1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: gradient.C,v 1.8 2005/12/23 17:02:43 amoll Exp $
// Atom gradient class: this class represents the gradient (i.e. the negative forces)
// for a given system as a vector<Vector3>. THe gradient is stored in units of kJ/(mol A)
#include <BALL/MOLMEC/COMMON/gradient.h>
#include <BALL/MOLMEC/COMMON/atomVector.h>
#include <BALL/KERNEL/atom.h>
using namespace std;
namespace BALL
{
Gradient::Gradient()
: norm(0.0),
inv_norm(0.0),
rms(0.0),
valid_(false)
{
}
Gradient::Gradient(const AtomVector& atoms)
{
set(atoms);
}
Gradient::Gradient(const Gradient& gradient, bool /* deep */)
: vector<Vector3>()
{
set(gradient);
}
Gradient::~Gradient()
{
valid_ = false;
}
void Gradient::set(const AtomVector& atoms)
{
// change the size to hold all vectors
Size max_index = (Size)atoms.size();
resize(max_index);
// copy all forces.
// the gradient is the negative force and is
// stored in units of kJ/(mol A). The forces
// are in units of Newton, so we have to use
// a conversion factor of -1.0 / 1e3 (J->kJ) / 1e10 (m->A) * NA (1->mol)
norm = 0.0;
Iterator it(begin());
for (Size i = 0; i < max_index; ++i, ++it)
{
*it = atoms[i]->getForce() * Constants::NA / -1.0e13;
norm += (*it) * (*it);
}
// calculate the norm and its inverse
norm = sqrt(norm);
inv_norm = 1.0 / norm;
if (max_index > 0)
{
rms = norm / sqrt(3.0 * (double)max_index);
}
else
{
rms = 0.0;
}
// the gradient is now valid
valid_ = true;
}
void Gradient::set(const Gradient& gradient)
{
// copy the gradient
resize(gradient.size());
copy(gradient.begin(), gradient.end(), begin());
//copy the norm and the valid_ flag
norm = gradient.norm;
inv_norm = gradient.inv_norm;
rms = gradient.rms;
valid_ = gradient.valid_;
}
Gradient& Gradient::operator = (const Gradient& rhs)
{
set(rhs);
return *this;
}
Gradient& Gradient::operator = (const AtomVector& rhs)
{
set(rhs);
return *this;
}
// dot product of two gradients
double Gradient::operator * (const Gradient& gradient) const
{
Size max_index = (Size)size();
if (gradient.size() != max_index)
{
throw Exception::InvalidRange(__FILE__, __LINE__, gradient.size());
}
double result = 0.0;
for (Size i = 0; i < max_index; i++)
{
result += operator[](i) * gradient[i];
}
return result;
}
void Gradient::negate()
{
// iterate over all vectors and flip the sign
for (Iterator it = begin(); it != end(); ++it)
{
*it *= -1.0;
}
}
void Gradient::normalize()
{
// iterate over all vectors and flip the sign
// (TVector3::negate)
for (Iterator it = begin(); it != end(); ++it)
{
*it *= inv_norm;
}
// reset the norm and its inverse
// and calculate hte root mean square
norm = 1.0;
inv_norm = 1.0;
if (size() > 0)
{
rms = 1.0 / sqrt(3.0 * (double)size());
}
else
{
rms = 0.0;
}
}
bool Gradient::isValid() const
{
return valid_;
}
void Gradient::invalidate()
{
valid_ = false;
}
} // namespace BALL
|