1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_DATATYPE_REGULARDATA3D_H
#define BALL_DATATYPE_REGULARDATA3D_H
#ifndef BALL_MATHS_VECTOR3_H
# include <BALL/MATHS/vector3.h>
#endif
#ifndef BALL_SYSTEM_FILE_H
# include <BALL/SYSTEM/file.h>
#endif
#ifndef BALL_SYSTEM_BINARYFILEADAPTOR_H
# include <BALL/SYSTEM/binaryFileAdaptor.h>
#endif
#ifndef BALL_MATHS_COMMON_H
# include <BALL/MATHS/common.h>
#endif
#include <iostream>
#include <fstream>
#include <iterator>
#include <algorithm>
namespace BALL
{
/** Three-dimensional grid class.
This class represents a three-dimensional
array. An instance of ValueType will be created
for each point of the grid upon instantiation of TRegularData3D and initialized
with its default value
\par
This class fulfills the STL <tt>Container</tt> and <tt>Unary Function</tt> requirements.
Iteration is along the x-axis first, then along the y-axis.
\par
A TRegularData3D instance can represent a non-orthogonal grid. In this case, a Matrix33
for the conversion to Cartesian coordinates and its inverse must be provided.
\ingroup RegularData
*/
template <typename ValueType>
class TRegularData3D
{
public:
BALL_CREATE(TRegularData3D<ValueType>)
/** @name Type Definitions
*/
//@{
/// The index type used to refer to a specific element in the grid (x-, y-, and z-index)
class IndexType
{
public:
inline IndexType() : x(0), y(0), z(0) {}
inline IndexType(Position p) : x(p), y(p), z(p) {}
inline IndexType(Position p, Position q, Position r) : x(p), y(q), z(r) {}
///
Position x;
///
Position y;
///
Position z;
};
/// The type containing an STL vector of the appropriate type
typedef std::vector<ValueType> VectorType;
/// The coordinate type
typedef TVector3<float> CoordinateType;
/// A mutable iterator
typedef typename std::vector<ValueType>::iterator Iterator;
/// A nonmutable iterator
typedef typename std::vector<ValueType>::const_iterator ConstIterator;
//@}
// STL compatibility types
//
typedef ValueType value_type;
typedef typename std::vector<ValueType>::iterator iterator;
typedef typename std::vector<ValueType>::const_iterator const_iterator;
typedef typename std::vector<ValueType>::reference reference;
typedef typename std::vector<ValueType>::const_reference const_reference;
typedef typename std::vector<ValueType>::pointer pointer;
typedef typename std::vector<ValueType>::difference_type difference_type;
typedef typename std::vector<ValueType>::size_type size_type;
/** @name Constructors and Destructors
*/
//@{
/** Default constructor.
* Creates a TRegularData3D object without allocating a grid.
*/
TRegularData3D();
/** Copy constructor.
* @throw Exception::OutOfMemory if the memory for the copy could not be allocated
*/
TRegularData3D(const TRegularData3D<ValueType>& grid);
/** Constructor for an orthogonal TRegularData3D.
* @throw Exception::OutOfMemory if the memory for the grid could not be allocated
*/
TRegularData3D(const CoordinateType& origin, const CoordinateType& dimension, const CoordinateType& spacing);
/** Constructor for a non-orthogonal TRegularData3D.
* @throw Exception::OutOfMemory if the memory for the grid could not be allocated
*/
TRegularData3D(const CoordinateType& origin, const CoordinateType& x_axis,
const CoordinateType& y_axis, const CoordinateType& z_axis, const IndexType& size);
/** Constructor for a standard orthogonal TRegularData3D.
* @throw Exception::OutOfMemory if the memory for the grid could not be allocated
*/
TRegularData3D
(const IndexType& size,
const CoordinateType& origin = CoordinateType(0.0),
const CoordinateType& dimension = CoordinateType(1.0));
/** Destructor.
*/
virtual ~TRegularData3D();
/** Clear method.
Delete the grid contents and resize it to zero.
*/
virtual void clear();
//@}
/** @name Assignment
*/
//@{
/** Assignment operator.
* Copy the data, the origin, and the dimension (spacing is copied implicitly as well).
* @throw Exception::OutOfMemory if the memory for the copy could not be allocated
*/
TRegularData3D& operator = (const TRegularData3D<ValueType>& data);
//@}
/** @name Predicates
*/
//@{
/** Equality operator.
Two point grids are equal if they have the same number of points in
all three dimensions, same origin, spacing and all array members
are identical.
*/
bool operator == (const TRegularData3D<ValueType>& grid) const;
/** Inequality operator.
*/
BALL_INLINE bool operator != (const TRegularData3D<ValueType>& grid) const { return !this->operator == (grid); }
/// Empty predicate
BALL_INLINE bool empty() const { return data_.empty(); }
/// Test if a given point is inside the grid.
bool isInside(const CoordinateType& r) const;
//@}
/// State whether grid is orthogonal or not.
BALL_INLINE bool isOrthogonal() const { return is_orthogonal_;}
/** @name Iterators
*/
//@{
///
BALL_INLINE ConstIterator begin() const { return data_.begin(); }
///
BALL_INLINE ConstIterator end() const { return data_.end(); }
///
BALL_INLINE Iterator begin() { return data_.begin(); }
///
BALL_INLINE Iterator end() { return data_.end(); }
//@}
/** @name Accessors
*/
//@{
// STL compatibility
BALL_INLINE size_type size() const { return data_.size(); }
BALL_INLINE size_type max_size() const { return data_.max_size(); }
BALL_INLINE void swap(TRegularData3D<ValueType>& grid) { std::swap(*this, grid); }
/// Get the full data
const vector<ValueType>& getData() const;
/** Return a nonmutable reference to a specific data element.
