DataItemView* view)
			: DataItem(view)
		{
			result_color_ = QColor(205,225,205);
			type_ = -1;
			std::istringstream input;
			input.str(configfile_section);
			ValidationConfiguration conf = ConfigIO::readValidationConfiguration(&input);

			int no = conf.external_predictions.size();
			for(int i=0; i<no; i++)
			{
				String file_i = conf.external_predictions[i];
				std::map<String,DataItem*>::iterator it = filenames_map.find(file_i);
				if(it==filenames_map.end())
				{
					std::cout<<file_i<<" can not be found!!"<<std::endl;
					throw BALL::Exception::GeneralException(__FILE__,__LINE__,"ValidationItem reading error","PredictionItem of a nested cross validation fold could not be found!");
				}
				PredictionItem* pred_i = (PredictionItem*) it->second;
				addExternalFoldValidation(pred_i);
				
				if(i==0) // all folds of ONE validationItem for nested validation come from 
					// ONE PartitioningItem
				{
					Edge* edge = pred_i->dottedEdge();
					if(edge!=NULL)
					{
						if(edge->sourceNode()->inEdges().size()>0)
						{						
							DataItem* tmp = (*edge->sourceNode()->inEdges().begin())->sourceNode();
							if(tmp->type()==PartitioningItem::Type)
							{
								setPartitioner((PartitioningItem*)tmp);
							}
						}
					}
				}
			}
			
			
			// conf.data is not used since the inputItem connected to the modelItem is used for obtaining input data
			
			k_ = conf.k_folds;
			num_of_samples_ = conf.bootstrap_samples;
			num_of_runs_ = conf.no_of_permutation_tests;
			validation_statistic_ = conf.statistic;
			type_ = conf.val_type;
			
			std::map<String,DataItem*>::iterator it = filenames_map.find(conf.model);
			if(it==filenames_map.end())
			{
				throw BALL::Exception::GeneralException(__FILE__,__LINE__,"ValidationItem reading error","ModelItem for which the validation should be done can not be found!");
			}
			model_item_ = (ModelItem*) it->second;
			
			view_->data_scene->addItem(this);
			addToPipeline();
			if(item_positions!=0 && item_positions->size()>0)
			{
				std::pair<double,double> pos = item_positions->front();
				item_positions->pop_front();
				setPos(pos.first,pos.second);
			}
			
			Edge* edge = new Edge(model_item_, this);
			view_->data_scene->addItem(edge);

			setSavedAs(conf.output.c_str());
			
			/// if not defined in config-section explicitly, find type of validation to be done:
			if(type_==-1)
			{
				if(k_<2 && conf.external_predictions.size()>0) type_ = 5;
				else
				{
					if(k_<=0) type_ = 1;
					else if(num_of_samples_<=0) type_ = 2;
					else type_ = 3;
					if(num_of_runs_>0) type_ = 4;
				}
			}
			init();	
		}


		void ValidationItem::init()
		{
			result_color_ = QColor(205,225,205);
			initName();
			setPixmap(findPixmap("validation"));
			createActions();
			coeff_stderr_ratio_ = 0;
			plotter_ = NULL;
		}


		void ValidationItem::initName()
		{
			name_ = view_->data_scene->main_window->registry()->getValidationName(type_).c_str();
		}

		void ValidationItem::createActions()
		{
			if(type_>2 && type_!=7) // for other types, redoing the validation makes no sense, since that would always yield the same result
			{	
				QAction* redo_action = new QAction("Redo", this);
				connect(redo_action, SIGNAL(triggered()), this, SLOT(changeSlot()));	
				context_menu_actions_.push_back(redo_action);
			}
			QAction* show_values = new QAction("Show predictions", this);
			connect(show_values, SIGNAL(triggered()), this, SLOT(showPredictionDialog()));
			context_menu_actions_.push_back(show_values);
			
			if(type_==5)
			{
				QAction* show_plotter = new QAction(QIcon(""),tr("Plot all predictions"), this);
				connect(show_plotter, SIGNAL(triggered()), this, SLOT(showPlotter()));
				context_menu_actions_.push_back(show_plotter);
			}
		}


		void ValidationItem::showPlotter()
		{
			if(plotter_ == NULL)
			{
				plotter_=new PredictionPlotter(this);
			}
			plotter_->show();
		}

		void ValidationItem::changeSlot()
		{
			change();
			if(partitioner_!=NULL) partitioner_->change();
			view_->data_scene->update();
		}

		void ValidationItem::change()
		{
			DataItem::change();
			delete plotter_; 
			plotter_=NULL;
		}

		void ValidationItem::setPartitioner(PartitioningItem* partitioner)
		{
			partitioner_ = partitioner;
		}

