1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/MOLMEC/PARAMETER/cosineTorsion.h>
#include <BALL/MOLMEC/PARAMETER/forceFieldParameters.h>
using namespace std;
namespace BALL
{
CosineTorsion::CosineTorsion()
: ParameterSection(),
number_of_atom_types_(0),
torsions_(),
torsion_hash_map_()
{
}
CosineTorsion::CosineTorsion(const CosineTorsion& rhs)
: ParameterSection(rhs),
number_of_atom_types_(rhs.number_of_atom_types_),
torsions_(rhs.torsions_),
torsion_hash_map_(rhs.torsion_hash_map_)
{
}
CosineTorsion::~CosineTorsion()
{
clear();
}
void CosineTorsion::clear()
{
ParameterSection::clear();
number_of_atom_types_ = 0;
torsions_.clear();
torsion_hash_map_.clear();
}
bool CosineTorsion::extractSection(Parameters& parameters, const String& section_name)
{
return ParameterSection::extractSection(parameters, section_name);
}
bool CosineTorsion::extractSection(ForceFieldParameters& parameters, const String& section_name)
{
// check whether the parameters are valid
if (!parameters.isValid())
{
return false;
}
// extract the section information
if (!ParameterSection::extractSection(parameters, section_name))
{
Log.error() << "CosineTorison::extractSection: Could not find section "
<< section_name << " in parameter file!" << std::endl;
return false;
}
// check whether all variables we need are defined, terminate otherwise
if (!hasVariable("div") || !hasVariable("V")
|| !hasVariable("phi0") || !hasVariable("f"))
{
Log.error() << "CosineTorsion::extractSection: CosineTorsion section (" << section_name
<< ") needs columns div, V, phi0, and f!" << std::endl;
return false;
}
// build a two dimensional array of the atom types
// loop variable
Size i;
const AtomTypes& atom_types = parameters.getAtomTypes();
number_of_atom_types_ = atom_types.getNumberOfTypes();
// clear all old torsions
// - torsions_ is a vector containing Values objects
// - torsion_hash_map_ hashes the product of the atom types (I + number_of_atom_types_ * J +...)
// to a the index in torsions_
torsions_.clear();
torsion_hash_map_.clear();
// determine the units of the phase and potential wall
// (if given in options)
float factor_phase = 1.0;
if (options.has("unit_phase"))
{
if (options["unit_phase"] == "rad")
{
factor_phase = 180.0 / Constants::PI;
}
}
float factor_V = 1.0;
if (options.has("unit_V"))
{
if (options["unit_V"] == "kcal/mol")
{
factor_V = Constants::JOULE_PER_CAL;
}
}
Atom::Type type_I;
Atom::Type type_J;
Atom::Type type_K;
Atom::Type type_L;
String key;
String fields[5];
StringHashMap<Index>::Iterator it;
for (it = section_entries_.begin(); it != section_entries_.end(); ++it)
{
key = it->first;
if (key.split(fields, 5) == 5)
{
// the first of line for each torsion has to contain N as last part of the key.
// this line only contains the number of torsion terms in "div"
if (fields[4] == "N")
{
// determine all atom types
type_I = atom_types.getType(fields[0]);
type_J = atom_types.getType(fields[1]);
type_K = atom_types.getType(fields[2]);
type_L = atom_types.getType(fields[3]);
// retrieve the number of torsion terms
Size n = getValue(key, "div").toUnsignedInt();
if ((n < 1) || (n > 4))
{
Log.error() << "CosineTorsion::extractSection: wrong number of torsion terms for "
<< key << ": " << n << std::endl;
}
else
{
// create a new torsion and store
// it in the vector of torsions
Size array_idx = (Size)torsions_.size();
torsions_.push_back(Values(n));
// try to find the torsion terms
for (i = 0; i < n; i++)
{
// calculate the correct key: "I J K L <number>"
String term_key(key, 0, (Size)key.size() - 1);
term_key += (String)(i + 1);
// lookup the corresponding entry
torsions_[array_idx].values[i].n = getValue(term_key, "div").toFloat();
torsions_[array_idx].values[i].phase = getValue(term_key, "phi0").toFloat() * factor_phase;
torsions_[array_idx].values[i].f = getValue(term_key, "f").toFloat();
torsions_[array_idx].values[i].V = getValue(term_key, "V").toFloat() * factor_V;
}
// insert the array index and the atom type key into the
// hash map
// calculate a unique number for each possible combination of
// atom types and use it to hash the torsion parameters
Size index = type_I + type_J * number_of_atom_types_
+ type_K * number_of_atom_types_ * number_of_atom_types_
+ type_L * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