* This is the range checking version of <tt>operator []</tt>.
* @throw Exception::OutOfGrid if index is outside the grid boundaries
*/
const ValueType& getData(const IndexType& index) const;
/** Return a mutable reference to a specific data element.
* This is the range checking version of <tt>operator []</tt>.
* @throw Exception::OutOfGrid if index is outside the grid boundaries
*/
ValueType& getData(const IndexType& index);
/** Return a nonmutable reference to a specific data element.
* This is the range checking version of <tt>operator []</tt>.
* @throw Exception::OutOfGrid if index is outside the grid boundaries
*/
const ValueType& getData(Position index) const;
/** Return a mutable reference to a specific data element.
* This is the range checking version of <tt>operator []</tt>.
* @throw Exception::OutOfGrid if index is outside the grid boundaries
*/
ValueType& getData(Position index);
/** Nonmutable random access operator.
@note No range checking is done. For a more robust version, please
use getData.
*/
const ValueType& operator [] (const IndexType& index) const
{
return data_[index.x + size_.x * index.y + index.z * size_.x * size_.y];
}
/** Mutable random access operator.
@note No range checking is done. For a more robust version, please
use getData.
*/
ValueType& operator [] (const IndexType& index)
{
return data_[index.x + size_.x * index.y + index.z * size_.x * size_.y];
}
/** Nonmutable random access operator.
@note No range checking is done. For a more robust version, please
use getData.
*/
const ValueType& operator [] (Position index) const { return data_[index]; }
/** Mutable random access operator.
@note No range checking is done. For a more robust version, please
use getData.
*/
ValueType& operator [] (Position index) { return data_[index]; }
/** Function operator.
This operator allows the use of a TRegularData1D instance
as a unary function. As required by the STL <tt>Unary Function</tt>
concept, the argument <tt>x</tt> is required to be within the
correct range. A more robust (range-checking) version of
this operator is implemented as \link getInterpolatedValue
getInterpolatedValue \endlink.
\link getInterpolatedValue() getInterpolatedValue() \endlink.
@precondition getOrigin() <= x <= getOrigin() + getDimension()
*/
ValueType operator () (const CoordinateType& x) const;
/** Return the linearly interpolated value of the surrounding two grid points.
* This method first performs a range check for the argument <tt>x</tt>
* and then calls <tt>operator () (x)</tt> to determine an interpolated
* value at that position.
* @throw Exception::OutOfGrid if x is outside the grid boundaries
*/
ValueType getInterpolatedValue(const CoordinateType& x) const;
/** Return a nonmutable reference to the closest non-interpolated value.
* This method first performs a range check for the argument <tt>x</tt>
* and then returns the value of the closest data point to the left or
* right of <tt>x</tt>.
* @throw Exception::OutOfGrid if x is outside the grid boundaries
*/
const ValueType& getClosestValue(const CoordinateType& x) const;
/** Return a mutable reference to the closest non-interpolated value.
* This method first performs a range check for the argument <tt>x</tt>
* and then returns the value of the closest data point to the left or
* right of <tt>x</tt>.
* @throw Exception::OutOfGrid if x is outside the grid boundaries
*/
ValueType& getClosestValue(const CoordinateType& x);
/** Return the position of the grid point closest to the given vector.
* If there are multiple grid points with equal distance, the
* grid point with the lowest indices in x, y direction is returned.
* @throw Exception::OutOfGrid if the point is outside the grid
*/
IndexType getClosestIndex(const CoordinateType& v) const;
/** Return the position of the next grid point with coordinates smaller than the given vector.
* This yields the front lower left corner of the cube enclosing the specified position.
* @throw Exception::OutOfGrid if the point is outside the grid
*/
IndexType getLowerIndex(const CoordinateType& v) const;
/** Return the size of the grid.
This method yields the number of grid points in x- and y-direction.
Use \link size size \endlink to obtain the <em>total</em> number of
points in the grid.
*/
inline const IndexType& getSize() const { return size_; }
/** Return the origin of the data.
The origin represents the coordinate of the very first
(lower left) element, i.e. <tt>data_[0]</tt>.
*/
inline const CoordinateType& getOrigin() const { return origin_; }
/** Return the spacing of the data.
The spacing corresponds to the distance between two adjacent
data elements.
*/
const CoordinateType& getSpacing() const { return spacing_; }
/** Set the origin of the data.
*/
void setOrigin(const CoordinateType& origin) { origin_ = origin; }
/** Return the dimension of the data.
The dimension represents the length of the data vector.
Hence, the coordinate of the rightmost element, <tt>data_[getSize() - 1]</tt>
is the origin plus the dimension (<tt>getOrigin() + getDimension()</tt>).
*/
const CoordinateType& getDimension() const { return dimension_; }
/** Set the dimension of the data.
This will affect neither the origin of the data, nor the number of
elements stored (in contrast to \link resize() resize() \endlink).
It will just store the appropriate scaling factor and affect the spacing.
\par
Note: For non-orthogonal grids, the spacing cannot be correctly deduced and
will consequently not be changed.
*/
void setDimension(const CoordinateType& dimension)
{
dimension_ = dimension;
if (is_orthogonal_)
{
spacing_.x = dimension_.x / (double)(size_.x - 1);
spacing_.y = dimension_.y / (double)(size_.y - 1);
spacing_.z = dimension_.z / (double)(size_.z - 1);
}
}
/** Resize the data.
