1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_DATATYPE_CONTOURLINE_H
#define BALL_DATATYPE_CONTOURLINE_H
#ifndef BALL_COMMON_H
# include <BALL/common.h>
#endif
#ifndef BALL_DATATYPE_REGULARDATA2D_H
# include <BALL/DATATYPE/regularData2D.h>
#endif
#include <vector>
namespace BALL
{
// First I define some macros needed for the marching cube-algorithm.
// The names come from the number associated with the different corners of the square.
#define INTERPOL12 { \
vec = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x, act_cell_y)));\
d1 = from[act_cell_x + act_cell_y*(number_of_cells_x+1)];\
d2 = from[act_cell_x + 1 + act_cell_y*(number_of_cells_x+1)];\
vec2 = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x + 1, act_cell_y + 1)));\
slope = (d2 - d1) / (vec2.x - vec.x);\
vec.x += (threshold - d1)/slope;\
data_.push_back(vec);\
}
#define INTERPOL18 { \
vec = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x, act_cell_y)));\
d1 = from[act_cell_x + act_cell_y*(number_of_cells_x+1)];\
d2 = from[act_cell_x + (act_cell_y+1)*(number_of_cells_x+1)];\
vec2 = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x, act_cell_y+1)));\
slope = (d2 - d1) / (vec2.y - vec.y);\
vec.y += (threshold - d1)/slope;\
data_.push_back(vec);\
}
#define INTERPOL24 { \
vec = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x+1, act_cell_y)));\
d1 = from[act_cell_x+1 + act_cell_y*(number_of_cells_x+1)];\
d2 = from[act_cell_x+1 + (act_cell_y+1)*(number_of_cells_x+1)];\
vec2 = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x+1, act_cell_y+1)));\
slope = (d2 - d1) / (vec2.y - vec.y);\
vec.y += (threshold - d1)/slope;\
data_.push_back(vec);\
}
// is it vec.x += or vec.y += ...?
#define INTERPOL48 { \
vec = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x+1, act_cell_y+1)));\
d1 = from[act_cell_x+1 + (act_cell_y+2)*(number_of_cells_x+1)];\
d2 = from[act_cell_x + (act_cell_y+1)*(number_of_cells_x+1)];\
vec2 = from.getCoordinates(from.getClosestIndex(Vector2(act_cell_x, act_cell_y+1)));\
slope = (d2 - d1) / (vec2.x - vec.x);\
vec.x += (threshold - d1)/slope;\
data_.push_back(vec);\
}
/** This class is intended to store a single contour line generated from a RegularData2D - class.
\ingroup DatatypeMiscellaneous
*/
template <typename T>
class TContourLine
{
public:
/** @name Type definitions
*/
//@{
/** The point type.
This type is used to store points in the 2-d regularData.
*/
typedef Vector2 PointType;
/** The vector type.
This type is used to store the endpoints of the contour-line.
*/
typedef std::vector<PointType> VectorType;
//@}
/** @name Constructors and Destructors.
*/
//@{
/// Default constructor
TContourLine(T height = 0);
/// Copy constructor
TContourLine(const TContourLine& copyTContourLine);
/// Destructor
virtual ~TContourLine();
//@}
/// Creates a contour line from a given data set.
void createContourLine(TRegularData2D<T>& from);
/// Internal functions used for the marching cube-algorithm.
void interpol12();
void interpol18();
void interpol24();
void interpol48();
/** @name Assignment
*/
//@{
/// Assignment operator
const TContourLine& operator = (const TContourLine& assigTContourLine);
/// Clear method
virtual void clear();
//@}
/** @name Predicates
*/
//@{
/// Equality operator
bool operator == (const TContourLine& compTContourLine) const;
//@}
/** @name Accessors
*/
//@{
/** Return the next endpoint.
*/
bool getNextPoint(PointType &p);
/** Reset the counter.
