File: microCanonicalMD.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (311 lines) | stat: -rw-r--r-- 9,528 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: microCanonicalMD.C,v 1.14 2005/03/01 10:07:54 oliver Exp $
//

#include <BALL/MOLMEC/MDSIMULATION/microCanonicalMD.h>
#include <BALL/MOLMEC/COMMON/forceField.h>
#include <BALL/MOLMEC/COMMON/snapShotManager.h>
#include <BALL/MOLMEC/COMMON/atomVector.h>
#include <BALL/KERNEL/PTE.h>

namespace BALL
{
	// The default constructor with no arguments
	MicroCanonicalMD::MicroCanonicalMD()
		:	MolecularDynamics()
	{
		valid_ = false;
	}


	// This constructor uses the given force field 
	MicroCanonicalMD::MicroCanonicalMD(ForceField& my_force_field)
		:	MolecularDynamics(my_force_field)
	{
		// the user does not want to take snapshots. 
		// Create a dummy manager 
		SnapShotManager tmp;
		valid_ = setup(my_force_field, &tmp);
	}

	// This constructor uses the given force field and snapshot manager 
	MicroCanonicalMD::MicroCanonicalMD(ForceField& my_force_field, SnapShotManager * ssm)
		:	MolecularDynamics(my_force_field)
	{
		valid_ = setup(my_force_field, ssm);
	}

	// This constructor uses the given force field and options 
	MicroCanonicalMD::MicroCanonicalMD(ForceField& my_force_field,
																			SnapShotManager * ssm, const Options& my_options)
		:	MolecularDynamics(my_force_field)
	{
		valid_ = setup(my_force_field, ssm, my_options);
	}

	// The destructor
	MicroCanonicalMD::~MicroCanonicalMD()
	{
	}


  // Choose a new time step. This means that the pre-factors must be
  // computed anew
  void MicroCanonicalMD::setTimeStep(double time)
  {
		// call the corresponding method in the base class
		MolecularDynamics::setTimeStep(time);

		// calculate the new factors 
		MicroCanonicalMD::calculateFactors(); 
  }

	// This method does the general setup. 
	bool MicroCanonicalMD::setup(ForceField& my_force_field, SnapShotManager * ssm)
	{
		// No specific options have been named -> we use the force field's options
		valid_ = setup(my_force_field, ssm, my_force_field.options);

		return valid_;
	}

	bool MicroCanonicalMD::setup(ForceField& my_force_field, SnapShotManager * ssm, const Options& my_options)
	{
		// First check whether the force field is valid. If not, then it is useless
		// to do anything here.
		if (!my_force_field.isValid())
		{
			// The setup has failed for some reason. Output an error message.
			Log.error() << "MicroCanonicalMD::setup: setup failed because the force field was not valid!" << std::endl;

			valid_ = false;
			return false;
		}

		// call the base class setup method
		valid_ = MolecularDynamics::setup(my_force_field, ssm, my_options);

		if (!valid_)
			return false;

		// call the specific Setup
		valid_ = specificSetup();

		return valid_;
	}


	// This method calculates certain factors that are needed 
	// throughout the simulation 
	void MicroCanonicalMD::calculateFactors()
	{
		// Precompute a factor involving each atom's mass 
		mass_factor_.clear();

		vector < Atom * >::iterator it;
		AuxFactors item;
		Atom *atom_ptr;

		for (it = atom_vector_.begin(); it != atom_vector_.end(); ++it)
		{
			// Factor1 = time_step_ * time_step_ / (2 * mass)
			// Factor2 = time_step_ / (2 * mass)
			// Factors must be scaled by 6.022 * 10^12 to adjust units 
			atom_ptr = *it;
			item.factor2 = Constants::AVOGADRO / 1e23 * 1e12 * 0.5 * time_step_ / atom_ptr->getElement().getAtomicWeight();
			item.factor1 = item.factor2 * time_step_;
			mass_factor_.push_back(item);
		}

	}	// end of ' calculateFactors' 


	// This method performs additional setup preparations in addition 
	// to those done in MolecularDynamics::setup 
	bool MicroCanonicalMD::specificSetup()
	{
		// nothing to do...
		return valid_;
	}

	// The copy constructor 
	MicroCanonicalMD::MicroCanonicalMD(const MicroCanonicalMD& rhs)
		:	MolecularDynamics(rhs)
	{
		// copy class specific variables 
		mass_factor_ = rhs.mass_factor_;
	}

	// The assignment operator 
	MicroCanonicalMD& MicroCanonicalMD::operator = (const MicroCanonicalMD& rhs)
	{
		mass_factor_ = rhs.mass_factor_;

		// call the assignment operator of the base class
		this->MolecularDynamics::operator = (rhs);

		return *this;
	}

	// This method does the actual simulation stuff
	// It runs for the indicated number of iterations           
  // restart=true means that the counting of iterations is started with the end
  // value of the previous run
	bool MicroCanonicalMD::simulateIterations(Size iterations, bool restart)
	{
		// local variables
		double current_energy = 0;
		Size max_number = 0;