* If <tt>new_size</tt> is larger than the current size, the data
* <tt>vector</tt> is extended to the new size and filled with default
* constructed items of type <tt>ValueType</tt>. Resizing to a value lesser than
* the current size truncates the vector.
* \par
* The boundaries are adapted and the positions of the retained items
* fixed, i.e. the dimension is increased or decreased proportionally
* while the origin remains unchanged.
* \par
* Note: this function currently only works on orthogonal grids! For non-orthogonal
* data calls to resize are ignored.
* @param size the new size
* @throw Exception::OutOfMemory if the memory for the resized grid could not be allocated
*/
void resize(const IndexType& size);
/** Rescale the data.
* Keep the current boundaries of the data and reinterpolate
* the data to reflect the new size. To create a data set of <tt>new_size</tt>
* data points, the data is interpolated linearly at the new data points from
* the closest points in the old data set.
* \par
* Note: this function currently only works on orthogonal grids! For non-orthogonal
* data calls to rescale are ignored.
*
* @param new_size the new data set size
* @throw Exception::OutOfMemory if the memory for the resized grid could not be allocated
*/
void rescale(const IndexType& new_size);
/** Returns the exact coordinates of a grid point.
* @return CoordinateType
* @exception Exception::OutOfGrid if the point is outside the grid boundaries
*/
CoordinateType getCoordinates(const IndexType& index) const;
/** Returns the exact coordinates of a grid point.
* @return CoordinateType
* @exception Exception::OutOfGrid if the point is outside the grid boundaries
*/
CoordinateType getCoordinates(Position index) const;
/** Return the indices of the grid points of the enclosing box.
* This method calculates the grid box that contains the given vector
* and returns the indices of the grid points forming this box.
* The given point lies either in the box or is the lower left front edge of the box.
* @param vector a point inside the grid
* @param llf left lower front corner of the box
* @param rlf right lower front corner of the box
* @param luf left upper front corner of the box
* @param ruf right upper front corner of the box
* @param llb left lower back corner of the box
* @param rlb right lower back corner of the box
* @param lub left upper back corner of the box
* @param rub right upper back corner of the box
* @exception Exception::OutOfGrid if the point is outside the grid boundaries
*/
void getEnclosingIndices
(const CoordinateType& r,
Position& llf, Position& rlf, Position& luf, Position& ruf,
Position& llb, Position& rlb, Position& lub, Position& rub) const;
/** Return the data at the grid points of the enclosing box.
* @exception Exception::OutOfGrid if the point is outside the grid boundaries
* @see getEnclosingIndices
*/
void getEnclosingValues
(const CoordinateType& r,
ValueType& llf, ValueType& rlf, ValueType& luf, ValueType& ruf,
ValueType& llb, ValueType& rlb, ValueType& lub, ValueType& rub) const;
/** Calculate the mean of the dataset
@return ValueType
*/
ValueType calculateMean() const;
/** Calculate the standard deviation of the dataset
@return ValueType
*/
ValueType calculateSD() const;
/** Write the grid contents in a (non-portable) binary format.
* \par Note: this currently only works correctly for orthogonal grids.
* @throw Exception::FileNotFound thrown if the file could not be written
*/
void binaryWrite(const String& filename) const;
/**
* Writes out raw binary plus text header file.
* !!!WARNING!!! This method is defined only for float template parameters.
* If you try it to call it from any other specialization, it will give out
* compile error that the function has no body.
* @throw Exception::FileNotFound thrown if the file could not be written
*/
void binaryWriteRaw(const String& filename) const;
/** Read the grid contents from a file written with binaryWrite
* \par Note: this currently only works correctly for orthogonal grids.
* @throw Exception::FileNotFound thrown if file does not exist or could not be read
*/
void binaryRead(const String& filename);
//@}
protected:
/// map indices to Cartesian coordinates
const CoordinateType mapToCartesian_(CoordinateType r) const
{
Vector3 result;
r.x /= (size_.x - 1.);
r.y /= (size_.y - 1.);
r.z /= (size_.z - 1.);
result.x = mapping_[0] * r.x + mapping_[1] * r.y + mapping_[2] * r.z + origin_.x;
result.y = mapping_[3] * r.x + mapping_[4] * r.y + mapping_[5] * r.z + origin_.y;
result.z = mapping_[6] * r.x + mapping_[7] * r.y + mapping_[8] * r.z + origin_.z;
return result;
}
/// map Cartesian coordinates to indices (note: this does not yet convert the double values to Index)
const CoordinateType mapInverse_(CoordinateType r) const
{
r -= origin_;
Vector3 result;
result.x = inverse_mapping_[0] * r.x + inverse_mapping_[1] * r.y + inverse_mapping_[2] * r.z;
result.y = inverse_mapping_[3] * r.x + inverse_mapping_[4] * r.y + inverse_mapping_[5] * r.z;
result.z = inverse_mapping_[6] * r.x + inverse_mapping_[7] * r.y + inverse_mapping_[8] * r.z;
result.x *= (size_.x - 1);
result.y *= (size_.y - 1);
result.z *= (size_.z - 1);
return result;
}
/// The grid data
VectorType data_;
/// Origin of the grid (offset)
CoordinateType origin_;
/// Dimension of the grid
CoordinateType dimension_;
/// Grid spacing
CoordinateType spacing_;
/// The dimensions in grid points
IndexType size_;
/// The block data type for reading and writing binary data
typedef struct { ValueType bt[1024]; } BlockValueType;
/// A flag deciding whether the grid is orthogonal or not
bool is_orthogonal_;
/// mapping matrix and its inverse
std::vector<double> mapping_;
std::vector<double> inverse_mapping_;
};
/** Default type
*/
typedef TRegularData3D<float> RegularData3D;
// default constructor.
