File: LineSearch_test.C

package info (click to toggle)
ball 1.4.3~beta1-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 318,984 kB
  • sloc: cpp: 346,579; ansic: 4,097; python: 2,664; yacc: 1,778; lex: 1,099; xml: 964; sh: 688; sql: 316; awk: 118; makefile: 108
file content (327 lines) | stat: -rw-r--r-- 8,678 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/CONCEPT/classTest.h>

///////////////////////////

#include <BALL/MOLMEC/MINIMIZATION/lineSearch.h>

///////////////////////////

START_TEST(LineSearch)

/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////

using namespace BALL;

CHECK(LineSearch::takeStep(double &st_a, double &f_a, double &g_a, double &st_b, 
			double &f_b, double &g_b, double &stp, double f, double g, double minstp, double maxstp))
	LineSearch ls;
	
	// Check different cases by f(x) = -x^3 + 2x^2 - x - 1
	// This function has a minimum at 1/3 and a maximum at 1 and tends to -infinity for x->infinity
	
	// We also check every time if the interval bounds are set correctly.
	
	// Slight correction test: bracketed flag not set, but we set stp to almost the minimizer
	ls.setBracketedFlag(false);
	double st_a = 0.;
	double f_a = -1.;
	double g_a = -1.;
	double st_b = 1.;
	double f_b = 1.;
	double g_b = 0.; 
	double stp = 0.33333;
	double f = -1.148148147;
	double g = -.6667e-4;
	double minstp = 0.;
	double maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 0.33333)
	TEST_REAL_EQUAL(f_a, -1.148148147)
	TEST_REAL_EQUAL(g_a, -6.667e-05)
	TEST_REAL_EQUAL(st_b, 1.0)
	TEST_REAL_EQUAL(f_b, 1.0)
	TEST_REAL_EQUAL(g_b, 0.0)
	TEST_REAL_EQUAL(stp, 0.333363348343)
	TEST_EQUAL(ls.isBracketed(), false)
	
	// First case: f > f_a
	// Result: correct cubic step
	ls.setBracketedFlag(false);
	st_a = 0.1;
	f_a = -1.081;
	g_a = -0.63;
	st_b = 1.;
	f_b = -1.;
	g_b = 0.; 
	stp = 0.9;
	f = -1.009;
	g = 0.17;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 0.1)
	TEST_REAL_EQUAL(f_a, -1.081)
	TEST_REAL_EQUAL(g_a, -0.63)
	TEST_REAL_EQUAL(st_b, 0.9)
	TEST_REAL_EQUAL(f_b, -1.009)
	TEST_REAL_EQUAL(g_b, 0.17)
	TEST_REAL_EQUAL(stp, 0.333333333333)
	TEST_EQUAL(ls.isBracketed(), true)
	
	// Second case: f <= f_a but sgn(g) !=  sgn(g_a)
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.;
	f_b = -1.;
	g_b = 0.; 
	stp = 0.9;
	f = -1.009;
	g = 0.17;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 0.9)
	TEST_REAL_EQUAL(f_a, -1.009)
	TEST_REAL_EQUAL(g_a, 0.17)
	TEST_REAL_EQUAL(st_b, 0.0)
	TEST_REAL_EQUAL(f_b, -1.0)
	TEST_REAL_EQUAL(g_b, -1.0)
	TEST_REAL_EQUAL(stp, 0.333333333333)
	TEST_EQUAL(ls.isBracketed(), true)

	// Third case: |g| < |g_a| and f <= f_a and sgn(g) == sgn(g_a) 
	// AND the cubic (interpolation) tends to -infinity but its minimum is beyond stp
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.;
	f_b = -1.;
	g_b = 0.; 
	stp = 0.2;
	f = -1.128;
	g = -0.32;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 0.2)
	TEST_REAL_EQUAL(f_a, -1.128)
	TEST_REAL_EQUAL(g_a, -0.32)
	TEST_REAL_EQUAL(st_b, 1.0)
	TEST_REAL_EQUAL(f_b, -1.0)
	TEST_REAL_EQUAL(g_b, 0.0)
	TEST_REAL_EQUAL(stp, 0.333333333333)
	TEST_EQUAL(ls.isBracketed(), false)

	// Third case: |g| < |g_a| and f <= f_a and sgn(g) == sgn(g_a) 
	// AND the cubic (interpolation) tends to -infinity and its minimum is on this side of stp
	// (so stp has to be maxstp)
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.9;
	f_b = -2.539;
	g_b = -4.23; 
	stp = 1.1;
	f = -1.011;
	g = -0.23;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.1)
	TEST_REAL_EQUAL(f_a, -1.011)
	TEST_REAL_EQUAL(g_a, -0.23)
	TEST_REAL_EQUAL(st_b, 1.9)
	TEST_REAL_EQUAL(f_b, -2.539)
	TEST_REAL_EQUAL(g_b, -4.23)
	TEST_REAL_EQUAL(stp, 2.0)
	TEST_EQUAL(ls.isBracketed(), false)

	// Same case as above but now we force the step computation to
	// assume that a minimizer has already been bracketed
	ls.setBracketedFlag(true);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.9;
	f_b = -2.539;
	g_b = -4.23; 
	stp = 1.1;
	f = -1.011;
	g = -0.23;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.1)
	TEST_REAL_EQUAL(f_a, -1.011)
	TEST_REAL_EQUAL(g_a, -0.23)
	TEST_REAL_EQUAL(st_b, 1.9)
	TEST_REAL_EQUAL(f_b, -2.539)
	TEST_REAL_EQUAL(g_b, -4.23)
	TEST_REAL_EQUAL(stp, 1.42857142857)
	TEST_EQUAL(ls.isBracketed(), true)

