File: HBondProcessor.C

package info (click to toggle)
ball 1.5.0%2Bgit20180813.37fc53c-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 239,848 kB
  • sloc: cpp: 326,149; ansic: 4,208; python: 2,303; yacc: 1,778; lex: 1,099; xml: 958; sh: 322; makefile: 93
file content (670 lines) | stat: -rw-r--r-- 20,314 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//

#include <BALL/STRUCTURE/HBondProcessor.h>
#include <BALL/DATATYPE/hashGrid.h>
#include <BALL/KERNEL/bond.h>
#include <BALL/KERNEL/forEach.h>
#include <BALL/KERNEL/system.h>
#include <BALL/STRUCTURE/geometricProperties.h>
#include <BALL/KERNEL/PTE.h>
#include <map>
#include <set>

namespace BALL
{
	const String HBondProcessor::Option::PREDICTION_METHOD       = "prediction_method";
	const String HBondProcessor::PredictionMethod::KABSCH_SANDER = "Kabsch_Sander";
	const String HBondProcessor::PredictionMethod::WISHART_ET_AL = "Wishart_et_al";
	const String HBondProcessor::Default::PREDICTION_METHOD      = HBondProcessor::PredictionMethod::KABSCH_SANDER;

	const String HBondProcessor::Option::ADD_HBONDS = "add_hydrogen_bonds";
  const bool HBondProcessor::Default::ADD_HBONDS  = true;

	const String HBondProcessor::Option::KABSCH_SANDER_ENERGY_CUTOFF = "kabsch_sander_energy_cutoff";
  const float HBondProcessor::Default::KABSCH_SANDER_ENERGY_CUTOFF = -0.5;

	float HBondProcessor::MAX_LENGTH = 5.2f + 4.2f;
	float HBondProcessor::BOND_LENGTH_N_H = 1.020f;
	float HBondProcessor::BOND_LENGTH_C_O = 1.240f;

	float HBondProcessor::AMIDE_PROTON_OXYGEN_SEPARATION_DISTANCE = 3.5;
	float HBondProcessor::ALPHA_PROTON_OXYGEN_SEPARATION_DISTANCE = 2.77208;

	HBondProcessor::HBond::HBond()
		: acceptor_(NULL),
			donor_(NULL),
			donor_is_hydrogen_(false)
	{
	}

	HBondProcessor::HBondProcessor()
		: options(),
		  residue_data_(),
			backbone_h_bond_pairs_(),
			donors_(),
			acceptors_(),
			residue_ptr_to_position_(),
			h_bonds_()
	{
		setDefaultOptions();
	}

	HBondProcessor::HBondProcessor(Options& new_options)
		: options(new_options),
			residue_data_(),
			backbone_h_bond_pairs_(),
			donors_(),
			acceptors_(),
			residue_ptr_to_position_(),
			h_bonds_()
	{
		// make sure to add all defaults that were missing in the options we got
		setDefaultOptions();
	}

	HBondProcessor::~HBondProcessor()
	{
	}

	void HBondProcessor::init() //TODO
  {
	}

	bool HBondProcessor::start()
  {
    // clear the donor list and the acceptor list
		backbone_h_bond_pairs_.clear();
    residue_data_.clear();
    donors_.clear();
    acceptors_.clear();
		residue_ptr_to_position_.clear();
		h_bonds_.clear();
		return true;
	}


	Processor::Result HBondProcessor::operator() (Composite &composite)
	{
		// create a bounding box which should include the composite
		BoundingBoxProcessor bp;

		// What happens to ligands, water ...
		ResidueIterator    ri;

		// do we have a system?
        if (RTTI::isKindOf<System>(&composite))
		{
			System *s = RTTI::castTo<System>(composite);
			s->apply(bp);
			ri = s->beginResidue();
		}
        else if (RTTI::isKindOf<Protein>(&composite))
		{
			Protein *s = RTTI::castTo<Protein>(composite);
			s->apply(bp);
			ri = s->beginResidue();
    }
        else if (RTTI::isKindOf<Chain>(&composite))
		{
			Chain *s = RTTI::castTo<Chain>(composite);
			s->apply(bp);
			ri = s->beginResidue();
		}

