File: registry.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (410 lines) | stat: -rw-r--r-- 13,578 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <BALL/QSAR/registry.h>

#include <BALL/QSAR/QSARData.h>
#include <BALL/QSAR/svmModel.h>
#include <BALL/QSAR/logitModel.h>
#include <BALL/QSAR/snBModel.h>
#include <BALL/QSAR/nBModel.h>

#include <BALL/QSAR/allModel.h>
#include <BALL/QSAR/gpModel.h>
#include <BALL/QSAR/knnModel.h>
#include <BALL/QSAR/kpcrModel.h>
#include <BALL/QSAR/kplsModel.h>
#include <BALL/QSAR/ldaModel.h>
#include <BALL/QSAR/mlrModel.h>
#include <BALL/QSAR/oplsModel.h>
#include <BALL/QSAR/pcrModel.h>
#include <BALL/QSAR/plsModel.h>
#include <BALL/QSAR/rrModel.h>

using namespace std;

namespace BALL
{
	namespace QSAR
	{
		Registry::Registry()
		{
			default_kernel_par1 = 2; // default value for first parameter of non-rbf kernels
			default_kernel_par2 = -1; // default value for second parameter of non-rbf kernels
			default_rbf_par = 0.005; // default value for parameter of rbf kernels
			
			default_k = 5;
			default_no_permutations = 10;
			default_no_boostrap_samples = 50;
			default_valdition_fraction = 0.25;
			default_nested_folds = 4;
			default_correlation_cutoff = 0.95;
			
			default_gridsearch_stepwidth = 0.25;
			default_gridsearch_recursion = 0;
			default_gridsearch_steps = 20;
			default_gridsearch_par1_start = 0.25;
			default_gridsearch_par2_start = -0.25;
			
			/// add new Model classes here:
			RegistryEntry r0(0, 1, "Multiple Linear Regression", "MLR", (CreateMethod) &ModelFactory<MLRModel>::create);
			addEntry(r0, 0);
			
			RegistryEntry r00(0, 1, "Ridge Regression", "RR", (CreateMethod) &ModelFactory<RRModel>::create);
			r00.parameterNames.push_back("lambda");
			r00.parameterDefaults.push_back(0.003);
			addEntry(r00, 1);
			
			RegistryEntry r01(0, 1, "Principal Component Regression", "PCR", (CreateMethod) &ModelFactory<PCRModel>::create);
			r01.parameterNames.push_back("Fraction of variance to be explained");
			r01.parameterDefaults.push_back(0.95);
			r01.latent_variables = 1;
			addEntry(r01, 2);
			
			RegistryEntry r1(0, 1, "Partial Least Squares", "PLS", (CreateMethod) &ModelFactory<PLSModel>::create);
			r1.parameterNames.push_back("number of PLS components");
			r1.parameterDefaults.push_back(10);
			r1.optimizableParameters.insert(0);
			r1.latent_variables = 1;
			addEntry(r1, 3);

			RegistryEntry r2(0, 1, "Orthogonal Partial Least Squares", "OPLS", (CreateMethod) &ModelFactory<OPLSModel>::create);
			r2.parameterNames.push_back("number of OPLS components");
			r2.parameterNames.push_back("number of PLS components");
			r2.parameterDefaults.push_back(5);
			r2.parameterDefaults.push_back(10);
			r2.optimizableParameters.insert(0);
			r2.optimizableParameters.insert(1);
			r2.latent_variables = 1;
			addEntry(r2, 4);

			RegistryEntry r3(0, 1, "Automated Lazy Learning", "ALL", (CreateMethod) &ModelFactory<ALLModel>::create);
			r3.parameterNames.push_back("kernel width");
			r3.parameterNames.push_back("lambda");
			r3.parameterDefaults.push_back(6);
			r3.parameterDefaults.push_back(0.003);
			r3.optimizableParameters.insert(0);
			addEntry(r3, 5);

			RegistryEntry r31(0, 1, "k Nearest Neighbor Regression", "KNN", (CreateMethod) &ModelFactory<KNNModel>::create);
			r31.parameterNames.push_back("k (number of nearest neighbors)");
			r31.parameterNames.push_back("lambda");
			r31.parameterDefaults.push_back(3);
			r31.parameterDefaults.push_back(0.003);
			r31.optimizableParameters.insert(0);
			addEntry(r31, 6);

			RegistryEntry r4(1, 1, "Kernel Partial Least Squares", "KPLS", (CreateKernel1) &ModelFactory<KPLSModel>::createKernel1, (CreateKernel2) &ModelFactory<KPLSModel>::createKernel2);
			r4.parameterNames.push_back("number of PLS components");
			r4.parameterDefaults.push_back(10);
			r4.optimizableParameters.insert(0);
			r4.latent_variables = 1;
			addEntry(r4, 7);

