1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
#include <BALL/STRUCTURE/BONDORDERS/partialBondOrderAssignment.h>
#include <BALL/STRUCTURE/assignBondOrderProcessor.h>
#include <BALL/KERNEL/PTE.h>
namespace BALL
{
#define INFINITE_PENALTY 1e5
// Default constructor
PartialBondOrderAssignment::PartialBondOrderAssignment(AssignBondOrderProcessor* parent)
: estimated_atom_type_penalty(0.),
estimated_bond_length_penalty(0.),
bond_orders(),
last_bond(),
abop(parent)
{
}
// Destructor
PartialBondOrderAssignment::~PartialBondOrderAssignment()
{
}
// clear-method
void PartialBondOrderAssignment::clear()
{
// Do *NOT* clear the abop pointer!
estimated_atom_type_penalty = 0.;
estimated_bond_length_penalty = 0.;
last_bond = 0;
bond_orders.clear();
}
// the less operator
// note: we want a reverse sort, hence we actually return a "greater"
bool PartialBondOrderAssignment::operator < (const PartialBondOrderAssignment& b) const
{
bool value = false;
if (coarsePenalty() > b.coarsePenalty())
{
value = true;
}
else
{
if (coarsePenalty() == b.coarsePenalty())
{
if (abop->use_fine_penalty_ && (finePenalty() > b.finePenalty()))
{
value = true;
}
}
}
#ifdef DEBUG
cout << "PartialBondOrderAssignment::operator <: " << coarsePenalty() << " > " << b.coarsePenalty() << " " << finePenalty() << " > " << b.finePenalty() <<
" yields" << value << std::endl;
#endif
return value;
}
boost::shared_ptr<BondOrderAssignment> PartialBondOrderAssignment::convertToFullAssignment()
{
boost::shared_ptr<BondOrderAssignment> result(new BondOrderAssignment(abop));
result->valid = true;
result->last_bond = last_bond;
result->bond_orders = bond_orders;
Size total_num_of_bonds = abop->total_num_of_bonds_;
Size num_of_virtual_bonds = abop->num_of_virtual_bonds_;
result->ac = abop->ac_;
if (bond_orders.size() != (total_num_of_bonds + num_of_virtual_bonds))
{
Log.error() << "Error: " << __FILE__ << " " << __LINE__ << std::endl;
result->valid = false;
}
result->estimated_atom_type_penalty = estimated_atom_type_penalty;
result->estimated_bond_length_penalty = estimated_bond_length_penalty;
// convert the entry's bond order vector into a HashMap
// first the original bonds
for (Size i=0; i < total_num_of_bonds; i++)
{
result->bond_order_map[abop->index_to_bond_[i]] = bond_orders[i];
}
// then the virtual bonds
for (Size i = 0; i < num_of_virtual_bonds; i++)
{
int num_H = bond_orders[total_num_of_bonds + i];
if (num_H > 0)
{
Atom* atom = abop->virtual_bond_index_to_atom_[i];
result->number_of_virtual_hydrogens[atom] = num_H;
}
}
// Nothing has to be done, since this datastructure is handled by the
// methods apply_() and computeNextSolution()
//atoms_to_delete;
// compute the total charge
// TODO: the favoured Nobel gas configuration should be stored in class PTE
// NOTE: this is just a workaround as long no core-developer decision has been made!
float charge = 0;
for (AtomIterator a_it = abop->ac_->beginAtom(); a_it != abop->ac_->endAtom(); a_it++)
{
int valence = 0;
int atom_charge = 0;
for (Atom::BondIterator b_it = a_it->beginBond(); b_it != a_it->endBond(); b_it++)
{
valence += result->bond_order_map[&*b_it];
}
if (result->number_of_virtual_hydrogens.find(&*a_it) != result->number_of_virtual_hydrogens.end())
valence += result->number_of_virtual_hydrogens[&*a_it];
// NOTE: This is just an heuristic!