		// ri doesn't seem to exist
		if (!(+ri))
		{
			return Processor::CONTINUE;
		}

		// delete all previous hydrogen bonds
		std::set< Bond* >  to_delete;
		Atom::BondIterator bi;
		AtomIterator       ai;
		ResidueIterator    ri_del(ri);
		for ( ; +ri_del; ++ri_del)
		{
			BALL_FOREACH_BOND(*ri_del, ai, bi)
			{
				if (bi->getType() == Bond::TYPE__HYDROGEN)
				{
					to_delete.insert(&*bi);
				}
			}
		}
		for (std::set< Bond* >::iterator sit = to_delete.begin();
				 sit != to_delete.end(); 
				 sit++)
		{
			delete *sit;
		}

		// compute the hydrogen bonds
		if (options[HBondProcessor::Option::PREDICTION_METHOD] == PredictionMethod::KABSCH_SANDER)
		{
			upper_ = bp.getUpper();
			lower_ = bp.getLower();

			// compute the H-Bonds
			preComputeBonds_(ri);

			//NOTE: This has to be a __BREAK__, since we want to allow
			//      to apply the HBondProcessor to system, protein, and chain level! 
			// 	    Processors "selfcall" hierarchically, so in case of a system 
			//      the composite system is "subcalled" first and all residues 
			//      of the system were taken into account and than we have to break.
			//      Otherwise next selfcall would be the protein/chain...
			return Processor::BREAK;
		}
		else if (options[HBondProcessor::Option::PREDICTION_METHOD] == PredictionMethod::WISHART_ET_AL)
		{
			// we collect the possible acceptors and donors
			// Wishart et al allow hydrogen bonds between all kinds of oxigens and H/HA 
			// restricted by certain rules

			// we have to enumerate the residues again, to ensure that they have an ascending number
			Position j = 0;

			for (; +ri ; ++ri)
			{
				residue_ptr_to_position_[&*ri] = j;
				j++;
				for (AtomIterator ai = ri->beginAtom(); +ai; ++ai)
				{
					Atom* atom = RTTI::castTo<Atom>((*ai));

					// we store all oxygens as potential hydrogen bond acceptors
					if (atom->getElement() == PTE[Element::O])
					{
						acceptors_.push_back(atom);
					}
					// and the hydrogen as potential hydrogen bond donors
					if (   (atom->getName().hasSubstring("HA"))
							|| (atom->getName() == "H")  )
					{
						donors_.push_back(atom);
					}
				}
			}

			return Processor::BREAK;
		}
		else
		{
			Log.error() << "HBondProcessor::Operator(): Unknown prediction method requested! Aborting!" << std::endl;
			return Processor::ABORT;
		}

		return Processor::CONTINUE;
	}

	/*********************************************************
  *  preComputeBonds identifies characteristic amino acid
	*  atoms (C, N, O), and stores them in residue_data_ 
  *********************************************************/
	void HBondProcessor::preComputeBonds_(ResidueIterator& resit)
	{
		// index to enumerate the residues. Unfortunately, we cannot use
		// the residueID, which is not monotonous
		Position j = 0;

		// iteration over all residues of the protein
		// to find the C,N,O atoms
		//
		// since the N-terminus is special, we treat it differently
		// we also have to take care of residues with missing atoms 
		// we find the first complete residue and use it instead 
		for ( ; +resit ; ++resit)
		{
			if (!resit->isAminoAcid())
			{
				ResidueData pos;
				pos.is_complete = false;

				pos.number = j++;
				pos.res = &(*resit);

				residue_data_.push_back(pos);
				continue;
			}

			bool haveO = false;
			bool haveN = false;
			bool haveC = false;

			ResidueData pos;

