File: regularData1D.h

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-11.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 239,928 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; javascript: 164; makefile: 88
file content (930 lines) | stat: -rw-r--r-- 28,052 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#ifndef BALL_DATATYPE_REGULARDATA1D_H
#define BALL_DATATYPE_REGULARDATA1D_H

#ifndef BALL_COMMON_H
#	include <BALL/common.h>
#endif

#ifndef BALL_SYSTEM_FILE_H
# include <BALL/SYSTEM/file.h>
#endif

#ifndef BALL_SYSTEM_BINARYFILEADAPTOR_H
# include <BALL/SYSTEM/binaryFileAdaptor.h>
#endif

#include <vector>
#include <iostream>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <cmath>

namespace BALL
{
	/**	A class to store regularaly spaced data.
			This class can is intended to hold regularly spaced, one-dimensional data sets.
			It might be useful to hold data sets like spectra, or precomputed function values. \par
			The two bounds (set with  \link setBoundaries setBoundaries \endlink ) designate an X-range with  \link getSize getSize \endlink 
			equally spaced values. The data can be accessed in the same way as data of an STL vector
			(i.e., using operator [] and iterators).
			 \par
			This class fulfills the STL <tt>Container</tt> and <tt>Unary Function</tt> requirements.
			
			\ingroup  RegularData
	*/
	template <typename ValueType>
	class TRegularData1D
	{
		public:
			
		BALL_CREATE(TRegularData1D<ValueType>)

		/**	@name Type definitions
		*/
		//@{

		/// The IndexType
		typedef Position IndexType;
		/// The type containing an STL vector of the corresponding ValueType
		typedef std::vector<ValueType>	VectorType;
		/// The coordinate type
		typedef double CoordinateType;
		/// A mutable iterator
		typedef typename std::vector<ValueType>::iterator Iterator;
		/// A constant iterator
		typedef typename std::vector<ValueType>::const_iterator ConstIterator;
		//@}

		//	STL compatibility types
		//
		typedef ValueType value_type;
		typedef typename std::vector<ValueType>::iterator iterator;
		typedef typename std::vector<ValueType>::const_iterator const_iterator;
		typedef typename std::vector<ValueType>::reference reference;
		typedef typename std::vector<ValueType>::const_reference const_reference;
		typedef typename std::vector<ValueType>::pointer pointer;
		typedef typename std::vector<ValueType>::difference_type difference_type;
		typedef typename std::vector<ValueType>::size_type size_type;

		/** @name Constructors and Destructors.
		*/
		//@{
			
		///	Default constructor.
		TRegularData1D();

		/**	Copy constructor
		 *  @throw Exception::OutOfMemory if the memory for the copy could not be allocated.
		 */
		TRegularData1D(const TRegularData1D& data);
	
		/** Detailed constructor.
		 *  @throw Exception::OutOfMemory if the memory for the grid could not be allocated.
		 */
		TRegularData1D(const CoordinateType& origin, const CoordinateType& dimension, const CoordinateType& spacing);

		/** This constructor sets origin to 0.0 and dimension to 1.0
		 *  @throw Exception::OutOfMemory if the memory for the grid could not be allocated.
		 */
		TRegularData1D(const IndexType& size);

		/** This constructor sets origin to 0.0 and dimension to 1.0
		 *  @throw Exception::OutOfMemory if the memory for the grid could not be allocated.
		 */
		TRegularData1D(const VectorType& data, const CoordinateType& origin = 0.0, const CoordinateType& dimension = 1.0);

		///	Destructor
		virtual ~TRegularData1D();

		///	Clear the contents
		virtual void clear();
		//@}


		/**	@name Assignment
		*/
		//@{

		/**	Assignment operator.
		 *	Copy the data and the boundaries.
		 *  @throw Exception::OutOfMemory if the memory for the copy could not be allocated. 
		 */
		TRegularData1D& operator = (const TRegularData1D<ValueType>& data);

		/**	Assignment from a <tt>vector</tt> of <tt>ValueType</tt>.
		 *	Copy the contents of the data without changing the boundaries.
		 *  @throw Exception::OutOfMemory if the memory for the copy could not be allocated. 
		 */
		TRegularData1D& operator = (const VectorType& data);

		//@}

		/**	@name Predicates
		*/
		//@{
		///	Equality operator
		bool operator == (const TRegularData1D& data) const;