*/
void resetCounter();
//@}
// private:
T height_;
VectorType data_;
typename VectorType::iterator it_;
Position index_;
};
/** Default type
*/
typedef TContourLine<float> ContourLine;
template <typename T>
TContourLine<T>::TContourLine(T height)
: height_(height),
index_(0)
{
}
template <typename T>
TContourLine<T>::~TContourLine()
{
}
template <typename T>
TContourLine<T>::TContourLine(const TContourLine<T>& from)
: height_(from.height_),
data_(from.data_),
it_(from.it_),
index_(from.index_)
{
}
template <typename T>
void TContourLine<T>::clear()
{
data_.clear();
it_=data_.begin();
index_ = 0;
}
template <typename T>
const TContourLine<T>& TContourLine<T>::operator = (const TContourLine<T>& data)
{
data_ = data.data_;
height_ = data.height_;
it_ = data.it_;
index_ = data.index_;
return *this;
}
template <typename T>
bool TContourLine<T>:: operator == (const TContourLine<T>& data) const
{
return ((height_ == data.height_)
&& (data_ == data.data_)
&& (it_ == data.it_)
&& (index_ == data.index_));
}
template <typename T>
void TContourLine<T>::createContourLine(TRegularData2D<T>& from)
{
// This function uses a "marching cubes"-style algorithm to determine the contour-lines.
//Size number_of_cells;
Size number_of_cells_x;
Size number_of_cells_y;
Position act_cell_x;
Position act_cell_y;
PointType vec, vec2;
double d1, d2, slope;
double threshold = height_;
number_of_cells_x = (Size) from.getSize().x - 1;
number_of_cells_y = (Size) from.getSize().y - 1;
for (act_cell_y = 0; act_cell_y < number_of_cells_y; act_cell_y++)
{
for (act_cell_x = 0; act_cell_x < number_of_cells_x; act_cell_x++)
{
// First we have to find out the topology of the actual square.
int topology = 0;
if (from[act_cell_x + act_cell_y * (number_of_cells_x+1)] > threshold)
{
topology |= 1;
}
if (from[act_cell_x + 1 + act_cell_y * (number_of_cells_x+1)] > threshold)
{
topology |= 2;
}
if (from[act_cell_x + 1 + (act_cell_y + 1)*(number_of_cells_x + 1)] > threshold)
{
topology |= 4;
}
if (from[act_cell_x + (act_cell_y + 1) * (number_of_cells_x + 1)] > threshold)
{
topology |= 8;
}
// now we can use this information to compute the contour-line.
switch (topology)
{
// no cut of contour-line here
case 0 :
case 15 : break;
// Line from upper left to lower right
case 1 :
case 14 : INTERPOL18
INTERPOL12
break;
case 4 :
case 11 : INTERPOL48
INTERPOL24
break;
// Line from upper right to lower left
case 2 :
case 13 : INTERPOL12
INTERPOL24
break;
case 8 :
case 7 : INTERPOL18
INTERPOL48
break;
// Line through the middle (upwards)
case 9 :
case 6 : INTERPOL12
INTERPOL48
break;
// Line through the middle (left to right)
case 3 :
case 12 : INTERPOL18
INTERPOL24
break;
// Two lines from upper right to lower left
case 10 : INTERPOL18
INTERPOL12
INTERPOL48
INTERPOL24
break;
// Two lines from upper left to lower right
case 5 : INTERPOL12
INTERPOL24
INTERPOL18
INTERPOL48
break;
};
}
}
index_ = 0;
it_ = data_.begin();
}
template <typename T>
bool TContourLine<T>::getNextPoint(typename TContourLine<T>::PointType &p)
{
if (index_ < data_.size())
{
p = *it_;
index_++;
it_++;
return true;
}
else
{
return false;
}
}
template <typename T>
void TContourLine<T>::resetCounter()
{
it_ = data_.begin();
index_ = 0;
}
}
#endif
|