torsion_hash_map_.insert(pair<Size, Size>(index, array_idx));
}
}
}
else
{
Log.error() << "CosineTorsion::extractSection: could not interpret key " << key << std::endl;
}
}
return true;
}
bool CosineTorsion::hasParameters
(Atom::Type I, Atom::Type J, Atom::Type K, Atom::Type L) const
{
if ((I < 0) || ((Size)I >= number_of_atom_types_))
{
return false;
}
if ((J < 0) || ((Size)J >= number_of_atom_types_))
{
return false;
}
if ((K < 0) || ((Size)K >= number_of_atom_types_))
{
return false;
}
if ((L < 0) || ((Size)L >= number_of_atom_types_))
{
return false;
}
// calculate the key for this combination of atom types
Size index = I + number_of_atom_types_ * J
+ K * number_of_atom_types_ * number_of_atom_types_
+ L * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
// and look it up in the hash table
bool result = torsion_hash_map_.has(index);
// check for the reverse order of atoms, too
if (!result)
{
index = L + number_of_atom_types_ * K
+ J * number_of_atom_types_ * number_of_atom_types_
+ I * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// now, check for wildcards at the outer positions
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * J
+ K * number_of_atom_types_ * number_of_atom_types_
+ Atom::ANY_TYPE * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// ... and wildcards and reverse order for the inner atoms
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * K
+ J * number_of_atom_types_ * number_of_atom_types_
+ Atom::ANY_TYPE * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// finally, check for wildcards at the first two positions
// (for improper torsions)
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * Atom::ANY_TYPE
+ K * number_of_atom_types_ * number_of_atom_types_
+ L * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
return result;
}
CosineTorsion::Values CosineTorsion::getParameters
(Atom::Type I, Atom::Type J, Atom::Type K, Atom::Type L) const
{
CosineTorsion::Values parameters;
assignParameters(parameters, I, J, K, L);
return parameters;
}
bool CosineTorsion::assignParameters
(CosineTorsion::Values& parameters,
Atom::Type I, Atom::Type J, Atom::Type K, Atom::Type L) const
{
// calculate the key for this combination of atom types
Size index = I + number_of_atom_types_ * J
+ K * number_of_atom_types_ * number_of_atom_types_
+ L * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
// and look it up in the hash table
bool result = torsion_hash_map_.has(index);
// check for the reverse order of atoms, too
if (!result)
{
index = L + number_of_atom_types_ * K
+ J * number_of_atom_types_ * number_of_atom_types_
+ I * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// now, check for wildcards at the outer positions
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * J
+ K * number_of_atom_types_ * number_of_atom_types_
+ Atom::ANY_TYPE * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// ... and wildcards and reverse order for the inner atoms
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * K
+ J * number_of_atom_types_ * number_of_atom_types_
+ Atom::ANY_TYPE * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// finally, check for wildcards at the first two positions
// (for improper torsions)
if (!result)
{
index = Atom::ANY_TYPE + number_of_atom_types_ * Atom::ANY_TYPE
+ K * number_of_atom_types_ * number_of_atom_types_
+ L * number_of_atom_types_ * number_of_atom_types_ * number_of_atom_types_;
result = torsion_hash_map_.has(index);
}
// and look it up in the hash table
if (result)
{
parameters.set(torsions_[torsion_hash_map_[index]]);
}
return result;
}
CosineTorsion& CosineTorsion::operator = (const CosineTorsion& rhs)
{
// Avoid self assignment
if (this != &rhs)
{
ParameterSection::operator = (rhs);
number_of_atom_types_ = rhs.number_of_atom_types_;
torsions_ = rhs.torsions_;
torsion_hash_map_ = rhs.torsion_hash_map_;
}
return *this;
}
bool CosineTorsion::operator == (const CosineTorsion& cosine_torsion) const
{
// There's no real need to compare the hash map -- it should contain
// nothing that is not already contained in torsions_.
return ((number_of_atom_types_ == cosine_torsion.number_of_atom_types_)
&& (torsions_ == cosine_torsion.torsions_));
}
} // namespace BALL
|