			Size found = 0;
			for (AtomIterator ai = resit->beginAtom(); +ai; ++ai)
			{
				if (ai->getName() == "C")
				{
					pos.pos_C = ai->getPosition();
					haveC = true;
				}
				else if (ai->getName() == "O")
				{
					pos.pos_O = ai->getPosition();
					haveO = true;
				}
				else if (ai->getName() == "N")
				{
					pos.pos_N = ai->getPosition();
          haveN = true;
				}
				else
				{
					continue;
				}

				found++;
				if (found == 3) break;
			}

			// we have to overread incomplete residues					
			pos.is_complete = (haveN && haveO && haveC);

			pos.number = j;
			pos.res = &(*resit);

			// the N-terminus is special
			if (pos.is_complete && !(pos.res->isNTerminal()) && (j>0))
			{
				// evaluate the position of H 
				const Vector3 OC(residue_data_[j-1].pos_O - residue_data_[j-1].pos_C);
				const float length = OC.getLength();

				if (!Maths::isZero(length))
				{
					pos.pos_H = pos.pos_N - (OC * BOND_LENGTH_N_H) / length;
				}
				else
				{
					pos.is_complete = false;
				}
			}
			residue_data_.push_back(pos);
			j++;
		}
	}

  bool HBondProcessor::finish()
	{
		bool ret = false;

		if (options[HBondProcessor::Option::PREDICTION_METHOD] == PredictionMethod::KABSCH_SANDER)
		{
			ret = finishKabschSander_();
		}
		else if (options[HBondProcessor::Option::PREDICTION_METHOD] == PredictionMethod::WISHART_ET_AL)
		{
			ret = finishWishartEtAl_();
		}
		else
		{
			Log.error() << "HBondProcessor::finish(): Unknown prediction method requested! Aborting!" << std::endl;
			ret = false;
		}

		return ret;
	}


	/*************************************************** 
	 * Finish computes all hbonds of the composite 
	 * and stores them in backbone_h_bond_pairs_ as position pairs.
   ***************************************************/
	bool HBondProcessor::finishKabschSander_()
	{
		if (residue_data_.empty()) return true;

		// matrix to save the existence of a HBond
		backbone_h_bond_pairs_.resize(residue_data_.size());

		//create a grid inside the bounding box
		HashGrid3<ResidueData*> atom_grid(lower_, upper_ - lower_, MAX_LENGTH);

		// insert all protein-residues at the position of their N-atom
		for (Size i = 0; i < residue_data_.size(); i++)
		{
			if (residue_data_[i].is_complete)
			{
				atom_grid.insert(residue_data_[i].pos_N, &residue_data_[i]);
			}
		}

		float energy_cutoff  = options.getReal(Option::KABSCH_SANDER_ENERGY_CUTOFF);
		bool  add_hbonds     = options.getBool(Option::ADD_HBONDS);

		// now compute the energies and see whether we have a hydrogen bond
		for (Size i=0; i<residue_data_.size(); i++)
		{
			const ResidueData& current_res = residue_data_[i];
			if (!current_res.is_complete) continue;

			HashGridBox3<ResidueData*>* const box = atom_grid.getBox(current_res.pos_N);

			// and iterate over all neighbouring boxes
			for(HashGridBox3<ResidueData*>::BoxIterator bit = box->beginBox(); +bit; ++bit)
			{
				//iterate over all residues of the neighbouring box
				HashGridBox3<ResidueData*>::DataIterator data_it;
				for (data_it = bit->beginData(); +data_it; ++data_it)
				{
					// TODO: We don't want H-bonds between neighboring residues!
					//       Does this criterion always work? We should check for
					//       an existing bond between data_it and residue_data_[i] instead!

