1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
// ----------------------------------------------------
// $Maintainer: Marcel Schumann $
// $Authors: Marcel Schumann $
// ----------------------------------------------------
#include <BALL/SCORING/COMPONENTS/fragmentationalSolvation.h>
#include <BALL/KERNEL/PTE.h>
#include <map>
using namespace BALL;
using namespace std;
FragmentationalSolvation::FragmentationalSolvation(ScoringFunction& sf)
: Solvation(sf)
{
setName("FragmentationalSolvation");
atom_pairwise_ = 0;
type_name_ = "fragSolv";
}
void FragmentationalSolvation::update(const AtomPairVector& /*pair_vector*/)
{
}
double FragmentationalSolvation::updateScore()
{
score_ = 0;
const HashGrid3<Atom*>* hashgrid = 0;
bool use_selection = scoring_function_->getLigand()->containsSelection();
HashGrid3<Atom*>* nonconst_hashgrid = 0;
if (!isLigandIntraMolecular())
{
hashgrid = scoring_function_->getHashGrid();
nonconst_hashgrid = const_cast<HashGrid3<Atom*>* >(hashgrid);
// Add contribution of ligand atoms to desolvation of ligand
for(AtomIterator atom_it=scoring_function_->getLigand()->beginAtom(); !atom_it.isEnd(); atom_it++)
{
Vector3 cell = getAtomCell(&*atom_it,hashgrid);
if(cell[0]>=0)
{
nonconst_hashgrid->insert((Position)cell[0],(Position)cell[1],(Position)cell[2],&*atom_it);
}
}
}
else
{
double resolution = 3.0;
Vector3 center = scoring_function_->getLigandCenter();
// no of cells on each axis for a resolution of 3 Angstroem
int size = (int)(ceil(scoring_function_->getLigandRadius()*2/resolution)+1);
hashgrid = scoring_function_->initializeHashGrid(scoring_function_->getLigand(), center, resolution, size);
}
for (AtomIterator atom_it = scoring_function_->getLigand()->beginAtom(); !atom_it.isEnd(); atom_it++)
{
if (use_selection && !atom_it->isSelected())
{
continue;
}
// get the fraction of the volume surrounding the current ligand atom that is occupied by receptor atoms
double desolv_frac = getDesolvatedFraction(&*atom_it, hashgrid);
String element = atom_it->getElement().getSymbol();
map<String, double>::iterator it = solvation_parameters.find(element);
if (it == solvation_parameters.end())
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "FragmentationalSolvation::updateScore() error", "No solvation parameter for element "+element+" found!");
}
double par = it->second;
it = solvation_volumes.find(element);
if (it == solvation_volumes.end())
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "FragmentationalSolvation::updateScore() error", "No solvation volume for element "+element+" found!");
}
double atom_score = par*it->second*desolv_frac;
if (scoring_function_->storeInteractionsEnabled())
{
//double scaled_atom_score = atom_score;
//scaled_atom_score = scaleScore(scaled_atom_score);
//atom_it->addInteraction("fragSolv", scaled_atom_score);
atom_it->addInteraction("fragSolv", scaleScore(atom_score));
}
score_ += atom_score;
}
if(!isLigandIntraMolecular())
{
// remove ligand atoms for hashgrid
for(AtomIterator atom_it=scoring_function_->getLigand()->beginAtom(); !atom_it.isEnd(); atom_it++)
{
Vector3 cell = getAtomCell(&*atom_it,hashgrid);
if(cell[0]>=0)
{
nonconst_hashgrid->remove((Position)cell[0],(Position)cell[1],(Position)cell[2],&*atom_it);
}
}
}
else
{
delete hashgrid;
}
/*
scaleScore();
return score_;
*/
return getScaledScore();
}
double FragmentationalSolvation::getDesolvatedFraction(const Atom* atom, const HashGrid3<Atom*>* hashgrid)
{
int x_size = (int)hashgrid->getSizeX();
int y_size = (int)hashgrid->getSizeY();
int z_size = (int)hashgrid->getSizeZ();
Vector3 lig_atom_cell = (atom->getPosition() - hashgrid->getOrigin());
lig_atom_cell[0] /= hashgrid->getUnit()[0];
lig_atom_cell[1] /= hashgrid->getUnit()[1];
lig_atom_cell[2] /= hashgrid->getUnit()[2];
// no desolvation of ligand atom if this atom is outside of grid
if (lig_atom_cell[0] < 0 || lig_atom_cell[0] > x_size || lig_atom_cell[1] < 0 || lig_atom_cell[1] > y_size || lig_atom_cell[2] < 0 || lig_atom_cell[2] > z_size )
{
return 0;
}
if (hashgrid->getUnit()[0] > 4 || hashgrid->getUnit()[0] < 3 )
{
throw BALL::Exception::GeneralException(__FILE__, __LINE__, "FragmentationalSolvation error", "The ScoringFunction's hashgrid resolution must be between 3 and 4 Angstroem in order to use FragmentationalSolvation!");
}
Size radius = 1;
// indices in HashGrid, where the search for interacting target atoms should begin ( != position of ligand atom)
int i = static_cast < int > (lig_atom_cell[0]-radius); if (i < 0){i = 0; }
int j0 = static_cast < int > (lig_atom_cell[1]-radius); if (j0 < 0){j0 = 0; }
int k0 = static_cast < int > (lig_atom_cell[2]-radius); if (k0 < 0){k0 = 0; }
Size occupied_cells = 0;
for (; i <= lig_atom_cell[0]+radius && i < x_size; i++)
{
for (int j = j0; j <= lig_atom_cell[1]+radius && j < y_size; j++)
{
for (int k = k0; k <= lig_atom_cell[2]+radius && k < z_size; k++)
{
const HashGridBox3<Atom*>* box = hashgrid->getBox(i, j, k);
if (!box->isEmpty())
{
// count only if Box contains not only the Atom whose desolvated volume-fraction is to be estimated
HashGridBox3<Atom*>::ConstDataIterator d_it = box->beginData();
if (*d_it != atom || ++d_it != box->endData())
{
occupied_cells++;
}
}
}
}
}
double no_neighbor_cell = pow((double)(radius*2+1), 3); // radius of 1 cell == > 3 cells on each axis
return occupied_cells/no_neighbor_cell;
}
Vector3 FragmentationalSolvation::getAtomCell(Atom* atom, const HashGrid3<Atom*>* hashgrid)
{
Vector3 cell(-1, -1, -1);
int x_size = (int)hashgrid->getSizeX();
int y_size = (int)hashgrid->getSizeY();
int z_size = (int)hashgrid->getSizeZ();
cell = (atom->getPosition() - hashgrid->getOrigin());
cell[0] /= hashgrid->getUnit()[0];
cell[1] /= hashgrid->getUnit()[1];
cell[2] /= hashgrid->getUnit()[2];
if (cell[0] < 0 || cell[0] > x_size || cell[1] < 0 || cell[1] > y_size || cell[2] < 0 || cell[2] > z_size )
{
return Vector3(-1, -1, -1);
}
return cell;
}
|