if ( a_it->getElement() == PTE[Element::H])
//|(a_it->getElement() == PTE[Element::He]))
{
atom_charge -= a_it->getElement().getGroup() - valence;
}
else if ( (a_it->getElement().getGroup() == 1)
||(a_it->getElement().getGroup() == 2) )
{
atom_charge += a_it->getElement().getGroup() - valence;
}
else if ((a_it->getElement().getAtomicNumber() == 5))
{
//TODO ask Dirk
}
else if (a_it->getElement().getAtomicNumber() <= 9)
{
atom_charge -= 18 - a_it->getElement().getGroup() - valence;
}
else if ((a_it->getElement().getAtomicNumber() == 13))
{
atom_charge += a_it->getElement().getGroup() -10 - valence;
}
else if ((a_it->getElement().getAtomicNumber() <= 17) &&
(a_it->getElement().getAtomicNumber() >= 14) )
{
atom_charge -= 18 - a_it->getElement().getGroup() - valence;
}
else
{
//TODO ask Dirk
}
charge += atom_charge;
}
result->total_charge = charge;
// store the runtimes
// TODO: we should probably get rid of these...
// result->node_expansions = number_of_node_expansions;
// result->queue_size = search_queue_size;
return result;
}
float PartialBondOrderAssignment::coarsePenalty(float atom_type_penalty, float bond_length_penalty) const
{
return ( ( ( (abop->atom_type_normalization_factor_ < 0.0001)
|| (abop->bond_length_normalization_factor_ < 0.0001)
|| (abop->alpha_ < 0.0001)) ?
atom_type_penalty :
((1.-abop->alpha_) * (atom_type_penalty / abop->atom_type_normalization_factor_)
+ (abop->alpha_* bond_length_penalty / abop->bond_length_normalization_factor_))));
}
float PartialBondOrderAssignment::coarsePenalty() const
{
return coarsePenalty(estimated_atom_type_penalty, estimated_bond_length_penalty);
}
float PartialBondOrderAssignment::getAtomTypePenalty(bool include_heuristic_term, HEURISTIC_INDEX heuristic_index)
{
if (estimated_atom_type_penalty >= INFINITE_PENALTY)
estimatePenalty_(include_heuristic_term, heuristic_index);
return estimated_atom_type_penalty;
}
bool PartialBondOrderAssignment::estimatePenalty_(bool include_heuristic_term, HEURISTIC_INDEX heuristic_index)
{
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << "PartialBondOrderAssignment::called estimatePenalty_()"<< std::endl;
#endif
AtomIterator a_it = abop->ac_->beginAtom();
Atom::BondIterator b_it;
int valence = 0; // the so far fixed valence of the considered atom
bool closed = true; // are all bonds of this atom fixed?
float estimated_atom_penalty = 0.;
float estimated_bond_penalty = 0.;
float current_bond_length_penalty = 0; // length penalty of the bonds already set
bool valid = true;
int num_free_bonds = 0; // without VIRTUAL__BOND's!
// NOTE: this variable indexes the currently addressed atom. We cannot rely on
// getIndex for this task since this is relative to the static atom array,
// not to the current atom container!
Index current_atom_index = 0;
// Evaluate all atom type and bond length penalties
for (; a_it != abop->ac_->endAtom() && valid ; a_it++, current_atom_index++)
{
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << a_it->getFullName()<< " : " << std::endl;
#endif
vector<Bond*> free_bonds; // store the free bonds for bond length penalty
// calculation (without VIRTUAL__BOND's!)
valence = 0; // sum of bond orders of all fixed bonds
// inclusiv VIRTUAL BOND's !
current_bond_length_penalty = 0; // sum of all bond length penalties of all fixed bonds
// exclusiv VIRTUAL BOND's !
closed = true;
num_free_bonds = 0;
// Iterate over all bonds of this atom
// first its original bonds
for (b_it = a_it->beginBond(); +b_it; b_it++)
{
Bond* current_bond = &*b_it;
// Do we have a valid bond?
if (abop->bond_to_index_.find(current_bond) != abop->bond_to_index_.end())
{
// Is this bond already fixed?
if ( (abop->bond_to_index_[current_bond] <= (Index)last_bond)
&& (bond_orders[abop->bond_to_index_[current_bond]] > 0) )
{
int order = bond_orders[abop->bond_to_index_[current_bond]];
valence += order;
// Store the bond length penalty
// We just consider non-virtual bonds here!
