File: ringPerceptionProcessor.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (632 lines) | stat: -rw-r--r-- 17,258 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
// $Id: ringPerceptionProcessor.C,v 1.22.4.2 2007/04/03 13:29:39 bertsch Exp $
//

#include <BALL/QSAR/ringPerceptionProcessor.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/KERNEL/PTE.h>

#include <limits>

#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
#include <iostream>
#endif

#define BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
#undef  BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG

#define BALL_QSAR_RINGPERCEPTIONPROCESSOR_MAX_RUNS 1000

using namespace std;

namespace BALL
{
RingPerceptionProcessor::RingPerceptionProcessor()
	:	UnaryProcessor<AtomContainer>()
{
}

RingPerceptionProcessor::RingPerceptionProcessor(const RingPerceptionProcessor& rp)
	:	UnaryProcessor<AtomContainer>(rp)
{
}

RingPerceptionProcessor& RingPerceptionProcessor::operator = (const RingPerceptionProcessor& /* rp */)
{
	return *this;
}

RingPerceptionProcessor::~RingPerceptionProcessor()
{
	// delete TNodes if still existing (e.g.: when an exception was thrown)
	for (HashMap<NodeItem<Index, Index>* , TNode_*>::Iterator it = atom_to_tnode_.begin();
			 it != atom_to_tnode_.end(); ++it)
	{
		delete it->second;
	}
}

Processor::Result RingPerceptionProcessor::operator () (AtomContainer& ac)
{
	// call the calculate function
	vector<vector<Atom*> > sssr;
	calculateSSSR(sssr, ac);

	// set all atom and bonds which are not in a ring (for consistence)
	AtomIterator a_it;
	BALL_FOREACH_ATOM(ac, a_it)
	{
		if (!a_it->hasProperty("InRing"))
		{
			a_it->setProperty("InRing", false);
		}
	}

	Atom::BondIterator b_it;
	BALL_FOREACH_BOND(ac, a_it, b_it)
	{
		if (!b_it->hasProperty("InRing"))
		{
			b_it->setProperty("InRing", false);
		}
	}
	return Processor::BREAK;
}


Size RingPerceptionProcessor::calculateSSSR(vector<vector<Atom*> >& sssr_orig, AtomContainer& ac)
{
	// do not start the algorithm, if no rings do exist in the given molecule:
	if( ((long)ac.countBonds() - (long)ac.countAtoms() + 1) < 1)
		return 0;

	all_small_rings_.clear();

	// build molecular graph
	Molecule* mol = static_cast<Molecule*>(&ac);
	SimpleMolecularGraph mol_graph(*mol);

	vector<Bond*> to_delete;
	for (SimpleMolecularGraph::EdgeIterator eit = mol_graph.beginEdge(); eit != mol_graph.endEdge(); ++eit)
	{
		Bond::Type bond_type = eit->getBond()->getType();
		if (bond_type == Bond::TYPE__HYDROGEN || bond_type == Bond::TYPE__DISULPHIDE_BRIDGE)
		{
			to_delete.push_back(eit->getBond());
		}
	}

	for (Size i = 0; i != to_delete.size(); ++i)
	{
		mol_graph.deleteEdge(*to_delete[i]);
	}

	Size num_rings(0);

	num_rings = BalducciPearlmanAlgorithm_(sssr_orig, mol_graph);

	return num_rings;
}

const vector<vector<Atom*> >& RingPerceptionProcessor::getAllSmallRings() const
{
	return all_small_rings_;
}


// Balducci, Pearlman algorithm
HashMap<RingPerceptionProcessor::TNode_*, NodeItem<Index, Index> *> RingPerceptionProcessor::tnode_to_atom_;
HashMap<NodeItem<Index, Index>* , RingPerceptionProcessor::TNode_*> RingPerceptionProcessor::atom_to_tnode_;
HashMap<EdgeItem<Index, Index> *, Size> RingPerceptionProcessor::bond_to_index_;
HashMap<Size, EdgeItem<Index, Index> *> RingPerceptionProcessor::index_to_bond_;
vector<BitVector> RingPerceptionProcessor::rings_;
vector<BitVector> RingPerceptionProcessor::matrix_;
vector<BitVector> RingPerceptionProcessor::forwarded_rings_;
vector<BitVector> RingPerceptionProcessor::tested_beers_;
vector<vector<Atom*> > RingPerceptionProcessor::all_small_rings_;
vector<BitVector> RingPerceptionProcessor::all_small_beers_;

void RingPerceptionProcessor::TNode_::recieve()
{
#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
	cerr << "size of recieve buffer is " << recieve_buffer.size() << endl;
	for (vector<PathMessage_>::iterator it1 = recieve_buffer.begin(); it1 != recieve_buffer.end(); ++it1)
	{
		cerr << it1->beep << " (" << it1->beep.countValue(true) << ")" << endl;
	}
#endif

	vector<BitVector> do_not_forward;

