File: conjugateGradient.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (940 lines) | stat: -rw-r--r-- 26,741 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: conjugateGradient.C,v 1.38.8.7 2007/08/07 09:13:05 aleru Exp $
//
// Minimize the potential energy of a system using a nonlinear conjugate 
// gradient method with  line search

#include <BALL/MOLMEC/MINIMIZATION/conjugateGradient.h>
#include <BALL/MOLMEC/MINIMIZATION/lineSearch.h>
#include <BALL/MOLMEC/COMMON/forceField.h>

#include <limits>

//#define BALL_DEBUG
#undef BALL_DEBUG

// The default method to use for the CG direction update
// (FLETCHER_REEVES | POLAK_RIBIERE | SHANNO)
#define DEFAULT_METHOD SHANNO

namespace BALL 
{
	using namespace std; 
	
	// Set the default values for options of this class 
	const char* ConjugateGradientMinimizer::Option::UPDATE_METHOD = "update_method"; 
	
	const Size ConjugateGradientMinimizer::Default::UPDATE_METHOD = DEFAULT_METHOD; 
	
	// Default constructor 
	// It does nothing but calling its base class constructor 
  ConjugateGradientMinimizer::ConjugateGradientMinimizer()
		: EnergyMinimizer(),
			line_search_(),
			unscaled_direction_(),
			number_of_atoms_(0),
			updt_method_(DEFAULT_METHOD),
			first_iter_(true),
			old_gtg_(0.),
			a_i_(),
			b_i_(),
			p_t_(),
			y_t_(),
			p_i_(),
			y_i_(),
			D_1_(0.),
			D_4_(0.),
			restart_frequency_(1),
			last_restart_iter_(0)
	{
		line_search_.setMinimizer(*this);

		options.setDefaultInteger(Option::UPDATE_METHOD, Default::UPDATE_METHOD);
	}

	// Constructor initialized with a force field
	ConjugateGradientMinimizer::ConjugateGradientMinimizer(ForceField& force_field)
		: EnergyMinimizer(),
			line_search_(),
			unscaled_direction_(),
			number_of_atoms_(0),
			updt_method_(DEFAULT_METHOD),
			first_iter_(true),
			old_gtg_(0.),
			a_i_(),
			b_i_(),
			p_t_(),
			y_t_(),
			p_i_(),
			y_i_(),
			D_1_(0.),
			D_4_(0.),
			restart_frequency_(1),
			last_restart_iter_(0)
	{
		line_search_.setMinimizer(*this);

		options.setDefaultInteger(Option::UPDATE_METHOD, Default::UPDATE_METHOD);
		valid_ = setup(force_field);
		
		if (!valid_)
		{
			Log.error() << "ConjugateGradientMinimizer: setup failed! " << endl;
		}
	}

	// Constructor initialized with a force field and a snapshot manager 
	ConjugateGradientMinimizer::ConjugateGradientMinimizer
		(ForceField& force_field, SnapShotManager* ssm)
		: EnergyMinimizer(),
			line_search_(),
			unscaled_direction_(),
			number_of_atoms_(0),
			updt_method_(DEFAULT_METHOD),
			first_iter_(true),
			old_gtg_(0.),
			a_i_(),
			b_i_(),
			p_t_(),
			y_t_(),
			p_i_(),
			y_i_(),
			D_1_(0.),
			D_4_(0.),
			restart_frequency_(1),
			last_restart_iter_(0)
	{
		line_search_.setMinimizer(*this);

		options.setDefaultInteger(Option::UPDATE_METHOD, Default::UPDATE_METHOD);
		valid_ = setup(force_field, ssm);
		
		if (!valid_)
		{
			Log.error() << "ConjugateGradientMinimizer: setup failed! " << endl;
		}
	}

	
	// Constructor initialized with a force field and a set of options
	ConjugateGradientMinimizer::ConjugateGradientMinimizer
		(ForceField& force_field, const Options& new_options) 
		: EnergyMinimizer(),
			line_search_(),
			unscaled_direction_(),
			number_of_atoms_(0),
			updt_method_(DEFAULT_METHOD),
			first_iter_(true),
			old_gtg_(0.),
			a_i_(),
			b_i_(),
			p_t_(),
			y_t_(),
			p_i_(),
			y_i_(),
			D_1_(0.),
			D_4_(0.),
			restart_frequency_(1),
			last_restart_iter_(0)
	{
		line_search_.setMinimizer(*this);

		options.setDefaultInteger(Option::UPDATE_METHOD, Default::UPDATE_METHOD);
		
