1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#include <BALL/MOLMEC/PARAMETER/lennardJones.h>
#include <BALL/MOLMEC/PARAMETER/forceFieldParameters.h>
using namespace std;
namespace BALL
{
LennardJones::LennardJones()
: ParameterSection(),
A_(0),
B_(0),
N_(0),
Aij_(0),
Bij_(0),
is_defined_(0),
format_(EPSILON_R_FORMAT),
names_()
{
}
LennardJones::LennardJones(const LennardJones& lj)
: ParameterSection(lj),
A_(lj.A_),
B_(lj.B_),
N_(lj.N_),
Aij_(lj.Aij_),
Bij_(lj.Bij_),
is_defined_(lj.is_defined_),
format_(lj.format_),
names_(lj.names_)
{
}
LennardJones::~LennardJones()
{
clear();
}
void LennardJones::clear()
{
// clear allocated parameter fields
A_.clear();
B_.clear();
N_.clear();
Aij_.clear();
Bij_.clear();
is_defined_.clear();
format_ = EPSILON_R_FORMAT;
names_.clear();
ParameterSection::clear();
}
const LennardJones& LennardJones::operator = (const LennardJones& lj)
{
ParameterSection::operator = (lj);
A_ = lj.A_;
B_ = lj.B_;
N_ = lj.N_;
Aij_ = lj.Aij_;
Bij_ = lj.Bij_;
is_defined_ = lj.is_defined_;
format_ = lj.format_;
names_ = lj.names_;
return *this;
}
bool LennardJones::extractSection
(Parameters& parameters, const String& section_name)
{
return ParameterSection::extractSection(parameters, section_name);
}
bool LennardJones::extractSection
(ForceFieldParameters& parameters, const String& section_name)
{
// check whether the parameters are valid
if (!parameters.isValid())
{
return false;
}
// extract the basis information
ParameterSection::extractSection(parameters, section_name);
bool use_geometric_mean = false;
// check whether all variables we need are defined, terminate otherwise
if ((!hasVariable("A") || !hasVariable("B"))
&& (!hasVariable("epsilon") || !hasVariable("R")))
{
Log.error() << "LennardJones::extractSection: Lennard Jones parameter section requires two variable columns:"
<< "A/B or epsilon/R" << endl;
return false;
}
else
{
// format_ == A_B_FORMAT: parameters are in A/B format
// format_ == EPSILON_R_FORMAT: parameters are in epsilon/R format
// format_ == SLATER_KIRKWOOD_FORMAT: parameters are in epsilon/R format
if (hasVariable("epsilon") && hasVariable("R"))
{
format_ = EPSILON_R_FORMAT;
if (options.has("radius_averaging"))
{
if (options["radius_averaging"] == "arithmetic")
{
use_geometric_mean = false;
}
else if (options["radius_averaging"] == "geometric")
{
use_geometric_mean = true;
}
else
{
Log.warn() << "AmberNonBonded: unknown method for averaging LJ radii: '"
<< options["radius_averaging"] << "'. Using arithmetic mean." << std::endl;
}
}
}
else if (hasVariable("A") && hasVariable("B"))
{
format_ = A_B_FORMAT;
}
else if (hasVariable("alpha") && hasVariable("N") && hasVariable("R"))
{
// ?????
format_ = SLATER_KIRKWOOD_FORMAT;
Log.error() << "LennardJones::extractSection: Slater Kirkwood format not yet supported!" << endl;
return false;
}
}
// build a two dimensional array of the atom types
// loop variable
Size i;
const AtomTypes& atom_types = parameters.getAtomTypes();
number_of_atom_types_ = atom_types.getNumberOfTypes();
// allocate two onedimensional fields for the two parameters
A_.resize(number_of_atom_types_);
B_.resize(number_of_atom_types_);
Aij_.resize(number_of_atom_types_ * number_of_atom_types_);
Bij_.resize(number_of_atom_types_ * number_of_atom_types_);
is_defined_.resize(number_of_atom_types_);
for (i = 0; i < number_of_atom_types_; i++)
{
is_defined_[i] = false;
}
// the indices of the columns containing the values
Size index_A = 0;
Size index_B = 0;
if (format_ == A_B_FORMAT)
{
index_A = getColumnIndex("A");
index_B = getColumnIndex("B");
}
else if (format_ == EPSILON_R_FORMAT)
{
index_A = getColumnIndex("epsilon");
index_B = getColumnIndex("R");
}
else if (format_ == SLATER_KIRKWOOD_FORMAT)
{
index_A = getColumnIndex("epsilon");
index_B = getColumnIndex("R");
}
// try to identify the units of A and B
// and set the two conversion factors
double factor_A = 1.0;
double factor_B = 1.0;
if (format_ == A_B_FORMAT)
{
if (options.has("unit_A"))
{ //?????