		/// Inequality operator
		BALL_INLINE bool operator != (const TRegularData1D& data) const { return !this->operator == (data); }

		///	Empty predicate
		BALL_INLINE bool empty() const { return data_.empty(); }

		/// Test whether a point is inside the grid
		bool isInside(const CoordinateType& x) const;
		//@}

		/**	@name	Iterators
		*/
		//@{
		///
		BALL_INLINE ConstIterator begin() const { return data_.begin(); }
		///
		BALL_INLINE ConstIterator end() const { return data_.end(); }
		///
		BALL_INLINE Iterator begin() { return data_.begin(); }
		///
		BALL_INLINE Iterator end() { return data_.end(); }
		//@}

		/**	@name	Accessors
		*/
		//@{	
		
		// STL compatibility
		BALL_INLINE size_type size() const { return data_.size(); }
		BALL_INLINE size_type max_size() const { return data_.max_size(); }
		BALL_INLINE void swap(TRegularData1D<ValueType>& data) { std::swap(*this, data); }

		/** Return a nonmutable reference to a specific data element.
		 *	This is the range checking version of <tt>operator []</tt>.
		 *  @throw Exception::OutOfGrid if index is outside the grid boundaries
		 */
		const ValueType& getData(const IndexType& index) const;

		/** Return a mutable reference to a specific data element.
		 *  This is the range checking version of <tt>operator []</tt>.
		 *  @throw Exception::OutOfGrid if index is outside the grid boundaries
		 */
		ValueType& getData(const IndexType& index);

		/**	Constant random access operator.
				@note No range checking is done. For a more robust version, please
				use getData.
		*/	
		const ValueType& operator [] (const IndexType& index) const { return data_[index]; }
			
		/**	Mutable random access operator.
				@note No range checking is done. For a more robust version, please
				use getData.
		*/	
		ValueType& operator [] (const IndexType& index) { return data_[index]; }
		
		/**	Function operator.
				This operator allows the use of a TRegularData1D instance
				as a unary function. As required by the STL <tt>Unary Function</tt>
				concept, the argument <tt>x</tt> is required to be within the
				correct range. A more robust (range-checking) version of 
				this operator is implemented as \link getInterpolatedValue 
				getInterpolatedValue \endlink.
		*/
		ValueType operator () (const CoordinateType& x) const;

		/** Return the linearly interpolated value of the surrounding two grid points.
		 *	This method first performs a range check for the argument <tt>x</tt>
		 *  and then calls <tt>operator () (x)</tt> to determine an interpolated
		 *	value at that position.
		 *  @throw Exception::OutOfGrid if x is outside the grid boundaries
		*/
		ValueType getInterpolatedValue(const CoordinateType& x) const;
			
    /** Return the indices of the grid points to the left and to the right of a point.
     *  @param x a point inside the grid
     *  @param lower  index of the grid point to the left
     *  @param upper  index of the grid point to the right
     *  @throw Exception::OutOfGrid if the point is outside the grid boundaries
    */
		void getEnclosingIndices(const CoordinateType& x, Position& lower, Position& upper) const;

    /** Return the data at the grid points to the left and to the right of a point.
     *  @throw Exception::OutOfGrid if the point is outside the grid boundaries
     *  @see getEnclosingIndices
		 */
		void getEnclosingValues(const CoordinateType& x, ValueType& lower, ValueType& upper) const;

    /** Return the exact coordinates of a grid point.
     *  @return     CoordinateType
     *  @exception  Exception::OutOfGrid if the point is outside the grid boundaries
     */
    CoordinateType getCoordinates(const IndexType& index) const;

		/** Return the index of the closest grid point.
		 *	This method first performs a range check for the argument <tt>x</tt>
		 *	and then returns the index of the closest grid point to the left or
		 *	right of <tt>x</tt>.
     *  @exception  Exception::OutOfGrid if the point is outside the grid boundaries
		*/
		IndexType getClosestIndex(const CoordinateType& x) const;
			
		/** Return the index of the grid point with the next lowest coordinate.
		 *	This method first performs a range check for the argument <tt>x</tt>
		 *	and then returns the index of the closest grid point to the left (i.e. with a lesser coordinate)
		 *	of <tt>x</tt>.
     *  @exception  Exception::OutOfGrid if the point is outside the grid boundaries
		 */
		IndexType getLowerIndex(const CoordinateType& x) const;
			