		// The actual work is done in setup 
		valid_ = setup(force_field, new_options);
		
		if (!valid_)
		{
			Log.error() << " Setup of conjugate gradient minimizer has failed! " << endl; 
		}
	}
	
	// Constructor initialized with a force field, a snapshot manager, and a set of options
	ConjugateGradientMinimizer::ConjugateGradientMinimizer
		(ForceField& force_field, SnapShotManager* ssm, const Options& new_options)
		: EnergyMinimizer(),
			line_search_(),
			unscaled_direction_(),
			number_of_atoms_(0),
			updt_method_(DEFAULT_METHOD),
			first_iter_(true),
			old_gtg_(0.),
			a_i_(),
			b_i_(),
			p_t_(),
			y_t_(),
			p_i_(),
			y_i_(),
			D_1_(0.),
			D_4_(0.),
			restart_frequency_(1),
			last_restart_iter_(0)
	{
		line_search_.setMinimizer(*this);

		options.setDefaultInteger(Option::UPDATE_METHOD, Default::UPDATE_METHOD);
		
		// The actual work is done in setup 
		valid_ = setup(force_field, ssm, new_options);
		
		if (!valid_)
		{
			Log.error() << " Setup of conjugate gradient minimizer has failed! " << endl; 
		}
	}
	
	// Destructor
	ConjugateGradientMinimizer::~ConjugateGradientMinimizer()
	{
	}
	
	// The copy constructor 
	ConjugateGradientMinimizer::ConjugateGradientMinimizer 
		(const ConjugateGradientMinimizer& rhs)
		: EnergyMinimizer(rhs),
			line_search_(rhs.line_search_),
			unscaled_direction_(rhs.unscaled_direction_),
			number_of_atoms_(rhs.number_of_atoms_),
			updt_method_(rhs.updt_method_),
			first_iter_(rhs.first_iter_),
			old_gtg_(rhs.old_gtg_),
			a_i_(rhs.a_i_),
			b_i_(rhs.b_i_),
			p_t_(rhs.p_t_),
			y_t_(rhs.y_t_),
			p_i_(rhs.p_i_),
			y_i_(rhs.y_i_),
			D_1_(rhs.D_1_),
			D_4_(rhs.D_4_),
			restart_frequency_(rhs.restart_frequency_),
			last_restart_iter_(rhs.last_restart_iter_)
	{
		line_search_.setMinimizer(*this);
	}
	
	// The assignment operator
	const ConjugateGradientMinimizer& ConjugateGradientMinimizer::operator =
		(const ConjugateGradientMinimizer& rhs)
	{
		EnergyMinimizer::operator = (rhs);
		line_search_        = rhs.line_search_;
		updt_method_        = rhs.updt_method_;
		unscaled_direction_ = rhs.unscaled_direction_;
		number_of_atoms_    = rhs.number_of_atoms_;
		first_iter_         = rhs.first_iter_;
		old_gtg_            = rhs.old_gtg_;
		a_i_                = rhs.a_i_;
		b_i_                = rhs.b_i_;
		p_t_                = rhs.p_t_;
		y_t_                = rhs.y_t_;
		p_i_                = rhs.p_i_;
		y_i_                = rhs.y_i_;
		D_1_                = rhs.D_1_;
		D_4_                = rhs.D_4_;
		restart_frequency_  = rhs.restart_frequency_;
		last_restart_iter_  = rhs.last_restart_iter_;
		line_search_.setMinimizer(*this);
		return *this;
	}
	
	// This method is responsible for doing the specific setup of this class       
	bool ConjugateGradientMinimizer::specificSetup()
	{
		// Make sure the force field is assigned and valid!
		if (force_field_ == 0 || !force_field_->isValid())
		{
			return false;
		}
		
		// Invalidate the initial gradient in order to ensure
		// its re-evaluation at the start of minimize().
		initial_grad_.invalidate();
		old_grad_.invalidate();
		
		// Get the options
		updt_method_ = (Size) options.getInteger(Option::UPDATE_METHOD);
		
		// determine the number of atoms
		number_of_atoms_ = (Size)force_field_->getNumberOfMovableAtoms();
		
