1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_DATATYPE_CONTOURSURFACE_H
#define BALL_DATATYPE_CONTOURSURFACE_H
#ifndef BALL_COMMON_H
# include <BALL/common.h>
#endif
#ifndef BALL_DATATYPE_REGULARDATA3D_H
# include <BALL/DATATYPE/regularData3D.h>
#endif
#ifndef BALL_MATHS_SURFACE_H
# include <BALL/MATHS/surface.h>
#endif
#ifndef BALL_DATATYPE_HASHMAP_H
# include <BALL/DATATYPE/hashMap.h>
#endif
#include <vector>
namespace BALL
{
template<>
BALL_EXPORT HashIndex Hash(const std::pair<Position, Position>& p);
//
typedef Index FacetArray[256][12];
// function defined in contourSurface.C to precompute some tables.
BALL_EXPORT extern const FacetArray& getContourSurfaceFacetData(double threshold);
/** This class contains a contour surface.
Contour surfaces are created from 3D (volume) data sets, in general from
data sets store in \link RegularData3D RegularData3D \endlink using a
marching cube algorithm.
\ingroup DatatypeMiscellaneous
*/
template <typename T>
class TContourSurface
: public Surface
{
public:
/** @name Type definitions
*/
//@{
/**
*/
typedef std::pair<Position, Position> KeyType;
/** The point type.
This type is used to store points in the 3-d regularData.
*/
typedef Vector3 PointType;
/** The vector type.
This type is used to store the edge points of the contour-Surface.
*/
typedef std::vector<std::pair<PointType, std::pair<Position, Position> > > VectorType;
//@}
/** @name Constructors and Destructors.
*/
//@{
/// Default constructor
TContourSurface();
/// Constructor with threshold
TContourSurface(T threshold);
/// Copy constructor
TContourSurface(const TContourSurface& surface);
/// Constructor for TRegularData3D
TContourSurface(const TRegularData3D<T>& data, T threshold = 0.0);
/// Destructor
virtual ~TContourSurface();
//@}
/** @name Assignment
*/
//@{
/// Assignment operator
const TContourSurface& operator = (const TContourSurface<T>& surface);
/// Create a contour surface from a given data set.
const TContourSurface<T>& operator << (const TRegularData3D<T>& data);
/// Clear method
virtual void clear();
//@}
/** @name Predicates
*/
//@{
/// Equality operator
bool operator == (const TContourSurface<T>& surface) const;
//@}
protected:
/** A cube in the grid.
This class is used to extract information from the grid,
store the values of the eight corners of a cube, and
determine the topology and the triangles in the cube.
*/
class Cube
{
public:
Cube(const TRegularData3D<T>& grid)
: grid_(&grid),
current_position_(0),
ptr_(0),
spacing_(grid.getSpacing().x, grid.getSpacing().y, grid.getSpacing().z)
{
// Retrieve the number of points in the grid along the x- and y-axes.
Size nx = grid.getSize().x;
Size ny = grid.getSize().y;
// Compute the offsets in the grid for the eight
// corners of the cube (in absolute grid indices).
grid_offset_[0] = nx * ny;
grid_offset_[1] = 0;
grid_offset_[2] = 1;
grid_offset_[3] = 1 + nx * ny;
grid_offset_[4] = nx * ny + nx;
grid_offset_[5] = nx;
grid_offset_[6] = nx + 1;
grid_offset_[7] = nx * ny + nx + 1;
}
void setTo(Position p)
{
current_position_ = p;
ptr_ = &(const_cast<TRegularData3D<T>*>(grid_)->getData(current_position_));
for (Position i = 0; i < 8; i++)
{
values[i] = *(ptr_ + grid_offset_[i]);
}
}
inline Vector3 getOrigin() const
{
return grid_->getCoordinates(current_position_);
}
inline const Vector3& getSpacing() const
{
return spacing_;
}
inline Vector3 getCoordinates(Position index) const
{
return grid_->getCoordinates(index);
}
/// Return the absolute grid position for a given corner
inline Position getIndex(Position corner) const
{
return current_position_ + grid_offset_[corner];
}
void shift()
{
// Shift the cube by one along the x-axis.
current_position_++;
ptr_++;
// Keep the four old values for x = 1.
values[0] = values[3];
values[1] = values[2];
values[4] = values[7];
values[5] = values[6];
// Retrieve the four new values.
values[3] = *(ptr_ + grid_offset_[3]);
values[2] = *(ptr_ + grid_offset_[2]);
values[7] = *(ptr_ + grid_offset_[7]);
values[6] = *(ptr_ + grid_offset_[6]);
}
/// Compute the topology code for the current cube.