template <class ValueType>
TRegularData3D<ValueType>::TRegularData3D()
: data_(0),
origin_(0.0),
dimension_(0.0),
spacing_(1.0),
size_(0, 0, 0),
is_orthogonal_(true)
{
}
// copy constructor
template <class ValueType>
TRegularData3D<ValueType>::TRegularData3D
(const TRegularData3D<ValueType>& data)
: data_(),
origin_(data.origin_),
dimension_(data.dimension_),
spacing_(data.spacing_),
size_(data.size_),
is_orthogonal_(data.is_orthogonal_),
mapping_(data.mapping_),
inverse_mapping_(data.inverse_mapping_)
{
try
{
data_ = data.data_;
}
catch (std::bad_alloc&)
{
data_.resize(0);
throw Exception::OutOfMemory(__FILE__, __LINE__, data.data_.size() * sizeof(ValueType));
}
}
template <class ValueType>
TRegularData3D<ValueType>::TRegularData3D
(const typename TRegularData3D<ValueType>::IndexType& size,
const typename TRegularData3D<ValueType>::CoordinateType& origin,
const typename TRegularData3D<ValueType>::CoordinateType& dimension)
: data_(),
origin_(origin),
dimension_(dimension),
spacing_(0.0),
size_(size),
is_orthogonal_(true)
{
// Compute the grid spacing
spacing_.x = dimension_.x / (double)(size_.x - 1);
spacing_.y = dimension_.y / (double)(size_.y - 1);
spacing_.z = dimension_.z / (double)(size_.z - 1);
// Compute the number of grid points
size_type number_of_points = size_.x * size_.y * size_.z;
try
{
data_.resize(number_of_points);
}
catch (std::bad_alloc&)
{
data_.resize(0);
throw Exception::OutOfMemory(__FILE__, __LINE__, number_of_points * sizeof(ValueType));
}
}
template <class ValueType>
TRegularData3D<ValueType>::TRegularData3D
(const typename TRegularData3D<ValueType>::CoordinateType& origin,
const typename TRegularData3D<ValueType>::CoordinateType& dimension,
const typename TRegularData3D<ValueType>::CoordinateType& spacing)
: data_(),
origin_(origin),
dimension_(dimension),
spacing_(spacing),
size_(0),
is_orthogonal_(true)
{
// Compute the grid size
size_.x = (Size)(dimension_.x / spacing_.x + 0.5) + 1;
size_.y = (Size)(dimension_.y / spacing_.y + 0.5) + 1;
size_.z = (Size)(dimension_.z / spacing_.z + 0.5) + 1;
// Compute the number of grid points
size_type size = size_.x * size_.y * size_.z;
try
{
data_ .resize(size);
}
catch (std::bad_alloc&)
{
data_.resize(0);
throw Exception::OutOfMemory(__FILE__, __LINE__, size * sizeof(ValueType));
}
// Adjust the spacing -- dimension has precedence.
spacing_.x = dimension_.x / (double)(size_.x - 1);
spacing_.y = dimension_.y / (double)(size_.y - 1);
spacing_.z = dimension_.z / (double)(size_.z - 1);
}
template <class ValueType>
TRegularData3D<ValueType>::TRegularData3D
(const typename TRegularData3D<ValueType>::CoordinateType& origin,
const typename TRegularData3D<ValueType>::CoordinateType& x_axis,
const typename TRegularData3D<ValueType>::CoordinateType& y_axis,
const typename TRegularData3D<ValueType>::CoordinateType& z_axis,
const typename TRegularData3D<ValueType>::IndexType& new_size)
: data_(),
origin_(origin),
dimension_(x_axis+y_axis+z_axis),
spacing_(0.0),
size_(new_size),
is_orthogonal_(false)
{
// compute the spacing
spacing_.x = x_axis.getLength() / (new_size.x - 1.);
spacing_.y = y_axis.getLength() / (new_size.y - 1.);
spacing_.z = z_axis.getLength() / (new_size.z - 1.);
size_type size = size_.x * size_.y * size_.z;
try
{
data_.resize(size);
}
catch (std::bad_alloc&)
{
data_.resize(0);
throw Exception::OutOfMemory(__FILE__, __LINE__, size * sizeof(ValueType));
}
// prepare the mapping matrix and its inverse
mapping_.resize(9);
inverse_mapping_.resize(9);
mapping_[0] = x_axis.x; mapping_[1] = y_axis.x; mapping_[2] = z_axis.x;
mapping_[3] = x_axis.y; mapping_[4] = y_axis.y; mapping_[5] = z_axis.y;
mapping_[6] = x_axis.z; mapping_[7] = y_axis.z; mapping_[8] = z_axis.z;
// this is numerically instable and only works well for the "simple"
// cases. should be replaced by QR or an SVD
// just for readability
double a = mapping_[0]; double b = mapping_[1]; double c = mapping_[2];
double d = mapping_[3]; double e = mapping_[4]; double f = mapping_[5];
double g = mapping_[6]; double h = mapping_[7]; double i = mapping_[8];
double determinant = 1. / (a*(e*i - f*h) - b*(d*i - f*g) + c*(d*h - e*g));
inverse_mapping_[0] = determinant * (e*i - f*h);
inverse_mapping_[1] = determinant * (b*i - c*h);
inverse_mapping_[2] = determinant * (b*f - c*e);
inverse_mapping_[3] = determinant * (f*g - d*i);
inverse_mapping_[4] = determinant * (a*i - c*g);
inverse_mapping_[5] = determinant * (c*d - a*f);
inverse_mapping_[6] = determinant * (d*h - e*g);
inverse_mapping_[7] = determinant * (b*g - a*h);
inverse_mapping_[8] = determinant * (a*e - b*d);
}
template <class ValueType>
TRegularData3D<ValueType>::~TRegularData3D()
{
}
template <typename ValueType>
BALL_INLINE
TRegularData3D<ValueType>& TRegularData3D<ValueType>::operator =
(const TRegularData3D<ValueType>& rhs)
{
// Avoid self-assignment.