		/** Return a nonmutable reference to the closest non-interpolated value.
		 *	This method first performs a range check for the argument <tt>x</tt>
		 *	and then returns the value of the closest data point to the left or
		 *	right of <tt>x</tt>.
     *  @exception  Exception::OutOfGrid if the point is outside the grid boundaries
		 */
		const ValueType& getClosestValue(const CoordinateType& x) const;
			
		/** Return a mutable reference to the closest non-interpolated value.
		 *	This method first performs a range check for the argument <tt>x</tt>
		 *	and then returns the value of the closest data point to the left or
		 *	right of <tt>x</tt>.
     *  @exception  Exception::OutOfGrid if the point is outside the grid boundaries
		 */
		ValueType& getClosestValue(const CoordinateType& x);
			
		///	Return the number of points in the data set.
		BALL_INLINE IndexType getSize() const { return (IndexType)data_.size(); }

		/**	Return the origin of the data.
				The origin represents the coordinate of the very first
			(leftmost) element, i.e. <tt>data_[0]</tt>.
		*/
		BALL_INLINE const CoordinateType& getOrigin() const { return origin_; }
		
		/**	Return the spacing of the data.
				The spacing corresponds to the distance between two adjacent
				data elements.
		*/
		BALL_INLINE const CoordinateType& getSpacing() const {	return spacing_; }
					
		/**	Set the origin of the data.
		*/
		BALL_INLINE void setOrigin(const CoordinateType& origin) { origin_ = origin; }

		/**	Return the dimension of the data.
				The dimension represents the length of the data vector.
				Hence, the coordinate of the rightmost element, <tt>data_[getSize() - 1]</tt>
				is the origin plus the dimension (<tt>getOrigin() + getDimension()</tt>).
		*/
		BALL_INLINE const CoordinateType& getDimension() const { return dimension_; }

		/**	Set the dimension of the data.
				This will affect neither the origin of the data, nor the number of
				elements stored (in contrast to \link resize() resize() \endlink).
				It will just store the appropriate scaling factor and affect the spacing.
		*/
		BALL_INLINE void setDimension(const CoordinateType& dimension) { dimension_ = dimension; }

		/**	Resize the data.
		 *	If <tt>new_size</tt> is larger than the current size, the data 
		 *	<tt>vector</tt> is extended to the new size and filled with default
		 *	constructed items of type <tt>ValueType</tt>. Resizing to a value lesser than
		 *	the current size truncates the vector.  
		 *	\par
		 *	The boundaries are adapted and the positions of the retained items
		 *	fixed, i.e.  the dimension is increased or decreased proportionally
		 *	while the origin remains unchanged.
		 *	@param new_size the new size
		 *	@throw Exception::OutOfMemory if the memory for the resized grid could not be allocated
		 */
		void resize(const IndexType& size);

		/**	Rescale the data.
		 *	Keep the current boundaries of the data and reinterpolate
		 *	the data to reflect the new size. To create a data set of <tt>new_size</tt>
		 *	data points, the data is interpolated linearly at the new data points from
		 *	the closest points in the old data set.
		 *	
		 *	@param new_size the new data set size
		 *	@throw Exception::OutOfMemory if the memory for the resized grid could not be allocated
		 */
		void rescale(const IndexType& new_size);

		/** Calculate the mean of the dataset
		 		@return ValueType
		*/
		ValueType calculateMean() const;
		
		/** Calculate the standard deviation of the dataset
		 		@return ValueType
		*/
		ValueType calculateSD() const;
		
		/** Write the grid contents in a (non-portable) binary format.
		 *	@throw FileNotFound thrown if the file could not be written
		*/
		void binaryWrite(const String& filename) const;

		/** Read the grid contents from a file written with binaryWrite
		 *	@throw FileNotFound thrown if file doesnt exists or could not be read
		 */
		void binaryRead(const String& filename);
		//@}
	
		
		protected:
		///	The origin of the data set
		CoordinateType	origin_;

		///	The dimension (length)
		CoordinateType	dimension_;

		///	The spacing
		CoordinateType	spacing_;

		///	The data
		VectorType			data_;

		/// The block data type for reading and writing binary data
		typedef struct { ValueType bt[1024]; } BlockValueType;
	};