	// build the A array
	HashMap<EdgeItem<Index, Index>*, HashMap<TNode_*, vector<PathMessage_> > > array_A;
	for (vector<PathMessage_>::iterator it = recieve_buffer.begin(); it != recieve_buffer.end(); ++it)
	{
		array_A[it->efirst][it->nfirst].push_back(*it);
	}

	// merge the messages
	for (HashMap<EdgeItem<Index, Index>*, HashMap<TNode_*, vector<PathMessage_> > >::Iterator it1 = array_A.begin(); it1 != array_A.end(); ++it1)
	{
		for (HashMap<TNode_*, vector<PathMessage_> >::Iterator it2 = it1->second.begin(); it2 != it1->second.end(); ++it2)
		{
			if (it2->second.size() > 1)
			{
				vector<PathMessage_> new_message;
				new_message.push_back(it2->second[0]);

				for (Size i = 1; i != it2->second.size(); ++i)
				{
					do_not_forward.push_back(it2->second[i].beep);
				}
				it2->second = new_message;
			}
		}
	}

	HashMap<TNode_*, vector<PathMessage_> > array_B;

	// handle inverse-edge collisions
	for (HashMap<EdgeItem<Index, Index>*, HashMap<TNode_*, vector<PathMessage_> > >::Iterator it1 = array_A.begin(); it1 != array_A.end(); ++it1)
	{
		for (HashMap<TNode_*, vector<PathMessage_> >::Iterator it2 = it1->second.begin(); it2 != it1->second.end(); ++it2)
		{
			HashMap<TNode_*, vector<PathMessage_> >::Iterator it3 = it2;
			for(++it3; it3 != it1->second.end(); ++it3)
			{
				// make sure the pathes have only one shared edge:
				if( haveSingleIntersection(it2->second[0].beep, it3->second[0].beep) )
				{
					BitVector beer = it2->second[0].beep | it3->second[0].beep;
					forwarded_rings_.push_back(beer);

					do_not_forward.push_back(it3->second[0].beep);
					do_not_forward.push_back(it2->second[0].beep);
				}
			}
			array_B[it2->first].push_back(it2->second[0]);
		}
	}

	// handle collisions
	for (HashMap<TNode_*, vector<PathMessage_> >::Iterator it1 = array_B.begin(); it1 != array_B.end(); ++it1)
	{
		for (vector<PathMessage_>::iterator it2 = it1->second.begin(); it2 != it1->second.end(); ++it2)
		{
			for (vector<PathMessage_>::iterator it3 = it2 + 1; it3 != it1->second.end(); ++it3)
			{
				// make sure that the pathes do not contain identical edges:
				if(haveZeroIntersection(it2->beep, it3->beep))
				{
					BitVector beer = it2->beep | it3->beep;
					forwarded_rings_.push_back(beer);

#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
					cout<<"found normal collision:"<<endl;
					cout<<"BEEP1: "<< RingPerceptionProcessor::SMILESfromBit(it2->beep)<<endl;
					cout<<it2->beep<< " ("<<it2->beep.countValue(true)<<")"<<endl;
					cout<<"BEEP2: "<< RingPerceptionProcessor::SMILESfromBit(it3->beep)<<endl;
					cout<<it3->beep<< " ("<<it3->beep.countValue(true)<<")"<<endl;
					cout<<"RESULT: "<< RingPerceptionProcessor::SMILESfromBit(beer)<<endl;
					cout<<beer<< " ("<<beer.countValue(true)<<")"<<endl;
#endif

					do_not_forward.push_back(it2->beep);
					do_not_forward.push_back(it3->beep);
				}
			}
		}
	}