		// overloaded by PredictionItem 
		void ValidationItem::setValidationInput()
		{
			model_item_->model()->setDataSource(model_item_->inputDataItem()->data());
		}


		bool ValidationItem::execute()
		{
			if (model_item_ == NULL)
			{
				throw InvalidValidationItem(__FILE__,__LINE__);
			}
			
			if(done_) return 0; // do nothing twice...
			
			setValidationInput();

			if(validation_statistic_>=0)
			{
				model_item_->model()->model_val->selectStat(validation_statistic_);
			}
			switch(type_)
			{
				case 1:	
					model_item_->model()->model_val->testInputData();
					break;
				case 2:
					model_item_->model()->model_val->crossValidation(k_);
					break;
				case 3:	
					model_item_->model()->model_val->bootstrap(num_of_samples_);
					break;
				case 4:	
					result_of_rand_test_ = model_item_->model()->model_val->yRandomizationTest(num_of_runs_, k_);		
					break;
				case 5: 
					q2_ = 0;
					for(list<ValidationItem*>::iterator it=external_validations_.begin(); it!=external_validations_.end(); it++)
					{
						// if one prediction is not yet ready, stop calc. average quality
						if(!(*it)->isDone()) return 0;
						q2_ += (*it)->getQ2();
					}
					q2_ /= external_validations_.size(); // average Q^2 obtained from nested cross validation			
					break; 
				
				case 6:
					if(!model_item_->getRegistryEntry()->regression)
					{
						throw BALL::Exception::GeneralException(__FILE__,__LINE__,"validation error","coefficient stddev can only be calculated for regression models!");
					}		
					((RegressionModel*)model_item_->model())->validation->calculateCoefficientStdErrors(num_of_samples_,1);
					break;	
					
				case 7: 
					model_item_->model()->model_val->testInputData(1);
					break;
				
				default:
					throw InvalidValidationItem(__FILE__,__LINE__);
			}
			
			processResults();
			done_ = 1;
			return 1;
		}


		void ValidationItem::processResults()
		{
			if(type_<5 || type_==7)
			{
				r2_ = model_item_->model()->model_val->getFitRes();
				q2_ = model_item_->model()->model_val->getCVRes();
			}

			if(type_==1||type_==7) setResultString(r2_);
			else if(type_==6)
			{
				coeff_stddev_ = *((RegressionModel*)model_item_->model())->validation->getCoefficientStdErrors();
				const Eigen::MatrixXd* training_result = ((RegressionModel*)model_item_->model())->getTrainingResult();
				
				// calculate&display average stddev
				double mean_stddev=0;
				Size rows=coeff_stddev_.rows();
				Size cols=coeff_stddev_.cols();

				double epsilon = std::numeric_limits<double>::epsilon();

				if(training_result->cols()==cols && training_result->rows()==rows)
				{
					for(unsigned int i=0; i<rows;i++) // for each feature
					{
						for(unsigned int j=0; j<cols;j++) // for each activity
						{
							double t_ij = (*training_result)(i,j);
							double s_ij = coeff_stddev_(i,j);
							
							if(abs(t_ij) > epsilon && abs(s_ij) > epsilon)
							{
								std::cout<<s_ij/t_ij;
								mean_stddev += abs(s_ij/t_ij);
							}
							std::cout << std::endl;
						}
					}
					coeff_stderr_ratio_ = mean_stddev/(rows*cols);
					setResultString(coeff_stderr_ratio_);
				}
			}
			else if(type_==4)
			{
				double mean_q2=0;
				for(unsigned int i=0;i<result_of_rand_test_.rows();i++)
				{
					mean_q2+=result_of_rand_test_(i,1);
				}
				mean_q2/=result_of_rand_test_.rows();
				setResultString(mean_q2);
			}
			else setResultString(q2_);
		}

			
		BALL::String ValidationItem::getStatName()
		{
			String name="";
			if(validation_statistic_==-1) return name;
			
			return model_item_->getRegistryEntry()->getStatName(validation_statistic_);
		}

		void ValidationItem::setModelItem(ModelItem* model_item)
		{
			model_item_ = model_item;
		}

		int ValidationItem::getValidationType()
		{
			return type_;
		}

		void ValidationItem::setValFraction(double frac)
		{
			val_fraction_ = frac;
		}

		double ValidationItem::getValFraction()
		{
			return val_fraction_;	
		}

		void ValidationItem::setK(int k)
		{
			k_ = k;
		}
		void ValidationItem::setNumOfRuns(int num)
		{
			num_of_runs_ = num;
		}