if (&rhs != this)
{
// Copy the coordinate-related attributes and
// the size.
origin_ = rhs.origin_;
dimension_ = rhs.dimension_;
spacing_ = rhs.spacing_;
size_ = rhs.size_;
is_orthogonal_ = rhs.is_orthogonal_;
mapping_ = rhs.mapping_;
inverse_mapping_ = rhs.inverse_mapping_;
// Copy the data itself and rethrow allocation exceptions.
try
{
data_ = rhs.data_;
}
catch (std::bad_alloc&)
{
data_.resize(0);
throw Exception::OutOfMemory(__FILE__, __LINE__, rhs.data_.size() * sizeof(ValueType));
}
}
return *this;
}
template <typename ValueType>
void TRegularData3D<ValueType>::resize(const typename TRegularData3D<ValueType>::IndexType& size)
{
if (is_orthogonal_)
{
// If the old size equals the new size, we're done.
if ((size.x == size_.x) && (size_.y == size.y) && (size_.z == size.z))
{
return;
}
// If the new grid is empty, this whole thing is quite easy.
if ((size.x == 0) || (size.y == 0) || (size.z == 0))
{
data_.resize(0);
dimension_.set(0.0, 0.0, 0.0);
return;
}
// Compute the new array size.
size_type new_size = (size_type)(size.x * size.y * size.z);
// Catch any bad_allocs thrown by vector::resize
try
{
// Create a new temporary array.
std::vector<ValueType> old_data(data_);
// Resize the data to its new size.
data_.resize(new_size);
// walk over the new grid and copy the old stuff back.
static ValueType default_value = (ValueType)0;
for (size_type i = 0; i < new_size; i++)
{
size_type x = i % size.x;
size_type y = (i % (size.x * size.y)) / size.x;
size_type z = i / (size.x * size.y);
if ((x >= size_.x) || (y >= size_.y) || (z >= size_.z))
{
data_[i] = default_value;
}
else
{
data_[i] = old_data[x + y * size_.x + z * size_.x * size_.y];
}
}
// Correct the grid dimension. Origin and spacing remain constant.
if ((size_.x != 0) && (size_.y != 0) && (size_.z != 0))
{
dimension_.x *= (double)size.x / (double)size_.x;
dimension_.y *= (double)size.y / (double)size_.y;
dimension_.z *= (double)size.z / (double)size_.z;
}
size_ = size;
}
catch (std::bad_alloc&)
{
throw Exception::OutOfMemory(__FILE__, __LINE__, new_size * (Size)sizeof(ValueType));
}
}
}
template <typename ValueType>
void TRegularData3D<ValueType>::rescale(const typename TRegularData3D<ValueType>::IndexType& size)
{
if (is_orthogonal_)
{
// If the old size equals the new size, we're done.
if ((size.x == size_.x) && (size_.y == size.y) && (size_.z == size.z))
{
return;
}
// If the new grid is empty, this whole thing is quite easy.
if ((size.x == 0) || (size.y == 0) || (size.z == 0))
{
data_.resize(0);
dimension_.set(0.0);
return;
}
// Compute the new array size.
size_type new_size = (size_type)(size.x * size.y * size.z);
// Catch any bad_allocs thrown by vector::resize
try
{
// Create a new temporary array.
TRegularData3D<ValueType> old_data(*this);
// Resize the data array to its new size.
data_.resize(new_size);
spacing_.x = dimension_.x / (double)(size.x - 1);
spacing_.y = dimension_.y / (double)(size.y - 1);
spacing_.z = dimension_.z / (double)(size.z - 1);
// Correct the grid size. Origin and dimension remain constant.
size_ = size;
// Walk over the new grid and copy the (interpolated) old stuff back.