	// store all non-collided path messages in the send buffer
	for (vector<PathMessage_>::iterator it1 = recieve_buffer.begin(); it1 != recieve_buffer.end(); ++it1)
	{
		bool has(false);
		for (vector<BitVector>::iterator it2 = do_not_forward.begin(); it2 != do_not_forward.end(); ++it2)
		{
			if (it1->beep == *it2)
			{
				has = true;
				break;
			}
		}
		if (!has)
		{
			send_buffer.push_back(*it1);
		}
	}

	// delete all messages in the recieve buffer
	recieve_buffer.clear();
}

// Return true if 'node' is not yet contained within the current edges of 'beep'
bool RingPerceptionProcessor::TNode_::nodeIsNew(BitVector& beep, NodeItem<Index, Index>* node)
{
	for(unsigned short i = 0; i < beep.getSize(); ++i)
	{
		if ( beep.getBit(i) )
		{
			EdgeItem<Index, Index>* bnd = index_to_bond_[i];
			if(&bnd->getSource() == node || &bnd->getTarget() == node)
				return false;
		}
	}
	return true;
}

// return true if 'beep1' and 'beep2' have only different edges (no edge is
// contained in both pathes)
bool RingPerceptionProcessor::TNode_::haveZeroIntersection(BitVector& beep1, BitVector& beep2)
{
	for(unsigned int i = 0; i < beep1.getSize(); i++)
	{
		if( beep1.getBit(i) && beep2.getBit(i) )
			return false;
	}
	return true;
}

// return true if only one identical edge is found in both beeps
bool RingPerceptionProcessor::TNode_::haveSingleIntersection(BitVector& beep1, BitVector& beep2)
{
	bool is_found = false;
	for(unsigned int i = 0; i < beep1.getSize(); i++)
	{
		if( beep1.getBit(i) && beep2.getBit(i) )
		{
			if( is_found )
				return false;
			else
				is_found = true;
		}
	}
	return is_found;
}

void RingPerceptionProcessor::TNode_::send()
{
#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
	cerr << "size of send buffer is " << send_buffer.size() << endl;
#endif
	for (Size i = 0; i != send_buffer.size(); ++i)
	{
		PathMessage_& pm = send_buffer[i];
		NodeItem<Index, Index>* a = tnode_to_atom_[this];
		for (NodeItem<Index, Index>::Iterator bit = a->begin(); bit != a->end(); ++bit)
		{
			TNode_* node = 0;
			// determine which node
			if ( (*bit)->getSource() == *a)
			{
				node = atom_to_tnode_[&(*bit)->getTarget()];
			}
			else
			{
				node = atom_to_tnode_[&(*bit)->getSource()];
			}
			if (node != pm.nlast)
			{
				// build new message
				PathMessage_ new_pm;
				new_pm.nfirst = pm.nfirst;
				new_pm.efirst = pm.efirst;
				new_pm.beep = pm.beep;

				if( !new_pm.beep[ bond_to_index_[*bit] ] && nodeIsNew(new_pm.beep, tnode_to_atom_[node]) ) // do not send if this edge was already set
				{
					new_pm.push(*bit, this);
					// append it to the recieve buffer of the target node
					node->recieve_buffer.push_back(new_pm);
				}
			}
		}
	}

	// delete the messages in the send buffer
	send_buffer.clear();
}

void RingPerceptionProcessor::PathMessage_::push(EdgeItem<Index, Index>* bond, TNode_* node)
{
	// set the bit, and the node the message arives from
	beep.setBit(bond_to_index_[bond]);
	nlast = node;
}

void RingPerceptionProcessor::BalducciPearlmanRingSelector_(BitVector beer)
{
#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
	cerr <<endl<<RingPerceptionProcessor::SMILESfromBit(beer)<<endl;
	cerr << "new beer: " <<endl<< beer << " (" << beer.countValue(true) << ")" << endl;
	cerr << "matrix before: " << matrix_.size() << endl;
	for (vector<BitVector>::const_iterator it = matrix_.begin(); it != matrix_.end(); ++it)
	{
		cerr << *it << " (" << it->countValue(true) << ")" << endl;
	}
#endif
	// linear independency tests
	if (rings_.empty())
	{
		rings_.push_back(beer);
		matrix_.push_back(beer);
		return;
	}