Position computeTopology(double threshold)
{
static const Position topology_modifier[8] = {1, 2, 4, 8, 16, 32, 64, 128};
// The topology is a bitvector constructed by ORing the
// bits corresponding to each of the inside/outside status of
// of each individual corner.
Position topology = 0;
for (Position i = 0; i < 8; i++)
{
topology |= ((values[i] > threshold) ? topology_modifier[i] : 0);
}
return topology;
}
// The values at the eight corners of the cube.
double values[8];
protected:
// A pointer to the grid.
const TRegularData3D<T>* grid_;
// The current position of the cube as an absolute index into the grid.
Position current_position_;
// The gridd offsets: what to add to current_index_ to get to the correct
// grid coordinate.
Position grid_offset_[8];
// A pointer into (nasty hack!) the grid itself. For speed's sake.
const T* ptr_;
// The spacing of the grid.
Vector3 spacing_;
};
///
void addTriangles_(Cube& cube, const FacetArray& facet_data);
///
void computeTriangles(Size topology, const TRegularData3D<T>& data);
/// The threshold separating inside and outside
T threshold_;
//
HashMap<std::pair<Position, Position>, Position> cut_hash_map_;
};
/// Default type
typedef TContourSurface<float> ContourSurface;
template <typename T>
TContourSurface<T>::TContourSurface()
: threshold_(0.0)
{
}
template <typename T>
TContourSurface<T>::TContourSurface(T threshold)
: threshold_(threshold)
{
}
template <typename T>
TContourSurface<T>::TContourSurface(const TRegularData3D<T>& data, T threshold)
: threshold_(threshold)
{
this->operator << (data);
}
template <typename T>
TContourSurface<T>::~TContourSurface()
{
}
template <typename T>
TContourSurface<T>::TContourSurface(const TContourSurface<T>& from)
: threshold_(from.threshold_)
{
}
template <typename T>
void TContourSurface<T>::clear()
{
Surface::clear();
cut_hash_map_.clear();
}
template <typename T>
const TContourSurface<T>& TContourSurface<T>::operator = (const TContourSurface<T>& data)
{
// Avoid self-assignment
if (&data != this)
{
threshold_ = data.threshold_;
}
return *this;
}
template <typename T>
bool TContourSurface<T>:: operator == (const TContourSurface<T>& data) const
{
return ((threshold_ == data.threshold_)
&& Surface::operator == (data.data_));
}
template <typename T>
const TContourSurface<T>& TContourSurface<T>::operator << (const TRegularData3D<T>& data)
{
// Clear the old stuff:
clear();
// Marching cube algorithm: construct a contour surface from
// a volume data set.
// Get the dimensions of the volume data set.
Vector3 origin = data.getOrigin();
Size number_of_cells_x = (Size)data.getSize().x;
Size number_of_cells_y = (Size)data.getSize().y;
Size number_of_cells_z = (Size)data.getSize().z;
// Precompute the facet data. This depends on the threshold!
const FacetArray& facet_data = getContourSurfaceFacetData(threshold_);
// We start in the left-front-bottom-most corner of the grid.
Position current_index = 0;
Cube cube(data);
for (Position curr_cell_z = 0; curr_cell_z < (number_of_cells_z - 1); curr_cell_z++)
{
// Determine the start position in the current XY plane.
current_index = curr_cell_z * number_of_cells_y * number_of_cells_x;
// Walk along the y-axis....
for (Position curr_cell_y = 0; curr_cell_y < (number_of_cells_y - 1); curr_cell_y++)
{
// Retrieve the cube from the current grid position (the first position along
// along the x-axis).
cube.setTo(current_index);
// Walk along the x-axis....
for (Position curr_cell_x = 0; (curr_cell_x < (number_of_cells_x - 2)); )
{
// Compute topology, triangles, and add those triangles to the surface.
addTriangles_(cube, facet_data);
// Done. cube.shift() will now shift the cube
// along the x-axis and efficently retrieve the four new values.
curr_cell_x++;
cube.shift();
}
// Add the triangles from the last cube position.
addTriangles_(cube, facet_data);
// Shift the cube by one along the y-axis.
current_index += number_of_cells_x;
}
}
// Normalize the vertex normals.
for (Position i = 0; i < normal.size(); i++)
{
try
{
normal[i].normalize();
}
catch (...)