		void ValidationItem::setNumOfSamples(int num)
		{
			num_of_samples_ = num;
		}

		void ValidationItem::setNumOfNCVFolds(int num)
		{
			n_of_ncv_folds_ = num;
		}

		ModelItem* ValidationItem::modelItem()
		{
			return model_item_;
		}

		double ValidationItem::getQ2()
		{
			return q2_;
		}

		double ValidationItem::getR2()
		{
			return r2_;
		}

		int ValidationItem::numOfRuns()
		{
			return num_of_runs_;
		}

		int ValidationItem::numOfSamples()
		{
			return num_of_samples_;
		}

		int ValidationItem::numOfNCVFolds()
		{
			return  n_of_ncv_folds_;
		}

		int ValidationItem::k()
		{
			return k_;
		}

		Eigen::MatrixXd* ValidationItem::resultOfRandTest()
		{
			return &result_of_rand_test_;
		}

		// SLOT
		void ValidationItem::showPredictionDialog()
		{
			ValidationResultDialog validationResultDialog(this);
			validationResultDialog.exec();
		}

		void ValidationItem::writeConfigSection(std::ofstream& out)
		{
			out << "[Validator]" << "\n";
			out << "model_file = "<< modelItem()->savedAs().toStdString() << "\n";
			out << "data_file = "<< modelItem()->inputDataItem()->savedAs().toStdString() << "\n";
			out << "validation_type = "<<type_<<std::endl;
			
			// for nested cross validation save the names of the prediction output-files in order to be able to restore the pipeline later
			if(external_validations_.size()>0)
			{
				out<<"external_validation_predictions = ";
				for(list<ValidationItem*>::iterator it=external_validations_.begin(); it!=external_validations_.end(); it++)
				{
					out<<(*it)->savedAs().toStdString()<<" ";
				}
				out<<std::endl;
			}
			int s = getValidationStatistic();
			if(s>=0)
			{
				String stat = modelItem()->getRegistryEntry()->getStatName(s);
				if(!model_item_->getRegistryEntry()->regression) out<< "classification_statistic = "<<stat.c_str()<<std::endl;
				else out<< "regression_statistic = "<<stat.c_str()<<std::endl;
			}
			
			if(type_>0) out << "k_fold = "<< k() <<  "\n";
			if(num_of_samples_>0) out << "bootstrap_samples = "<< num_of_samples_ << "\n";
			if(num_of_runs_>0) out << "no_of_permutation_tests = " <<  num_of_runs_ << "\n";
			out << "output = " << savedAs().toStdString() << "\n\n";	
		}


		void ValidationItem::addToPipeline()
		{
			view_->data_scene->main_window->val_pipeline_.insert(this);
			view_->data_scene->main_window->all_items_pipeline_.insert(this);
		}

		void ValidationItem::removeFromPipeline()
		{
			view_->data_scene->main_window->val_pipeline_.erase(this);
			view_->data_scene->main_window->all_items_pipeline_.erase(this);
		}

		void ValidationItem::addExternalFoldValidation(ValidationItem* item)
		{
			external_validations_.push_back(item);
			item->nested_val_item_ = this;
		}

		int ValidationItem::getNoExternalFolds()
		{
			return external_validations_.size();
		}

		BALL::String ValidationItem::getMouseOverText()
		{
			String message="";
			if(view_->name!="view") return message;
			
			if(type_!=6)
			{
				message+="using ";
				message += modelItem()->getRegistryEntry()->getStatName(validation_statistic_);
			}
			else if(done_ && type_==6)
			{
				message+="average ratio between stddev\nand coeff: "+String(coeff_stderr_ratio_);
			}
			return message;				
		}


		void ValidationItem::saveToFile(String filename)
		{
			if(model_item_->getRegistryEntry()->regression)
			{
				((RegressionModel*)model_item_->model())->validation->saveToFile(filename,r2_,q2_,coeff_stddev_,result_of_rand_test_);
			}
			else
			{
				((ClassificationModel*)model_item_->model())->validation->saveToFile(filename,r2_,q2_);
			}
		}

		void ValidationItem::loadFromFile(String filename)
		{
			try
			{
				model_item_->model()->model_val->readFromFile(filename);
			}
			catch(BALL::Exception::GeneralException e)
			{
				QMessageBox::warning(view_,"Error",e.getMessage());
				return;
			}
			r2_ = model_item_->model()->model_val->getFitRes();
			q2_ = model_item_->model()->model_val->getCVRes();
			result_of_rand_test_ = model_item_->model()->model_val->getYRandResults();
			
			if(r2_!=-1 || q2_!=-1) // if some result was loaded
			{
				processResults();
				done_=1;
			}
		}
	}
}