	// 1. perform gaussian elimination
	BitVector new_beer = beer;
	Size hi_bit(0);
	Size r_begin(0);
	for (Size i = 0; i != new_beer.getSize(); ++i)
	{
		if (new_beer[i])
		{
			for (Size r = r_begin; r < matrix_.size(); ++r)
			{
				for (Size c = 0; c != matrix_[r].getSize(); ++c)
				{
					if (matrix_[r][c])
					{
						hi_bit = c;
						break;
					}
				}
				if (i == hi_bit)
				{
					r_begin = r + 1;
					new_beer ^= matrix_[r];
					break;
				}
			}
		}
	}

	// theoretically we should use 'new_beer.countValue(true) == 0', but 2
	// remaining 'new' edges are not enough to form a new ring, thus a BEER
	// having 2 new ones should also not occur or be allowed:
	if (new_beer.countValue(true) < 3)
	{
		return;
	}

	// if linearly independent add to the matrix
	// sort matrix w.r.t highest bit (= maintain echelon format)
	Size beer_index = 0;
	while(!new_beer[beer_index]) {
		++beer_index;
	}

	Size cur_col = 0;
	std::vector<BitVector>::iterator it = matrix_.begin();
	for(; it != matrix_.end(); ++it)
	{
		while(!(*it)[cur_col]) {
			++cur_col;
		}

		if(cur_col > beer_index) {
			break;
		}
	}

	matrix_.insert(it, new_beer);

#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG	
	cerr << "sorted matrix: " << matrix_.size() << endl;
	for (vector<BitVector>::const_iterator it = matrix_.begin(); it != matrix_.end(); ++it)
	{
		cerr << *it << " (" << it->countValue(true) << ")" << endl;
	}
#endif
	
	rings_.push_back(beer);
}

Size RingPerceptionProcessor::BalducciPearlmanAlgorithm_(vector<vector<Atom*> >& sssr, SimpleMolecularGraph& graph)
{
	Size num_atoms = graph.getNumberOfNodes();
	Size num_bonds = graph.getNumberOfEdges();

	// clear old data from the static variables
	bond_to_index_.clear();
	index_to_bond_.clear();
	atom_to_tnode_.clear();
	tnode_to_atom_.clear();
	rings_.clear();
	matrix_.clear();
	forwarded_rings_.clear();
	tested_beers_.clear();
	all_small_beers_.clear();
	all_small_rings_.clear();

	// 1. init the flow-network

	// do the node to tnode mapping
	for (SimpleMolecularGraph::NodeIterator ait = graph.beginNode(); ait != graph.endNode(); ++ait)
	{
		TNode_* node = new TNode_();
		atom_to_tnode_[&*ait] = node;
		tnode_to_atom_[node] = &*ait;
	}

	// do the bond to index mapping for the bitvector
	Size bond_num(0);
	for (SimpleMolecularGraph::EdgeIterator bit = graph.beginEdge(); bit != graph.endEdge(); ++bit)
	{
		bond_to_index_[&*bit] = bond_num;
		index_to_bond_[bond_num++] = &*bit;
	}

	// fill in the messages
	for (SimpleMolecularGraph::NodeIterator ait = graph.beginNode(); ait != graph.endNode(); ++ait)
	{

		for (NodeItem<Index, Index>::Iterator bit = ait->begin(); bit != ait->end(); ++bit)
		{
			PathMessage_ pm;
			BitVector beep(num_bonds);
			beep.fill(false);
			// set the bit for the first (outgoing) edge
			beep.toggleBit(bond_to_index_[*bit]);
			pm.beep = beep;
			TNode_* tnode = 0;

			// determine which node to set
			if ((*bit)->getSource() == *ait)
			{
				tnode = atom_to_tnode_[&(*bit)->getTarget()];
			}
			else
			{
				tnode = atom_to_tnode_[&(*bit)->getSource()];
			}
			pm.nfirst = tnode;
			pm.nlast = tnode;
			pm.efirst = *bit;
			// append the message to the send_buff this node
			atom_to_tnode_[&*ait]->send_buffer.push_back(pm);
		}
	}
	
	// calculate how many rings we must find
	Size num_rings = num_bonds - num_atoms + 1;

	// the nodes are forced to talk until they get enough rings
	Size count(1);
	while (rings_.size() != num_rings)
	{
		count++;