for (size_type i = 0; i < data_.size(); i++)
{
try
{
data_[i] = old_data.getInterpolatedValue(getCoordinates(i));
}
catch (Exception::OutOfGrid&)
{
data_[i] = old_data.getClosestValue(getCoordinates(i));
}
}
}
catch (std::bad_alloc&)
{
throw Exception::OutOfMemory(__FILE__, __LINE__, new_size * (Size)sizeof(ValueType));
}
}
}
template <class ValueType>
BALL_INLINE
bool TRegularData3D<ValueType>::isInside(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
if (is_orthogonal_)
{
return !((r.x > (origin_.x + dimension_.x ))
|| (r.y > (origin_.y + dimension_.y))
|| (r.z > (origin_.z + dimension_.z))
|| (r.x < origin_.x) || (r.y < origin_.y) || (r.z < origin_.z));
}
else
{
// compute A^-1 * pos and see whether the indices are part of the grid
CoordinateType ri = mapInverse_(r);
ri.x = Maths::round(ri.x);
ri.y = Maths::round(ri.y);
ri.z = Maths::round(ri.z);
return !( (ri.x < 0) || (ri.y < 0) || (ri.z < 0)
|| (ri.x >= size_.x) || (ri.y >= size_.y) || (ri.z >= size_.z) );
}
}
template <class ValueType>
BALL_INLINE
const ValueType& TRegularData3D<ValueType>::getData
(const typename TRegularData3D<ValueType>::IndexType& index) const
{
size_type pos = index.x + index.y * size_.x + index.z * size_.x * size_.y;
if (pos >= data_.size())
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
return data_[pos];
}
template <class ValueType>
BALL_INLINE
const vector<ValueType>& TRegularData3D<ValueType>::getData() const
{
return data_;
}
template <typename ValueType>
BALL_INLINE
ValueType& TRegularData3D<ValueType>::getData
(const typename TRegularData3D<ValueType>::IndexType& index)
{
size_type pos = index.x + index.y * size_.x + index.z * size_.x * size_.y;
if (pos >= data_.size())
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
return data_[pos];
}
template <class ValueType>
BALL_INLINE
const ValueType& TRegularData3D<ValueType>::getData(Position index) const
{
if (index >= data_.size())
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
return data_[index];
}
template <class ValueType>
BALL_INLINE
ValueType& TRegularData3D<ValueType>::getData(Position index)
{
if (index >= data_.size())
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
return data_[index];
}
template <class ValueType>
BALL_INLINE
typename TRegularData3D<ValueType>::CoordinateType TRegularData3D<ValueType>::getCoordinates
(const typename TRegularData3D<ValueType>::IndexType& index) const
{
if ((index.x >= size_.x) || (index.y >= size_.y) || (index.z >= size_.z))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
if (is_orthogonal_)
{
CoordinateType r(origin_.x + index.x * spacing_.x,
origin_.y + index.y * spacing_.y,
origin_.z + index.z * spacing_.z);
return r;
}
else
{
CoordinateType r(index.x, index.y, index.z);
r = mapToCartesian_(r);
return r;
}
}
template <class ValueType>
BALL_INLINE
typename TRegularData3D<ValueType>::CoordinateType
TRegularData3D<ValueType>::getCoordinates(Position position) const
{
if (position >= data_.size())
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
Position x = (Position)(position % size_.x);
Position y = (Position)((position % (size_.x * size_.y))/ size_.x);
Position z = (Position)(position / (size_.x * size_.y));
if (is_orthogonal_)
{
return CoordinateType(origin_.x + (double)x * spacing_.x,
origin_.y + (double)y * spacing_.y,
origin_.z + (double)z * spacing_.z);
}
else
{
CoordinateType r(x,y,z);
r = mapToCartesian_(r);
return r;
}
}
template <typename ValueType>
BALL_INLINE
void TRegularData3D<ValueType>::getEnclosingIndices
(const typename TRegularData3D<ValueType>::CoordinateType& r,
Position& llf, Position& rlf, Position& luf, Position& ruf,
Position& llb, Position& rlb, Position& lub, Position& rub) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
// calculate the grid indices of the lower left front corner
// of the enclosing box
IndexType position;
if (is_orthogonal_)
{
position.x = (Position)((r.x - origin_.x) / spacing_.x);
position.y = (Position)((r.y - origin_.y) / spacing_.y);
position.z = (Position)((r.z - origin_.z) / spacing_.z);
}
else
{
CoordinateType pos = mapInverse_(r);
position.x = (Position) pos.x;
position.y = (Position) pos.y;
position.z = (Position) pos.z;
}
// calculate the (linear) indices of the eight
// box corners
llf = position.x + size_.x * position.y
+ size_.x * size_.y * position.z;
rlf = llf + 1;
luf = llf + size_.x;
ruf = luf + 1;
llb = llf + size_.x * size_.y;
rlb = llb + 1;
lub = llb + size_.x;
rub = lub + 1;
}
template <typename ValueType>
BALL_INLINE
void TRegularData3D<ValueType>::getEnclosingValues
(const typename TRegularData3D<ValueType>::CoordinateType& r,
ValueType& llf, ValueType& rlf, ValueType& luf, ValueType& ruf,
ValueType& llb, ValueType& rlb, ValueType& lub, ValueType& rub) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
// compute the eight grid indices forming the enclosing box
Position llf_idx, rlf_idx, luf_idx, ruf_idx, llb_idx, rlb_idx, lub_idx, rub_idx;
getEnclosingIndices(r, llf_idx, rlf_idx, luf_idx, ruf_idx, llb_idx, rlb_idx, lub_idx, rub_idx);
// retrieve the grid values
llf = data_[llf_idx];
rlf = data_[rlf_idx];
luf = data_[luf_idx];
ruf = data_[ruf_idx];
llb = data_[llb_idx];
rlb = data_[rlb_idx];
lub = data_[lub_idx];
rub = data_[rub_idx];
}
template <typename ValueType>
BALL_INLINE
ValueType TRegularData3D<ValueType>::getInterpolatedValue
(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
return operator () (r);
}
template <typename ValueType>
BALL_INLINE
ValueType TRegularData3D<ValueType>::operator ()
(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
Position x;
Position y;
Position z;
TVector3<double> r_0;
if (is_orthogonal_)
{
Vector3 h(r - origin_);
x = (Position)(h.x / spacing_.x);
y = (Position)(h.y / spacing_.y);
z = (Position)(h.z / spacing_.z);
while (x >= (size_.x - 1)) x--;
while (y >= (size_.y - 1)) y--;
while (z >= (size_.z - 1)) z--;
r_0.x = origin_.x + x*spacing_.x;
r_0.y = origin_.y + y*spacing_.y;
r_0.z = origin_.z + z*spacing_.z;
}
else
{
Vector3 pos = mapInverse_(r);
x = (Position) pos.x;
y = (Position) pos.y;
z = (Position) pos.z;
while (x >= (size_.x - 1)) x--;
while (y >= (size_.y - 1)) y--;
while (z >= (size_.z - 1)) z--;
// This can probably be done much faster...