		Atom *atom_ptr = 0;
		Size force_update_freq = 0;
		Size iteration = 0;

    if (!restart)
    {
      // reset the current number of iteration and the simulation time  to the values given
      // in the options 
      number_of_iteration_  = (Size)options.getInteger(MolecularDynamics::Option::NUMBER_OF_ITERATION);
      current_time_ = options.getReal(MolecularDynamics::Option::CURRENT_TIME);
    }
    else
    {
			// the values from the last simulation run are used; increase by one to start in the
			// next iteration 
			number_of_iteration_++; 
    }

		// determine the largest value for the iteration counter 
	  max_number = number_of_iteration_ + iterations;

		// pre-calculate some needed factors
	  calculateFactors();

		// make sure that the MD simulation operates on the same set of atoms
		// as the forcefield  does (this may have changed since setup was called)
	  atom_vector_ = force_field_ptr_->getAtoms();


		// First check whether the  force field and the MD instance
		// are valid
		if (!valid_ || force_field_ptr_ == 0 || !force_field_ptr_->isValid())
		{
			Log.error() << "MD simulation not possible! " << "MD class is  not valid." << std::endl;
			return false;
		}


		// Get the frequency for updating the Force Field pair lists
		force_update_freq = force_field_ptr_->getUpdateFrequency();

		// If the simulation runs with periodic boundary conditions, update the
		// list and position of molecules
		if (force_field_ptr_->periodic_boundary.isEnabled())
		{
			force_field_ptr_->periodic_boundary.updateMolecules();
		}

		// Calculate the forces at the beginning of the simulation
		force_field_ptr_->updateForces();

		// DEBUG ???
		//force_field_ptr_->updateEnergy();	
		// only done for debugging purposes 



		// This is the main loop of the MD simulation. The Velocity-Verlet method
		// is used for the propagation of atomic positions  and velocities 
		for (iteration = number_of_iteration_; iteration < max_number; iteration++)
		{
			// The force field data structures must be  updated regularly
			if (iteration % force_update_freq == 0)
			{
				force_field_ptr_->update();
			}

			// If the simulation runs with periodic boundary conditions, update the
			// list and position of molecules
			if (force_field_ptr_->periodic_boundary.isEnabled())
			{
				force_field_ptr_->periodic_boundary.updateMolecules();
			}

			// In regular intervals, calculate and  output the current energy
			if (iteration % energy_output_frequency_ == 0)
			{
				current_energy = force_field_ptr_->updateEnergy();
				updateInstantaneousTemperature();

				Log.info()
					<< "Microcanonical MD simulation System has potential energy "
					<< current_energy << " kJ/mol at time " << current_time_ + (double) iteration *time_step_ << " ps " << std::endl;

				Log.info()
					<< "Microcanonical MD simulation System has kinetic energy "
					<< kinetic_energy_ << " kJ/mol at time " << current_time_ + (double) iteration *time_step_ << " ps " << std::endl;        
			}

			// Calculate new atomic positions and new tentative velocities 
			vector<Atom*>::iterator atom_it(atom_vector_.begin());
			vector<AuxFactors>::iterator factor_it(mass_factor_.begin());
			for (; atom_it != atom_vector_.end(); ++atom_it, ++factor_it)
			{
				atom_ptr = *atom_it;

				// First calculate the new atomic position
				// x(t+1) = x(t) + time_step_ * v(t) + time_step_^2/(2*mass) * F(t)
				atom_ptr->setPosition(atom_ptr->getPosition()
															 + (float)time_step_ * atom_ptr->getVelocity() + (float)factor_it->factor1 * atom_ptr->getForce());

				// calculate a tentative  velocity 'v_tent' for the next iteration
				// v_tent(t+1) = v(t) + time_step_ / (2 * mass) * F(t)
				atom_ptr->setVelocity(atom_ptr->getVelocity() + (float)factor_it->factor2 * atom_ptr->getForce());
			}	// next atom 


			// Determine the forces for the next iteration
			force_field_ptr_->updateForces();

			for (atom_it = atom_vector_.begin(),
					 factor_it = mass_factor_.begin(); atom_it != atom_vector_.end(); ++atom_it, ++factor_it)
			{
				atom_ptr = *atom_it;

				// Calculate the final velocity for the next iteration
				atom_ptr->setVelocity(atom_ptr->getVelocity() + (float)factor_it->factor2 * atom_ptr->getForce());
			}	// next atom

			// Take a snapshot in regular intervals if desired              
			if (snapshot_manager_ptr_ != 0 && iteration % snapshot_frequency_ == 0)
			{
				snapshot_manager_ptr_->takeSnapShot();
			}

			if (abort_by_energy_enabled_)
			{
				if ((Maths::isNan(force_field_ptr_->getEnergy()))
					|| (force_field_ptr_->getEnergy() > abort_energy_))
				{
					return false;
				}
			}

		}	// next iteration 

		// update the current time
		current_time_ += (double)iterations * time_step_;

    // set the current iteration
    number_of_iteration_ = iteration - 1; 

		// update the current temperature in the system
		force_field_ptr_->updateEnergy();
		updateInstantaneousTemperature();

		return true;
	}	// end of simulateIterations() 

}	// end of namespace BALL