					// data from neighbouring residue
					const ResidueData& ndata = **data_it;

					if (   (abs((Index)ndata.number - (Index)(current_res.number)) <= 1)
							|| (ndata.number == 0))
					{
						continue;
					}

					// compute the distances between the relevant atoms
					const float dist_ON = (current_res.pos_O - ndata.pos_N).getLength();
					const float dist_CH = (current_res.pos_C - ndata.pos_H).getLength();
					const float dist_OH = (current_res.pos_O - ndata.pos_H).getLength();
					const float dist_CN = (current_res.pos_C - ndata.pos_N).getLength();

					Vector3 OH = (current_res.pos_O - ndata.pos_H);
					Vector3 NH = (ndata.pos_N - ndata.pos_H);

					float angle = OH.getAngle(NH);

					// compute the electrostatic energy of the bond-building groups
					float energy  = 0.42 * 0.20 * 332.;
					energy *=  (1./dist_ON + 1./dist_CH - 1./dist_OH - 1./dist_CN);

					if (energy >= energy_cutoff) continue;

					Atom* acceptor = 0;
					for (AtomIterator ai = current_res.res->beginAtom(); +ai; ++ai)
					{
						if (ai->getName() == "O")
						{
							acceptor = &(*ai);
							break;
						}
					}

					Atom* donor = 0;
					for (AtomIterator ai = ndata.res->beginAtom(); +ai; ++ai)
					{
						if (ai->getName() == "N")
						{
							donor = &*ai;
							break;
						}
					}

					if (!donor || !acceptor) continue;

					// store the bond:
					//   - add it to the special secondary structure vector 
					backbone_h_bond_pairs_[current_res.number].push_back(ndata.number);

					//   - add the hydrogen bond to the internal data structure
					HBond new_bond(acceptor, donor, false);
					h_bonds_.push_back(new_bond);

					//   - add a real bond	
					if (add_hbonds)
					{
						Bond* bond = donor->createBond(*acceptor);
					  bond->setType(Bond::TYPE__HYDROGEN);
					  bond->setOrder(Bond::ORDER__ANY);
						bond->setName("calculated H-Bond");

						bond->setProperty("HBOND_DONOR",  donor);
						bond->setProperty("HBOND_ACCEPTOR", acceptor);

						bond->setProperty("HBOND_HYDROGEN", (void*)NULL);
						bond->setProperty("HBOND_LENGTH", dist_OH);
						bond->setProperty("HBOND_ANGLE", angle);
					}

				}
			}
		}

		return true;
	}


	bool HBondProcessor::finishWishartEtAl_()
	{
	  // Please note, that in ShiftX notation donor denotes the hydrogen!!

		backbone_h_bond_pairs_.resize(residue_ptr_to_position_.size());

		/* map distance to (donor, acceptor) for the ShiftXwise hydrogen bond determination*/
		std::multimap<float, std::pair<Atom*, Atom*> >  potential_shiftX_hbonds;
		std::map<Atom*, bool> donor_occupied;
		std::map<Atom*, bool> acceptor_occupied;

		// if there were no donors or acceptors, return immediately
		if (donors_.empty() || acceptors_.empty())
		{
			return true;
		}

		/* 	 		The ShiftX definition of hydrogen bonds is: 
		 * 	 				Donors are: H and HA
		 * 	 				Acceptors are: O, OD_n, OE_n, OG_n, OH_n or water in the solvent!
		 * 	 				By now we do not consider water!
		 * 	 				Donors and Acceptors have to be on different residues.
		 * 	 				HA even does not form hydrogen bonds with neighbours.
		 * 	 				If the acceptor is a solvent oxygen, the donor must not be a HA (not yet implemented!)
		 * 	 				The oxygen--hydrogen separation must be less than 3.5 A for H(--N) 
		 * 	 					and 2.77 A for HA.
		 * 	 				For H must hold: 
		 * 	 				  the angle between N_H donor bond vector and the C=O acceptor bond vector must be 
		 * 	 						90 degrees or more, and 
		 * 	 					the distance must be less than 2.5 + cos of the angle, and 
		 * 	 					hydrogen-oxygen distance must be less than the nitrogen - oxygen distance
		 * 			Having applied these rules to each donor--acceptor pair, ShiftX then 
		 * 			sorts the list of possible bonds by the O_H separation distance, shortest to 
		 * 			longest. The list is the processed so that only the single strongest hydrogen 
		 * 			bond is identified for each donor--acceptor pair. Up to that point
		 * 			any bond involving the same donor or acceptor is preculded! 
		 */