		// Reset the restart counter
		last_restart_iter_ = 0;
		
		return true;
	}
	
	// Set explicitly the update method
	void ConjugateGradientMinimizer::setUpdateMethod(UpdateMethod updt)
	{
		updt_method_ = updt;
		options.setInteger(Option::UPDATE_METHOD, (Size)updt);
	}
	
	// Return the update method
	ConjugateGradientMinimizer::UpdateMethod ConjugateGradientMinimizer::getUpdateMethod() const
	{
		return (UpdateMethod)updt_method_;
	}
	
	// This method determines the new search direction. Along this
	// vector we will try to find the next solution.
	void ConjugateGradientMinimizer::updateDirection()
	{
		if (!initial_grad_.isValid())
		{
			// Compute the initial energy and the initial forces
			updateEnergy();
			updateForces();
			
			// Store them for later use
			storeGradientEnergy();
		}
		
		if (first_iter_)
		{
			// This is the first iteration. We use the
			// normalized negative gradient as first direction
			direction_ = initial_grad_;
			direction_.negate();
			if (updt_method_ != SHANNO)
			{
				old_gtg_ = 0.;
				for(Size i = 0; i < number_of_atoms_; ++i)
				{
					// We do the calculation in 'double' accuracy
					old_gtg_ += (double)initial_grad_[i].x*(double)initial_grad_[i].x;
					old_gtg_ += (double)initial_grad_[i].y*(double)initial_grad_[i].y;
					old_gtg_ += (double)initial_grad_[i].z*(double)initial_grad_[i].z;
				}
				unscaled_direction_ = direction_;
			}
			direction_.normalize();
			first_iter_        = false;
			last_restart_iter_ = 0;
			return;
		}
		
		// Just in case: check whether
		//  (1) (enough) memory is allocated for our search direction
		//  (2) the old gradient are invalid.
		if ((direction_.size() == 0) || !old_grad_.isValid())
		{
			// This mustn't happen at all. If this routine is called all data(-structures) should be fine.
			// But we are here! Something went wrong and we don't know what. Most kindly the data is
			// modified by an external program/thread, so we do the best we can do: first we update the forces
			// and set the direction to the negative gradient. Additionally, we force a restart.
			Log.error() << "dir: " << direction_.isValid()
									<< "  initial_grad: " << initial_grad_.isValid()
									<< "  old_grad: " << old_grad_.isValid() << endl;
			Log.error() << "ConjugateGradient::updateDirection: invalid gradient or direction  -  cannot use CG." << endl;
			
			// Calculate the current gradient and determine the current
			// direction as the direction of steepest descent.
			updateForces();
			direction_ = current_grad_;
			direction_.negate();
			unscaled_direction_ = direction_;
			direction_.normalize();
			last_restart_iter_ = 0;
			return;
		}
		
		/* There are three different conjugate gradient methods implemented:
			
				- Fletcher-Reeves (FR)
				- Polak-Ribiere (PR)
				- Shanno
				
			 For FR and PR methods, the new direction vector is calculated as follows:
				
					d_k = - g_k + \beta d_{k-1}
				
			 Where d_k and d_{k-1} are the new and the old search direction 
			 and g_k is the current gradient. \beta is determined by one of 
			 methods stated above.
		*/
		switch (updt_method_)
		{
			case FLETCHER_REEVES:
			{
				// We compute the new direction by the Fletcher-Reeves update.
				
				// \beta = \frac{<g_{k}, g_{k}>}{<g_{k-1}, g_{k-1}>}, see [1].
				
				double gtg = 0.;
				
				// In order to use 'double' accuracy the calculation is done
				// 'by hand'.
				for(Size i = 0; i < number_of_atoms_; ++i)
				{
					gtg += (double)initial_grad_[i].x*(double)initial_grad_[i].x;
					gtg += (double)initial_grad_[i].y*(double)initial_grad_[i].y;
					gtg += (double)initial_grad_[i].z*(double)initial_grad_[i].z;
				}
				
				// Check whether we should proceed by a restart
				if ((last_restart_iter_ == restart_frequency_) || (same_energy_counter_ > 0))
				{
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					old_gtg_ = gtg;
					last_restart_iter_ = 0;
					return;
				}
				
				double beta = gtg;
				if (old_gtg_ > cutlo_)
				{
					beta    /= old_gtg_;
					old_gtg_ = gtg;
				}
				else
				{
					// Something went wrong. The recent gradient is about 0 or
					// is something wrong with the stored value???
					// We force a restart.
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					old_gtg_ = gtg;
					last_restart_iter_ = 0;
					return;
				}
				
