File: FeatureSelection_test.C

package info (click to toggle)
ball 1.4.3~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 318,984 kB
  • sloc: cpp: 346,579; ansic: 4,097; python: 2,664; yacc: 1,778; lex: 1,099; xml: 964; sh: 688; sql: 316; awk: 118; makefile: 108
file content (103 lines) | stat: -rw-r--r-- 2,575 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include <BALLTestConfig.h>
#include <BALL/CONCEPT/classTest.h>

#include <BALL/QSAR/QSARData.h>
#include <BALL/QSAR/pcrModel.h>
#include <BALL/QSAR/featureSelection.h>

using namespace BALL;
using namespace BALL::QSAR;


START_TEST(Regression)

PRECISION(1E-5)

QSARData data;
std::multiset<int> activities;
activities.insert(0);
data.readSDFile(BALL_TEST_DATA_PATH(QSAR_test.sdf),activities,0,0);
data.centerData(true);
PCRModel pcr(data,0.95);
double cutoff = 0.001;


CHECK(RemoveColinearFeatures)
	FeatureSelection fs(pcr);
	fs.setQualityIncreaseCutoff(cutoff);
	double cor_threshold=0.95;
	fs.removeHighlyCorrelatedFeatures(cor_threshold);
	TEST_EQUAL(pcr.getDescriptorIDs()->size(),26);
	pcr.validation->crossValidation(5);
	double q2 = pcr.validation->getQ2();
	TEST_REAL_EQUAL(q2,0.653379);
	pcr.readTrainingData();
	pcr.train();
RESULT

CHECK(BackwardSelection)
	PCRModel pcr1(data);
	pcr1 = pcr; // copy model
	FeatureSelection fs(pcr1);
	fs.setQualityIncreaseCutoff(cutoff);
	fs.backwardSelection(5);
	TEST_EQUAL(pcr1.getDescriptorIDs()->size(),20);
	pcr1.validation->crossValidation(5);
	double q2 = pcr1.validation->getQ2();
	TEST_REAL_EQUAL(q2,0.718207);
RESULT

CHECK(StepwiseSelection)
	PCRModel pcr1(data,0.95);
	pcr1 = pcr; // copy model
	FeatureSelection fs(pcr1);
	fs.setQualityIncreaseCutoff(cutoff);
	fs.stepwiseSelection(5);
	TEST_EQUAL(pcr1.getDescriptorIDs()->size(),5);
	pcr1.validation->crossValidation(5);
	double q2 = pcr1.validation->getQ2();
	TEST_REAL_EQUAL(q2,0.69725);
RESULT


CHECK(ForwardSelection)
	PCRModel pcr1(data,0.95);
	pcr1 = pcr; // copy model
	FeatureSelection fs(pcr1);
	fs.setQualityIncreaseCutoff(cutoff);
	fs.forwardSelection(5);
	TEST_EQUAL(pcr1.getDescriptorIDs()->size(),5);
	pcr1.validation->crossValidation(5);
	double q2 = pcr1.validation->getQ2();
	TEST_REAL_EQUAL(q2,0.69725);
RESULT


CHECK(RemoveLowResponseCorrelation)
	PCRModel pcr1(data,0.95);
	pcr1 = pcr; // copy model
	FeatureSelection fs(pcr1);
	fs.setQualityIncreaseCutoff(cutoff);
	double cor_threshold=0.15;
	fs.removeLowResponseCorrelation(cor_threshold);
	TEST_EQUAL(pcr1.getDescriptorIDs()->size(),25);
	pcr1.validation->crossValidation(5);
	double q2 = pcr1.validation->getQ2();
	TEST_REAL_EQUAL(q2,0.635891);
RESULT

CHECK(TwinScan)
	PCRModel pcr1(data,0.95);
	pcr1 = pcr; // copy model
	FeatureSelection fs(pcr1);
	fs.setQualityIncreaseCutoff(cutoff);
	fs.twinScan(5);
	TEST_EQUAL(pcr1.getDescriptorIDs()->size(), 10);
	pcr1.validation->crossValidation(5);
	double q2 = pcr1.validation->getQ2();
	TEST_REAL_EQUAL(q2, 0.672368);
RESULT


END_TEST