			RegistryEntry r5(1, 1, "Kernel Principal Component Regression", "KPCR", (CreateKernel1) &ModelFactory<KPCRModel>::createKernel1, (CreateKernel2) &ModelFactory<KPCRModel>::createKernel2);
			r5.parameterNames.push_back("Fraction of variance to be explained");
			r5.parameterDefaults.push_back(0.95);
			r5.latent_variables = 1;
			addEntry(r5, 8);

			RegistryEntry r6(1, 1, "Gausssian Process", "GP", (CreateKernel1) &ModelFactory<GPModel>::createKernel1, (CreateKernel2) &ModelFactory<GPModel>::createKernel2);
			r6.parameterNames.push_back("lambda");
			r6.parameterDefaults.push_back(0.03);
			addEntry(r6, 9);

		#ifdef BALL_HAS_LIBSVM
			RegistryEntry r9(1, 1, "Support Vector Regression", "SVR", (CreateKernel1) &ModelFactory<LibsvmModel>::createKernel1, NULL);
			r9.parameterNames.push_back("use nu-SVR (else epsilon-SVR)?");
			r9.parameterNames.push_back("use shrinking heuristic?");
			r9.parameterNames.push_back("nu");
			r9.parameterNames.push_back("epsilon");
			r9.parameterNames.push_back("stopping criteria");
			r9.parameterNames.push_back("constraint violation cost");
			r9.parameterDefaults.push_back(1);
			r9.parameterDefaults.push_back(1);
			r9.parameterDefaults.push_back(0.05);
			r9.parameterDefaults.push_back(0.1);
			r9.parameterDefaults.push_back(1e-3);
			r9.parameterDefaults.push_back(1);
			addEntry(r9, 10);
		#endif
			RegistryEntry r7(0, 0, "Linear Discriminant Analysis", "LDA", (CreateMethod) &ModelFactory<LDAModel>::create);
			r7.parameterNames.push_back("lambda");
			r7.parameterDefaults.push_back(0.03);
			addEntry(r7, 11);
		// 	RegistryEntry r8(0, 0, "Logistical Regression", "Logit", (CreateMethod) &ModelFactory<LogitModel>::create);
		// 	addEntry(r8, 12);
			
			RegistryEntry r10(0, 0, "Simple Naive Bayes", "snB", (CreateMethod) &ModelFactory<SNBModel>::create);
			r10.parameterNames.push_back("min prob difference"); 
			r10.parameterNames.push_back("class-id for undef. activity"); 
			r10.parameterDefaults.push_back(0);
			r10.parameterDefaults.push_back(0);
			addEntry(r10, 13);
			
			RegistryEntry r11(0, 0, "Naive Bayes", "nB", (CreateMethod) &ModelFactory<NBModel>::create);
			r11.parameterNames.push_back("discretization steps");
			r11.parameterNames.push_back("min prob difference"); 
			r11.parameterNames.push_back("class-id for undef. activity"); 
			r11.parameterDefaults.push_back(4);
			r11.parameterDefaults.push_back(0);
			r11.parameterDefaults.push_back(0);
			addEntry(r11, 14);
			
			
			
			classification_statistics[0] = "average sensitivity"; 
			classification_statistics[1] = "weighted sensitivity"; 
			classification_statistics[2] = "overall accuracy"; 
			classification_statistics[3] = "average MCC"; 
			classification_statistics[4] = "overall MCC"; 
			classification_statistics[5] = "True Discovery Rate"; 
			
			regression_statistics[0] = "R2/Q2";
			
			feature_selection_names[0] = "Remove Colinear Features";
			feature_selection_names[1] = "forward selection"; 
			feature_selection_names[2] = "backward selection";
			feature_selection_names[3] = "stepwise selection";
			feature_selection_names[4] = "Remove Low Response Correlation";
			feature_selection_names[5] = "Remove Insignificant Coefficients"; 
			feature_selection_names[6] = "TwinScan";
			
			validation_names[1] = "test fit to training data";
			validation_names[2] = "cross validation";
			validation_names[3] = "bootstrapping";
			validation_names[4] = "response permutation test";
			validation_names[5] = "nested cross validation";
			validation_names[6] = "calculate coefficient stddev";
			validation_names[7] = "test fit to external data";
		}


		Registry::~Registry()
		{
		}

		RegistryEntry* Registry::getEntry(String model_name)
		{
			map<String, int>::iterator name_it = model_map.find(model_name);
			bool ok = 0;
			if (name_it != model_map.end())
			{
				map<int, RegistryEntry>::iterator model_it = registered_models.find(name_it->second);
				if (model_it != registered_models.end())
				{	
					return &model_it->second;
				}
			}
			if (!ok)
			{
				String mess = "A model with the name \""+model_name+"\"does not exist!";
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Model creation error", mess.c_str());
			}	
			return NULL;
		}

		RegistryEntry* Registry::getEntry(int ID)
		{
			map<int, RegistryEntry>::iterator it = registered_models.find(ID);
			if (it != registered_models.end())
			{
				return &it->second;
			}
			else
			{
				String mess = "A model with the ID \""+String(ID)+"\"does not exist!";
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Model creation error", mess.c_str());
			}	
			return NULL;
		}
				
		int Registry::getModelNo(String model_name)
		{
			map<String, int>::iterator it = model_map.find(model_name);
			if (it != model_map.end())
			{
				return it->second;
			}
			else
			{
				String mess = "A model with the name \""+model_name+"\" does not exist!";
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Model-name error", mess.c_str());
			}
			return -1;	
		}