				// Calculate the new conjugate gradient search direction:
				// direction_ = - initial_gradient_ + beta * direction_;
				// and a simple angle test for restart, see [5]
				direction_.norm = 0.0;
				double stg = 0.;
				for (Size i = 0; i < number_of_atoms_; ++i)
				{
					// Same case as above, use 'double' accuracy
					direction_[i].x  = -initial_grad_[i].x + beta*unscaled_direction_[i].x;
					direction_[i].y  = -initial_grad_[i].y + beta*unscaled_direction_[i].y;
					direction_[i].z  = -initial_grad_[i].z + beta*unscaled_direction_[i].z;
					
					// We don't need the following values computed in 'double' accuracy
					direction_.norm += direction_[i] * direction_[i];
					stg             += direction_[i]*initial_grad_[i];
				}
				direction_.norm = sqrt(direction_.norm);
				if (-stg/direction_.norm/initial_grad_.norm < 1.e-3)
				{
					// Case: beta = 0, i.e. a restart
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					last_restart_iter_ = 0;
					return;
				}
				else
				{
					// Assign the norm of the new direction
					direction_.rms = direction_.norm / (3.0 * (double)number_of_atoms_);
				
					// Don't risc a "NaN"
					if (direction_.norm >= cutlo_)
					{
						direction_.inv_norm = 1.0 / direction_.norm;
					}
					else
					{
						direction_.inv_norm = sqrt(std::numeric_limits<float>::max());
					}
					unscaled_direction_ = direction_;
				}
				break;
			}
			case POLAK_RIBIERE:
			{
				// We compute the new direction by the Polak-Ribiere update.
				
				// \beta = \frac{<g_k, (g_k - g_{k-1})>}{<g_{k-1}, g_{k-1}>}
				double gtg = 0.;
				double gg  = 0.;
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					// We want 'double' accuracy
					gtg += (double)initial_grad_[i].x*(double)initial_grad_[i].x;
					gg  += (double)initial_grad_[i].x*(double)old_grad_[i].x;
					gtg += (double)initial_grad_[i].y*(double)initial_grad_[i].y;
					gg  += (double)initial_grad_[i].y*(double)old_grad_[i].y;
					gtg += (double)initial_grad_[i].z*(double)initial_grad_[i].z;
					gg  += (double)initial_grad_[i].z*(double)old_grad_[i].z;
				}
				
				// Check whether we should proceed by a restart.
				// We also force a restart if the energy difference is too small
				if ((last_restart_iter_ == restart_frequency_) || (same_energy_counter_ > 0))
				{
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					old_gtg_ = gtg;
					last_restart_iter_ = 0;
					return;
				}
				
				double beta = gtg - gg;
				if (old_gtg_ > cutlo_)
				{
					beta    /= old_gtg_;
					old_gtg_ = gtg;
				}
				else
				{
					// Something went wrong. The recent gradient is about 0 or
					// is something wrong with the stored value???
					// We force a restart.
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					old_gtg_ = gtg;
					last_restart_iter_ = 0;
					return;
				}
				
				if (beta < 0.)
				{
					// This is the proposed criterion in [4]
					// beta = 0.;
					direction_ = initial_grad_;
					direction_.negate();
					unscaled_direction_ = direction_;
					direction_.normalize();
					last_restart_iter_ = 0;
				}
				else
				{
					// Calculate the new conjugate gradient search direction:
					// direction_ = - initial_gradient_ + beta * direction_;
					// and a smiple angle test for restart
					direction_.norm = 0.0;
					float stg = 0.;
					for (Size i = 0; i < number_of_atoms_; i++)
					{
						// Same case as above, use 'double' accuracy
						direction_[i].x  = -initial_grad_[i].x + beta*unscaled_direction_[i].x;
						direction_[i].y  = -initial_grad_[i].y + beta*unscaled_direction_[i].y;
						direction_[i].z  = -initial_grad_[i].z + beta*unscaled_direction_[i].z;
						