if (abop->bond_lengths_penalties_.find(current_bond) != abop->bond_lengths_penalties_.end())
{
current_bond_length_penalty += abop->bond_lengths_penalties_[&*b_it][order];
}
else
{
Log.error() << "Error " << __FILE__ << " " << __LINE__ << std::endl;
}
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " bond " << abop->bond_to_index_[&*b_it] << " (" << b_it->getFirstAtom()->getFullName() << "-" << b_it->getSecondAtom()->getFullName() << ") fixed"
<< " by order " << bond_orders[abop->bond_to_index_[&*b_it]]
<< " : bond len penalty: " << abop->bond_lengths_penalties_[&*b_it][order]
<< " -+-> cur bond len pen:"<< current_bond_length_penalty << std::endl;
#endif
}
else // a free bond
{
closed = false;
num_free_bonds++;
free_bonds.push_back(&*b_it); // store the bond length penalty
}
}
else // no valid bond
{
Log.error() << "Error: invalid bond!" << __FILE__ << " " << __LINE__ << std::endl;
}
}
// Iterator over all its virtual hydrogens!
int virtual_order = 0;
if ( abop->add_missing_hydrogens_
&& (abop->atom_to_virtual_bond_index_.find(&*a_it) != abop->atom_to_virtual_bond_index_.end()))
{
virtual_order = std::max((short)0,bond_orders[abop->atom_to_virtual_bond_index_[&*a_it] + abop->total_num_of_bonds_]);
valence += virtual_order;
}
// Decide, whether there is a free virtual bond left => atom not closed yet!
if ( abop->add_missing_hydrogens_
&& (last_bond != (abop->total_num_of_bonds_ + abop->num_of_virtual_bonds_ - 1)))
{
closed = false;
}
// Now for the current atom all orders of already fixed bonds and fixed virtual
// hydrogen bonds are summed up in 'valence' and all bond-length-deviation-penalties of
// fixed bonds are summed up in current_bond_length_penalty - excluding the virtual hydrogen
// bonds .
//
// We have to distinguish two cases:
// (a) atom closed and (b) atom still has bonds with undefined orders
//
// Case (a) * the bond length penalty is already given in current_bond_length_penalty
// * the atom type penalty can simply be computed by evaluating the penalty-vector
// at the already computed valence at position "virtal_order many virtual H's"
// Case (b) We have to take the penalties resulting from the already set bonds as a minimum
// and have to add the best possible (minimal) penalty of any valid distribution
// of the non-fixed bonds.
// * so far, the bond length penalty and atom type penalty contribution resulting
// from the __fixed__ bonds are stored in
// -- current_bond_length_penalty and
// -- and given by the penalty-vector at the already computed valence
// at position "virtal_order many virtual H's"
// Leave out the virtual hydrogens since they have no correct position so far!
// * for the __non-fixed__ bonds we have to
// compute an estimate of the bond length penalty, the minimal possible
// bond_length_penalties for the remaining bonds --> estimateBondLengthPenalty_()
// and estimate the atom penalty by finding the min in all remaining possible
// penalties in the possible penalty vectors. --> estimateAtomTypePenalty_()
// For speed up return false if something exploded :-)
// In case something very strange happens:
// Remember, we start atom counting with 0
if (current_atom_index >= (int)abop->atom_to_block_.size())
{
Log.error() << "Error: Atom " << a_it->getFullName() << " out of index ! "
<< __FILE__ << " " << __LINE__ << std::endl;
estimated_atom_type_penalty = INFINITE_PENALTY;
return false;
}
// This should not happen either: Far to many virtual hydrogens choosen
if (virtual_order > (int)abop->atom_to_block_[current_atom_index].size())
{
Log.error() << "Error: Too many virtual bonds "
<< __FILE__ << " " << __LINE__ << std::endl;
estimated_atom_type_penalty = INFINITE_PENALTY;
return false;
}
// Are all bonds of this atom already fixed?