	// Fourth case: f <= f_a, sgn(g) == sgn(g_a), |g| >= |g_a|
	// AND we force the step computation to assume that a minimizer could not have been bracketed so far
	// (so stp has to be maxstp in this case)
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.9;
	f_b = -2.539;
	g_b = -4.23; 
	stp = 1.5;
	f = -1.375;
	g = -1.75;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.5)
	TEST_REAL_EQUAL(f_a, -1.375)
	TEST_REAL_EQUAL(g_a, -1.75)
	TEST_REAL_EQUAL(st_b, 1.9)
	TEST_REAL_EQUAL(f_b, -2.539)
	TEST_REAL_EQUAL(g_b, -4.23)
	TEST_REAL_EQUAL(stp, 2.0)
	TEST_EQUAL(ls.isBracketed(), false)

	// Same case as above but now we force the step computation to
	// assume that a minimizer has already been bracketed (so a cubic should be taken).
	ls.setBracketedFlag(true);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 1.9;
	f_b = -2.539;
	g_b = -4.23; 
	stp = 1.5;
	f = -1.375;
	g = -1.75;
	minstp = 0.;
	maxstp = 2.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.5)
	TEST_REAL_EQUAL(f_a, -1.375)
	TEST_REAL_EQUAL(g_a, -1.75)
	TEST_REAL_EQUAL(st_b, 1.9)
	TEST_REAL_EQUAL(f_b, -2.539)
	TEST_REAL_EQUAL(g_b, -4.23)
	TEST_REAL_EQUAL(stp, 0.333333333333)
	TEST_EQUAL(ls.isBracketed(), true)


	// Now chek a few things we couldn't check so far.
	// We use the function f(x) = x^3 - 2x^2 - x - 1.
	// This function has a minimizer at 2/3 + sqrt(7)/3 (about 1.54858)
	// and tends to infinity for x->infinity

	// Third case, but the cubic (interpolation) tends to infinity
	// We force the step computation to assume that a minimizer could not have been bracketed
	// so far. In this case the quadratic step should be taken.
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 2.;
	f_b = -3.;
	g_b = 3.; 
	stp = 1.4;
	f = -3.576;
	g = -0.72;
	minstp = 0.;
	maxstp = 10.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.4)
	TEST_REAL_EQUAL(f_a, -3.576)
	TEST_REAL_EQUAL(g_a, -0.72)
	TEST_REAL_EQUAL(st_b, 2.0)
	TEST_REAL_EQUAL(f_b, -3.0)
	TEST_REAL_EQUAL(g_b, 3.0)
	TEST_REAL_EQUAL(stp, 5.0)
	TEST_EQUAL(ls.isBracketed(), false)

	// Same case as above but we force the step computation to assume that a 
	// minimizer has already been bracketed.
	ls.setBracketedFlag(true);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 2.;
	f_b = -3.;
	g_b = 3.; 
	stp = 1.4;
	f = -3.576;
	g = -0.72;
	minstp = 0.;
	maxstp = 10.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 1.4)
	TEST_REAL_EQUAL(f_a, -3.576)
	TEST_REAL_EQUAL(g_a, -0.72)
	TEST_REAL_EQUAL(st_b, 2.0)
	TEST_REAL_EQUAL(f_b, -3.0)
	TEST_REAL_EQUAL(g_b, 3.0)
	TEST_REAL_EQUAL(stp, 1.54858377035)
	TEST_EQUAL(ls.isBracketed(), true)

	// Two more examples where stp is not between st_a and st_b 
	// (to check cases when the quadratic (or the cubic) seems to be better.
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 2.;
	f_b = -3.;
	g_b = 3.; 
	stp = -1.4;
	f = -6.264;
	g = 10.48;
	minstp = 0.;
	maxstp = 10.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, -1.4)
	TEST_REAL_EQUAL(f_a, -6.264)
	TEST_REAL_EQUAL(g_a, 10.48)
	TEST_REAL_EQUAL(st_b, 0.0)
	TEST_REAL_EQUAL(f_b, -1.0)
	TEST_REAL_EQUAL(g_b, -1.0)
	TEST_REAL_EQUAL(stp, 1.54858377035)
	TEST_EQUAL(ls.isBracketed(), true)

	// Now the quadratic seems to be better (since the cubic step is not farther from
	// stp than the quadratic step)
	ls.setBracketedFlag(false);
	st_a = 0.;
	f_a = -1.;
	g_a = -1.;
	st_b = 2.;
	f_b = -3.;
	g_b = 3.; 
	stp = 15.;
	f = 2909.;
	g = 614.;
	minstp = 0.;
	maxstp = 10.;
	ls.takeStep(st_a, f_a, g_a, st_b, f_b, g_b, stp, f, g, minstp, maxstp);
	TEST_REAL_EQUAL(st_a, 0.0)
	TEST_REAL_EQUAL(f_a, -1.0)
	TEST_REAL_EQUAL(g_a, -1.0)
	TEST_REAL_EQUAL(st_b, 15.0)
	TEST_REAL_EQUAL(f_b, 2909.0)
	TEST_REAL_EQUAL(g_b, 614.0)
	TEST_REAL_EQUAL(stp, 0.793522654408)
	TEST_EQUAL(ls.isBracketed(), true)
RESULT

/////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////
END_TEST