						// We don't need the following values computed in 'double' accuracy
						direction_.norm += direction_[i] * direction_[i];
						stg             += direction_[i]*initial_grad_[i];
					}
					// Assign the norm of the new direction
					direction_.norm = sqrt(direction_.norm);
					if (-stg/direction_.norm/initial_grad_.norm < 1.e-3)
					{
						// beta = 0.;
						direction_ = initial_grad_;
						direction_.negate();
						unscaled_direction_ = direction_;
						direction_.normalize();
						last_restart_iter_ = 0;
					}
					else
					{
						direction_.rms = direction_.norm / (3.0 * (double)number_of_atoms_);
						
						// Don't risc a "NaN"
						if (direction_.norm >= cutlo_)
						{
							direction_.inv_norm = 1.0 / direction_.norm;
						}
						else
						{
							direction_.inv_norm = sqrt(std::numeric_limits<float>::max());
						}
						unscaled_direction_ = direction_;
					}
				}
				break;
			}
			case SHANNO:
			default:
			{
				/* Literature: see [2], [3]
					 The new search direction d_k is calculated as follows:
					   d_i+1 = - b_i + D_8 / D_5 * a_i - (1 + D_6/D_5) * D_8/D_5 - D_7/D_5) * p_i
					 with
					 Index i = old iteration 
					 a_i = D_1 / D_4 * y_i - D_2 / D_4 * y_t + (2 D_2/D_1 - D_3/D_4) * p_t
					 b_i = D_1 / D_4 * g_i - C_1/D_4 * y_t + (2 C_1/D_1 - C_2/D_4) * p_t
					 p_i = step_length_ * d_old;
					 p_t = step_length_t * d_t
					 D_1 = p_t * y_t         D_2 = p_t * y_i
					 D_3 = y_t * y_i         C_1 = p_t * grad_new
					 C_2 = y_t * grad_new    D_4 = y_t * y_t
					 D_5 = p_i * y_i         D_6 = a_i * y_i 
					 D_7 = a_i * grad_new    D_8 = p_i * grad_new 
					 y_i = grad_new - grad_old 
					 y_t = grad_new - grad_old  in iteration t
					 d_t = search direction in iteration t
				*/
				double sum1 = 0;
				double sum2 = 0;
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					y_i_[i] = initial_grad_[i] - old_grad_[i];
					p_i_[i] = direction_[i] * step_;
					
					sum1 += y_i_[i] * y_i_[i];
					sum2 += p_i_[i] * p_i_[i];
				}
				
				if (sum1 < cutlo_ || sum2 < cutlo_)
				{
					// Take the current gradient as the new search direction
					direction_ = initial_grad_;
					direction_.negate();
					// Not necessary in Shanno case
					//unscaled_direction_ = direction_;
					direction_.normalize();
					last_restart_iter_ = 0;
					return;
				}
				
				if ((last_restart_iter_ == restart_frequency_) || (number_of_iterations_ == 1))
				{
					double condition = 0;
					for (Size i = 0; i < number_of_atoms_; i++)
					{
						condition += initial_grad_[i] * old_grad_[i];
					}
					
					// Take the absolute value
					condition = fabs(condition);
					
					if ((number_of_iterations_ == 1) || (condition >= 0.2 * initial_grad_.norm * initial_grad_.norm))
					{
						D_1_ = 0.;
						D_4_ = 0.;
						for (Size i = 0; i < number_of_atoms_; i++)
						{
							p_t_[i] = direction_[i]*step_;
							y_t_[i] = initial_grad_[i] - old_grad_[i];
							D_1_ += p_t_[i]*y_t_[i];
							D_4_ += y_t_[i]*y_t_[i];
						}
						
						if (fabs(D_4_) <= cutlo_)
						{
							throw Exception::DivisionByZero(__FILE__, __LINE__);
						}
					}
					last_restart_iter_ = 0;
				}
				
				// Calculate all the auxiliary values
				
				double C_1 = 0.;
				double C_2 = 0.;
				double D_2 = 0.;
				double D_3 = 0.;
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					C_1 += p_t_[i] * initial_grad_[i];
					C_2 += y_t_[i] * initial_grad_[i];
					D_2 += p_t_[i] * y_i_[i];
					D_3 += y_t_[i] * y_i_[i];
				}
				
				double factor1 = D_1_ / D_4_;
				double factor2 = D_2 / D_4_;
				double factor3 = (2. * D_2 / D_1_ - D_3 / D_4_);
				