if (closed)
{
// Get the current penalty vector
int block = abop->atom_to_block_[current_atom_index][virtual_order];
if (block < 0)
{
Log.error() << "Error: No penalty vector for atom " << current_atom_index << " "
<< virtual_order << "! " << __FILE__ << " " << __LINE__ << std::endl;
estimated_atom_type_penalty = INFINITE_PENALTY;
return false;
}
int current_start_valence = abop->block_to_start_valence_[block];
int current_block_length = abop->block_to_length_[block];
int current_end_valence = current_start_valence + current_block_length-1;
int current_start_index = abop->block_to_start_idx_[block];
// Is the valence found already greater than the largest for this atom type?
if (valence > current_end_valence)
{
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " Error: valence explosion for atom " << a_it->getFullName() << std::endl;
#endif
if (abop->evaluation_mode_)
{
Log.info() << " AssignBondOrderProcessor: Valence explosion for atom "
<< a_it->getFullName() << " : val " << valence
<< ", free bonds "<< num_free_bonds << ", Ruleid " << block +1
<< " with length " << abop->block_to_length_[block] << std::endl;
}
estimated_atom_type_penalty = INFINITE_PENALTY;
return false;
}
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " CLOSED atom " << a_it->getFullName() << " with valence " << valence << std::endl;
#endif
// is the valence large enough for this atom type?
if (valence >= current_start_valence)
{
// NOTE: case valence too large was handled before
// add the actual penalty
estimated_atom_penalty += abop->penalties_[current_start_index + valence - current_start_valence];
estimated_bond_penalty += current_bond_length_penalty;
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " ESTIMATE RESULT: atom type penalty +" << penalties_[current_start_index + valence - current_start_valence] << " = " << estimated_atom_penalty << std::endl
<< " bond length penalty +" << current_bond_length_penalty << " = " << estimated_bond_penalty << std::endl;
#endif
}
else // valence too small
{
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " ERROR: "<< a_it->getFullName() << " valence too small : " << valence << " < " << current_start_valence << std::endl;
#endif
if (abop->evaluation_mode_)
{
Log.info() << "AssignBondOrderProcessor: Valence of " << a_it->getFullName()
<< " too small : " << valence
<< " < " << current_start_valence
<< ". Consider adding hydrogen atoms!" << std::endl;
}
estimated_atom_type_penalty = INFINITE_PENALTY;
return false;
}
}
else if (include_heuristic_term) // the atom is not yet closed => heuristic kicks in
{
// estimate the penalties
// NOTE: To speed up the code, we already added up the minimal possible bond length deviation
// (which was precomputed in a preprocessing step and stored in the 0-th entry)
// in the check-if-atom-is-closed-loop, such that we do not have to do this
// in the heuristic!
float current_atom_type_penalty = 0.;
current_atom_type_penalty = estimateAtomTypePenalty_(&*a_it, current_atom_index,
valence, virtual_order, num_free_bonds, heuristic_index);
if (current_atom_type_penalty >= 0)
estimated_atom_penalty += current_atom_type_penalty;
else
return false;
float current_estimated_bond_length_penalty = estimateBondLengthPenalty_(current_atom_index,
free_bonds, virtual_order, valence, num_free_bonds);
if (current_estimated_bond_length_penalty >= 0)
estimated_bond_penalty += current_bond_length_penalty + current_estimated_bond_length_penalty;
else
return false;
} // end of heuristic
} // end of for all atoms
// store the computed atom type penalty
estimated_atom_type_penalty = estimated_atom_penalty;
//store the computed bond length penalty
estimated_bond_length_penalty = estimated_bond_penalty;
#if defined DEBUG || defined DEBUG_ESTIMATE
cout << " ESTIMATE RESULT for bond orders ( ";
for (Size i=0; i < bond_orders.size(); i++)
{
cout << " " << bond_orders[i];
}
cout << " ) : atom type pen = " << estimated_atom_type_penalty << ", bond len pen = "<< estimated_bond_length_penalty << std::endl;
#endif
return true;
}
// Computes the atom type penalty for a given atom
// returns -1 if no valid atom type penalty for this atom could be computed!
float PartialBondOrderAssignment::estimateAtomTypePenalty_(Atom* atom, Index atom_index, int fixed_valence,
int fixed_virtual_order, int num_free_bonds,
HEURISTIC_INDEX heuristic_index)
{
bool found_a_value = false;
// We have to estimate the penalty heuristically
// by finding the minimum in all further possible penalty vector entries.