Vector3 lower_pos(x,y,z);
lower_pos = mapToCartesian_(lower_pos);
r_0.x = lower_pos.x;
r_0.y = lower_pos.y;
r_0.z = lower_pos.z;
}
Position Nx = size_.x;
Position Nxy = size_.y * Nx;
Position l = x + Nx * y + Nxy * z;
double dx = 1. - ((double)(r.x - r_0.x) / spacing_.x);
double dy = 1. - ((double)(r.y - r_0.y) / spacing_.y);
double dz = 1. - ((double)(r.z - r_0.z) / spacing_.z);
return data_[l] * dx * dy * dz
+ data_[l + 1] * (1. - dx) * dy * dz
+ data_[l + Nx] * dx * (1. - dy) * dz
+ data_[l + Nx + 1] * (1. - dx) * (1. - dy) * dz
+ data_[l + Nxy] * dx * dy * (1. - dz)
+ data_[l + Nxy + 1] * (1. - dx) * dy * (1. - dz)
+ data_[l + Nxy + Nx] * dx * (1. - dy) * (1. - dz)
+ data_[l + Nxy + Nx + 1] * (1. - dx) * (1. - dy) * (1. - dz);
}
template <typename ValueType>
BALL_INLINE
typename TRegularData3D<ValueType>::IndexType TRegularData3D<ValueType>::getClosestIndex
(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
static IndexType position;
if (is_orthogonal_)
{
position.x = (Position)((r.x - origin_.x) / spacing_.x + 0.5);
position.y = (Position)((r.y - origin_.y) / spacing_.y + 0.5);
position.z = (Position)((r.z - origin_.z) / spacing_.z + 0.5);
}
else
{
Vector3 pos = mapInverse_(r);
position.x = (Position) Maths::round(pos.x);
position.y = (Position) Maths::round(pos.y);
position.z = (Position) Maths::round(pos.z);
}
return position;
}
template <typename ValueType>
BALL_INLINE
typename TRegularData3D<ValueType>::IndexType TRegularData3D<ValueType>::getLowerIndex
(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
static IndexType position;
if (is_orthogonal_)
{
position.x = (Position)((r.x - origin_.x) / spacing_.x);
position.y = (Position)((r.y - origin_.y) / spacing_.y);
position.z = (Position)((r.z - origin_.z) / spacing_.z);
}
else
{
Vector3 pos = mapInverse_(r);
position.x = (Position)pos.x;
position.y = (Position)pos.y;
position.z = (Position)pos.z;
}
return position;
}
template <typename ValueType>
BALL_INLINE
const ValueType& TRegularData3D<ValueType>::getClosestValue
(const typename TRegularData3D<ValueType>::CoordinateType& r) const
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
static IndexType position;
if (is_orthogonal_)
{
position.x = (Position)((r.x - origin_.x) / spacing_.x + 0.5);
position.y = (Position)((r.y - origin_.y) / spacing_.y + 0.5);
position.z = (Position)((r.z - origin_.z) / spacing_.z + 0.5);
}
else
{
static Vector3 pos = mapInverse_(r);
position.x = (Position) Maths::round(pos.x);
position.y = (Position) Maths::round(pos.y);
position.z = (Position) Maths::round(pos.z);
}
return operator [] (position);
}
template <typename ValueType>
BALL_INLINE
ValueType& TRegularData3D<ValueType>::getClosestValue
(const typename TRegularData3D<ValueType>::CoordinateType& r)
{
if (!isInside(r))
{
throw Exception::OutOfGrid(__FILE__, __LINE__);
}
static IndexType position;
if (is_orthogonal_)
{
position.x = (Position)((r.x - origin_.x) / spacing_.x + 0.5);
position.y = (Position)((r.y - origin_.y) / spacing_.y + 0.5);
position.z = (Position)((r.z - origin_.z) / spacing_.z + 0.5);
}
else
{
static Vector3 pos = mapInverse_(r);
position.x = (Position) Maths::round(pos.x);
position.y = (Position) Maths::round(pos.y);
position.z = (Position) Maths::round(pos.z);
}
return operator [] (position);
}
template <typename ValueType>
BALL_INLINE
ValueType TRegularData3D<ValueType>::calculateMean() const
{
Position data_points = (size_.x * size_.y * size_.z);
ValueType mean = 0;
for (Position i = 0; i < data_points; i++)
{
mean += data_[i];
}
mean /= data_points;
return mean;
}
template <typename ValueType>
BALL_INLINE
ValueType TRegularData3D<ValueType>::calculateSD() const
{
Position data_points = (size_.x * size_.y * size_.z);
ValueType stddev = 0;
ValueType mean = this->calculateMean();
for (Position i = 0; i < data_points; i++)
{
stddev += (pow(data_[i]-mean,2));
}
stddev /= (data_points-1);
stddev = sqrt(stddev);
return stddev;
}
template <typename ValueType>
void TRegularData3D<ValueType>::clear()
{
data_.resize(0);
origin_.set(0.0);
dimension_.set(0.0);
size_.x = 0;
size_.y = 0;
size_.z = 0;
spacing_.set(1.0);
is_orthogonal_ = true;
}
template <typename ValueType>
bool TRegularData3D<ValueType>::operator == (const TRegularData3D<ValueType>& grid) const
{
return ((origin_ == grid.origin_)
&& (dimension_ == grid.dimension_)
&& (size_.x == grid.size_.x)