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					a_i_[i] = y_i_[i] * factor1 - y_t_[i] * factor2 + p_t_[i] * factor3;
				}
				
				factor2 = C_1 / D_4_;
				factor3 = (2. * C_1 / D_1_ - C_2 / D_4_);
				
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					b_i_[i] = initial_grad_[i] * factor1 - y_t_[i] * factor2 + p_t_[i] * factor3;
				}
				
				double D_5 = 0.;
				double D_6 = 0.;
				double D_7 = 0.;
				double D_8 = 0.;
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					D_5 += p_i_[i] * y_i_[i];
					D_6 += a_i_[i] * y_i_[i];
					D_7 += a_i_[i] * initial_grad_[i];
					D_8 += p_i_[i] * initial_grad_[i];
				}
				
				if (fabs(D_5) <= cutlo_)
				{
					// Take the current gradient as the new search direction
					direction_ = initial_grad_;
					direction_.negate();
					// Not necessary in Shanno case
					//unscaled_direction_ = direction_;
					direction_.normalize();
					last_restart_iter_ = 0;
					return;
				}
				
				// Set the new search direction
				direction_.norm = 0.0;
				
				factor1 = D_8 / D_5;
				factor2 = (1. + D_6 / D_5) * factor1 - D_7 / D_5;
				
				for (Size i = 0; i < number_of_atoms_; i++)
				{
					direction_[i] = -b_i_[i] + a_i_[i] * factor1 - p_i_[i] * factor2;
					direction_.norm += direction_[i] * direction_[i];
				}
				
				// Assign the norm of the new direction
				direction_.norm = sqrt(direction_.norm);
				direction_.rms = direction_.norm / (3.0 * (double)number_of_atoms_);
				
				// Don't risc a "NaN"
				if (direction_.norm >= cutlo_)
				{
					direction_.inv_norm = 1.0 / direction_.norm;
				}
				else
				{
					direction_.inv_norm = sqrt(std::numeric_limits<float>::max());
				}
				// No necessary in Shanno case
				//unscaled_direction_ = direction_;
			}
		}
	} // end of method 'updateDirection'

	// The minimizer optimizes the energy of the system 
	// by using a conjugate gradient method. 
	// Return value is true when no further steps can be taken!
	bool ConjugateGradientMinimizer::minimize(Size iterations, bool resume)
	{
		aborted_ = false;
		
		// Check for validity of minimizer and force field
		if (!isValid() || getForceField() == 0 || !getForceField()->isValid())
		{
			Log.error() << "ConjugateGradientMinimizer: is not initialized correctly!" << std::endl;
			aborted_ = true;
			return false;
		}
		
		Size noatoms = force_field_->getNumberOfMovableAtoms();
		// (1) Make sure we have something worth moving.
		if (noatoms == 0)
		{
			return true;
		}
		// (2) Check that outside of this minimizer the number of movable atoms didn't change
		if (number_of_atoms_ != noatoms)
		{
			// The number of movable atoms has changed, so we must start from scratch
			number_of_atoms_ = noatoms;
			resume = false;
		}
		// (3) Check that outside of this minimizer the options didn't change
		if ((Size)options.getInteger(Option::UPDATE_METHOD) != updt_method_)
		{
			updt_method_ = (Size)options.getInteger(Option::UPDATE_METHOD);
			resume = false;
		}
		
		// Define an alias for the atom vector
		AtomVector& atoms(const_cast<AtomVector&>(getForceField()->getAtoms()));
		
		// If we start from scratch (i.e. no restart) we have to make sure
		// to calculate all the quantities we need before we start
		if (!resume)
		{
			// Reset the number of iterations if the job is not resumed.
			setNumberOfIterations(0);
			same_energy_counter_ = 0;
			initial_grad_.invalidate();
			current_grad_.invalidate();
			first_iter_ = true;
			last_restart_iter_ = 0;
			
			restart_frequency_ = 3 * number_of_atoms_;
			if (updt_method_ == SHANNO)
			{
				p_t_.resize(number_of_atoms_);
				y_t_.resize(number_of_atoms_);
				y_i_.resize(number_of_atoms_);
				p_i_.resize(number_of_atoms_);
				a_i_.resize(number_of_atoms_);
				b_i_.resize(number_of_atoms_);
			}
			