	/**	Default type
	*/
	typedef TRegularData1D<float> RegularData1D;
	
	template <typename ValueType>
	TRegularData1D<ValueType>::TRegularData1D()
		:	origin_(0.0),
			dimension_(0.0),
			spacing_(1.0),
			data_()
	{
	}

	template <typename ValueType>
	TRegularData1D<ValueType>::~TRegularData1D()
	{
	}

	template <typename ValueType>
	TRegularData1D<ValueType>::TRegularData1D(const TRegularData1D<ValueType>& data)
		:	origin_(data.origin_),
			dimension_(data.dimension_),
			spacing_(data.spacing_),
			data_()
	{
		// Try to catch allocation errors and rethrow them as OutOfMemory
		try
		{
			data_ = data.data_;
		}
		catch (std::bad_alloc&)
		{
			throw Exception::OutOfMemory(__FILE__, __LINE__, data.size() * sizeof(ValueType));
		}
	}

	template <typename ValueType>
	TRegularData1D<ValueType>::TRegularData1D
		(const typename TRegularData1D<ValueType>::CoordinateType& origin, 
		 const typename TRegularData1D<ValueType>::CoordinateType& dimension, 
		 const typename TRegularData1D<ValueType>::CoordinateType& spacing)
		: origin_(origin),
			dimension_(dimension),
			spacing_(spacing),
			data_()
	{
		// Determine the size of the vector
		size_type size = (size_type)(dimension_ / spacing_ + 1.0);

		// Try to catch allocation errors and rethrow them as OutOfMemory
		try
		{
			data_.resize(size);
		}
		catch (std::bad_alloc&)
		{
			throw Exception::OutOfMemory(__FILE__, __LINE__, size * sizeof(ValueType));
		}
	}
			
	template <typename ValueType>
	TRegularData1D<ValueType>::TRegularData1D
		(const typename TRegularData1D<ValueType>::VectorType& data, 
		 const typename TRegularData1D<ValueType>::CoordinateType& origin, 
		 const typename TRegularData1D<ValueType>::CoordinateType& dimension)
		: origin_(origin),
			dimension_(dimension),
			spacing_(dimension / ((double)data.size()-1)),
			data_()
	{
		// Try to catch allocation errors and rethrow them as OutOfMemory
		try
		{
			data_ = data;
		}
		catch (std::bad_alloc&)
		{
			throw Exception::OutOfMemory(__FILE__, __LINE__, data.size() * sizeof(ValueType));
		}
	}


  template <class ValueType>
  TRegularData1D<ValueType>::TRegularData1D
    (const typename TRegularData1D<ValueType>::IndexType& size)
    : origin_(0.0),
      dimension_(1.0),
			data_()
  {
    // Compute the grid spacing
    spacing_ = dimension_ / (double)(size - 1);

    try
    {
      data_.resize(size);
		}
    catch (std::bad_alloc&)
    {
      data_.resize(0);
      throw Exception::OutOfMemory(__FILE__, __LINE__, size * sizeof(ValueType));
		}
	}

	template <typename ValueType>
	void TRegularData1D<ValueType>::clear()
	{
		// iterate over the data and reset all values to their default
		// boundaries and vector size remain unchanged
		static ValueType default_value = ValueType();
		std::fill(data_.begin(), data_.end(), default_value);
	}

	template <typename ValueType>
	TRegularData1D<ValueType>& TRegularData1D<ValueType>::operator = (const TRegularData1D<ValueType>& rhs)
	{
		// copy all members...
		origin_ = rhs.origin_;
		dimension_ = rhs.dimension_;
		spacing_ = rhs.spacing_;
		try 
		{
			data_ = rhs.data_;
		}
		catch (std::bad_alloc&)
		{
			data_.resize(0);
			throw Exception::OutOfMemory(__FILE__, __LINE__, rhs.size() * sizeof(ValueType));
		}

		return *this;
	}

	template <typename ValueType>
	TRegularData1D<ValueType>& TRegularData1D<ValueType>::operator = (const VectorType& rhs)
	{
		// Copy the data. The boundaries remain unchanged.
		try 
		{
			data_ = rhs;
		}
		catch (std::bad_alloc&)
		{
			data_.resize(0);
			throw Exception::OutOfMemory(__FILE__, __LINE__, rhs.size() * sizeof(ValueType));
		}
		
