1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
#include <BALL/MATHS/cubicSpline2D.h>
#include <map>
#include <set>
using namespace std;
namespace BALL
{
const int CubicSpline2D::VERBOSITY_LEVEL_DEBUG = 10;
const int CubicSpline2D::VERBOSITY_LEVEL_CRITICAL = 5;
// Default constructor.
CubicSpline2D::CubicSpline2D()
: verbosity_(VERBOSITY_LEVEL_DEBUG)
{}
CubicSpline2D::CubicSpline2D(const std::vector<std::vector<float> >& sample_positions_x,
const std::vector<float>& sample_positions_y,
const std::vector<std::vector<float> >& sample_values,
bool return_average,
bool is_natural,
const std::vector<float>& x_lower_derivatives,
const std::vector<float>& x_upper_derivatives,
float y_lower_derivative,
float y_upper_derivative,
int verbosity)
: sample_positions_x_(sample_positions_x),
sample_positions_y_(sample_positions_y),
splines_(),
sample_values_(sample_values),
return_average_(return_average),
x_default_values_(),
y_default_value_(),
x_lower_bounds_(),
x_upper_bounds_(),
y_lower_bound_(),
y_upper_bound_(),
x_is_natural_(),
y_is_natural_(is_natural),
x_lower_derivatives_(x_lower_derivatives),
x_upper_derivatives_(x_upper_derivatives),
y_lower_derivative_(y_lower_derivative),
y_upper_derivative_(y_upper_derivative),
verbosity_(verbosity)
{
x_default_values_.resize(sample_positions_y_.size(), std::numeric_limits<float>::min());
y_default_value_ = std::numeric_limits<float>::min();
// Store the lower and upper bounds.
// By default, we assume the first and the last values to be the lower and upper bounds.
x_lower_bounds_.resize(sample_positions_y_.size());
x_upper_bounds_.resize(sample_positions_y_.size());
for (Size i = 0; i < sample_positions_x_.size(); i++)
{
x_lower_bounds_[i] = sample_positions_x_[i][0];
x_upper_bounds_[i] = sample_positions_x_[i][ sample_positions_x_[i].size()-1];
}
y_lower_bound_ = sample_positions_y_[0];
y_upper_bound_ = sample_positions_y_[sample_positions_y_.size()-1];
if (x_lower_derivatives.size() == (Size) 0.)
{
x_lower_derivatives_.resize(sample_positions_y_.size(), 0.);
x_upper_derivatives_.resize(sample_positions_y_.size(), 0.);
}
x_is_natural_.resize(sample_positions_y_.size(), is_natural);
// Finally, compute the splines.
createBiCubicSpline();
}
CubicSpline2D::CubicSpline2D(const std::vector<std::vector<float> >& sample_positions_x,
const std::vector<float>& sample_positions_y,
const std::vector<std::vector<float> >& sample_values,
const std::vector<float>& x_default_values,
float y_default_value,
const std::vector<float>& x_lower_bounds,
const std::vector<float>& x_upper_bounds,
float y_lower_bound,
float y_upper_bound,
bool is_natural,
const std::vector<float>& x_lower_derivatives,
const std::vector<float>& x_upper_derivatives,
float y_lower_derivative,
float y_upper_derivative,
int verbosity)
: sample_positions_x_(sample_positions_x),
sample_positions_y_(sample_positions_y),
splines_(),
sample_values_(sample_values),
return_average_(false),
x_default_values_(x_default_values),
y_default_value_(y_default_value),
x_lower_bounds_(x_lower_bounds),
x_upper_bounds_(x_upper_bounds),
y_lower_bound_(y_lower_bound),
y_upper_bound_(y_upper_bound),
x_is_natural_(vector<bool>()),
y_is_natural_(is_natural),
x_lower_derivatives_(x_lower_derivatives),
x_upper_derivatives_(x_upper_derivatives),
y_lower_derivative_(y_lower_derivative),
y_upper_derivative_(y_upper_derivative),
verbosity_(verbosity)
{
x_is_natural_.resize(sample_positions_y.size(), is_natural);
if (x_lower_derivatives.size() == (Size) 0.)
{
x_lower_derivatives_.resize(sample_positions_y.size(), 0.);
x_upper_derivatives_.resize(sample_positions_y.size(), 0.);
}
// Finally, compute the splines.