{
}
}
// Return this (stream operator, for command chaining...)
return *this;
}
template <typename T>
void TContourSurface<T>::addTriangles_
(typename TContourSurface<T>::Cube& cube, const FacetArray& facet_data)
{
// Some static variables we need below -- since we will
// call this rather often, we would rather want to avoid
// to many ctor/dtor calls.
static Triangle t;
static std::pair<Position, Position> key;
static std::pair<Position, Position> indices;
// The indices of the corners of a cube's twelve edges.
static const Position edge_indices[12][2]
= {{1, 0}, {1, 2}, {2, 3}, {0, 3}, {5, 4}, {5, 6},
{6, 7}, {4, 7}, {0, 4}, {1, 5}, {2, 6}, {3, 7}
};
// The index (into Vector3) of the axis along which the
// current edged runs (0: x, 1: y, 2: z).
static const Position edge_axis[12]
= {2, 0, 2, 0, 2, 0, 2, 0, 1, 1, 1, 1};
// Retrieve some basic grid properties.
const Vector3& spacing = cube.getSpacing();
// The indices (into Surface::vertex) of the triangle
// under construction.
TVector3<Position> triangle_vertices;
// A counter for the number of vertices already in triangle_vertices
Size vertex_counter = 0;
// Compute the cube's topology
Position topology = cube.computeTopology(threshold_);
if (topology == 0)
{
return;
}
// Iterate over all 12 edges and determine whether
// there's a cut.
for (Position i = 0; i < 12; i++)
{
// facet_data_ defines whether there's a cut for
// a given topology and a given edge.
Index facet_index = facet_data[topology][i];
// There's a cut only for values larger than -1
if (facet_index != -1)
{
// There is a cut -- determine its position along the edge.
// The axis: x = 0, y = 1, z = 2 -- used as in index into Vector3.
Position edge = edge_axis[facet_index];
indices.first = edge_indices[facet_index][0];
indices.second = edge_indices[facet_index][1];
key.first = cube.getIndex(indices.first);
key.second = cube.getIndex(indices.second);
// Check whether we computed this cut already.
if (!cut_hash_map_.has(key))
{
// Compute the position of the cut.
// Get the position of the d1 point
Vector3 pos = cube.getCoordinates(key.first);
// Compute the position of the cut along the edge.
const double& d1 = cube.values[indices.first];
const double& d2 = cube.values[indices.second];
pos[edge] += ((double)threshold_ - d1) / (d2 - d1) * spacing[edge];
// Store it as a triangle vertex.
triangle_vertices[vertex_counter++] = vertex.size();
// Store the index of the vertex in the hash map under the
// indices of its grid points.
cut_hash_map_.insert(std::pair<std::pair<Position, Position>, Position>(key, (Size)vertex.size()));
// Create a vertex and a normal (the normal reamins empty for now).
vertex.push_back(pos);
static Vector3 null_normal(0.0, 0.0, 0.0);
normal.push_back(null_normal);
}
else
{
// This one we know already! Retrieve it from the hash map.
triangle_vertices[vertex_counter++] = cut_hash_map_[key];
}
// For every three vertices, create a new triangle.
if (vertex_counter == 3)
{
// Create a new triangle.
t.v1 = triangle_vertices.x;
t.v2 = triangle_vertices.y;
t.v3 = triangle_vertices.z;
triangle.push_back(t);
// We can start with the next one.
vertex_counter = 0;
// Compute the normals: add the triangle
// normals to each of the triangle vertices.
// We will average them out to the correct normals later.
Vector3 h1(vertex[t.v1] - vertex[t.v2]);
Vector3 h2(vertex[t.v3] - vertex[t.v2]);
Vector3 current_normal(h1.y * h2.z - h1.z * h2.y,
h1.z * h2.x - h2.z * h1.x,
h1.x * h2.y - h1.y * h2.x);
normal[t.v1] += current_normal;
normal[t.v2] += current_normal;
normal[t.v3] += current_normal;
}
}
}
}
}
#endif
|