		return *this;
	}

	template <typename ValueType>
	bool TRegularData1D<ValueType>::operator == (const TRegularData1D<ValueType>& data) const
	{
		return (origin_ == data.origin_ 
						&& dimension_ == data.dimension_ 
						&& data_ == data.data_);
	}

	template <class ValueType>
	BALL_INLINE
	bool TRegularData1D<ValueType>::isInside(const typename TRegularData1D<ValueType>::CoordinateType& r) const
  {
    return ((r >= origin_) && (r <= (origin_ + dimension_)));
	}

	template <typename ValueType>
	BALL_INLINE
	const ValueType& TRegularData1D<ValueType>::getData(const IndexType& index) const
	{
		if (index >= data_.size())
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		return data_[index];
	}
		
	template <typename ValueType>
	BALL_INLINE
	ValueType& TRegularData1D<ValueType>::getData(const IndexType& index)
	{
		if (index >= data_.size())
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		return data_[index];
	}
		
	template <typename ValueType>
	void TRegularData1D<ValueType>::getEnclosingIndices
		(const typename TRegularData1D<ValueType>::CoordinateType& x,
		 Position& lower, Position& upper) const
	{
		if (!isInside(x) || (data_.size() < 2))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		lower = (Position)std::floor((x - origin_) / spacing_);
		if (lower == data_.size() - 1)
		{
			// If we are on the right most data point, we cannot interpolate to the right!
			lower = data_.size() - 2;
		}
		upper = lower + 1;
	}

	template <typename ValueType>
	void TRegularData1D<ValueType>::getEnclosingValues
		(const typename TRegularData1D<ValueType>::CoordinateType& x,
		 ValueType& lower, ValueType& upper) const
	{
		Position lower_index;
		Position upper_index;
		getEnclosingIndices(x, lower_index, upper_index);
		lower = data_[lower_index];
		upper = data_[upper_index];
	}

	template <typename ValueType>
	BALL_INLINE
	ValueType TRegularData1D<ValueType>::getInterpolatedValue(const CoordinateType& x) const
	{
		if (!isInside(x))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		return operator () (x);
	}
			
	template <typename ValueType>
	BALL_INLINE
	typename TRegularData1D<ValueType>::CoordinateType TRegularData1D<ValueType>::getCoordinates
		(const typename TRegularData1D<ValueType>::IndexType& index) const
	{
		if ((index >= data_.size()) || (data_.size() == 0))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}

		return (CoordinateType)(origin_ + (double)index / ((double)data_.size()-1) * dimension_);
	}

	template <typename ValueType>
	BALL_INLINE
	typename TRegularData1D<ValueType>::IndexType TRegularData1D<ValueType>::getClosestIndex(const CoordinateType& x) const
	{
		if ((x < origin_) || (x > (origin_ + dimension_)))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}

		return (IndexType)(size_type)std::floor((x - origin_) / spacing_ + 0.5);
	}
			
	template <typename ValueType>
	BALL_INLINE
	typename TRegularData1D<ValueType>::IndexType TRegularData1D<ValueType>::getLowerIndex(const CoordinateType& x) const
	{
		if ((x < origin_) || (x > (origin_ + dimension_)))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}

		return (IndexType)(size_type)std::floor((x - origin_) / spacing_);
	}
			
	template <typename ValueType>
	BALL_INLINE
	const ValueType& TRegularData1D<ValueType>::getClosestValue(const CoordinateType& x) const
	{
		if ((x < origin_) || (x > (origin_ + dimension_)))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		
		// Round to the closest data point.
		size_type index = (size_type)std::floor((x - origin_) / spacing_ + 0.5);
		return data_[index];
	}
			
	template <typename ValueType>
	BALL_INLINE
	ValueType& TRegularData1D<ValueType>::getClosestValue(const CoordinateType& x)
	{
		if ((x < origin_) || (x > (origin_ + dimension_)))
		{
			throw Exception::OutOfGrid(__FILE__, __LINE__);
		}
		