createBiCubicSpline();
}
//------------------------------simple constructors-----------------------------------------------------
CubicSpline2D::CubicSpline2D(const std::vector<float>& sample_positions_x,
const std::vector<float>& sample_positions_y,
const std::vector<std::vector<float> >& sample_values,
bool return_average,
bool is_natural,
const std::vector<float>& x_lower_derivatives,
const std::vector<float>& x_upper_derivatives,
float y_lower_derivative,
float y_upper_derivative,
int verbosity)
: sample_positions_x_(),
sample_positions_y_(sample_positions_y),
splines_(),
sample_values_(sample_values),
return_average_(return_average),
x_default_values_(),
y_default_value_(),
x_lower_bounds_(),
x_upper_bounds_(),
y_lower_bound_(),
y_upper_bound_(),
x_is_natural_(),
y_is_natural_(is_natural),
x_lower_derivatives_(x_lower_derivatives),
x_upper_derivatives_(x_upper_derivatives),
y_lower_derivative_(y_lower_derivative),
y_upper_derivative_(y_upper_derivative),
verbosity_(verbosity)
{
// Assuming that all rows have the same x-positions,
// we have to create a full set of x-positions
std::vector<std::vector<float> > complete_x_positions(sample_positions_y.size());
for (Position i=0; i<complete_x_positions.size(); i++)
{
complete_x_positions[i] = sample_positions_x;
}
sample_positions_x_ = complete_x_positions;
x_default_values_.resize(sample_positions_y_.size(), std::numeric_limits<float>::min());
y_default_value_ = std::numeric_limits<float>::min();
// Store the lower and upper bounds.
// By default, we assume the first and the last values to be the lower and upper bounds.
x_lower_bounds_.resize(sample_positions_y.size());
x_upper_bounds_.resize(sample_positions_y.size());
for (Size i = 0; i < sample_positions_x.size(); i++)
{
x_lower_bounds_[i] = sample_positions_x_[i][0];
x_upper_bounds_[i] = sample_positions_x_[i][sample_positions_x_[i].size()-1];
}
y_lower_bound_ = sample_positions_y_[0];
y_upper_bound_ = sample_positions_y_[sample_positions_y.size()-1];
if (x_lower_derivatives.size() == (Size) 0.)
{
x_lower_derivatives_.resize(sample_positions_y_.size(), 0.);
x_upper_derivatives_.resize(sample_positions_y_.size(), 0.);
}
x_is_natural_.resize(sample_positions_y_.size(), is_natural);
// Finally, compute the splines.
createBiCubicSpline();
}
CubicSpline2D::CubicSpline2D(const std::vector<float>& sample_positions_x,
const std::vector<float>& sample_positions_y,
const std::vector<std::vector<float> >& sample_values,
const std::vector<float>& x_default_values,
float y_default_value,
const std::vector<float>& x_lower_bounds,
const std::vector<float>& x_upper_bounds,
float y_lower_bound,
float y_upper_bound,
bool is_natural,
const std::vector<float>& x_lower_derivatives,
const std::vector<float>& x_upper_derivatives,
float y_lower_derivative,
float y_upper_derivative,
int verbosity)
: sample_positions_x_(),
sample_positions_y_(sample_positions_y),
splines_(),
sample_values_(sample_values),
return_average_(false),
x_default_values_(x_default_values),
y_default_value_(y_default_value),
x_lower_bounds_(x_lower_bounds),
x_upper_bounds_(x_upper_bounds),
y_lower_bound_(y_lower_bound),
y_upper_bound_(y_upper_bound),
x_is_natural_(vector<bool>()),
y_is_natural_(is_natural),
x_lower_derivatives_(x_lower_derivatives),
x_upper_derivatives_(x_upper_derivatives),
y_lower_derivative_(y_lower_derivative),
y_upper_derivative_(y_upper_derivative),
verbosity_(verbosity)
{
// Assuming that all rows have the same x-positions,
// we have to create a full set of x-positions
std::vector<std::vector<float> > complete_x_positions(sample_positions_y.size());
for (Position i=0; i<complete_x_positions.size(); i++)
{
complete_x_positions[i] = sample_positions_x;
}
sample_positions_x_ = complete_x_positions;
x_is_natural_.resize(sample_positions_y_.size(), is_natural);
if (x_lower_derivatives.size() == (Size) 0.)
{
x_lower_derivatives_.resize(sample_positions_y_.size(), 0.);
x_upper_derivatives_.resize(sample_positions_y_.size(), 0.);
}
// Finally, compute the splines.
createBiCubicSpline();
}
// Copy constructor
CubicSpline2D::CubicSpline2D(const CubicSpline2D& cs2D)
: sample_positions_x_(cs2D.sample_positions_x_),
sample_positions_y_(cs2D.sample_positions_y_),
splines_(cs2D.splines_),
sample_values_(cs2D.sample_values_),
return_average_(cs2D.return_average_),
x_default_values_(cs2D.x_default_values_),
y_default_value_(cs2D.y_default_value_),
default_value_(cs2D.default_value_),
x_lower_bounds_(cs2D.x_lower_bounds_),
x_upper_bounds_(cs2D.x_upper_bounds_),
y_lower_bound_(cs2D.y_lower_bound_),
y_upper_bound_(cs2D.y_upper_bound_),
x_is_natural_(cs2D.x_is_natural_),
y_is_natural_(cs2D.y_is_natural_),
x_lower_derivatives_(cs2D.x_lower_derivatives_),
x_upper_derivatives_(cs2D.x_upper_derivatives_),
y_lower_derivative_(cs2D.y_lower_derivative_),
y_upper_derivative_(cs2D.y_upper_derivative_),
verbosity_(cs2D.verbosity_)
{
}
// Destructor
CubicSpline2D::~CubicSpline2D()
{}
// A complex version to create a 2D Cubic spline.