}
}
// in EPSILON_R_FORMAT epsilon is in A and R is in B
if (format_ == EPSILON_R_FORMAT)
{
if (options.has("unit_epsilon"))
{
if (options["unit_epsilon"] == "kcal/mol")
{
factor_A = Constants::JOULE_PER_CAL;
}
if (options["unit_epsilon"] == "cal/mol")
{
factor_A = Constants::JOULE_PER_CAL * 0.001;
}
if (options["unit_epsilon"] == "J/mol")
{
factor_A = 0.001;
}
}
if (options.has("unit_R"))
{
if (options["unit_R"] == "pm")
{
factor_B = 0.1;
}
}
}
Atom::Type atom_type;
String key;
for (i = 0; i < getNumberOfKeys(); ++i)
{
// get the key
key = getKey(i);
if (atom_types.hasType(key))
{
// get the two parameters
atom_type = atom_types.getType(key);
// retrieve the two values
float A = getValue(i, index_A).toFloat() * factor_A;
float B = getValue(i, index_B).toFloat() * factor_B;
// store the values
is_defined_[atom_type] = true;
A_[atom_type] = A;
B_[atom_type] = B;
// check for the sign of the parameters: they have to be positive!
if ((A < 0) || (B < 0))
{
if (format_ == EPSILON_R_FORMAT)
{
Log.warn() << "LennardJones::extractSection: VdW parameter may not be negative: type = " << atom_type << " (" << key << "), eps = " << A
<< ", r = " << B << endl;
}
else
{
Log.warn() << "LennardJones::extractSection: VdW parameter may not be negative: type = " << atom_type << " (" << key << "), A = " << A
<< ", B = " << B << endl;
}
}
}
else
{
Log.warn() << "LennardJones::extractSection: unknown atom type in Lennard Jones parameters: " << key << " i = " << i << endl;
}
}
// now assemble all Lennard Jones parameter for all known atom types
for (i = 0; i < number_of_atom_types_; i++)
{
for (Size j = i; j < number_of_atom_types_; j++)
{
// calculate the two indices for the Aij/Bij fields
Index index = (Index)(i + number_of_atom_types_ * j);
Index sym_index = (Index)(j + number_of_atom_types_ * i);
if (is_defined_[j] && is_defined_[i])
{
// calculate the values for A and B if in eps/R format
if (format_ == EPSILON_R_FORMAT)
{
double R;
if (!use_geometric_mean)
{
R = B_[i] + B_[j];
}
else
{
R = 2.0 * sqrt(B_[i] * B_[j]);
}
double R3 = R * R * R;
double R6 = R3 * R3;
double epsilon = sqrt(A_[i] * A_[j]);
Aij_[index] = epsilon * R6 * R6;
Bij_[index] = 2.0 * epsilon * R6;
}
else
{
// compute and assign Aij/Bij:
// Aij = Ai * Aj, Aji = Aij
// Bij = Bi * Bj, Bji = Bij
Aij_[index] = A_[i] * A_[j];
Bij_[index] = B_[i] * B_[j];
}
Aij_[sym_index] = Aij_[index];
Bij_[sym_index] = Bij_[index];
}
else
{
Aij_[index] = 0.0;
Bij_[index] = 0.0;
Aij_[sym_index] = 0.0;
Bij_[sym_index] = 0.0;
}
}
}
return true;
}
bool LennardJones::hasParameters(Atom::Type I, Atom::Type J) const
{
if (I < 0 || I >= (Index)number_of_atom_types_)
{
return false;
}
if (J < 0 || J >= (Index)number_of_atom_types_)
{
return false;
}
return (is_defined_[I] && is_defined_[J]);
}
LennardJones::Values LennardJones::getParameters(Atom::Type I, Atom::Type J) const
{
LennardJones::Values parameters;
assignParameters(parameters, I, J);
return parameters;
}
bool LennardJones::assignParameters(LennardJones::Values& parameters, Atom::Type I, Atom::Type J) const
{
if (hasParameters(I, J))
{
parameters.A = Aij_[I * number_of_atom_types_ + J];
parameters.B = Bij_[I * number_of_atom_types_ + J];
return true;
}
return false;
}
bool LennardJones::operator == (const LennardJones& lj) const
{
return (ParameterSection::operator == (lj)
&& (A_ == lj.A_)
&& (B_ == lj.B_)
&& (Aij_ == lj.Aij_)
&& (Bij_ == lj.Bij_));
}
} // namespace BALL
|