		// Round to the closest data point.
		size_type index = (size_type)std::floor((x - origin_) / spacing_ + 0.5);
		return data_[index];
	}
			
	template <typename ValueType>
	BALL_INLINE
	ValueType TRegularData1D<ValueType>::calculateMean() const
	{
		IndexType data_points	= this->getSize();
		ValueType mean = 0;
		for (IndexType i = 0; i < data_points; i++)
		{
		  mean += data_[i];
		}
		mean /= data_points;
		return mean;
	}
	
	template <typename ValueType>
	BALL_INLINE
	ValueType TRegularData1D<ValueType>::calculateSD() const
	{
		IndexType data_points	= this->getSize();
		ValueType stddev = 0;
		ValueType mean = this->calculateMean();
		for (IndexType i = 0; i < data_points; i++)
		{
			stddev += (pow(data_[i]-mean,2));
		}
		stddev /= (data_points-1);
		stddev = sqrt(stddev);
		return stddev;
	}
		
	template <typename ValueType>
	BALL_INLINE
	ValueType TRegularData1D<ValueType>::operator () (const CoordinateType& x) const
	{
		size_type left_index = (size_type)std::floor((x - origin_) / spacing_);
		if (left_index == data_.size() - 1)
		{
			// If we are on the right most data point, we cannot interpolate to the right!
			return data_[data_.size() - 1];
		}
		
		// Interpolate between the point to the left and the point to the right.
		double d = 1.0 - (((x - origin_) - (double)left_index * spacing_) / spacing_);
		return data_[left_index] * d + (1.0 - d) * data_[left_index + 1];
	}
			
	template <typename ValueType>
	void TRegularData1D<ValueType>::resize
		(const typename TRegularData1D<ValueType>::IndexType& new_size)
	{
		// Rescale dimension to the new size.
		if (data_.size() > 0)
		{
			dimension_ *= (double)new_size / (double)data_.size();
		}

		// Try to resize the vactor and rethrow any bad_allocs.
		try
		{
			data_.resize(new_size);
		}
		catch (std::bad_alloc&)
		{
			// The resulting vector is empty and thus well-defined.
			data_.resize(0);
			throw Exception::OutOfMemory(__FILE__, __LINE__, new_size * sizeof(ValueType));
		}
	}
		
	template <typename ValueType>
	void TRegularData1D<ValueType>::rescale
		(const typename TRegularData1D<ValueType>::IndexType& new_size)
	{
		// if the new and the old size coincide: done.
		if (new_size == (IndexType)data_.size())
		{
			return;
		}

		// Catch any bad_allocs throw by vector::resize
		try
		{
			// if the data set is empty...
			if (data_.size() == 0)
			{
				// ...there's nothing to do: a resize was requested
				data_.resize(new_size);
				return;
			}
			
			// if the data set contains only a single value,
			// we fill everything with this value
			if ((data_.size() == 1) && (new_size > 1))
			{
				ValueType old_value = data_[0];
				data_.resize(new_size);
				for (IndexType i = 1; i < new_size; i++)
				{
					data_[i] = old_value;
				}

				return;
			}

			// that's the default case: use linear interpolation
			// to determine the values at the new positions
			VectorType new_data(new_size);
			CoordinateType factor1 = (CoordinateType)data_.size() / (CoordinateType)new_size;
			CoordinateType factor2 = (CoordinateType)(data_.size() - 1) / (new_size - 1);

			for (Size i = 0; i < new_size; i++)
			{
				// determine the interval of the old data set we are currently in
				// ([old_idx, old_idx + 1])
				IndexType old_idx = (IndexType)((CoordinateType)i * factor1);

				// consider numerical inaccuracies...
				if (old_idx >= (data_.size() - 1))
				{
					old_idx = data_.size() - 2;
				}
				CoordinateType factor3 = (CoordinateType)i * factor2 - (CoordinateType)old_idx;
				new_data[i] = data_[old_idx] * (1 - factor3) + factor3 * data_[old_idx + 1];
			}

			// assign the new data
			data_ = new_data;
		}
		catch (std::bad_alloc&)
		{
			// Make sure we are in a well-defined state.
			data_.resize(0);
			throw Exception::OutOfMemory(__FILE__, __LINE__, new_size * sizeof(ValueType));			
		}
	}

	/** @name Stream I/O */
	//@{
	/// Output operator
	template <typename ValueType>
  std::ostream& operator << (std::ostream& os, const TRegularData1D<ValueType>& data)
  {
    // Write the grid origin, dimension, and number of grid points
    os << data.getOrigin() << std::endl
       << data.getOrigin() + data.getDimension() << std::endl
       << data.getSize() - 1 << std::endl;