		// the potential donors and acceptors are already stored 
		// in donors_ and acceptors_

		// we need a datastructure to collect the hydrogen bonds
		// --> fill potential_shiftX_hbonds
		for (Position d=0; d<donors_.size(); ++d)
		{
			for (Position a=0; a<acceptors_.size(); ++a)
			{
				// does the bond fullfill all ShiftX criteria?
				// exclude self interaction
				if (donors_[d]->getResidue() == acceptors_[a]->getResidue())
				{
					continue;
				}

				// HA does not form hydrogen bonds with its _neighbours_
				if (donors_[d]->getName().hasSubstring("HA"))
				{
					bool adjacent_residues =
						   donors_[d]->getResidue()->isNextSiblingOf(*(acceptors_[a]->getResidue()))
						|| donors_[d]->getResidue()->isPreviousSiblingOf(*(acceptors_[a]->getResidue()))
						|| (   abs(  donors_[d]->getResidue()->getID().toInt()
								 - acceptors_[a]->getResidue()->getID().toInt())  <= 1);

					if (adjacent_residues)
						continue;
				}

				//  oxygen--hydrogen separation  
				float distance = (donors_[d]->getPosition() - acceptors_[a]->getPosition()).getLength();

				if (   (  donors_[d]->getName().hasSubstring("HA") && (distance > ALPHA_PROTON_OXYGEN_SEPARATION_DISTANCE ))
						|| ( (donors_[d]->getName() == "H")            && (distance > AMIDE_PROTON_OXYGEN_SEPARATION_DISTANCE )))
					continue;

				// the angle criterion for H
				if (donors_[d]->getName()== "H")
				{
					Atom* C = NULL;
					Atom* N = NULL;
					// we have to find the C to which the acceptor O is bound and 
					// 								 the N to which the _donor_ H is bound 

					// we can't use countBonds here because of the hydrogen bonds which we want to ignore
					int bond_count_acceptor = 0;
					Atom::BondIterator bi;
					for (bi = acceptors_[a]->beginBond(); +bi; ++bi)
					{
						bond_count_acceptor++;
						if (bi->getPartner(*acceptors_[a])->getName().hasSubstring("C"))
							C = bi->getPartner(*acceptors_[a]);
					}

					int bond_count_donor = 0;
					for (bi = donors_[d]->beginBond(); +bi; ++bi)
					{
						if (bi->getType() != Bond::TYPE__HYDROGEN)
						{
							bond_count_donor++;
							N = bi->getPartner(*donors_[d]);
						}
					}

					// taken from ShitX :-)
					if ( (bond_count_acceptor == 0) || (bond_count_donor != 1) || !C)
					{
						continue;
					}

					// compute the vectors CO and NH
					BALL::Vector3 CO = acceptors_[a]->getPosition() - C->getPosition();
					BALL::Vector3 HN = N->getPosition() - donors_[d]->getPosition();

					float bond_angle = CO.getAngle(HN);
					// NOTE: the following looks different from the SHIFTX paper, but is not :-)
					if (   (bond_angle >= (Constants::PI/2.)
							|| (distance >= 2.5 + cos(bond_angle))))
						continue;

					// hydrogen-oxygen distance < 3.5 A and hydrogen-oxygen distance < nitrogen - oxygen distance		
					if ((distance > 3.5) || (distance >  (N->getPosition()- acceptors_[a]->getPosition()).getLength()))
						continue;
				}

				std::pair<Atom*, Atom*> bond(donors_[d], acceptors_[a]);
				potential_shiftX_hbonds.insert(std::pair<float, std::pair<Atom*, Atom*> >(distance, bond));
			}
		}


