1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/NMR/shiftModel1D.h>
#include <BALL/NMR/shiftModel.h>
#include <BALL/KERNEL/PTE.h>
#include <BALL/KERNEL/bond.h>
using namespace std;
namespace BALL
{
ShiftModel1D::ShiftModel1D()
: ShiftModule(),
peaks_(),
origin_(),
dimension_(),
spacing_(),
type_(),
parameters_(),
system_(NULL),
valid_(false),
compute_shifts_(true)
{
// TODO: should we do this?
// registerStandardModules_();
}
ShiftModel1D::ShiftModel1D(const String& filename, SPECTRUM_TYPE st, bool compute_shifts)
: ShiftModule(),
peaks_(),
origin_(),
dimension_(),
spacing_(),
type_(st),
parameters_(filename),
system_(NULL),
valid_(false),
compute_shifts_(compute_shifts)
{
// TODO: should we do this?
//registerStandardModules_();
init_();
}
ShiftModel1D::ShiftModel1D(const String& filename,SPECTRUM_TYPE st, double origin, double dimension, double spacing, bool compute_shifts)
: ShiftModule(),
peaks_(),
origin_(origin),
dimension_(dimension),
spacing_(spacing),
type_(st),
parameters_(filename),
system_(NULL),
valid_(false),
compute_shifts_(compute_shifts)
{
//?? should we do this?
//registerStandardModules_();
init_();
}
ShiftModel1D::ShiftModel1D(const ShiftModel1D& model)
: ShiftModule(),
peaks_(model.peaks_),
origin_(model.origin_),
dimension_(model.dimension_),
spacing_(model.spacing_),
type_(model.type_),
parameters_(model.parameters_),
system_(NULL),
valid_(false),
compute_shifts_(model.compute_shifts_)
{
init_();
}
ShiftModel1D::~ShiftModel1D()
{
clear();
}
void ShiftModel1D::clear()
{
// model is invalid
valid_ = false;
// clear parameters
parameters_.clear();
peaks_.clear();
system_ = NULL;
}
bool ShiftModel1D::init_()
{
valid_ = true;
// return the current state
return valid_;
}
void ShiftModel1D::setFilename(const String& filename)
{
// set the parameter filename
parameters_.setFilename(filename);
// ...and initialize!
init_();
}
bool ShiftModel1D::isValid() const
{
return valid_;
}
bool ShiftModel1D::start()
{
peaks_.clear();
return true;
}
bool ShiftModel1D::finish()
{
if (!isValid())
{
return false;
}
if (!system_)
{
Log.info() << "No valid system found!" << std::endl;
return false;
}
// compute the shift model if necessary
if (compute_shifts_)
{
BALL::ShiftModel sm(parameters_.getFilename());
system_->apply(sm);
}
String element = "";
// Peter Bayer proposed as peak width
// for H 15Hz
// for N 10hz
// for C 5Hz
// peakwidth is meassured in ppm, since
// experiments were done in Hz, we convert the values
// according to the formular
//
// offset [Hz] = offset[ppm] * basic frequency
//
// for our prediction we assume a basic frequency of 700 MHz
float peakwidth = 0.0;
switch(type_)
{
case H:
case H_ON_BACKBONE:
element = "H";
//peakwidth = 0.02142; // Peter Bayers estimation
peakwidth = 0.0032; // this is the former BALL estimation
break;
case N:
case N_BACKBONE:
element = "N";
peakwidth = 0.01428;
break;
case C:
case C_BACKBONE:
element = "C";
peakwidth = 0.00714;
break;
}
int counter = 0;
if (element == "" )
return true;
for (BALL::ResidueIterator r_it = system_->beginResidue(); +r_it; ++r_it)
{
Atom* atom = NULL;
for (BALL::AtomIterator at_it = r_it->beginAtom(); +at_it; ++at_it)
{
if (hasType_(&(*at_it), type_))
{
counter++;
atom = &(*at_it);
// we have, get the shift
float shift = atom->getProperty(BALL::ShiftModule::PROPERTY__SHIFT).getFloat();
Peak1D peak;
float pos = shift;
peak.setPosition(pos);
peak.setWidth(peakwidth);
peak.setIntensity(peak.getIntensity()+1);
//setAtom();
peaks_.push_back(peak);
}
}
}
std::cout << "Number of considered atoms: "<< counter << std::endl;
return true;
}
Processor::Result ShiftModel1D::operator () (Composite& composite)
{
Processor::Result result = Processor::CONTINUE;
if (!system_ && RTTI::isKindOf<Atom>(&composite))
{
Atom* atom = dynamic_cast<Atom*>(&composite);
if (RTTI::isKindOf<System>(&atom->getRoot()))
{
system_ = dynamic_cast<System*>(&(atom->getRoot()));
}
}
return result;
}
void ShiftModel1D::operator >> (Spectrum1D& spectrum)
{
// this overwrites the parameter
spectrum = Spectrum1D(peaks_, origin_, dimension_, spacing_);
}
bool ShiftModel1D::hasType_(Atom* a, SPECTRUM_TYPE type)
{
bool ret = false;
switch (type)
{
case H:
if (a->getElement() == PTE[Element::H])
ret = true;
//if ( (a->getName().hasSubstring("HG")) || (a->getName().hasSubstring("HD"))
// || (a->getName().hasSubstring("HB")) || (a->getName().hasSubstring("HA"))
// || (a->getName().hasSubstring("HE")) || (a->getName().hasSubstring("HH"))
// || (a->getName().hasSubstring("HZ")))
// ret = true;
break;
case C:
if (a->getElement() == PTE[Element::C])
ret = true;
// if ( (a->getName().hasSubstring("CA")) || (a->getName().hasSubstring("CB"))
// || (a->getName().hasSubstring("CD")) || (a->getName().hasSubstring("CE"))
// || (a->getName().hasSubstring("CH")) || (a->getName().hasSubstring("CG")) || (a->getName().hasSubstring("CZ")) )
//// ret = true;
break;
case N:
if (a->getElement() == PTE[Element::N])
ret = true;
//if ( (a->getName() == "N") || (a->getName().hasSubstring("ND")) || (a->getName().hasSubstring("NE"))
// || (a->getName().hasSubstring("NH")) || (a->getName().hasSubstring("NZ")) )
// ret = true;
break;
case H_ON_BACKBONE: //check, whether the given atom is of type hydrogen and whether it is bound to a backbone C or N
if (a->getElement() == PTE[Element::H])
{
// is it bound to a backbone C or N??
Atom::BondIterator b_it = a->beginBond();
for (; !ret && +b_it; ++b_it)
{
if ( b_it->getType()!=(Bond::TYPE__HYDROGEN)
&& (b_it->getPartner(*a)->getName()=="N" || b_it->getPartner(*a)->getName()=="CA" || b_it->getPartner(*a)->getName()=="C"))
{
ret = true;
}
}
}
break;
case C_BACKBONE:
if (a->getName() == "CA" || a->getName() == "C" )
ret = true;
break;
case N_BACKBONE:
if (a->getName() == "N")
ret = true;
break;
}
return ret;
}
}
|