    // Write the array contents.
    std::copy(data.begin(), data.end(), std::ostream_iterator<ValueType>(os, "\n"));
    return os;
	}

	/// Input operator
	template <typename ValueType>
	std::istream& operator >> (std::istream& is, TRegularData1D<ValueType>& grid)
  {
    typename TRegularData1D<ValueType>::CoordinateType origin;
    typename TRegularData1D<ValueType>::CoordinateType dimension;
    typename TRegularData1D<ValueType>::IndexType size;

    is >> origin;
    is >> dimension;
    is >> size;
		
		dimension -= origin;
		size++;

    grid.resize(size);
		grid.setOrigin(origin);
		grid.setDimension(dimension);

		std::copy(std::istream_iterator<ValueType>(is), 
							std::istream_iterator<ValueType>(), 
							grid.begin());
		//		std::copy_n(std::istream_iterator<ValueType>(is), grid.size(), grid.begin());
		
		return is;
	}

	template <typename ValueType>
	void TRegularData1D<ValueType>::binaryWrite(const String& filename) const
	{
		File outfile(filename, std::ios::out|std::ios::binary);
		if (!outfile.isValid()) 
		{
			throw Exception::FileNotFound(__FILE__, __LINE__, filename);
		}

		BinaryFileAdaptor<BlockValueType> adapt_block;
		BinaryFileAdaptor<ValueType>			adapt_single;
		
		// write all information we need to recreate the grid
		BinaryFileAdaptor<CoordinateType> adapt_coordinate;
		BinaryFileAdaptor<Size> 					adapt_size;

		adapt_size.setData(data_.size());
		outfile << adapt_size;
		
		adapt_coordinate.setData(origin_);
		outfile << adapt_coordinate;

		adapt_coordinate.setData(dimension_);
		outfile << adapt_coordinate;

		adapt_coordinate.setData(spacing_);
		outfile << adapt_coordinate;

		// we slide a window of size 1024 over our data
		Index window_pos = 0;
		while (((int)data_.size() - (1024 + window_pos)) >= 0 )
		{
			adapt_block.setData(*(BlockValueType*)&(data_[window_pos]));
			outfile << adapt_block;
			window_pos += 1024;
		}

		// now we have to write the remaining data one by one
		for (Size i = window_pos; i < data_.size(); i++)
		{
			adapt_single.setData(data_[i]);
			outfile << adapt_single;
		}

		// that's it. I hope...
		outfile.close();
	}

	template <typename ValueType>
	void TRegularData1D<ValueType>::binaryRead(const String& filename)
	{
		File infile(filename, std::ios::in|std::ios::binary);
		if (!infile.isValid()) throw Exception::FileNotFound(__FILE__, __LINE__, filename);
		
		BinaryFileAdaptor<BlockValueType> adapt_block;
		BinaryFileAdaptor<ValueType>		  adapt_single;
		
		// read all information we need to recreate the grid
		BinaryFileAdaptor<CoordinateType> adapt_coordinate;
		BinaryFileAdaptor<Size> 					adapt_size;

		infile >> adapt_size;
		Size new_size = adapt_size.getData();
	
		infile >> adapt_coordinate;
		origin_ = adapt_coordinate.getData();

		infile >> adapt_coordinate;
		dimension_ = adapt_coordinate.getData();

		infile >> adapt_coordinate;
		spacing_ = adapt_coordinate.getData();

		data_.resize(new_size);

		// we slide a window of size 1024 over our data
		Index window_pos = 0;
		
		while ( ((int)data_.size() - (1024 + window_pos)) >= 0 )
		{
			infile >> adapt_block;
			*(BlockValueType*)(&(data_[window_pos])) = adapt_block.getData();
			/*
			for (Size i=0; i<1024; i++)
			{
				data_[i+window_pos] = adapt_block.getData().bt[i];
			}
			*/
			window_pos+=1024;
		}

		// now we have to read the remaining data one by one
		for (Size i=window_pos; i<data_.size(); i++)
		{
			infile >> adapt_single;
			data_[i] = adapt_single.getData();
		}

		// that's it. I hope...
		infile.close();
	}
} // namespace BALL

#endif // BALL_DATATYPE_REGULARDATA1D_H