		// now filter for all compatible hydrogen bonds.  
		// To ensure that we assign only one (the smallest) bond for each donor and acceptor atom,
		// we iterate over the bonds sorted by their distance. If a bond is assigned, we mark this
		// in the occupied data structures
		std::multimap<float, std::pair<Atom*, Atom*> >::iterator it_b = potential_shiftX_hbonds.begin();

		for ( ; it_b != potential_shiftX_hbonds.end(); ++it_b)
		{
			//double distance = it_b->first;
			Atom* donor    = it_b->second.first;
			Atom* acceptor = it_b->second.second;

			// is this bond still allowed? i.e. are acceptor and donor still unoccupied?
			if (   (donor_occupied.find(donor) != donor_occupied.end())
					|| (acceptor_occupied.find(acceptor)  != acceptor_occupied.end()))
			{
				continue;
			}

			// store the bond:
			//   - add it to the special secondary structure vector 
			//     store the HBond as index pair for the Secondary Structure Processor
			// Note: the index was created by iterating with the ResidueIterator and assigning an ascending number! 
			if (   (acceptor->getName()== "O")
					&& (donor->getName()   == "H"))
			{
				backbone_h_bond_pairs_[residue_ptr_to_position_[acceptor->getResidue()]].push_back(residue_ptr_to_position_[donor->getResidue()]);
			}

			//   - add a real bond	
			bool add_hbonds = options.getBool(Option::ADD_HBONDS);

			//   - add the hydrogen bond to the internal data structure
			HBond new_bond(acceptor, donor, true);
			h_bonds_.push_back(new_bond);

			float bond_length = donor->getPosition().getDistance(acceptor->getPosition());

			Atom const* partner = NULL;
			for (Atom::BondIterator b_it = donor->beginBond(); +b_it; ++b_it)
			{
				if (b_it->getType() != Bond::TYPE__HYDROGEN)
					partner = b_it->getPartner(*donor);
			}

			float bond_angle = Constants::PI;
			if (partner)
				bond_angle = (acceptor->getPosition() - donor->getPosition()).getAngle(partner->getPosition() - donor->getPosition());

			if (add_hbonds && donor)
			{
				Bond* bond = donor->createBond(*acceptor);
			  bond->setType(Bond::TYPE__HYDROGEN);
			  bond->setOrder(Bond::ORDER__ANY);
				bond->setName("calculated H-Bond");

				bond->setProperty("HBOND_DONOR",    donor);
				bond->setProperty("HBOND_ACCEPTOR", acceptor);

				bond->setProperty("HBOND_HYDROGEN", donor);
				bond->setProperty("HBOND_LENGTH", bond_length);
				bond->setProperty("HBOND_ANGLE", bond_angle);
			}

			// finally mark the current participants as occupied
			donor_occupied[donor] = true;
			acceptor_occupied[acceptor] = true;
		}
		return true;
	}



	std::ostream& operator << (std::ostream& s, const BALL::HBondProcessor::ResidueData& p)
	{
		return s << p.pos_C << " " << p.pos_N << " " << p.pos_H << " " << p.pos_O << " " << p.number << std::endl;
	}

	const std::vector< std::vector<Position> >& HBondProcessor::getBackboneHBondPattern() const
	{
		return backbone_h_bond_pairs_;
	}

	const std::vector<HBondProcessor::ResidueData>& HBondProcessor::getResidueData() const
	{
		return residue_data_;
	}

	void HBondProcessor::setDefaultOptions()
	{
		options.setDefault(HBondProcessor::Option::PREDICTION_METHOD,
											 HBondProcessor::Default::PREDICTION_METHOD);

		options.setDefaultBool(HBondProcessor::Option::ADD_HBONDS,
											     HBondProcessor::Default::ADD_HBONDS);

		options.setDefaultReal(HBondProcessor::Option::KABSCH_SANDER_ENERGY_CUTOFF,
											     HBondProcessor::Default::KABSCH_SANDER_ENERGY_CUTOFF);
	}

} //Namespace BALL