// the minimal penalty of all possible penalty vectors for this atom
float min_atom_type_penalty = std::numeric_limits<float>::max();
// just look into the penalty vectors starting from the already fixed virtual order
for (Size vi = fixed_virtual_order; vi < abop->atom_to_block_[atom_index].size(); vi++)
{
// get the corresponding penalty vector
int block = abop->atom_to_block_[atom_index][vi];
// certain numbers of additional hydrogens, for which no valid penalty classes exist
// are excluded by block index -1
if (block >= 0)
{
int current_start_valence = abop->block_to_start_valence_[block];
int current_block_length = abop->block_to_length_[block];
int current_end_valence = current_start_valence + current_block_length-1;
int current_start_index = abop->block_to_start_idx_[block];
if (fixed_valence <= current_end_valence)
{
// at which position in the current penalty vector are we at the moment?
int i = current_start_valence;
if (heuristic_index == SIMPLE)
{
// this is the default case
// Position i = current_start_valence;
}
else if (heuristic_index == MEDIUM)
{
// at which position in the current penalty vector are we at the moment?
i = (fixed_valence + num_free_bonds < current_start_valence)
? current_start_valence
: fixed_valence + num_free_bonds;
}
else if (heuristic_index == TIGHT)
{
// find a lower bound
// at which position in the current penalty vector are we at the moment?
// NOTE: all variables are signed ints, since we need -1 to flag invalid conformations
i = (fixed_valence + num_free_bonds < current_start_valence)
? current_start_valence
: fixed_valence + num_free_bonds;
// find an upper bound for sum of all bond orders
int max_valence = fixed_valence;
// check all neighboring atoms, whose connecting bonds are free
Atom::BondIterator b_it = atom->beginBond();
for (; b_it != atom->endBond(); b_it++)
{
// compute the sum of bond orders that are already set
// the number of free bonds
// the number of virtual bonds
Atom* neighbor = b_it->getPartner(*atom);
int neighbors_bond_order = 0;
int neighbors_num_free_bonds = 0;
int neighbors_virtual_bonds = 0;
// is this bond free?
if ( (abop->bond_to_index_[&*b_it] > (Index)last_bond)
|| (bond_orders[abop->bond_to_index_[&*b_it]] <= 0) ) // ???
{
// check all bonds of the neighbor atom
Atom::BondIterator neighbor_b_it = neighbor->beginBond();
for (; neighbor_b_it != neighbor->endBond(); neighbor_b_it++)
{
// Do we have a valid bond?
if ( abop->bond_to_index_.find(&*neighbor_b_it) != abop->bond_to_index_.end())
{
// Is this bond already fixed?
if ( (abop->bond_to_index_[&*neighbor_b_it] <= (Index)last_bond)
&& (bond_orders[abop->bond_to_index_[&*neighbor_b_it]] > 0) )
{
neighbors_bond_order += bond_orders[abop->bond_to_index_[&*neighbor_b_it]];
}
else //free
{
neighbors_num_free_bonds++;
}
}
}
// count the virtual bonds
if ( abop->add_missing_hydrogens_
&& (abop->atom_to_virtual_bond_index_.find(neighbor) != abop->atom_to_virtual_bond_index_.end()))
{
neighbors_virtual_bonds = std::max((short)0,bond_orders[abop->atom_to_virtual_bond_index_[neighbor]
+ abop->total_num_of_bonds_]);
}
}
int n_atom_index = neighbor->getProperty("AssignBondOrderProcessorAtomNo").getUnsignedInt();
// compute the maximal bond order for the connecting bond (neighbor -- atom)
int n_block = abop->atom_to_block_[n_atom_index][neighbors_virtual_bonds];
int n_current_start_valence = abop->block_to_start_valence_[n_block];
int n_current_block_length = abop->block_to_length_[n_block];
int n_current_end_valence = n_current_start_valence + n_current_block_length-1;
// add the maximal possible bond order
max_valence += (n_current_end_valence - (neighbors_num_free_bonds-1)
- neighbors_virtual_bonds
- neighbors_bond_order);
}// end of all neighbors
current_end_valence = std::min(current_end_valence, max_valence);
}
else
{
Log.error() << __FILE__ << " " << __LINE__ << " : No heuristic defined! Please check the option Option::HEURISTIC." << std::endl;