			// Obviously, we don't have "old" energies yet, so we initialize it a with 
			// sensible value. We don't need "old" gradients here.
			old_energy_ = std::numeric_limits<float>::max();
		}
		
		Size max_iterations = std::min(getNumberOfIterations() + iterations, getMaxNumberOfIterations());
		
		#ifdef BALL_DEBUG
			Log.info() << "CGM: minimize(" << iterations << ", " << resume << ")" << endl;
		#endif
		
		// save the current atom positions
		atoms.savePositions();
		bool converged = false;	
		
		// Iterate: while not converged and not enough iterations
		while (!converged && (getNumberOfIterations() < max_iterations))	
		{
			// Try to take a new step
			double stp = findStep();
			
			// use this step as new reference step if findStep was successful
			if (stp > 0.)
			{
				atoms.savePositions();
			}
			
			// Store the gradient and the energy
			old_grad_   = initial_grad_;
			old_energy_ = initial_energy_;
			
			// Store the current gradient and energy
			storeGradientEnergy();
			
			#ifdef BALL_DEBUG
				Log << "CGM: end of main: current grad RMS = " << current_grad_.rms << std::endl;
			#endif
			
			// Check for convergence.
			converged = isConverged() || (stp == 0.);
			
			// Increment iteration counter, take snapshots, print energy,
			// update pair lists, and check the same-energy counter
			finishIteration();
			++last_restart_iter_;
			
			if ((!converged) && (stp < 0.))
			{
				// Nasty case: No convergence and the step computation failed.
				// We must give up:-(
				aborted_ = true;
				return false;
			}
			if (Maths::isNan(force_field_->getEnergy())) 
			{
				aborted_ = true;
				return false;
			}
			if (Maths::isNan(getGradient().rbegin()->x) ||
			    Maths::isNan(getGradient().rbegin()->y) ||
			    Maths::isNan(getGradient().rbegin()->z)) 
			{
				aborted_ = true;
				return false;
			}
			if (abort_by_energy_enabled_)
			{
				if (force_field_->getEnergy() > abort_energy_) 
				{
					aborted_ = true;
					return false;
				}
			}
		}
		
		return converged;
	} // end of method 'minimize' 
	
	
	double ConjugateGradientMinimizer::findStep()
	{
		// Compute the new direction
		updateDirection();
		
		// Define an alias for the atom vector
		AtomVector& atoms(const_cast<AtomVector&>(getForceField()->getAtoms()));
		
		// We perform a line search
		
		// No need to assure the maximum displacement here since our
		// line search pays attention to this constraint.
		
		bool result = line_search_.minimize(step_);
		if (!result)
		{
			// Something went wrong.
			// No success. We proceed with a restart.
			
			// Set the search direction to the normalized negative gradient. Since we proceed
			// with a restart, we mustn't update the stored vectors by 'updateDirection' and there is
			// no need to compute anything by 'updateDirection'.
			
			// Just in case: force field update (to update the pair list)
			atoms.resetPositions();
			force_field_->update();
			
			// Compute the initial energy and the initial forces
			initial_energy_ = force_field_->updateEnergy();
			force_field_->updateForces();
			initial_grad_.set(force_field_->getAtoms());
			
			direction_ = initial_grad_;
			direction_.negate();
			if (updt_method_ != SHANNO)
			{
				unscaled_direction_ = direction_;
			}
			direction_.normalize();
			last_restart_iter_ = 0;
			
			Size iter = 0;
			while ((!result) && (iter < 12))
			{
				result = line_search_.minimize(step_);
				if (!result)
				{
					for(Size i = 0; i <  number_of_atoms_; ++i)
					{
						direction_[i] *= 0.5;
					}
					direction_.norm     *= 0.5;
					direction_.rms      *= 0.5;
					direction_.inv_norm *= 2.;
					atoms.resetPositions();
				}
				else
				{
					return step_;
				}
				++iter;
			}
			// If we are here something went wrong
			// Not even such scaled steepest descent steps can manage
			// the line search to exit successfully?
			// We must be at a local minimizer...
			step_ = 0.;
		}
		
		#ifdef BALL_DEBUG
			Log.info() << "LineSearch: step = " << step << " result = " << result << endl;
		#endif
		
		return step_;
	} // end of method 'findStep'
	
} // end of namespace BALL