&& (size_.y == grid.size_.y)
&& (size_.z == grid.size_.z)
&& (data_ == grid.data_)
&& (is_orthogonal_ == grid.is_orthogonal_));
}
template <typename ValueType>
void TRegularData3D<ValueType>::binaryWrite(const String& filename) const
{
File outfile(filename, std::ios::out|std::ios::binary);
if (!outfile.isValid()) throw Exception::FileNotFound(__FILE__, __LINE__, filename);
BinaryFileAdaptor< BlockValueType > adapt_block;
BinaryFileAdaptor< ValueType > adapt_single;
// TODO: check for endiannes and swap bytes accordingly
// write all information we need to recreate the grid
BinaryFileAdaptor<CoordinateType> adapt_coordinate;
BinaryFileAdaptor<Size> adapt_size;
adapt_size.setData(data_.size());
outfile << adapt_size;
adapt_coordinate.setData(origin_);
outfile << adapt_coordinate;
adapt_coordinate.setData(dimension_);
outfile << adapt_coordinate;
adapt_coordinate.setData(spacing_);
outfile << adapt_coordinate;
BinaryFileAdaptor<IndexType> adapt_index;
adapt_index.setData(size_);
outfile << adapt_index;
// we slide a window of size 1024 over our data
Index window_pos = 0;
while ( ((int)data_.size() - (1024 + window_pos)) >= 0 )
{
adapt_block.setData(* (BlockValueType*)&(data_[window_pos]));
outfile << adapt_block;
window_pos+=1024;
}
// now we have to write the remaining data one by one
for (Size i=window_pos; i<data_.size(); i++)
{
adapt_single.setData(data_[i]);
outfile << adapt_single;
}
// that's it. I hope...
outfile.close();
}
template <typename ValueType>
void TRegularData3D<ValueType>::binaryRead(const String& filename)
{
File infile(filename, std::ios::in|std::ios::binary);
if (!infile.isValid()) throw Exception::FileNotFound(__FILE__, __LINE__, filename);
BinaryFileAdaptor< BlockValueType > adapt_block;
BinaryFileAdaptor< ValueType > adapt_single;
// TODO: check for endiannes and swap bytes accordingly
// read all information we need to recreate the grid
BinaryFileAdaptor<CoordinateType> adapt_coordinate;
BinaryFileAdaptor<Size> adapt_size;
infile >> adapt_size;
Size new_size = adapt_size.getData();
infile >> adapt_coordinate;
origin_ = adapt_coordinate.getData();
infile >> adapt_coordinate;
dimension_ = adapt_coordinate.getData();
infile >> adapt_coordinate;
spacing_ = adapt_coordinate.getData();
BinaryFileAdaptor<IndexType> adapt_index;
infile >> adapt_index;
size_ = adapt_index.getData();
data_.resize(new_size);
// we slide a window of size 1024 over our data
Index window_pos = 0;
while ( ((int)data_.size() - (1024 + window_pos)) >= 0 )
{
infile >> adapt_block;
*(BlockValueType*)(&(data_[window_pos])) = adapt_block.getData();
/*
for (Size i=0; i<1024; i++)
{
data_[i+window_pos] = adapt_block.getData().bt[i];
}
*/
window_pos+=1024;
}
// now we have to read the remaining data one by one
for (Size i=window_pos; i<data_.size(); i++)
{
infile >> adapt_single;
data_[i] = adapt_single.getData();
}
// that's it. I hope...
infile.close();
}
/** @name Stream I/O */
//@{
/// Output operator
template <typename ValueType>
std::ostream& operator << (std::ostream& os, const TRegularData3D<ValueType>& grid)
{
// Write the grid origin, dimension, and number of grid points
os << grid.getOrigin().x << " " << grid.getOrigin().y << " " << grid.getOrigin().z
<< std::endl
<< grid.getOrigin().x + grid.getDimension().x << " "
<< grid.getOrigin().y + grid.getDimension().y << " "
<< grid.getOrigin().z + grid.getDimension().z
<< std::endl
<< grid.getSize().x - 1 << " " << grid.getSize().y - 1 << " " << grid.getSize().z - 1
<< std::endl;
// Write the array contents.
std::copy(grid.begin(), grid.end(), std::ostream_iterator<ValueType>(os, "\n"));
return os;
}
/// Input operator
template <typename ValueType>
std::istream& operator >> (std::istream& is, TRegularData3D<ValueType>& grid)
{
typename TRegularData3D<ValueType>::CoordinateType origin;
typename TRegularData3D<ValueType>::CoordinateType dimension;
typename TRegularData3D<ValueType>::IndexType size;
is >> origin.x >> origin.y >> origin.z;
is >> dimension.x >> dimension.y >> dimension.z;
is >> size.x >> size.y >> size.z;
dimension -= origin;
size.x++;
size.y++;
size.z++;
grid.resize(size);
grid.setOrigin(origin);
grid.setDimension(dimension);
std::copy(std::istream_iterator<ValueType>(is), std::istream_iterator<ValueType>(), grid.begin());
return is;
}
//@}
} // namespace BALL
#endif // BALL_DATATYPE_REGULARDATA3D_H
|