return min_atom_type_penalty;
}
// for every remaining valence of the atom under consideration
// (we know there is at least one)
for (; i <= current_end_valence; i++)
{
float current_atom_type_penalty = abop->penalties_[current_start_index + i - current_start_valence];
if (current_atom_type_penalty < min_atom_type_penalty)
{
min_atom_type_penalty = current_atom_type_penalty;
found_a_value = true;
}
}
}
else
{
if (abop->evaluation_mode_)
{
Log.info() << " AssignBondOrderProcessor: Valence explosion for atom "
<< atom->getFullName() << " : val " << fixed_valence
<< ", free bonds "<< num_free_bonds << ", Ruleid " << block +1
<< " with length " << abop->block_to_length_[block] << std::endl;
}
}
} // end of valid block
} // end of all virtual orders
if (!found_a_value)
{
min_atom_type_penalty = -1;
}
return min_atom_type_penalty;
}
// Computes the min possible bond length penalty for all free bonds of this atom
// returns -1 if no bond length penalty could be found!
// Trying to distribute all free valences with minimal bond length penalty as possible
// over all free bonds of this atom seems to be far to expensive.
// In addition take care of the fact, that all bonds between two unclosed atoms
// are counted twice -> all bonds should be counted twice!
float PartialBondOrderAssignment::estimateBondLengthPenalty_(Index atom_index, const vector<Bond*>& free_bonds,
int fixed_virtual_order, int fixed_valence, int num_free_bonds)
{
// NOTE: virtual bond are excluded!
// we have to estimate the bond length penalty heuristically
// by trying to distribute the remaining free valences over all remaining free bonds
// such that the summed bond length penalty is minimal
// the minimal penalty of all possible penalty vectors for this atom
float min_bond_length_penalty = std::numeric_limits<float>::max();
bool found_a_value = false;
// all possible free valences
// NOTE: virtual hydrogens may use or don't use one free valence
// just look into the penalty vectors starting from the already fixed virtual order
for (Size vi = fixed_virtual_order; vi < abop->atom_to_block_[atom_index].size(); vi++)
{
// get the corresponding penalty vector
int block = abop->atom_to_block_[atom_index][vi];
// certain numbers of additional hydrogens, for which no valid penalty classes exist
// are excluded by block index -1
if (block >= 0)
{
int current_start_valence = abop->block_to_start_valence_[block];
int current_block_length = abop->block_to_length_[block];
int current_end_valence = current_start_valence + current_block_length-1;
// do we have an explosion ?
if (fixed_valence <= current_end_valence)
{
float bond_length_penalty_current_set_up = 0;
// iterating over all free bonds
// (we know there is at least one free bond)
for (Size fb=0; fb < free_bonds.size(); fb++)
{
float current_bond_min = std::numeric_limits<float>::max();
// Note: for simplification we do not share the free bond
// orders correctly! We just find the min!
// the number of the remaining bond orders to be assigned
// to the free bonds are :
std::vector<float>& current_bond_length_penalties = abop->bond_lengths_penalties_[free_bonds[fb]];
int up_to = std::min( (int)current_bond_length_penalties.size()-1,
current_end_valence -(num_free_bonds-1)-fixed_valence);
// for all possible valences for this bond
for (int j = 1; j <= up_to; j++)
{
float deviation = current_bond_length_penalties[j];
if (deviation < current_bond_min)
{
current_bond_min = deviation;
}
} // end of for all possible valences for this bond
bond_length_penalty_current_set_up += current_bond_min;
} // end of for all free bonds
if (bond_length_penalty_current_set_up < min_bond_length_penalty)
{
found_a_value = true;
min_bond_length_penalty = bond_length_penalty_current_set_up;
}
} // end of no explosion
}// end of valid block
}
if (!found_a_value)
return -1;
return min_bond_length_penalty;
}
}
|