void CubicSpline2D::createBiCubicSpline()
{
// For each y sample position
// a 1D spline upon the corresponding x sample positions
// and the x sample values is created and stored.
int m = sample_positions_x_.size();
// If neccessary determine the default value.
if (return_average_)
{
default_value_ = 0.;
}
for (int j = 0; j < m; j++)
{
// compute a 1D spline
CubicSpline1D cs(sample_positions_x_[j], sample_values_[j], x_lower_bounds_[j], x_upper_bounds_[j],
return_average_, x_default_values_[j], x_is_natural_[j], x_lower_derivatives_[j], x_upper_derivatives_[j]);
cs.setVerbosity(verbosity_);
if (return_average_)
{
default_value_ += cs.getDefaultValue()/m;
}
// store the 1D splines
splines_.push_back(cs);
}
}
void CubicSpline2D::setVerbosity(int verbosity)
{
verbosity_ = verbosity;
for (Position i=0; i<splines_.size(); i++)
splines_[i].setVerbosity(verbosity_);
}
float CubicSpline2D::operator () (float x, float y)
{
// We are looking for the interpolation of the 2D spline
// at (x,y).
// So, we need to evaluate all 1D splines in x direction at value x,
// create a temporary 1D spline upon these values and the y positions, and
// evaluate the temporary spline at value y.
// For the evaluation spline we need
// sample values...
std::vector<float> values;
// The number of 1D splines.
int n = sample_positions_y_.size();
// First, the sample values of our temporary
// 1D spline are determined by evaluating
// for each y position the 1D splines at x.
for (int i=0; i < n; i++)
{
values.push_back(splines_[i](x));
}
// Set the default value to a correct value.
float default_value = y_default_value_;
if (return_average_)
default_value = default_value_;
// Then, a new 1D spline is constructed.
CubicSpline1D cs(sample_positions_y_, values,
y_lower_bound_, y_upper_bound_,
return_average_, default_value,
y_is_natural_, y_lower_derivative_, y_upper_derivative_);
cs.setVerbosity(verbosity_);
// Evaluate the new spline at y.
return cs(y);
}
float CubicSpline2D::getXDefaultValue(Index x) const
{
if (x >= (Index)x_default_values_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_default_values_[x];
}
}
float CubicSpline2D::getXLowerBounds(Index x) const
{
if (x >= (Index)x_lower_bounds_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_lower_bounds_[x];
}
}
float CubicSpline2D::getXUpperBounds(Index x) const
{
if (x >= (Index)x_upper_bounds_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_upper_bounds_[x];
}
}
bool CubicSpline2D::isXNatural(Index x)
{
if (x > (Index)x_is_natural_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_is_natural_[x];
}
}
/** Sets the flag {\tt is_natural_} for the x-th spline to true.
* By default the method recomputes the spline.
* If the argument is false, no recomputation is done.*/
void CubicSpline2D::makeXNatural(Index x, bool recompute)
{
if (x > (Index)x_is_natural_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
x_is_natural_[x] = true;
}
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::makeAllXNatural(bool recompute)
{
for (Size i = 0; i < x_is_natural_.size(); i++)
{
x_is_natural_[i] = true;
}
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::makeYNatural(bool y_is_natural, bool recompute)
{
y_is_natural_ = y_is_natural;
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::setXLowerDerivatives(vector<float> ld, bool recompute)
{
x_lower_derivatives_ = ld;
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::setXUpperDerivatives(vector<float> ud, bool recompute)
{
x_upper_derivatives_ = ud;
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::setYLowerDerivative (float ld, bool recompute)
{
y_lower_derivative_ = ld;
if (recompute)
{
createBiCubicSpline();
}
}
void CubicSpline2D::setYUpperDerivative (float ud, bool recompute)
{
y_upper_derivative_ = ud;
if (recompute)
{
createBiCubicSpline();
}
}
float CubicSpline2D::getXLowerDerivatives(Index x)
{
if (x >= (Index)x_lower_derivatives_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_lower_derivatives_[x];
}
}
float CubicSpline2D::getXUpperDerivatives(Index x)
{
if (x >= (Index)x_upper_derivatives_.size())
{
throw Exception::OutOfRange(__FILE__, __LINE__);
}
else
{
return x_upper_derivatives_[x];
}
}
CubicSpline1D& CubicSpline2D::getSpline(Position i)
{
if (i < (Position)splines_.size())
return splines_[i];
else
throw Exception::OutOfRange(__FILE__, __LINE__);
}
const CubicSpline1D& CubicSpline2D::getSpline(Position i) const
{
if (i < (Position)splines_.size())
return splines_[i];
else
throw Exception::OutOfRange(__FILE__, __LINE__);
}
}
|