		String Registry::getValidationName(unsigned int no)
		{
			map<unsigned int, String>::iterator it = validation_names.find(no);
			if (it != validation_names.end())
			{
				return it->second;
			}
			else
			{
				String mess = "A validation-type for number \""+String(no)+"\" does not exist!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Validation-number error", mess.c_str());
			}
			return "";
		}


		String Registry::getClassificationStatisticName(unsigned int no)
		{
			map < unsigned int, String > ::iterator it = classification_statistics.find(no); 
			if (it != classification_statistics.end())
			{
				return it->second;
			}
			else
			{
				String mess = "A classification-statistic for number \""+String(no)+"\" does not exist!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "classification-statistic error", mess.c_str()); 
			}
			return "";
		}

		String Registry::getRegressionStatisticName(unsigned int no)
		{
			map<unsigned int, String>::iterator it = regression_statistics.find(no);
			if (it != regression_statistics.end())
			{
				return it->second;
			}
			else
			{
				String mess = "A regression-statistic for number \""+String(no)+"\" does not exist!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "regression-statistic error", mess.c_str());
			}
			return "";
		}

		String Registry::getFeatureSelectionName(unsigned int no)
		{
			map<unsigned int, String>::iterator it = feature_selection_names.find(no);
			if (it != feature_selection_names.end())
			{
				return it->second;
			}
			else
			{
				String mess = "A feature-selection for number \""+String(no)+"\" does not exist!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "feature-selecion error", mess.c_str());
			}
			return "";
		}

		const map < unsigned int, String > * Registry::getClassificationStatistics()
		{
			return &classification_statistics; 
		}

		const map<unsigned int, String>* Registry::getRegressionStatistics()
		{
			return &regression_statistics;
		}

		void Registry::addEntry(RegistryEntry entry, int uniqueID)
		{
			if (model_map.find(entry.name_abreviation) != model_map.end())
			{
				String mess = "A RegistryEntry for key\""+String(entry.name_abreviation)+"\" already exists!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Registry error", mess.c_str());
			}
			if (registered_models.find(uniqueID) != registered_models.end())
			{
				String mess = "A RegistryEntry for ID\""+String(uniqueID)+"\" already exists!"; 
				throw BALL::Exception::GeneralException(__FILE__, __LINE__, "Registry error", mess.c_str());
			}
			entry.registry_ = this;
			model_map[entry.name_abreviation] = uniqueID;
			registered_models.insert(make_pair(uniqueID, entry));	
		}

		RegistryEntryIterator Registry::beginEntry()
		{
			return registered_models.begin();
		}

		RegistryEntryIterator Registry::endEntry()
		{
			return registered_models.end();
		}



		//  -----  RegistryEntry  -------
			

		RegistryEntry::RegistryEntry(bool k, bool r, String n, String ab, CreateMethod c0)
		{
			kernel = k;
			regression = r;
			name = n;
			name_abreviation = ab;
			create = c0;
			createKernel1 = NULL;
			createKernel2 = NULL;
			latent_variables = 0;
			parameterNames.resize(0);
			parameterDefaults.resize(0);
			optimizableParameters.clear();
		}


		RegistryEntry::RegistryEntry(bool k, bool r, String n, String ab, CreateKernel1 c1, CreateKernel2 c2)
		{
			kernel = k;
			regression = r;
			name = n;
			name_abreviation = ab;
			create = NULL;
			createKernel1 = c1;
			createKernel2 = c2;
			latent_variables = 0;
			parameterNames.resize(0);
			parameterDefaults.resize(0);
			optimizableParameters.clear();
		}

		RegistryEntry::RegistryEntry(const RegistryEntry& entry)
		{
			kernel = entry.kernel;
			regression = entry.regression;
			name = entry.name;
			name_abreviation = entry.name_abreviation;
			create = entry.create;
			createKernel1 = entry.createKernel1;
			createKernel2 = entry.createKernel2;
			latent_variables = entry.latent_variables;
			parameterNames = entry.parameterNames;
			parameterDefaults = entry.parameterDefaults;
			optimizableParameters = entry.optimizableParameters;
			registry_ = entry.registry_;
		}


		const map<unsigned int, String>* RegistryEntry::getStatistics()
		{
			if (regression) return &registry_->regression_statistics; 
			return &registry_->classification_statistics; 
		}


		BALL::String RegistryEntry::getStatName(int s)
		{
			if (!regression) return registry_->getClassificationStatisticName(s); 
			return registry_->getRegressionStatisticName(s);
		}


		RegistryEntry::~RegistryEntry()
		{
		}


		Registry* RegistryEntry::getRegistry()
		{
			return registry_;
		}
	}
}