#ifdef BALL_QSAR_RINGPERCEPTIONPROCESSOR_DEBUG
		cerr << count << ". round (" << rings_.size() << " of " << num_rings << ")" << endl;
#endif

		// calling all sends
		for (SimpleMolecularGraph::NodeIterator ait = graph.beginNode(); ait != graph.endNode(); ++ait)
		{
			atom_to_tnode_[&*ait]->send();
		}
		// calling all recieves
		for (SimpleMolecularGraph::NodeIterator ait = graph.beginNode(); ait != graph.endNode(); ++ait)
		{
			atom_to_tnode_[&*ait]->recieve();
		}

		// now invoke the BalducciPearlmanRingSelector_ which selects the correct rings of size > 2 * count -2
		// first process rings of size 2 * count - 1 (odd sized rings of this phase)
		vector<BitVector> even_sized;
		for (vector<BitVector>::iterator it = forwarded_rings_.begin(); it != forwarded_rings_.end(); ++it)
		{
			if (it->countValue(true) == 2 * count - 1)
			{
				if (find(tested_beers_.begin(), tested_beers_.end(), *it) == tested_beers_.end())
				{
					tested_beers_.push_back(*it);
					BalducciPearlmanRingSelector_(*it);
					if (it->countValue(true) == 3 || it->countValue(true) == 5)
					{
						all_small_beers_.push_back(*it);
					}
				}
			}
			else
			{
				even_sized.push_back(*it);
			}
		}

		// now process the even-sized rings
		for (vector<BitVector>::const_iterator it = even_sized.begin(); it != even_sized.end(); ++it)
		{
			if (find(tested_beers_.begin(), tested_beers_.end(), *it) == tested_beers_.end())
			{
				tested_beers_.push_back(*it);
				BalducciPearlmanRingSelector_(*it);
				if (it->countValue(true) == 4 || it->countValue(true) == 6)
				{
					all_small_beers_.push_back(*it);
				}
			}
		}
		// clean up for next round
		forwarded_rings_.clear();

		// this is just in the case there is s.th. going wrong, to avoid an endless loop
		if (count > BALL_QSAR_RINGPERCEPTIONPROCESSOR_MAX_RUNS)
		{
			throw Exception::RingProcessorException("ringPerceptionProcessor.C", 551);
		}
	}

	// now set the named property InRing to true, for the ring bonds
	for (Size i = 0; i != rings_.size(); ++i)
	{
		HashSet<Atom*> in_ring;
		vector<Atom*> ring;
		for (Size j = 0; j != rings_[i].getSize(); ++j)
		{
			if (rings_[i][j])
			{
				Bond* b = index_to_bond_[j]->getBond();
				b->setProperty("InRing", true);
				Atom* a = b->getPartner(*b->getFirstAtom());
				a->setProperty("InRing", true);
				if (!in_ring.has(a))
				{
					in_ring.insert(a);
					ring.push_back(a);
				}
				a = b->getPartner(*b->getSecondAtom());
				a->setProperty("InRing", true);
				if (!in_ring.has(a))
				{
					in_ring.insert(a);
					ring.push_back(a);
				}
			}
		}
		sssr.push_back(ring);
	}

	// now handle small membered rings
	for (Size i = 0; i != all_small_beers_.size(); ++i)
	{
		HashSet<Atom*> in_ring;
		vector<Atom*> ring;
		for (Size j = 0; j != all_small_beers_[i].getSize(); ++j)
		{
			if (all_small_beers_[i][j])
			{
				Bond* b = index_to_bond_[j]->getBond();
				Atom* a = b->getPartner(*b->getFirstAtom());
				if (!in_ring.has(a))
				{
					in_ring.insert(a);
					ring.push_back(a);
				}

				a = b->getPartner(*b->getSecondAtom());
				if (!in_ring.has(a))
				{
					in_ring.insert(a);
					ring.push_back(a);
				}
			}
		}
		all_small_rings_.push_back(ring);
	}

	// delete TNodes
	for (HashMap<NodeItem<Index, Index>* , TNode_*>::Iterator it = atom_to_tnode_.begin();
			 it != atom_to_tnode_.end(); ++it)
	{
		delete it->second;
	}
	atom_to_tnode_.clear();

	return rings_.size();
}

} // namespace BALL